NZ708603B2 - Processing Biomass - Google Patents

Processing Biomass Download PDF

Info

Publication number
NZ708603B2
NZ708603B2 NZ708603A NZ70860312A NZ708603B2 NZ 708603 B2 NZ708603 B2 NZ 708603B2 NZ 708603 A NZ708603 A NZ 708603A NZ 70860312 A NZ70860312 A NZ 70860312A NZ 708603 B2 NZ708603 B2 NZ 708603B2
Authority
NZ
New Zealand
Prior art keywords
feedstock
ions
ion beam
irradiation
plant
Prior art date
Application number
NZ708603A
Other versions
NZ708603A (en
Inventor
Thomas Masterman
Marshall Medoff
Original Assignee
Xyleco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xyleco Inc filed Critical Xyleco Inc
Priority to NZ714143A priority Critical patent/NZ714143B2/en
Publication of NZ708603A publication Critical patent/NZ708603A/en
Publication of NZ708603B2 publication Critical patent/NZ708603B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B1/00Preparatory treatment of cellulose for making derivatives thereof, e.g. pre-treatment, pre-soaking, activation
    • C08B1/003Preparation of cellulose solutions, i.e. dopes, with different possible solvents, e.g. ionic liquids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/22Processes using, or culture media containing, cellulose or hydrolysates thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P2201/00Pretreatment of cellulosic or lignocellulosic material for subsequent enzymatic treatment or hydrolysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • C12P7/10Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/56Lactic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

Disclosed is a method of making a product comprising: providing a saccharified feedstock obtained at least in part from a plant that has been modified with respect to a wild type variety of the plant, the feedstock having been exposed to irradiation from an ion beam, the total dose of irradiation being from about 5 Mrad to about 50 Mrad; and contacting the saccharified feedstock with a microorganism to ferment the saccharified feedstock, the feedstock having an improved nutrient mix for the microorganism relative to the wild type variety, wherein the improved nutrient mix enhances fermentation of the saccharified feedstock by the microorganism. ing from about 5 Mrad to about 50 Mrad; and contacting the saccharified feedstock with a microorganism to ferment the saccharified feedstock, the feedstock having an improved nutrient mix for the microorganism relative to the wild type variety, wherein the improved nutrient mix enhances fermentation of the saccharified feedstock by the microorganism.

Description

PROCESSING BIOMASS RELATED APPLICATIONS This application claims priority to U.S. Provisional Application Serial No. 61/442,781, filed February 14, 2011. The complete disclosure of this provisional ation is hereby incorporated by reference herein.
BACKGROUND osic and ellulosic materials are produced, processed, and used in large quantities in a number of applications. Often such materials are used once, and then discarded as waste, or are simply considered to be waste materials, e.g., bagasse, sawdust, and stover. In some cases, cellulosic and lignocellulosic materials are obtained by g and harvesting plants.
SUMMARY Generally, this invention relates to using and/or processing feedstock materials e.g., cellulosic and/or lignocellulosic feedstock materials, including plants that have been modified with respect to their wild types, e.g., genetically modified plants, and to intermediates and products made therefrom. Many of the methods described herein provide materials that can be more readily utilized by a variety of microorganisms to produce useful intermediates and products, e.g., energy, a fuel, a food or a material.
In one aspect, the invention features methods for making ts that include ally treating a cellulosic, lignocellulosic and/or starchy feedstock ed at least in part from a plant that has been modified with respect to a wild type variety of the plant e.g., the plant has been genetically modified. In some embodiments the entire plant can be used. In certain embodiments, a portion of the plant is utilized.
In another aspect, the invention features a method of making a t comprising: providing a saccharified feedstock obtained at least in part from a plant that has been modified with respect to a wild type variety of the plant, the feedstock having been exposed to irradiation from an ion beam, the total dose of irradiation being from about 5 Mrad to about 50 Mrad; and contacting the saccharified feedstock with a microorganism to t the saccharified ock, the feedstock having an improved nutrient mix for the microorganism relative to the wild type variety, wherein the improved nutrient mix enhances fermentation of the saccharified feedstock by the microorganism.
Some implementations include one or more of the following es. The feedstock may include a plant that has recombinant DNA and/or recombinant genes. The modified plant may express one or more recombinant materials, for example, a protein, a polymer and/or a macromolecule. The method may further include ing from the feedstock materials such as pharmaceuticals, nutriceuticals, ns, fats, vitamins, oils, fiber, minerals, sugars, ydrates and alcohols. The feedstock can include a crop e e.g., corn cobs and/or corn stover, wheat straw, or the ock can be a genetically modified corn, wheat or soybean plant. The method may filrther include treating the feedstock with an organism and/or enzyme, in some cases producing a sugar e. g., in the form of a solution or suspension. Optionally the sugar can be fermented. The physical treatment can include irradiation of the feedstock. In some entations, the irradiated feedstock may be utilized as an edible material, e.g., as an animal feed. If desired, an enzyme such as a cellulase can be added to the edible material, e.g., to increase the nutrient value release. 1O Irradiating may in some cases be performed using one or more electron beam deVices. In some cases, irradiating comprises ng a total dose of from about 5 Mrad to about 50 Mrad of radiation to the feedstock. Irradiation can sterilize the material prior to further processing and or e prior to use. In preferred implementations, irradiating reduces the recalcitrance of the ock.
The plant may have been d, for example, with a modification including enhancement of resistance to insects, fungal diseases, and other pests and disease-causing agents; increased tolerance to herbicides; increased drought resistance; extended temperature range; enhanced tolerance to poor soil; enhanced stability or shelf-life; greater yield; larger fruit size; stronger stalks; enhanced shatter resistance; reduced time to crop maturity; more uniform germination times; higher or modified starch production; enhanced nutrient production, such as enhanced, steroid, sterol, hormone, fatty acid, glycerol, polyhydroxyalkanoate, amino acid, Vitamin and/or protein production; modified lignin content; ed cellulose, hemicellulose and/or lignin ation; including of a phenotype marker to allow qualitative detection; reduced recalcitrance and enhanced phytate metabolism. The plant may be, for example, a genetically modified alfalfa, potato, beet, corn, wheat, cotton, rapeseed, rice, or sugarcane plant. The feedstock may e a crop residue from a modified plant, for example the ock may include corn cobs and/or corn . The plant may be, for example, a cally modified corn or soybean plant, or any of the many genetically modified plants that are grown.
In another aspect, the invention features a product comprising sugar derived from a feedstock obtained at least in part from a plant that has been modified with respect to a wild type variety of the plant, for example the plant has been genetically modified.
In a further aspect, the invention es a product comprising an irradiated cellulosic or lignocellulosic feedstock obtained at least in part from a plant that has been modified with respect to a wild type variety of the plant. The product may further include a microorganism and/or an enzyme, and in some cases a liquid medium. In yet a further , the invention features a product comprising sugar produced from a saccharified feedstock obtained at least in part from a plant that has been modified with respect to a wild type variety of the plant, the feedstock having been exposed to irradiation from an ion beam, the total dose of irradiation being from about 5 Mrad to about 50 Mrad, and contacted with a microorganism to ferment the rified feedstock; and the ock having an improved nutrient mix for the rganism relative to the wild type variety, the improved nutrient mix being effective to e fermentation of the irradiated feedstock by the microorganism.
In another aspect, the invention features a product comprising an irradiated ock obtained at least in part from a plant that has been modified with respect to a wild type y of the plant, the feedstock having been exposed to irradiation from an ion beam, the total dose of irradiation being from about 5 Mrad to about 50 Mrad; and the feedstock having an improved nutrient mix for a microorganism relative to the wild type variety, the improved nutrient mix being effective to enhance fermentation of the irradiated feedstock by the microorganism.
In another , the invention features a product comprising a saccharified cellulosic or lignocellulosic feedstock obtained at least in part from a plant that has been modified with respect to a wild type variety of the plant, the feedstock having been exposed to irradiation from an ion beam, the total dose of irradiation being from about Mrad to about 50 Mrad; and the feedstock having an improved nutrient mix for a microorganism relative to the wild type variety, the improved nutrient mix being ive to enhance fermentation of the saccharified feedstock by the microorganism.
Without being bound by any , it is believed that the use of ed plants can be advantageous over the non-modified wild type. For example, an enhancement of resistance to insects, fungal diseases, and other pests and disease-causing agents; an sed tolerance to ides; increased t resistance; an extended temperature range; enhanced tolerance to poor soil; a larger fruit size; er stalks; enhanced shatter resistance; reduced time to crop maturity; more uniform germination times; can e higher yields and a more varied feedstock source, both of which can lower the s feedstock cost. In another example, enhanced stability or shelflife can be advantageous to biomass inventory quality. As another example, enhanced nutrient production, such as enhanced steroid, sterol, hormone, fatty acid, glycerol, polyhydroxyalkanoate, amino acid, vitamin and/or protein production can provide products or intermediates with higher nutrient quality that may improve a process e.g., a fermentation, or a product, e.g., an animal feed. Furthermore, for example, higher or modified starch production, ed lignin content; and/or ed cellulose, hemicellulose and/or lignin degradation can reduce the recalcitrance of the feedstock making it easier to process.
The term "plant," as used herein, refers to any of various photosynthetic, eukaryotic, multicellular organisms of the kingdom Plantae, including but not limited to agricultural crops, trees, grasses, and algae.
"Structurally modifying" a feedstock, as that phrase is used herein, means changing the molecular ure of the feedstock in any way, including the chemical bonding arrangement, crystalline structure, or conformation of the feedstock. The change may be, for e, a change in the integrity of the crystalline structure, e.g., by microfracturing within the structure, which may not be reflected by diffractive measurements of the crystallinity of the material. Such changes in the ural integrity of the material can be measured ctly by measuring the yield of a product at ent levels of structure -modifying treatment. In addition, or alternatively, the change in the molecular structure can include changing the supramolecular structure of the material, oxidation of the material, changing an e molecular weight, changing an average crystallinity, ng a surface area, changing a degree of polymerization, changing a porosity, changing a degree of branching, grafting on other materials, ng a crystalline domain size, or changing an overall domain size.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, le methods and materials are described below. All publications, patents applications, patents and other references mentioned herein are incorporated by reference in their entirety. The materials, methods, and examples are illustrative only and not intended to be limiting.
Throughout the ication and claims, unless the context requires otherwise, the word “comprise” or variations such as ises” or “comprising”, will be understood to imply the inclusion of a stated integer or group of rs but not the exclusion of any other integer or group of integers.
Other features and ages will be apparent from the following detailed description, and from the claims.
DESCRIPTION OF GS is a block diagram illustrating conversion of a feedstock into products and co- products. is a block diagram illustrating treatment of the ock and the use of the treated feedstock in a fermentation process.
DETAILED DESCRIPTION Feedstocks that are obtained from plants that have been ed with respect to a wild type variety, e.g., by genetic modification or other types of modification, can be processed to produce useful intermediates and products such as those described herein. Systems and processes are described herein that can use as feedstock materials e.g., osic and/or lignocellulosic materials that are readily available, but can be difficult to process by processes such as fermentation. Many of the processes described herein can effectively lower the recalcitrance level of the feedstock, making it easier to process, such as by bioprocessing (e. g., with any microorganism described herein, such as a homoacetogen or a heteroacetogen, and/or any enzyme bed herein), thermal processing (e.g., gasif1cation or pyrolysis) or chemical methods (e.g., acid hydrolysis or oxidation). The feedstock can be treated or processed using one or more of any of the methods bed herein, such as mechanical ent, chemical treatment, radiation, sonication, oxidation, pyrolysis or steam ion. The various treatment systems and methods can be used in ations of two, three, or even four or more of these logies or others described herein and elsewhere. 1O In addition to ng the recalcitrance, the methods outlined above can also sterilize lignocellulosic or cellulosic feedstocks. This can be advantageous because feedstocks can be infected with, for example, a bacteria, a yeast, an insect and/or a fiJngus, that may have a deleterious effect on fiarther processes and/or prematurely degrade the materials.
Feedstock materials, such as cellulosic and lignocellulosic feedstock materials, can be obtained from plants that have been modified with t to a wild type variety.
Such modifications may be for example, by any of the methods described in any patent or patent application referenced . As another e, plants may be modified through the iterative steps of selection and breeding to obtain desired traits in a plant.
Furthermore, the plants can have had genetic material removed, modified, silenced and/or added with respect to the wild type variety. For example, genetically modified plants can be produced by recombinant DNA methods, where genetic modif1cations include ucing or modifying specific genes from parental varieties, or, for example, by using transgenic breeding n a specific gene or genes are introduced to a plant from a different species of plant and/or ia. Another way to create genetic variation is through mutation breeding wherein new alleles are artificially created from endogeneous genes. The artificial genes can be d by a variety of ways including treating the plant or seeds with, for example, chemical mutagens (e. g., using alkylating agents, epoxides, alkaloids, peroxides, formaldehyde), irradiation (e. g., X-rays, gamma rays, neutrons, beta particles, alpha particles, protons, deuterons, UV radiation) and temperature ng or other external stressing and subsequent selection techniques. Other methods of providing 2012/025023 d genes is through error prone PCR and DNA ng followed by insertion of the desired modified DNA into the desired plant or seed. Methods of introducing the d genetic variation in the seed or plant include, for e, the use of a bacterial carrier, biolistics, calcium phosphate precipitation, electroporation, gene splicing, gene silencing, lipofection, microinjection and viral carriers.
Feedstock can be derived from a plant including, but not limited to canola, crambe, coconut, maize, mustard, castor bean, sesame, cottonseed, linseed, soybean, Arabidopsis phaseolus, peanut, alfalfa, wheat, rice, oat, sorghum, rapeseed, rye, deum, millet, fescue, rye grass, sugarcane, cranberry, papaya, banana, safflower, oil 1O palms, flax, muskmelon, apple, er, dendrobium, lus, Chrysanthemum, liliaceae, cotton, eucalyptus, sunflower, Brassica campestris, Brassica napus, turfgrass, switch grass, cord grass, sugarbeet, coffee, dioscorea, acacia, apricot, artichoke, arugula, asparagus, avocado, barley, beans, beet, blackberry, blueberry, broccoli, brussels sprouts, cabbage, cantaloupe, carrot, cassava, cauliflower, celery, cherry, cilantro, clementine, corn, cotton, Douglas fir, bamboo, seaweed, algae, eggplant, endive, escarole, fennel, figs, forest tree, gourd, grape, ruit, honey dew, , kiwifruit, lettuce, leeks, lemon, lime, loblolly pine, mango, melon, mushroom, nut, oat, okra, onion, orange, parsley, pea, peach, pear, pepper, mon, pine, pineapple, plantain, plum, pomegranate, poplar, potato, oryza sativa, pumpkin, quince, radiata pine, radicchio, radish, rry, rye, southern pine, n, spinach, squash, strawberry, sweet potato, sweetgum, tangerine, tea, tobacco, tomato, watermelon, wheat, yams, zucchini or mixtures of these. Preferably the feedstock material is derived from plant material not suitable for human consumption such as wood, agricultural waste, grasses such as switchgrass or miscanthus, rice hulls, bagasse, cotton, jute, hemp, flax, bamboo, sisal, abaca, straw, corn cobs, corn stover, hay, coconut hair, d, algae or mixtures of these.
The advantages of plant modification include, for example, an enhancement of resistance to insects, fungal es, and other pests and disease-causing agents; an increased tolerance to herbicides; sed drought resistance; an extended temperature range; enhanced tolerance to poor soil; enhanced stability or life; a greater yield; larger fruit size; stronger stalks; enhanced r resistance; reduced time to crop maturity; more uniform ation times; higher or modified starch production; enhanced nutrient production, such as enhanced steroid, sterol, hormone, fatty acid, glycerol, polyhydroxyalkanoate, amino acid, vitamin and/or protein production; modified lignin content; enhanced cellulose, hemicellulose and/or lignin degradation; inclusion of a phenotype marker to allow qualitative detection (e.g., seed coat color); and modified phytate content. Any feedstock materials derived from these modified plants can also benefit from these many advantages. For example, a feedstock al such as a lignocellulosic material can have better shelf life, be easier to process, have a better land- to-energy conversion ratio, and/or have a better nutritional value to any microbes that are 1O used in processing of the lignocellulosic material. In addition, any feedstock material d from such plants can be less expensive and/or more plentiful. In some cases, modified plants can be grown in a r variety of climates and/or soil types, for example in marginal or depleted soils.
Feedstock als can be obtained from d plants having an increased resistance to disease. For e, es which have d symptoms from the infestation of fungal pathogen Phytophthora infestans are discussed in US. Patent No. 7,122,719. A possible advantage of such resistance is that the yield, quality and shelf life of the feedstock materials may be improved.
Feedstock materials can be obtained from d plants with sed resistance to parasites, for example, by encoding genes for the production of S-endotoxins as exemplified in US. Patent No. 6,023,013. A possible advantage of such resistance is that the yield, y and shelf life of the feedstock materials may be improved.
Feedstock materials can be obtained from modified plants having an increased resistance to herbicides. For example, the alfalfa plant J-101, as described in US. Patent No. 7,566,817, has an sed resistance to glyphosphate herbicides. As a further example, modified plants described in US. Patent No. 6,107,549 have an increased resistance to pyridine family herbicides. Furthermore, modified plants described in US.
Patent No. 7,498,429 have increased resistance to imidazolinones. A possible advantage of such ance is that the yield and quality of the feedstock materials may be improved.
Feedstock materials can be obtained from modified plants having an sed stress resistance (for e, water deficit, cold, heat, salt, pest, e, or nutrient stress). For example, such plants have been described in US. Patent No. 7,674,952. A possible advantage of such resistance is that the yield and quality of the feedstock materials may be improved. Moreover, such plants may be grown in adverse conditions, e. g., al or depleted soil or in a harsh climate.
Feedstock materials can be obtained from modified plants with improved characteristics such as larger fruits. Such plants have been described in US. Patent No. 7,335,812. A possible advantage of such resistance is that the yield and quality of the 1O feedstock materials may be improved.
Feedstock als can be obtained from modified plants with improved characteristics such reduced pod shatter. Such plants have been described in US. Patent No. 7,659,448. A possible age of such resistance is that the yield and quality of the feedstock als may be improved.
Feedstock materials can be obtained from modified plants having enhanced or d starch content. Such plants have been described in US. Patent No. 178. A possible advantage of such modification is that the quality of the feedstock is improved.
Feedstock materials can be obtained from modified plants with a modified oil, fatty acid or glycol production. Such plants have been bed in US. Patent No. 7,405,344. Fatty acids and oils are excellent substrates for microbial -yielding metabolism and may provide an advantage to downstream processing of the feedstock for, for example, fuel production. Fatty acids and oil ion may also be advantageous in changing the viscosity and solubility of various components during downstream processing of the feedstock. The spent feedstock may have a better nutrient mix for use as animal feed or have higher calorie content useful as a direct filel for burning.
Feedstock materials can be obtained from modified plants with a modified steroid, sterol and hormone content. Such plants have been described in US. Patent No. 6,822,142. A possible advantage is that this may provide a better nutrient mix for microorganisms used in sing of the feedstock. After processing, the spent feedstock may have a better nutrient mix for use as animal feed.
Feedstock materials can be obtained from modified plants with polyhydroxyalkanoate producing ability. Such plants have been described in US. Patent No. 6,175,061. Polyhydroxyalkanoates are a useful energy and carbon reserve for various microorganisms and may be beneficial to the microorganisms used in downstream ock processing. Also, since polyhydroxyalkanoate is biodegradable, it may impart advantages by possibly reducing itrance in plant material after an aging period of the stored feedstock. Further downstream, the spent feedstock may have a better nutrient mix for use as animal feed or have higher calorie content useful as a direct fuel for burning. 1O Feedstock materials can be obtained from modified plants with enhanced amino acid production. Such plants have been described in US. Patent No. 7,615,621. A possible advantage is that this may provide a better nutrient mix for rganisms used in processing of the feedstock. After processing, the spent feedstock may have a better nt mix for use as animal feed.
Feedstock materials can be obtained from modified plants with elevated synthesis of vitamins. Such plants have been described in US. Patent No. 6,841,717. A possible advantage is that this may provide a better nutrient mix for microorganisms used in processing of the feedstock. After processing, the spent feedstock may have a better nutrient mix for use as animal feed.
Feedstock materials can be obtained from ed plants that degrade lignin and cellulose in the plant after harvest. Such plants have been described in US. Patent No. 7,049,485. Feedstock materials can also be obtained from modified plants with modified lignin content. Such plants have been described in US. Patent No. 7,799,906. A possible advantage of such plants is reduced recalcitrance relative to the wild types of the same plants.
Feedstock materials can be ed from modified plants with a modified phenotype for easy qualitative ion. Such plants have been bed in US. Patent No. 7,402,731. A possible advantage is ease of ng crops and seeds for different t streams such as biofuels, building materials and animal feed.
Feedstock materials can be obtained from modified plants with a d amount of e. Such plants have been described in US. Patent No. 7,714,187. A possible age is that this may provide a better nutrient mix for microorganisms used in sing of the feedstock. After processing, the spent feedstock may have a better nutrient mix for use as animal feed.
Modified plants and/or plant materials and methods for making such modifications have been described in the US. Patents and US. hed applications listed at the end of this nt (immediately before the claims), the entire disclosure of each of which is hereby incorporated by reference herein in its entirety.
SYSTEMS FOR TREATING A FEEDSTOCK 1O shows one ular process for converting a feedstock, particularly a feedstock obtained at least in part from a modified plant material, into useful intermediates and products. s 10 includes initially mechanically treating the feedstock (12), e. g., to reduce the size of the feedstock 110. The mechanically treated feedstock is then treated with a physical treatment (14) to modify its structure, for example by weakening or microfiacturing bonds in the crystalline structure of the material. Next, the structurally modified material may in some cases be subjected to further mechanical treatment (1 6).
This mechanical treatment can be the same as or different fiom the initial mechanical treatment. For example, the l treatment can be a size reduction (e. g., cutting) step followed by a shearing step, while the r treatment can be a grinding or milling step.
The al can then be subjected to filrther structure-modifying treatment and mechanical treatment, if further structural change (e. g., reduction in recalcitrance) is desired prior to fiarther processing.
Next, the treated material can be processed with a primary processing step 18, e.g., saccharification and/or tation, to e intermediates and products (e.g., energy, fiJel, foods and materials). In some cases, the output ofthe primary processing step is directly useful but, in other cases, requires further processing provided by a post-processing step (20). For example, in the case of an alcohol, post-processing may involve distillation and, in some cases, denaturation.
As described herein, many variations ofprocess 10 can be utilized. shows one particular system that es the steps described above for treating a feedstock and then using the treated feedstock in a fermentation process to produce an alcohol. System 100 includes a module 102 in which a feedstock is lly ically treated (step 12, above), a module 104 in which the mechanically treated feedstock is structurally modified (step 14, above), e. g., by irradiation, and a module 106 in which the structurally modified feedstock is subjected to fiarther mechanical ent (step 16, above). As discussed above, the module 106 may be of the same type as the module 102, or a different type. In some entations the structurally modified feedstock can be returned to module 102 for filrther mechanical treatment rather than being filrther 1O mechanically treated in a separate module 106.
As described herein, many variations of system 100 can be utilized.
After these treatments, which may be repeated as many times as required to obtain desired feedstock properties, the treated ock is delivered to a fermentation system 108.
Mixing may be performed during fermentation, in which case the mixing is preferably relatively gentle (low shear) so as to minimize damage to shear sensitive ingredients such as enzymes and other microorganisms. In some embodiments, jet mixing is used, as described in US. Serial No. 12/782,694, ,977 and 13/293,985, the complete disclosures of which are orated herein by reference.
Referring again to fermentation produces a crude ethanol mixture, which flows into a g tank 110. Water or other solvent, and other non-ethanol ents, are stripped from the crude ethanol mixture using a stripping column 112, and the ethanol is then distilled using a distillation unit 114, e. g., a rectifier. Distillation may be by vacuum distillation. Finally, the ethanol can be dried using a molecular sieve 116 and/or red, if necessary, and output to a desired shipping method.
In some cases, the systems described herein, or ents thereof, may be portable, so that the system can be transported (e.g., by rail, truck, or marine vessel) from one location to another. The method steps described herein can be performed at one or more locations, and in some cases one or more of the steps can be performed in t.
Such mobile processing is described in US. Serial No. 12/374,549 and International Application No. , the full disclosures of which are incorporated herein by reference.
Any or all of the method steps described herein can be performed at ambient temperature. If desired, cooling and/or heating may be ed during certain steps.
For example, the feedstock may be cooled during mechanical treatment to increase its brittleness. In some embodiments, g is employed before, during or after the initial mechanical treatment and/or the subsequent mechanical treatment. Cooling may be performed as described in US. Serial No. 12/502,629, now US. Patent No. 7,900,857 the filll disclosure of which is incorporated herein by reference. er, the temperature in the fermentation system 108 may be controlled to enhance saccharif1cation and/or fermentation. 1O The individual steps of the methods bed above, as well as the materials used, will now be described in fiarther detail.
AL TREATMENT Physical treatment processes can include one or more of any of those described herein, such as mechanical ent, chemical treatment, irradiation, sonication, oxidation, pyrolysis or steam ion. ent methods can be used in combinations of two, three, four, or even all of these technologies (in any . When more than one treatment method is used, the methods can be applied at the same time or at different times. Other processes that change a molecular structure of a feedstock may also be used, alone or in combination with the processes disclosed herein.
Mechanical ents In some cases, methods can include mechanically ng the feedstock.
Mechanical treatments include, for example, cutting, milling, ng, grinding, shearing and chopping. Milling may include, for example, ball milling, hammer milling, rotor/stator dry or wet milling, freezer milling, blade milling, knife milling, disk milling, roller milling or other types of milling. Other ical treatments include, e.g., stone grinding, cracking, mechanical ripping or tearing, pin grinding or air attrition milling.
Mechanical treatment can be advantageous for “opening up,3, “stressing,” breaking and shattering osic or lignocellulosic materials in the feedstock, making the cellulose of the materials more susceptible to chain scission and/or reduction of crystallinity. The open materials can also be more susceptible to oxidation when irradiated.
In some cases, the mechanical treatment may include an l preparation of the feedstock as received, e.g., size ion of materials, such as by cutting, grinding, ng, pulverizing or chopping. For example, in some cases, loose feedstock (e.g., recycled paper, starchy materials, or grass) is prepared by shearing or shredding.
Alternatively, or in on, the feedstock material can first be physically treated by one or more of the other physical treatment methods, e.g., chemical treatment, radiation, sonication, oxidation, pyrolysis or steam explosion, and then mechanically 1O treated. This sequence can be advantageous since als treated by one or more of the other treatments, e.g., irradiation or pyrolysis, tend to be more e and, therefore, it may be easier to r change the molecular structure of the material by mechanical treatment.
In some embodiments, the feedstock is in the form of a fibrous material, and mechanical treatment includes shearing to expose fibers of the fibrous material. Shearing can be performed, for example, using a rotary knife cutter. Other methods of ically treating the feedstock e, for example, milling or grinding. Milling may be performed using, for example, a hammer mill, ball mill, colloid mill, conical or cone mill, disk mill, edge mill, Wiley mill or grist mill. Grinding may be performed using, for example, a stone grinder, pin grinder, coffee grinder, or burr grinder. Grinding may be provided, for example, by a reciprocating pin or other element, as is the case in a pin mill. Other mechanical treatment methods include mechanical ripping or tearing, other methods that apply pressure to the material, and air attrition milling. le mechanical treatments further include any other que that changes the molecular structure of the feedstock.
If desired, the mechanically treated material can be passed through a screen, e. g., having an average opening size of 1.59 mm or less (1/16 inch, 0.0625 inch). In some embodiments, shearing, or other mechanical treatment, and screening are performed concurrently. For example, a rotary knife cutter can be used to concurrently shear and screen the feedstock. The feedstock is d between stationary blades and rotating blades to e a sheared material that passes through a screen, and is captured in a bin.
WO 12529 The feedstock can be mechanically treated in a dry state (e.g., having little or no free water on its surface), a hydrated state (e.g., having up to ten percent by weight ed water), or in a wet state, e.g., having between about 10 percent and about 75 percent by weight water. The fiber source can even be mechanically treated while partially or fillly submerged under a liquid, such as water, ethanol or isopropanol.
The feedstock can also be ically treated under a gas (such as a stream or here of gas other than air), e. g., oxygen or nitrogen, or steam.
If desired, lignin can be removed from any of the fibrous materials that include lignin. Also, to aid in the breakdown of the materials that include ose, the material 1O can be treated prior to or during mechanical treatment or irradiation with heat, a chemical (e. g., mineral acid, base or a strong oxidizer such as sodium hypochlorite) and/or an . For example, grinding can be performed in the presence of an acid.
Mechanical treatment systems can be configured to produce streams with specific morphology characteristics such as, for example, surface area, porosity, bulk density, and, in the case of fibrous feedstocks, fiber characteristics such as length-to-width ratio.
In some embodiments, a BET surface area of the mechanically treated material is greater than 0.1 m2/g, e.g., r than 0.25 m2/g, greater than 0.5 m2/g, greater than 1.0 m2/g, greater than 1.5 m2/g, greater than 1.75 m2/g, r than 5.0 m2/g, r than 10 m2/g, r than 25 m2/g, greater than 35 m2/g, greater than 50m2/g, greater than 60 m2/g, greater than 75 m2/g, greater than 100 m2/g, greater than 150 m2/g, greater than 200 m2/g, or even greater than 250 m2/g.
A porosity of the mechanically treated material can be, e. g., greater than 20 percent, greater than 25 percent, greater than 35 percent, greater than 50 percent, greater than 60 t, greater than 70 percent, greater than 80 percent, greater than 85 percent, greater than 90 percent, greater than 92 percent, greater than 94 percent, greater than 95 percent, greater than 97.5 percent, greater than 99 t, or even greater than 99.5 percent.
In some embodiments, after mechanical ent the material has a bulk density of less than 0.75 g/cm3, e.g., less than about 0.7, 0.65, 0.60, 0.50, 0.35, 0.25, 0.20, 0.15, 0.10, 0.05, or less, e.g., less than 0.025 g/cm3 . Bulk density is determined using ASTM D1895B. Briefly, the method involves filling a measuring cylinder of known volume with a sample and obtaining a weight of the sample. The bulk density is calculated by dividing the weight of the sample in grams by the known volume of the cylinder in cubic centimeters.
If the feedstock is a fibrous material the fibers of the mechanically treated material can have a relatively large average length-to-diameter ratio (e.g., greater than -to-1), even if they have been sheared more than once. In addition, the fibers of the fibrous materials bed herein may have a relatively narrow length and/or length-to- diameter ratio distribution.
As used herein, average fiber widths (e.g., diameters) are those determined 1O optically by ly selecting approximately 5,000 fibers. Average fiber lengths are corrected length-weighted lengths. BET (Brunauer, Emmet and Teller) surface areas are point surface areas, and porosities are those ined by mercury porosimetry.
If the feedstock is a fibrous material the average length-to-diameter ratio of fibers of the mechanically treated material can be, e. g., greater than 8/1, e. g., r than 10/1, greater than 15/1, r than 20/ 1, greater than 25/1, or greater than 50/1. An average fiber length of the mechanically treated material can be, e.g., between about 0.5 mm and 2.5 mm, e. g., between about 0.75 mm and 1.0 mm, and an average width (e. g., diameter) of the second fibrous material 14 can be, e.g., between about 5 um and 50 um, e. g., between about 10 um and 30 um.
In some embodiments, if the feedstock is a fibrous material the standard deviation of the fiber length of the mechanically treated material can be less than 60 percent of an average fiber length of the mechanically treated material, e. g., less than 50 percent of the e length, less than 40 percent of the average length, less than 25 t of the average length, less than 10 percent of the average length, less than 5 percent of the average length, or even less than 1 percent of the average length.
In some situations, it can be desirable to prepare a low bulk density material, densify the material (e.g., to make it easier and less costly to transport to another site), and then revert the material to a lower bulk density state. ed materials can be sed by any of the methods described herein, or any material processed by any of the methods described herein can be subsequently densified, e. g., as disclosed in US.
Serial No. 12/429, 045 now US. Patent No. 7,932,065 and WO 73186, the full disclosures of which are incorporated herein by reference.
Radiation Treatment One or more radiation processing sequences can be used to process the feedstock, and to provide a structurally modified material which fianctions as input to further processing steps and/or sequences. Irradiation can, for example, reduce the lar weight and/or crystallinity of ock. Radiation can also sterilize the materials, or any media needed to bioprocess the al.
In some embodiments, energy deposited in a material that releases an electron 1O from its atomic orbital is used to irradiate the materials. The radiation may be ed by (1) heavy charged particles, such as alpha particles or protons, (2) electrons, produced, for example, in beta decay or electron beam accelerators, or (3) electromagnetic ion, for example, gamma rays, x rays, or ultraviolet rays. In one approach, ion produced by radioactive substances can be used to irradiate the feedstock. In another approach, electromagnetic radiation (e.g., produced using electron beam emitters) can be used to irradiate the feedstock. In some ments, any combination in any order or concurrently of (1) through (3) may be ed. The doses applied depend on the desired effect and the particular ock.
In some instances when chain scission is desirable and/or polymer chain onalization is desirable, particles heavier than electrons, such as protons, helium nuclei, argon ions, silicon ions, neon ions, carbon ions, phosphorus ions, oxygen ions or nitrogen ions can be utilized. When ring-opening chain scission is desired, positively charged particles can be utilized for their Lewis acid properties for enhanced ring- opening chain scission. For example, when maximum oxidation is desired, oxygen ions can be utilized, and when maximum nitration is desired, nitrogen ions can be utilized.
The use of heavy particles and positively charged particles is described in US. Serial No. l2/4l7,699, now US. Patent No. 784, the full disclosure of which is incorporated herein by reference.
In one method, a first material that is or es cellulose having a first number average molecular weight (MM) is irradiated, e.g., by treatment with ionizing radiation (e.g., in the form of gamma radiation, X-ray radiation, 100 nm to 280 nm ultraviolet (UV) light, a beam of electrons or other charged particles) to provide a second material that includes cellulose having a second number average molecular weight (MNZ) lower than the first number average molecular weight. The second material (or the first and second material) can be combined with a microorganism (with or without enzyme treatment) that can utilize the second and/or first al or its tuent sugars or lignin to produce an intermediate or product, such as those described herein.
Since the second material includes cellulose having a reduced molecular weight ve to the first al, and in some instances, a reduced crystallinity as well, the 1O second material is generally more dispersible, swellable and/or soluble, e.g., in a solution containing a rganism and/or an enzyme. These properties make the second material easier to process and more susceptible to chemical, enzymatic and/or biological attack relative to the first material, which can greatly improve the production rate and/or tion level of a desired product, e.g., ethanol.
In some embodiments, the second number average lar weight (MNZ) is lower than the first number average lar weight (MNl) by more than about 10 percent, e.g., more than about 15, 20, 25, 30, 35, 40, 50 percent, 60 percent, or even more than about 75 percent.
In some instances, the second material includes cellulose that has a crystallinity (C2) that is lower than the crystallinity (C1) of the cellulose of the first material. For example, (C2) can be lower than (C1) by more than about 10 percent, e.g., more than about 15, 20, 25, 30, 35, 40, or even more than about 50 percent.
In some embodiments, the starting crystallinity index (prior to irradiation) is from about 40 to about 87.5 percent, e.g., from about 50 to about 75 percent or from about 60 to about 70 percent, and the crystallinity index after irradiation is from about 10 to about 50 percent, e. g., from about 15 to about 45 percent or from about 20 to about 40 percent. r, in some embodiments, e.g., after extensive irradiation, it is possible to have a crystallinity index of lower than 5 percent. In some embodiments, the al after irradiation is substantially amorphous.
In some embodiments, the ng number average molecular weight (prior to irradiation) is from about 200,000 to about 3,200,000, e.g., from about 250,000 to about 1,000,000 or from about 250,000 to about 700,000, and the number average molecular weight after irradiation is from about 50,000 to about 200,000, e.g., from about 60,000 to about 150,000 or from about 70,000 to about 125,000. However, in some embodiments, e. g., after extensive irradiation, it is possible to have a number average molecular weight of less than about 10,000 or even less than about 5,000.
In some embodiments, the second material can have a level of oxidation (02) that is higher than the level of oxidation (01) of the first material. A higher level of oxidation of the material can aid in its sability, swellability and/or solubility, further ing the material’s susceptibility to chemical, tic or biological attack. In 1O some embodiments, to increase the level of the ion of the second material relative to the first material, the irradiation is performed under an ing environment, e.g., under a blanket of air or oxygen, producing a second material that is more oxidized than the first material. For example, the second material can have more hydroxyl groups, aldehyde groups, ketone groups, ester groups or carboxylic acid groups, which can increase its hilicity.
Ionizing Radiation Each form of radiation ionizes the carbon-containing material via particular interactions, as determined by the energy of the radiation. Heavy charged particles primarily ionize matter via b scattering; fiarthermore, these interactions produce energetic electrons that may further ionize matter. Alpha particles are identical to the nucleus of a helium atom and are produced by the alpha decay of various radioactive nuclei, such as isotopes of bismuth, polonium, ne, radon, francium, radium, l actinides, such as actinium, thorium, uranium, neptunium, curium, califomium, americium, and plutonium.
When particles are utilized, they can be neutral (uncharged), positively charged or negatively charged. When charged, the d particles can bear a single ve or negative charge, or multiple charges, e.g., one, two, three or even four or more charges.
In instances in which chain scission is desired, positively charged les may be desirable, in part due to their acidic nature. When particles are utilized, the particles can have the mass of a resting on, or greater, e.g., 500, 1000, 1500, 2000, 10,000 or even 100,000 times the mass of a resting electron. For example, the particles can have a mass of from about 1 atomic unit to about 150 atomic units, e. g., from about 1 atomic unit to about 50 atomic units, or from about 1 to about 25, e.g., 1, 2, 3, 4, 5, 10, 12 or 15 amu. rators used to rate the particles can be electrostatic DC, electrodynamic DC, RF linear, magnetic induction linear or continuous wave. For example, cyclotron type accelerators are available from IBA, Belgium, such as the Rhodotron® system, while DC type accelerators are available from RDI, now IBA Industrial, such as the tron®. Ions and ion accelerators are discussed in Introductory Nuclear Physics, h S. Krane, John Wiley & Sons, Inc. (1988), Krsto 1O Prelec, FIZIKA B 6 (1997) 4, 177—206, Chu, William T., “Overview of Light-Ion Beam Therapy” Columbus-Ohio, ICRU-IAEA Meeting, 18-20 March 2006, Iwata, Y. et al., "Altemating-Phase-Focused IH-DTL for Heavy-Ion Medical Accelerators” Proceedings of EPAC 2006, Edinburgh, Scotland and , C.M. et al., “Status of the onducting ECR Ion Source Venus” Proceedings of EPAC 2000, Vienna, Austria.
Gamma radiation has the advantage of a significant penetration depth into a variety of materials. Sources of gamma rays include radioactive nuclei, such as isotopes of cobalt, m, technicium, chromium, gallium, indium, iodine, iron, krypton, samarium, selenium, sodium, thalium, and xenon.
Sources of x rays include electron beam collision with metal targets, such as tungsten or molybdenum or alloys, or compact light sources, such as those produced commercially by Lyncean.
Sources for ultraviolet radiation e deuterium or cadmium lamps.
Sources for infrared radiation include sapphire, zinc, or selenide window ceramic lamps.
Sources for microwaves e klystrons, Slevin type RF sources, or atom beam sources that employ hydrogen, oxygen, or nitrogen gases.
In some ments, a beam of electrons is used as the radiation source. A beam of electrons has the advantages of high dose rates (e. g., 1, 5, or even 10 Mrad per second), high throughput, less containment, and less confinement equipment. Electrons can also be more efficient at g chain scission. In addition, electrons having energies of 4-10 MeV can have a penetration depth of 5 to 30 mm or more, such as 40 Electron beams can be generated, e.g., by ostatic generators, cascade tors, transformer generators, low energy rators with a ng system, low energy accelerators with a linear e, linear accelerators, and pulsed accelerators. ons as an ionizing radiation source can be useful, e.g., for relatively thin sections of material, e.g., less than 0.5 inch, e.g., less than 0.4 inch, 0.3 inch, 0.2 inch, or less than 0.1 inch. In some embodiments, the energy of each electron of the electron beam is from about 0.3 MeV to about 2.0 MeV (million electron volts), e.g., from about 0.5 MeV to 1O about 1.5 MeV, or from about 0.7 MeV to about 1.25 MeV.
Electron beam irradiation devices may be procured cially from Ion Beam Applications, n-la-Neuve, Belgium or the Titan Corporation, San Diego, CA.
Typical electron energies can be 1 MeV, 2 MeV, 4.5 MeV, 7.5 MeV, or 10 MeV.
Typical electron beam irradiation device power can be 1 kW, 5 kW, 10 kW, 20 kW, 50 kW, 100 kW, 250 kW, or 500 kW. The level of depolymerization of the feedstock depends on the electron energy used and the dose applied, while exposure time depends on the power and dose. l doses may take values of 1 kGy, 5 kGy, 10 kGy, 20 kGy, 50 kGy, 100 kGy, or 200 kGy. In a some embodiments energies between 0.25-10 MeV (e.g., 0.5-0.8 MeV, 0.5-5 MeV, 0.8-4 MeV, 0.8-3 MeV, 0.8-2 MeV or 0.8-1.5 MeV) can be used. In some embodiments doses between 1-100 Mrad (e. g., 2-80 Mrad, 5-50 Mrad, -40 Mrad, 5-30 Mrad or 5-20 Mrad) can be used. In some preferred embodiments, an energy between 0.8-3 MeV (e.g., 0.8-2 MeV or 0.8-1.5 MeV) combined with doses between 5-50 Mrad (e. g., 5-40 Mrad, 5-30 Mrad or 5-20 Mrad) can be used.
Ion Particle Beams Particles heavier than electrons can be utilized to irradiate materials, such as carbohydrates or materials that include carbohydrates, e.g., cellulosic materials, lignocellulosic materials, starchy als, or mixtures of any of these and others described herein. For example, protons, helium nuclei, argon ions, silicon ions, neon ions carbon ions, phosphorus ions, oxygen ions or nitrogen ions can be utilized. In some embodiments, particles heavier than electrons can induce higher amounts of chain scission (relative to lighter particles). In some ces, positively charged particles can induce higher amounts of chain scission than negatively charged particles due to their acidity.
Heavier particle beams can be generated, e.g., using linear accelerators or cyclotrons. In some embodiments, the energy of each le of the beam is from about 1.0 omic unit (MeV/amu) to about 6,000 MeV/atomic unit, e.g., from about 3 MeV/ atomic unit to about 4,800 MeV/atomic unit, or from about 10 MeV/atomic unit to about 1,000 MeV/atomic unit.
In certain embodiments, ion beams used to irradiate carbon-containing materials, 1O e. g., materials obtained from plants, can include more than one type of ion. For example, ion beams can include mixtures of two or more (e.g., three, four or more) different types of ions. Exemplary mixtures can include carbon ions and protons, carbon ions and oxygen ions, nitrogen ions and protons, and iron ions and protons. More generally, mixtures of any of the ions discussed above (or any other ions) can be used to form irradiating ion beams. In particular, mixtures of relatively light and relatively heaVier ions can be used in a single ion beam.
In some embodiments, ion beams for irradiating materials include positively- charged ions. The positively charged ions can include, for example, vely charged hydrogen ions (e. g., protons), noble gas ions (e. g., , neon, argon), carbon ions, nitrogen ions, oxygen ions, silicon atoms, phosphorus ions, and metal ions such as sodium ions, calcium ions, and/or iron ions. Without wishing to be bound by any theory, it is believed that such positively-charged ions behave chemically as Lewis acid moieties when d to materials, initiating and ning cationic ring-opening chain scission reactions in an oxidative environment.
In certain embodiments, ion beams for irradiating als e vely- charged ions. Negatively charged ions can include, for example, negatively charged hydrogen ions (e.g., hydride ions), and negatively charged ions of various relatively electronegative nuclei (e.g., oxygen ions, nitrogen ions, carbon ions, silicon ions, and orus ions). Without wishing to be bound by any theory, it is believed that such vely-charged ions behave chemically as Lewis base moieties when exposed to materials, g anionic ring-opening chain scission reactions in a reducing environment.
In some embodiments, beams for ating als can include neutral atoms.
For example, any one or more of hydrogen atoms, helium atoms, carbon atoms, nitrogen atoms, oxygen atoms, neon atoms, silicon atoms, phosphorus atoms, argon atoms, and iron atoms can be included in beams that are used for irradiation. In general, mixtures of any two or more of the above types of atoms (e.g., three or more, four or more, or even more) can be present in the beams.
In certain embodiments, ion beams used to irradiate als include singly- 1O charged ions such as one or more of HI, H", Hel,Nel, Ar}, C l, C", O l, O", Nl,N', Si}, Si", P+, P", Na+, Ca+, and Fe+. In some embodiments, ion beams can include multiply-charged ions such as one or more of CZI, C3: C4: N3: NSI, N3", 02+, 02', 022', Si2+, Si“, Siz', and Si4'. In general, the ion beams can also include more complex polynuclear ions that bear multiple ve or negative charges. In certain embodiments, by virtue of the ure of the polynuclear ion, the positive or negative charges can be effectively buted over substantially the entire ure of the ions. In some embodiments, the positive or negative charges can be somewhat localized over ns of the structure of the ions.
Electromagnetic Radiation In embodiments in which the irradiating is performed with electromagnetic radiation, the electromagnetic radiation can have, e.g., energy per photon (in electron volts) of greater than 102 eV, e.g., greater than 103, 104, 105, 106, or even greater than 107 eV. In some embodiments, the electromagnetic radiation has energy per photon of between 104 and 107, e. g., between 105 and 106 eV. The electromagnetic radiation can have a frequency of, e.g., greater than 1016 hz, greater than 1017 hz, 1018, 1019, 1020, or even greater than 1021 hz. Typical doses may take values of greater than 1 Mrad (e. g., greater than 1 Mrad, greater than 2 Mrad). In some embodiments, the electromagnetic radiation has a frequency of between 1018 and 1022 hz, e.g., between 1019 to 1021 hz. In some embodiment doses between 1-100 Mrad (e. g., 2-80 Mrad, 5-50 Mrad, 5-40 Mrad, -30 Mrad or 5-20 Mrad) can be used.
Quenching and Controlled Functionalization After treatment with ionizing radiation, any of the materials or es bed herein may become ionized; that is, the treated material may include radicals at levels that are detectable with an electron spin resonance ometer. If an ionized feedstock remains in the atmosphere, it will be oxidized, such as to an extent that carboxylic acid groups are generated by reacting with the atmospheric oxygen. In some ces with some materials, such oxidation is desired because it can aid in the further breakdown in molecular weight of the carbohydrate-containing biomass, and the ion groups, e.g., carboxylic acid groups can be helpful for solubility and microorganism utilization in 1O some instances. However, since the radicals can “live” for some time after ation, e.g., longer than 1 day, 5 days, 30 days, 3 months, 6 months or even longer than 1 year, material properties can continue to change over time, which in some instances, can be rable. Thus, it may be desirable to quench the ionized material.
After ionization, any ionized material can be quenched to reduce the level of radicals in the ionized material, e.g., such that the radicals are no longer detectable with the electron spin resonance spectrometer. For example, the radicals can be quenched by the application of a sufficient pressure to the material and/or by utilizing a fluid in contact with the ionized material, such as a gas or liquid, that reacts with (quenches) the radicals.
Using a gas or liquid to at least aid in the quenching of the radicals can be used to fimctionalize the d material with a desired amount and kind of functional groups, such as carboxylic acid groups, enol groups, aldehyde groups, nitro groups, nitrile groups, amino groups, alkyl amino groups, alkyl groups, chloroalkyl groups or chlorofluoroalkyl groups.
In some instances, such ing can improve the stability of some of the ionized materials. For e, quenching can improve the resistance of the material to oxidation. Functionalization by ing can also improve the solubility of any material described herein, can improve its thermal stability, and can improve material utilization by various microorganisms. For example, the functional groups imparted to the al by the ing can act as receptor sites for attachment by microorganisms, e. g., to enhance cellulose hydrolysis by various microorganisms.
In some embodiments, quenching includes an application of pressure to the ionized material, such as by mechanically deforming the material, e.g., directly mechanically compressing the material in one, two, or three dimensions, or applying pressure to a fluid in which the material is immersed, e.g., isostatic pressing. In such instances, the deformation of the material itself brings radicals, which are often trapped in crystalline domains, in close enough proximity so that the radicals can recombine, or react with another group. In some instances, the pressure is applied together with the application of heat, such as a sufficient quantity of heat to elevate the temperature of the material to above a melting point or softening point of a component of the material, such 1O as lignin, cellulose or llulose. Heat can improve molecular mobility in the material, which can aid in the quenching of the radicals. When pressure is utilized to quench, the pressure can be greater than about 1000 psi, such as greater than about 1250 psi, 1450 psi, 3625 psi, 5075 psi, 7250 psi, 10000 psi or even greater than 15000 psi.
In some ments, quenching es contacting the ionized material with a fluid, such as a liquid or gas, e. g., a gas capable of reacting with the radicals, such as acetylene or a mixture of acetylene in nitrogen, ethylene, chlorinated ethylenes or chlorofluoroethylenes, ene or mixtures of these gases. In other particular embodiments, ing includes contacting the d material with a liquid, e.g., a liquid soluble in, or at least capable of penetrating into the material and ng with the radicals, such as a diene, such as 1,5-cyclooctadiene. In some specific embodiments, quenching includes contacting the material with an antioxidant, such as Vitamin E. If desired, the feedstock can include an antioxidant dispersed therein, and the quenching can come from contacting the antioxidant dispersed in the feedstock with the radicals.
Functionalization can be enhanced by utilizing heavy charged ions, such as any of the heavier ions bed herein. For e, if it is desired to enhance oxidation, charged oxygen ions can be ed for the irradiation. If nitrogen fianctional groups are desired, nitrogen ions or anions that include en can be utilized. Likewise, if sulfur or orus groups are desired, sulfur or orus ions can be used in the irradiation.
Doses In some instances, the irradiation is performed at a dosage rate of greater than about 0.25 Mrad per second, e.g., r than about 0.5, 0.75, 1.0, 1.5, 2.0, or even greater than about 2.5 Mrad per second. In some embodiments, the irradiating is performed at a dose rate of n 5.0 and 1500.0 kilorads/hour, e.g., between 10.0 and 750.0 kilorads/hour or between 50.0 and 350.0 kilorads/hour. In some embodiments, irradiation is performed at a dose rate of greater than about 0.25 Mrad per second, e.g., r than about 0.5, 0.75, 1, 1.5, 2, 5, 7, 10, 12, 15, or even greater than about 20 Mrad per , e.g., about 0.25 to 2 Mrad per . 1O In some embodiments, the irradiating (with any radiation source or a combination of sources) is performed until the material receives a dose of 0.25 Mrad, e. g., at least 1.0, 2.5, 5.0, 8.0, 10, 15, 20, 25, 30, 35, 40, 50, or even at least 100 Mrad. In some embodiments, the irradiating is performed until the material receives a dose of between 1.0 Mrad and 6.0 Mrad, e.g., between 1.5 Mrad and 4.0 Mrad, 2 Mrad and 10 Mrad, 5 Mrad and 20 Mrad, 10 Mrad and 30 Mrad, 10 Mrad and 40 Mrad, or 20 Mrad and 50 Mrad. In some embodiments, the irradiating is performed until the material receives a dose of from about 0.1 Mrad to about 500 Mrad, from about 0.5 Mrad to about 200 Mrad, from about 1 Mrad to about 100 Mrad, or from about 5 Mrad to about 60 Mrad. In some embodiments, a relatively low dose of radiation is applied, e.g., less than 60 Mrad.
Sonication Sonication can reduce the molecular weight and/or crystallinity of materials, such as one or more of any of the materials described herein, e.g., one or more ydrate sources, such as cellulosic or lignocellulosic materials, or starchy materials. tion can also be used to sterilize the materials. As discussed above with regard to radiation, the process parameters used for sonication can be varied depending on s factors, e. g., depending on the lignin content of the feedstock. For example, feedstocks with higher lignin levels generally require a higher residence time and/or energy level, resulting in a higher total energy delivered to the feedstock.
In one method, a first material that includes cellulose having a first number average molecular weight (MM) is dispersed in a medium, such as water, and sonicated 2012/025023 and/or otherwise cavitated, to provide a second material that es cellulose having a second number average molecular weight (MNZ) lower than the first number average molecular weight. The second material (or the first and second material in certain ments) can be combined with a microorganism (with or without enzyme treatment) that can e the second and/or first material to produce an intermediate or product.
Since the second al includes cellulose having a reduced molecular weight relative to the first material, and in some instances, a reduced crystallinity as well, the second material is generally more dispersible, swellable, and/or soluble, e. g., in a solution 1O containing a microorganism.
In some embodiments, the second number average molecular weight (MNZ) is lower than the first number average molecular weight (MNl) by more than about 10 percent, e.g., more than about 15, 20, 25, 30, 35, 40, 50 percent, 60 percent, or even more than about 75 percent.
In some instances, the second al includes cellulose that has a crystallinity (C2) that is lower than the crystallinity (C1) of the cellulose of the first material. For example, (C2) can be lower than (C1) by more than about 10 percent, e.g., more than about 15, 20, 25, 30, 35, 40, or even more than about 50 percent.
In some embodiments, the starting llinity index (prior to sonication) is from about 40 to about 87.5 percent, e.g., from about 50 to about 75 percent or from about 60 to about 70 percent, and the llinity index after sonication is from about 10 to about 50 percent, e. g., from about 15 to about 45 percent or from about 20 to about 40 percent.
However, in certain embodiments, e.g., after extensive sonication, it is possible to have a crystallinity index of lower than 5 percent. In some embodiments, the material after sonication is substantially amorphous.
In some embodiments, the starting number average molecular weight (prior to sonication) is from about 0 to about 3,200,000, e.g., from about 250,000 to about 1,000,000 or from about 250,000 to about 700,000, and the number average molecular weight after sonication is from about 50,000 to about 200,000, e.g., from about 60,000 to about 150,000 or from about 70,000 to about 125,000. However, in some embodiments, e. g., after ive sonication, it is possible to have a number average molecular weight of less than about 10,000 or even less than about 5,000.
In some embodiments, the second material can have a level of oxidation (02) that is higher than the level of oxidation (01) of the first material. A higher level of oxidation of the material can aid in its dispersability, swellability and/or solubility, further ing the material’s susceptibility to chemical, enzymatic or microbial . In some embodiments, to increase the level of the oxidation of the second material relative to the first material, the sonication is performed in an oxidizing medium, producing a second material that is more oxidized than the first material. For e, the second 1O al can have more hydroxyl groups, aldehyde groups, ketone groups, ester groups or carboxylic acid groups, which can increase its hydrophilicity.
In some embodiments, the sonication medium is an aqueous medium. If desired, the medium can include an oxidant, such as a peroxide (e.g., hydrogen peroxide), a dispersing agent and/or a buffer. es of dispersing agents include ionic dispersing agents, e. g., sodium lauryl sulfate, and non-ionic dispersing agents, e. g., poly(ethylene glycol).
In other embodiments, the sonication medium is non-aqueous. For e, the sonication can be performed in a hydrocarbon, e.g., toluene or heptane, an ether, e.g., diethyl ether or tetrahydrofuran, or even in a liquefied gas such as argon, xenon, or nitrogen.
Pyrolysis One or more pyrolysis processing ces can be used to process carbon- ning materials from a wide y of different sources to extract useful substances from the materials, and to provide partially degraded materials which filnction as input to fiarther processing steps and/or sequences. Pyrolysis can also be used to ize the materials. Pyrolysis conditions can be varied depending on the characteristics of the feedstock and/or other factors. For example, feedstocks with higher lignin levels may require a higher temperature, longer residence time, and/or uction of higher levels of oxygen during pyrolysis.
In one e, a first material that includes cellulose having a first number average lar weight (MM) is pyrolyzed, e.g., by heating the first material in a tube fiamace (in the presence or absence of oxygen), to provide a second material that includes cellulose having a second number average molecular weight (MNZ) lower than the first number average molecular .
Since the second material includes ose having a reduced molecular weight ve to the first material, and in some instances, a reduced crystallinity as well, the second material is generally more dispersible, swellable and/or soluble, e.g., in a solution containing a microorganism. 1O In some embodiments, the second number e molecular weight (MNZ) is lower than the first number average molecular weight (MNl) by more than about 10 percent, e.g., more than about 15, 20, 25, 30, 35, 40, 50 percent, 60 percent, or even more than about 75 percent.
In some instances, the second material includes cellulose that has a crystallinity (C2) that is lower than the crystallinity (C1) of the cellulose of the first material. For example, (C2) can be lower than (C1) by more than about 10 percent, e.g., more than about 15, 20, 25, 30, 35, 40, or even more than about 50 percent.
In some embodiments, the starting crystallinity (prior to pyrolysis) is from about 40 to about 87.5 percent, e. g., from about 50 to about 75 t or from about 60 to about 70 percent, and the llinity index after pyrolysis is from about 10 to about 50 percent, e.g., from about 15 to about 45 percent or from about 20 to about 40 percent.
However, in certain embodiments, e.g., after extensive pyrolysis, it is possible to have a crystallinity index of lower than 5 percent. In some embodiments, the material after pyrolysis is substantially amorphous.
In some embodiments, the starting number average molecular weight (prior to pyrolysis) is from about 200,000 to about 3,200,000, e.g., from about 250,000 to about 1,000,000 or from about 250,000 to about 700,000, and the number average molecular weight after sis is from about 50,000 to about 200,000, e.g., from about 60,000 to about 150,000 or from about 70,000 to about 125,000. However, in some ments, e. g., after extensive sis, it is possible to have a number average molecular weight of less than about 10,000 or even less than about 5,000.
In some embodiments, the second material can have a level of oxidation (02) that is higher than the level of oxidation (01) of the first al. A higher level of oxidation of the material can aid in its dispersability, swellability and/or solubility, further enhancing the susceptibility of the material to chemical, enzymatic or microbial attack.
In some embodiments, to increase the level of the oxidation of the second material relative to the first material, the pyrolysis is performed in an oxidizing environment, producing a second material that is more oxidized than the first material. For example, the second material can have more hydroxyl groups, aldehyde groups, ketone groups, ester groups or carboxylic acid groups, than the first material, thereby increasing the 1O hydrophilicity of the material.
In some ments, the pyrolysis of the materials is continuous. In other embodiments, the material is zed for a pre-determined time, and then allowed to cool for a second pre-determined time before pyrolyzing again.
Oxidation One or more oxidative sing sequences can be used to process - containing materials from a wide variety of different sources to t useful substances from the materials, and to provide partially degraded and/or altered material which fianctions as input to further processing steps and/or sequences. The oxidation conditions can be , e.g., ing on the lignin content of the ock, with a higher degree of oxidation generally being desired for higher lignin content feedstocks.
In one method, a first material that includes cellulose having a first number average molecular weight (MM) and having a first oxygen content (01) is oxidized, e.g., by heating the first material in a stream of air or oxygen-enriched air, to provide a second material that includes cellulose having a second number average lar weight (MNZ) and having a second oxygen content (02) higher than the first oxygen content (01).
The second number average molecular weight of the second material is generally lower than the first number average molecular weight of the first material. For example, the molecular weight may be reduced to the same extent as discussed above with respect to the other physical treatments. The crystallinity of the second material may also be reduced to the same extent as discussed above with respect to the other physical treatments.
In some embodiments, the second oxygen t is at least about five percent higher than the first oxygen content, e.g., 7.5 percent , 10.0 percent higher, 12.5 percent higher, 15.0 percent higher or 17.5 percent higher. In some preferred embodiments, the second oxygen content is at least about 20.0 percent higher than the first oxygen content of the first material. Oxygen content is measured by elemental analysis by pyrolyzing a sample in a furnace operating at 1300 0C or higher. A suitable elemental analyzer is the LECO CHNS-932 analyzer with a VTF-900 high temperature 1O pyrolysis furnace.
Generally, oxidation of a material occurs in an oxidizing environment. For example, the oxidation can be effected or aided by pyrolysis in an oxidizing environment, such as in air or argon enriched in air. To aid in the oxidation, various chemical agents, such as oxidants, acids or bases can be added to the material prior to or during oxidation.
For example, a peroxide (e.g., benzoyl peroxide) can be added prior to oxidation.
Some oxidative methods of reducing recalcitrance in a biomass feedstock employ -type chemistry. Such methods are disclosed, for example, in US. Serial No. 12/639,289, the te sure of which is orated herein by reference.
Exemplary oxidants include peroxides, such as hydrogen de and benzoyl peroxide, fates, such as ammonium persulfate, activated forms of oxygen, such as ozone, permanganates, such as potassium permanganate, perchlorates, such as sodium perchlorate, and hypochlorites, such as sodium hypochlorite (household ).
In some situations, pH is ined at or below about 5.5 during contact, such as between 1 and 5, between 2 and 5, between 2.5 and 5 or between about 3 and 5.
Oxidation ions can also e a contact period of between 2 and 12 hours, e. g., between 4 and 10 hours or between 5 and 8 hours. In some instances, temperature is maintained at or below 300 OC, e.g., at or below 250, 200, 150, 100 or 50 0C. In some instances, the temperature remains substantially ambient, e.g., at or about 20-25 0C.
In some embodiments, the one or more oxidants are applied as a gas, such as by generating ozone in-sz'tu by irradiating the material through air with a beam of particles, such as electrons.
In some embodiments, the mixture fiarther includes one or more hydroquinones, such as 2,5-dimethoxyhydroquinone (DMHQ) and/or one or more benzoquinones, such as 2,5-dimethoxy-l ,4-benzoquinone (DMBQ), which can aid in electron transfer reactions.
In some embodiments, the one or more oxidants are electrochemically-generated in-sz'tu. For example, hydrogen peroxide and/or ozone can be electro-chemically produced within a contact or reaction vessel.
Other Processes T0 Solubilize, Reduce Recalcitrance Or To Functionalize Any of the processes of this paragraph can be used alone without any of the 1O processes described , or in combination with any of the processes described herein (in any : steam explosion, chemical treatment (e.g., acid treatment (including concentrated and dilute acid treatment with l acids, such as sulfuric acid, hydrochloric acid and organic acids, such as trifluoroacetic acid) and/or base treatment (e.g., treatment with lime or sodium hydroxide)), UV treatment, screw extrusion treatment (see, e. g., U.S. Serial No. 13/099,151, solvent treatment (e.g., ent with ionic liquids) and freeze milling (see, e. g., U.S. Serial No. 12/502,629 now US. Patent No. 7,900,857).
PRODUCTION OF FUELSa ACIDSa ESTERS AND/OR OTHER TS AND USES A typical feedstock obtained at least in part from plants contains cellulose, llulose, and lignin plus lesser amounts of proteins, extractables and minerals.
After one or more of the processing steps discussed above have been performed on the feedstock, the complex carbohydrates contained in the cellulose and llulose fractions can in some cases be processed into fermentable sugars, optionally, along with acid or enzymatic hydrolysis. The sugars ted can be converted into a variety of products, such as ls or organic acids. The product obtained depends upon the microorganism utilized and the conditions under which the bioprocessing occurs. In other embodiments, the treated ock can be subjected to thermochemical conversion, or other processing.
Examples of methods of further processing the treated feedstock are discussed in the following sections.
Saccharification In order to convert the treated feedstock to a form that can be readily fermented, in some implementations the cellulose in the feedstock is first hydrolyzed to low molecular weight carbohydrates, such as sugars, by a saccharifying agent, e. g., an enzyme, a process referred to as saccharif1cation. In some implementations, the saccharifying agent comprises an acid, e. g., a mineral acid. When an acid is used, co- ts may be generated that are toxic to microorganisms, in which case the process 1O can further include removing such co-products. Removal may be performed using an activated , e.g., activated charcoal, or other suitable techniques.
The treated ock can be hydrolyzed using an enzyme, e.g., by combining the material and the enzyme in a t, e.g., in an aqueous solution.
Enzymes and biomass-destroying organisms that break down biomass, such as the cellulose and/or the lignin portions of the feedstock, contain or manufacture various cellulolytic s (cellulases), ligninases or various small molecule biomass- destroying metabolites. These enzymes may be a complex of enzymes that act synergistically to degrade crystalline cellulose or the lignin portions of biomass.
Examples of cellulolytic enzymes e: endoglucanases, cellobiohydrolases, and cellobiases (B-glucosidases). A cellulosic substrate is lly yzed by endoglucanases at random locations producing oligomeric intermediates. These intermediates are then substrates for exo-splitting glucanases such as cellobiohydrolase to e cellobiose from the ends of the cellulose polymer. Cellobiose is a water-soluble nked dimer of e. y cellobiase cleaves cellobiose to yield glucose.
Fermentation rganisms can produce a number of useful intermediates and products by fermenting a low molecular weight sugar produced by saccharifying the treated feedstock. For example, fermentation or other bioprocesses can produce ls, organic acids, hydrocarbons, hydrogen, proteins or mixtures of any of these materials.
Yeast and Zymomonas bacteria, for example, can be used for fermentation or conversion. Other microorganisms are discussed in the Materials section, below. The optimum pH for fermentations is about pH 4 to 7. The optimum pH for yeast is from about pH 4 to 5, while the optimum pH for Zymomonas is from about pH 5 to 6. Typical fermentation times are about 24 to 168 (e.g., 24-96 hrs) hours with temperatures in the range of 20 0C to 40 0C (e. g., 26 0C to 40 oC), however thermophilic microorganisms prefer higher temperatures.
In some embodiments e.g., when anaerobic sms are used, at least a portion of the fermentation is conducted in the e of oxygen e.g., under a t of an inert 1O gas such as N2, Ar, He, C02 or mixtures thereof. Additionally, the mixture may have a constant purge of an inert gas flowing through the tank during part of or all of the fermentation. In some cases, anaerobic condition can be achieved or ined by carbon dioxide production during the fermentation and no additional inert gas is needed.
In some embodiments, all or a portion of the fermentation process can be interrupted before the low molecular weight sugar is completely converted to a product (e.g. ethanol). The intermediate fermentation products include high concentrations of sugar and carbohydrates. The sugars and carbohydrates can be isolated as discussed below. These intermediate fermentation products can be used in preparation of food for human or animal ption. Additionally or alternatively, the intermediate fermentation products can be ground to a fine particle size in a stainless-steel tory mill to produce a flour-like substance.
The fermentations e the methods and products that are disclosed in US.
Provisional Application Serial No. 61/579,559, filed December, 2011 and US.
Provisional Application Serial No. 61/579,576, filed December, 2011 incorporated herein by reference.
Mobile fermentors can be ed, as bed in US. Provisional Patent Application Serial No. 60/832,735, now hed International Application No. WO 2008/011598. Similarly, the sacchariflcation equipment can be mobile. Further, sacchariflcation and/or tation may be performed in part or entirely during transit.
Fuel Cells Where the methods described herein produce a sugar on or suspension, this solution or suspension can subsequently be used in a fuel cell. For example, fiJel cells utilizing sugars derived from cellulosic or lignocellulosic materials are disclosed in US.
Provisional Application Serial No. ,568, filed December 22, 2011, the complete disclosure of which is incorporated herein by reference.
Thermochemical Conversion Thermochemical conversion can be performed on the treated feedstock to produce one or more desired intermediates and/or products. A thermochemical sion 1O process includes ng molecular structures of carbon-containing material at elevated temperatures. Specific examples include gasif1cation, pyrolysis, reformation, partial oxidation and mixtures of these (in any order).
Gasif1cation converts carbon-containing materials into a synthesis gas (syngas), which can include methanol, carbon monoxide, carbon dioxide and hydrogen. Many microorganisms, such as acetogens or homoacetogens are capable of utilizing a syngas from the thermochemical conversion of s, to produce a product that includes an alcohol, a carboxylic acid, a salt of a carboxylic acid, a carboxylic acid ester or a mixture of any of these. Gasiflcation of biomass (e. g., cellulosic or ellulosic als), can be accomplished by a variety of techniques. For example, gasif1cation can be accomplished utilizing staged steam reformation with a fluidized-bed reactor in which the carbonaceous material is first pyrolyzed in the absence of oxygen and then the pyrolysis vapors are reformed to synthesis gas with steam providing added hydrogen and .
In such a technique, process heat comes from g char. Another technique utilizes a screw auger reactor in which re and oxygen are introduced at the sis stage and the process heat is generated from burning some of the gas produced in the latter stage. Another technique utilizes entrained flow reformation in which both external steam and air are introduced in a single-stage gasif1cation reactor. In l oxidation gasif1cation, pure oxygen is utilized with no steam.
POST-PROCESSING Distillation After fermentation, the resulting fluids can be distilled using, for e, a “beer column” to separate ethanol and other alcohols from the majority of water and residual solids. The vapor exiting the beer column can be, e. g., 35% by weight ethanol and can be fed to a rectification column. A mixture of nearly azeotropic (92.5%) ethanol and water from the cation column can be purified to pure ) ethanol using vapor-phase molecular sieves. The beer column bottoms can be sent to the first effect of a three-effect evaporator. The rectification column reflux condenser can provide heat for this first 1O effect. After the first , solids can be ted using a centrifuge and dried in a rotary dryer. A portion (25%) of the centrifuge effluent can be recycled to fermentation and the rest sent to the second and third evaporator effects. Most of the evaporator condensate can be returned to the process as fairly clean condensate with a small portion split off to waste water treatment to prevent build-up of low-boiling compounds.
Other Possible Processing of Sugars Processing during or after saccharification can e isolation and/0r concentration of sugars by chromatography e.g., simulated moving bed chromatography, precipitation, centrifugation, crystallization, solvent evaporation and combinations thereof. In addition, or ally, sing can include isomerization of one or more of the sugars in the sugar solution or suspension. Additionally, or optionally, the sugar solution or suspension can be chemically processed e. g., glucose and xylose can be hydrogenated to sorbitol and xylitol respectively. Hydrogenation can be accomplished by use of a catalyst e. g., Pt/y-A1203, Ru/C, Raney Nickel in combination with H2 under high pressure e.g., 10 to 12000 psi.
Some possible sing steps are disclosed in in US. Provisional ation Serial No. 61/579,552, filed December 22, 201 1, and in US. Provisional Application Serial No. ,576 fi1ed December 22, 2011, incorporated by reference above.
INTERMEDIATES AND TS Using, e.g., such primary ses and/or post-processing, the treated biomass can be converted to one or more products, such as energy, fuels, foods and materials.
Specific examples of products include, but are not limited to, hydrogen, sugars (e. g., glucose, xylose, arabinose, mannose, galactose, fructose, disaccharides, oligosaccharides and polysaccharides), ls (e. g., monohydric alcohols or dihydric alcohols, such as ethanol, n-propanol, isobutanol, sec-butanol, tert—butanol or n-butanol), hydrated or hydrous alcohols, e.g., containing greater than 10%, 20%, 30% or even greater than 40% water, sugars, biodiesel, organic acids (e. g., acetic acid and/or lactic acid), hydrocarbons, 1O co-products (e.g., proteins, such as olytic proteins (enzymes) or single cell proteins), and mixtures of any of these in any combination or relative concentration, and optionally in combination with any additives, e.g., fuel additives. Other examples include carboxylic acids, such as acetic acid or butyric acid, salts of a carboxylic acid, a mixture of carboxylic acids and salts of carboxylic acids and esters of carboxylic acids (e.g., methyl, ethyl and n-propyl esters), ketones, aldehydes, alpha, beta unsaturated acids, such as acrylic acid, s, such as ethylene, and es of any of these. Other alcohols and alcohol derivatives include propanol, ene , l,4-butanediol, 1,3- propanediol, sugar alcohols (e.g., erythritol, , glycerol, ol threitol, arabitol, ribitol, mannitol, dulcitol, fucitol, iditol, isomalt, maltitol, lactitol, xylitol and other polyols), methyl or ethyl esters of any of these alcohols. Other products include methyl te, methylmethacrylate, lactic acid, propionic acid, butyric acid, succinic acid, 3- hydroxypropionic acid, a salt of any of the acids and a mixture of any of the acids and respective salts.
In some embodiments using, e.g., such primary processes and/or post-processing, the treated biomass can be converted to a platform chemical. For example, as stated above, the treated biomass can be converted to butanols (e.g., isobutanol, sec-butanol, tert-butanol or nol) which are important platform chemicals. For example, dehydration of butanols can produce butenes such as l-butene, cis-Z-butene, trans butene and isobutene, which are highly valuable starting materials for synthetic fiaels, ants and other valuable als. Specifically, l-butene can be used in the creations of polymers, e.g., linear low density polyethylene, 2-butene isomers are valuable starting materials for lubricants and agricultural chemicals, and Isobutene can be rized to butyl rubber, methyl tert-butyl ether and isooctane. In addition, synthetic petroleum kerosene can be synthesized by oligomerization of butenes. Other intermediates and products, including food and pharmaceutical products, for example edible als selected from the group consisting of pharmaceuticals, nutriceuticals, ns, fats, vitamins, oils, fiber, minerals, sugars, carbohydrates and alcohols, are described in US. Serial No. 12/417,900, the filll sure of which is hereby incorporated by reference herein.
MATERIALS 1O Modified Plant Materials The plant feedstock is obtained at least in part from one or more types of modified plants, as sed herein. In some cases, the feedstock includes more than one type of plant, and/or more than one n of the plant, e.g., the stalk, fruit, and cob of a corn plant. The plant may be, for example, a corn, soybean, beet, , rapeseed, potato, rice, alfalfa, or sugarcane plant. The plant may also be any of the many types of genetically ed plants that are grown. The feedstock may contain a mixture of different types of plants, different parts of a particular plant, and/or mixtures of plant materials with other materials e.g., s materials.
In some cases the entire plant can be used. For e, in cases where a crop is ruined by adverse growing conditions (e.g., drought, frost, flooding, pest infestation) the ruined crop can be useful in the methods and processes described herein.
Other Feedstock Materials In addition or as an alternative to the modified plant materials discussed above, the ock can include other materials e.g., biomass materials, that may or may not be genetically modified. The biomass can be, e. g., a cellulosic or lignocellulosic material.
Such materials include paper and paper products (e.g., polycoated paper and Kraft paper), wood, wood-related materials, e. g., particle board, grasses, rice hulls, bagasse, jute, hemp, flax, bamboo, sisal, abaca, straw, switchgrass, alfalfa, hay, corn cobs, corn stover, 2012/025023 coconut hair; and materials high in (x-cellulose content, e. g., cotton. Feedstocks can be obtained from virgin scrap textile materials, e.g., remnants, post consumer waste, e.g., rags. When paper products are used they can be virgin materials, e.g., scrap virgin materials, or they can be post-consumer waste. Aside from virgin raw materials, post- consumer, industrial (e. g., offal), and processing waste (e. g., effluent from paper processing) can also be used as flber sources. Biomass feedstocks can also be obtained or derived from human (e. g., sewage), animal or plant wastes. Additional osic and lignocellulosic materials have been described in US. Patent Nos. 6,448,307; 6,258,876; 6,207,729; 5,973,035 and 5,952,105. 1O In some embodiments, the biomass material includes a carbohydrate that is or includes a al having one or more B-l ,4-linkages and having a number average molecular weight between about 3,000 and 50,000. Such a carbohydrate is or includes ose (I), which is derived from (B-glucose 1) h condensation of B(l,4)- idic bonds. This linkage contrasts itself with that for (1(1 ,4)-glycosidic bonds present in starch and other carbohydrates.
\ O ’ Starchy als include starch itself, e. g., corn starch, wheat , potato starch or rice starch, a derivative of , or a material that includes starch, such as an edible food product or a crop. For example, the starchy material can be arracacha, buckwheat, banana, barley, cassava, kudzu, oca, sago, sorghum, regular household potatoes, sweet potato, taro, yams, or one or more beans, such as favas, lentils or peas.
Blends of any two or more starchy materials are also starchy materials.
In some instances the biomass is a microbial material. Microbial sources include, 1O but are not limited to, any naturally occurring or genetically d microorganism or organism that contains or is capable of providing a source of carbohydrates (e. g., cellulose), for example, protists, e. g., animal protists (e. g., protozoa such as flagellates, amoeboids, ciliates, and sporozoa) and plant ts (e.g., algae such alveolates, rachniophytes, cryptomonads, euglenids, glaucophytes, haptophytes, red algae, stramenopiles, and eplantae). Other examples include seaweed, plankton (e.g., macroplankton, mesoplankton, microplankton, nanoplankton, picoplankton, and plankton), phytoplankton, bacteria (e.g., gram ve bacteria, gram ve bacteria, and extremophiles), yeast and/or mixtures of these. In some instances, microbial biomass can be obtained from natural sources, e. g., the ocean, lakes, bodies of water, e.g., salt water or fresh water, or on land. Alternatively or in addition, microbial biomass can be obtained from culture systems, e.g., large scale dry and wet culture systems.
Saccharifying Agents Suitable enzymes include cellobiases and cellulases capable of degrading biomass.
Suitable cellobiases include a cellobiase from ASpergz'lluS niger sold under the tradename ME 188TM. ases are capable of degrading biomass, and may be of fiJngal or bacterial origin. Suitable enzymes e cellulases from the genera Bacillus, Pseudomonas, la, Fusarz'um, Thielavz'a, Acremonium, ChrySOSporz'um and Trichoderma, and include s ofHumicola, CaprinuS, Thielavz'a, Fusarium, Mycelz'ophthora, Acremonium, Cephalosporz'um, Scytalz'dz'um, Penicillium or ASpergz'lluS (see, e. g., EP 1O 458162), especially those produced by a strain selected from the s Humicola insolenS (reclassified as Scytalz'clz'um thermophilum, see, e.g., US. Patent No. 4,435,307), CaprinuS cinereus, Fusarz'um rum, ophthora thermophila, Merlpz'luS giganteus, vz'a terrestriS, Acremonium Sp., Acremonium persicinum, Acremonium nium, Acremonium brachypem'um, Acremonium dichromosporum, Acremonium obclavatum, Acremonium pinkertonz'ae, nium roseogriseum, Acremonium incoloratum, and Acremom’umfuratum; preferably from the species Humicola insolenS DSM 1800, um oxySporum DSM 2672, Myceliophthora thermophila CBS 117.65, Cephalosporium Sp. RYM-202, Acremonium Sp. CBS 478.94, Acremonium Sp. CBS 265.95, Acremonium persicinum CBS 169.65, Acremonium acremonium AHU 9519, Cephalosporium Sp. CBS 535.71, Acremonium brachypem'um CBS , Acremonium dichromosporum CBS 683.73, Acremonium obclavatum CBS 311.74, Acremonium pinkertonz'ae CBS 157.70, Acremonium roseogriseum CBS 134.56, Acremonium incoloratum CBS 146.62, and Acremom’umfuratum CBS 299.70H. Cellulolytic enzymes may also be obtained from Chrysasporz’um, preferably a strain of ChrySOSporz'um lucknowense. Additionally, Trichoderma (particularly Trichoderma viride, Trichoderma reesez’, and Trichoderma gz'z'), alkalophilic Bacillus (see, for example, US. Patent No. 3,844,890 and EP 458162), and Streptomyces (see, e.g., EP 458162) may be used.
Enzyme complexes may be utilized, such as those available from Genencore under the tradename ACCELLERASE®, for example, erase® 1500 enzyme complex. Accellerase 1500 enzyme complex contains multiple enzyme activities, mainly exoglucanase, endoglucanase (2200-2800 CMC U/g), hemi-cellulase, and beta- glucosidase 75 pNPG U/g), and has a pH of 4.6 to 5.0. The endoglucanase activity of the enzyme complex is expressed in carboxymethylcellulose activity units (CMC U), while the beta-glucosidase ty is reported in ucoside activity units (pNPG U).
In one embodiment, a blend of Accellerase® 1500 enzyme complex and NOVOZYMETM 188 cellobiase is used.
Fermentation Agents The microorganism(s) used in tation can be natural microorganisms and/or engineered microorganisms. For example, the microorganism can be a bacterium, e. g., a 1O cellulolytic bacterium, a fungus, e.g., a yeast, a plant or a t, e. g., an algae, a protozoa or a fiangus-like protist, e.g., a slime mold. When the organisms are ible, mixtures of sms can be utilized.
Suitable fermenting microorganisms have the ability to convert carbohydrates, such as glucose, fructose, xylose, arabinose, mannose, galactose, oligosaccharides or polysaccharides into fermentation ts. Fermenting microorganisms include strains of the genus Sacchromyces spp. e.g., Sacchromyces siae (baker’s yeast), Saccharomyces distaticas, Saccharomyces avaram; the genus Klayveromyces, e.g., species Klayveromyces marxianas, Klayveromycesfragilis; the genus a, e. g., Candida pseudotropicalis, and Candida brassicae, Pichia stipitis (a relative of Candida shehatae, the genus Clavispora, e.g., species Clavispora lasitaniae and Clavispora opantiae, the genus Pachysolen, e.g., species Pachysolen tannophilas, the genus Bretannomyces, e.g., species Bretannomyces clausenii (Philippidis, G. P., 1996, Cellulose bioconversion technology, in Handbook on Bioethanol: tion and Utilization, Wyman, C.E., ed., Taylor & Francis, Washington, DC, 179-212). Other suitable microorganisms include, for e, Zymomonas mobilis, Clostridiam cellam (Philippidis, 1996, supra), Clostridiam saccharobalylacetonicam, Clostridiam saccharobatylicam, Clostridiam Paniceam, Clostridiam beijernckii, Clostridiam acetobatylicam, Moniliella pollinis, Yarrowia lipolytica, Aareobasidiam 519., Trichosporonoides 519., Trigonopsis variabilis, Trichosporon sp., Moniliellaacetoabatans, Typhala variabilis, Candida magnoliae, Ustilaginomycetes, Pseudozyma tsakabaensis, 2012/025023 yeast species of genera Zygosaccharomyces, Debaryomyces, Hansenula and Pichia, and fiJngi of the dematioid genus Torula.
Commercially available yeasts include, for example, Red Star®/Lesaffre Ethanol Red (available from Red Star/Lesaffre, USA), FALI® (available from Fleischmann’s Yeast, a division of Burns Philip Food Inc., USA), SUPERSTART® (available from Alltech, now Lalemand), GERT STRAND® able from Gert Strand AB, Sweden) and FERMOL® (available from DSM Specialties).
OTHER EMBODIMENTS 1O A number of embodiments of the invention have been described. Nevertheless, it will be understood that s ations may be made without departing from the spirit and scope of the invention.
For example, the process parameters of any of the sing steps discussed herein can be adjusted based on the lignin t of the feedstock, for e as disclosed in US. Serial No. ,519, the full sure of which is incorporated herein by reference.
The process may include any of the features described in US. Application Serial No. 13/276,192, the filll disclosure of which is incorporated herein by reference, including treating a cellulosic or ellulosic material to alter the structure of the al by irradiating the material with relatively low voltage, high power electron beam radiation, boiling or steeping the feedstock prior to saccharif1cation, and irradiating a cellulosic or lignocellulosic material with an on beam at a dose rate of at least 0.5 Mrad/sec.
While it is possible to perform all the processes described herein at one physical location, in some embodiments, the processes are completed at multiple sites, and/or may be performed during transport.
Lignin liberated in any process described herein can be captured and utilized. For example, the lignin can be used as captured as a plastic, or it can be synthetically upgraded to other plastics. In some instances, it can be utilized as an energy source, e.g., burned to provide heat. In some instances, it can also be converted to lignosulfonates, which can be utilized as binders, dispersants, emulsifiers or as sequestrants.
Measurement of the lignin content of the starting feedstock can be used in process control in such lignin-capturing processes.
When used as a binder, the lignin or a lignosulfonate can, e.g., be utilized in coal briquettes, in ceramics, for binding carbon black, for binding fertilizers and herbicides, as a dust suppressant, in the making of plywood and particle board, for binding animal feeds, as a binder for fiberglass, as a binder in um paste and as a soil stabilizer.
As a dispersant, the lignin or lignosulfonates can be used, e.g., concrete mixes, clay and cs, dyes and pigments, leather tanning and in gypsum board.
As an emulsifier, the lignin or lignosulfonates can be used, e. g., in asphalt, 1O pigments and dyes, pesticides and wax emulsions.
As a sequestrant, the lignin or lignosulfonates can be used, e.g., in micro-nutrient systems, cleaning compounds and water treatment systems, e.g., for boiler and cooling systems.
As a g source, lignin generally has a higher energy content than llulose (cellulose and hemicellulose) since it contains more carbon than homocellulose. For example, dry lignin can have an energy t of n about 11,000 and 12,500 BTU per pound, compared to 7,000 an 8,000 BTU per pound of holocellulose. As such, lignin can be densified and converted into briquettes and pellets for burning. For example, the lignin can be converted into pellets by any method described herein. For a slower g pellet or briquette, the lignin can be crosslinked, such as applying a radiation dose of between about 0.5 Mrad and 5 Mrad. Crosslinking can make a slower burning form factor. The form factor, such as a pellet or briquette, can be converted to a “synthetic coal” or charcoal by zing in the absence of air, e. g., at between 400 and 950 OC. Prior to pyrolyzing, it can be desirable to crosslink the lignin to maintain structural integrity.
Accordingly, other embodiments are within the scope of the following claims.
EXAMPLES OF GENETICALLY MODIFIED PLANTS The following US Patents and US Patent ations disclose, by example, genetically modified al (e. g., plants, parts of plants) for the processes described herein or together with any materials bed herein. 7566817 7763783 9 7659459 7615694 7534943 7652202 7763782 7714208 7659458 7615693 7531724 7569747 7763780 7709712 7659457 7615692 7528305 7405344 7759563 7709711 7659456 7612268 4 7683237 7759562 7709710 7659455 7612267 7525029 7615621 7759561 7709709 7655849 6 7525027 1 7759560 7709708 7655847 0 7525026 7816590 7759559 7705221 7655846 7608765 7521614 7816589 7750215 7705220 7655845 7608763 3 7816587 7745707 7705216 7655844 7608762 7521612 7807904 7741547 7700859 7655841 7605316 9 7807903 7741546 7700858 7642433 7605315 7521607 7807902 7737348 7 7642432 7605314 7518044 7807901 7737347 7692077 7642431 7605313 7518043 7807900 7737346 7692076 7642430 7605312 7518042 7807899 7737345 7687689 9 7605311 7518041 7807898 7737344 3 7642428 7605309 7514612 7 7737343 7683242 7638694 7601900 7514611 7807896 7732685 7683241 7638693 9 7514610 7807895 7732684 7683239 7638692 1 7514609 7807894 7728208 7678976 7638691 7598440 7511204 7807893 7723589 7678975 7638690 7595440 7511203 7807892 8 7678974 7638689 7595439 7511202 7807891 7723587 7678973 5 7595438 7511201 7807890 7723586 7678972 7632994 7595437 7511200 9 7723585 7678971 7632990 7592527 7507880 7807888 7718870 7678970 7629519 7592526 7507879 7807887 7718869 7678969 7629518 7592525 7504569 7804011 7718868 7678968 7629517 1 7 7804010 7 7678967 7629516 7592520 7504566 7804009 7718866 7678966 7629515 7582434 7501565 7804008 7718865 7674961 7626101 7576265 7501564 7804007 7718864 7671256 7626100 7566822 7498494 7804006 3 7667113 7626099 7563966 7495157 7804005 7718862 7667112 7626098 7563965 7495156 7804004 7718861 7667111 7622660 7560625 7495155 7804003 7718860 7667110 7622659 7557279 7488874 7804002 7718859 7667109 7619153 7550655 7488873 7804001 7714216 7663037 7619152 7547827 7488872 7804000 7714215 7663036 7619151 7547826 7485783 7803999 7714214 7663035 0 7547824 7479589 7786359 7714213 7663034 7619147 8 7479586 7781651 7714212 2 7615697 7544867 7479585 7781650 7714211 7659461 6 7541527 7476785 7772469 7714210 7659460 7615695 7541523 7476784 2012/025023 7476783 7381870 7262348 7179972 7737332 7544863 7473830 7381869 7259303 9 7732679 7544862 7473829 7381868 7256335 7176365 7728206 7534939 7473826 7375266 7256334 7173172 7718854 7531718 7470839 7375265 7256333 7169983 7714202 6 7470836 7371948 7250564 7166778 7714201 7521594 7468477 7371947 7247777 7166777 7709706 7511130 7371946 4 7166776 7709705 7465849 7462764 7371945 7235726 7164068 7388135 7423203 7462763 7368643 7235725 7164065 7388134 7417177 7459613 7368640 7235724 7161070 7381861 7417176 7459612 7365252 7235722 7161069 7253345 7408096 7459611 7365251 7235720 7157630 3 7405343 7456345 7365250 7232945 7157626 7247774 7385107 7456344 7365249 4 5 7223907 7365241 7456343 7361820 7232943 7157624 7189514 7335812 7456342 7361819 7230173 7157281 RE39580 9 7453031 7361818 7227062 7154031 7816581 7304206 7453030 7361817 7227061 7151208 9 7294711 7449622 7361815 8 7148410 7807874 7288408 1 4 0 6906250 7807873 7268276 7449620 7358427 7217874 6864409 2 7262339 7449619 7 7217873 6855877 7807811 7250501 7439424 7351890 7217872 6825400 7803928 7244877 7432427 7351888 7217871 6114610 7799970 7230165 7432426 7342156 7211717 6103959 3 7227056 7429696 7342155 7211716 8 7786353 7217867 7 7342152 7208663 6084161 7786350 5 7423206 7339101 2 6054640 7750207 7205457 7423204 7339100 7208661 7112725 7745694 7 7417183 9 7208660 7825304 7728190 7186893 7417182 7339098 7205466 7825303 7714189 7157619 7414181 7335827 7205465 7825302 7705201 7151204 7408099 7335826 7205464 7825301 7700838 7148398 7399915 7335822 7199291 7825300 7692067 7141722 7399912 7329803 0 7825300 7674952 7138278 7399911 7321088 7193146 7820888 7674894 7122719 7394003 7321087 7193143 7820887 7662940 7112717 7390946 7321086 7189906 7803997 7655838 7078592 7390945 7321085 7189904 7799972 7635764 7067722 7388140 7321084 7189903 7750213 7625738 7064249 7388139 7319182 7186906 7750212 7615680 7022897 7385122 5 7186904 7745704 7605244 6943281 1 7297848 7186903 7741543 7601890 6916970 7385120 7294772 7186901 7737335 7595382 6841717 7381874 7288704 7186899 4 7589188 6822142 7381873 7268279 7183471 7737333 7553952 6803501 6620988 7728196 9 7557277 7491870 7381867 6538179 7723583 7626088 7557276 7488869 6 6538178 7714198 7 7557275 7488868 7378578 6501009 7709703 7626086 7557274 7488867 7378577 7705211 7622646 7557273 7485781 7375262 6448476 7705208 7622645 7557272 7485780 7371938 6448473 7705207 7622644 7557271 6 7368637 6284949 7700849 7622643 7557270 7479583 5 6281016 7700847 2 7554016 7479582 7358420 6177615 7700846 7619143 7554015 7468474 7355103 6175061 4 7619142 7554014 7459609 7355102 3 7700843 7619141 7554013 7453029 7351886 9 7692070 7619140 7550653 7453028 7351885 6023013 7687686 7619139 7531722 7446244 7345228 5463175 7687685 7615688 7531721 7442864 7345227 7531725 7687684 7615687 7531720 7442863 7345226 6 7678965 7612259 7531719 7442862 7345225 7253346 7678964 7608761 7528306 0 7345224 7214863 7678963 7605306 7528301 7439422 7342151 7186900 7678962 7598434 7525028 7423200 7342150 7166780 7659454 7595435 7525025 7423199 7332656 7166779 7659453 7592517 7525019 7414177 7332655 8 7659452 7592516 7525018 7414176 7329801 7157627 7655839 7592514 7525017 7408097 7326832 7563949 7652199 7592513 7521608 7405349 7321082 7807884 7652198 7592512 7521605 7405348 7321079 7799973 7652197 7592511 7518036 7399909 7314983 4 7649129 7582810 7514607 7399907 7314982 7786357 8 7579525 7514606 7396983 7314981 9 7649127 7579524 7514605 7394000 7314980 7777104 7649126 7579523 7514604 7390942 7312382 7777103 7642413 7572960 7514603 7390941 0 7767887 7642412 7572958 7514602 7390940 7309818 7759556 7642411 7572957 7507878 7390939 1 7759553 7642410 7572956 7507877 7390938 7304218 7759551 7642409 7569752 7504565 7388132 7304214 7732677 7642408 7569751 7504564 7388131 7304213 7732676 7642407 7569750 7501563 7388130 7301076 7732675 7632987 7566821 7501562 7385117 7297843 7732674 7632985 7566820 0 7385116 7294770 7732673 7629510 7563955 7498491 5 7294768 7732672 7629509 7563954 7498490 7385113 7294765 7728204 7629508 7563953 9 7385112 7294764 7728203 7629507 7560619 7498486 7385111 7294763 7728202 7629506 8 7498485 7385110 7291771 1 7626091 7560617 7498484 7385109 7291769 7728199 7626090 6 7491871 8 7285704 7279621 1 7045687 6900373 6 5902923 7276648 7129399 7045686 6900372 6063990 0 7271324 7126046 7041881 6894207 6063989 5880346 7265277 7119260 7041880 6888049 6051761 5 7265276 7119259 7041879 6888048 6043414 5880344 7265275 7119258 4 6884927 6040499 5872304 7265274 7115801 7034210 6884926 9 5872303 7265273 7109399 7034209 5 6034303 5866774 7265272 7105728 7030301 6884924 6034302 5866773 7265271 7105727 7030300 6884923 1 5866772 7265270 7105726 7019199 6881879 6034300 5866771 7259299 7102062 7012174 6875908 6034299 5859352 7259298 7102061 7005563 6870079 9 5723745 7256330 7098385 2 6861579 6020542 7268274 7247772 7098384 7002058 6858784 6020541 7402731 7247771 7091403 6982367 3 6018108 6865556 7244881 7087815 6982366 6852912 6018107 5424412 7241941 7084328 6979761 6849786 6005171 5463175 7241939 6 6979760 6849785 6005170 5484956 7235718 7084325 6972355 6846973 6002073 5554798 7217870 7084324 6972354 6835873 5998709 559387 7217869 7081572 3 6828489 8 5641876 7217868 7078600 6969787 6815589 5998707 5659122 7196253 7078598 6967263 6815588 5998706 571084 7196252 7078597 6960707 6815587 5 5728925 7196251 7078595 6958436 6815586 5998704 5750871 7193140 7074989 6953876 6809237 3 5804425 9 7074988 6951973 6781040 5990391 5859347 7193137 7071390 6936754 6653534 5986179 6020190 7189900 7071389 6936753 6198027 5986178 6025545 7189898 8 6933423 6177618 5981851 6040497 7183467 7071387 6924418 7 5981850 6051753 7183465 7067723 6919498 6137034 5981849 6180774 7183464 7064253 6914174 6133510 5981848 6218188 7183463 7060878 3 6124527 5981845 3 7183462 7060877 6914172 6121518 5977449 6489542 7183461 7057096 6911585 6121517 5977448 6501009 7176359 7057095 6911581 6121516 5977447 6548291 7176358 4 6911580 6121515 5977444 6573240 7176357 7057093 6911579 4 5973235 6645497 7173168 7057092 6911578 6103957 5969218 6660911 7169976 7053280 6906248 6100454 5969217 6737273 7169975 7053279 6906247 6096949 8 6753463 7169974 7053272 6906246 6091005 5942666 0 7166774 7049494 6903253 6087562 5932786 6893872 7148408 7049493 6903251 6084159 5929310 6900371 7138570 7045691 6900376 8 5907088 6943282 WO 12529 6949696 7482510 7834247 7772465 7663031 7601894 6962705 7473819 7834246 7772370 7663029 7598443 7064249 7465850 7834245 7767889 7655848 7598442 7112665 7456337 7834240 7767888 7655843 7598439 7112725 7456335 7829764 7763778 7655842 7598438 7141722 7442853 7829760 7763465 7652201 7 7157281 7439417 7825310 7759564 7652200 7598435 7223907 7435875 7825309 7759555 7652195 7595436 7227056 7427698 7825308 7759554 7645923 7592524 7250501 7427696 7825307 7759544 7645922 3 7288643 7425666 7825299 3 7645921 7592522 7381861 7425665 4 7754949 7642421 7592519 7435807 7423196 7825234 7754948 0 7592505 7449564 7399904 7820895 7750216 7642419 7589264 7514544 7399903 7820894 7745706 7642418 7589263 RE38825 7375209 7820893 7745705 7642417 7589261 RE39247 7317140 7820892 7745702 7638695 7589260 7829761 7303919 7820891 7745701 8 7589259 7807882 7271316 7820886 5 7632993 7589258 7803987 7259294 7820885 7737342 7632992 7589257 7799971 7238856 7816586 7737341 7632989 7589176 7795500 7235713 7816585 7737340 7632988 7586028 7795414 5 1 7737336 7629514 7586027 3 7189893 7812230 7737330 7629513 7586026 7763777 7186561 7812226 7736897 7629512 7586025 7763776 7179962 7812225 7732683 7629511 6 7718858 7176026 7812223 7732668 7629505 7582815 7718857 7166767 7812216 7728207 7629504 7582814 7714190 7164057 7807883 7718856 7624533 7582813 7709698 3 6 7714205 7622647 7582812 3 7135618 7803998 7 7622637 7582811 7622570 7125719 7803996 7714184 7619149 7582808 7619137 7105723 7803993 7709702 7619148 7579530 7608759 7087261 7803990 7705219 7615690 7579529 7 7034208 9 7705218 7612265 7579522 7598431 6867351 7 7700856 7612264 7576271 7579517 6825399 7799975 7700855 7612263 7576270 7563948 6818805 7799974 7700854 7612262 7576269 7521598 6784338 7799566 7700836 7612256 7576268 7521597 6774288 7795508 7700832 7612254 7576267 7514599 7 7795506 1 7612251 7576266 7504559 9 7790969 7687687 7608764 7572963 7498482 6689939 7790874 7683240 7608755 2 7498429 4 7777107 7667115 7608752 7572961 7495151 6329518 7777106 7667107 7605307 7572955 7485775 6225526 7772468 7663033 8 7569757 7482511 7834257 7772467 2 7601897 7569756 WO 12529 7569755 7525023 7456339 7371936 7317149 7276650 7569754 7525022 7442861 7365253 7317148 7276649 3 7525021 5 7361812 7317147 7276647 7569749 7525020 7439421 7361807 7317146 7276596 7566819 7521611 7439348 7358425 7317145 7273975 7563964 7521610 7435885 7358424 7317143 7273973 3 7521604 7435883 7358423 7317137 7273972 7563962 7521603 7435881 7355108 0 1 7563961 7521602 7435880 7355106 7314989 7273965 7563960 7521601 7435879 7355105 7314988 7271327 7563959 7518037 7432424 7355104 7314987 7271326 7563958 7514601 7432423 7351882 7312385 7271323 7563957 7511205 7432422 7351878 7312384 7271319 7560624 7511196 7432421 7348469 7312377 7270380 7560623 5 7432418 7348468 7312375 7268278 7560612 7511194 7429695 7345230 7309816 7268277 7557266 7511193 7427702 7342157 7306946 7268270 7557263 7511192 7427701 7342154 7304222 7268226 7554020 8 7427700 7339097 7304221 7265279 7553951 7504568 7423202 7339096 7304212 7265265 7550657 7504558 7423197 7339092 7304211 7262350 7550656 7501561 7420103 8 7301082 7262349 7550575 7498488 7414180 7335825 7301080 7262347 7547832 7498487 9 7335824 7301079 7262346 7547831 7498413 7414174 7335823 7301075 7262345 7547830 7495154 7411118 7 7301069 7262342 7547829 0 7411113 0 0 7259305 7491869 2 7332659 7297849 7259304 7547822 7485779 7399914 7332658 1 7259302 7544869 7485778 7399910 7332650 7294774 7259301 6 7482515 7399908 7329806 7294769 7256332 7544865 7482513 7399906 7329805 7 7256331 7544864 7479588 7396980 4 7294766 7256322 7544857 1 7393999 7326836 7291774 7256280 7541526 7476781 7388141 5 7291773 7253000 7473828 7388137 7326833 7288703 7250552 7541524 7473827 7388133 7326830 7288701 7241943 7541521 7473821 7388128 3 7288700 7241942 7541520 7470838 7388125 7321089 7288699 7241940 7541517 7470834 7381872 7321083 7285707 7241934 7538261 7470833 7381871 7321031 7285706 7238859 7528308 7468278 7381865 7319183 7285702 7235723 7528307 7465856 7381863 7317154 7282629 6 7528300 7465852 7378574 7317153 7282627 7230172 7528299 7462766 7375264 7317152 7282626 7230171 7528293 7462760 3 7317151 7279615 7230169 7525024 7459610 7371944 7317150 2 7230158 7227065 7179971 7151207 5 7005565 6951974 7227064 7179970 7151205 7064252 7002061 6949699 7227063 7179968 7148406 7064251 7002056 6946589 7227060 7 7148401 7064250 6998518 6943279 7227059 7179963 7141721 7064247 6995305 6936756 7227058 7179955 7129402 7060879 6995304 6936755 7220902 7179599 7129401 7060813 3 6936752 7220901 7176364 7129395 6 6992240 6936751 7214865 7176363 7122725 7053285 6992239 6933427 4 7176362 7115802 7053284 6992238 6933425 7214860 7176360 7112731 7053283 6992237 6930230 7214857 7176356 7112729 7053282 6989481 6930229 7214855 7176349 7112728 7053275 6989480 6930225 7214854 7 7109403 7049499 6989479 6927327 7214852 7173174 7109391 7049495 6989478 6 7211718 7173173 7109390 7045692 6989475 6924421 7211714 8 7102064 7045682 6989474 6921852 7211712 7 7102063 7 6987217 6921850 7205455 7169986 7098390 7041886 6987212 6921847 7205453 7169985 7098381 7041874 6984778 6919500 2 7169984 7094957 7038109 6982371 6919499 7202403 7169980 7094956 8 4 6916975 7202402 7169979 7091407 7034214 6979763 6914178 7199294 7169978 7091406 7034213 6979759 6914177 7199293 7169977 7091398 7034211 6977327 6914171 2 7169973 7087823 7030303 6974900 6914170 9 7166784 7087822 7030302 6974899 6911587 7196256 7166782 1 7030298 6972357 6911577 7196255 1 7087820 7026533 6972356 6909039 7196254 7166769 7084335 7022904 6972352 8 7193145 7166765 2 7022902 6969790 6906251 7193144 7164070 7084327 7022899 9 6906243 7193141 7164069 7081566 7019200 6969788 6905857 7193136 7164067 7078603 7019198 6969786 6903254 7193135 7164066 7078602 7015386 6967269 6903205 7193130 7164063 7078601 7015385 6967268 6900378 7189905 7164062 7078596 7015381 6967267 6900377 7189902 7164061 7078589 7015380 6967264 6897365 7189901 7164056 1 7015379 6965063 6897364 7189899 7161074 7071397 7015376 6960708 6897363 7189889 7161073 6 5 6958438 6897362 7186905 7161072 7071395 7012177 6958437 6897361 7186902 7161071 7071394 7012176 6956153 6897360 7186896 7161068 3 4 6956150 6891090 7183472 7161065 7067727 7009093 6953878 6891085 7183469 7157632 7067720 7009087 6953877 6888051 7183460 7154030 7064256 7005566 6951975 6887708 WO 12529 1 6815585 6759578 6706949 6555732 6333452 6881880 6815584 7 6700041 6555673 6333451 6878865 6815583 6756530 6693231 6541684 6331661 6878864 6815578 6756529 6677503 6538177 6329579 6878863 6812384 6756528 6677502 6538176 0 6875907 3 6753464 6667427 6528704 6326529 6872874 0 6750384 6660907 6518487 6323402 6872873 6809242 6750380 6657107 3 6323401 6864411 6809241 6747196 6646182 6515202 6323400 6864408 6809236 6747193 1 6504084 6323399 6864407 6806408 6743970 6639126 6504083 6323398 6861577 6806407 6740798 6635807 6504082 6323015 6858785 6806406 6740796 6630615 6479730 6320106 6858782 6806405 6740795 6630614 2 6320105 6858781 6806404 6737566 6627797 5 6316704 6858778 6806401 6737565 6617499 6444874 6316703 6855878 6803508 2 6617498 6441151 6316702 6855876 6803498 6737560 6613967 6433259 6316700 6855875 6800796 6734348 6613966 6429362 6313384 6855874 6800795 6734347 6613965 6426452 6313383 6855871 6797868 5 4 6423888 2 6852913 6797867 6734341 6613963 6423886 6313381 6849791 6797866 7 6610911 6410829 6313376 6849789 5 6730836 6610910 6407315 6313375 6849788 6797864 6730835 6608243 6403862 6310274 6849787 6797863 6730834 6608240 6403860 6307132 6846976 6797859 6730829 6605762 6399856 6307131 6846975 6794563 6727413 6605761 6392127 6303851 4 6791016 6727412 6605760 6 6297433 6844488 6784350 6727410 6605759 6388179 6297432 6838593 6784349 6723903 6605758 1 6297426 6835877 6784347 6723902 6605757 6388169 6291745 6835875 6784341 6720487 6605756 6384302 6288310 8 6781043 6720486 6605755 6372961 6287843 6831215 6781042 6720481 6600095 6369301 6284953 6828493 6781041 6720478 9 6369300 6284950 0 6777599 6720475 6586657 6362400 6284948 6825405 8 6717040 6583343 6359201 6271439 6825404 6777597 6717039 6583342 6346657 6271437 6825397 6777596 6717038 6583341 6344603 6268553 6822144 6777590 6717037 6580018 6342659 6 6822140 6774290 6717036 6576819 6339186 6265636 6818813 6774289 6717033 6576814 6339144 6259005 6818811 2 6713666 6573433 6337100 6259004 6818809 6770802 6713665 6566589 6335476 6255090 6818808 6765132 6706954 6566584 6335197 6248935 6815592 6759580 6706951 6563020 6333453 6242673 6242672 6156958 6111167 5990392 5902921 9 6235976 6153817 6107551 5990389 5900526 5792908 6235972 6 6107550 5986185 5900524 5792907 6232529 6147285 6107545 5986184 5895835 5783190 6232527 6147284 0 5986183 5889188 5773697 6229079 6147283 6096953 5981854 8 5773684 6229078 6143962 6096951 5977457 5866767 5773682 6229077 6143956 6096947 5977456 5866766 5770790 6229074 6143955 6093875 5977451 5866765 5767347 6229073 6143954 6091007 5977445 1 4 6225537 2 6091006 7 5859354 5767343 6225529 6140557 6087567 5973234 5859341 5767340 6222103 7 6087566 5962772 5859320 5763757 6222102 6137036 6087565 5962771 5859319 5763747 6222101 4 6087564 5959185 5859318 5763746 6215049 6133513 6087559 5955361 5859317 5763744 6211445 6133508 6084164 5952550 6 5763743 6211440 6130370 6084160 5952549 5859313 5763243 6211437 6127610 9 5948957 5852226 5750868 6211435 6127609 6080913 5945587 5852225 5750849 6211434 6127603 6077998 5945586 5850024 5750847 6211433 6127602 6077997 5942671 5850016 3 6198026 6127600 6077993 5942670 5850013 5750842 6197561 6124535 6075186 5942669 5850012 5750841 6194638 6124534 6075182 5942668 5850011 5750839 6194637 6124533 6072104 5942667 0 5750838 6191343 6124532 6069304 5939608 5850009 5750835 6188001 6124531 6057491 5939607 5850007 5750834 6188000 0 6054639 5936148 8 2 6184448 6124529 6040505 5936147 5844117 5750831 6184445 6124526 6037530 5936142 5844116 5750829 6184439 6121524 6037523 5936141 5841015 5741684 6180857 6121523 4 5936140 5827940 5736627 6180856 6121522 6028252 5929313 5824844 5731499 6180850 6121520 6025547 5929311 5824524 5731497 6177613 6121514 6020543 5929301 5817918 5731496 6177611 6118056 6018113 5920002 1 4 6175065 6118055 6018112 5917134 5811650 5731493 8 6118054 1 5917130 5811639 5731492 6169234 6118053 6018110 5917129 5811638 5731491 6166305 6118052 6018109 5917125 5811637 5728926 6166303 6118051 6015941 5912417 5804692 5728921 6166296 6114614 6013859 5910634 5804691 5728920 6162968 6114613 6005172 5910633 5792915 5728919 6162964 6114612 6005168 5908976 5792912 5728558 6160211 7 1 5907086 1 5723723 6160209 3 5990393 5905189 5792910 5723722 5717129 2 5159133 6495738 5451514 9 5534661 5159132 6410828 5689036 5530184 5157208 6384207 5689034 5527986 5157206 6331664 5675066 5506368 5097096 6323395 5639946 5506367 5097095 6166302 5638637 5502272 5097093 6048838 5633427 5495069 5097092 7799906 5625133 6 5095174 7723584 2 5495065 5082992 7709697 5625130 5491295 5082991 7674951 5625129 5491290 3 3 5618987 5491289 4996049 7598430 5608140 5491287 4812600 7288409 5608139 5491286 4812599 7232941 5608138 5478369 4806669 7148406 5602318 9 4806652 7135616 5602317 3 4737596 7087426 5602312 5461171 4731499 4 5585538 5453564 7820883 7071376 5585537 5444178 7795395 7049485 5583210 5436390 7728195 7012172 5576472 5434346 7723582 6906239 5574209 5432068 7723581 6855864 5574208 5426041 7723580 6831208 5569822 5416254 9 6703539 5569821 5387758 7723578 6653528 5569819 5387755 7723577 6635805 5569818 4 7718852 6610908 7 5367109 7709707 6489538 5569816 5365014 7709623 6479732 5567861 5356799 7671253 6476291 5563326 5354941 7667100 6455762 5563325 5349119 7635798 6441272 5563323 5347081 7566818 6252135 5563322 5347080 0 6242381 5563321 5347079 7411117 6211432 5563320 5316930 7371935 6204434 5304720 7355100 0 5557038 5304719 7348473 6015943 5557035 5285004 7 5981837 5557034 5276265 7179965 5959178 5545814 5276264 7071386 5952486 5545813 5260503 7071385 5922928 2 5245125 6791013 3 5545809 5220114 6753460 0 5543575 5159134 6753459 5646333 71092 93639 20100275304 20100058498 20100293638 20100275303 58496 20100293637 20100275301 20090119796 20100293634 75300 20090106862 20100293633 20100275299 20090044294 93632 20100275298 20090019605 20100293630 20100275297 20080313774 20100293629 20100275296 20080235820 20100287653 20100275295 20080213871 87652 20100275294 20080118954 20100287651 20100275293 20080058510 20100287650 20100275292 20060206964 20100287649 20100275291 20060130183 20100287648 20100275290 20060101535 87647 20100275289 20050091707 20100287646 20100275288 20050076403 20100287645 20100275287 49802 20100287644 20100275286 20030163839 20100287643 20100273987 20030131373 20100287642 20100272880 20020138870 20100285202 20100269224 20020078477 20100281564 20100269211 20020078474 20100281563 20100269210 20100293661 20100281562 20100269209 20100293660 20100281561 20100269208 20100293659 20100281560 69207 20100293658 20100281559 20100269206 20100293657 20100281558 20100269205 20100293656 20100281557 20100269204 20100293655 20100278996 20100269203 20100293654 20100275332 20100269202 20100293653 20100275322 20100269201 93652 20100275318 20100269200 20100293651 20100275317 20100269199 20100293650 20100275316 20100269198 20100293649 75315 20100269197 20100293648 20100275314 20100269196 20100293647 20100275313 20100269195 20100293646 20100275312 20100263083 20100293645 20100275310 20100263082 20100293644 20100275309 20100263081 93643 20100275308 20100263080 20100293642 20100275307 20100263079 20100293640 20100275305 20100263078 20100263077 20100115649 20090288198 63076 20100115648 20090288197 20100263075 20100115647 20090288195 20100263074 20100115646 20090288194 20100263073 20100115645 20090288191 20100263072 20100115644 20090288189 20100263071 20100115643 20090288188 20100263070 20100112182 20090282575 20100263069 20100107272 20090282574 20100263068 20100107271 20090282573 20100260921 07270 20090282572 20100260920 20100107268 20090282571 20100257630 20100107267 20090282570 20100257629 20100100980 20090282569 20100257628 20100080887 20090282568 20100257627 20100064394 20090282567 20100257626 20100043094 20090282566 20100257625 20100043093 20090282565 20100257621 20100043091 20090282564 20100255175 20100043090 20090282563 51412 20100043088 20090282562 20100251411 20100043087 20090282561 20100251410 43086 20090282560 20100251408 20100037339 20090282559 20100251407 20100037338 20090282558 20100251406 20100037337 20090282557 20100251405 20100037336 20090282556 20100251403 20100037333 82555 20100251402 20100024064 20090282554 20100251401 20100024063 20090282553 20100251400 20100024062 20090282552 20100251399 20100024054 20090282551 20100251398 20100024052 82550 20100249389 20090288216 20090282549 20100248963 88215 20090282548 20100247733 20090288213 20090282547 20100242132 20090288212 20090282546 20100242130 20090288211 20090282545 20100242129 20090288210 20090282544 20100218269 20090288208 82543 20100196580 88207 20090282542 20100192245 20090288206 20090282541 20100173061 20090288205 20090282540 20100168455 20090288203 20090282539 20100146656 20090288202 20090282538 38953 20090288201 20090282536 15652 20090288200 20090282535 WO 12529 2012/025023 20090282534 20090276895 20090081353 20090282533 20090276894 20090077694 82532 20090276893 20090070902 20090282531 20090276892 20090070891 20090282530 76891 20090055957 20090282529 20090276885 55956 20090282528 20090276884 55955 20090282527 20090276883 20090031438 20090282526 20090276882 29861 20090282525 20090276881 20090019604 20090282523 20090276880 20090019603 20090282522 20090276879 20090019595 20090282521 20090276878 20090019594 20090282520 20090276871 20090019593 20090282519 20090276870 20090019592 20090282517 20090276869 19591 20090282516 20090275741 20090019590 20090282515 20090246350 20090019589 20090282514 20090241213 20090019588 20090282513 20090241212 20090019587 20090282512 20090241211 20090019586 20090282511 20090241210 20090019585 20090282510 20090235379 20090019584 20090282509 20090235378 20090019583 20090282508 20090235377 20090019582 20090282500 20090229004 19581 20090282499 20090229003 20090019580 20090282498 20090229002 20090019579 20090276916 20090210961 19578 76915 20090169709 20090019577 20090276914 20090165163 20090019576 20090276913 20090165162 20090019575 20090276910 20090165161 20090019574 20090276909 20090165159 20090019573 20090276908 65158 20090019572 20090276907 20090151020 20090019571 20090276906 20090138989 20090019570 20090276905 20090138985 20090019569 20090276904 20090133147 20090019568 20090276903 20090133146 20090019567 20090276902 20090133145 20090019565 20090276901 20090133144 20090019564 20090276900 20090133143 20090013429 20090276899 20090133142 20090013428 76898 20090100536 20090013427 20090276897 20090098099 20090013426 20090276896 20090083886 20090013425 20090007290 20080313765 20080313760 20090007289 20080313764 20080313759 20090007288 20080313763 20080313758 20090007287 20080313762 20080313757 20090007286 20080313761 82432 20080282422 20080282378 63712 20080282421 20080282377 20080263711 82420 20080282376 20080263706 20080282419 20080282375 20080263705 82418 20080282374 20080260929 82417 20080282373 56669 20080282416 20080282372 20080235819 20080282415 20080282371 20080227639 20080282414 20080282370 20080216190 20080282413 20080282366 20080216189 20080282412 20080280361 20080178345 20080282411 20080276330 20080178344 20080282410 20080271197 78343 20080282409 20080271196 20080178342 82408 20080271195 20080178341 20080282407 20080271194 20080178340 20080282406 20080271193 20080178338 20080282405 20080271192 20080178337 20080282404 20080271191 20080178336 20080282403 20080271190 20080178335 20080282402 20080271189 20080178334 20080282401 20080271188 20080178333 20080282400 20080271187 20080178332 82399 20080271186 20080178331 20080282398 20080271185 20080178330 20080282397 20080271184 20080178329 82396 20080271183 20080178328 20080282395 20080271182 20080178327 20080282394 20080271181 20080178326 20080282393 20080271180 20080178322 20080282392 20080271179 20080178320 20080282389 20080271178 20080178319 20080282388 20080271177 20080178318 20080282387 20080271176 20080178317 20080282386 71175 20080172761 20080282385 20080271174 20080172756 20080282384 20080271173 20080172755 20080282383 20080271172 20080172754 20080282382 71171 68576 20080282381 20080271170 20080155711 20080282380 20080271168 20080155710 82379 20080263713 20080155708 20080155707 20060162007 20040237150 20080148428 11254 20040237149 20080148427 20060107348 20040237148 48426 20060101543 37139 20080148425 20060070140 20040221346 20080148424 20060064777 20040221344 20080148423 20060064776 21343 20080148422 20060059590 20040221342 20080148421 20060059589 20040221341 20080148420 20060021081 20040221339 20080070296 20060010530 20040221335 20080066202 20060010529 20040221329 20080064866 20060010528 20040221328 20080050506 20060010527 20040210958 22423 20060010526 20040205862 20070266456 20060010525 05861 20070256190 20060010524 20040205860 20070256187 20060010523 20040205859 20070256186 10522 05857 20070256185 20060010521 20040205856 20070256184 20050289664 20040205854 20070256182 20050193440 20040205849 20070256181 20050193438 20040168228 56180 20050193437 20040168225 20070256179 93436 20040168224 20070256171 20050183155 20040168223 20070256170 20050183154 20040168222 20070256155 20050183153 20040168219 20070250957 55114 20040148665 20070250955 20050155106 20040148664 20070250954 20050144680 20040148663 20070250952 20050144679 20040148662 20070250951 20050144678 20040148660 50950 44677 20040148659 20070250949 20050144676 20040148650 20070250947 20050144675 20040132975 20070214516 20050144674 20040111772 20070067871 20050132437 11770 20070054400 20050114929 20040093637 20070037708 20050114928 20040060082 20070022494 20050079494 20040055059 20070011761 20050071900 20040055058 20060288451 20050022272 20040055057 20060288447 20050022261 20040055056 20060282915 20050005332 20040055055 20060265778 20050005321 20040055054 20060174372 20040237152 20040055051 20040055049 20100175149 20090089891 20040055048 20100162434 20090083882 20040055047 20100162432 20090075819 20040055045 20100162431 20090064374 55044 20100162430 20090055970 20040055043 20100162429 20090038025 20040049821 20100132071 20090031451 20040049820 20100115664 20090031446 20040049817 20100095404 20090031440 20040049816 20100095403 20090029860 20040049815 20100093715 20080307543 20040049814 20100088784 20080301835 20040016030 20100088783 20080263725 20040010824 88782 20080229453 20040010823 71093 29452 20030237111 71091 20080209588 20030233679 20100043100 20080201799 20030232757 20100037350 20080189806 20030195336 20100031392 20080178356 20030192072 20100011466 20080178355 20030182682 20100011465 20080172759 20030182678 20100005542 20080168585 20030172416 20090320158 20080168578 20030154524 20090320157 20080168577 20030131375 20090282580 20080163398 20030119158 20090276921 20080127369 20030101482 20090249514 20080120748 20030097672 20090241230 20080076179 68335 20090241227 20080072350 56243 20090235389 20080072347 20030005491 20090217417 20080052794 20020152496 20090217406 20080052792 20100293665 20090203094 20080050820 20100287665 20090188004 20080022427 20100287641 20090186762 05808 20100269219 20090172834 20070294783 20100263088 20090170173 61132 20100251416 65173 20070226842 20100229259 20090165170 20070209092 20100227924 20090158461 09087 20100205690 20090158454 20070199103 05689 20090144859 20070174927 20100199382 20090138987 20070118920 20100199380 20090113572 20070111311 20100199379 20090100541 20070033670 20100192254 00540 20070022497 90794 20090089896 20060206961 20060179515 20100192253 20090288217 20060174373 20100190707 20090282586 68684 20100186116 20090275473 20060162021 20100186115 20090265818 20060137043 20100186113 65802 20060112452 20100175150 20090264351 20060064784 20100167403 20090264290 20060037102 20100162440 20090260106 10514 20100162425 20090260105 20050241020 20100162424 35392 20040194163 20100154083 20090229018 20100293670 20100132072 20090227013 20100287669 20100132070 20090222954 20100287662 20100122367 22943 20100287656 20100115667 20090210970 20100287655 20100115662 20090205078 20100285591 20100115661 20090205067 20100281579 20100100985 05065 20100281578 20100100981 20090192117 20100281570 20100095401 20090192116 20100281569 20100088785 20090188008 20100269229 20100077508 20090188003 20100269228 20100077507 20090183285 20100269221 20100071087 20090183279 69218 20100058495 20090183278 20100269194 20100050293 20090183277 20100269193 37347 20090183276 20100269189 31391 20090178159 20100269188 20100029725 20090172841 20100269187 20100017915 20090165177 20100269186 20100017908 20090165174 20100269185 20100017907 20090158471 20100242138 20100017906 20090158459 20100242137 20100017905 20090158458 20100242131 20090328252 20090151022 20100236146 25804 20090151017 20100235944 20090320163 20090144843 20100235939 20090320162 38986 29257 20090320156 20090137395 20100223695 20090320155 20090136646 20100221238 20090313722 20090133161 20100218276 20090313721 20090119804 12049 07800 20090119799 20100199383 20090307797 20090113570 20100192263 20090300789 20090106860 20100192256 20090293147 20090106859 20100192255 20090293141 20090106857 20090094713 20080256666 20080078004 20090094712 20080244767 20080072346 20090089897 20080244766 20080072345 20090089895 20080244765 20080072344 20090081354 20080241927 20080072343 20090077691 20080235827 60099 77690 20080234130 20080057564 20090077689 20080227091 20080051288 20090077688 20080222753 20080047031 20090069182 20080216200 20080040825 20090055966 20080216191 20080040824 20090055961 20080209582 20080034652 20090049571 20080200415 20080034448 20090049570 89810 20080034447 20090049569 20080178353 20080022426 20090038034 78350 20080020968 20090038028 20080178325 20080020967 20090038027 78323 20080020966 20090038026 20080172762 20080020123 20090036308 20080171321 20080016596 20090035765 20080168581 20080016595 20090031449 20080163402 20080016594 31448 20080163401 20070300323 20090025103 20080163400 20070294781 20090025102 20080141392 89030 20090007302 20080134362 20070283461 20090005306 20080134361 20070277256 20090000188 27377 20070274972 20090000187 20080127375 20070271628 20080320617 20080124804 20070266462 20080320613 20080124797 66458 20080313777 20080124796 20070261136 20080313770 20080120747 56198 20080305238 20080120746 20070250959 20080299658 20745 20070245430 20080286434 20080120744 20070245429 20080280018 20080120743 20070245428 20080280017 20080120742 20070245427 20080280016 20080120741 45425 20080280015 20080115241 20070240238 20080280014 20080109925 38179 20080280013 20080109924 20070234444 20080280012 20080108072 20070234443 20080280011 20080090294 20070231905 20080274261 20080090293 20070226837 20080274260 20080086783 20070226836 20080271198 20080083043 20070226835 20070226834 20070136866 20070107091 20070226833 20070136865 20070107090 20070226832 20070136864 20070107089 20070226831 20070136863 20070107088 20627 20070136862 20070107084 20070220626 36861 20070094747 20070214514 36860 20070089200 20070199105 20070136859 20070089181 20070192899 20070136858 20070079402 20070192897 20070136857 20070079397 20070180578 20070136856 79393 20070180577 20070136855 20070074311 20070180576 20070136854 20070074303 20070169227 20070136853 20070061926 69226 20070136852 20070044180 20070169225 20070136851 20070016980 20070169220 20070136850 20070011771 20070162999 20070136849 20070006350 57342 36848 20060294625 20070157341 20070136847 20060294624 20070157335 20070136846 20060293913 20070150980 20070136845 20060288453 20070150979 20070136844 20060288448 20070143880 20070136843 20060288440 20070136891 20070136842 20060282918 20070136888 20070136838 81910 20070136887 20070130653 20060272058 20070136886 30652 20060272057 20070136885 20070130651 20060272055 36884 20070130650 20060272054 20070136883 20070130649 20060272046 36882 20070130648 20060260006 20070136881 20070130647 20060242733 20070136880 20070130646 20060225161 20070136879 20070130642 20060225160 20070136878 20070118919 20060225152 36877 20070107102 20060225151 20070136876 20070107101 20060223102 20070136875 07100 20060212971 20070136874 20070107099 20060212966 20070136873 20070107098 20060212964 20070136872 20070107097 20060206967 36871 20070107096 20060200874 20070136870 20070107095 20060195954 20070136869 20070107094 20060195953 20070136868 20070107093 20060195937 20070136867 20070107092 20060185039 20060174382 20060107413 20060107365 20060174381 20060107412 20060107364 68692 20060107411 20060107363 62030 20060107410 20060107362 20060162027 20060107409 20060107361 20060162015 20060107408 20060107360 20060162009 20060107407 20060107359 20060156439 20060107406 07358 20060150277 20060107405 20060107357 20060150275 20060107404 20060107356 20060150274 20060107403 20060107355 20060143744 20060107402 20060107354 20060143743 20060107401 07347 20060143733 20060107400 20060101546 20060143728 20060107399 20060095991 20060137035 20060107398 20060095990 20060137033 20060107397 20060090225 20060130190 20060107396 20060070143 20060130189 20060107395 20060070139 20060130188 20060107394 20060064789 20060130187 07393 64786 20060130184 20060107391 20060064779 20060112465 20060107390 20060064773 20060112464 07389 20060037109 20060112463 20060107388 20060037095 20060112462 20060107387 20060031962 12461 20060107386 20060026710 12460 20060107385 20060026709 20060112459 07384 20060026708 20060112458 20060107383 20060026707 20060112457 20060107382 20060021082 20060112456 20060107381 20060015968 20060112444 20060107380 20060010534 20060107427 20060107379 20060005287 20060107426 20060107378 20060005275 20060107425 20060107377 20060005274 20060107424 07376 20060005269 20060107423 20060107375 20050289670 20060107422 20060107374 20050283862 20060107421 20060107373 20050283314 20060107420 20060107372 20050278812 07419 20060107371 20050278811 20060107418 20060107370 20050278810 20060107417 20060107369 20050278805 20060107416 07368 20050278803 20060107415 20060107367 20050273889 07414 20060107366 20050273881 2012/025023 73879 20050150020 20050120404 20050257298 20050150019 20050114955 20050257289 20050150018 20050114954 20050246798 20050150017 20050114953 20050246796 20050144690 20050114952 20050235383 20050144689 20050114951 20050229483 20050144688 20050114950 20050229274 20050144687 20050114949 20050229271 44686 20050114948 20050223443 20050144685 20050114947 20050223439 20050144683 20050114946 20050223432 20050144682 20050114945 20050223426 20050144681 20050114944 20050216977 20050138697 20050114943 20050216974 20050138696 20050114942 20050216968 20050138695 20050114941 20050210551 20050138686 20050114940 20050210550 20050132453 14939 20050204418 20050132452 20050114938 20050202486 20050132451 20050114937 20050198706 20050132450 20050114936 20050198702 20050125866 20050114935 20050188441 20050120443 20050114934 20050188440 20050120442 14933 20050188439 20050120441 20050114932 20050188437 20050120440 20050114931 20050177898 20050120439 20050114930 77897 20438 20050108796 20050177892 20050120437 08795 20050172369 20050120436 20050108794 20050172368 20050120435 20050102717 20050172367 20050120434 20050097636 20050166291 20050120433 20050097634 20050166287 20050120432 20050097633 20050166286 20050120431 20050081265 20050166284 20050120430 20050076404 20050160506 20050120429 20050071901 20050160505 20050120428 20050070697 20050160496 20427 20050050590 20050160494 20050120426 39226 60488 20050120425 20050034193 20050155118 20050120424 20050028231 20050155102 20050120423 20050010975 20050150025 20050120422 20040248304 50023 20050120421 37147 20050150022 20050120420 20040231017 20050150021 20050120419 20040216192 20040210963 20040172707 20030200557 10960 20040172706 20030167532 20040210043 20040172705 20030167530 20040205864 20040172704 20030167528 05863 20040172703 20030167506 99965 20040172702 20030167504 20040199960 20040172701 20030166855 20040199959 20040172700 20030163840 20040194171 20040172699 20030163839 20040194170 20040172698 20030163838 20040194169 20040172697 20030159185 20040194168 20040172696 20030150016 20040194167 20040172695 20030150014 20040187179 20040172694 20030140381 20040181836 20040172693 20030140369 20040181835 20040172692 40368 20040181833 20040172691 20030131381 20040181832 20040172668 20030110528 20040181824 20040168212 20030101484 80436 20040166563 20030101483 20040177420 20040154059 97689 77419 20040148654 20030097680 20040177418 20040148652 20030088890 20040177417 20040143871 20030084486 77416 20040143870 20030084476 20040177415 20040123345 20030079251 77414 20040122592 79247 20040177413 20040118754 20030073239 20040177412 11761 20030041348 20040177411 20040098769 20030033632 20040177410 20040098760 20030033629 20040177409 20040083500 20030028921 20040177408 20040082770 20030028920 20040177407 20040073971 20030017566 20040177406 20040068767 20030009782 20040172728 20040064856 20030005482 20040172727 20040049804 20020166146 20040172726 20040040056 20020166143 20040172725 20040025206 20020166141 20040172724 19931 20020162142 20040172723 20040005713 20020148007 20040172722 20030226178 20020144307 20040172721 20030226167 20020124284 20040172711 20030221224 20020108149 20040172710 20030217387 20020083493 20040172709 20030213016 20020078475 20040172708 13014 20020069428 2012/025023 20020029392 20020004940 20010023501 20100281574 20100257638 20100235943 20100169999 20100168452 20100041610 20100037358 20100004177 20090320159 20090203612 20090158473 20090093366 20090029863 23782 20080295195 20080260933 20080178323 20080085856 58248 20070220629 20070143876 20060168683 20060070139 20060037095 20050216969 20050039226 20040194164

Claims (40)

WHAT IS CLAIMED IS:
1. A method of making a product comprising: providing a saccharified feedstock obtained at least in part from a plant that has been modified with t to a wild type variety of the plant, the feedstock having been exposed to irradiation from an ion beam, the total dose of irradiation being from about 5 Mrad to about 50 Mrad; and contacting the saccharified ock with a microorganism to ferment the saccharified feedstock, the feedstock having an improved nutrient mix for the microorganism ve to the wild type variety, wherein the improved nutrient mix es fermentation of the saccharified feedstock by the microorganism.
2. The method of claim 1, wherein the feedstock comprises lignocellulosic or cellulosic material.
3. The method of claim 1 or 2, wherein the plant has been genetically modified.
4. The method of any one of claims 1-3, wherein the plant ses recombinant DNA.
5. The method of any one of claims 1-4, wherein the plant comprises one or more recombinant genes.
6. The method of any one of claims 1-5, wherein the plant expresses a recombinant protein.
7. The method of any one of claims 1-6, wherein the plant expresses one or more recombinant materials.
8. The method of claim 7, wherein the recombinant material is a r or a macromolecule.
9. The method of any one of claims 1-8, further comprising obtaining from the feedstock a material selected from the group consisting of pharmaceuticals, nutriceuticals, proteins, fats, vitamins, oils, fiber, minerals, sugars, carbohydrates and alcohols.
10. The method of any one of claims 1-9, further comprising treating the feedstock with an enzyme to produce a product.
11. The method of claim 10, wherein the product comprises a sugar.
12. The method of an y one of claims 1-11, further comprising ing the spent feedstock as an animal feed.
13. The method of any one of claims 1-12, wherein the feedstock comprises a crop e.
14. The method of claim 13, wherein the feedstock comprises corn cobs and/or corn stover.
15. The method of claim 13, n the feedstock comprises wheat straw.
16. The method of any one of claims 1-15, wherein the plant comprises a genetically modified corn or soybean plant.
17. The method of any one of claims 1 -16, wherein the plant has been modified with a modification ed from the group consisting of enhancement of resistance to insects, fungal diseases, and other pests and e-causing agents; increased tolerance to herbicides; increased drought resistance; extended ature range; enhanced tolerance to poor soil; ed stability or shelf-life; greater yield; larger fruit size; stronger stalks; enhanced shatter resistance; d time to crop maturity; more uniform ation times; higher or ed starch production; enhanced nutrient production; modified lignin content; enhanced ose, hemicellulose and/or lignin degradation; reduced recalcitrance and enhanced phytate metabolism.
18. The method of any one of claims 1-15 or 17, wherein the plant is a genetically modified alfalfa, potato corn, wheat, beet, cotton, rapeseed, rice, or sugarcane plant.
19. The method of any one of claims 1-18, wherein the feedstock having been exposed to irradiation from an ion beam comprises exposing at least some of the feedstock to an ion beam comprising more than one type of ion.
20. The method of any one of claims 1-19, wherein the feedstock having been exposed to irradiation from an ion beam comprises exposing at least some of the feedstock to an ion beam comprising one or more of: protons, helium ions, carbon ions, nitrogen ions, oxygen ions, noble gas ions, argon ions, silicon ions, phosphorus ions, sodium ions, calcium ions, and iron ions.
21. The method of any one of claims 1-20, wherein the feedstock having been exposed to irradiation from an ion beam comprises exposing at least some of the feedstock to an ion beam comprising a mixture of ions ing a light ion and a heavier ion.
22. The method of any one of claims 1-21, wherein the feedstock having been exposed to irradiation from an ion beam comprises exposing at least some of the feedstock to an ion beam comprising a mixture of ions including one or more of: carbon ions and protons, carbon ions and oxygen ions, nitrogen ions and protons, and iron ions and protons.
23. The method of any one of claims 1-22, wherein the feedstock having been exposed to irradiation from an ion beam comprises exposing at least some of the feedstock to an ion beam comprising positively charged ions.
24. The method of any one of claims 1-23, wherein the feedstock having been d to irradiation from an ion beam comprises ng at least some of the feedstock to an ion beam in the presence of an oxidizing nment.
25. The method of any one of claims 1-24, wherein the feedstock having been exposed to ation from an ion beam comprises exposing at least some of the feedstock to an ion beam comprising negatively charged ions.
26. The method of any one of claims 1-25, wherein the feedstock having been exposed to irradiation from an ion beam comprises exposing at least some of the feedstock to an ion beam in the presence of a reducing environment.
27. A product comprising sugar produced from a saccharified feedstock obtained at least in part from a plant that has been modified with respect to a wild type variety of the plant, the feedstock having been exposed to irradiation from an ion beam, the total dose of irradiation being from about 5 Mrad to about 50 Mrad, and contacted with a microorganism to ferment the saccharified feedstock; and the feedstock having an ed nt mix for the microorganism relative to the wild type variety, the ed nutrient mix being effective to enhance fermentation of the irradiated feedstock by the microorganism.
28. A product comprising an irradiated feedstock obtained at least in part from a plant that has been modified with respect to a wild type variety of the plant, the feedstock having been exposed to ation from an ion beam, the total dose of irradiation being from about 5 Mrad to about 50 Mrad; and the feedstock having an improved nutrient mix for a microorganism relative to the wild type variety, the improved nutrient mix being effective to e fermentation of the irradiated ock by the microorganism.
29. The product of claim 28 further comprising a microorganism and/or an enzyme.
30. The product of claim 28 or 29 further comprising a liquid medium.
31. A product comprising a saccharified cellulosic or lignocellulosic feedstock obtained at least in part from a plant that has been modified with respect to a wild type variety of the plant, the feedstock having been d to irradiation from an ion beam, the total dose of irradiation being from about 5 Mrad to about 50 Mrad; and the feedstock having an ed nutrient mix for a microorganism relative to the wild type variety, the improved nutrient mix being effective to enhance fermentation of the saccharified feedstock by the microorganism.
32. The product of any one of claims 27-31, wherein the feedstock having been exposed to irradiation from an ion beam comprises exposing at least some of the feedstock to an ion beam comprising more than one type of ion.
33. The product of any one of claims 27-32, wherein the feedstock having been exposed to irradiation from an ion beam comprises exposing at least some of the feedstock to an ion beam sing one or more of: protons, helium ions, carbon ions, en ions, oxygen ions, noble gas ions, argon ions, silicon ions, phosphorus ions, sodium ions, calcium ions, and iron ions.
34. The product of any one of claims 27-33, wherein the feedstock having been exposed to irradiation from an ion beam comprises exposing at least some of the ock to an ion beam comprising a mixture of ions ing a light ion and a heavier ion.
35. The product of any one of claims 27-34, wherein the ock having been exposed to irradiation from an ion beam comprises exposing at least some of the feedstock to an ion beam comprising a mixture of ions including one or more of: carbon ions and protons, carbon ions and oxygen ions, nitrogen ions and protons, and iron ions and protons.
36. The product of any one of claims 27-35, wherein the feedstock having been exposed to irradiation from an ion beam comprises exposing at least some of the feedstock to an ion beam comprising positively charged ions.
37. The product of any one of claims 27-36, wherein the feedstock having been d to irradiation from an ion beam comprises exposing at least some of the feedstock to an ion beam in the presence of an oxidizing environment.
38. The product of any one of claims 27-37, n the feedstock having been exposed to irradiation from an ion beam comprises exposing at least some of the feedstock to an ion beam comprising negatively charged ions.
39. The product of any one of claims 27-38, wherein the feedstock having been exposed to ation from an ion beam comprises exposing at least some of the feedstock to an ion beam in the presence of a reducing environment.
40. The method of claim 1 or the product according to any one of claims 27, 28 or 31 substantially as herein before described with nce to the Examples.
NZ708603A 2011-02-14 2012-02-14 Processing Biomass NZ708603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NZ714143A NZ714143B2 (en) 2011-02-14 2012-02-14 Processing Biomass

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161442781P 2011-02-14 2011-02-14
US61/442,781 2011-02-14
NZ612186A NZ612186B2 (en) 2011-02-14 2012-02-14 Processing biomass

Publications (2)

Publication Number Publication Date
NZ708603A NZ708603A (en) 2016-09-30
NZ708603B2 true NZ708603B2 (en) 2017-01-05

Family

ID=

Similar Documents

Publication Publication Date Title
US20180179571A1 (en) Processing biomass
US9493495B2 (en) Processing biomass
US9206453B2 (en) Processing biomass
NZ708603B2 (en) Processing Biomass
NZ729489B2 (en) Processing Biomass
NZ714143B2 (en) Processing Biomass
NZ612186B2 (en) Processing biomass
OA16507A (en) Processing biomass.