OA16508A - Processing paper feedstocks. - Google Patents

Processing paper feedstocks. Download PDF

Info

Publication number
OA16508A
OA16508A OA1201300324 OA16508A OA 16508 A OA16508 A OA 16508A OA 1201300324 OA1201300324 OA 1201300324 OA 16508 A OA16508 A OA 16508A
Authority
OA
OAPI
Prior art keywords
paper
feedstock
daims
sugar
mixtures
Prior art date
Application number
OA1201300324
Inventor
Marshall Medoff
Thomas Masterman
Original Assignee
Xyleco, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xyleco, Inc. filed Critical Xyleco, Inc.
Publication of OA16508A publication Critical patent/OA16508A/en

Links

Abstract

Methods of processing paper feedstocks are provided, as well as intermediates and products made using such methods. Certain types of paper feedstocks, in particular highly pigmented papers, and/or highly loaded papers such as paper that has been color printed, e.g., magazines, and high basis weight coated papers, e.g., magazine stock, are utilized to produce useful intermediates and products, such as energy, fuels, foods or materials.

Description

PROCESSING PAPER FEEDSTOCKS
RELATED APPLICATIONS
This application daims priority to U.S. Provisional Application Serial No. 61/442,710, filed February 14, 2011. The complété disclosure of this provisional application is hereby incorporated by reference herein.
BACKGROUND
Magazines, catalogs, and other paper products that contain high levels of coatings, pigments, and inks, are widcly available as waste materials. While efforts are made to recycle this waste paper, generally by repulping it for use in recycled paper products, it would be advantageous if this waste paper could be economically utilizcd as a feedstock to make other types of products.
SUMMARY
Generally, this invention relates to methods of processing paper feedstocks, and to intermediates and products made therefrom. In particular, the invention relates generally to the processing of certain types of relativeiy heavy paper feedstocks, such as highly pigmentcd papers, and or loadcd papers, such as paper that has been color printed (printed with colors other than or in addition to black), e.g., magazines, and other papers.
Many of the methods disclosed herein utilize microorganisms or products produced by microorganisms, e.g., enzymes, to bioprocess the feedstock, producing useful intermediates and products, e.g., energy, fuels, foods and other materials. For example, in some cases enzymes are used to saccharify the feedstocks, converting the feedstocks to sugars. The sugars may be used as an end product or intermediate, or proccssed further, e.g., by fermentation. For example xylose can be hydrogenated to xylitol and glucose can bc hydrogenated to sorbitol.
In one aspect, the invention features methods for producing a sugar, e.g., in the form of a solution or suspension, that includes providing a paper fccdstock, the paper feedstock including offset printing paper e.g., offset printed paper, colored paper and/or
coated paper e.g., polycoated paper and optionally mixing the feedstock with a fluid and/or saccharifying agent.
Some implémentations include one or more of the following features. The paper feedstock may hâve a basis weight greater than 35 lb, e.g., from about 35 lb to 330 lb and/or lhe paper may hâve a high filler content, e.g., greater than about 10 wt.% e.g., greater than 20 wt.%. For example, the filler or any coating can be an inorganic material. The paper may also hâve a high grammage, e.g., greater than about 500 g/m2. The paper may comprise a pigment or printing ink, e.g., at a level greater than about 0.025 wt.%. The paper can hâve an ash content greater than about 8 wt.%.
The method can further include adding a microorganism, for example a yeast and/or a bacteria (e.g., ffom the genus Clostridium), to the paper feedstock or saccharifîed paper and producing a product or intermediate.
The product can be a fuel, including, for example, alcohols (e.g., methanol, éthanol, propanol, isopropanol, erythritol, n-butanol, isobutanol, stc-butanol, tertbutanol, ethylene glycol, propylene glycol, 1,4-butane diol and/or glycerin), sugar alcohols (e.g., erythritol, glycol, glycerol, sorbitol threitol, arabitol, ribitol, mannitol, dulcitol, fucitol, iditol, isomalt, maltitol, lactitol, xylitol and other polyols), organic acids (e.g., formic acid, acetic acid, propionic acid, butyric acid, valcric acid, caproic acid, palmitic acid, stcaric acid, oxalic acid, malonic acid, succinic acid, glutaric acid, oleic acid, linoleic acid, glycolic acid, lactic acid and/or γ-hydroxybutyric acid), hydrocarbons (methane, ethane, propane, isobutene, pentane, n-hexane, biodiescls and/or biogasolines), hydrogen and mixtures of these.
The method can further include adding a food-based nutrient source to the mixture, e.g., a nutrient source selected from the group consisting of grains, vegetables, residues of grains, residues of vegetables, and mixtures thereof, for example wheat, oats, barlcy, soybeans, peas, legumes, potatoes, com, rice bran, com meal, wheat bran, and mixtures thereof. In such cases, the mixture can further include an enzyme System selected to release nutrients from the food-bascd nutrient source, e.g., a System comprising a protease and an amylase,
The method can include detoxifying the sugar solution or suspension. The method can include further processing the sugar, for example, by separating xylose and or
I glucose from the sugar. In some cases, the saccharification can be conducted at a pH of about 3.8 to 4.2. The mixture can further include a nitrogen source.
In some cases, the method further includes physically treating the paper feedstock, for example mechanically treating to reduce the bulk density of the paper feedstock and/or increase the BET surface area of the feedstock. Physically treating the paper feedstock can include irradiation, for example, with an électron beam. The method can include mixing the paper feedstock with a fluid. The method can include detoxifying the paper feedstock, sugar, and/or other products or intermediates. The paper feedstock may be in the form of magazines. The paper feedstock may also be a laminate of at least one layer of a polymer and paper and may further include at least one layer of a métal e.g., aluminum.
Although many embodiments include the use of relatively heavy paper feedstocks, e.g., containing fillers and/or coatings other papers can be used e.g., newsprint.
Unless otherwise defined, ail technical and scientifïc terms used herein hâve the same meaning as commonly understood by one of ordinaiy skill in the art to which this invention belongs. Although methods and materials similar or équivalent to those described herein can bc used in the practice or testing of the présent invention, suitable methods and materials are described below. Ail publications, patent applications, patents, and other référencés mentioned herein are incorporated by reference in their entirety. In case of conflict, the présent spécification, încluding définitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.
Other featurcs and advantages of the invention will be apparent from the following detailed description, and from the daims.
DESCRIPTION OF DRAWINGS
FIG. 1 is a flow diagram illustrating conversion of a feedstock to éthanol via production of a glucose solution.
FIG. 2 is a schcmatic diagram of an cthanol manufacturing facility.
FIG. 3 is a diagram illustrating the cnzymatic hydrolysis of cellulose to glucose.
DETAILED DESCRIPTION
Using the methods and nutrient packages described herein, paper feedstocks that include high levels of pigments, colors, fillers and/or coatings, and/or that have a high basis weight, and the saccharified dérivatives of such feedstocks, can be bioprocessed, e.g., using fermentation, to produce useful intermediates and products such as those described herein. In some cases, the feedstock includes high levels pigments and/or fillers such as those feedstocks used in printing, e.g., magazines. Examples of such feedstocks arc described herein. Feedstocks of this type arc advantageous for a number of reasons, including their relatively low cost (if waste materials are used) and, in the case of high basis weight papers, their relatively high density, which contributes to ease of handling and processing.
CONVERTING CELLULOSIC AND LIGNOCELLULOSIC MATERIALS TO ALCOHOLS
Referring to FIG. 1, a process for manufacturing an alcohol, e.g., éthanol, or a butanol e.g., isobutanol, jec-butanol, tert-butanol or n-butanol, can include, for example, optionally mechanically treating the feedstock (step 110), before and/or after this treatment, optionally treating the feedstock with another physical treatment, for example irradiation, to further reducc its rccalcitrancc (step 112), saccharifying the feedstock to form a sugar solution (step 114), optionally transporting, e.g., by pipeline, railcar, truck or barge, the solution (or the feedstock, enzyme and water, if saccharification is performed en route) to a manufacturing plant (step 116), and then bio-processing the treated feedstock to produce a desired product (step 118), which is then processed further, e.g., by distillation (step 120). If desired, lignin content can be measured (step 122) and process parameters can be set or adjusted based on this measurement (step 124), as described in U.S. Application Serial No 12/704,519, filed on February 11,2010, the complété disclosure of which is incorporated herein by reference.
Because paper feedstocks are generally low in, or entirely lack, nutrients to support bioprocesses, it is generally preferred that nutrients be added to the System, for cxample in the form of a food-based nutrient source or nutrient package, as disclosed in U.S. Application Serial No. 13/184,138, incorporated by rcfcrcncc herein in its cntircty.
When utilized, the food-based nutrient source or nutrient package is présent during bioprocessing (step 118), e.g,, fermentation, and may in some preferred implémentations also be présent during the saccharification step (step 114). In some implémentations, the food-based nutrient source or nutrient package is added at the beginning of step 114, along with an enzyme combination suitable for saccharification, fermentation, and release of nutrients from the food-based nutrient source.
Saccharification is conducted under a first set of process conditions (e.g,, température and pH), and then when saccharification has procccdcd to a desired extent the process conditions may be adjusted (e.g., by adjusting pH from 4 to 5) to allow fermentation to proceed.
In some cases the feedstock includes materials that are not bénéficiai to the processing of the feedstock or decrease the quality of the intermediates and/or products. For example there may be materials that are toxic, and/or solid inorganic materials or insoluble organic materials. The toxic materials can be detrimental, for example, by reducing the effectiveness of enzymes and/or microorganisms. Examples of toxic materials are pigments and inks described herein. Solid inorganic materials can be detrimental, for example, in increasing the total viscosity and density of solutions in various proccsscs as well as forming slurrics, sludge and scttlcd material that may, for example, block openings, be difficult to remove, e.g., from the bottom of tanks, and/or increase the wear on mixers. Examples of inorganic materials are fillers and coatings described herein. Insoluble organic materials can, for example, contaminate the final fuel products and/or cause foaming during mixing or other processing steps. Examples of insoluble organic materials are polymers used in polycoated paper described herein. It can therefore be advantageous to remove some of the insoluble solids and organic materials and to detoxify the feedstock at any point during the processing as described herein. Surprisingly, it has been found that in some cases materials in the feedstock that would bc expected to be detrimental, as discusscd above, do not significantly advcrscly affect the process. For exemple, some ycasts that providc éthanol by fermentation of sugars derived from paper feedstocks appear to be very résilient to various pigments, inks 30 and fillers.
The manufacturing plant used in steps 118-120 (and in some cases ail of the steps described above) can be, for example, an existing starch-based or sugar-based éthanol plant or one that has been retrofitted by removing or decommissioning the equipment upstream from the bio-processing system (which in a typical éthanol plant generally 5 includes grain receiving equipment, a hammemull, a slurry mixer, cooking equipment and liquéfaction equipment). In some cases, the feedstock received by the plant can be input directly into the fermentation equipment. A retrofitted plant is shown schematically in FIG. 2 and described below as well as, for examplc, in U.S. Serial No. 12/429,045, filed April 23,2009, the complété disclosure of which is incorporated herein by reference.
FIG. 2 shows one particular system that utilizes the steps described above for treating a feedstock and then using the treated feedstock in a fermentation process to produce an alcohol. System 100 includes a module 102 in which a feedstock is initially mechanically treated (step 12, above), a module 104 in which the mechanically treated feedstock is structurally modified (step 14, above), e.g., by irradiation, and a module 106 in which the structurally modified feedstock is subjected to further mechanical treatment (step 16, above). As discusscd above, the module 106 may be of the same type as the module 102, or a different type. In some implémentations the structurally modified feedstock can be rctumed to module 102 for further mechanical treatment rather than being further mechanically treated in a separate module 106.
As described herein, many variations of system 100 can be utilized.
After these treatments, which may be repeated as many times as required to obtain desired feedstock properties, the treated feedstock is delivered to a fermentation system 108. Mixing may be performed during fermentation, in which case the mixing is preferably relatively gentle (low shear) so as to minimize damage to shear sensitive ingrédients such as enzymes and other microorganisms. In some embodiments, jet mixing is used, as described in U.S. Serial No. 12/782,694,13/293,977 and 13/293,985, the complète disclosurcs of which arc incorporated herein by référence.
Referring again to FIG. 2, fermentation produces a crude éthanol mixture, which flows into a holding tank 110. Water or other solvent, and other non-ethanol components, are strippcd from the crude éthanol mixture using a stripping column 112, and the éthanol is
then distilled using a distillation unit 114, e.g., a rectifier. Distillation may be by vacuum distillation. Finally, the éthanol can be dried using a molecular sieve 116 and/or denatured, if necessary, and output to a desired shipping method.
In some cases, the Systems described herein, or components thereof, may be portable, so that the system can be transported (e.g., by rail, truck, or marine vessel) from one location to another, The method steps described herein can be performed at one or more locations, and in some cases one or more of the steps can be performed in transit Such mobile proccssîng is described in U.S. Serial No. 12/374,549 and International Application No. WO 2008/011598, the full disclosures of which are incorporated herein 10 by reference.
Any or ail of the method steps described herein can be performed at ambient température. If desired, cooling and/or heating may be employed during certain steps. For example, the feedstock may be cooled during mechanical treatment to increase its brittleness. In some embodiments, cooling is employed before, during or after the initial 15 mechanical treatment and/or the subséquent mechanical treatment. Cooling may be performed as described in U.S. Serial No. 12/502,629, nowU.S. Patent No. 7,900,857 the full disclosure ofwhich is incorporated herein by reference. Moreover, the température in the fermentation system 108 may be controlled to cnhancc saccharification and/or fermentation.
The individual steps of the methods described above, as well as the materials used, will now be described in further detail.
PHYS1CAL TREATMENT
Physical treatment processes can include one or more of any of those described herein, such as mechanical treatment, chemical treatment, irradiation, sonication, oxidation, pyrolysis or steam explosion. Treatment methods can be used in combinations of two, three, four, or even ail of these technologies (in any order). When more than onc treatment method is used, the methods can be applied at the same time or at different times. Other processes that change a molecular structure of a feedstock may also be used, alone or in combination with the processcs disclosed herein.
Mechanical Treat ment s
In some cases, methods can include mechanically treating the feedstock.
Mechanical treatments include, for example, cutting, milling, pressing, grinding, shearing and chopping. Milling may include, for example, bail milling, hammer milling, rotor/stator dry or wet milling, freezer milling, blade milling, knife milling, disk milling, roller milling or other types of milling. Other mechanical treatments include, e.g., stone grinding, cracking, mechanical ripping or tcaring, pin grinding or air attrition milling.
Mechanical treatment can be advantageous for “opening up,” “stressing,” breaking and shattering cellulosic or other materials in the feedstock, making the cellulose of the materials more susceptible to chain scission and/or réduction of crystallinity, The open materials can also be more susceptible to oxidation when irradiated.
In some cases, the mechanical treatment may include an initial préparation of the feedstock as received, e.g., size réduction of materials, such as by cutting, grinding, shearing, pulvcrizing or chopping. For example, in some cases, loose feedstock (e.g., Machine Offset Paper and/or Polycoatcd Paper) is prepared by shearing or shredding.
Alternatively, or in addition, the feedstock material can first bc physically treated by one or more of the other physical treatment methods, e.g., chemîcal treatment, radiation, sonication, oxidation, pyrolysis or steam explosion, and then mechanically treated. This sequence can be advantageous since materials treated by one or more of the other treatments, e.g., irradiation or pyrolysis, tend to be more brittle and, therefore, it may be casier to further change the molecular structure of the material by mechanical treatment.
In some embodiments, mechanical treatment includes shearing to expose ftbers of the material. Shearing can be performed, for example, using a rotary knife cutter. Other methods of mechanically treating the feedstock include, for example, milling or grinding. Milling may bc performed using, for example, a hammer mill, bail mill, colloid mill, conical or cône mill, disk mill, edge mill, Wiley mill or grist mill. Grinding may bc performed using, for example, a stonc grinder, pin grinder, coffee grinder, or burr grinder. Grinding may be provided, for example, by a reciprocating pin or other element, as is the case in a pin mill. Other mechanical treatment methods include mechanical ripping or tearing, other methods that apply pressure to the material, and air attrition milling. Suitable mechanical treatments further include any other technique that changes the molecular structure of the feedstock.
If desired, the mechanically treated material can be passed through a screen, e.g., having an average opening size of l .59 mm or less (1/16 inch, 0.0625 inch). ïn some embodiments, shcaring, or other mechanical treatment, and screening are performed concurrcntly. For cxamplc, a rotary knife cutter can be used to concurrcntly shear and screen the feedstock. The feedstock is sheared between stationary blades and rotatîng blades to provide a sheared material that passes through a screen, and is captured in a bin.
The paper feedstock can be mechanically treated in a dry state (e.g., having little or no free water on its surface), a hydrated state (e.g., having up to ten percent by weight absorbed water), or in a wet state, e.g., having between about 10 percent and about 75 percent by weight water. The fîber source can even be mechanically treated while partially or fiilly submerged under a liquid, such as water, éthanol or îsopropanol.
The feedstock can also be mechanically treated under a gas (such as a stream or atmosphère of gas other than air), e.g., oxygen or nitrogen, or steam.
Mechanical treatment Systems can be configured to producc streams with spécifie morphology characteristics such as, for example, surface area, porosity, bulk density, and 20 length-to-width ratio.
In some embodiments, a BET surface area of the mechanically treated material is greater than 0.1 m2/g, e.g., greater than 0.25 m2/g, greater than 0.5 m2/g, greater than 1.0 m2/g, greater than 1.5 m2/g, greater than 1.75 m2/g, greater than 5.0 m2/g, greater than 10 m2/g, greater than 25 m2/g, greater than 35 m2/g, greater than 50m2/g, greater than 60 m2/g, greater than 75 m2/g, greater than 100 m2/g, greater than 150 m2/g, greater than 200 m2/g, or even greater than 250 m2/g.
In some situations, it can be désirable to prépare a low bulk density material, densify the material (e.g., to makc it casier and less costly to transport to another site), and then revert the material to a lower bulk density state. Dcnsified materiais can be processcd by any of the methods described herein, or any material processcd by any of the methods described herein can be subsequently densified, e.g., as disclosed in U.S.
Serial No. 12/429, 045 now U.S. Patent No. 7,932,065 and WO 2008/073186, the full disclosures of which are incorporated herein by reference.
Radiation Treatment
One or more radiation processing sequences can be used to process the paper feedstock, and to provide a structurally modified material which functions as input to further processing steps and/or sequences. Irradiation can, for example, reduce the molecular weight and/or crystallinity of feedstock. Radiation can also sterilize the materials, or any media needed to bioprocess the material.
In some embodiments, the radiation may be provided by (1) heavy charged particles, such as alpha particles or protons, (2) électrons, produced, for example, in beta decay or électron bcam accelerators, or (3) electromagnetic radiation, for example, gamma rays, x rays, or ultraviolet rays. In one approach, radiation produced by radioactive substances can be used to ïrradiate the feedstock. In another approach, electromagnetic radiation (e.g., produced using électron beam emitters) can be used to irradiatc the feedstock. In some embodiments, any combination in any order or concurrcntly of (1) through (3) may be utilized. The doses applied dépend on the desired effect and the particular feedstock.
In some instances when chain scission is désirable and/or polymer chain functionalization is désirable, particles heavier than électrons, such as protons, hélium nuclei, argon ions, silicon ions, néon ions, carbon ions, phosphorus ions, oxygen ions or nitrogen ions can be utilized. When ring-opening chain scission is desired, positively charged particles can be utilized for their Lewis acid properties for enhanced ringopening chain scission. For example, when maximum oxidation is desired, oxygen ions can be utilized, and when maximum nitration is desired, nitrogen ions can be utilized.
The use of heavy particles and positively charged particles is described in U.S. Serial No. 12/417,699, now U.S. Patent No. 7,931,784, the full disclosurc of which is incorporated herein by reference.
In one method, a first material that is or includes cellulose having a first number average molecular weight (Mnû is irradiated, e.g., by treatment with ionizing radiation (e.g., in the form of gamma radiation, X-ray radiation, 100 nm to 280 nm ultraviolet (UV) light, a beam of électrons or other charged particles) to provide a second material that includes cellulose having a second number average molecular weight (MN2) lower than the first number average molecular weight. The second material (or the first and second material) can be combined with a microorganism (with or without enzyme treatment) that can utilize the second and/or first material or its constituent sugars or lignin to produce an intermediate or product, such as those described herein.
Sincc the second material includes cellulose having a reduced molecular weight relative to the first material, and in some instances, a reduced crystallinity as well, the second material is generally more dispersible, swellable and/or soluble, e.g., in a solution containing a microorganism and/or an enzyme. These properties make the second material casier to process and more susceptible to chemical, enzymatic and/or biological attack relative to the first material, which can greatly improve the production rate and/or production level of a desired product, e.g., éthanol.
In some embodiments, the second number average molecular weight (Mn2) is lower than the first number average molecular weight (Mni) by more than about 10 percent, e.g., more than about 15, 20, 25, 30, 35, 40, 50 percent, 60 percent, or even more than about 75 percent.
In some instances, the second material includes cellulose that has a crystallinity (C2) that is lower than the crystallinity (Ci) of the cellulose of the first material. For example, (C2) can be lower than (Ci) by more than about 10 percent e.g., more than about 15, 20, 25, 30, 35, 40, or even more than about 50 percent.
In some embodiments, the second material can hâve a level of oxidation (O2) that is higher than the level of oxidation (Oj) of the first material. A higher level of oxidation of the material can aid in its dispersability, swellability and/or solubility, further enhancing the material’s susceptibility to chemical, enzymatic or biological attack. In some embodiments, to tncrease the level of the oxidation of the second material relative to the first material, the inadiation is performed under an oxidizing environment, e.g., under a blankct of air or oxygen, producing a second material that is more oxidized than the first material. For example, the second material can hâve more hydroxyl groups, aldéhyde groups, ketone groups, ester groups or carboxylic acid groups, which can increase its hydrophilicity.
Ionizing Radiation
Each form of radiation ionizes the paper feedstock via particular interactions, as determined by the energy of the radiation. Heavy charged particles primarily ionize matter via Coulomb scattering; furthermore, these interactions produce energetic électrons that may further ionize matter. Alpha particles are identical to the nucléus of a hélium atom and are produced by the alpha decay of various radioactive nuclei, such as isotopes of bismuth, polonium, astatine, radon, francium, radium, several actinides, such as actinium, thorium, uranium, neptunium, curium, californium, américium, and plutonium.
When particles are utilized, they can be neutral (uncharged), positively charged or negatively charged. When charged, the charged particles can bear a single positive or négative charge, or multiple charges, e.g., one, two, three or even four or more charges. In instances in which chain scission is desired, positively charged particles may be désirable, in part due to their acidic nature. When particles are utilized, the particles can hâve the mass of a resting électron, or greater, e.g., 500,1000, 1500, 2000, 10,000 or even 100,000 times the mass of a resting électron. For example, the particles can hâve a mass of from about 1 atomic unit to about 150 atomic units, e.g., from about 1 atomic unit to about 50 atomic units, or from about 1 to about 25, e.g., 1,2, 3,4, 5,10,12 or 15 amu. Accclerators used to accelerate the particles can be electrostatic DC, electrodynamic DC, RF linear, magnetic induction linear or continuous wave. For example, cyclotron type accelerators are available from IBA, Belgium, such as the Rhodotron® system, while DC type accelerators are available from RDI, now IBA Industrial, such as the Dynamitron®. Ions and ion accelerators are discussed in Introductory Nuclear Physics, Kenneth S. Krane, John Wiley & Sons, Inc. (1988), Krsto
Prelcc, FIZIKA B 6 ( 1997) 4,177-206, Chu, William T., “Overview of Light-Ion Beam
Therapy” Columbus-Ohio, ICRU-IAEA Meeting, 18-20 March 2006, Iwata, Y. et al., “Altemating-Phase-Focused 1H-DTL for Heavy-Ion Medical Accelerators” Proceedings of EPAC 2006, Edinburgh, Scotland and Leaner, C.M. et al., “Status of the Superconducting ECR Ion Source Venus” Proceedings of EPAC 2000, Vienna, Austria,
Gamma radiation has the advantage of a significant pénétration depth into a varicty of materials. Sources of gamma rays include radioactive nuclei, such as isotopes of cobalt, calcium, technicium, chromium, gallium, indium, iodine, iron, krypton, samarium, sélénium, sodium, thalium, and xénon.
Sources of x rays include électron beam collision with métal targets, such as tungsten or molybdenum or alloys, or compact light sources, such as those produced commercially by Lyncean.
Sources for ultraviolet radiation include deuterium or cadmium lamps.
Sources for ïnfrared radiation include sapphire, zinc, or selenide window ceramic lamps.
Sources for microwaves include klystrons, Slevin type RF sources, or atom beam sources that employ hydrogen, oxygen, or nitrogen gases.
In some embodiments, a beam of électrons is used as the radiation source. A beam of électrons has the advantages of high dose rates (e.g., 1, 5, or even 10 Mrad per second), high throughput, less containment, and less confinement equipment. Electrons can also be more efficient at causing chain scission. In addition, électrons having energies of 4-10 MeV can hâve a pénétration depth of 5 to 30 mm or more, such as 40 mm.
Electron bcams can be generated, e.g., by electrostatic generators, cascade gcncrators, transformer generators, low energy accclcrators with a scanning system, low energy accelerators with a linear cathode, linear accelerators, and pulsed accelerators. Electrons as an ionizing radiation source can be useful, e.g., for relatively thin sections of material, e.g., less than 0.5 inch, e.g., less than 0.4 inch, 0.3 inch, 0.2 inch, or less than 0.1 inch. In some embodiments, the energy of each électron of the électron beam is from about 0.3 MeV to about 2.0 MeV (million clectron volts), e.g., from about 0.5 MeV to about 1.5 MeV, or from about 0.7 MeV to about 1.25 MeV.
Electron beam irradiation devices may be procured commercially from Ion Beam Applications, Louvain-la-Neuve, Belgium or the Titan Corporation, San Diego, CA. Typical électron énergies can bc 1 MeV, 2 MeV, 4.5 MeV, 7.5 MeV, or 10 MeV. Typical clectron beam irradiation device power can bc 1 kW, 5 kW, 10 kW, 20 kW, 50 kW, 100 kW, 250 kW, or 500 kW. The level of depolymerization of the feedstock dépends on the électron energy used and the dose applied, while exposure time dépends on the power and dose. Typical doses may take values of 1 kGy, 5 kGy, 10 kGy, 20 kGy, kGy, 100 kGy, or 200 kGy. In a some embodiments energies between 0.25-10 MeV (e.g., 0.5-0.8 MeV, 0.5-5 MeV, 0.8-4 MeV, 0.8-3 MeV, 0.8-2 MeV or 0.8-1.5 MeV) can be used. In some embodiment doses between 1-100 Mrad (e.g., 2-80 Mrad, 5-50 Mrad, 540 Mrad, 5-30 Mrad or 5-20 Mrad) can be used. In some preferred embodiments, an energy between 0.8-3 MeV (e.g., 0.8-2 MeV or 0.8-1.5 MeV) combined with doses between 5-50 Mrad (e.g., 5-40 Mrad, 5-30 Mrad or 5-20 Mrad) can be used.
Ion Particle Beams
Particles heavier than électrons can be utilized to irradiate paper feedstock materials. For example, protons, hélium nuclei, argon ions, silicon ions, néon ions carbon ions, phosphorus ions, oxygen ions or nitrogen ions can be utilized. In some embodiments, particles heavier than électrons can induce higher amounts of chain scission (relative to lighter particles). In some instances, positively charged particles can induce higher amounts of chain scission than negatively charged particles due to their acidity.
Heavier particle beams can be generated, e.g., using linear accelerators or cyclotrons. In some embodiments, the energy of each particle of the beam is from about 1.0 McV/atomic unit (McV/amu) to about 6,000 McV/atomic unit, e.g., from about 3 MeV/ atomic unit to about 4,800 MeV/atomic unit, or from about 10 MeV/atomic unit to about 1,000 MeV/atomic unit.
In certain embodiments, ion beams used to irradiate paper feedstock can include more than one type of ion. For example, ion beams can include mixtures of two or more (e.g., three, four or more) different types of ions. Exemplary mixtures can include carbon ions and protons, carbon ions and oxygen ions, nitrogen ions and protons, and iron ions and protons. More generally, mixtures of any of the ions discussed above (or any other ions) can bc used to form irradiating ion beams. In particular, mixtures of relatively light and relatively heavier ions can bc used in a single ion bcam.
In some embodiments, ion beams for irradiating paper feedstock include positively-charged ions. The positively charged ions can include, for example, positively charged hydrogen ions (e.g., protons), noble gas ions (e.g,, hélium, ncon, argon), carbon ions, nitrogen ions, oxygen ions, silicon atoms, phosphorus ions, and métal ions such as sodium ions, calcium ions, and/or iron ions. Without wishing to be bound by any theory, it is believed that such positively-charged ions behave chemically as Lewis acid moîeties when exposed to materials, initiating and sustaining cationic ring-opening chain scission reactions in an oxidative environment.
In certain embodiments, ion beams for irradiating paper feedstock include negatively-charged ions. Negatively charged ions can include, for exampie, negatively charged hydrogen ions (e.g., hydride ions), and negatively charged ions of various relativeiy clcctroncgativc nuclci (e.g., oxygen ions, nitrogen ions, carbon ions, silicon ions, and phosphorus ions). Without wishing to be bound by any theory, it is believed that such negatively-charged ions behave chemically as Lewis base moieties when exposed to materials, causing anionic ring-opening chain scission reactions in a reducing environment.
In some embodiments, beams for irradiating paper feedstock can include neutral atoms. For example, any one or more of hydrogen atoms, hélium atoms, carbon atoms, nitrogen atoms, oxygen atoms, néon atoms, silicon atoms, phosphorus atoms, argon atoms, and iron atoms can be included in beams that are used for irradiation. In general, mixtures of any two or more of the above types of atoms (e.g., three or more, four or more, or even more) can bc présent in the beams.
In certain embodiments, ion beams used to irradiate paper feedstock include singly-charged ions such as one or more of H+, H', He+, Ne+, Ar+, C+, C, O+, θ', N+, N’, Si+, Si', P+, P, Na+, Ca+, and Fe+. In some embodiments, ion beams can include multiply-charged ions such as one or more of C2+, C3+, C4+, N3+, Ns+, N3’, O2+, O2', O?2’, Si2+, Si4\ Si2’, and Si4’. In general, the ion beams can also include more complex polynuclcar ions that bear multiple positive or négative charges. In certain embodiments, by virtue of the structure of the polynuclcar ion, the positive or négative charges can bc effectively distributed over substantially the entirc structure of the ions. In some embodiments, the positive or négative charges can bc somewhat localizcd over portions of the structure of the ions.
Electromagnetic Radiation
In embodiments in which the irradiating is performed with electromagnetic radiation, the electromagnetic radiation can have, e.g., energy per photon (in électron volts) of greater than 102 eV, e.g., greater than ΙΟ3,104, 10s, 106, or even greater than 107 eV. In some embodiments, the electromagnetic radiation has energy per photon of between 104 and 107, e.g., between 105 and 10û eV. The electromagnetic radiation can have a frequency of, e.g., greater than 1016 hz, greater than 1017 hz, 1018, ΙΟ19, 1O20, or even greater than 1021 hz. Typical doses may take values of greater than 1 Mrad (e.g., greater than 1 Mrad, greater than 2 Mrad). In some embodiments, the electromagnetic radiation has a frequency of between 1018 and 1022hz, e.g., between 1019 to 1021 hz. In some embodiment doses between 1-100 Mrad (e.g., 2-80 Mrad, 5-50 Mrad, 5-40 Mrad,
5-30 Mrad or 5-20 Mrad) can be used.
Ouenching and Controlled Functionalization
After treatment with ionizing radiation, any of the materials or mixtures described herein may become ionized; that is, the treated material may include radicals at levels that are détectable with an électron spin résonance spectrometer. If an ionized feedstock romains in the atmosphère, it will bc oxidized, such as to an extent that carboxylic acid groups are generated by reacting with the atmospheric oxygen. In some instances with some materials, such oxidation is desired because it can aid in the further breakdown in molecular weight of the carbohydrate-containing biomass, and the oxidation groups, e.g., carboxylic acid groups can be helpfol for solubility and microorganism utilization in some instances. However, since the radicals can “live” for some time after irradiation, e.g., longer than 1 day, 5 days, 30 days, 3 months, 6 months or even longer than 1 year, material properties can continue to change over time, which in some instances, can be undcsïrable. Thus, it may bc désirable to quench the ionized material.
After ionization, any ionized material can bc quenched to rcducc the level of radicals in the ionized material, e.g., such that the radicals arc no longer détectable with the électron spin résonance spectrometer. For example, the radicals can be quenched by the application of a sufficient pressure to the material and/or by utilizing a fluid in contact with the ionized material, such as a gas or liquid, that reacts with (quenches) the radicals.
Using a gas or liquid to at least aid in the quenching of the radicals can be used to functionalize the ionized material with a desired amount and kind of functional groups, such as carboxylic acid groups, enol groups, aldéhyde groups, nitro groups, nitrile groups, amino groups, alkyl amino groups, alkyl groups, chloroalkyl groups or chlorofluoroalkyl groups.
In some instances, such quenching can împrove the stability of some of the ionized materials. For example, quenching can împrove the résistance of the material to oxidation. Functionalization by quenching can also improve the solubility of any material described herein, can improve its thermal stability, and can improve material utilization by various microorganisms. For example, the functional groups imparted to the material by the quenching can act as receptor sites for attachment by microorganisms, e.g., to enhance cellulose hydrolysis by various microorganisms.
In some embodiments, quenching includes an application of pressure to the ionized material, such as by mechanically deforming the material, e.g., directly mechanically compressing the material in one, two, or three dimensions, or applying pressure to a fluid in which the material is immersed, e.g., isostatic pressing. In such instances, the deformation of the material itself brings radicals, which are often trapped in crystalline domains, in close cnough proximity so that the radicals can rccombinc, or rcact with another group. In some instances, the pressure is applied together with the application of heat, such as a sufficient quantity of heat to elevate the température of the material to above a melting point or softening point of a component of the material, such cellulose or another polymer. Heat can improve molecular mobility in the material, which can aid in the quenching of the radicals. When pressure is utilized to quench, the pressure can be greater than about 1000 psi, such as greater than about 1250 psi, 1450 psi, 3625 psi, 5075 psi, 7250 psi, 10000 psi or even greater than 15000 psi.
In some embodiments, quenching includes contacting the ionized material with a fluid, such as a liquid or gas, e.g., a gas capable of rcacting with the radicals, such as acctylcnc or a mixture of acctylcnc in nitrogen, ethylene, chlorinatcd cthylcncs or chlorofluoroethylenes, propylene or mixtures of these gases. In other particular embodiments, quenching includes contacting the ionized material with a liquid, e.g., a liquid soluble in, or at least capable of penctrating into the material and reacting with the radicals, such as a diene, such as 1,5-cyclooctadiene. In some spécifie embodiments, quenching includes contacting the material with an antioxidant, such as Vitamin E. If desired, the feedstock can include an antioxidant dispersed therein, and the quenching can corne from contacting the antioxidant dispersed in the feedstock with the radicals.
Functionalization can be enhanced by utilizing heavy charged ions, such as any of the heavier ions described herein. For example, if it is desired to enhance oxidation, charged oxygen ions can be utilized for the irradiation. If nitrogen functional groups are desired, nitrogen ions or anions that include nitrogen can be utilized. Lîkcwisc, if sulfur or phosphores groups are desired, sulfur or phosphores ions can be used in the irradiation.
Doses
In some instances, the irradiation is performed at a dosage rate of greater than about 0.25 Mrad per second, e.g., greater than about 0.5, 0.75,1.0, 1.5, 2.0, or even greater than about 2.5 Mrad per second. In some embodiments, the irradiating is performed at a dose rate of between 5.0 and 1500.0 kilorads/hour, e.g., between 10,0 and 750.0 kilorads/hour or between 50.0 and 350.0 kilorads/hour. In some embodiments, irradiation is performed at a dose rate of greater than about 0.25 Mrad per second, e.g., greater than about 0.5, 0.75,1, 1.5, 2, 5, 7, 10, 12,15, or even greater than about 20 Mrad per second, e.g., about 0.25 to 2 Mrad per second.
In some embodiments, the irradiating (with any radiation source or a combination of sources) is performed until the material receives a dose of 0.25 Mrad, e.g., at least 1.0, 2.5, 5.0, 8.0, 10, 15,20, 25, 30, 35,40, 50, or even at least 100 Mrad. In some embodiments, the irradiating is performed until the material receives a dose of between 1.0 Mrad and 6.0 Mrad, e.g., between 1.5 Mrad and 4.0 Mrad, 2 Mrad and 10 Mrad, 5 Mrad and 20 Mrad, 10 Mrad and 30 Mrad, 10 Mrad and 40 Mrad, or 20 Mrad and 50 Mrad. In some embodiments, the irradiating is performed until the material reçoives a dose of from about 0.1 Mrad to about 500 Mrad, from about 0.5 Mrad to about 200 Mrad, from about 1 Mrad to about 100 Mrad, or from about 5 Mrad to about 60 Mrad. In some embodiments, a relatively low dose of radiation is applied, e.g., less than 60 Mrad.
Sonication
Sonication can reduce the molecular weight and/or crystallinity of the polymers comprising the paper feedstock, e.g., cellulose. Sonication can also be used to sterilize the materials. As discussed above with regard to radiation, the process parameters used 5 for sonication can be varied depending on various factors.
In one method, a first material that includes cellulose having a first number average molecular weight (Mni) is dispersed in a medium, such as water, and sonicated and/or otherwise cavitatcd, to provide a second material that includes cellulose having a second number average molecular weight (Mnî) lower than the first number average molecular weight. The second material (or the first and second material in certain embodiments) can be combined with a microorganism (with or without enzyme treatment) that can utilize the second and/or first material to produce an intermediate or product.
Since the second material includes cellulose having a reduced molecular weight relative to the first material, and in some instances, a reduced crystallinity as well, the second material is generally more dispersible, swcllable, and/or soluble, e.g., in a solution containing a microorganism.
In some embodiments, the second number average molecular weight (Mn2) is lower than the first number average molecular weight (Mni) by more than about 10 percent, e.g., more than about 15, 20, 25, 30, 35,40, 50 percent, 60 percent, or even more than about 75 percent.
In some instances, the second material includes cellulose that has a crystallinity (C2) that is lower than the crystallinity (Ci) of the cellulose of the first material. For example, (C2) can be lower than (Ci) by more than about 10 percent e.g., more than about 15, 20, 25, 30, 35, 40, or even more than about 50 percent.
In some embodiments, the sonication medium is an aqueous medium. If desired, the medium can include an oxidant, such as a peroxide (e.g., hydrogen peroxide), a dispersing agent and/or a buffer. Examplcs of dispersing agents include ionic dispersing agents, e.g., sodium lauryl sulfate, and non-ionic dispersing agents, e.g., poly(ethylene glycol).
In other embodiments, the sonication medium is non-aqueous. For example, the sonication can be performed in a hydrocarbon, e.g., toluene or heptane, an ether, e.g., diethyl ether or tetrahydrofuran, or even in a liquefied gas such as argon, xénon, or nitrogen.
Pyrolysis
One or more pyrolysis processing sequences can be used to process paper feedstock from a wide variety of different sources to cxtract useful substances from the materials, and to provide partially degraded materials which function as input to further processing steps and/or sequences. Pyrolysis can also be used to sterilize the materials. Pyrolysis conditions can be varied depending on the charactcristics of the feedstock and/or other factors.
In one example, a first material that includes cellulose having a first number | average molecular weight (Mni) is pyrolyzcd, e.g., by heating the first material in a tube furnace (in the presence or absence of oxygen), to provide a second material that includes cellulose having a second number average molecular weight (Mn2) lower than the first number average molecular weight.
Since the second material includes cellulose having a reduced molecular weight relative to the first material, and in some instances, a reduced crystallinity as well, the second material is generally more dispcrsible, swellable and/or soluble, e.g., in a solution containing a microorganism.
In some embodiments, the second number average molecular weight (Mn2) is lower than the first number average molecular weight (Mni) by more than about 10 percent, e.g., more than about 15, 20, 25, 30, 35, 40, 50 percent, 60 percent, or even more than about 75 percent.
In some instances, the second material includes cellulose that has a crystallinity (C2) that is lower than the crystallinity (Ci) of the cellulose of the first material. For example, (C2) can bc lower than (Ci) by more than about 10 percent, e.g., more than about 15,20,25,30,35,40, or even more than about 50 percent.
In some embodiments, the pyrolysis of the materials is continuous. In other embodiments, the material is pyrolyzed for a pre-determined time, and then allowed to cool for a second pre-determined time before pyrolyzing again.
Oxidation
One or more oxidative processing sequences can be used to process paper feestock from a wide variety of different sources to extract useful substances from the feedstock, and to providc partially degraded and/or altcrcd feedstock which functions as input to further processing steps and/or sequences. The oxidation conditions can be 10 varied, e.g., depending on the lignin content of the feedstock, with a higher degree of oxidation generally being desired for higher lignin content feedstocks.
In one method, a first material that includes cellulose having a first number average molecular weight (Mni) and having a first oxygen content (O|) is oxidized, e.g., by heating the first material in a stream of air or oxygcn-enriched air, to provide a second 15 material that includes cellulose having a second number average molecular weight (MN2) and having a second oxygen content (O2) higher than the first oxygen content (Oi).
The second number average molecular weight of the second material is generally lower than the first number average molecular weight of the first material. For cxamplc, the molecular weight may be reduced to the same extent as discussed above with respect 20 to the other physical treatments. The crystallinity of the second material may also be reduced to the same extent as discussed above with respect to the other physical treatments.
In some embodiments, the second oxygen content is at least about five percent higher than the first oxygen content, e.g., 7.5 percent higher, 10.0 percent higher, 12.5 percent higher, 15.0 percent higher or 17.5 percent higher. In some preferred embodiments, the second oxygen content is at least about 20.0 percent higher than the first oxygen content of the first material. Oxygen content is measured by clcmcntal analysis by pyrolyzing a sample in a fumacc operating at 1300 °C or higher. A suitable elemcntal analyzer is the LECO CHNS-932 analyzer with a VTF-900 high température pyrolysis fumace.
Generally, oxidation of a material occurs in an oxidizing environment. For example, the oxidation can bc effected or aided by pyrolysis in an oxidizing environment, such as in air or argon enriched in air. To aid in the oxidation, various chemîcal agents, such as oxidants, acids or bases can be added to the material prior to or during oxidation.
For example, a peroxide (e.g., benzoyl peroxide) can be added prior to oxidation.
Some oxidative methods of reducing recalcitrance in a paper feedstock employ Fenton-type chemistry. Such methods are disclosed, for example, in U.S. Serial No. 12/639,289, the complète disclosure of which is incorporated herein by reference.
Exemplary oxidants include peroxides, such as hydrogen peroxide and benzoyl peroxide, persulfates, such as ammonium persulfate, activated forms of oxygen, such as ozone, permanganates, such as potassium permanganate, perchlorates, such as sodium perchlorate, and hypochlorites, such as sodium hypochlorite (houschold bleach).
In some situations, pH is maintained at or below about 5.5 during contact, such as between 1 and 5, between 2 and 5, between 2.5 and 5 or between about 3 and 5. Oxidation conditions can also include a contact period of between 2 and 12 hours, e.g., between 4 and 10 hours or between 5 and 8 hours. In some instances, température is maintained at or below 300 °C, e.g., at or below 250, 200, 150,100 or 50 °C. In some instances, the température remains substantially ambient, e.g., at or about 20-25 °C.
In some embodiments, the one or more oxidants arc applied as a gas, such as by gencrating ozone in-situ by irradiating the material through air with a beam of particles, such as électrons.
In some embodiments, the mixture further includes one or more hydroquinoncs, such as 2,5-dimcthoxyhydroquinonc (DMHQ) and/or one or more bcnzoquinoncs, such as 2,5-dimethoxy-l,4-benzoquinone (DMBQ), which can aid in électron transfer reactions.
In some embodiments, the one or more oxidants are elcctrochemically-generated in-situ. For example, hydrogen peroxide and/or ozone can bc elcctro-chemically produced within a contact or reaction vessel.
t
Other Processes To Solubilize, Reduce Recalcitrance Or To Functionalize
Any of the processes of this paragraph can be used alone without any of the processes described herein, or in combination with any of the processes described herein (in any order): steam explosion, chemical treatment (e.g., acid treatment (including concentrated and dilute acid treatment with minerai acids, such as sulfuric acid, hydrochloric acid and organic acids, such as trifluoroacetic acid) and/or base treatment (e.g., treatment with lime or sodium hydroxide)), UV treatment, screw extrusion treatment (scc, e.g,, U.S. Serial No. 13/099,151, solvent treatment (c.g„ treatment with ionic liquids) and frceze milling (see, e.g., U.S. Serial No. 12/502,629 now U.S. Patent No. 7,900,857).
Saccharification
In order to convert the paper feedstock to fermentable sugars, the cellulose in the feedstock is hydrolyzed by a saccharifying agent, e.g., an enzyme, a process referred to as saccharification. The materials that include the cellulose are treated with the enzyme, e.g., by combining the material and the enzyme in a solvent, e.g., in an aqueous solution.
Enzymes and organisms that break down cellulose contain or manufacture various ccllulolytic enzymes (ccllulascs), ligninascs or various small molécule biomassdestroying métabolites. These enzymes may be a complex of enzymes that act synergistically to dégradé crystalline cellulose. Examples of cellulolytic enzymes include: cndoglucanases, cellobiohydrolases, and cellobiases (β-glucosidases), Referring to FIG. 3, a cellulosic substrate is initially hydrolyzed by cndoglucanases atrandom locations producing oligomeric intermediates. These intermediates are then substrates for exo-splitting glucanases such as cellobiohydrolase to produce cellobiose from the ends of the cellulose polymer. Cellobiose is a water-soluble 1,4-linked dimer of glucose. Finally cellobiasc clcavcs cellobiose to yield glucose.
Suitable saccharifying agents arc described, for cxamplc, in the Materials section below.
As noted above, a food-based nutrient source or nutrient package is preferably added prior to or during saccharification, and an enzyme is added that is selected to
I release nutrients from the food-based nutrient source. Suitable enzymes are described, for example, in the Materials section below.
The saccharification process can be partially or completely performed in a tank (e.g., a tank having a volume of at least 4000,40,000,400,000 L or 1,000,000 L) in a manufacturing plant, and/or can be partially or completely performed in transit, e.g., in a rail car, tanker truck, or in a supertanker or the hold of a ship. The time required for complété saccharification will dépend on the process conditions and the feedstock and enzyme used. If saccharification is performed in a manufacturing plant under controlled conditions, the cellulose may be substantially entirely converted to glucose in about 1296 hours. If saccharification is performed partially or completely in transit, saccharification may take longer.
It is generally preferred that the tank contents be mixed during saccharification, e.g., using jet mixing as described in U.S. Applications Serial Nos. 12/782,694, 13/293,985 and 13/293,977, the full disclosure of which are incorporated by reference herein.
The addition of surfactants can enhance the rate of saccharification. Examples of surfactants include non-ionic surfactants, such as a Tween® 20 or Tween® 80 polyethylene glycol surfactants, ionic surfactants, or amphoteric surfactants.
It is generally preferred that the concentration of the resulting glucose solution bc relatively high, e.g., greater than 40%, or greater than 50, 60, 70, 80, 90 or even greater than 95% by weight. This reduces the volume to be shipped, if saccharification and fermentation are performed at different locations, and also inhibits microbial growth in the solution. However, lower concentrations may be used, in which case it may be désirable to add an antimicrobial additive, e.g., a broad spectrum antibiotic, in a low concentration, e.g,, 50 to 150 ppm. Other suitable antibiotics include amphotericin B, ampicillin, chloramphenicol, ciprofloxacin, gentamicin, hygromycin B, kanamycin, neomycin, penicillin, puromycin, streptomycin. Antibiotics will inhibit growth of microorganisms during transport and storage, and can be used at appropriate concentrations, e.g., between 15 and 1000 ppm by weight, e.g., between 25 and 500 ppm, or between 50 and 150 ppm. If desired, an antibiotic can bc included even if the sugar concentration is relatively high.
«
A relatively high concentration solution can be obtained by limiting the amount of water added to the feedstock with the enzyme. The concentration can be controlled, e.g., by controlling how much saccharification takes place. For example, concentration can be increased by adding more feedstock to the solution. In order to keep the sugar that is being produced in solution, a surfactant can be added, e.g., one of those discussed above. Solubility can also be increased by increasing the température of the solution. For example, the solution can be maintained at a température of40-50°C, 60-80°C, or even higher.
In some embodiments, the feedstock is processcd to couvert it to a convenient and concentrated solid material, e.g., in a powdcrcd, granulatc or particulatc form. The concentrated material can bc in a purified, or a raw or crude form, The concentrated form can have, for example, a total sugar concentration of between about 90 percent by weight and about 100 percent by weight, e.g., 92, 94,96 or 98 percent by weight sugar. Such a form can bc particularly cost effective to ship, e.g., to a bioprocessing facility, such as a biofuel manufacturing plant. Such a form can also be advantageous to store and handle, easier to manufacture and becomes both an intermediate and a product, providing an option to the biorefinery as to which products to manufacture.
ïn some instances, the powdered, granulate or particulate material can also include one or more of the materials, e.g., additives or chemicals, described herein, such as the food-bascd nutrient or nutrient package, a nitrogen source, e.g., urca, a surfactant, an enzyme, or any microorganism described herein. In some instances, ail materials needed for a bio-process are combined in the powdered, granulate or particulate material. Such a form can be a particularly convenient form for transporting to a remote bioprocessing facility, such as a remote biofuels manufacturing facility. Such a form can also be advantageous to store and handle.
In some instances, the powdered, granulate or particulate material (with or without added materials, such as additives and chemicals) can be treated by any of the physîcal treatments described in U.S. Serial No. 12/429,045, incorporated by reference above. For examplc, irradiating the powdered, granulate or particulate material can increase its solubility and can sterilize the material so that a bioprocessing facility can integrate the material into their process directly as may be requîred for a contemplated intermediate or product.
In certain instances, the powdered, granulate or particulate material (with or without added materiais, such as additives and chemicals) can be carried in a structure or a carrier for ease of transport, storage or handling. For example, the structure or carrier can include or incorporate a bag or liner, such as a degradable bag or lincr. Such a form can be particularly useful for adding directly to a bioprocess system.
Fermentation
Microorganisms can produce a number of useful intermediates and products by fermenting a low molecular weight sugar produced by saccharifying the paper feedstock materiais. For example, fermentation or other bioprocesses can produce alcohols, organic acids, hydrocarbons, hydrogen, proteins or mixtures of any of these materiais.
Yeast and Zymomonas bacteria, for example, can be used for fermentation or conversion. Other microorganisms are discussed in the Materiais section, below. The optimum pH for fermentations is about pH 4 to 7. For example, the optimum pH for yeast is from about pH 4 to 5, while the optimum pH for Zymomonas is from about pH 5 to 6. Typical fermentation times arc about 24 to 168 hours (e.g., 24 to 96 hrs) with températures in the range of 20 °C to 40 °C (e.g., 26 °C to 40 °C), however thermophilie microorganisms prefer higher températures.
In some embodiments e.g., when anaérobie organisms are used, at least a portion of the fermentation is conducted in the absence of oxygen e.g., under a blanket of an inert gas such as N2, Ar, He, CO2 or mixtures thereof. Additionally, the mixture may hâve a constant purge of an inert gas flowing through the tank during part of or ail of the fermentation. In some cases, anaérobie condition can be achieved or maintained by carbon dioxide production during the fermentation and no additional inert gas is needed.
ln some embodiments, ail or a portion of the fermentation process can be interrupted before the low molecular weight sugar is complctcly convcrtcd to a product (e.g, éthanol). The intermediate fermentation products include high concentrations of sugar and carbohydrates. The sugars and carbohydrates can be isolated as discussed below. These intermediate fermentation products can be used in préparation of food for
human or animal consumption. Additional ly or alternatively, the intermediate fermentation products can be ground to a fine particle size in a stainless-steel laboratory mill to produce a flour-like substance.
The fermentations include the methods and products that are disclosed in U.S. Provisional Application Serial No. 61/579,559, filed December 22,2012, and U.S. application 61/579,576, filed December 22, 2012 incorporated by reference herein in its entirety.
Mobile fermentors can bc utilized, as described in U.S. Provisional Patent Application Serial 60/832,735, now Published International Application No. WO 2008/011598. Similarly, the saccharification equipment can be mobile. Further, saccharification and/or fermentation may be performed in part or entirely during transit.
Distillation
After fermentation, the resulting fluids can be distilled using, for example, a “beer column” to separate éthanol and other alcohols from the majority of water and residual solids. The vapor exiting the beer column can be, e.g., 35% by weight éthanol and can be fed to a rectification column. A mixture of nearly azcotropic (92.5%) éthanol and water from the rectification column can bc purified to pure (99.5%) cthanol using vapor-phasc molecular sieves. The beer column bottoms can be sent to the first effect of a three-effect evaporator. The rectification column reflux condenser can provide heat for this first effect. After the first effect, solids can be separated using a centrifuge and dried in a rotary dryer. A portion (25%) of the centrifuge effluent can be recycled to fermentation and the rest sent to the second and third evaporator effects. Most of the evaporator condensate can be returned to the process as fairly clean condensate with a small portion split off to waste water treatment to prevent build-up of low-boiling compounds.
Other Possible Processing of Sugars
Processing during or after saccharification can include isolation and/or concentration of sugars by chromatography e.g., simulated moving bed chromatography, précipitation, centrifugation, crystallization, solvent évaporation and combinations thereof. In addition, or optionally, processing can include isomerization of one or more of
the sugars in the sugar solution or suspension. Additionally, or optionally, the sugar solution or suspension can be chemically processed e.g., glucose and xylose can be hydrogenated to sorbitol and xylitol respectively. Hydrogénation can be accomplished by use of a catalyst e.g., Pt/y-AljCh, Ru/C, Raney Nickel in combination with H2 under high pressure e.g., 10 to 12000 psi.
Some possible processing steps are disclosed in in U.S. Provisional Application Serial No. 61/579,552, filed December 22,2012, and in U.S. Provisional Application Serial No. 61/579,576 filed Dcccmbcr 22, 2012, incorporatcd by rcfcrcncc herein in its entirety above.
REMOVING OF FILLERS, INKS, AND COATINGS
Paper feedstock used in the processes described can contain fillers, coatings, laminated material, pigments, inks and binders. These can be removed and either discarded or recycled as described here.
Inorganic fillers and coatings e.g., those described in the matériels section below can be removed at any point during the process. For example, the inorganic Aller and coating can be removed from the feedstock after a mechanical, physical or chemical treatment to rcducc the rccalcitrancc of the feedstock; after combination with a fluid; after, during or before saccharification; after, during or before a purification step; after, during or before a fermentation step; and/or after, during or before a chemical conversion step. The fillers and coatings can be removed by any means e.g., by sédimentation, précipitation, ligand séquestration, filtration, floatation, chemical conversion and centrifugation. Some of the physical treatments dîscussed herein (see Physical Treatment section) can aid in separating the cellulosic materials from the inorganic fillers and coatings (e.g., mechanical treatments, chemical treatments, irradiation, pyrolysis, sonication and/or oxidiation). The recovered inorganic fillers can be rccyclcd or discarded.
Inks that arc présent can be removed from the feedstock at any point during the process. Inks can be a complex medium composed of several components e.g., solvents, pigments, dyes, rcsins, lubricants, solubilizers, surfactants, particulate matter and/or fluorescers. For example, printed papers, e.g., magazines and catalogs, may include high levels of the pigments generally used in printing inks. In some cases the papers include metal-based pigments, organic pigments, and/or Lake pigments. For example, pigments that can be used are Yellow Lakes, Tartrazine Yellow Lake, Hansa Yellows, Diarylide Yellows, Yellow azo pigments, Fluorescent Yellow, Diarylide Orange, DNA Orange, 5 Pyrazolone Orange, Fast Orange F2G, Benzimidazolone Orange HL, Ethyl Lake Red C,
Para Reds, Toluidine Red, Carminé F.B., Naphthol Reds and Rubines, Permanent Red FRC, Bordeaux FRR, Rubine Reds, Lithol Reds, BON Red, Lithoi Rubinc 4B, BON Maroon, Rhodaminc 6G, Lake Red C, BON Arylamidc Red, Quinacrinonc Magentas, Copper Ferrocyanide Pink, Benzimidazolone Carminés and Reds, Azo Magenta G, 10 Anthraquinone Scarlet, Madder Lakes, Phthalocyanine Blues, PMTA Victoria Blue, Victoria Blue CFA, Ultramarine Blue, Indanthrene Blue, Alkali Blues, Peacock Blue, Benzimidazolone Bordeaux H F 3R, PMTA Rhodamine, PMTA Violet, Dioxazine Violet, Carbazole Violet, Crystal Violet, Dioxazine Violet B, Thioindigoid Red, Phthalocyanine Greens, PMTA Greens, Benzimidazolone Brown HFR, Cadmium Red, Cadmium
Yellow, Cadmium Oranges, Cadmium-Mercury Reds, Iron Oxide Yellows, Irons Oxide Blues, Iron Oxide browns, Iron Oxide Reds, Ultramarine Blues, Ultramarine Violet, Chromium Antimony Titanium Buff, copper phthalocyanine blue, green copper phthalocyanine pigments, potash blue and soda blue pigments. The removal of ink may help împrove certain parts in the process. For example, some ink can be toxic to mïcroorganisms used in the process. The inks can also impart an undesirable coloration or toxicity to the final product. Furthermore, removing the inks may allow these to be recycled, improving the cost benefits to the process and lessening the environmental impact of the paper feedstock. The inks can be removed by any means. For example, removal may include dispersion, floatation, pressing and/or washing steps, extraction with solvents (e.g., supercritical CO2, alcohol, water and organic solvents), settling, chemical means, sieving and/or précipitation. Some of the physical treatments discussed herein (scc Physical Treatment section) can aid in separating the cellulosic materials from the inks (e.g., mechanical treatments, chemical treatments, irradiation, pyrolysis, sonication and/or oxidiation). In addition enzymatic deinking technologies such as those disclosed in U.S. patent 7,297,224 hcrcby incorporated by reference herein, can be used.
Coating materials, e.g., those found in poly-coated paper described in the materials section below, can be removed from the feedstock at any point during the process. This can be done by, for example, the methods mentioned above for removal of pigments and inks and inorganic materials. In some cases, where polycoated paper is a laminate, de-laminatïon can be done by, for example, chemical and/or mechanical means, The non-cellulosic laminate portions can then be separated from the cellulose containing layers and discarded and/or recycled.
INTERMEDIATES AND PRODUCTS
The processes and nutrients discussed herein can be used to convert paper feedstocks to one or more products, such as energy, fuels, foods and materials. Spécifie examples of products include, but arc not limited to, hydrogen, sugars (e.g., glucose, xylose, arabinose, mannose, galactose, fructose, disaccharides, oligosaccharides and polysaccharides), alcohols (e.g., monohydric alcohols or dîhydric alcohols, such as éthanol, n-propanol, isobutanol, iec-butanol, tert-butanol or n-butanol), hydrated or hydrous alcohols, e.g., containing greater than 10%, 20%, 30% or even greater than 40% water, sugars, biodicsel, organic acids (e.g., acetic acid and/or lactic acid), hydrocarbons, e.g., mcthanc, cthanc, propane, isobutcnc, pcntanc, n-hcxanc, biodicsel, bio-gasolinc and mixtures thereof, co-products (e.g., proteins, such as cellulolytic proteins (enzymes) or single cell proteins), and mixtures of any of these in any combination or relative concentration, and optionally in combination with any additives, e.g., fuel additives. Other examples include carboxylic acids, such as acetic acid or butyric acid, salts of a carboxylic acid, a mixture of carboxylic acids and salts of carboxylic acids and esters of carboxylic acids (e.g., methyl, ethyl and n-propyl esters), ketones, aldéhydes, alpha, beta unsaturated acids, such as acrylic acid and olefins, such as ethylene. Other alcohols and alcohol dérivatives include propanol, propylene glycol, 1,4-butanediol, 1,3-propanediol, sugar alcohols (e.g., crythritol, glycol, glyccrol, sorbitol thrcitol, arabitol, ribitol, mannitol, dulcitol, fucitol, iditol, isomalt, maltitol, lactitol, xylitol and other polyols), methyl or ethyl esters of any of these alcohols. Other products include methyl acrylate and methylmethacryiate. The product may also be an organic acid, e.g., lactic acid, formic acid, acetic acid, propionic acid, butyric acid, succinic acid, valeric acid, caproic, palmitic acid, stearic acid, oxalic acid, malonic acid, glutaric acid, oleic acid, linoleic acid, glycolic acid, γ-hydroxybutyric acid, a mixture thereof, a sait of any of these acids, or a mixture of any of the acids and their respective salts.
Other intermediates and products, including food and pharmaceutical products, are described in U.S. Serial No. 12/417,900, the full disclosure of which is hereby incorporated by reference herein.
MATERIALS
Paper Fecdstocks
Suitable paper fcedstocks include paper that is highly pigmcnted, coated or filled and can hâve a low calorifïc value. Sources of such paper include magazines, catalogs, books, manuals, labels, calendars, greeting cards and other high quality printed materials such as prospectuscs, brochures and the like. The papers may include at least 0.025% by weight of pigment, filler or coating, e.g., from 0 to 80%, 0 to 50%, 0.1 to 50%, 0.1 to 30%, 0.1 to 20%, 0.5 to 2.5%, 0.2 to 15%, 0.3 to 10%, 0.5 to 5%.
Other suitable paper fcedstocks include high basis weight coated paper and/or paper with a high filler content i.e., at least 10 wt.%. These papers can be printed or unprinted. Examples of this type of feedstock include paper having a basis weight, as defined as the weight in pounds (lb) for a rcam (500 sheets) of 25” X 38” sheets, of at least 35 lb., for example at least 45 lb., at least 50 lb., at least 60 lb, at least 70 lb. or at least 80 lb. The feedstock includes paper having a basis weight below 330 lb., for example below about 300 lb, below about 250 lb, below about 200 lb, below about 150 lb, below about 120 lb, below about 110 lb, below about 105 lb or below about 100 lb. For cxample the basis weight may be between 35 lb and 330 lb, 35 lb and 120 lb, between 35 lb and 110 lb, between 35 lb and 100 lb, between 35 lb and 90 lb, between 45 lb and 120 lb, between 45 lb and 110 lb, between 45 lb and 100 lb, between 45 lb and 90 lb, between 50 lb and 120 lb, between 50 lb and 110 lb, between 50 lb and 100 lb, between 50 lb and 90 lb, between 60 lb and 120 lb, between 60 lb and 110 lb, between 60 lb and 100 lb, between 60 lb and 90 lb, between 60 lb and 120 lb, between 60 lb and 110 lb, between 60 lb and 100 lb, between 60 lb and 90 lb, between 70 lb and 120 lb, between 70 lb and 110 lb, between 70 lb and 100 lb, between 70 lb and 90 lb, between 90 lb and
330 lb, between 90 lb and 300 lb, between 90 lb and 250 lb, between 90 lb and 200 lb, between 90 lb and 150 lb, between 90 lb and 110 lb, between 110 lb and 330 lb, between
110 lb and 300 lb, between 110 lb and 250 lb, between 110 lb and 200 lb, between 110 lb and 150 lb, between 130 lb and 330 lb, between 130 lb and 300 lb, between 130 lb and
250 lb, between 130 lb and 200 lb, or between 130 lb and 150 lb, In some embodiments, the papers have relativeiy high density, e.g., greater than 1.11 g/cm3, in some cases from about 1.11 to 2 g/cm3 e.g., 1.11 to 1.8 g/cm2,1.11 to 1.6 g/cm2, 1.11 to 1.52 g/cm2, 1.2 to
1.8 g/cm2, 1.2 to 1.6 g/cm2,1.2 to 1.52 g/cm2, 1.3 to 1.8 g/cm2,1.3 to 1.6 g/cm2 or 1.3 to 1.52 g/cm2 Such papers often have a high ash content e.g., at least 8wt.%, at least 10 wt.%, at least 15 wt.%, at least 20 wt.% or at least 50 wt.%. The ash content can be between 8 and 50%, e.g., between 10 and 50%, between 20 and 50%, between 30 and 50%, between 10 and 40%, between 20 and 40%, between 10 and 30% or between 10 and 20%. The papers can have a high filler content, e.g., at leastl0% by weight, e.g., at least 20 wt%, at least 30 wt%, at least 40 wt% or at least 50 wt%. Filler contents can be between 10 and 80%, e.g., between 20 and 80%, between 30 and 80%, between 40 and 80%, between 10 and 70%, between 20 and 70%, between 30 and 70%, between 40 and 70%, between 10 and 60%, between 20 and 60%, between 30 and 60% and between 40 and 60%. Suitable fïllcrs include clays, oxides (e.g., titania, silica, alumina), carbonates (e.g., calcium carbonate), silicates (e.g., Talc) and aluminosilicates (e.g., Kaolin). One suitable grade of coated paper is referred to in the industry as Machine Finished Coated (MFC) paper. In other embodiments the paper can have a high surface density (i.e., Grammage), for example, at least 50 g/m2, at least 60 g/m2, at least 70 g/m2, at least 80 g/m2or at least 90 g/mz.The Grammage can be between 50 g/m2 and 200 g/m2, between 50 g/m2 and 175 g/m2, between 50 g/m2 and 150 g/m2, between 50 g/m2 and 125 g/m2, between 50 g/m2 and 100 g/m2, between 60 g/m2 and 200 g/m2, between 60 g/m2 and 175 g/m2, between 60 g/m2 and 150 g/m2, between 60 g/m2 and 125 g/m2, between 60 g/m2 and 100 g/m2, between 70 g/m2 and 200 g/m2, between 70 g/m2 and 175 g/m2, between 70 g/m2 and 150 g/m2, between 70 g/m2 and 125 g/m2, between 70 g/m2 and 100 g/m2, between 80 g/m2 and 200 g/m2, between 80 g/m2 and 175 g/m2, between 80 g/m2 and 150 g/m2, between 80 g/m2 and 125 g/m2, between 80 g/m2 and 100 g/m2, between 130 g/m2 and 500 g/m2, between 130 g/m2 and 450 g/m2, between 130 g/m2 and 350 g/m2, between
130 g/m2 and 300 g/m2, between 130 g/m2 and 250 g/m2, between 130 g/m2 and 200 g/m2, between 130 g/m2 and 175 g/m2, between 130 g/m2 and 150 g/m2, between 200 g/m2 and 500 g/m2, between 200 g/m2 and 450 g/m2, between 200 g/m2 and 350 g/m2, between 200 g/m2 and 300 g/m2, between 200 g/m2 and 250 g/m2, between 250 g/m2 and 500 g/m2, between 250 g/m2 and 450 g/m2, between 250 g/m2 and 350 g/m2, between 250 g/m2 and 300 g/m2, between 200 g/m2 and 250 g/m2, between 300 g/m2 and 500 g/m2, between 300 g/m2 and 450 g/m2, or between 300 g/m2 and 350 g/m2.
Coated papers arc well known in the paper art, and arc disclosed, for examplc, in U.S. Patent Nos. 6,777,075; 6,783,804, and 7,625,441, the fiill disclosures of which are incorporated herein by reference.
Coated papers suitable as feedstock can include paper coated with an inorganic material, for example the same materials used as fillers can be used in coatings. Additionally, coated papers can include paper coated with a polymer (poly-coated paper). Such paper can be made, for example, by extrusion coating, brush coating, curtain coating, blade coating, air knife coating, cast coating or roller coating paper. For example, sources of such poly-coated paper include a variety of food containers, including juice cartons, condiment pouchcs (e.g., sugar, sait, pepper), plates, pet food bags, cups, bowls, trays and boxes for frozen foods. The poly-coated paper can, in addition to paper, contain, for example, polymers, (e.g., polyethylene, polypropylene, biodégradable polymers, silicone), latexes, binders, wax, and, in some cases, one or more layers of aluminum. The poly coated papers can be multi layered laminate, for example, made with one or more, e.g., two, three, four, fïve or more, layers of polyethylene and paper and one or more, e.g., two, three or more layers of aluminum.
The paper fccdstocks typically hâve a low gross calorie value e.g., below 7500 Btu/lb e.g, below 7400 Btu/lb, below 7200 Btu/lb, below 7000 Btu/lb, below 6800 Btu/lb, below 6600 Btu/lb, below 6400 Btu/lb, below 6200 Btu/lb, below 6000 Btu/lb, below 5800 Btu/lb, below 5600 Btu/lb, below 5400 Btu/lb or below 5200 Btu/lb. The gross calorific value can be between about 5200 and 7500 Btu/lb e.g., between 6800 and 7000 Btu/lb, between 6700 and 7100 Btu/lb, between 6400 and 7100 Btu/lb, between 6600 and 6800 Btu/lb, between 6100 and 6700 Btu/lb, between 6100 and 6300 Btu/lb, between 6000 and 6350 Btu/lb, between 5600 and 6400 Btu/lb or between 5200 and 5500 Btu/lb.
The gross calorific value can be measure using a bomb calorimeter e.g., as outlincd in ASTM method E7ll.
The paper feedstock can hâve a basis weight between 35 lb and 330 lb, e.g. 45 ib and 330 lb, 60 and 330 lb, 80 and 330 lb, 60 and 200 lb, 60 and 100 lb; optionally a filler 5 content greater than about 10 wt.%, e.g., between 10 and 80 wl.%, between 20 and 80 wt.%, between 30 and 80 wt.%, between 30 and 70 wt.%, between 230 and 60 wt.%; optionally a grammage between 50 and 500 g/m2, e.g., 70 and 500 g/m2, 90 and 500 g/m2, 90 and 400 g/m2, 90 and 300 g/m2, 90 and 200 g/m2; and optionally a calorific value between 7500 and 4000 Btu/lb, e.g., 7000 and 4000 Btu/lb, 6500 and 4000 Btu/lb, 5000 10 and 4000 Btu/lb, 6000 and 4500 Btu/lb; optionally an ash content between 8 and 50 wt.%, e.g., 10 and 80 wt.%, 10 and 60 wt.%, 10 and 50 wt.%, 20 and 50 wt.%.
Some suitable paper feedstock can include a homogeneous sheet formed by irregularly intertwining cellulose fibers. These can include, for example, Abrasive Papers, Absorbent Paper, Acid Free Paper, Acid Proof Paper, Account Book Paper, Adhesive 15 Paper, Air Dried Paper, Air Filter Paper, Album Paper, Albumin Paper, Alkaline Paper, Alligator Imitation Paper, Aluminum Foil Laminated paper, Ammunition Paper, Announcement Card Paper, Anti Rust Paper, Anti-Tamish Paper, Antique Paper, Archivai Paper, Art Paper, Asphalt Laminated Paper, Azurelaid Paper, Back Lîncr Paper, Bacon Paper, Bagasse Paper, Bakers' Wrap, Balloon Paper, Banknote or Currency Paper, 20 Barograph Paper, Barrier Paper, Baryta Paper, Beedi Wrap Paper, Bible Paper, Black Waterproof Paper, Blade Wrapping Paper, Bloodproof Paper or Butcher Paper, Blotting Paper, Blueprint Paper, Board, Bogus Paper, Bond Paper, Book Paper, Boxboard, Braille Printing Paper, Bread Wrapping Paper, Bristol Board, Business Form Paper, Butter Wrapping Paper, Bumt Paper, Cable Paper, Calf Paper, Calico Paper, Candy Twisting 25 Tissue, Canvas Paper, Carbonless Paper, Cardboard, Corrugated Cardboard, Carton board, Cartridge paper, Cast Coated Paper, Catalogue Paper, Chart Paper, Chcck Paper, Chccsc Wrapping Paper, Chipboard, Chromo, Coarsc Paper (also Industrial Paper), Coated frccshcct, Coated Paper, Coated White Top Lincr, Cocklc Finish Paper, Colorfast papers, Commodity Paper, Colored Kraft, Condenser Tissue, Construction Paper, 30 Containcrboard, Copier Paper or Laser Paper, Correspondence Papers, Corrugated Board, Corrugated Medium or Fluting Media or Media,Cotton Paper or Rag Paper, Cover Paper or Cover Stock, Creamwove Paper, Cut Sheet, Damask Paper, Decalcomania Paper,
Diazo Base Paper, Document Paper, Drawing Paper, Duplex Board, Duplex Paper, Endleaf Paper, Envelop Paper, Esparto Paper, Extensible Kraft, Extrusion Coated Board, Fax
Base Paper,Flame Résistant, Flocked Paper, Fluorescent Paper, Folding Boxboard, Form
Bond, Freesheet, Fruit Wrapping Paper, Gaskct Board, Glassine Paper, Glazed Paper, Granité Paper, Gravure Paper, Gray Board, Grcaseproof Paper, Green Paper, Groundwood Papcrs, Gummcd Paper, Gypsum Board, Handmade Paper, Hanging Paper, Hard Sizcd Paper, Heat Seal Paper, Heat Transfer Paper, Hi-Fi (High Finish) Paper, Industrial Papers, Insect Résistant, Insulating Board, Ivory Board, Japan Paper, Jute
Paper, Kraft Bag Paper, Kraft liner, Kraft Paper, Kraft Waterproof Paper, Kraft Wrapping Paper, Label Paper, Lace Paper, Laid Paper, Laminated Paper, Laminated Linerboard, Latex Paper, Lcdgcr Paper, Lightproof Paper, Liner, Linerboard, Litmus Paper, On Machine Coated, Magazine Paper, Manila, Map Paper, Marble Paper, Matrix Paper, Matt Finished Paper, Mechanical Paper, Mellow Paper, Metalization Base Paper, Machine
Finished Paper, Machine glazed Paper, Millboard, Mulberry Paper, Naturel Colored Papers or Self Colored Papcrs, Newsprint, Oatmeal Paper, Offset Paper, Packaging Paper, Paperboard, Pattern Paper, Permanent Paper, Photographie Paper, Playing Card Stock, PIcading Paper, Poly Extrusion Paper, Postcard Board, Post-Consumcr Waste Paper, Poster Paper, Pre-Consumer Waste Paper, Pressure Sensitive Coated Paper,
Publishing Paper, Pulp Board, Release Paper, Roofing Paper, Safety Paper, Security paper, Self Adhcsive Paper, Self Contained Paper, Silicon Treated Paper, Single Faced Corrugatcd Board, Sized Paper, Stamp Paper, Strawboard, Suede Paper, Supercalendered Paper, Surface-Sized, Super Art Paper, Synthetic Fiber Paper, Tag Paper, Tcstliner, Text Paper, Thermal Paper, Translucent Drawing Paper, Transparent Paper, Treated Paper,
Union Kraft, Unglazed Paper, Un-sized Paper, Vaporproof Paper, Vamish-Label Paper, Vegetable Parchment, Vcllum Paper, Velour Paper, Velvet Finish Paper, Vulcanizîng Paper, Wadding, Wall Paper, Watcr-Coior Paper, Water Finished Paper, Water Résistant Paper, Watcrlcaf, Waxcd Paper, Wet Strcngth Paper, White Top Liner, Willcsdcn Paper, Wipcs or Wiper, Wove, Wrapper, Writing Paper and Xérographie Paper.
The feedstocks described herein can be used in combination with any of the *
biomass feedstocks described in U.S. Application Serial No. 12/417,880, filed April 3, 2009, incorporated by reference herein in its entirety.
Saccharlfvlng Agents
Suitable enzymes include cellobiases and cellulases capable of degrading biomass.
Suitable cellobiases include a cellobiasc from Aspergillus niger sold under the tradename NOVOZYME 188™.
Cellulases are capable of degrading biomass, and may be of fungal or bacterial origin. Suitable enzymes include cellulases from the généra Bacillus, Pseudomonas, Humicoia, Fusarium, Thielavia, Acremonium, Chrysosporium and Trichoderma, and include species of Humicoia, Coprinus, Thielavia, Fusarium, Myceliophthora, Acremonium, Cephalosporium, Scytalidium, Pénicillium or Aspergillus (see, e.g., EP 458162), especially those produced by a strain selected from the species Humicoia insolens (reclassifîed as Scytalidium thermophilum, see, e.g., U.S. Patent No. 4,435,307), Coprinus cinereus, Fusarium oxysporum, Myceliophthora thermophila, Meripilus giganteus, Thielavia terrestris, Acremonium sp., Acremonium persicinum, Acremonium acremonium, Acremonium brachypenium, Acremonium dichromosporum, Acremonium obclavatum, Acremonium pinkertoniae, Acremonium roseogriseum, Acremonium incoloratum, and Acremonium furatum·, preferably from the species Humicoia insolens DSM 1800, Fusarium oxysporum DSM 2672, Myceliophthora thermophila CBS 117.65, Cephalosporium sp. RYM-202, Acremonium sp. CBS 478.94, Acremonium sp. CBS 265.95, Acremonium persicinum CBS 169.65, Acremonium acremonium AHU 9519, Cephalosporium sp. CBS 535.71, Acremonium brachypenium CBS 866.73, Acremonium dichromosporum CBS 683.73, Acremonium obclavatum CBS 311.74, Acremonium pinkertoniae CBS 157.70, Acremonium roseogriseum CBS 134.56, Acremonium incoloratum CBS 146.62, and Acremonium furatum CBS 299.70H. Ccllulolytic enzymes may also be obtained from Chrysosporium, preferably a strain of Chrysosporium lucknowense. Additionally, Trichoderma (particularly Trichoderma viride, Trichoderma reesei, and Trichoderma koningiî), alkalophilic Bacillus (see, for example, U.S. Patent No. 3,844,890 and EP 458162), and Streptomyces (see, e.g., EP 458162) may be used.
Enzyme complexes may be utilized, such as those available from Genencor® under the tradename ACCELLERASE®, for example, Accellerase® 1500 enzyme complex. Accellerase 1500 enzyme complex contains multiple enzyme activities, mainly exoglucanase, cndoglucanase (2200-2800 CMC U/g), hemi-cellulase, and beta5 glucosidase (525-775 pNPG U/g), and has a pH of 4.6 to 5.0. The cndoglucanase activity of the enzyme complex is expressed in carboxymethylcellulose activity units (CMC U), while the beta-glucosidase activity is reported in pNP-glucoside activity units (pNPG U). In onc embodiment, a blcnd of Accellerase® 1500 enzyme complex and NOVOZYME™ 188 ccllobiase is used.
Fermentation Agents
The microorganism(s) used in fermentation can be naturel microorganisms and/or engineered microorganisms. For example, the microorganism can be a bacterium, e.g., a cellulolytic bacterium, a fungus, e.g., a yeast, a plant or a protist, e.g., an algae, a protozoa or a fungus-like protist, e.g., a slime mold. When the organisme are compatible, mixtures of organisme can be utilized.
Suitable fermenting microorganisms have the ability to convert carbohydrates, such as glucose, fructose, xylosc, arabinosc, mannose, galactose, oligosaccharides or polysaccharides into fermentation products. Fermenting microorganisms include strains of the genus Sacchromyces spp. e.g., Sacchromyces cercvisiae (baker’s yeast), Saccharomyces distaticus, Saccharomyces uvarum; the genus Kluyveromyces, e.g., species Kluyveromyces marxianus, Kluyveromyces fragilis; the genus Candida, e.g., Candida pseudotropicalis, and Candida brassicae, Pichia stipitis (a relative of Candida shehatae, the genus Clavispora, e.g., species Clavispora lusitaniae and Clavispora opuntiae, the genus Pachysolen, e.g., species Pachysolen tannophilus, the genus Bretannomyces, e.g., species Bretannomyces clausenii (Philippidis, G. P., 1996, Cellulose bioconversion technology, in Handbook on Biocthanol: Production and Utilization, Wyman, C.E., cd., Taylor & Francis, Washington, DC, 179-212). Other suitable microorganisms include, for example, Zymomonas mobilis, Clostridium thermocellum (Philippidis, 1996, supra). Clostridium saccharobutylacetonicum. Clostridium saccharobutylicum, Clostridium Puniceum, Clostridium beijernckii, * Λ
Clostridium acetobutylicum, Moniliella pollinis, Yarrowia lipolytica, Aureobasîdium sp., Trichosporonoides sp., Trigonopsis variabilis, Trichosporon sp., Moniliellaacetoabutans, Typhula variabilis, Candida magnoliae, Ustilaginomycetes, Pseudozyma tsukubaensis, yeast species of généra Zygosaccharomyces, Debaryomyces, Hansenula and Pichia, and fungi of the dematîoid genus Torula.
Commercially available yeasts include, for example, Red Star®/Lesafïre Ethanol Red (available from Red Star/Lesaffre, USA), FALis (available from Flcischmann’s Yeast, a division of Bums Philip Food Inc., USA), SUPERSTART® (available from Alltech, now Lalemand), GERT STRAND* (available from Gcrt Strand AB, Sweden) and FERMOL® (available from DSM Specialties),
Nutrient Package Ingrédients
As discussed above, it may be preferred to include a nutrient package in the system during saccharification and/or fermentation. Preferred nutrient packages contain a food-based nutrient source, a nitrogen source, and in some cases other ingrédients, e.g., phosphates. Suitable food-based nutrient sources include grains and vegetables, including those discussed above and many others. The food-based nutrient source may include mixtures of two or more grains and/or vegetables. Such nutrient sources and packages are disclosed in U.S. Application Serial No. 13/184,138, incorporated by reference herein in its entirety above.
Enzymes for Releasing Nutrlents
When a food-based nutrient source is utilized, it is preferred that the saccharification and/or fermentation mixture further include an enzyme system selected to release nutrients, e.g., nitrogen, amino acids, and fats, from the food-based nutrient source. For example, the enzyme system may include onc or more enzymes selected from the group consisting of amylases, proteases, and mixtures thereof. Such Systems arc disclosed in U.S. Application Serial No. 13/184,138, incorporated by reference herein in its entirety.
Fuel Cells
Where the methods described herein produce a sugar solution or suspension, this solution or suspension can subsequently be used in a fuel cell. For example, fuel cells utilizing
sugars derived from cellulosic or lignocellulosic materials are disclosed in U.S.
Provisional Application Serial No. 61/579,568, filed December 22,2011, the complété disclosure of which is incorporated herein by reference.
OTHER EMBODIMENTS
A number of embodiments of the invention hâve been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention.
For example, while it is possible to perform ail the processes described herein at 10 one physical location, in some embodiments, the processes are completed at multiple sites, and/or may be performed during transport.
Accordingly, other embodiments are within the scope of the following daims.

Claims (33)

  1. WHAT IS CLAIMED IS:
    1. A method of producing a sugar comprising providing a paper with a high filler content and combining it with a saccharifying agent.
  2. 2. The method of claim 1 wherein the filler content is at least 20wt.%.
    5
  3. 3. The method of claim 1 or 2 wherein the paper has an ash content of at least 8 wt.%.
  4. 4. The method of any of the above daims wherein the paper further comprises a printing ink.
  5. 5. The method of any of the above daims wherein the paper is in the form of
    10 magazines.
  6. 6. The method of any of the above daims further comprising adding a food-based nutrient source to the mixture.
  7. 7. The method of any of the above daims further comprising adding a microorganism to the paper and producing a product or intermediate.
    15
  8. 8. The method of claim 6 wherein the food-based nutrient source is selected from the group consisting of grains, vegetables, resîdues of grains, resîdues of vegetables, and mixtures thereof.
  9. 9. The method of claim 7 wherein the product comprises a fuel sclcctcd from the group consisting of hydrogen, alcohols, organic acids, hydrocarbons, and mixtures 20 thereof.
  10. 10. The method of claim 7 wherein the microorganism comprises a yeast and/or a bacteria.
  11. 11. The method of any of the above claims further comprising physically treating the paper.
  12. 12. The method of any of the above claims further comprising processing the sugar.
  13. 13. The method of claim 12 wherein processing comprises separating xylose and/or glucose from the sugar.
  14. 14. The method of any of the above claims wherein saccharification is conducted at a pH of about 3.8 to 4.2.
  15. 15. The method of claim 11 wherein the physical treatment comprises mechanically treating the paper to reduce the bulk density of the paper and/or increase the B ET surface area of the paper.
  16. 16. The method of claim 6 wherein the food-based nutrient source is selected from the group consisting of wheat, oats, barlcy, soybeans, peas, legumes, potatoes, com, rice bran, com meal, wheat bran, and mixtures thereof.
  17. 17. A method of producing a sugar comprising providing a paper having a basis weight of at least 35 lb and combining it with a saccharifying agent.
  18. 18. The method of claim 17 wherein the paper has a basis weight between 35 lb and 330 lb.
  19. 19. The method of claim 17 or 18 wherein the fil 1er content is greater than or equal to 10wt.%.
  20. 20. The method of any one of daims 17-19 wherein the paper has an ash content of at least 8 wt.%.
  21. 21. The method of any one of daims 17-20 wherein the paper further comprises a printing ink.
  22. 22. The method of any onc of daims 17-21 wherein the paper is in the form of magazines.
  23. 23. The method of any onc of daims 17-22 further comprising adding a foodbased nutrient source to the mixture.
  24. 24. The method of any one of daims 17-23 further comprising adding a microorganism to the paper and producing a product or intermediate.
  25. 25. The method of claim 23 wherein the food-bascd nutrient source is selected from the group consisting of grains, vegetables, residues of grains, residues of vegetables, and mixtures thereof.
  26. 26. The method of claim 24 wherein the product comprises a fuel selected from the group consisting of hydrogen, alcohols, organic acids, hydrocarbons, and mixtures thereof.
  27. 27. The method of daim 24 wherein the microorganism comprises a ycast and/or a bacteria.
  28. 28. The method of any onc of daims 17-27 further comprising physically treating the paper.
  29. 29. The method of any one of claims 17-28 further comprising processing the sugar.
  30. 30. The method of claim 29 wherein processing comprises separating xylose and/or glucose from the sugar.
    5
  31. 31. The method of any one of claims 17-30 wherein saccharification is conducted at a pH of about 3.8 to 4.2.
  32. 32. The method of claim 28 wherein the physical treatment comprises mechanically treating the paper to reduce the bulk density of the paper and/or increase the BET surface area of the paper.
  33. 33. The method of claim 23 wherein the food-based nutrient source is selected from the group consisting of wheat, oats, barley, soybeans, peas, legumes, potatoes, com, rice bran, com meal, wheat bran, and mixtures thereof.
OA1201300324 2011-02-14 2012-02-14 Processing paper feedstocks. OA16508A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US61/442,710 2011-02-14

Publications (1)

Publication Number Publication Date
OA16508A true OA16508A (en) 2015-10-21

Family

ID=

Similar Documents

Publication Publication Date Title
AU2020200289A1 (en) Processing Paper Feedstocks
AU2017200438B2 (en) Production of Sugar and Alcohol from Biomass
OA16508A (en) Processing paper feedstocks.
NZ735713A (en) A method of producing sugar from paper
NZ735713B2 (en) A method of producing sugar from paper
NZ714938B2 (en) A method for saccharifying paper feedstock
NZ612188B2 (en) A method of producing sugar from paper