NZ531664A - Pro1317 polypeptides and sequences thereof with homology to the semaphorin B glycoprotein family - Google Patents

Pro1317 polypeptides and sequences thereof with homology to the semaphorin B glycoprotein family

Info

Publication number
NZ531664A
NZ531664A NZ531664A NZ53166499A NZ531664A NZ 531664 A NZ531664 A NZ 531664A NZ 531664 A NZ531664 A NZ 531664A NZ 53166499 A NZ53166499 A NZ 53166499A NZ 531664 A NZ531664 A NZ 531664A
Authority
NZ
New Zealand
Prior art keywords
sequence
pro
nucleic acid
polypeptide
amino acid
Prior art date
Application number
NZ531664A
Inventor
Kevin Baker
Audrey Goddard
Austin L Gurney
Victoria Smith
Colin K Watanabe
William I Wood
Original Assignee
Genentech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genentech Inc filed Critical Genentech Inc
Priority claimed from US09/946,374 external-priority patent/US20030073129A1/en
Priority claimed from US10/015,480 external-priority patent/US7074912B2/en
Publication of NZ531664A publication Critical patent/NZ531664A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Toxicology (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

An isolated nucleic acid having at least 80% sequence identity to a nucleotide sequence that encodes a polypeptide designated PRO1317 comprising the amino acid sequence SEQ ID NO:277 is described. Preferably the nucleic acid comprises the sequence of SEQ ID NO:276 or is that deposited under accession number ATCC 203355. Vectors, isolated host cells, processes for preparing the polypeptide, pharmaceutical compositions and antibodies are also described. (62) Divided out of 510464

Description

<div class="application article clearfix" id="description"> <p class="printTableText" lang="en">53 1 6 6 4 <br><br> NEW ZEALAND PATENTS ACT 1953 <br><br> Divided out of No. 510464 Dated 1 September 1999 <br><br> COMPLETE SPECIFICATION <br><br> PRO POLYPEPTIDES AND SEQUENCES THEREOF <br><br> We, GENENTECH INC., a United States corporation of 1 DNA Way, South San Francisco, CA 94080-4990, United States of America, do hereby declare the invention for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement: <br><br> INTELLECTUAL PROPERTY OFFICE OF N.Z <br><br> 10 MAR » RECEIVED <br><br> 140173 l.doc <br><br> f <br><br> 2 <br><br> 5 POLYPEPTIDES AND NUCLEIC ACIDS ENCODING THE SAME <br><br> The entire disclosure in the complete specification of our related New Zealand Patent Application No. 510464 is by this cross-reference incorporated into the present specification. <br><br> 10 FIELD OF THE INVENTION <br><br> The present invention relates generally to the identification and isolation of novel DNA and to the recombinant production of novel polypeptides. <br><br> BACKGROUND OF THE INVENTION 15 Extracellular proteins play important roles in, among other things, the formation, <br><br> differentiation and maintenance of multicellular organisms. The fate of many individual cells, e.g., proliferation, migration, differentiation, or interaction with other cells, is typically governed by information received from other cells and/or the immediate environment. This information is often transmitted by secreted polypeptides (for instance, mitogenic factors, survival factors, 20 cytotoxic factors, differentiation factors, neuropeptides, and hormones) which are, in turn, received and interpreted by diverse cell receptors or membrane-bound proteins. These secreted polypeptides or signaling molecules normally pass through the cellular secretory pathway to reach their site of action in the extracellular environment. <br><br> Secreted proteins have various industrial applications, including as pharmaceuticals, 25 diagnostics, biosensors and bioreactors. Most protein drugs available at present, such as thrombolytic agents, interferons, interleukins, erythropoietins, colony stimulating factors, and various other cytokines, are secretory proteins. Their receptors, which are membrane proteins, also have potential as therapeutic or diagnostic agents. Efforts are being undertaken by both industry and academia to identify new, native secreted proteins. Many efforts are focused on 30 the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel secreted proteins. Examples of screening methods and techniques are described in the literature [see, for example, Klein et al., Proc. Natl. Acad. Sci. 93:7108-7113 (1996); U.S. Patent No. 5,536,637)]. <br><br> Membrane-bound proteins and receptors can play important roles in, among other 35 things, the formation, differentiation and maintenance of multicellular organisms. The fate of many individual cells, e.g., proliferation, migration, differentiation, or interaction with other cells, is typically governed by information received from other ceils and/or the immediate environment. This information is often transmitted by secreted polypeptides (for instance, mitogenic factors, survival factors, cytotoxic factors, differentiation factors, neuropeptides, and 40 hormones) which are, in turn, received and interpreted by diverse cell receptors or membrane- <br><br> H:\Gabriela\Keep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> 3 <br><br> bound proteins. Such membrane-bound proteins and cell receptors include, but are not limited to, cytokine receptors, receptor kinases, receptor phosphatases, receptors involved in cell-cell interactions, and cellular adhesin molecules like selectins and integrins. For instance, transduction of signals that regulate cell growth and differentiation is regulated in part by 5 phosphorylation of various cellular proteins. Protein tyrosine kinases, enzymes that catalyze that process, can also act as growth factor receptors. Examples include fibroblast growth factor receptor and nerve growth factor receptor. <br><br> Membrane-bound proteins and receptor molecules have various industrial applications, including as pharmaceutical and diagnostic agents. Receptor immunoadhesins, for instance, 10 can be employed as therapeutic agents to block receptor-ligand interactions. The membrane-bound proteins can also be employed for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction. <br><br> Efforts are being undertaken by both industry and academia to identify new, native receptor or membrane-bound proteins. Many efforts are focused on the screening of 15 mammalian recombinant DNA libraries to identify the coding sequences for novel receptor or membrane-bound proteins. <br><br> PRQ1317 <br><br> Members of the semaphorin family of glycoproteins play important roles in the 20 developing nervous system, and more particularly in axonal guidance. Semaphorins have been identified in the human immune system, where they are believed to play functional roles including B-cell signaling (Hall et al. Proc. Natl. Acad. Sci (1996) 93(211:11780-50). A human semaphorin gene, useful in the diagnosis of nervous system an immune disorders, is disclosed in Japanese Pat. No. J10155490-A, published June 16, 1998. The identification of additional 25 members of the semaphorin family if of interest. <br><br> All references, including any patents or patent applications, cited in this specification are hereby incorporated by reference. No admission is made that any reference constitutes prior art. The discussion of the references states what their authors assert, and the applicants reserve the right to challenge the accuracy and pertinency of the cited documents. It will be 30 clearly understood that, although a number of prior art publications are referred to herein, this reference does not constitute an admission that any of these documents forms part of the common general knowledge in the art, in Australia or in any other country. <br><br> For the purposes of this specification it will be clearly understood that the word "comprising" means "including but not limited to", and that the word "comprises" has a 35 corresponding meaning. <br><br> H:\Gabriela\KeepVSpecftP49662 Div No 3.doc 26/05/03 <br><br> 4 <br><br> SUMMARY OF THE INVENTION <br><br> PRQ1317 <br><br> A cDNA clone (DNA71166-1685) has been identified that encodes a novel polypeptide, having homology to semaphorin B and designated in the present application as "PR01317". <br><br> The present invention broadly relates to an isolated nucleic acid molecule comprising DNA encoding a PR01317 polypeptide. <br><br> In one aspect, the present invention provides an isolated nucleic acid having at least 80% sequence identity to a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence shown in Figure 2 (SEQ ID NO:277). <br><br> In a further aspect, the invention provides a vector comprising the nucleic acid of the present invention. <br><br> In a further aspect, the present invention provides an isolated host cell comprising the vector of the present invention. <br><br> In a still further aspect, the invention provides a process for producing a polypeptide comprising culturing the host cell of the present invention under conditions suitable for expression of said polypeptide and recovering said polypeptide from the cell culture. <br><br> In a further aspect the invention provides an isolated polypeptide comprising a sequence having at least 80% sequence identity to an amino acid sequence shown in Figure 2 (SEQ ID NO:277). <br><br> The invention provides a further aspect of an isolated polypeptide comprising a sequence having at least 80% sequence identity to the amino acid sequence encoded by a nucleotide deposited under accession number ATCC 203355. <br><br> In another aspect, the invention provides an isolated polypeptide comprising a sequence having at least 80% sequence identity to the amino acid sequence encoded by the extracellular domain of a PR01317 polypeptide of SEQ ID NO:277. <br><br> In another aspect, the invention provides an isolated polypeptide comprising a sequence having at least 80% sequence identity to the amino acid sequence encoded by the extracelluar domain of a PR01317 polypeptide of SEQ ID NO:277 lacking its associated signal peptide. <br><br> In a further aspect, the invention provides an isolated polypeptide comprising a sequence having the amino acid sequence shown in Figure 2 (SEQ ID NO:277). <br><br> 332037J.DOC <br><br> 5 <br><br> A still further aspect of the invention is an isolated polypeptide comprising a sequence having the amino acid sequence encoded by the nucleotide deposited under accession number ATCC 203355. <br><br> The invention also provides in a further aspect, a chimeric molecule comprising a polypeptide according to the present invention, fused to a heterologous amino acid sequence. <br><br> In a further aspect of the invention an antibody which specifically binds to a polypeptide according to the present invention. <br><br> In a further aspect the invention provides a polypeptide according the present invention for use in a method of medical treatment. <br><br> In a further aspect the invention provides a polypeptide according to the present invention for use in the treatment of a tumour. <br><br> In a still further aspect, the present invention provides a pharmaceutical composition comprising a polypeptide of the present invention and a pharmaceutically acceptable carrier, excipient or stabilizer. <br><br> A further aspect of the invention is a composition comprising an antibody according to the present invention in admixture with a pharmaceutically acceptable carrier. <br><br> A further aspect of the invention is an isolated nucleic acid molecule consisting of an at least 20 nucleotides fragment of the nucleic acid sequence of SEQ ID NO:276, or a complement thereof, that hybridizes under stringent conditions to: <br><br> (a) the nucleic acid sequence of SEQ ID NO:276 or a complement thereof; <br><br> (b) the full length coding sequence of the cDNA deposited under ATCC accession number 203355 or a complement thereof; and <br><br> (c) wherein, said stringent conditions use 50% formamide, 5 x SSC, 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5x Denhardt's solution, sonicated salmon sperm DNA (50 pg/ml), 0.1%SDS, and 10% dextran sulfate at 42°C, with washes at 42°C in 0.2 x SSC and 50% fornamide at 55°C, followed by a wash comprising of 0.1 x SSC containing EDTA at 55°C. <br><br> 332037J.DOC <br><br> 6 <br><br> The invention relates to the aspects as set out above. Some materials of New Zealand Patent specification No. 510464 (from which this specification is divided) are presented in our related New Zealand Patent Specification Nos. 531663 and 531665 to 531668 as well as New Zealand Patent Specification No. 510464. <br><br> Additional Embodiments <br><br> Also described herein are oligonucleotide probes useful for isolating genomic and cDNA nucleotide sequences, wherein those probes may be derived from any of the above or below described nucleotide sequences. <br><br> In one aspect of the invention, the isolated nucleic acid molecule comprises a nucleotide sequence having <br><br> 332037J.DOC <br><br> 7 <br><br> at least about 80% sequence identity, preferably at least about 81% sequence identity, more preferably at least about 82% sequence identity, yet more preferably at least about 83% sequence identity, yet more preferably at least about 84% sequence identity, yet more preferably at least about 85% sequence identity, yet more preferably at least about 86% sequence identity, yet more 5 preferably at least about 87% sequence identity, yet more preferably at least about 88% sequence identity, yet more preferably at least about 89% sequence identity, yet more preferably at least about 90% sequence identity, yet more preferably at least about 91% sequence identity, yet more preferably at least about 92% sequence identity, yet more preferably at least about 93% sequence identity, yet more preferably at least about 94% sequence identity, yet more preferably at least about 10 95% sequence identity, yet more preferably at least about 96% sequence identity, yet more preferably at least about 97% sequence identity, yet more preferably at least about 98% sequence identity and yet more preferably at least about 99% sequence identity to (a) nucleic acid of the invention encoding a PRO polypeptide of the invention having the full length amino acid sequence as disclosed herein, a PRO polypeptide of the invention lacking the signal peptide as disclosed 15 herein or an extracellular domain of a transmembrane protein, with or without the signal peptide, as disclosed herein, or (b) the complement of the nucleic acid of (a). <br><br> In other aspects, the isolated nucleic acid molecule comprises a nucleotide sequence having at least about 80% sequence identity, preferably at least about 81 % sequence identity, more preferably at least about 82% sequence identity, yet more preferably at least about 83% sequence 2 0 identity, yet more preferably at least about 84% sequence identity, yet more preferably at least about 85% sequence identity, yet more preferably at least about 86% sequence identity, yet more preferably at least about 87% sequence identity, yet more preferably at least about 88% sequence identity, yet more preferably at least about 89% sequence identity, yet more preferably at least about 90% sequence identity, yet more preferably at least about 91% sequence identity, yet more <br><br> 2 5 preferably at least about 92% sequence identity, yet more preferably at least about 93% sequence identity, yet more preferably at least about 94% sequence identity, yet more preferably at least about 95% sequence identity, yet more preferably at least about 96% sequence identity, yet more preferably at least about 97% sequence identity, yet more preferably at least about 98% sequence identity and yet more preferably at least about 99% sequence identity to (a) a nucleic acid of the <br><br> 3 0 invention comprising the coding sequence of a full-length PRO polypeptide cDNA of the invention, <br><br> the coding sequence of a PRO polypeptide of the invention lacking the signal peptide as disclosed herein or the coding sequence of an extracellular domain of a transmembrane PRO polypeptide with or without the signal peptide, as disclosed herein, or (b) the complement of the nucleic acid of (a). <br><br> In a further aspect, the invention concerns an isolated nucleic acid molecule comprising a 3 5 nucleotide sequence having at least about 80% sequence identity, preferably at least about 81% sequence identity, more preferably at least about 82% sequence identity, yet more preferably at least about 83% sequence identity, yet more preferably at least about 84% sequence identity, yet more preferably at least about 85% sequence identity, yet more preferably at least about 86% sequence identity, yet more preferably at least about 87% sequence identity, yet more preferably lNTElLECTliAL ePOPSflY OFFICE <br><br> - I APR 2005 received <br><br> L PROPER?' •! 7 <br><br> 8 <br><br> - 1 APR 20C5 received at least about 88% sequence identity, yet more preferably at least about 89% sequence identity, yet more preferably at least about 90% sequence identity, yet more preferably at least about 91% sequence identity, yet more preferably at least about 92% sequence identity, yet more preferably at least about 93% sequence identity, yet more preferably at least about 94% sequence identity, yet 5 more preferably at least about 95% sequence identity, yet more preferably at least about 96% sequence identity, yet more preferably at least about 97% sequence identity, yet more preferably at least about 98% sequence identity and yet more preferably at least about 99% sequence identity to (a) a nucleic acid of the invention that encodes the same mature polypeptide encoded by any of the human protein cDNAs deposited with the ATCC as disclosed herein, or (b) the complement of <br><br> 10 the nucleic acid of (a). <br><br> Another aspect of the invention provides an isolated nucleic acid molecule of the invention comprising a nucleotide sequence encoding a PRO polypeptide which is either transmembrane domain-deleted or transmembrane domain-inactivated, or is complementary to such encoding nucleotide sequence, 3_5 wherein the transmembrane domain(s) of such polypeptide are disclosed herein. Therefore, soluble extracellular domains of the herein described PRO polypeptides are contemplated. <br><br> Another embodiment is directed to fragments of a PRO polypeptide coding sequence that may find use as, for example, hybridization probes or for encoding fragments of a PRO polypeptide that may optionally encode a polypeptide comprising a binding site for an anti-PRO antibody. Such 2 o nucleic acid fragments are usually at least about 20 nucleotides in length, preferably at least about 30 nucleotides in length, more preferably at least about 40 nucleotides in length, yet more preferably at least about 50 nucleotides in length, yet more preferably at least about 60 nucleotides in length, yet more preferably at least about 70 nucleotides in length, yet more preferably at least about 80 nucleotides in length, yet more preferably at least about 90 nucleotides in length, yet more 25 preferably at least about 100 nucleotides in length, yet more preferably at least about 110 nucleotides in length, yet more preferably at least about 120 nucleotides in length, yet more preferably at least about 130 nucleotides in length, yet more preferably at least about 140 nucleotides in length, yet more preferably at least about 150 nucleotides in length, yet more preferably at least about 160 nucleotides in length, yet more preferably at least about 170 20 nucleotides in length, yet more preferably at least about 180 nucleotides in length, yet more preferably at least about 190 nucleotides in length, yet more preferably at least about 200 nucleotides in length, yet more preferably at least about 250 nucleotides in length, yet more preferably at least about 300 nucleotides in length, yet more preferably at least about 350 nucleotides in length, yet more preferably at least about 400 nucleotides in length, yet more 25 preferably at least about 450 nucleotides in length, yet more preferably at least about 500 nucleotides in length, yet more preferably at least about 600 nucleotides in length, yet more preferably at least about 700 nucleotides in length, yet more preferably at least about 800 nucleotides in length, yet more preferably at least about 900 nucleotides in length and yet more preferably at least about 1000 nucleotides in length, wherein in this context the term "about" means the referenced nucleotide sequence length plus or minus 10% of that referenced length. It is noted <br><br> INTELLECTUAL PROPERTY OFFICE •' M.Z <br><br> -1 APR 2005 received that novel fragments of a PRO polypeptide-encoding nucleotide seJfOSllLU lliyy UiJ determined in a routine manner by aligning the PRO polypeptide-encoding nucleotide sequence with other known nucleotide sequences using any of a number of well known sequence alignment programs and determining which PRO polypeptide-encoding nucleotide sequence fragment(s) are novel. All of 5 such PRO polypeptide-encoding nucleotide sequences are contemplated herein. Also described are the PRO polypeptide fragments encoded by these nucleotide molecule fragments, preferably those PRO polypeptide fragments that comprise a binding site for an anti-PRO antibody. <br><br> In another embodiment, the invention provides isolated PRO polypeptide encoded by any of the isolated nucleic acid sequences of the invention hereinabove identified. 10 In a certain aspect, the invention concerns an isolated PRO polypeptide, comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 81% sequence identity, more preferably at least about 82% sequence identity, yet more preferably at least about 83% sequence identity, yet more preferably at least about 84% sequence identity, yet more preferably at least about 85% sequence identity, yet more preferably at least about 86% 15 sequence identity, yet more preferably at least about 87% sequence identity, yet more preferably at least about 88% sequence identity, yet more preferably at least about 89% sequence identity, yet more preferably at least about 90% sequence identity, yet more preferably at least about 91% sequence identity, yet more preferably at least about 92% sequence identity, yet more preferably at least about 93% sequence identity, yet more preferably at least about 94% sequence identity, yet 2 0 more preferably at least about 95% sequence identity, yet more preferably at least about 96% sequence identity, yet more preferably at least about 97% sequence identity, yet more preferably at least about 98% sequence identity and yet more preferably at least about 99% sequence identity to a PRO polypeptide of the invention having a full-length amino acid sequence as disclosed herein, an amino acid sequence lacking the signal peptide as disclosed herein or an extracellular <br><br> 2 5 domain of a transmembrane protein, with or without the signal peptide, as disclosed herein. <br><br> In a further aspect, the invention concerns an isolated PRO polypeptide comprising an amino acid sequence having at least about 80% sequence identity, preferably at least about 81% sequence identity, more preferably at least about 82% sequence identity, yet more preferably at least about 83% sequence identity, yet more preferably at least about 84% sequence identity, yet <br><br> 3 0 more preferably at least about 85% sequence identity, yet more preferably at least about 86% <br><br> sequence identity, yet more preferably at least about 87% sequence identity, yet more preferably at least about 88% sequence identity, yet more preferably at least about 89% sequence identity, yet more preferably at least about 90% sequence identity, yet more preferably at least about 91% sequence identity, yet more preferably at least about 92% sequence identity, yet more preferably 35 at least about 93% sequence identity, yet more preferably at least about 94% sequence identity, yet more preferably at least about 95% sequence identity, yet more preferably at least about 96% sequence identity, yet more preferably at least about 97% sequence identity, yet more preferably at least about 98% sequence identity and yet more preferably at least about 99% sequence identity to an amino acid sequence of the invention encoded by any of the human protein cDNAs deposited with the ATCC <br><br> - 1 APR 2005 | <br><br> RECEIVED I as disclosed herein. <br><br> In a further aspect, the invention concerns an isolated PRO polypeptide comprising an amino acid sequence scoring at least about 80% positives, preferably at least about 81% positives, more preferably at least about 82% positives, yet more preferably at least about 83% positives, yet 5 more preferably at least about 84% positives, yet more preferably at least about 85% positives, yet more preferably at least about 86% positives, yet more preferably at least about 87% positives, yet more preferably at least about 88% positives, yet more preferably at least about 89% positives, yet more preferably at least about 90% positives, yet more preferably at least about 91% positives, yet more preferably at least about 92% positives, yet more preferably at least about 93% positives, yet 10 more preferably at least about 94% positives, yet more preferably at least about 95% positives, yet more preferably at least about 96% positives, yet more preferably at least about 97% positives, yet more preferably at least about 98% positives and yet more preferably at least about 99% positives when compared with the amino acid sequence of a PRO polypeptide of the invention having a full-length amino acid sequence as disclosed herein, an amino acid sequence lacking the signal 15 peptide as disclosed herein or an extracellular domain of a transmembrane protein, with or without the signal peptide, as disclosed herein. <br><br> Also described is an isolated PRO polypeptide without the N-terminal signal sequence and/or the initiating methionine and is encoded by a nucleotide sequence that encodes such an amino acid sequence as hereinbefore described. Processes for producing 2 0 the same are also herein described, wherein those processes comprise culturing a host cell comprising a vector which comprises the appropriate encoding nucleic acid molecule under conditions suitable for expression of the PRO polypeptide and recovering the PRO polypeptide from the cell culture. <br><br> Also described is an isolated PRO polypeptide which is either <br><br> 2 5 transmembrane domain-deleted or transmembrane domain-inactivated. Processes for producing the same are also herein described, wherein those processes comprise culturing a host cell comprising a vector which comprises the appropriate encoding nucleic acid molecule under conditions suitable for expression of the PRO polypeptide and recovering the PRO polypeptide from the cell culture. <br><br> 3 0 Also described are agonists and antagonists of a native <br><br> PRO polypeptide as-defined herein. In a particular embodiment, the agpnist or antagonist is an anti-PRO antibody or a small molecule. <br><br> Also described is a method of identifying agonists or antagonists to a PRO polypeptide which comprise contacting the PRO polypeptide with a candidate 3 5 molecule and monitoring a biological activity mediated by said PRO polypeptide. Preferably, the PRO polypeptide is a native PRO polypeptide. <br><br> Also described is a composition of matter comprising an agonist or antagonist of a PRO polypeptide as herein described and a carrier. Optionally, the carrier is a pharmaceutically <br><br> ,'fiNT' ~ ~ • iAL PROPERTY OFFICf "ic m 2, <br><br> -1 apr m received acceptable carrier. As noted above the Invention also provides a pharmaceutical composition 5 comprising a polypeptide of the present invention and a pharmaceutically acceptable carrier, excipient, or stabilizer; and a composition comprising an antibody according to the present invention in admixture with a pharmaceutically acceptable carrier. <br><br> Also described is the use of a PRO polypeptide, <br><br> or an agonist or antagonist thereof as hereinbefore described, or an anti-PRO antibody, for the c preparation of a medicament useful in the treatment of a condition which is responsive to the PRO polypeptide, an agonist or antagonist thereof or an anti-PRO antibody. <br><br> BRIEF DESCRIPTION OF THE DRAWINGS 20 Figure 1 shows a nucleotide sequence (SEQ ID NO:276) of a native sequence <br><br> PR01317 cDNA, wherein SEQ ID NO:276 is a clone designated herein as "DNA71166-1685". The start and stop codons are shown in bold and underlined font. <br><br> Figure 2 shows the amino acid sequence (SEQ ID NO:277) derived from the coding sequence of SEQ ID NO:276 shown in Figure 1. <br><br> 25 Figures 3A-D show hypothetical exemplifications for using the below described method to determine % amino acid sequence identity (Figures 3A-B) and % nucleic acid sequence identity (Figures 3C-D) using the ALIGN-2 sequence comparison computer program, wherein "PRO" represents the amino acid sequence of a hypothetical PEACH polypeptide of interest, Comparison Protein" represents the amino acid sequence of a polypeptide against which the 30 "PRO" polypeptide of interest is being compared, "PRO-DNA" represents a hypothetical PEACH-encoding nucleic acid sequence of interest, "Comparison DNA" represents the nucleotide sequence of a nucleic acid molecule against which the "PRO-DNA" nucleic acid molecule of interest is being compared, "X, "Y" and "Z" each represent different hypothetical amino acid residues and "N", "L" and "V" each represent different hypothetical nucleotides. 35 Figures 4A-Q provide the complete source code for the ALIGN-2 sequence comparison computer program. This source code may be routinely compiled for use on a UNIX operating system to provide the ALIGN-2 sequence comparison computer program. <br><br> DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS <br><br> H:\Gabriela\KeepVSpeci\P49662 Div No 3.doc 26/05/03 <br><br> propers <br><br> - 1 APR 2005 12 ppr.FIVgD <br><br> I. Definitions <br><br> The terms "PRO polypeptide" and "PRO" or "UCP"as used herein and when immediately followed by a numerical designation refer to various polypeptides, wherein the complete designation (i.e., PRO/number) refers to specific polypeptide sequences as described 5 herein. The terms "PRO/number polypeptide" and "PRO/number" wherein the term "number" is provided as an actual numerical designation as used herein encompass native sequence polypeptides and polypeptide variants (which are further defined herein). The PRO polypeptides described herein may be isolated from a variety of sources, such as from human tissue types or from another source, or prepared by recombinant or synthetic methods. 10 A "native sequence PRO polypeptide" or "UCP" comprises a polypeptide having the same amino acid sequence as the corresponding PRO polypeptide derived from nature. Such native sequence PRO polypeptides can be isolated from nature or can be produced by recombinant or synthetic means. The term "native sequence PRO polypeptide" specifically encompasses naturally-occurring truncated or secreted forms of the specific PRO polypeptide 15 (e.g., an extracellular domain sequence), naturally-occurring variant forms (e.g., alternatively spliced forms) and naturally-occurring allelic variants of the polypeptide. In various embodiments of the invention, native sequence PRO polypeptides are mature or full-length native sequence polypeptides comprising the full-length amino acids sequences shown in the accompanying figures and sequence listing. Start and stop codons are shown in bold font and 20 underlined in the figures. However, while the PRO polypeptide disclosed in the accompanying figures are shown to begin with methionine residues designated herein as amino acid position 1 in the figures, it is conceivable and possible that othe* methionine residues located either upstream or downstream from the amino acid position 1 in the figures may be employed as the starting 25 amino acid residue for the PRO polypeptides. <br><br> The PRO polypeptide "extracellular domain" or "ECD" refers to a form of the PRO polypeptide which is essentially free of the transmembrane and cytoplasmic domains. Ordinarily, a PRO polypeptide ECD will have less than 1% of such transmembrane and/or cytoplasmic domains and preferably, will have less than 0.5% of such domains. It will be 30 understood that any transmembrane domains identified for the PRO polypeptides of the present invention are identified pursuant to criteria routinely employed in the art for identifying that type of hydrophobic domain. The exact boundaries of a transmembrane domain may vary but most likely by no more than about 5 amino acids at either end of the domain as initially identified herein. Optionally, therefore, an extracellular domain of a PRO polypeptide may contain from 35 about 5 or fewer amino acids on either side of the transmembrane domain/extracellular domain boundary as identified in the Examples or specification and such polypeptides, with or without the associated signal peptide, and nucleic acid encoding them, are comtemplated by the present invention. <br><br> The approximate location of the "signal peptides" of the various PRO polypeptides disclosed herein are shown in the accompanying figures. It is noted, however, that the CH:\Gabriela\Keep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> v pfifipc! <br><br> - 1 ATR 2005 j 13 received i terminal boundary of a signal peptide may vary, but most likely by no more than about 5 amino acids on either side of the signal peptide C-terminal boundary as initially identified herein, wherein the C-terminal boundary of the signal peptide may be identified pursuant to criteria routinely employed in the art for identifying that type of amino acid sequence element (e.g., 5 Nielsen et al., Prot. Eng. 10:1-6 (1997) and von Heinje et al., Nucl. Acids. Res. 14:4683-4690 (1986)). Moreover, it is also recognized that, in some cases, cleavage of a signal sequence from a secreted polypeptide is not entirely uniform, resulting in more than one secreted species. These mature polypeptides, where the signal peptide is cleaved within no more than about 5 amino acids on either side of the C-terminal boundary of the signal peptide as identified herein, 10 and the polynucleotides encoding them, are contemplated by the present invention. <br><br> "PRO polypeptide variant" means an active PRO polypeptide as defined above or below having at least about 80% amino acid sequence identity with a full-length native sequence PRO polypeptide sequence of the invention, a PRO polypeptide sequence of the invention lacking the signal peptide as disclosed herein, an extracellular domain of a PRO polypeptide of the invention with or without the signal peptide, as disclosed herein or any other fragment of a full-length PRO polypeptide sequence of the invention as disclosed herein. Such PRO polypeptide variants include, for instance, PRO polypeptides wherein one or more amino acid residues are added, or deleted, at the N- or C-terminus of the full-length native amino acid sequence. Ordinarily, a PRO polypeptide variant will have at least about 80% amino acid sequence identity, preferably at 20 least about 81% amino acid sequence identity, more preferably at least about 82% amino acid sequence identity, more preferably at least about 83% amino acid sequence identity, more preferably at least about 84% amino acid sequence identity, more preferably at least about 85% amino acid sequence identity, more preferably at least about 86% amino acid sequence identity, more preferably at least about 87% amino acid sequence identity, more preferably at 25 least about 88% amino acid sequence identity, more preferably at least about 89% amino acid sequence identity, more preferably at least about 90% amino acid sequence identity, more preferably at least about 91% amino acid sequence identity, more preferably at least about 92% amino acid sequence identity, more preferably at least about 93% amino acid sequence identity, more preferably at least about 94% amino acid sequence identity, more preferably at 30 least about 95% amino acid sequence identity, more preferably at least about 96% amino acid sequence identity, more preferably at least about 97% amino acid sequence identity, more preferably at least about 98% amino acid sequence identity and most preferably at least about 99% amino acid sequence identity with a full-length native sequence PRO polypeptide sequence of the invention, a PRO polypeptide sequence of the invention lacking the signal peptide as disclosed herein, an extracellular domain of a PRO polypeptide, with or without the signal peptide, as disclosed herein or any other fragment of a full-length PRO polypeptide sequence of the invention. Ordinarily, PRO variant polypeptides are at least about 10 amino acids in length, often at least about 20 amino acids in length, more often at least about 30 amino acids in length, more often at least about 40 amino acids in length, more often at least about 50 <br><br> H:\Gabriela\Ksep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> - i . <br><br> 14 <br><br> amino acids in length, more often at least about 60 amino acids in length, more often at least about 70 amino acids in length, more often at least about 80 amino acids in length, more often at least about 90 amino acids in length, more often at least about 100 amino acids in length, more often at least about 150 amino acids in length, more often at least about 200 amino acids 5 in length, more often at least about 300 amino acids in length, or more. <br><br> "Percent (%) amino acid sequence identity" with respect to the PRO polypeptide sequences of the invention is defined as the percentage of amino acid residues in a candidate sequence that are identical with the amino acid residues in the specific PRO polypeptide sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the 10 maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity. Alignment for purposes of determining percent amino acid sequence identity can be achieved in various vyays that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN or Megalign (DNASTAR) software. Those skilled in the art can determine appropriate parameters for 15 measuring alignment, including any algorithms needed to achieve maximal alignment over the full length of the sequences being compared. For purposes herein, however, % amino acid sequence identity values are generated using the WU-BLAST-2 computer program (Altschul et al., Methods in Enzvmoloav 266:460-480 (1996)). Most of the WU-BLAST-2 search parameters are set to the default values. Those not set to default values, i.e., the adjustable parameters, 20 are set with the following values: overlap span = 1, overlap fraction = 0.125, word threshold (T) = 11, and scoring matrix = BLOSUM62. For purposes herein, a % amino acid sequence identity value is determined by dividing (a) the number of matching identical amino acid residues between the amino acid sequence of the PRO polypeptide of interest having a sequence derived from the native PRO polypeptide and the comparison amino acid sequence of interest 25 (i.e., the sequence against which the PRO polypeptide of interest is being compared which may be a PRO variant polypeptide) as determined by WU-BLAST-2 by (b) the total number of amino acid residues of the PRO polypeptide of interest. For example, in the statement "a polypeptide comprising an the amino acid sequence A which has or having at least 80% amino acid sequence identity to the amino acid sequence B", the amino acid sequence A is the comparison 30 amino acid sequence of interest and the amino acid sequence B is the amino acid sequence of the PRO polypeptide of interest. <br><br> Unless specifically stated otherwise, all % amino acid sequence identity values used herein are obtained as described in the immediately preceding paragraph using the WU-BLAST-2 computer program. However, % amino acid sequence identity values may also be 35 obtained as described below by using the sequence comparison computer program ALIGN-2, wherein the complete source code for the ALIGN-2 program is provided in Figures 4A-Q. The ALIGN-2 sequence comparison computer program was authored by Genentech, Inc. and the source code shown in Figures 4A-Q has been filed with user documentation in the U.S. Copyright Office, Washington D.C., 20559, where it is registered under U.S. Copyright <br><br> INTELLECTUAL PH0PEHI* m™* <br><br> OF N.Z. <br><br> -1 APR 2005 <br><br> received <br><br> H:\Gabviela\Keep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> ■ . r c. <br><br> 15 <br><br> Registration No. TXU510087. The ALIGN-2 program is publicly available through Genentech, Inc., South San Francisco, California or may be compiled from the source code provided in Figures 4A-Q. The ALIGN-2 program should be compiled for use on a UNIX operating system, preferably digital UNIX V4.0D. All sequence comparison parameters are set by the ALIGN-2 5 program and do not vary. <br><br> In situations where ALIGN-2 is employed for amino acid sequence comparisons, the % amino acid sequence identity of a given amino acid sequence A to, with, or against a given amino acid sequence B (which can alternatively be phrased as a given amino acid sequence A that has or comprises a certain % amino acid sequence identity to, with, or against a given 10 amino acid sequence B) is calculated as follows: <br><br> 100 times the fraction X/Y <br><br> where X is the number of amino acid residues scored as identical matches by the sequence 15 alignment program ALIGN-2 in that program's alignment of A and B, and where Y is the total number of amino acid residues in B. It will be appreciated that where the length of amino acid sequence A is not equal to the length of amino acid sequence B, the % amino acid sequence identity of A to B will not equal the % amino acid sequence identity of B to A. As examples of % amino acid sequence identity calculations using this method, Figures 3A-B demonstrate how to 20 calculate the % amino acid sequence identity of the amino acid sequence designated "Comparison Protein" to the amino acid sequence designated "PRO". <br><br> Percent amino acid sequence identity may also be determined using the sequence comparison program NCBI-BLAST2 (Altschul et al., Nucleic Acids Res. 25:3389-3402 (1997)). The NCBI-BLAST2 sequence comparison program may be downloaded from 25 http://www.ncbi.nlm.nih.gov. NCBI-BLAST2 uses several search parameters, wherein all of those search parameters are set to default values including, for example, unmask = yes, strand = all, expected occurrences = 10, minimum low complexity length = 15/5, multi-pass e-value = 0.01, constant for multi-pass = 25, dropoff for final gapped alignment = 25 and scoring matrix = BLOSUM62. <br><br> 30 In situations where NCBI-BLAST2 is employed for amino acid sequence comparisons, <br><br> the % amino acid sequence identity of a given amino acid sequence A to, with, or against a given amino acid sequence B (which can alternatively be phrased as a given amino acid sequence A that has or comprises a certain % amino acid sequence identity to, with, or against a given amino acid sequence B) is calculated as follows: <br><br> 35 <br><br> 100 times the fraction X/Y <br><br> where X is the number of amino acid residues scored as identical matches by the sequence alignment program NCBI-BLAST2 in that program's alignment of A and B, and where Y is the <br><br> H:\Gabriela\Keep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> 16 <br><br> total number of amino acid residues in B. It will be appreciated that where the length of amino acid sequence A is not equal to the length of amino acid sequence B, the % amino acid sequence identity of A to B will not equal the % amino acid sequence identity of B to A. <br><br> "PRO variant polynucleotide" or "PRO variant nucleic acid sequence" means a nucleic 5 acid molecule which encodes an active PRO polypeptide as defined below and which has at least about 80% nucleic acid sequence identity with a nucleotide acid sequence encoding a full-length native sequence PRO polypeptide sequence of the invention, a full-length native sequence PRO polypeptide sequence of the invention lacking the signal peptide as disclosed herein, an extracellular domain of a PRO polypeptide of the invention with or without the signal peptide, as disclosed herein or : any other fragment of a full-length PRO polypeptide sequence of the invention. <br><br> Ordinarily, a PRO variant polynucleotide will have at least about 80% nucleic acid sequence identity, more preferably at least about 81 % nucleic acid sequence identity, more preferably at least about 82% nucleic acid sequence identity, more preferably at least about 83% nucleic acid sequence identity, more preferably at least about 84% nucleic acid sequence identity, more 15 preferably at least about 85% nucleic acid sequence identity, more preferably at least about 86% nucleic acid sequence identity, more preferably at least about 87% nucleic acid sequence identity, more preferably at least about 88% nucleic acid sequence identity, more preferably at least about 89% nucleic acid sequence identity, more preferably at least about 90% nucleic acid sequence identity, more preferably at least about 91% nucleic acid sequence identity, more 20 preferably at least about 92% nucleic acid sequence identity, more preferably at least about 93% nucleic acid sequence identity, more preferably at least about 94% nucleic acid sequence identity, more preferably at least about 95% nucleic acid sequence identity, more preferably at least about 96% nucleic acid sequence identity, more preferably at least about 97% nucleic acid sequence identity, more preferably at least about 98% nucleic acid sequence identity and yet 25 more preferably at least about 99% nucleic acid sequence identity with the nucleic acid sequence encoding a full-length native sequence PRO polypeptide sequence of the invention, a full-length native sequence PRO polypeptide sequence of the invention lacking the signal peptide as disclosed herein, an extracellular domain of a PRO polypeptide of the invention, with or without the signal sequence, as disclosed herein or any other fragment of a full-length PRO polypeptide sequence of the invention. Variants do not encompass the native nucleotide sequence. <br><br> Ordinarily, PRO variant polynucleotides are at least about 30 nucleotides in length, <br><br> often at least about 60 nucleotides in length, more often at least about 90 nucleotides in length, <br><br> more often at least about 120 nucleotides in length, more often at least about 150 nucleotides in length, more often at least about 180 nucleotides in length, more often at least about 210 35 nucleotides in length, more often at least about 240 nucleotides in length, more often at least about 270 nucleotides in length, more often at least about 300 nucleotides in length, more often at least about 450 nucleotides in length, more often at least about 600 nucleotides in length, <br><br> more often at least about 900 nucleotides in length, or more. <br><br> . \ M&gt;R 2005 pcr.FlVEP <br><br> H:\Gabriela\Keep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> 17 <br><br> "Percent (%) nucleic acid sequence identity" with respect to PRO-encoding nucleic acid sequences identified herein is defined as the percentage of nucleotides in a candidate sequence that are identical with the nucleotides in the PRO nucleic acid sequence of interest, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum 5 percent sequence identity. Alignment for purposes of determining percent nucleic acid sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN or Megalign (DNASTAR) software. For purposes herein, however, % nucleic acid sequence identity values are generated using the WU-BLAST-2 computer program (Altschul et al., 10 Methods in Enzvmoloav 266:460-480 (1996)). Most of the WU-BLAST-2 search parameters are set to the default values. Those not set to default values, i.e., the adjustable parameters, are set with the following values: overlap span = 1, overlap fraction = 0.125, word threshold (T) = 11, and scoring matrix = BLOSUM62. For purposes herein, a % nucleic acid sequence identity value is determined by dividing (a) the number of matching identical nucleotides 15 between the nucleic acid sequence of the PRO polypeptide-encoding nucleic acid molecule of interest having a sequence derived from the native sequence PRO polypeptide-encoding nucleic acid and the comparison nucleic acid molecule of interest (i.e., the sequence against which the PRO polypeptide-encoding nucleic acid molecule of interest is being compared which may be a variant PRO polynucleotide) as determined by WU-BLAST-2 by (b) the total number 20 of nucleotides of the PRO polypeptide-encoding nucleic acid molecule of interest. For example, in the statement "an isolated nucleic acid molecule comprising a nucleic acid sequence A which has or having at least 80% nucleic acid sequence identity to the nucleic acid sequence B", the nucleic acid sequence A is the comparison nucleic acid molecule of interest and the nucleic acid sequence B is the nucleic acid sequence of the PRO polypeptide-encoding nucleic acid 25 molecule of interest. <br><br> Unless specifically stated otherwise, all % nucleic acid sequence identity values used herein are obtained as described in the immediately preceding paragraph using the WU-BLAST-2 computer program. However, % nucleic acid sequence identity values may also be obtained as described below by using the sequence comparison computer program ALIGN-2, 30 wherein the complete source code for the ALIGN-2 program is provided in Figures 4A-Q. The ALIGN-2 sequence comparison computer program was authored by Genentech, Inc. and the source code shown in Figures 4A-Q has been filed with user documentation in the U.S. Copyright Office, Washington D.C., 20559, where it is registered under U.S. Copyright Registration No. TXU510087. The ALIGN-2 program is publicly available through Genentech, 35 Inc., South San Francisco, California or may be compiled from the source code provided in Figures 248A-Q. The ALIGN-2 program should be compiled for use on a UNIX operating system, preferably digital UNIX V4.0D. All sequence comparison parameters are set by the ALIGN-2 program and do not vary. <br><br> H:\GabrietaVKeep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> 18 <br><br> In situations where ALIGN-2 is employed for nucleic acid sequence comparisons, the % nucleic acid sequence identity of a given nucleic acid sequence C to, with, or against a given nucleic acid sequence D (which can alternatively be phrased as a given nucleic acid sequence C that has or comprises a certain % nucleic acid sequence identity to, with, or against a given 5 nucleic acid sequence D) is calculated as follows: <br><br> 100 times the fraction W/Z <br><br> where W is the number of nucleotides scored as identical matches by the sequence alignment 10 program ALIGN-2 in that program's alignment of C and D, and where Z is the total number of nucleotides in D. It will be appreciated that where the length of nucleic acid sequence C is not equal to the length of nucleic acid sequence D, the % nucleic acid sequence identity of C to D will not equal the % nucleic acid sequence identity of D to C. As examples of % nucleic acid sequence identity calculations, Figures 3 G-D demonstrate how to calculate the % nucleic acid 15 sequence identity of the nucleic acid sequence designated "Comparison DNA" to the nucleic acid sequence designated "PRO-DNA". <br><br> Percent nucleic acid sequence identity may also be determined using the sequence comparison program NCBI-BLAST2 (Altschul et al., Nucleic Acids Res. 25:3389-3402 (1997)). The NCBI-BLAST2 sequence comparison program may be downloaded from 20 http://www.ncbi.nlm.nih.gov. NCBI-BLAST2 uses several search parameters, wherein all of those search parameters are set to default values including, for example, unmask = yes, strand = all, expected occurrences = 10, minimum low complexity length = 15/5, multi-pass e-value = 0.01, constant for multi-pass = 25, dropoff for final gapped alignment = 25 and scoring matrix = BLOSUM62. <br><br> 25 In situations where NCBI-BLAST2 is employed for sequence comparisons, the % <br><br> nucleic acid sequence identity of a given nucleic acid sequence C to, with, or against a given nucleic acid sequence D (which can alternatively be phrased as a given nucleic acid sequence C that has or comprises a certain % nucleic acid sequence identity to, with, or against a given nucleic acid sequence D) is calculated as follows: <br><br> 30 <br><br> 100 times the fraction W/Z <br><br> where W is the number of nucleotides scored as identical matches by the sequence alignment program NCBI-BLAST2 in that program's alignment of C and D, and where Z is the total 35 number of nucleotides in D. It will be appreciated that where the length of nucleic acid sequence C is not equal to the length of nucleic acid sequence D, the % nucleic acid sequence identity of C to D will not equal the % nucleic acid sequence identity of D to C. <br><br> In other embodiments, PRO variant polynucleotides are nucleic acid molecules that encode an active PRO polypeptide and which are capable of hybridizing, preferably under <br><br> H:\Gabriela\Keep\SpecftP49662 Div No 3.doc 26/05/03 <br><br> 19 <br><br> stringent hybridization and wash conditions, to nucleotide sequences encoding a full-length PRO polypeptide as disclosed herein. PRO variant polypeptides may be those that are encoded by a PRO variant polynucleotide. <br><br> The term "positives", in the context of sequence comparison performed as described 5 above, includes residues in the sequences compared that are not identical but have similar properties (e.g. as a result of conservative substitutions, see Table 1 below). For purposes herein, the % value of positives is determined by dividing (a) the number of amino acid residues scoring a positive value between the PRO polypeptide amino acid sequence of interest having a sequence derived from the native PRO polypeptide sequence and the comparison amino acid 10 sequence of interest (i.e., the amino acid sequence against which the PRO polypeptide sequence is being compared) as determined in the BLOSUM62 matrix of WU-BLAST-2 by (b) the total number of amino acid residues of the PRO polypeptide of interest. <br><br> Unless specifically stated otherwise, the % value of positives is calculated as described in the immediately preceding paragraph. However, in the context of the amino acid sequence 15 identity comparisons performed as described for ALIGN-2 and NCBI-BLAST2 above, includes amino acid residues in the sequences compared that are not only identical, but also those that have similar properties. Amino acid residues that score a positive value to an amino acid residue of interest are those that are either identical to the amino acid residue of interest or are a preferred substitution (as defined in Table 1 below) of the amino acid residue of interest. 20 For amino acid sequence comparisons using ALIGN-2 or NCBI-BLAST2, the % value of positives of a given amino acid sequence A to, with, or against a given amino acid sequence B (which can alternatively be phrased as a given amino acid sequence A that has or comprises a certain % positives to, with, or against a given amino acid sequence B) is calculated as follows; <br><br> 25 1 00 times the fraction X/Y <br><br> v where X is the number of amino acid residues scoring a positive value as defined above by the sequence alignment program ALIGN-2 or NCBI-BLAST2 in that program's alignment of A and B, and where Y is the total number of amino acid residues in B. It will be appreciated that 30 where the length of amino acid sequence A is not equal to the length of amino acid sequence B, the % positives of A to B will not equal the % positives of B to A. <br><br> "Isolated," when used to describe the various polypeptides disclosed herein, means polypeptide that has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials that 35 would typically interfere with diagnostic or therapeutic uses for the polypeptide, and may include enzymes, hormones, and other proteinaceous or non-proteinaceous solutes. In preferred embodiments, the polypeptide will be purified (1) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (2) to homogeneity by SDS-PAGE under non-reducing or reducing conditions using Coomassie <br><br> H:\Gabriela\Keep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> 20 <br><br> blue or, preferably, silver stain. Isolated polypeptide includes polypeptide in situ within recombinant cells, since at least one component of the PRO polypeptide natural environment will not be present. Ordinarily, however, isolated polypeptide will be prepared by at least one purification step. <br><br> 5 An "isolated" PRO polypeptide-encoding nucleic acid is a nucleic acid molecule that is identified and separated from at least one contaminant nucleic acid molecule with which it is ordinarily associated in the natural source of the PRO polypeptide nucleic acid. An isolated PRO polypeptide nucleic acid molecule is other than in the form or setting in which it is found in nature. Isolated PRO polypeptide nucleic acid molecules therefore are distinguished from the 10 specific PRO polypeptide nucleic acid molecule as it exists in natural cells. However, an isolated PRO polypeptide nucleic acid molecule includes PRO polypeptide nucleic acid molecules contained in cells that ordinarily express the PRO polypeptide where, for example, the nucleic acid molecule is in a chromosomal location different from that of natural cells. <br><br> The term "control sequences" refers to DNA sequences necessary for the expression of 15 an operably linked coding sequence in a particular host organism. The control sequences that are suitable for prokaryotes, for example, include a promoter, optionally an operator sequence, and a ribosome binding site. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers. <br><br> Nucleic acid is "operably linked" when it is placed into a functional relationship with 20 another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, "operably linked" 25 means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice. <br><br> The term "antibody" is used in the broadest sense and specifically covers, for example, 30 single anti-PRO monoclonal antibodies (including agonist, antagonist, and neutralizing antibodies), anti-PRO antibody compositions with polyepitopic specificity, single chain anti-PRO antibodies, and fragments of anti-PRO antibodies (see below). The term "monoclonal antibody" as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for 35 possible naturally-occurring mutations that may be present in minor amounts. <br><br> "Stringency" of hybridization reactions is readily determinable by one of ordinary skill in the art, and generally is an empirical calculation dependent upon probe length, washing temperature, and salt concentration. In general, longer probes require higher temperatures for proper annealing, while shorter probes need lower temperatures. Hybridization generally <br><br> H:\Gabrjela\Keep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> 21 <br><br> depends on the ability of denatured DNA to reanneal when complementary strands are present in an environment below their melting temperature. The higher the degree of desired homology between the probe and hybridizable sequence, the higher the relative temperature which can be used. As a result, it follows that higher relative temperatures would tend to make the 5 reaction conditions more stringent, while lower temperatures less so. For additional details and explanation of stringency of hybridization reactions, see Ausubel et al., Current Protocols in Molecular Biology. Wiley Interscience Publishers, (1995). <br><br> "Stringent conditions" or "high stringency conditions", as defined herein, may be identified by those that: (1) employ low ionic strength and high temperature for washing, for 10 example 0.015 M sodium chloride/0.0015 M sodium citrate/0.1% sodium dodecyl sulfate at 50°C; (2) employ during hybridization a denaturing agent, such as formamide, for example, 50% (v/v) formamide with 0.1% bovine serum albumin/0.1% Ficoll/0.1% polyvinylpyrrolidone/50mM sodium phosphate buffer at pH 6.5 with 750 mM sodium chloride, 75 mM sodium citrate at 42°C; or (3) employ 50% formamide, 5 x SSC (0.75 M NaCI, 0.075 M 15 sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5 x Denhardt's solution, sonicated salmon sperm DNA (50 |jg/ml), 0.1% SDS, and 10% dextran sulfate at 42°C, with washes at 42°C in 0.2 x SSC (sodium chloride/sodium citrate) and 50% formamide at 55°C, followed by a high-stringency wash consisting of 0.1 x SSC containing EDTA at 55°C. <br><br> 20 "Moderately stringent conditions" may be identified as described by Sambrook et al., <br><br> Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor Press, 1989, and include the use of washing solution and hybridization conditions (e.g., temperature, ionic strength and %SDS) less stringent that those described above. An example of moderately stringent conditions is overnight incubation at 37°C in a solution comprising: 20% formamide, 5 25 x SSC (150 mM NaCI, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5 x Denhardt's solution, 10% dextran sulfate, and 20 mg/ml denatured sheared salmon sperm DNA, followed by washing the filters in 1 x SSC at about 37-50°C. The skilled artisan will recognize how to adjust the temperature, ionic strength, etc. as necessary to accommodate factors such as probe length and the like. <br><br> 30 The term "epitope tagged" when used herein refers to a chimeric polypeptide comprising a PRO polypeptide fused to a "tag polypeptide". The tag polypeptide has enough residues to provide an epitope against which an antibody can be made, yet is short enough such that it does not interfere with activity of the polypeptide to which it is fused. The tag polypeptide preferably also is fairly unique so that the antibody does not substantially cross-35 react with other epitopes. Suitable tag polypeptides generally have at least six amino acid residues and usually between about 8 and 50 amino acid residues (preferably, between about 10 and 20 amino acid residues). <br><br> H:\Gabriela\KfiepVSpeci\P49662 Div No 3.doc 26/05/03 <br><br> 22 <br><br> As used herein, the term "immunoadhesin" designates antibody-like molecules which combine the binding specificity of a heterologous protein (an "adhesin") with the effector functions of immunoglobulin constant domains. Structurally, the immunoadhesins comprise a fusion of an amino acid sequence with the desired binding specificity which is other than the 5 antigen recognition and binding site of an antibody (i.e., is "heterologous"), and an immunoglobulin constant domain sequence. The adhesin part of an immunoadhesin molecule typically is a contiguous amino acid sequence comprising at least the binding site of a receptor or a ligand. The immunoglobulin constant domain sequence in the immunoadhesin may be obtained from any immunoglobulin, such as lgG-1, lgG-2, lgG-3, or lgG-4 subtypes, igA 10 (including lgA-1 and lgA-2), IgE, IgD or IgM. <br><br> "Active" or "activity" for the purposes herein refers to form(s) of a PRO polypeptide which retain a biological and/or an immunological activity of native or naturally-occurring PRO, wherein "biological" activity refers to a biological function (either inhibitory or stimulatory) caused by a native or naturally-occurring PRO other than the ability to induce the production of 15 an antibody against an antigenic epitope possessed by a native or naturally-occurring PRO and an "immunological" activity refers to the ability to induce the production of an antibody against an antigenic epitope possessed by a native or naturally-occurring PRO. <br><br> The term "antagonist" is used in the broadest sense, and includes any molecule that partially or fully blocks, inhibits, or neutralizes a biological activity of a native PRO polypeptide 20 disclosed herein. In a similar manner, the term "agonist" is used in the broadest sense and includes any molecule that mimics a biological activity of a native PRO polypeptide disclosed herein. Suitable agonist or antagonist molecules specifically include agonist or antagonist antibodies or antibody fragments, fragments or amino acid sequence variants of native PRO polypeptides, peptides, antisense oligonucleotides, small organic molecules, etc. Methods for 25 identifying agonists or antagonists of a PRO polypeptide may comprise contacting a PRO polypeptide with a candidate agonist or antagonist molecule and measuring a detectable change in one or more biological activities normally associated with the PRO polypeptide. <br><br> "Treatment" refers to both therapeutic treatment and prophylactic or preventative measures, wherein the object is to prevent or slow down (lessen) the targeted pathologic 30 condition or disorder. Those in need of treatment include those already with the disorder as well as those prone to have the disorder or those in whom the disorder is to be prevented. <br><br> "Chronic" administration refers to administration of the agent(s) in a continuous mode as opposed to an acute mode, so as to maintain the initial therapeutic effect (activity) for an extended period of time. "Intermittent" administration is treatment that is not consecutively done 35 without interruption, but rather is cyclic in nature. <br><br> "Mammal" for purposes of treatment refers to any animal classified as a mammal, including humans, domestic and farm animals, and zoo, sports, or pet animals, such as dogs, cats, cattle, horses, sheep, pigs, goats, rabbits, etc. Preferably, the mammal is human. <br><br> H:\Gabriela\Keep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> 23 <br><br> Administration "in combination with" one or more further therapeutic agents includes simultaneous (concurrent) and consecutive administration in any order. <br><br> "Carriers" as used herein include pharmaceutically acceptable carriers, excipients, or stabilizers which are nontoxic to the cell or mammal being exposed thereto at the dosages and 5 concentrations employed. Often the physiologically acceptable carrier is an aqueous pH buffered solution. Examples of physiologically acceptable carriers include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptide; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as 10 glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium; and/or nonionic surfactants such as TWEEN™, polyethylene glycol (PEG), and PLURONICS™. <br><br> "Antibody fragments" comprise a portion of an intact antibody, preferably the antigen 15 binding or variable region of the intact antibody. Examples of antibody fragments include Fab, Fab', F(ab')2, and Fv fragments; diabodies; linear antibodies (Zapata et al., Protein Eng. 8(10): 1057-1062 [1995]); single-chain antibody molecules; and multispecific antibodies formed from antibody fragments. <br><br> Papain digestion of antibodies produces two identical antigen-binding fragments, called 20 "Fab" fragments, each with a single antigen-binding site, and a residual "Fc" fragment, a designation reflecting the ability to crystallize readily. Pepsin treatment yields an F(ab')2 fragment that has two antigen-combining sites and is still capable of cross-linking antigen. <br><br> "Fv" is the minimum antibody fragment which contains a complete antigen-recognition and -binding site. This region consists of a dimer of one heavy- and one light-chain variable 25 domain in tight, non-covalent association. It is in this configuration that the three CDRs of each variable domain interact to define an antigen-binding site on the surface of the VH-VL dimer. Collectively, the six CDRs confer antigen-binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three CDRs specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site. 30 The Fab fragment also contains the constant domain of the light chain and the first constant domain (CH1) of the heavy chain. Fab fragments differ from Fab' fragments by the addition of a few residues at the carboxy terminus of the heavy chain CH1 domain including one or more cysteines from the antibody hinge region. Fab'-SH is the designation herein for Fab' in which the cysteine residue(s) of the constant domains bear a free thiol group. F(ab')2 antibody 35 fragments originally were produced as pairs of Fab" fragments which have hinge cysteines between them. Other chemical couplings of antibody fragments are also known. <br><br> The "light chains" of antibodies (immunoglobulins) from any vertebrate species can be assigned to one of two clearly distinct types, called kappa and lambda, based on the amino acid sequences of their constant domains. <br><br> H:\Gabrieia\Keep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> 24 <br><br> Depending on the amino acid sequence of the constant domain of their heavy chains, immunoglobulins can be assigned to different classes. There are five major classes of immunoglobulins: IgA, IgD, IgE, IgG, and IgM, and several of these may be further divided into subclasses (isotypes), e.g., lgG1, lgG2, lgG3, lgG4, IgA, and lgA2. <br><br> 5 "Single-chain Fv" or "sFv" antibody fragments comprise the VH and VL domains of antibody, wherein these domains are present in a single polypeptide chain. Preferably, the Fv polypeptide further comprises a polypeptide linker between the VH and VL domains which enables the sFv to form the desired structure for antigen binding. For a review of sFv, see Pluckthun in The Pharmacology of Monoclonal Antibodies, vol. 113, Rosenburg and Moore 10 eds., Springer-Verlag, New York, pp. 269-315 (1994). <br><br> The term "diabodies" refers to small antibody fragments with two antigen-binding sites, which fragments comprise a heavy-chain variable domain (VH) connected to a light-chain variable domain (VL) in the same polypeptide chain (VH - VL). By using a linker that is too short to allow pairing between the two domains on the same chain, the domains are forced to 15 pair with the complementary domains of another chain and create two antigen-binding sites. Diabodies are described more fully in, for example, EP 404,097; WO 93/11161; and Hollinger et al., Proc. Natl. Acad. Sci. USA. 90:6444-6448 (1993). <br><br> An "isolated" antibody is one which has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural 20 environment are materials which would interfere with diagnostic or therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaceous or nonproteinaceous solutes. In preferred embodiments, the antibody will be purified (1) to greater than 95% by weight of antibody as determined by the Lowry method, and most preferably more than 99% by weight, (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino 25 acid sequence by use of a spinning cup sequenator, or (3) to homogeneity by SDS-PAGE under reducing or nonreducing conditions using Coomassie blue or, preferably, silver stain. Isolated antibody includes the antibody in situ within recombinant cells since at least one component of the antibody's natural environment will not be present. Ordinarily, however, isolated antibody will be prepared by at least one purification step. <br><br> 30 The word "label" when used herein refers to a detectable compound or composition which is conjugated directly or indirectly to the antibody so as to generate a "labeled" antibody. The label may be detectable by itself (e.g. radioisotope labels or fluorescent labels) or, in the case of an enzymatic label, may catalyze chemical alteration of a substrate compound or composition which is detectable. <br><br> 35 By "solid phase" is meant a non-aqueous matrix to which the antibody of the present invention can adhere. Examples of solid phases encompassed herein include those formed partially or entirely of glass (e.g., controlled pore glass), polysaccharides (e.g., agarose), polyacrylamides, polystyrene, polyvinyl alcohol and silicones. In certain embodiments, depending on the context, the solid phase can comprise the well of an assay plate; in others it is <br><br> H:\Gabriela\KsepVSpeci\P49662 Div No 3.doc 26/05/03 <br><br> 25 <br><br> a purification column (e.g., an affinity chromatography column). This term also includes a discontinuous solid phase of discrete particles, such as those described in U.S. Patent No. 4,275,149. <br><br> A "liposome" is a small vesicle composed of various types of lipids, phospholipids 5 and/or surfactant which is useful for delivery of a drug (such as a PRO polypeptide or antibody thereto) to a mammal. The components of the liposome are commonly arranged in a bilayer formation, similar to the lipid arrangement of biological membranes. <br><br> A "small molecule" is defined herein to have a molecular weight below about 500 <br><br> Daltons. <br><br> 10 <br><br> II. Compositions and Methods of the Invention <br><br> The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO polypeptides. In particular, cDNAs encoding various PRO polypeptides have been identified and isolated, as disclosed in 15 further detail in the Examples below. It is noted that proteins produced in separate expression rounds may be given different PRO numbers but the UNO number is unique for any given DNA and the encoded protein, and will not be changed. However, for sake of simplicity, in the present specification the protein encoded by the full length native nucleic acid molecules disclosed herein as well as all further native homologues and variants included in the foregoing 20 definition of PRO, will be referred to as "PRO/number", regardless of their origin or mode of preparation. <br><br> As disclosed in the Examples below, various cDNA clones have been deposited with the ATCC. The actual nucleotide sequences of those clones can readily be determined by the skilled artisan by sequencing of the deposited clone using routine methods in the art. The 25 predicted amino acid sequence can be determined from the nucleotide sequence using routine skill. For the PRO polypeptides and encoding nucleic acids described herein, Applicants have identified what is believed to be the reading frame best identifiable with the sequence information available at the time. <br><br> 30 A. Full-Lenath PRO Polypeptides <br><br> PRQ1317 <br><br> Using WU-BLAST2 sequence alignment computer programs, it has been found that a full-length native sequence PR01317 (shown in Figure 2 and SEQ ID NO:277) has certain amino acid sequence identity with a known semaphorin B protein, designated "I48745" on the 35 Dayhoff database. Accordingly, it is presently believed that PR01317 disclosed in the present application is a newly identified member of the semaphorin glycoprotein family and may possess activity or properties typical of semaphorins. <br><br> B. PRO Variants <br><br> H:\Gabriela\Keep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> 26 <br><br> In addition to the full-length native sequence PRO polypeptides of the invention, it is contemplated that PRO variants can be prepared. PRO variants can be prepared by introducing appropriate nucleotide changes into the PRO DNA, and/or by synthesis of the desired PRO polypeptide. Those skilled in the art will appreciate that amino acid changes may 5 alter post-translational processes of the PRO, such as changing the number or position of glycosylation sites or altering the membrane anchoring characteristics. <br><br> Variations in the native full-length sequence PRO or in various domains of the PRO described herein, can be made, for example, using any of the techniques and guidelines for conservative and non-conservative mutations set forth, for instance, in U.S. Patent No. 10 5,364,934. Variations may be a substitution, deletion or insertion of one or more codons encoding the PRO that results in a change in the amino acid sequence of the PRO as compared with the native sequence PRO. Optionally the variation is by substitution of at least one amino acid with any other amino acid in one or more of the domains of the PRO. Guidance in determining which amino acid residue may be inserted, substituted or deleted without 15 adversely affecting the desired activity may be found by comparing the sequence of the PRO with that of homologous known protein molecules and minimizing the number of amino acid sequence changes made in regions of high homology. Amino acid substitutions can be the result of replacing one amino acid with another amino acid having similar structural and/or chemical properties, such as the replacement of a leucine with a serine, i.e., conservative 20 amino acid replacements. Insertions or deletions may optionally be in the range of about 1 to 5 amino acids. The variation allowed may be determined by systematically making insertions, deletions or substitutions of amino acids in the sequence and testing the resulting variants for activity exhibited by the full-length or mature native sequence. <br><br> PRO polypeptide fragments are provided herein. Such fragments may be truncated at 25 the N-terminus or C-terminus, or may lack internal residues, for example, when compared with a full length native protein. Certain fragments lack amino acid residues that are not essential for a desired biological activity of the PRO polypeptide. <br><br> PRO fragments may be prepared by any of a number of conventional techniques. Desired peptide fragments may be chemically synthesized. An alternative approach involves 30 generating PRO fragments by enzymatic digestion, e.g., by treating the protein with an enzyme known to cleave proteins at sites defined by particular amino acid residues, or by digesting the DNA with suitable restriction enzymes and isolating the desired fragment. Yet another suitable technique involves isolating and amplifying a DNA fragment encoding a desired polypeptide fragment, by polymerase chain reaction (PCR). Oligonucleotides that define the desired termini 35 of the DNA fragment are employed at the 5' and 3' primers in the PCR. Preferably, PRO polypeptide fragments share at least one biological and/or immunological activity with the native PRO polypeptide disclosed herein. <br><br> In particular embodiments, conservative substitutions of interest are shown in Table 1 under the heading of preferred substitutions. If such substitutions result in a change in <br><br> SKEtT., ™CE <br><br> - 1 APR 2005 <br><br> AECE'VED <br><br> Li <br><br> H:\Gabriela\Keep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> I <br><br> 27 <br><br> biological activity, then more substantial changes, denominated exemplary substitutions in Table 1, or as further described below in reference to amino acid classes, are introduced and the products screened. <br><br> 5 Table 1 <br><br> Original <br><br> Exemplary <br><br> Preferred <br><br> Residue <br><br> Substitutions <br><br> Substitutions <br><br> 10 <br><br> Ala (A) <br><br> val; leu; ile val <br><br> Arg (R) <br><br> lys; gin; asn lys <br><br> Asn (N) <br><br> gin; his; lys; arg gin <br><br> Asp (D) <br><br> glu glu <br><br> Cys (C) <br><br> ser ser <br><br> 15 <br><br> Gin (Q) <br><br> asn asn <br><br> Glu (E) <br><br> asp asp <br><br> Gly (G) <br><br> pro; ala ala <br><br> His (H) <br><br> asn; gin; lys; arg arg <br><br> He (1) <br><br> leu; val; met; ala; phe; <br><br> 20 <br><br> norleucine leu <br><br> Leu (L) <br><br> norleucine; ile; val; <br><br> met; ala; phe ile <br><br> Lys (K) <br><br> arg; gin; asn arg <br><br> Met (M) <br><br> leu; phe; ile leu <br><br> 25 <br><br> Phe (F) <br><br> leu; val; ile; ala; tyr leu <br><br> Pro (P) <br><br> ala ala <br><br> Ser (S) <br><br> thr thr <br><br> Thr (T) <br><br> ser ser <br><br> Trp (W) <br><br> tyr; phe tyr <br><br> 30 <br><br> Tyr (Y) <br><br> trp; phe; thr; ser phe <br><br> Val (V) <br><br> ile; leu; met; phe; <br><br> ala; norleucine leu <br><br> Substantial modifications in function or immunological identity of the PRO polypeptide 35 are accomplished by selecting substitutions that differ significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. Naturally occurring residues are divided into groups based on common side-chain properties: <br><br> 40 (1) hydrophobic: norleucine, met, ala, val, leu, ile; <br><br> (2) neutral hydrophilic: cys, ser, thr; <br><br> (3) acidic: asp, glu; <br><br> (4) basic: asn, gin, his, lys, arg; <br><br> (5) residues that influence chain orientation: gly, pro; and 45 (6) aromatic: trp, tyr, phe. <br><br> Non-conservative substitutions will entail exchanging a member of one of these classes for another class. Such substituted residues also may be introduced into the conservative substitution sites or, more preferably, into the remaining (non-conserved) sites. <br><br> H:\Gabriela\KeepVSpeci\P49662 Div No 3.doc 26/05/03 <br><br> 28 <br><br> The variations can be made using methods known in the art such as oiigonucieotide-mediated (site-directed) mutagenesis, alanine scanning, and PCR mutagenesis. Site-directed mutagenesis [Carter et al., Nucl. Acids Res.. 13:4331 (1986); Zoller et al., Nucl. Acids Res.. 10:6487 (1987)], cassette mutagenesis [Wells et al., Gene. 34:315 (1985)], restriction selection 5 mutagenesis [Wells et al., Philos. Trans. R. Soc. London SerA. 317:415 (1986)] or other known techniques can be performed on the cloned DNA to produce the PRO variant DNA. <br><br> Scanning amino acid analysis can also be employed to identify one or more amino acids along a contiguous sequence. Among the preferred scanning amino acids are relatively small, neutral amino acids. Such amino acids include alanine, glycine, serine, and cysteine. 10 Alanine is typically a preferred scanning amino acid among this group because it eliminates the side-chain beyond the beta-carbon and is less likely to alter the main-chain conformation of the variant [Cunningham and Wells, Science. 244: 1081-1085 (1989)]. Alanine is also typically preferred because it is the most common amino acid. Further, it is frequently found in both buried and exposed positions [Creighton, The Proteins. (W.H. Freeman &amp; Co., N.Y.); Chothia, 15 J. Mol. Biol.. 150:1 (1976)]. If alanine substitution does not yield adequate amounts of variant, an isoteric amino acid can be used. <br><br> C. Modifications of PRO <br><br> Covalent modifications of PRO are included within the scope of this invention. One 20 type of covalent modification includes reacting targeted amino acid residues of a PRO polypeptide with an organic derivatizing agent that is capable of reacting with selected side chains or the N- or C- terminal residues of the PRO. Derivatization with bifunctional agents is useful, for instance, for crosslinking PRO to a water-insoluble support matrix or surface for use in the method for purifying anti-PRO antibodies, and vice-versa. Commonly used crosslinking 25 agents include, e.g., 1,1-bis(diazoacetyl)-2-phenylethane, glutaraldehyde, N-hydroxysuccinimide esters, for example, esters with 4-azidosalicylic acid, homobifunctional imidoesters, including disuccinimidyl esters such as 3,3'-dithiobis(succinimidylpropionate), bifunctional maleimides such as bis-N-maleimido-1,8-octane and agents such as methyl-3-[(p-azidophenyl)dithio]propioimidate. <br><br> 30 Other modifications include deamidation of glutaminyl and asparaginyl residues to the corresponding glutamyl and aspartyl residues, respectively, hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of seryl or threonyl residues, methylation of the a-amino groups of lysine, arginine, and histidine side chains [T.E. Creighton, Proteins: Structure and Molecular Properties. W.H. Freeman &amp; Co., San Francisco, pp. 79-86 (1983)], acetylation of the 35 N-terminal amine, and amidation of any C-terminal carboxyl group. <br><br> Another type of covalent modification of the PRO polypeptide included within the scope of this invention comprises altering the native glycosylation pattern of the polypeptide. "Altering the native glycosylation pattern" is intended for purposes herein to mean deleting one or more carbohydrate moieties found in native sequence PRO (either by removing the underlying <br><br> H:\Gabriela\Keep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> 29 <br><br> glycosylation site or by deleting the glycosylation by chemical and/or enzymatic means), and/or adding one or more glycosylation sites that are not present in the native sequence PRO. In addition, the phrase includes qualitative changes in the glycosylation of the native proteins, involving a change in the nature and proportions of the various carbohydrate moieties present. 5 Addition of glycosylation sites to the PRO polypeptide may be accomplished by altering the amino acid sequence. The alteration may be made, for example, by the addition of, or substitution by, one or more serine or threonine residues to the native sequence PRO (for O-linked glycosylation sites). The PRO amino acid sequence may optionally be altered through changes at the DNA level, particularly by mutating the DNA encoding the PRO polypeptide at 10 preselected bases such that codons are generated that will translate into the desired amino acids. <br><br> Another means of increasing the number of carbohydrate moieties on the PRO polypeptide is by chemical or enzymatic coupling of glycosides to the polypeptide. Such methods are described in the art, e.g., in WO 87/05330 published 11 September 1987, and in 15 Aplin and Wriston, CRC Crit. Rev. Biochem.. pp. 259-306 (1981). <br><br> Removal of carbohydrate moieties present on the PRO polypeptide may be accomplished chemically or enzymatically or by mutational substitution of codons encoding for amino acid residues that serve as targets for glycosylation. Chemical deglycosylation techniques are known in the art and described, for instance, by Hakimuddin, et al., Arch. 20 Biochem. Biophvs.. 259:52 (1987) and by Edge et al., Anal. Biochem.. 118:131 (1981). Enzymatic cleavage of carbohydrate moieties on polypeptides can be achieved by the use of a variety of endo- and exo-glycosidases as described by Thotakura et al., Meth. EnzvmoL 138:350 (1987). <br><br> Another type of covalent modification of PRO comprises linking the PRO polypeptide to 25 one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol (PEG), polypropylene glycol, or polyoxyalkylenes, in the manner set forth in U.S. Patent Nos. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192 or 4,179,337. <br><br> The PRO of the present invention may also be modified in a way to form a chimeric molecule comprising PRO fused to another, heterologous polypeptide or amino acid sequence. 30 In one embodiment, such a chimeric molecule comprises a fusion of the PRO with a tag polypeptide which provides an epitope to which an anti-tag antibody can selectively bind. The epitope tag is generally placed at the amino- or carboxyl- terminus of the PRO. The presence of such epitope-tagged forms of the PRO can be detected using an antibody against the tag polypeptide. Also, provision of the epitope tag enables the PRO to be readily purified by affinity 35 purification using an anti-tag antibody or another type of affinity matrix that binds to the epitope tag. Various tag polypeptides and their respective antibodies are well known in the art. Examples include poly-histidine (poly-his) or poly-histidine-glycine (poly-his-gly) tags; the flu HA tag polypeptide and its antibody 12CA5 [Field et al., Mol. Cell. Biol.. 8:2159-2165 (1988)]; the c-myc tag and the 8F9, 3C7, 6E10, G4, B7 and 9E10 antibodies thereto [Evan et al., Molecular <br><br> H:\Gabriela\Keep\SpecftP49662 Div No 3.doc 26/05/03 <br><br> 30 <br><br> and Cellular Biology. 5:3610-3616 (1985)]; and the Herpes Simplex virus glycoprotein D (gD) tag and its antibody [Paborsky et al., Protein Engineering. 3(6):547-553 (1990)]. Other tag polypeptides include the Flag-peptide [Hopp et al., BioTechnoloov. 6:1204-1210 (1988)]; the KT3 epitope peptide [Martin et al., Science. 255:192-194 (1992)]; an a-tubulin epitope peptide 5 [Skinner et al., J. Biol. Chem.. 266:15163-15166 (1991)]; and the T7 gene 10 protein peptide tag [Lutz-Freyermuth et al., Proc. Natl. Acad. Sci. USA. 87:6393-6397 (1990)]. <br><br> In an alternative embodiment, the chimeric molecule may comprise a fusion of the PRO with an immunoglobulin or a particular region of an immunoglobulin. For a bivalent form of the chimeric molecule (also referred to as an "immunoadhesin"), such a fusion could be to the Fc 10 region of an IgG molecule. The Ig fusions preferably include the substitution of a soluble (transmembrane domain deleted or inactivated) form of a PRO polypeptide in place of at least one variable region within an Ig molecule. In a particularly preferred embodiment, the immunoglobulin fusion includes the hinge, CH2 and CH3, or the hinge, CH1, CH2 and CH3 regions of an lgG1 molecule. For the production of immunoglobulin fusions see also US Patent 15 No. 5,428,130 issued June 27, 1995. <br><br> D- Preparation of PRO The description below relates primarily to production of PRO by culturing cells transformed or transfected with a vector containing PRO nucleic acid. It is, of course, 20 contemplated that alternative methods, which are well known in the art, may be employed to prepare PRO. For instance, the PRO sequence, or portions thereof, may be produced by direct peptide synthesis using solid-phase techniques [see, e.g., Stewart et al., Solid-Phase Peptide Synthesis. W.H. Freeman Co., San Francisco, CA (1969); Merrifield, J. Am. Chem. Soc.. 85:2149-2154 (1963)]. /n vitro protein synthesis may be performed using manual techniques or 25 by automation. Automated synthesis may be accomplished, for instance, using an Applied Biosystems Peptide Synthesizer (Foster City, CA) using manufacturer's instructions. Various portions of the PRO may be chemically synthesized separately and combined using chemical or enzymatic methods to produce the full-length PRO. <br><br> 30 1. Isolation of DNA Encoding PRO <br><br> DNA encoding PRO may be obtained from a cDNA library prepared from tissue believed to possess the PRO mRNA and to express it at a detectable level. Accordingly, <br><br> human PRO DNA can be conveniently obtained from a cDNA library prepared from human tissue, such as described in the Examples. The PRO-encoding gene may also be obtained <br><br> 35 from a genomic library or by known synthetic procedures (e.g., automated nucleic acid synthesis). <br><br> Libraries can be screened with probes (such as antibodies to the PRO or oligonucleotides of "at least about 20-80 bases) designed to identify the gene of interest or the protein encoded by it. Screening the cDNA or genomic library with the selected probe may be <br><br> H:\Gabriela\Keep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> 31 <br><br> conducted using standard procedures, such as described in Sambrook et al., Molecular Cloning: A Laboratory Manual (New York: Cold Spring Harbor Laboratory Press, 1989). An alternative means to isolate the gene encoding PRO is to use PCR methodology [Sambrook et al., suora: Dieffenbach et al., PCR Primer: A Laboratory Manual (Cold Spring Harbor Laboratory 5 Press, 1995)]. <br><br> The Examples below describe techniques for screening a cDNA library. The oligonucleotide sequences selected as probes should be of sufficient length and sufficiently unambiguous that false positives are minimized. The oligonucleotide is preferably labeled such that it can be detected upon hybridization to DNA in the library being screened. Methods of 10 labeling are well known in the art, and include the use of radiolabels like 32P-labeled ATP, biotinylation or enzyme labeling. Hybridization conditions, including moderate stringency and high stringency, are provided in Sambrook et al., supra. <br><br> Sequences identified in such library screening methods can be compared and aligned to other known sequences deposited and available in public databases such as GenBank or 15 other private sequence databases. Sequence identity (at either the amino acid or nucleotide level) within defined regions of the molecule or across the full-length sequence can be determined using methods known in the art and as described herein. <br><br> Nucleic acid having protein coding sequence may be obtained by screening selected cDNA or genomic libraries using the deduced amino acid sequence disclosed herein for the first 20 time, and, if necessary, using conventional primer extension procedures as described in Sambrook et al., supra, to detect precursors and processing intermediates of mRNA that may not have been reverse-transcribed into cDNA. <br><br> 2. Selection and Transformation of Host Cells <br><br> 25 Host cells are transfected or transformed with expression or cloning vectors described herein for PRO production and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences. The culture conditions, such as media, temperature, pH and the like, can be selected by the skilled artisan without undue experimentation. In general, principles, protocols, <br><br> 30 and practical techniques for maximizing the productivity of cell cultures can be found in <br><br> Mammalian Cell Biotechnology: a Practical Approach. M. Butler, ed. (IRL Press, 1991) and <br><br> Sambrook et al., supra. <br><br> Methods of eukaryotic cell transfection and prokaryotic cell transformation are known to the ordinarily skilled artisan, for example, CaCI2, CaP04, liposome-mediated and <br><br> 35 electroporation. Depending on the host cell used, transformation is performed using standard techniques appropriate to such cells. The calcium treatment employing calcium chloride, as described in Sambrook et al., supra, or electroporation is generally used for prokaryotes. <br><br> Infection with Agrobacterium tumefaciens is used for transformation of certain plant cells, as described by Shaw et al., Gene. 23:315 (1983) and WO 89/05859 published 29 June 1989. For <br><br> H:\GabrieIa\Keep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> 32 <br><br> mammalian cells without such cell walls, the calcium phosphate precipitation method of Graham and van der Eb, Virology. 52:456-457 (1978) can be employed. General aspects of mammalian cell host system transfections have been described in U.S. Patent No. 4,399,216. Transformations into yeast are typically carried out according to the method of Van Solingen et 5 al., J. Bact.. 130:946 (1977) and Hsiao et al., Proc. Natl. Acad. Sci. (USA). 76:3829 (1979). However, other methods for introducing DNA into cells, such as by nuclear microinjection, electroporation, bacterial protoplast fusion with intact cells, or polycations, e.g., polybrene, polyornithine, may also be used. For various techniques for transforming mammalian cells, see Keown et al., Methods in Enzvmology. 185:527-537 (1990) and Mansour et al., Nature. 10 336:348-352(1988). <br><br> Suitable host cells for cloning or expressing the DNA in the vectors herein include prokaryote, yeast, or higher eukaryote cells. Suitable prokaryotes include but are not limited to eubacteria, such as Gram-negative or Gram-positive organisms, for example, Enterobacteriaceae such as E coli. Various E. coli strains are publicly available, such as E coli 15 K12 strain MM294 (ATCC 31,446); E. coliX1776 (ATCC 31,537); E coli strain W3110 (ATCC 27,325) and K5 772 (ATCC 53,635). Other suitable prokaryotic host cells include Enterobacteriaceae such as Escherichia, e.g., E. coli, Enterobacter, Erwinia, Klebsiella, Proteus, Salmonella, e.g., Salmonella typhimurium, Serratia, e.g., Serratia marcescans, and Shigella, as well as Bacilli such as B. subtilis and B. licheniformis (e.g., B. licheniformis 41P 20 disclosed in DD 266,710 published 12 April 1989), Pseudomonas such as P. aeruginosa, and Streptomyces. These examples are illustrative rather than limiting. Strain W3110 is one particularly preferred host or parent host because it is a common host strain for recombinant DNA product fermentations. Preferably, the host cell secretes minimal amounts of proteolytic enzymes. For example, strain W3110 may be modified to effect a genetic mutation in the 25 genes encoding proteins endogenous to the host, with examples of such hosts including E. coli W3110 strain 1A2, which has the complete genotype tonA ; E coli W3110 strain 9E4, which has the complete genotype tonA ptr3, E. coli W3110 strain 27C7 (ATCC 55,244), which has the complete genotype tonA ptr3 phoA E15 (argF-lac)169 degP ompT karf; E coli W3110 strain 37D6, which has the complete genotype tonA ptr3 phoA E15 (argF-lac)169 degP ompT rbs7 30 ilvG karf; E. coli W3110 strain 40B4, which is strain 37D6 with a non-kanamycin resistant degP deletion mutation; and an E coli strain having mutant periplasmic protease disclosed in U.S. Patent No. 4,946,783 issued 7 August 1990. Alternatively, in vitro methods of cloning, e.g., PCR or other nucleic acid polymerase reactions, are suitable. <br><br> In addition to prokaryotes, eukaryotic microbes such as filamentous fungi or yeast are 35 suitable cloning or expression hosts for PRO-encoding vectors. Saccharomyces cerevisiae is a commonly used lower eukaryotic host microorganism. Others include Schizosaccharomyces pombe (Beach and Nurse, Nature. 290: 140 [1981]; EP 139,383 published 2 May 1985); Kluyveromyces hosts (U.S. Patent No. 4,943,529; Fleer et al., Bio/Technoloov. 9:968-975 (1991)) such as, e.g., K. lactis (MW98-8C, CBS683, CBS4574; Louvencourt et al., J. Bacterid., <br><br> H:\GabrielaVKeep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> 33 <br><br> 737 [1983]), K. fragilis (ATCC 12,424), K. bulgaricus (ATCC 16,045), K. wickeramii (ATCC 24,178), K. waltii (ATCC 56,500), K. drosophilarum (ATCC 36,906; Van den Berg et al., Biotechnology. 8:135 (1990)), K. thermotoleraris, and K. marxianus; yarrowia (EP 402,226); Pichia pastoris (EP 183,070; Sreekrishna et al., J. Basic Microbiol.. 28:265-278 [1988]); 5 Candida; Trichoderma reesia (EP 244,234); Neurospora crassa (Case et al., Proc. Natl. Acad. Sci. USA. 76:5259-5263 [1979]); Schwanniomyces such as Schwanniomyces occidentalis (EP 394,538 published 31 October 1990); and filamentous fungi such as, e.g., Neurospora, Penicillium, Tolypocladium (WO 91/00357 published 10 January 1991), and Aspergillus hosts such as A. nidulans (Ballance et al., Biochem. Biophvs. Res. Commun.. 112:284-289 [1983]; 10 Tilburn et al., Gene. 26:205-221 [1983]; Yelton et al., Proc. Natl. Acad. Sci. USA. 81:1470-1474 [1984]) and A. niger (Kelly and Hynes, EMBO J.. 4:475-479 [1985]). Methylotropic yeasts are suitable herein and include, but are not limited to, yeast capable of growth on methanol selected from the genera consisting of Hansenula, Candida, Kloeckera, Pichia, Saccharomyces, Torulopsis, and Rhodotorula. A list of specific species that are exemplary of 15 this class of yeasts may be found in C. Anthony, The Biochemistry of Methvlotrophs. 269 (1982). <br><br> Suitable host cells for the expression of glycosylated PRO are derived from multicellular organisms. Examples of invertebrate cells include insect cells such as Drosophila S2 and Spodoptera Sf9, as well as plant cells. Examples of useful mammalian host cell lines include 20 Chinese hamster ovary (CHO) and COS cells. More specific examples include monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al., J. Gen Virol.. 36:59 (1977)); Chinese hamster ovary cells/-DHFR (CHO, Urlaub and Chasin, Proc. Natl. Acad. Sci. USA. 77:4216 (1980)); mouse Sertoli cells (TM4, Mather, Biol. Reprod.. 23:243-251 (1980)); 25 human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); and mouse mammary tumor (MMT 060562, ATCC CCL51). The selection of the appropriate host cell is deemed to be within the skill in the art. <br><br> 3. Selection and Use of a Reolicable Vector 30 The nucleic acid (e.g., cDNA or genomic DNA) encoding PRO may be inserted into a replicable vector for cloning (amplification of the DNA) or for expression. Various vectors are publicly available. The vector may, for example, be in the form of a plasmid, cosmid, viral particle, or phage. The appropriate nucleic acid sequence may be inserted into the vector by a variety of procedures. In general, DNA is inserted into an appropriate restriction endonuclease 35 site(s) using techniques known in the art. Vector components generally include, but are not limited to, one or more of a signal sequence, an origin of replication, one or more marker genes, an enhancer element, a promoter, and a transcription termination sequence. Construction of suitable vectors containing one or more of these components employs standard ligation techniques which are known to the skilled artisan. <br><br> H:\Gabriela\Keep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> 34 <br><br> The PRO may be produced recombinantly not only directly, but also as a fusion polypeptide with a heterologous polypeptide, which may be a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature protein or polypeptide. In general, the signal sequence may be a component of the vector, or it may be a 5 part of the PRO-encoding DNA that is inserted into the vector. The signal sequence may be a prokaryotic signal sequence selected, for example, from the group of the alkaline phosphatase, penicillinase, Ipp, or heat-stable enterotoxin II leaders. For yeast secretion the signal sequence may be, e.g., the yeast invertase leader, alpha factor leader (including Saccharomyces and Kluyveromyces a-factor leaders, the latter described in U.S. Patent No. 5,010,182), or acid 10 phosphatase leader, the C. albicans glucoamylase leader (EP 362,179 published 4 April 1990), or the signal described in WO 90/13646 published 15 November 1990. In mammalian cell expression, mammalian signal sequences may be used to direct secretion of the protein, such as signal sequences from secreted polypeptides of the same or related species, as well as viral secretory leaders. <br><br> 15 Both expression and cloning vectors contain a nucleic acid sequence that enables the vector to replicate in one or more selected host cells. Such sequences are well known for a variety of bacteria, yeast, and viruses. The origin of replication from the plasmid pBR322 is suitable for most Gram-negative bacteria, the 2p plasmid origin is suitable for yeast, and various viral origins (SV40, polyoma, adenovirus, VSV or BPV) are useful for cloning vectors in 20 mammalian cells. <br><br> Expression and cloning vectors will typically contain a selection gene, also termed a selectable marker. Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, neomycin, methotrexate, or tetracycline, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available from complex 25 media, e.g., the gene encoding D-alanine racemase for Bacilli. <br><br> An example of suitable selectable markers for mammalian cells are those that enable the identification of cells competent to take up the PRO-encoding nucleic acid, such as DHFR or thymidine kinase. An appropriate host cell when wild-type DHFR is employed is the CHO cell line deficient in DHFR activity, prepared and propagated as described by Urlaub et al., 30 Proc. Natl. Acad. Sci. USA. 77:4216 (1980). A suitable selection gene for use in yeast is the frp1 gene present in the yeast plasmid YRp7 [Stinchcomb et al., Nature. 282:39 (1979); Kingsman et al., Gene. 7:141 (1979); Tschemper et al., Gene. 10:157 (1980)]. The f/p1 gene provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, for example, ATCC No. 44076 or PEP4-1 [Jones, Genetics. 85:12 (1977)]. 35 Expression and cloning vectors usually contain a promoter operably linked to the PRO- <br><br> encoding nucleic acid sequence to direct mRNA synthesis. Promoters recognized by a variety of potential host cells are well known. Promoters suitable for use with prokaryotic hosts include the (B-lactamase and lactose promoter systems [Chang et al., Nature. 275:615 (1978); Goeddel et al., Nature. 281:544 (1979)], alkaline phosphatase, a tryptophan (trp) promoter system <br><br> H:\Gabriela\Keep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> ( <br><br> 35 <br><br> [Goeddel, Nucleic Acids Res.. 8:4057 (1980); EP 36,776], and hybrid promoters such as the tac promoter [deBoer et al., Proc. Natl. Acad. Sci. USA. 80:21-25 (1983)]. Promoters for use in bacterial systems also will contain a Shine-Dalgarno (S.D.) sequence operably linked to the DNA encoding PRO. <br><br> 5 Examples of suitable promoting sequences for use with yeast hosts include the promoters for 3-phosphoglycerate kinase [Hitzeman et al., J. Biol. Chem.. 255:2073 (1980)] or other glycolytic enzymes [Hess et al., J. Adv. Enzyme Rea.. 7:149 (1968); Holland, Biochemistry. 17:4900 (1978)], such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-10 phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase. <br><br> Other yeast promoters, which are inducible promoters having the additional advantage of transcription controlled by growth conditions, are the promoter regions for alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes associated with 15 nitrogen metabolism, metallothionein, glyceraldehyde-3-phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization. Suitable vectors and promoters for use in yeast expression are further described in EP 73,657. <br><br> PRO transcription from vectors in mammalian host cells is controlled, for example, by promoters obtained from the genomes of viruses such as polyoma virus, fowlpox virus (UK 20 2,211,504 published 5 July 1989), adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus and Simian Virus 40 (SV40), from heterologous mammalian promoters, e.g., the actin promoter or an immunoglobulin promoter, and from heat-shock promoters, provided such promoters are compatible with the host cell systems. <br><br> 25 Transcription of a DNA encoding the PRO by higher eukaryotes may be increased by inserting an enhancer sequence into the vector. Enhancers are cis-acting elements of DNA, usually about from 10 to 300 bp, that act on a promoter to increase its transcription. Many enhancer sequences are now known from mammalian genes (globin, elastase, albumin, a-fetoprotein, and insulin). Typically, however, one will use an enhancer from a eukaryotic cell 30 virus. Examples include the SV40 enhancer on the late side of the replication origin (bp 100-270), the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers. The enhancer may be spliced into the vector at a position 5' or 3' to the PRO coding sequence, but is preferably located at a site 5' from the promoter. <br><br> 35 Expression vectors used in eukaryotic host cells (yeast, fungi, insect, plant, animal, <br><br> human, or nucleated cells from other multicellular organisms) will also contain sequences necessary for the termination of transcription and for stabilizing the mRNA. Such sequences are commonly available from the 5' and, occasionally 3', untranslated regions of eukaryotic or <br><br> H:\Gabriela\Keep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> 36 <br><br> viral DNAs or cDNAs. These regions contain nucleotide segments transcribed as polyadenylated fragments in the untranslated portion of the mRNA encoding PRO. <br><br> Still other methods, vectors, and host cells suitable for adaptation to the synthesis of PRO in recombinant vertebrate cell culture are described in Gething et al., Nature. 293:620-625 5 (1981); Mantei et al., Nature. 281:40-46 (1979); EP 117,060; and EP 117,058. <br><br> 4. Detecting Gene Amplification/Expression <br><br> Gene amplification and/or expression may be measured in a sample directly, for example, by conventional Southern blotting, Northern blotting to quantitate the transcription of 10 mRNA [Thomas, Proc. Natl. Acad. Sci. USA. 77:5201 -5205 (1980)], dot blotting (DNA analysis), or in situ hybridization, using an appropriately labeled probe, based on the sequences provided herein. Alternatively, antibodies may be employed that can recognize specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes. The antibodies in turn may be labeled and the assay may be carried out where the 15 duplex is bound to a surface, so that upon the formation of duplex on the surface, the presence of antibody bound to the duplex can be detected. <br><br> Gene expression, alternatively, may be measured by immunological methods, such as immunohistochemical staining of cells or tissue sections and assay of cell culture or body fluids, to quantitate directly the expression of gene product. Antibodies useful for 20 immunohistochemical staining and/or assay of sample fluids may be either monoclonal or polyclonal, and may be prepared in any mammal. Conveniently, the antibodies may be prepared against a native sequence PRO polypeptide or against a synthetic peptide based on the DNA sequences provided herein or against exogenous sequence fused to PRO DNA and encoding a specific antibody epitope. <br><br> 25 <br><br> 5. Purification of Polypeptide <br><br> Forms of PRO may be recovered from culture medium or from host cell lysates. If membrane-bound, it can be released from the membrane using a suitable detergent solution (e.g. Triton-X 100) or by enzymatic cleavage. Cells employed in expression of PRO can be 30 disrupted by various physical or chemical means, such as freeze-thaw cycling, sonication, mechanical disruption, or cell lysing agents. <br><br> It may be desired to purify PRO from recombinant cell proteins or polypeptides. The following procedures are exemplary of suitable purification procedures: by fractionation on an ion-exchange column; ethanol precipitation; reverse phase HPLC; chromatography on silica or 35 on a cation-exchange resin such as DEAE; chromatofocusing; SDS-PAGE; ammonium sulfate precipitation; gel filtration using, for example, Sephadex G-75; protein A Sepharose columns to remove contaminants such as IgG; and metal chelating columns to bind epitope-tagged forms of the PRO. Various methods of protein purification may be employed and such methods are known in the art and described for example in Deutscher, Methods in Enzvmoloav. 182 (1990); <br><br> H:\GabrieIa\Keep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> 37 <br><br> Scopes, Protein Purification: Principles and Practice. Springer-Verlag, New York (1982). The purification step(s) selected will depend, for example, on the nature of the production process used and the particular PRO produced. <br><br> 5 E. Uses for PRO <br><br> Nucleotide sequences (or their complement) encoding PRO have various applications in the art of molecular biology, including uses as hybridization probes, in chromosome and gene mapping and in the generation of anti-sense RNA and DNA. PRO nucleic acid will also be useful for the preparation of PRO polypeptides by the recombinant techniques described herein. 10 The full-length native sequence PRO gene, or portions thereof, may be used as hybridization probes for a cDNA library to isolate the full-length PRO cDNA or to isolate still other cDNAs (for instance, those encoding naturally-occurring variants of PRO or PRO from other species) which have a desired sequence identity to the native PRO sequence disclosed herein. Optionally, the length of the probes will be about 20 to about 50 bases. The 15 hybridization probes may be derived from at least partially novel regions of the full length native nucleotide sequence wherein those regions may be determined without undue experimentation or from genomic sequences including promoters, enhancer elements and introns of native sequence PRO. By way of example, a screening method will comprise isolating the coding region of the PRO gene using the known DNA sequence to synthesize a selected probe of 20 about 40 bases. Hybridization probes may be labeled by a variety of labels, including radionucleotides such as 32P or 35S, or enzymatic labels such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems. Labeled probes having a sequence complementary to that of the PRO gene of the present invention can be used to screen libraries of human cDNA, genomic DNA or mRNA to determine which members of such libraries the 25 probe hybridizes to. Hybridization techniques are described in further detail in the Examples below. <br><br> Any EST sequences disclosed in the present application may similarly be employed as probes, using the methods disclosed herein. <br><br> Other useful fragments of the PRO nucleic acids include antisense or sense 30 oligonucleotides comprising a singe-stranded nucleic acid sequence (either RNA or DNA) capable of binding to target PRO mRNA (sense) or PRO DNA (antisense) sequences. Antisense or sense oligonucleotides, according to the present invention, comprise a fragment of the coding region of PRO DNA. Such a fragment generally comprises at least about 14 nucleotides, preferably from about 14 to 30 nucleotides. The ability to derive an antisense or a 35 sense oligonucleotide, based upon a cDNA sequence encoding a given protein is described in, for example, Stein and Cohen (Cancer Res. 48:2659, 1988) and van der Krol et al. (BioTechnioues 6:958,1988). <br><br> Binding of antisense or sense oligonucleotides to target nucleic acid sequences results in the formation of duplexes that block transcription or translation of the target sequence by one <br><br> H:\GabrieIa\Keep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> 38 <br><br> of several means, including enhanced degradation of the duplexes, premature termination of transcription or translation, or by other means. The antisense oligonucleotides thus may be used to block expression of PRO proteins. Antisense or sense oligonucleotides further comprise oligonucleotides having modified sugar-phosphodiester backbones (or other sugar linkages, 5 such as those described in WO 91/06629) and wherein such sugar linkages are resistant to endogenous nucleases. Such oligonucleotides with resistant sugar linkages are stable in vivo (i.e., capable of resisting enzymatic degradation) but retain sequence specificity to be able to bind to target nucleotide sequences. <br><br> Other examples of sense or antisense oligonucleotides include those oligonucleotides 10 which are covalently linked to organic moieties, such as those described in WO 90/10048, and other moieties that increases affinity of the oligonucleotide for a target nucleic acid sequence, such as poly-(L-lysine). Further still, intercalating agents, such as ellipticine, and alkylating agents or metal complexes may be attached to sense or antisense oligonucleotides to modify binding specificities of the antisense or sense oligonucleotide for the target nucleotide 15 sequence. <br><br> Antisense or sense oligonucleotides may be introduced into a cell containing the target nucleic acid sequence by any gene transfer method, including, for example, CaP04-mediated DNA transfection, electroporation, or by using gene transfer vectors such as Epstein-Barr virus. In a preferred procedure, an antisense or sense oligonucleotide is inserted into a suitable 20 retroviral vector. A cell containing the target nucleic acid sequence is contacted with the recombinant retroviral vector, either in vivo or ex vivo. Suitable retroviral vectors include, but are not limited to, those derived from the murine retrovirus M-MuLV, N2 (a retrovirus derived from M-MuLV), or the double copy vectors designated DCT5A, DCT5B and DCT5C (see WO 90/13641). <br><br> 25 Sense or antisense oligonucleotides also may be introduced into a ceil containing the target nucleotide sequence by formation of a conjugate with a ligand binding molecule, as described in WO 91/04753. Suitable ligand binding molecules include, but are not limited to, cell surface receptors, growth factors, other cytokines, or other ligands that bind to cell surface receptors. Preferably, conjugation of the ligand binding molecule does not substantially 30 interfere with the ability of the ligand binding molecule to bind to its corresponding molecule or receptor, or block entry of the sense or antisense oligonucleotide or its conjugated version into the cell. <br><br> Alternatively, a sense or an antisense oligonucleotide may be introduced into a cell containing the target nucleic acid sequence by formation of an oligonucleotide-lipid complex, as 35 described in WO 90/10448. The sense or antisense oligonucleotide-lipid complex is preferably dissociated within the cell by an endogenous lipase. <br><br> The probes may also be employed in PCR techniques to generate a pool of sequences for identification of closely related PRO coding sequences. <br><br> H:\Gabriela\Keep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> 39 <br><br> Nucleotide sequences encoding a PRO can also be used to construct hybridization probes for mapping the gene which encodes that PRO and for the genetic analysis of individuals with genetic disorders. The nucleotide sequences provided herein may be mapped to a chromosome and specific regions of a chromosome using known techniques, such as in 5 situ hybridization, linkage analysis against known chromosomal markers, and hybridization screening with libraries. <br><br> When the coding sequences for PRO encode a protein which binds to another protein (example, where the PRO is a receptor), the PRO can be used in assays to identify the other proteins or molecules involved in the binding interaction. By such methods, inhibitors of the 10 receptor/ligand binding interaction can be identified. Proteins involved in such binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction. Also, the receptor PRO can be used to isolate correlative ligand(s). Screening assays can be designed to find lead compounds that mimic the biological activity of a native PRO or a receptor for PRO. Such screening assays will include assays amenable to 15 high-throughput screening of chemical libraries, making them particularly suitable for identifying small molecule drug candidates. Small molecules contemplated include synthetic organic or inorganic compounds. The assays can be performed in a variety of formats, including protein-protein binding assays, biochemical screening assays, immunoassays and cell based assays, which are well characterized in the art. <br><br> 20 Nucleic acids which encode PRO or its modified forms can also be used to generate either transgenic animals or "knock out" animals which, in turn, are useful in the development and screening of therapeutically useful reagents. A transgenic animal (e.g., a mouse or rat) is an animal having cells that contain a transgene, which transgene was introduced into the animal or an ancestor of the animal at a prenatal, e.g., an embryonic stage. A transgene is a 25 DNA which is integrated into the genome of a cell from which a transgenic animal develops. In one embodiment, cDNA encoding PRO can be used to clone genomic DNA encoding PRO in accordance with established techniques and the genomic sequences used to generate transgenic animals that contain cells which express DNA encoding PRO. Methods for generating transgenic animals, particularly animals such as mice or rats, have become 30 conventional in the art and are described, for example, in U.S. Patent Nos. 4,736,866 and 4,870,009. Typically, particular cells would be targeted for PRO transgene incorporation with tissue-specific enhancers. Transgenic animals that include a copy of a transgene encoding PRO introduced into the germ line of the animal at an embryonic stage can be used to examine the effect of increased expression of DNA encoding PRO. Such animals can be used as tester 35 animals for reagents thought to confer protection from, for example, pathological conditions associated with its overexpression. In accordance with this facet of the invention, an animal is treated with the reagent and a reduced incidence of the pathological condition, compared to untreated animals bearing the transgene, would indicate a potential therapeutic intervention for the pathological condition. <br><br> H:\Gabriela\Keep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> 40 <br><br> Alternatively, non-human homologues of PRO can be used to construct a PRO "knock out" animal which has a defective or altered gene encoding PRO as a result of homologous recombination between the endogenous gene encoding PRO and altered genomic DNA encoding PRO introduced into an embryonic stem cell of the animal. For example, cDNA 5 encoding PRO can be used to clone genomic DNA encoding PRO in accordance with established techniques. A portion of the genomic DNA encoding PRO can be deleted or replaced with another gene, such as a gene encoding a selectable marker which can be used to monitor integration. Typically, several kilobases of unaltered flanking DNA (both at the 5' and 3' ends) are included in the vector [see e.g., Thomas and Capecchi, Cell. 51:503 (1987) for a 10 description of homologous recombination vectors]. The vector is introduced into an embryonic stem cell line (e.g., by electroporation) and cells in which the introduced DNA has homologously recombined with the endogenous DNA are selected [see e.g., Li et al., Cell. 69:915 (1992)]. The selected cells are then injected into a blastocyst of an animal (e.g., a mouse or rat) to form aggregation chimeras [see e.g., Bradley, in Teratocarcinomas and Embryonic Stem Cells: A 15 Practical Approach, E. J. Robertson, ed. (IRL, Oxford, 1987), pp. 113-152], A chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal and the embryo brought to term to create a "knock out" animal. Progeny harboring the homologously recombined DNA in their germ cells can be identified by standard techniques and used to breed animals in which all cells of the animal contain the homologously recombined DNA. Knockout 20 animals can be characterized for instance, for their ability to defend against certain pathological conditions and for their development of pathological conditions due to absence of the PRO polypeptide. <br><br> Nucleic acid encoding the PRO polypeptides may also be used in gene therapy. In gene therapy applications, genes are introduced into cells in order to achieve in vivo synthesis 25 of a therapeutically effective genetic product, for example for replacement of a defective gene. "Gene therapy" includes both conventional gene therapy where a lasting effect is achieved by a single treatment, and the administration of gene therapeutic agents, which involves the one time or repeated administration of a therapeutically effective DNA or mRNA. Antisense RNAs and DNAs can be used as therapeutic agents for blocking the expression of certain genes in vivo. It 30 has already been shown that short antisense oligonucleotides can be imported into cells where they act as inhibitors, despite their low intracellular concentrations caused by their restricted uptake by the cell membrane. (Zamecnik et al., Proc. Natl. Acad. Sci. USA 83:4143-4146 [1986]). The oligonucleotides can be modified to enhance their uptake, e.g. by substituting their negatively charged phosphodiester groups by uncharged groups. <br><br> 35 There are a variety of techniques available for introducing nucleic acids into viable cells. <br><br> The techniques vary depending upon whether the nucleic acid is transferred into cultured cells in vitro, or in vivo in the cells of the intended host. Techniques suitable for the transfer of nucleic acid into mammalian cells in vitro include the use of liposomes, electroporation, microinjection, cell fusion, DEAE-dextran, the calcium phosphate precipitation method, etc. The <br><br> H:\Gabriela\Keep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> 41 <br><br> currently preferred in vivo gene transfer techniques include transfection with viral (typically retroviral) vectors and viral coat protein-liposome mediated transfection (Dzau et al., Trends in Biotechnology 11, 205-210 [1993]). In some situations it is desirable to provide the nucleic acid source with an agent that targets the target cells, such as an antibody specific for a cell surface 5 membrane protein or the target cell, a ligand for a receptor on the target cell, etc. Where liposomes are employed, proteins which bind to a cell surface membrane protein associated with endocytosis may be used for targeting and/or to facilitate uptake, e.g. capsid proteins or fragments thereof tropic for a particular ceil type, antibodies for proteins which undergo internalization in cycling, proteins that target intracellular localization and enhance intracellular 10 half-life. The technique of receptor-mediated endocytosis is described, for example, by Wu et al., J. Biol. Chem. 262, 4429-4432 (1987); and Wagner et al., Proc. Natl. Acad. Sci. USA 87, 3410-3414 (1990). For review of gene marking and gene therapy protocols see Anderson et al., Science 256, 808-813 (1992). <br><br> The PRO polypeptides described herein may also be employed as molecular weight 15 markers for protein electrophoresis purposes and the isolated nucleic acid sequences may be used for recombinantly expressing those markers. <br><br> The nucleic acid molecules encoding the PRO polypeptides or fragments thereof described herein are useful for chromosome identification. In this regard, there exists an ongoing need to identify new chromosome markers, since relatively few chromosome marking 20 reagents, based upon actual sequence data are presently available. Each PRO nucleic acid molecule of the present invention can be used as a chromosome marker. <br><br> The PRO polypeptides and nucleic acid molecules of the present invention may also be used for tissue typing, wherein the PRO polypeptides of the present invention may be differentially expressed in one tissue as compared to another. PRO nucleic acid molecules will 25 find use for generating probes for PCR, Northern analysis, Southern analysis and Western analysis. <br><br> The PRO polypeptides described herein may also be employed as therapeutic agents. The PRO polypeptides of the present invention can be formulated according to known methods to prepare pharmaceutically useful compositions, whereby the PRO product hereof is combined 30 in admixture with a pharmaceutically acceptable carrier vehicle. Therapeutic formulations are prepared for storage by mixing the active ingredient having the desired degree of purity with optional physiologically acceptable carriers, excipients or stabilizers (Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980)), in the form of lyophilized formulations or aqueous solutions. Acceptable carriers, excipients or stabilizers are nontoxic to 35 recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate and other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone, amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides and other <br><br> H:\Gabriela\Keep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> 42 <br><br> carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium; and/or nonionic surfactants such as TWEEN™, PLURONICS™ or PEG. <br><br> The formulations to be used for in vivo administration must be sterile. This is readily 5 accomplished by filtration through sterile filtration membranes, prior to or following lyophilization and reconstitution. <br><br> Therapeutic compositions herein generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle. <br><br> 10 The route of administration is in accord with known methods, e.g. injection or infusion by intravenous, intraperitoneal, intracerebral, intramuscular, intraocular, intraarterial or intralesional routes, topical administration, or by sustained release systems. <br><br> Dosages and desired drug concentrations of pharmaceutical compositions of the present invention may vary depending on the particular use envisioned. The determination of 15 the appropriate dosage or route of administration is well within the skill of an ordinary physician. Animal experiments provide reliable guidance for the determination of effective doses for human therapy. Interspecies scaling of effective doses can be performed following the principles laid down by Mordenti, J. and Chappell, W. "The use of interspecies scaling in toxicokinetics" In Toxicokinetics and New Drug Development, Yacobi et al., Eds., Pergamon 20 Press, New York 1989, pp. 42-96. <br><br> When in vivo administration of a PRO polypeptide or agonist or antagonist thereof is employed, normal dosage amounts may vary from about 10 ng/kg to up to 100 mg/kg of mammal body weight or more per day, preferably about 1 pg/kg/day to 10 mg/kg/day, depending upon the route of administration. Guidance as to particular dosages and methods of 25 delivery is provided in the literature; see, for example, U.S. Pat. Nos. 4,657,760; 5,206,344; or 5,225,212. It is anticipated that different formulations will be effective for different treatment compounds and different disorders, that administration targeting one organ or tissue, for example, may necessitate delivery in a manner different from that to another organ or tissue. <br><br> Where sustained-release administration of a PRO polypeptide is desired in a 30 formulation with release characteristics suitable for the treatment of any disease or disorder requiring administration of the PRO polypeptide, microencapsulation of the PRO polypeptide is contemplated. Microencapsulation of recombinant proteins for sustained release has been successfully performed with human growth hormone (rhGH), interferon- (rhIFN-), interleukin-2, and MN rgp120. Johnson et al., Nat. Med.. 2:795-799 (1996); Yasuda, Biomed. Ther.. 27:1221-35 1223 (1993); Hora et al., Bio/Technoloav. 8:755-758 (1990); Cleland, "Design and Production of Single Immunization Vaccines Using Polylactide Polyglycolide Microsphere Systems," in Vaccine Design: The Subunit and Adjuvant Approach. Powell and Newman, eds, (Plenum Press: New York, 1995), pp. 439-462; WO 97/03692, WO 96/40072, WO 96/07399; and U.S. Pat. No. 5,654,010. <br><br> H:\Gabriela\Keep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> 43 <br><br> The sustained-release formulations of these proteins were developed using poly-lactic-coglycolic acid (PLGA) polymer due to its biocompatibility and wide range of biodegradable properties. The degradation products of PLGA, lactic and glycolic acids, can be cleared quickly within the human body. Moreover, the degradability of this polymer can be adjusted from 5 months to years depending on its molecular weight and composition. Lewis, "Controlled release of bioactive agents from lactide/glycolide polymer," in: M. Chasin and R. Langer (Eds.), Biodegradable Polymers as Drug Delivery Systems (Marcel Dekker: New York, 1990), pp. 1-41. <br><br> Also described are methods of screening compounds to identify those that mimic the PRO polypeptide (agonists) or prevent the effect of the PRO polypeptide 10 (antagonists). Screening assays for antagonist drug candidates are designed to identify compounds that bind or complex with the PRO polypeptides encoded by the genes identified herein, or otherwise interfere with the interaction of the encoded polypeptides with other cellular proteins. Such screening assays will include assays amenable to high-throughput screening of chemical libraries, making them particularly suitable for identifying small molecule drug 15 candidates. <br><br> The assays can be performed in a variety of formats, including protein-protein binding assays, biochemical screening assays, immunoassays, and cell-based assays, which are well characterized in the art. <br><br> All assays for antagonists are common in that they call for contacting the drug 20 candidate with a PRO polypeptide encoded by a nucleic acid identified herein under conditions and for a time sufficient to allow these two components to interact. <br><br> In binding assays, the interaction is binding and the complex formed can be isolated or detected in the reaction mixture. In a particular embodiment, the PRO polypeptide encoded by the gene identified herein or the drug candidate is immobilized on a solid phase, e.g., on a 25 microtiter plate, by covalent or non-covalent attachments. Non-covalent attachment generally is accomplished by coating the solid surface with a solution of the PRO polypeptide and drying. Alternatively, an immobilized antibody, e.g., a monoclonal antibody, specific for the PRO polypeptide to be immobilized can be used to anchor it to a solid surface. The assay is performed by adding the non-immobilized component, which may be labeled by a detectable 30 label, to the immobilized component, e.g., the coated surface containing the anchored component. When the reaction is complete, the non-reacted components are removed, e.g., by washing, and complexes anchored on the solid surface are detected. When the originally non-immobilized component carries a detectable label, the detection of label immobilized on the surface indicates that complexing occurred. Where the originally non-immobilized component 35 does not carry a label, complexing can be detected, for example, by using a labeled antibody specifically binding the immobilized complex. <br><br> If the candidate compound interacts with but does not bind to a particular PRO polypeptide encoded by a gene identified herein, its interaction with that polypeptide can be assayed by methods well known for detecting protein-protein interactions. Such assays include <br><br> •Nic r«Tv r.rnr.F <br><br> - 1 APR 2005 <br><br> r sr p sr a y/ r* r&gt; <br><br> H:\Gabrieia\Keep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> 44 <br><br> traditional approaches, such as, e.g., cross-linking, co-immunoprecipitation, and co-purification through gradients or chromatographic columns. In addition, protein-protein interactions can be monitored by using a yeast-based genetic system described by Fields and co-workers (Fields and Song, Nature (London). 340:245-246 (1989); Chien et al., Proc. Natl. Acad. Sci. USA. <br><br> 5 88:9578-9582 (1991)) as disclosed by Chevray and Nathans, Proc. Natl. Acad. Sci. USA. 89: 5789-5793 (1991). Many transcriptional activators, such as yeast GAL4, consist of two physically discrete modular domains, one acting as the DNA-binding domain, the other one functioning as the transcription-activation domain. The yeast expression system described in the foregoing publications (generally referred to as the "two-hybrid system") takes advantage of 10 this property, and employs two hybrid proteins, one in which the target protein is fused to the DNA-binding domain of GAL4, and another, in which candidate activating proteins are fused to the activation domain. The expression of a GAL1-/acZ reporter gene under control of a GAL4-activated promoter depends on reconstitution of GAL4 activity via protein-protein interaction. Colonies containing interacting polypeptides are detected with a chromogenic substrate for 0-15 galactosidase. A complete kit (MATCHMAKER™) for identifying protein-protein interactions between two specific proteins using the two-hybrid technique is commercially available from Clontech. This system can also be extended to map protein domains involved in specific protein interactions as well as to pinpoint amino acid residues that are crucial for these interactions. <br><br> 20 Compounds that interfere with the interaction of a gene encoding a PRO polypeptide identified herein and other intra- or extracellular components can be tested as follows: usually a reaction mixture is prepared containing the product of the gene and the intra- or extracellular component under conditions and for a time allowing for the interaction and binding of the two products. To test the ability of a candidate compound to inhibit binding, the reaction is run in 25 the absence and in the presence of the test compound. In addition, a placebo may be added to a third reaction mixture, to serve as positive control. The binding (complex formation) between the test compound and the intra- or extracellular component present in the mixture is monitored as described hereinabove. The formation of a complex in the control reactions) but not in the reaction mixture containing the test compound indicates that the test compound interferes with 30 the interaction of the test compound and its reaction partner. <br><br> To assay for antagonists, the PRO polypeptide may be added to a cell along with the compound to be screened for a particular activity and the ability of the compound to inhibit the activity of interest in the presence of the PRO polypeptide indicates that the compound is an "antagonist to the PRO polypeptide. Alternatively, antagonists may be detected by combining 35 the PRO polypeptide and a potential antagonist with membrane-bound PRO polypeptide receptors or recombinant receptors under appropriate conditions for a competitive inhibition assay. The PRO polypeptide can be labeled, such as by radioactivity, such that the number of PRO polypeptide molecules bound to the receptor can be used to determine the effectiveness of the potential antagonist. The gene encoding the receptor can be identified by numerous <br><br> H:\Gabriela\Keep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> 45 <br><br> methods known to those of skill in the art, for example, ligand panning and FACS sorting. Coligan et al., Current Protocols in Immun.. 1(2): Chapter 5 (1991). Preferably, expression cloning is employed wherein polyadenylated RNA is prepared from a cell responsive to the PRO polypeptide and a cDNA library created from this RNA is divided into pools and used to 5 transfect COS cells or other cells that are not responsive to the PRO polypeptide. Transfected cells that are grown on glass slides are exposed to labeled PRO polypeptide. The PRO polypeptide can be labeled by a variety of means including iodination or inclusion of a recognition site for a site-specific protein kinase. Following fixation and incubation, the slides are subjected to autoradiographic analysis. Positive pools are identified and sub-pools are 10 prepared and re-transfected using an interactive sub-pooling and re-screening process, eventually yielding a single clone that encodes the putative receptor. <br><br> As an alternative approach for receptor identification, labeled PRO polypeptide can be photoaffinity-linked with cell membrane or extract preparations that express the receptor molecule. Cross-linked material is resolved by PAGE and exposed to X-ray film. The labeled 15 complex containing the receptor can be excised, resolved into peptide fragments, and subjected to protein micro-sequencing. The amino acid sequence obtained from micro- sequencing would be used to design a set of degenerate oligonucleotide probes to screen a cDNA library to identify the gene encoding the putative receptor. <br><br> In another assay for antagonists, mammalian cells or a membrane preparation 20 expressing the receptor would be incubated with labeled PRO polypeptide in the presence of the candidate compound. The ability of the compound to enhance or block this interaction could then be measured. <br><br> More specific examples of potential antagonists include an oligonucleotide that binds to the fusions of immunoglobulin with PRO polypeptide, and, in particular, antibodies including, 25 without limitation, poly- and monoclonal antibodies and antibody fragments, single-chain antibodies, anti-idiotypic antibodies, and chimeric or humanized versions of such antibodies or fragments, as well as human antibodies and antibody fragments. Alternatively, a potential antagonist may be a closely related protein, for example, a mutated form of the PRO polypeptide that recognizes the receptor but imparts no effect, thereby competitively inhibiting 30 the action of the PRO polypeptide. <br><br> Another potential PRO polypeptide antagonist is an antisense RNA or DNA construct prepared using antisense technology, where, e.g., an antisense RNA or DNA molecule acts to block directly the translation of mRNA by hybridizing to targeted mRNA and preventing protein translation. Antisense technology can be used to control gene expression through triple-helix 35 formation or antisense DNA or RNA, both of which methods are based on binding of a polynucleotide to DNA or RNA. For example, the 5' coding portion of the polynucleotide sequence, which encodes the mature PRO polypeptides herein, is used to design an antisense RNA oligonucleotide of from about 10 to 40 base pairs in length. A DNA oligonucleotide is designed to be complementary to a region of the gene involved in transcription (triple helix - see <br><br> H:\Gabrrela\Keep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> 46 <br><br> Lee et al., Nucl. Acids Res.. 6:3073 (1979); Cooney et al., Science. 241: 456 (1988); Dervan et al., Science. 251:1360 (1991)), thereby preventing transcription and the production of the PRO polypeptide. The antisense RNA oligonucleotide hybridizes to the mRNA in vivo and blocks translation of the mRNA molecule into the PRO polypeptide (antisense - Okano, Neurochem.. <br><br> 5 56:560 (1991); Oliaodeoxvnucleotides as Antisense Inhibitors of Gene Expression (CRC Press: Boca Raton, FL, 1988). The oligonucleotides described above can also be delivered to cells such that the antisense RNA or DNA may be expressed in vivo to inhibit production of the PRO polypeptide. When antisense DNA is used, oligodeoxyribonucleotides derived from the translation-initiation site, e.g., between about -10 and +10 positions of the target gene 10 nucleotide sequence, are preferred. <br><br> Potential antagonists include small molecules that bind to the active site, the receptor binding site, or growth factor or other relevant binding site of the PRO polypeptide, thereby blocking the normal biological activity of the PRO polypeptide. Examples of small molecules include, but are not limited to, small peptides or peptide-like molecules, preferably soluble 15 peptides, and synthetic non-peptidyl organic or inorganic compounds. <br><br> Ribozymes are enzymatic RNA molecules capable of catalyzing the specific cleavage of RNA. Ribozymes act by sequence-specific hybridization to the complementary target RNA, followed by endonucleolytic cleavage. Specific ribozyme cleavage sites within a potential RNA target can be identified by known techniques. For further details see, e.g., Rossi, Current 20 Biology. 4:469-471 (1994), and PCT publication No. WO 97/33551 (published September 18, 1997). <br><br> Nucleic acid molecules in triple-helix formation used to inhibit transcription should be single-stranded and composed of deoxynucleotides. The base composition of these oligonucleotides is designed such that it promotes triple-helix formation via Hoogsteen base-25 pairing rules, which generally require sizeable stretches of purines or pyrimidines on one strand of a duplex. For further details see, e.g., PCT publication No. WO 97/33551, supra. <br><br> These small molecules can be identified by any one or more of the screening assays discussed hereinabove and/or by any other screening techniques well known for those skilled in the art. <br><br> 30 <br><br> F. Anti-PRO Antibodies <br><br> The present invention further provides anti-PRO antibodies. Exemplary antibodies include polyclonal, monoclonal, humanized, bispecific, and heteroconjugate antibodies. <br><br> 1. Polyclonal Antibodies 35 The anti-PRO antibodies may comprise polyclonal antibodies. Methods of preparing polyclonal antibodies are known to the skilled artisan. Polyclonal antibodies can be raised in a mammal, for example, by one or more injections of an immunizing agent and, if desired, an adjuvant. Typically, the immunizing agent and/or adjuvant will be injected in the mammal by multiple subcutaneous or intraperitoneal injections. The immunizing agent may include the <br><br> H:\Gabriela\Keep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> 47 <br><br> PRO polypeptide or a fusion protein thereof. It may be useful to conjugate the immunizing agent to a protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. Examples of adjuvants which may 5 be employed include Freund's complete adjuvant and MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate). The immunization protocol may be selected by one skilled in the art without undue experimentation. <br><br> 2. Monoclonal Antibodies 10 The anti-PRO antibodies may, alternatively, be monoclonal antibodies. Monoclonal antibodies may be prepared using hybridoma methods, such as those described by Kohler and Milstein, Nature. 256:495 (1975). In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing 15 agent. Alternatively, the lymphocytes may be immunized in vitro. <br><br> The immunizing agent will typically include the PRO polypeptide or a fusion protein thereof. Generally, either peripheral blood lymphocytes ("PBLs") are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a 20 suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell [Goding, Monoclonal Antibodies: Principles and Practice. Academic Press, (1986) pp. 59-103], Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells may be cultured in a suitable culture medium that preferably contains one or 25 more substances that inhibit the growth or survival of the urrfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine ("HAT medium"), which substances prevent the growth of HGPRT-deficient cells. <br><br> 30 Preferred immortalized cell lines are those that fuse efficiently, support stable high level expression of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. More preferred immortalized cell lines are murine myeloma lines, which can be obtained, for instance, from the Salk Institute Cell Distribution Center, San Diego, California and the American Type Culture Collection, Manassas, Virginia. Human myeloma and 35 mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies [Kozbor, J. Immunol.. 133:3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Applications. Marcel Dekker, Inc., New York, (1987) pp. 51-63]. <br><br> H:\Oabriela\Kcep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> The culture medium in which the hybridoma cells are cultured can then be assayed for the presence of monoclonal antibodies directed against PRO. Preferably, the binding specificity of monoclonal antibodies produced by the hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA). Such techniques and assays are known in the art. The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson and Pollard, Anal. Biochem.. 107:220 (1980). <br><br> After the desired hybridoma cells are identified, the clones may be subcloned by limiting dilution procedures and grown by standard methods [Godina. suoral. Suitable culture media for this purpose include, for example, Dulbecco's Modified Eagle's Medium and RPMI-1640 medium. Alternatively, the hybridoma cells may be grown in vivo as ascites in a mammal. <br><br> The monoclonal antibodies secreted by the subclones may be isolated or purified from the culture medium or ascites fluid by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography. <br><br> The monoclonal antibodies may also be made by recombinant DNA methods, such as those described in U.S. Patent No. 4,816,567. DNA encoding the monoclonal antibodies of the invention can be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma cells of the invention serve as a preferred source of such DNA. Once isolated, the DNA may be placed into expression vectors, which are then transfected into host cells such as simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. The DNA also may be modified, for example, by substituting the coding sequence for human heavy and light chain constant domains in place of the homologous murine sequences [U.S. Patent No. 4,816,567; Morrison et al., supral or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide. Such a non-immunoglobulin polypeptide can be substituted for the constant domains of an antibody of the invention, or can be substituted for the variable domains of one antigen-combining site of an antibody of the invention to create a chimeric bivalent antibody. <br><br> The antibodies may be monovalent antibodies. Methods for preparing monovalent antibodies are well known in the art. For example, one method involves recombinant expression of immunoglobulin light chain and modified heavy chain. The heavy chain is truncated generally at any point in the Fc region so as to prevent heavy chain crosslinking. Alternatively, the relevant cysteine residues are substituted with another amino acid residue or are deleted so as to prevent crosslinking. <br><br> H:\Gabriela\Keep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> 49 <br><br> In vitro methods are also suitable for preparing monovalent antibodies. Digestion of antibodies to produce fragments thereof, particularly, Fab fragments, can be accomplished using routine techniques known in the art. <br><br> 5 3. Human and Humanized Antibodies <br><br> The anti-PRO antibodies of the invention may further comprise humanized antibodies or human antibodies. Humanized forms of non-human (e.g., murine) antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab')2 or other antigen-binding subsequences of antibodies) which contain minimal sequence derived 10 from non-human immunoglobulin. Humanized antibodies include human immunoglobulins (recipient antibody) in which residues from a complementary determining region (CDR) of the recipient are replaced by residues frqm a CDR of a non-human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity and capacity. In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-15 human residues. Humanized antibodies may also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human 20 immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin [Jones et al., Nature. 321:522-525 (1986); Riechmann et al., Nature. 332:323-329 (1988); and Presta, Curr. Op. Struct. Biol.. 2:593-596 (1992)]. <br><br> Methods for humanizing non-human antibodies are well known in the art. Generally, a 25 humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as "import" residues, which are typically taken from an "import" variable domain. Humanization can be essentially performed following the method of Winter and co-workers [Jones et al., Nature. 321:522-525 (1986); Riechmann et al., Nature. 332:323-327 (1988); Verhoeyen et al., Science. 30 239:1534-1536 (1988)], by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. Accordingly, such "humanized" antibodies are chimeric antibodies (U.S. Patent No. 4,816,567), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some CDR 35 residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies. <br><br> Human antibodies can also be produced using various techniques known in the art, including phage display libraries [Hoogenboom and Winter, J. Mol. Biol.. 227:381 (1991); Marks et al., J. Mol. Biol.. 222:581 (1991)]. The techniques of Cole et al. and Boemer et al. are also <br><br> H:\Gabriela\Keep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> r* <br><br> \. <br><br> 50 <br><br> available for the preparation of human monoclonal antibodies (Cole et al., Monoclonal Antibodies and Cancer Therapy. Alan R. Liss, p. 77 (1985) and Boerner et al., J. Immunol.. 147(1^:86-95 (1991)]. Similarly, human antibodies can be made by introducing of human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous 5 immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, for example, in U.S. Patent Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, and in the following scientific publications: Marks eta!.. Bio/Technoloav 10. 779-783 10 (1992); Lonberg et al., Nature 368 856-859 (1994); Morrison, Nature 368. 812-13 (1994); Fishwild et al., Nature Biotechnology 14. 845-51 (1996); Neuberger, Nature Biotechnology 14. 826 (1996); Lonberg and Huszar, Intern. Rev. Immunol. 13 65-93 (1995). <br><br> 4. Bisoecific Antibodies 15 Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens. In the present case, one of the binding specificities is for the PRO, the other one is for any other antigen, and preferably for a cell-surface protein or receptor or receptor subunit. <br><br> Methods for making bispecific antibodies are known in the art. Traditionally, the 20 recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy-chain/light-chain pairs, where the two heavy chains have different specificities [Milstein and Cuello, Nature. 305:537-539 (1983)]. Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of ten different antibody molecules, of which only one has the correct 25 bispecific structure. The purification of the correct molecule is usually accomplished by affinity chromatography steps. Similar procedures are disclosed in WO 93/08829, published 13 May 1993, and in Traunecker et al., EMBO J.. 10:3655-3659 (1991). <br><br> Antibody variable domains with the desired binding specificities (antibody-antigen combining sites) can be fused to immunoglobulin constant domain sequences. The fusion 30 preferably is with an immunoglobulin heavy-chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CH1) containing the site necessary for light-chain binding present in at least one of the fusions. DNAs encoding the immunoglobulin heavy-chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable 35 host organism. For further details of generating bispecific antibodies see, for example, Suresh et al., Methods in Enzvmoloov. 121:210 (1986). <br><br> According to another approach described in WO 96/27011, the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture. The preferred interface comprises at least a part <br><br> H:\Gabriela\KeepVSpeci\P49662 Div No 3.doc 26/05/03 <br><br> 51 <br><br> of the CH3 region of an antibody constant domain. In this method, one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g. tyrosine or tryptophan). Compensatory "cavities" of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g. alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers. <br><br> Bispecific antibodies can be prepared as full length antibodies or antibody fragments (e.g. F(ab')2 bispecific antibodies). Techniques for generating bispecific antibodies from antibody fragments have been described in the literature. For example, bispecific antibodies can be prepared can be prepared using chemical linkage. Brennan et al., Science 229:81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate F(ab')2 fragments. These fragments are reduced in the presence of the dithiol complexing agent sodium arsenite to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab' fragments generated are then converted to thionitrobenzoate (TNB) derivatives. One of the Fab'-TNB derivatives is then reconverted to the Fab'-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab'-TNB derivative to form the bispecific antibody. The bispecific antibodies produced can be used as agents for the selective immobilization of enzymes. <br><br> Fab' fragments may be directly recovered from E. coli and chemically coupled to form bispecific antibodies. Shalaby et al., J. Exp. Med. 175:217-225 (1992) describe the production of a fully humanized bispecific antibody F(ab')2 molecule. Each Fab' fragment was separately secreted from E. coli and subjected to directed chemical coupling in vitro to form the bispecific antibody. The bispecific antibody thus formed was able to bind to cells overexpressing the ErbB2 receptor and normal human T cells, as well as trigger the lytic activity of human cytotoxic lymphocytes against human breast tumor targets. <br><br> Various technique for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelny et al., J. Immunol. 148(5):1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab' portions of two different antibodies by gene fusion. The antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. The "diabody" technology described by Hollinger et al., Proc. Natl. Acad. Sci. USA 90:6444-6448 (1993) has provided an alternative mechanism for making bispecific antibody fragments. The fragments comprise a heavy-chain variable domain (VH) connected to a light-chain variable domain (VL) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the VH and Vu domains of one fragment are forced to pair with the complementary VL and VH domains of another fragment, thereby forming two antigen-binding sites. Another strategy for <br><br> H:\Gabriela\Keep\SpecftP49662 Div No 3.doc 26/05/03 <br><br> 52 <br><br> making bispecific antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported. See, Gruber etal., J. Immunol. 152:5368 (1994). <br><br> Antibodies with more than two valencies are contemplated. For example, trispecific antibodies can be prepared. Tutt etal., J. Immunol. 147:60 (1991). <br><br> 5 Exemplary bispecific antibodies may bind to two different epitopes on a given PRO <br><br> polypeptide herein. Alternatively, an anti-PRO polypeptide arm may be combined with an arm which binds to a triggering molecule on a leukocyte such as a T-cell receptor molecule (e.g. CD2, CD3, CD28, or B7), or Fc receptors for IgG (FcyR), such as FcyRI (CD64), FcyRII (CD32) and FcyRIII (CD16) so as to focus cellular defense mechanisms to the cell expressing the 10 particular PRO polypeptide. Bispecific antibodies may also be used to localize cytotoxic agents to cells which express a particular PRO polypeptide. These antibodies possess a PRO-binding arm and an arm which binds a cytotoxic agent or a radionuclide chelator, such as EOTUBE, DPTA, DOTA, or TETA. Another bispecific antibody of interest binds the PRO polypeptide and further binds tissue factor (TF). <br><br> 15 <br><br> 5. Heteroconiuaate Antibodies Heteroconjugate antibodies are also within the scope of the present invention. Heteroconjugate antibodies are composed of two covalently joined antibodies. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells [U.S. Patent 20 No. 4,676,980], and for treatment of HIV infection [WO 91/00360; WO 92/200373; EP 03089]. It is contemplated that the antibodies may be prepared in vitro using known methods in synthetic protein chemistry, including those involving crosslinking agents. For example, immunotoxins may be constructed using a disulfide exchange reaction or by forming a thioether bond. Examples of suitable reagents for this purpose include iminothiolate and methyl-4-25 mercaptobutyrimidate and those disclosed, for example, in U.S. Patent No. 4,676,980. <br><br> 30 <br><br> 35 <br><br> 6. Effector Function Engineering It may be desirable to modify the antibody of the . invention with respect to effector function, so as to enhance, e.g., the effectiveness of the antibody in treating cancer. For example, cysteine residue(s) may be introduced into the Fc region, thereby allowing interchain disulfide bond formation in this region. The homodimeric antibody thus generated may have improved internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., J. Exp Med.. 176: 1191-1195 (1992) and Shopes, J. Immunol.. 148: 2918-2922 (1992). Homodimeric antibodies with enhanced anti-tumor activity may also be prepared using heterobifunctional cross-linkers as described in Wolff et al. Cancer Research. 53: 2560-2565 (1993). Alternatively, an antibody can be engineered that has dual Fc regions and may thereby have enhanced complement lysis and ADCC capabilities. See Stevenson etal., Anti-Cancer Drug Design. 3: 219-230 (1989). <br><br> H:\Gabriela\Keep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> 53 <br><br> 7. Immunoconiuaates <br><br> Also described are immunoconjugates comprising an antibody conjugated to a cytotoxic agent such as a chemotherapeutic agent, toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a 5 radioconjugate). <br><br> Chemotherapeutic agents useful in the generation of such immunoconjugates have been described above. Enzymatically active toxins and fragments thereof that can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, 10 Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycip, enomycin, and the tricothecenes. A variety of radionuclides are available for the production of radioconjugated antibodies. Examples include 212Bi, 131l,131 In, ^Y, and 186Re. Conjugates of the antibody and cytotoxic agent are made using 15 a variety of bifunctional protein-coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such 20 as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta et al., Science. 238: 1098 (1987). Carbon-14-labeled 1-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See W094/11026. <br><br> 25 In another embodiment, the antibody may be conjugated to a "receptor" (such streptavidin) for utilization in tumor pretargeting wherein the antibody-receptor conjugate is administered to the patient, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a "ligand" (e.g., avidin) that is conjugated to a cytotoxic agent (e.g., a radionucleotide). <br><br> 30 <br><br> 8. Immunoliposomes <br><br> The antibodies disclosed herein may also be formulated as immunoliposomes. Liposomes containing the antibody are prepared by methods known in the art, such as described in Epstein et al., Proc. Natl. Acad. Sci. USA. 82: 3688 (1985); Hwang ef al., Proc. 35 Natl Acad. Sci. USA. 77: 4030 (1980); and U.S. Pat. Nos. 4,485,045 and 4,544,545. Liposomes with enhanced circulation time are disclosed in U.S. Patent No. 5,013,556. <br><br> Particularly useful liposomes can be generated by the reverse-phase evaporation method with a lipid composition comprising phosphatidylcholine, cholesterol, and PEG-derivatized phosphatidylethanolamine (PEG-PE). Liposomes are extruded through filters of <br><br> INTELLECTUAL PROPERTY OFFICE OF N.Z. <br><br> -1 APR 2005 received <br><br> H:\Gabrieia\Keep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> 54 <br><br> defined pore size to yield liposomes with the desired diameter. Fab' fragments of the antibody of the present invention can be conjugated to the liposomes as described in Martin et al.. J. Biol. Chem.. 257: 286-288 (1982) via a disulfide-interchange reaction. A chemotherapeutic agent (such as Doxorubicin) is optionally contained within the liposome. See Gabizon et al., J. 5 National Cancer Inst.. 81.(19): 1484 (1989). <br><br> 9. Pharmaceutical Compositions of Antibodies Antibodies specifically binding a PRO polypeptide identified herein, as well as other molecules identified by the screening assays disclosed hereinbefore, can be administered for 10 the treatment of various disorders in the form of pharmaceutical compositions. <br><br> If the PRO polypeptide is intracellular and whole antibodies are used as inhibitors, internalizing antibodies are preferred. However, lipofections or liposomes can also be used to deliver the antibody, or an antibody fragment, into cells. Where antibody fragments are used, the smallest inhibitory fragment that specifically binds to the binding domain of the target protein 15 is preferred. For example, based upon the variable-region sequences of an antibody, peptide molecules can be designed that retain the ability to bind the target protein sequence. Such peptides can be synthesized chemically and/or produced by recombinant DNA technology. See, e.g., Marasco et al., Proc. Natl. Acad. Sci. USA. 90: 7889-7893 (1993). The formulation herein may also contain more than one active compound as necessary for the 20 particular indication being treated, preferably those with complementary activities that do not adversely affect each other. Alternatively, or in addition, the composition may comprise an agent that enhances its function, such as, for example, a cytotoxic agent, cytokine, chemotherapeutic agent, or growth-inhibitory agent. Such molecules are suitably present in combination in amounts that are effective for the purpose intended. <br><br> 25 The active ingredients may also be entrapped in microcapsules prepared, for example, <br><br> by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacylate) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles, and nanocapsules) or in macroemulsions. Such techniques 30 are disclosed in Remington's Pharmaceutical Sciences, supra. <br><br> The formulations to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes. <br><br> Sustained-release preparations may be prepared. Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing 35 the antibody, which matrices are in the form of shaped articles, e.g., films, or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (U.S. Pat. No. 3,773,919), copolymers of L-glutamic acid and Y ethyl-L-glutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOT ™ (injectable <br><br> H:\Gabriela\Keep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> r i ■ <br><br> 55 <br><br> microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(-)-3-hydroxybutyric acid. While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods. When encapsulated antibodies remain in the body for a long time, they may denature or aggregate as a result of exposure to moisture at 37DC, resulting in a loss of biological activity and possible changes in immunogenicity. Rational strategies can be devised for stabilization depending on the mechanism involved. For example, if the aggregation mechanism is discovered to be intermolecular S-S bond formation through thio-disulfide interchange, stabilization may be achieved by modifying sulfhydryl residues, lyophilizing from acidic solutions, controlling moisture content, using appropriate additives, and developing specific polymer matrix compositions. <br><br> G. Uses for anti-PRO Antibodies <br><br> The anti-PRO antibodies of the invention have various utilities. For example, anti-PRO antibodies may be used in diagnostic assays for PRO, e.g., detecting its expression in specific, cells, tissues, or serum. Various diagnostic assay techniques known in the art may be used, such as competitive binding assays, direct or indirect sandwich assays and immunoprecipitation assays conducted in either heterogeneous or homogeneous phases [Zola, Monoclonal Antibodies: A Manual of Techniques. CRC Press, Inc. (1987) pp. 147-158]. The antibodies used in the diagnostic assays can be labeled with a detectable moiety. The detectable moiety should be capable of producing, either directly or indirectly, a detectable signal. For example, the detectable moiety may be a radioisotope, such as 3H, UC, 32P, 35S, or 125l, a fluorescent or chemiluminescent compound, such as fluorescein isothiocyanate, rhodamine, or luciferin, or an enzyme, such as alkaline phosphatase, beta-galactosidase or horseradish peroxidase. Any method known in the art for conjugating the antibody to the detectable moiety may be employed, including those methods described by Hunter et al., Nature. 144:945 (1962); David et al., Biochemistry. 13:1014 (1974); Pain et al., J. Immunol. Meth.. 40:219 (1981); and Nygren, J. Histochem. and Cvtochem.. 30:407 (1982). <br><br> Anti-PRO antibodies also are useful for the affinity purification of PRO from recombinant cell culture or natural sources. In this process, the antibodies against PRO are immobilized on a suitable support, such a Sephadex resin or filter paper, using methods well known in the art. The immobilized antibody then is contacted with a sample containing the PRO to be purified, and thereafter the support is washed with a suitable solvent that will remove substantially all the material in the sample except the PRO, which is bound to the immobilized antibody. Finally, the support is washed with another suitable solvent that will release the PRO from the antibody. <br><br> The following examples are offered for illustrative purposes only, and are not intended to limit the scope of the present invention in any way. <br><br> EXAMPLES <br><br> H:\Gabriela\Keep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> 56 <br><br> Commercially available reagents referred to in the examples were used according to manufacturer's instructions unless otherwise indicated. The source of those cells identified in the following examples, and throughout the specification, by ATCC accession numbers is the American Type Culture Collection, Manassas, VA. <br><br> 5 <br><br> EXAMPLE 1: Extracellular Domain Homology Screening to Identify Novel Polypeptides and cDNA Encoding Therefor <br><br> The extracellular domain (ECD) sequences (including the secretion signal sequence, if any) from about 950 known secreted proteins from the Swiss-Prot public database were used to 10 search EST databases. The EST databases included public databases (e.g., Dayhoff, GenBank), and proprietary databases (e.g. LIFESEQ™, Incyte Pharmaceuticals, Palo Alto, CA). The search was performed using the computer program BLAST or BLAST-2 (Altschul et al., Methods in Enzvmoloov 266:460-480 (1996)) as a comparison of the ECD protein sequences to a 6 frame translation of the EST sequences. Those comparisons with a BLAST score of 70 (or 15 in some cases 90) or greater that did not encode known proteins were clustered and assembled into consensus DNA sequences with the program "phrap" (Phil Green, University of Washington, Seattle, WA). <br><br> Using this extracellular domain homology screen, consensus DNA sequences were assembled relative to the other identified EST sequences using phrap. In addition, the 20 consensus DNA sequences obtained were often (but not always) extended using repeated cycles of BLAST or BLAST-2 and phrap to extend the consensus sequence as far as possible using the sources of EST sequences discussed above. <br><br> Based upon the consensus sequences obtained as described above, oligonucleotides were then synthesized and used to identify by PCR a cDNA library that contained the sequence 25 of interest and for use as probes to isolate a clone of the full-length coding sequence for a PRO polypeptide. Forward and reverse PCR primers generally range from 20 to 30 nucleotides and are often designed to give a PCR product of about 100-1000 bp in length. The probe sequences are typically 40-55 bp in length. In some cases, additional oligonucleotides are synthesized when the consensus sequence is greater than about 1-1.5kbp. In order to screen 30 several libraries for a full-length clone, DNA from the libraries was screened by PCR amplification, as per Ausubel et al., Current Protocols in Molecular Biology, with the PCR primer pair. A positive library was then used to isolate clones encoding the gene of interest using the probe oligonucleotide and one of the primer pairs. <br><br> The cDNA libraries used to isolate the cDNA clones were constructed by standard 35 methods using commercially available reagents such as those from Invitrogen, San Diego, CA. The cDNA was primed with oligo dT containing a Notl site, linked with blunt to Sail hemikinased adaptors, cleaved with Notl, sized appropriately by gel electrophoresis, and cloned in a defined orientation into a suitable cloning vector (such as pRKB or pRKD; pRK5B is a precursor of <br><br> H:\Gafariela\Keep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> 57 <br><br> pRK5D that does not contain the Sfil site; see, Holmes et al., Science. 253:1278-1280 (1991)) in the unique Xhol and Notl sites. <br><br> EXAMPLE 2: Isolation of cDNA clones bv Amylase Screening 5 1. Preparation of otioo dT primed cDNA library mRNA was isolated from a human tissue of interest using reagents and protocols from Invitrogen, San Diego, CA (Fast Track 2). This RNA was used to generate an oligo dT primed cDNA library in the vector pRK5D using reagents and protocols from Life Technologies, Gaithersburg, MD (Super Script Plasmid System). In this procedure, the double stranded cDNA 10 was sized to greater than 1000 bp and the Sall/Notl linkered cDNA was cloned into Xhol/Notl cleaved vector. pRK5D is a cloning vector that has an sp6 transcription initiation site followed by an Sfil restriction enzyme site preceding the Xhol/Notl cDNA cloning sites. <br><br> 2. Preparation of random primed cDNA library <br><br> 15 A secondary cDNA library was generated in order to preferentially represent the 5' ends of the primary cDNA clones. Sp6 RNA was generated from the primary library (described above), and this RNA was used to generate a random primed cDNA library in the vector pSST-AMY.O using reagents and protocols from Life Technologies (Super Script Plasmid System, referenced above). In this procedure the double stranded cDNA was sized to 500-1000 bp, 20 linkered with blunt to Notl adaptors, cleaved with Sfil, and cloned into Sfil/NotI cleaved vector. pSST-AMY.O is a cloning vector that has a yeast alcohol dehydrogenase promoter preceding the cDNA cloning sites and the mouse amylase sequence (the mature sequence without the secretion signal) followed by the yeast alcohol dehydrogenase terminator, after the cloning sites. Thus, cDNAs cloned into this vector that are fused in frame with amylase sequence will 25 lead to the secretion of amylase from appropriately transfected yeast colonies. <br><br> 3. Transformation and Detection <br><br> DNA from the library described in paragraph 2 above was chilled on ice to which was added electrocompetent DH10B bacteria (Life Technologies, 20 ml). The bacteria and vector 30 mixture was then electroporated as recommended by the manufacturer. Subsequently, SOC media (Life Technologies, 1 ml) was added and the mixture was incubated at 37°C for 30 minutes. The transformants were then plated onto 20 standard 150 mm LB plates containing ampicillin and incubated for 16 hours (37°C). Positive colonies were scraped off the plates and the DNA was isolated from the bacterial pellet using standard protocols, e.g. CsCI-gradient. 35 The purified DNA was then carried on to the yeast protocols below. <br><br> The yeast methods were divided into three categories: (1) Transformation of yeast with the plasmid/cDNA combined vector; (2) Detection and isolation of yeast clones secreting amylase; and (3) PCR amplification of the insert directly from the yeast colony and purification of the DNA for sequencing and further analysis. <br><br> H:\Gabriela\Keep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> 58 <br><br> The yeast strain used was HD56-5A (ATCC-90785). This strain has the following genotype: MAT alpha, ura3-52, leu2-3, Ieu2-112, his3-11, his3-15, MAL+, SUC+, GAL+. Preferably, yeast mutants can be employed that have deficient post-translational pathways. Such mutants may have translocation deficient alleles in sec71, sec72, sec62, with truncated 5 sec71 being most preferred. Alternatively, antagonists (including antisense nucleotides and/or ligands) which interfere with the normal operation of these genes, other proteins implicated in this post translation pathway (e.g., SEC61p, SEC72p, SEC62p, SEC63p, TDJ1p or SSA1p-4p) or the complex formation of these proteins may also be preferably employed in combination with the amylase-expressing yeast. <br><br> 10 Transformation was performed based on the protocol outlined by Gietz et al., Nucl. <br><br> Acid. Res.. 20:1425 (1992). Transformed cells were then inoculated from agar into YEPD complex media broth (100 ml) and grown overnight at 30°C. The YEPD broth was prepared as described in Kaiser et al., Methods in Yeast Genetics. Cold Spring Harbor Press, Cold Spring Harbor, NY, p. 207 (1994). The overnight culture was then diluted to about 2 x 106 cells/ml 15 (approx. OD600=0.1) into fresh YEPD broth (500 ml) and regrown to 1 x 107 cells/ml (approx. OD6oo=0.4-0.5). <br><br> The cells were then harvested and prepared for transformation by transfer into GS3 rotor bottles in a Sorval GS3 rotor at 5,000 rpm for 5 minutes, the supernatant discarded, and then resuspended into sterile water, and centrifuged again in 50 ml falcon tubes at 3,500 rpm in 20 a Beckman GS-6KR centrifuge. The supernatant was discarded and the cells were subsequently washed with LiAc/TE (10 ml, 10 mM Tris-HCI, 1 mM EDTA pH 7.5, 100 mM Li2OOCCH3), and resuspended into LiAc/TE (2.5 ml). <br><br> Transformation took place by mixing the prepared cells (100 pi) with freshly denatured single stranded salmon testes DNA (Lofstrand Labs, Gaithersburg, MD) and transforming DNA 25 (1 pg, vol. &lt; 10 pi) in microfuge tubes. The mixture was mixed briefly by vortexing, then 40% PEG/TE (600 pi, 40% polyethylene glycol-4000, 10 mM Tris-HCI, 1 mM EDTA, 100 mM Li2OOCCH3, pH 7.5) was added. This mixture was gently mixed and incubated at 302C while agitating for 30 minutes. The cells were then heat shocked at 42°C for 15 minutes, and the reaction vessel centrifuged in a microfuge at 12,000 rpm for 5-10 seconds, decanted and 30 resuspended into TE (500 pi, 10 mM Tris-HCI, 1 mM EDTA pH 7.5) followed by recentrifugation. The cells were then diluted into TE (1 ml) and aliquots (200 pi) were spread onto the selective media previously prepared in 150 mm growth plates (VWR). <br><br> Alternatively, instead of multiple small reactions, the transformation was performed using a single, large scale reaction, wherein reagent amounts were scaled up accordingly. 35 The selective media used was a synthetic complete dextrose agar lacking uracil (SCD- <br><br> Ura) prepared as described in Kaiser et al., Methods in Yeast Genetics. Cold Spring Harbor Press, Cold Spring Harbor, NY, p. 208-210 (1994). Transformants were grown at 30°C for 2-3 days. <br><br> H:VGabrielaVKeepVSpeci\P49662 Div No 3.doc 26/05/03 <br><br> (' <br><br> \ <br><br> 59 <br><br> The detection of colonies secreting amylase was performed by including red starch in the selective growth media. Starch was coupled to the red dye (Reactive Red-120, Sigma) as per the procedure described by Biely et al., Anal. Biochem.. 172:176-179 (1988). The coupled starch was incorporated into the SCD-Ura agar plates at a final concentration of 0.15% (w/v), 5 and was buffered with potassium phosphate to a pH of 7.0 (50-100 mM final concentration). <br><br> The positive colonies were picked and streaked across fresh selective media (onto 150 mm plates) in order to obtain well isolated and identifiable single colonies. Well isolated single colonies positive for amylase secretion were detected by direct incorporation of red starch into buffered SCD-Ura agar. Positive colonies were determined by their ability to break down starch 10 resulting in a clear halo around the positive colony visualized directly. <br><br> 4. Isolation of DNA by PCR Amplification <br><br> When a positive colony was isolated, a portion of it was picked by a toothpick and diluted into sterile water (30 pi) in a 96 well plate. At this time, the positive colonies were either 15 frozen and stored for subsequent analysis or immediately amplified. An aliquot of cells (5 jjI) was used as a template for the PCR reaction in a 25 pi volume containing: 0.5 pi Klentaq (Clontech, Palo Alto, CA); 4.0 pl 10 mM dNTP's (Perkin Elmer-Cetus); 2.5 pl Kentaq buffer (Clontech); 0.25 pl forward oligo 1; 0.25 pl reverse oligo 2; 12.5 pl distilled water. The sequence of the forward oligonucleotide 1 was: 20 5'-TGTAAAACGACGGCCAGTTAAATAGACCTGCAATTATTAATCT-3' (SEQ ID <br><br> NO:1) <br><br> The sequence of reverse oligonucleotide 2 was: <br><br> 5'-CAGGAAACAGCTATGACCACCTGCACACCTGCAAATCCATT-3' (SEQ ID NO:2) <br><br> PCR was then performed as follows: <br><br> a. <br><br> Denature <br><br> 92°C, <br><br> 5 minutes b. <br><br> 3 cycles of: <br><br> Denature <br><br> 92°C, <br><br> 30 seconds <br><br> Anneal <br><br> 59°C, <br><br> 30 seconds <br><br> Extend <br><br> 72°C, <br><br> 60 seconds c. <br><br> 3 cycles of: <br><br> Denature <br><br> 92°C, <br><br> 30 seconds <br><br> Anneal <br><br> 57°C, <br><br> 30 seconds <br><br> Extend <br><br> 72°C, <br><br> 60 seconds d. <br><br> 25 cycles of: <br><br> Denature <br><br> 92°C, <br><br> 30 seconds <br><br> Anneal <br><br> 55°C, <br><br> 30 seconds <br><br> Extend <br><br> 72°C, <br><br> 60 seconds e. <br><br> Hold <br><br> 4°C <br><br> 40 <br><br> The underlined regions of the oligonucleotides annealed to the ADH promoter region and the amylase region, respectively, and amplified a 307 bp region from vector pSST-AMY.O when no insert was present. Typically, the first 18 nucleotides of the 5' end of these oligonucleotides contained annealing sites for the sequencing primers. Thus, the total product <br><br> H:\Gabriela\Keep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> 60 <br><br> of the PCR reaction from an empty vector was 343 bp. However, signal sequence-fused cDNA resulted in considerably longer nucleotide sequences. <br><br> Following the PCR, an aliquot of the reaction (5 (jl) was examined by agarose gel electrophoresis in a 1% agarose gel using a Tris-Borate-EDTA (TBE) buffering system as 5 described by Sambrook et al., supra. Clones resulting in a single strong PCR product larger than 400 bp were further analyzed by DNA sequencing after purification with a 96 Qiaquick PCR clean-up column (Qiagen Inc., Chatsworth, CA). <br><br> EXAMPLE 3: Isolation of cDNA Clones Using Signal Algorithm Analysis 10 Various polypeptide-encoding nucleic acid sequences were identified by applying a proprietary signal sequence finding algorithm developed by Genentech, Inc. (South San Francisco, CA) upon ESTs as well as clustered and assembled EST fragments from public (e.g., GenBank) and/or private (LIFESEQ®, Incyte Pharmaceuticals, Inc., Palo Alto, CA) databases. The signal sequence algorithm computes a secretion signal score based on the 15 character of the DNA nucleotides surrounding the first and optionally the second methionine codon(s) (ATG) at the 5'-end of the sequence or sequence fragment under consideration. The nucleotides following the first ATG must code for at least 35 unambiguous amino acids without any stop codons. If the first ATG has the required amino acids, the second is not examined. If neither meets the requirement, the candidate sequence is not scored. In order to determine 20 whether the EST sequence contains an authentic signal sequence, the DNA and corresponding amino acid sequences surrounding the ATG codon are scored using a set of seven sensors (evaluation parameters) known to be associated with secretion signals. Use of this algorithm resulted in the identification of numerous polypeptide-encoding nucleic acid sequences. <br><br> 25 EXAMPLE 4: Isolation of cDNA clones Encoding Human PRQ1317 <br><br> A consensus DNA sequence was assembled relative to other EST sequences using phrap as described in Example 1 above. This consensus sequence is designated herein "Consen8865". In addition, the Consen8865 consensus sequence was extended using repeated cycles of BLAST and phrap to extend the consensus sequence as far as possible 30 using the sources of EST sequences discussed above. The extended consensus sequence is designated herein as "DNA63334". Based on the DNA63334 consensus sequence, oligonucleotides were synthesized: 1) to identify by PCR a cDNA library that contained the sequence of interest, and 2) for use as probes to isolate a clone of the full-length coding sequence for PR01317. <br><br> 35 PCR primers (forward and reverse) were synthesized: <br><br> forward PCR primer: CTGCTGGTGAAATCTGGCGTGGAG (63334.f1; SEQ ID NO:278); and reverse PCR primer: GTCTGGTCCTGGCTGTCCACCCAG (63334.r1; SEQ ID NO:279). <br><br> Additionally, a synthetic oligonucleotide hybridization probe was constructed from the consensus DNA63334 sequence which had the following nucleotide sequence: <br><br> H:\Gabriela\Keep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> 61 <br><br> hybridization probe: CAT CTT GT CATGTACCTGGG AACCACCACAGGGTCGCT CCACAAG (63334.p1; SEQ ID N0:280). <br><br> In order to screen several libraries for a source of a full-length clone, DNA from the libraries we*s screened by PCR amplification with the PCR primer pair identified above. A 5 positive library was then used to isolate clones encoding the PR01317 gene using the probe oligonucleotide and one of the PCR primers. RNA for construction of the cDNA libraries was isolated from human hippocampal tissue. <br><br> DNA sequencing of the clones isolated as described above gave the full-length DNA sequence for PR01317 (designated herein as DNA71166-1685 [Figure 1, SEQ ID NO:276]; 10 and the derived protein sequence for PR01317. <br><br> The entire coding sequence of PR01317 is shown in Figure 1 (SEQ ID NO:276). Clone DNA71166-1685 contains a single open reading frame with an apparent translational initiation site at nucleotide positions 105-107 and an apparent stop codon at nucleotide positions 2388-2390. The predicted polypeptide precursor is 761 amino acids long and has an estimated 15 molecular weight of about 83,574 daltons and a pl of about 6.78. <br><br> An analysis of the Dayhoff database (version 35.45 SwissProt 35), using a WU-BLAST2 sequence alignment analysis of the full-length sequence shown in Figure 2 (SEQ ID NO:277), revealed significant homology between the PR01317 amino acid sequence and Dayhoff sequence no. I48745. Homology was also revealed between the PR01317 amino acid 20 sequence the following Dayhoff sequences: I48746, GEN13418, P_W58540, P_217657, MUSC1_1, P_471380, U73167_5, HSU33920_1, and GG828240_1. <br><br> Clone DNA71166-1685 was deposited with the ATCC on October 20, 1998, and is assigned ATCC deposit no. 203355. <br><br> 25 EXAMPLE 5: Use of PRO as a hybridization probe <br><br> The following method describes use of a nucleotide sequence encoding PRO as a hybridization probe. <br><br> DNA comprising the coding sequence of full-length or mature PRO as disclosed herein is employed as a probe to screen for homologous DNAs (such as those encoding naturally-30 occurring variants of PRO) in human tissue cDNA libraries or human tissue genomic libraries. <br><br> Hybridization and washing of filters containing either library DNAs is performed under the following high stringency conditions. Hybridization of radiolabeled PRO-derived probe to the filters is performed in a solution of 50% formamide, 5x SSC, 0.1% SDS, 0.1% sodium pyrophosphate, 50 mM sodium phosphate, pH 6.8, 2x Denhardt's solution, and 10% dextran 35 sulfate at 42°C for 20 hours. Washing of the filters is performed in an aqueous solution of 0.1x SSC and 0.1% SDS at 42°C. <br><br> DNAs having a desired sequence identity with the DNA encoding full-length native sequence PRO can then be identified using standard techniques known in the art. <br><br> H:\GabrieIa\JCeep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> 62 <br><br> EXAMPLE 6: Expression of PRO in E. coli <br><br> This example illustrates preparation of an unglycosylated form of PRO by recombinant expression in E. coli. <br><br> The DNA sequence encoding PRO is initially amplified using selected PCR primers. 5 The primers should contain restriction enzyme sites which correspond to the restriction enzyme sites on the selected expression vector. A variety of expression vectors may be employed. An example of a suitable vector is pBR322 (derived from E. coir, see Bolivar et al., Gene. 2:95 (1977)) which contains genes for ampicillin and tetracycline resistance. The vector is digested with restriction enzyme and dephosphorylated. The PCR amplified sequences are then ligated 10 into the vector. The vector will preferably include sequences which encode for an antibiotic resistance gene, a trp promoter, a polyhis leader (including the first six STII codons, polyhis sequence, and enterokinase cleavage site), the PRO coding region, lambda transcriptional terminator, and an argU gene. <br><br> The ligation mixture is then used to transform a selected E. coli strain using the 15 methods described in Sambrook et al., supra. Transformants are identified by their ability to grow on LB plates and antibiotic resistant colonies are then selected. Plasmid DNA can be isolated and confirmed by restriction analysis and DNA sequencing. <br><br> Selected clones can be grown overnight in liquid culture medium such as LB broth supplemented with antibiotics. The overnight culture may subsequently be used to inoculate a 20 larger scale culture. The cells are then grown to a desired optical density, during which the expression promoter is turned on. <br><br> After culturing the cells for several more hours, the cells can be harvested by centrifugation. The cell pellet obtained by the centrifugation can be solubilized using various agents known in the art, and the solubilized PRO protein can then be purified using a metal 25 chelating column under conditions that allow tight binding of the protein. <br><br> PRO may be expressed in E. coli in a poly-His tagged form, using the following procedure. The DNA encoding PRO is initially amplified using selected PCR primers. The primers will contain restriction enzyme sites which correspond to the restriction enzyme sites on the selected expression vector, and other useful sequences providing for efficient and reliable 30 translation initiation, rapid purification on a metal chelation column, and proteolytic removal with enterokinase. The PCR-amplified, poly-His tagged sequences are then ligated into an expression vector, which is used to transform an E. coli host based on strain 52 (W3110 fuhA(tonA) Ion galE rpoHts(htpRts) clpP(laclq). Transformants are first grown in LB containing 50 mg/ml carbenicillin at 30°C with shaking until an O.D.6OO of 3-5 is reached. Cultures are .35 then diluted 50-100 fold into CRAP media (prepared by mixing 3.57 g (NH4)2S04, 0.71 g sodium citrate-2H20, 1.07 g KCI, 5.36 g Difco yeast extract, 5.36 g Sheffield hycase SF in 500 mL water, as well as 110 mM MPOS, pH 7.3, 0.55% (w/v) glucose and 7 mM MgS04) and grown for approximately 20-30 hours at 30°C with shaking. Samples are removed to verify expression <br><br> H:\GabrieIa\Keep\Specj\P49662 Div No 3.doc 26/05/03 <br><br> by SDS-PAGE analysis, and the bulk culture is centrifuged to pellet the cells. Cell pellets are frozen until purification and refolding. <br><br> £ coli paste from 0.5 to 1 L fermentations (6-10 g pellets) is resuspended in 10 volumes (w/v) in 7 M guanidine, 20 mM Tris, pH 8 buffer. Solid sodium sulfite and sodium tetrathionate is added to make final concentrations of 0.1 M and 0.02 M, respectively, and the solution is stirred overnight at 4°C. This step results in a denatured protein with all cysteine residues blocked by sulfitolization. The solution is centrifuged at 40,000 rpm in a Beckman Ultracentifuge for 30 min. The supernatant is diluted with 3-5 volumes of metal chelate column buffer (6 M guanidine, 20 mM Tris, pH 7.4) and filtered through 0.22 micron filters to clarify. The clarified extract is loaded onto a 5 ml Qiagen Ni-NTA metal chelate column equilibrated in the metal chelate column buffer. The column is washed with additional buffer containing 50 mM imidazole (Calbiochem, Utrol grade), pH 7.4. The protein is eluted with buffer containing 250 mM imidazole. Fractions containing the desired protein are pooled and stored at 4°C. Protein concentration is estimated by its absorbance at 280 nm using the calculated extinction coefficient based on its amino acid sequence. <br><br> The proteins are refolded by diluting the sample slowly into freshly prepared refolding buffer consisting of: 20 mM Tris, pH 8.6, 0.3 M NaCI, 2.5 M urea, 5 mM cysteine, 20 mM glycine and 1 mM EDTA. Refolding volumes are chosen so that the final protein concentration is between 50 to 100 micrograms/ml. The refolding solution is stirred gently at 4°C for 12-36 hours. The refolding reaction is quenched by the addition of TFA to a final concentration of 0.4% (pH of approximately 3). Before further purification of the protein, the solution is filtered through a 0.22 micron filter and acetonitrile is added to 2-10% final concentration. The refolded protein is chromatographed on a Poros R1/H reversed phase column using a mobile buffer of 0.1% TFA with elution with a gradient of acetonitrile from 10 to 80%. Aliquots of fractions with A280 absorbance are analyzed on SDS polyacrylamide gels and fractions containing homogeneous refolded protein are pooled. Generally, the properly refolded species of most proteins are eluted at the lowest concentrations of acetonitrile since those species are the most compact with their hydrophobic interiors shielded from interaction with the reversed phase resin. Aggregated species are usually eluted at higher acetonitrile concentrations. In addition to resolving misfolded forms of proteins from the desired form, the reversed phase step also removes endotoxin from the samples. <br><br> Fractions containing the desired folded PRO polypeptide are pooled and the acetonitrile removed using a gentle stream of nitrogen directed at the solution. Proteins are formulated into 20 mM Hepes, pH 6.8 with 0.14 M sodium chloride and 4% mannitol by dialysis or by gel filtration using G25 Superfine (Pharmacia) resins equilibrated in the formulation buffer and sterile filtered. <br><br> Many of the PRO polypeptides disclosed herein were successfully expressed as described above. <br><br> H:\Gabriela\Keep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> 64 <br><br> EXAMPLE 7: Expression of PRO in mammalian cells <br><br> This example illustrates preparation of a potentially glycosylated form of PRO by recombinant expression in mammalian cells. <br><br> The vector, pRK5 (see EP 307,247, published March 15, 1989), is employed as the 5 expression vector. Optionally, the PRO DNA is ligated into pRK5 with selected restriction enzymes to allow insertion of the PRO DNA using ligation methods such as described in Sambrook et al., supra. The resulting vector is called pRK5-PRO. <br><br> In one embodiment, the selected host cells may be 293 cells. Human 293 cells (ATCC CCL 1573) are grown to confluence in tissue culture plates in medium such as DMEM 10 supplemented with fetal calf serum and optionally, nutrient components and/or antibiotics. About 10 pg pRK5-PRO DNA is mixed with about 1 pg DNA encoding the VA RNA gene [Thimmappaya et al., Cell. 31:543 (1982)] and dissolved in 500 pl of 1 mM Tris-HCI, 0.1 mM EDTA, 0.227 M CaCI2. To this mixture is added, dropwise, 500 pl of 50 mM HEPES (pH 7.35), 280 mM NaCI, 1.5 mM NaP04, and a precipitate is allowed to form for 10 minutes at 25°C. The 15 precipitate is suspended and added to the 293 cells and allowed to settle for about four hours at 37°C. The culture medium is aspirated off and 2 ml of 20% glycerol in PBS is added for 30 seconds. The 293 cells are then washed with serum free medium, fresh medium is added and the cells are incubated for about 5 days. <br><br> Approximately 24 hours after the transfections, the culture medium is removed and 20 replaced with culture medium (alone) or culture medium containing 200 pCi/ml 35S-cysteine and 200 pCi/ml 35S-methionine. After a 12 hour incubation, the conditioned medium is collected, concentrated on a spin filter, and loaded onto a 15% SDS gel. The processed gel may be dried and exposed to film for a selected period of time to reveal the presence of PRO polypeptide. The cultures containing transfected cells may undergo further incubation (in serum free 25 medium) and the medium is tested in selected bioassays. <br><br> In an alternative technique, PRO may be introduced into 293 cells transiently using the dextran sulfate method described by Somparyrac et al., Proc. Natl. Acad. Sci.. 12:7575 (1981). 293 cells are grown to maximal density in a spinner flask and 700 pg pRK5-PRO DNA is added. The cells are first concentrated from the spinner flask by centrifugation and washed with PBS. 30 The DNA-dextran precipitate is incubated on the cell pellet for four hours. The cells are treated with 20% glycerol for 90 seconds, washed with tissue culture medium, and re-introduced into the spinner flask containing tissue culture medium, 5 pg/ml bovine insulin and 0.1 pg/ml bovine transferrin. After about four days, the conditioned media is centrifuged and filtered to remove cells and debris. The sample containing expressed PRO can then be concentrated and purified 35 by any selected method, such as dialysis and/or column chromatography. <br><br> In another embodiment, PRO can be expressed in CHO cells. The pRK5-PRO can be transfected into CHO cells using known reagents such as CaP04 or DEAE-dextran. As described above, the cell cultures can be incubated, and the medium replaced with culture medium (alone) or medium containing a radiolabel such as 35S-methionine. After determining <br><br> H:\GabrielaVKeep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> 65 <br><br> the presence of PRO polypeptide, the culture medium may be replaced with serum free medium. Preferably, the cultures are incubated for about 6 days, and then the conditioned medium is harvested. The medium containing the expressed PRO can then be concentrated and purified by any selected method. <br><br> 5 Epitope-tagged PRO may also be expressed in host CHO cells. The PRO may be subcloned out of the pRK5 vector. The subclone insert can undergo PCR to fuse in frame with a selected epitope tag such as a poly-his tag into a Baculovirus expression vector. The poly-his tagged PRO insert can then be subcloned into a SV40 driven vector containing a selection marker such as DHFR for selection of stable clones. Finally, the CHO cells can be transfected 10 (as described above) with the SV40 driven vector. Labeling may be performed, as described above, to verify expression. The culture medium containing the expressed poly-His tagged PRO can then be concentrated and purified by any selected method, such as by Nia+-chelate affinity chromatography. <br><br> PRO may also be expressed in CHO and/or COS cells by a transient expression 15 procedure or in CHO cells by another stable expression procedure. <br><br> Stable expression in CHO cells is performed using the following procedure. The proteins are expressed as an IgG construct (immunoadhesin), in which the coding sequences for the soluble forms (e.g. extracellular domains) of the respective proteins are fused to an lgG1 constant region sequence containing the hinge, CH2 and CH2 domains and/or is a poly-His 20 tagged form. <br><br> Following PCR amplification, the respective DNAs are subcloned in a CHO expression vector using standard techniques as described in Ausubel et al., Current Protocols of Molecular Biology. Unit 3.16, John Wiley and Sons (1997). CHO expression vectors are constructed to have compatible restriction sites 5' and 3' of the DNA of interest to allow the convenient 25 shuttling of cDNA's. The vector used expression in CHO cells is as described in Lucas et al., Nucl. Acids Res. 24:9 (1774-1779 (1996), and uses the SV40 early promoter/enhancer to drive expression of the cDNA of interest and dihydrofolate reductase (DHFR). DHFR expression permits selection for stable maintenance of the plasmid following transfection. <br><br> Twelve micrograms of the desired plasmid DNA is introduced into approximately 10 30 million CHO cells using commercially available transfection reagents Superfect® (Quiagen), Dosper® or Fugene® (Boehringer Mannheim). The cells are grown as described in Lucas et al., supra. Approximately 3 x 10"7 cells are frozen in an ampule for further growth and production as described below. <br><br> The ampules containing the plasmid DNA are thawed by placement into water bath and 35 mixed by vortexing. The contents are pipetted into a centrifuge tube containing 10 mLs of media and centrifuged at 1000 rpm for 5 minutes. The supernatant is aspirated and the cells are resuspended in 10 mL of selective media (0.2 pm filtered PS20 with 5% 0.2 pm diafiltered fetal bovine serum). The cells are then aliquoted into a 100 mL spinner containing 90 mL of selective media. After 1-2 days, the cells are transferred into a 250 mL spinner filled with 150 <br><br> H:\Gabriela\Keep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> 66 <br><br> mL selective growth medium and incubated at 37°C. After another 2-3 days, 250 mL, 500 mL and 2000 mL spinners are seeded with 3 x 10s cells/mL. The cell media is exchanged with fresh media by centrifugation and resuspension in production medium. Although any suitable CHO media may be employed, a production medium described in U.S. Patent No. 5,122,469, 5 issued June 16, 1992 may actually be used. A 3L production spinner is seeded at 1.2 x 106 cells/mL On day 0, the cell number pH ie determined. On day 1, the spinner is sampled and sparging with filtered air is commenced. On day 2, the spinner is sampled, the temperature shifted to 33°C, and 30 mL of 500 g/L glucose and 0.6 mL of 10% antifoam (e.g., 35% polydimethylsiloxane emulsion, Dow Corning 365 Medical Grade Emulsion) taken. Throughout 10 the production, the pH is adjusted as necessary to keep it at around 7.2. After 10 days, or until the viability dropped below 70%, the cell culture is harvested by centrifugation and filtering through a 0.22 pm filter. The filtrate was either stored at 4°C or immediately loaded onto columns for purification. <br><br> For the poly-His tagged constructs, the proteins are purified using a Ni-NTA column 15 (Qiagen). Before purification, imidazole is added to the conditioned media to a concentration of 5 mM. The conditioned media is pumped onto a 6 ml Ni-NTA column equilibrated in 20 mM Hepes, pH 7.4, buffer containing 0.3 M NaCI and 5 mM imidazole at a flow rate of 4-5 ml/min. at 4°C. After loading, the column is washed with additional equilibration buffer and the protein eluted with equilibration buffer containing 0.25 M imidazole. The highly purified protein is 20 subsequently desalted into a storage buffer containing 10 mM Hepes, 0.14 M NaCI and 4% mannitol, pH 6.8, with a 25 ml G25 Superfine (Pharmacia) column and stored at -80°C. <br><br> Immunoadhesin (Fc-containing) constructs are purified from the conditioned media as follows. The conditioned medium is pumped onto a 5 ml Protein A column (Pharmacia) which had been equilibrated in 20 mM Na phosphate buffer, pH 6.8. After loading, the column is 25 washed extensively with equilibration buffer before elution with 100 mM citric acid, pH 3.5. The eluted protein is immediately neutralized by collecting 1 ml fractions into tubes containing 275 jjL of 1 M Tris buffer, pH 9. The highly purified protein is subsequently desalted into storage buffer as described above for the poly-His tagged proteins. The homogeneity is assessed by SDS polyacrylamide gels and by N-terminal amino acid sequencing by Edman degradation. 30 Many of the PRO polypeptides disclosed herein were successfully expressed as described above. <br><br> EXAMPLE 8: Expression of PRO in Yeast <br><br> The following method describes recombinant expression of PRO in yeast. 35 First, yeast expression vectors are constructed for intracellular production or secretion of PRO from the ADH2/GAPDH promoter. DNA encoding PRO and the promoter is inserted into suitable restriction enzyme sites in the selected plasmid to direct intracellular expression of PRO. For secretion, DNA encoding PRO can be cloned into the selected plasmid, together with DNA encoding the ADH2/GAPDH promoter, a native PRO signal peptide or other mammalian <br><br> H:\Gabriela\Keep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> 67 <br><br> signal peptide, or, for example, a yeast alpha-factor or invertase secretory signal/leader sequence, and linker sequences (if needed) for expression of PRO. <br><br> Yeast cells, such as yeast strain AB110, can then be transformed with the expression plasmids described above and cultured in selected fermentation media. The transformed yeast 5 supernatants can be analyzed by precipitation with 10% trichloroacetic acid and separation by SDS-PAGE, followed by staining of the gels with Coomassie Blue stain. <br><br> Recombinant PRO can subsequently be isolated and purified by removing the yeast cells from the fermentation medium by centrifugation and then concentrating the medium using selected cartridge filters. The concentrate containing PRO may further be purified using 10 selected column chromatography resins. <br><br> Many of the PRO polypeptides disclosed herein were successfully expressed as described above. <br><br> EXAMPLE 9: Expression of PRO in Baculovirus-lnfected Insect Cells 15 The following method describes recombinant expression of PRO in Baculovirus- <br><br> infected insect cells. <br><br> The sequence coding for PRO is fused upstream of an epitope tag contained within a baculovirus expression vector. Such epitope tags include poly-his tags and immunoglobulin tags (like Fc regions of IgG). A variety of plasmids may be employed, including plasmids 20 derived from commercially available plasmids such as pVL1393 (Novagen). Briefly, the sequence encoding PRO or the desired portion of the coding sequence of PRO such as the sequence encoding the extracellular domain of a transmembrane protein or the sequence encoding the mature protein if the protein is extracellular is amplified by PCR with primers complementary to the 5' and 3' regions. The 5' primer may incorporate flanking (selected) 25 restriction enzyme sites. The product is then digested with those selected restriction enzymes and subcloned into the expression vector. <br><br> Recombinant baculovirus is generated by co-transfecting the above plasmid and BaculoGold™ virus DNA (Pharmingen) into Spodoptera frugiperda ("Sf9") cells (ATCC CRL 1711) using lipofectin (commercially available from GIBCO-BRL). After 4 - 5 days of incubation 30 at 28°C, the released viruses are harvested and used for further amplifications. Viral infection and protein expression are performed as described by O'Reilley et al., Baculovirus expression vectors: A Laboratory Manual. Oxford: Oxford University Press (1994). <br><br> Expressed poly-his tagged PRO can then be purified, for example, by Ni2+-chelate affinity chromatography as follows. Extracts are prepared from recombinant virus-infected Sf9 35 cells as described by Rupert et al., Nature. 362:175-179 (1993). Briefly, Sf9 cells are washed, resuspended in sonication buffer (25 mL Hepes, pH 7.9; 12.5 mM MgCI2; 0.1 mM EDTA; 10% glycerol; 0.1% NP-40; 0.4 M KCI), and sonicated twice for 20 seconds on ice. The sonicates are cleared by centrifugation, and the supernatant is diluted 50-fold in loading buffer (50 mM phosphate, 300 mM NaCI, 10% glycerol, pH 7.8) and filtered through a 0.45 pm filter. A Ni2+- <br><br> H:\Gabriela\Keep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> 68 <br><br> NTA agarose column (commercially available from Qiagen) is prepared with a bed volume of 5 mL, washed with 25 mL of water and equilibrated with 25 mL of loading buffer. The filtered cell extract is loaded onto the column at 0.5 mL per minute. The column is washed to baseline A28o with loading buffer, at which point fraction collection is started. Next, the column is washed with 5 a secondary wash buffer (50 mM phosphate; 300 mM NaCI, 10% glycerol, pH 6.0), which elutes nonspecifically bound protein. After reaching A28o baseline again, the column is developed with a 0 to 500 mM Imidazole gradient in the secondary wash buffer. One mL fractions are collected and analyzed by SDS-PAGE and silver staining or Western blot with Ni2+-NTA-conjugated to alkaline phosphatase (Qiagen). Fractions containing the eluted His10-tagged PRO are pooled 10 and dialyzed against loading buffer. <br><br> Alternatively, purification of the IgG tagged (or Fc tagged) PRO can be performed using known chromatography techniques, including for instance, Protein A or protein G column chromatography. <br><br> Many of the PRO polypeptides disclosed herein were successfully expressed as 15 described above. <br><br> EXAMPLE 10: Preparation of Antibodies that Bind PRO <br><br> This example illustrates preparation of monoclonal antibodies which can specifically bind PRO. <br><br> 20 Techniques for producing the monoclonal antibodies are known in the art and are described, for instance, in Goding, supra. Immunogens that may be employed include purified PRO, fusion proteins containing PRO, and cells expressing recombinant PRO on the cell surface. Selection of the immunogen can be made by the skilled artisan without undue experimentation. <br><br> 25 Mice, such as Balb/c, are immunized with the PRO immunogen emulsified in complete <br><br> Freund's adjuvant and injected subcutaneously or intraperitoneally in an amount from 1-100 micrograms. Alternatively, the immunogen is emulsified in MPL-TDM adjuvant (Ribi Immunochemical Research, Hamilton, MT) and injected into the animal's hind foot pads. The immunized mice are then boosted 10 to 12 days later with additional immunogen emulsified in 30 the selected adjuvant. Thereafter, for several weeks, the mice may also be boosted with additional immunization injections. Serum samples may be periodically obtained from the mice by retro-orbital bleeding for testing in ELISA assays to detect anti-PRO antibodies. <br><br> After a suitable antibody titer has been detected, the animals "positive" for antibodies can be injected with a final intravenous injection of PRO. Three to four days later, the mice are 35 sacrificed and the spleen cells are harvested. The spleen cells are then fused (using 35% polyethylene glycol) to a selected murine myeloma cell line such as P3X63AgU.1, available from ATCC, No. CRL 1597. The fusions generate hybridoma cells which can then be plated in 96 well tissue culture plates containing HAT (hypoxanthine, aminopterin, and thymidine) medium to inhibit proliferation of non-fused cells, myeloma hybrids, and spleen cell hybrids. <br><br> H:\Gabriela\Keep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> 69 <br><br> The hybridoma cells will be screened in an ELISA for reactivity against PRO. Determination of "positive" hybridoma cells secreting the desired monoclonal antibodies against PRO is within the skill in the art. <br><br> The positive hybridoma cells can be injected intraperitoneally into syngeneic Balb/c 5 mice to produce ascites containing the anti-PRO monoclonal antibodies. Alternatively, the hybridoma cells can be grown in tissue culture flasks or roller bottles. Purification of the monoclonal antibodies produced in the ascites can be accomplished using ammonium sulfate precipitation, followed by gel exclusion chromatography. Alternatively, affinity chromatography based upon binding of antibody to protein A or protein G can be employed. <br><br> 10 <br><br> EXAMPLE 11: Purification of PRO Polypeptides Using Specific Antibodies <br><br> Native or recombinant PRO polypeptides may be purified by a variety of standard techniques in the art of protein purification. For example, pro-PRO polypeptide, mature PRO polypeptide, or pre-PRO polypeptide is purified by immunoaffinity chromatography using 15 antibodies specific for the PRO polypeptide of interest. In general, an immunoaffinity column is constructed by covalently coupling the anti-PRO polypeptide antibody to an activated chromatographic resin. <br><br> Polyclonal immunoglobulins are prepared from immune sera either by precipitation with ammonium sulfate or by purification on immobilized Protein A (Pharmacia LKB Biotechnology, 20 Piscataway, N.J.). Likewise, monoclonal antibodies are prepared from mouse ascites fluid by ammonium sulfate precipitation or chromatography on immobilized Protein A. Partially purified immunoglobulin is covalently attached to a chromatographic resin such as CnBr-activated SEPHAROSE™ (Pharmacia LKB Biotechnology). The antibody is coupled to the resin, the resin is blocked, and the derivative resin is washed according to the manufacturer's instructions. 25 Such an immunoaffinity column is utilized in the purification of PRO polypeptide by preparing a fraction from cells containing PRO polypeptide in a soluble form. This preparation is derived by solubilization of the whole cell or of a subcellular fraction obtained via differential centrifugation by the addition of detergent or by other methods well known in the art. Alternatively, soluble PRO polypeptide containing a signal sequence may be secreted in useful 30 quantity into the medium in which the cells are grown. <br><br> A soluble PRO polypeptide-containing preparation is passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of PRO polypeptide (e.g., high ionic strength buffers in the presence of detergent). Then, the column is eluted under conditions that disrupt antibody/PRO polypeptide binding (e.g., a low pH 35 buffer such as approximately pH 2-3, or a high concentration of a chaotrope such as urea or thiocyanate ion), and PRO polypeptide is collected. <br><br> EXAMPLE 12; Drug Screening <br><br> H:\Gabriela\FCeep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> 70 <br><br> This invention is particularly useful for screening compounds by using PRO polypeptides or binding fragment thereof in any of a variety of drug screening techniques. The PRO polypeptide or fragment employed in such a test may either be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. One method of drug screening 5 utilizes eukaryotic or prokaryotic host cells which are stably transformed with recombinant nucleic acids expressing the PRO polypeptide or fragment. Drugs are screened against such transformed cells in competitive binding assays. Such cells, either in viable or fixed form, can be used for standard binding assays. One may measure, for example, the formation of complexes between PRO polypeptide or a fragment and the agent being tested. Alternatively, 10 one can examine the diminution in complex formation between the PRO polypeptide and its target cell or target receptors caused by the agent being tested. <br><br> Thus, the present invention provides methods of screening for drugs or any other agents which can affect a PRO polypeptide-associated disease or disorder. These methods comprise contacting such an agent with an PRO polypeptide or fragment thereof and assaying 15 (I) for the presence of a complex between the agent and the PRO polypeptide or fragment, or (ii) for the presence of a complex between the PRO polypeptide or fragment and the cell, by methods well known in the art. In such competitive binding assays, the PRO polypeptide or fragment is typically labeled. After suitable incubation, free PRO polypeptide or fragment is separated from that present in bound form, and the amount of free or uncomplexed label is a 20 measure of the ability of the particular agent to bind to PRO polypeptide or to interfere with the PRO polypeptide/cell complex. <br><br> Another technique for drug screening provides high throughput screening for compounds having suitable binding affinity to a polypeptide and is described in detail in WO 84/03564, published on September 13, 1984. Briefly stated, large numbers of different 25 small peptide test compounds are synthesized on a solid substrate, such as plastic pins or some other surface. As applied to a PRO polypeptide, the peptide test compounds are reacted with PRO polypeptide and washed. Bound PRO polypeptide is detected by methods well known in the art. Purified PRO polypeptide can also be coated directly onto plates for use in the aforementioned drug screening techniques. In addition, non-neutralizing antibodies can be used 30 to capture the peptide and immobilize it on the solid support. <br><br> This invention also contemplates the use of competitive drug screening assays in which neutralizing antibodies capable of binding PRO polypeptide specifically compete with a test compound for binding to PRO polypeptide or fragments thereof. In this manner, the antibodies can be used to detect the presence of any peptide which shares one or more antigenic 35 determinants with PRO polypeptide. <br><br> EXAMPLE 13: Rational Drug Design <br><br> The goal of rational drug design is to produce structural analogs of biologically active polypeptide of interest (i.e., a PRO polypeptide) or of small molecules with which they interact, <br><br> H:\Gabriela\Keep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> 71 <br><br> followed by page 82 (pages 72 to 81 deleted) <br><br> e.g., agonists, antagonists, or inhibitors. Any of these examples can be used to fashion drugs which are more active or stable forms of the PRO polypeptide or which enhance or interfere with the function of the PRO polypeptide in vivo (c.fHodgson, Bio/Technoloav. 9: 19-21 (1991)). <br><br> 5 In one approach, the three-dimensional structure of the PRO polypeptide, or of an PRO <br><br> polypeptide-inhibitor complex, is determined by x-ray crystallography, by computer modeling or, most typically, by a combination of the two approaches. Both the shape and charges of the PRO polypeptide must be ascertained to elucidate the structure and to determine active site(s) of the molecule. Less often, useful information regarding the structure of the PRO polypeptide 10 may be gained by modeling based on the structure of homologous proteins. In both cases, relevant structural information is used to design analogous PRO polypeptide-like molecules or to identify efficient inhibitors. Useful examples of rational drug design may include molecules which have improved activity or stability as shown by Braxton and Wells, Biochemistry. 31:7796-7801 (1992) or which act as inhibitors, agonists, or antagonists of native peptides as 15 shown by Athauda et al., J. Biochem.. 113:742-746 (1993). <br><br> It is also possible to isolate a target-specific antibody, selected by functional assay, as described above, and then to solve its crystal structure. This approach, in principle, yields a pharmacore upon which subsequent drug design can be based. It is possible to bypass protein crystallography altogether by generating anti-idiotypic antibodies (anti-ids) to a functional, 20 pharmacologically active antibody. As a mirror image of a mirror image, the binding site of the anti-ids would be expected to be an analog of the original receptor. The anti-id could then be used to identify and isolate peptides from banks of chemically or biologically produced peptides. The isolated peptides would then act as the pharmacore. <br><br> By virtue of the present invention, sufficient amounts of the PRO polypeptide may be 25 made available to perform such analytical studies as X-ray crystallography. In addition, knowledge of the PRO polypeptide amino acid sequence provided herein will provide guidance to those employing computer modeling techniques in place of or in addition to x-ray crystallography. <br><br> 30 <br><br> 35 <br><br> Deposit of Material <br><br> The following materials have been deposited with the American Type Culture Collection, 10801 University Blvd., Manassas, VA 20110-2209, USA (ATCC): <br><br> Table 5 <br><br> Material ATCC Dep. No. Deposit Date <br><br> DNA26846-1397 203406 <br><br> October 27,1998 <br><br> INTELLECTUAL PROPERTY OFFICE <br><br> rtr m ? <br><br> - 1 APR 2005 received <br><br> H:\Gabriela\Keep\SpecAP49662 Div No 3.doc 26/05/03 <br><br> 5 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> 82 <br><br> DNA56107-1415 <br><br> 203405 <br><br> October 27,1998 <br><br> DNA56406-1704 <br><br> 203478 <br><br> November 17,1998 <br><br> DNA56529-1647 <br><br> 203293 <br><br> September 29,1998 <br><br> DNA56531-1648 <br><br> 203286 <br><br> September 29,1998 <br><br> DNA56862-1343 <br><br> 203174 <br><br> September 1,1998 <br><br> DNA57254-1477 <br><br> 203289 <br><br> September 29,1998 <br><br> DNA57841-1522 <br><br> 203458 <br><br> November 3,1998 <br><br> DNA58727-1474 <br><br> 203171 <br><br> September 1,1998 <br><br> DNA58730-1607 <br><br> 203221 <br><br> September 15,1998 <br><br> DNA58732-1650 <br><br> 203290 <br><br> September 29,1998 <br><br> DNA58828-1519 <br><br> 203172 <br><br> September 1, 1998 <br><br> DNA58852-1637 <br><br> 203271 <br><br> September 22,1998 <br><br> DNA59212-1627 <br><br> 203245 <br><br> September 9,1998 <br><br> DNA59218-1559 <br><br> 203287 <br><br> September 29,1998 <br><br> DNA59219-1613 <br><br> 203220 <br><br> September 15,1998 <br><br> DNA59586-1520 <br><br> 203288 <br><br> September 29,1998 <br><br> DNA59817-1703 <br><br> 203470 <br><br> November 17,1998 <br><br> DNA60278-1530 <br><br> 203170 <br><br> September 1,1998 <br><br> DNA60608-1577 <br><br> 203126 <br><br> August 18, 1998 <br><br> DNA60611-1524 <br><br> 203175 <br><br> September 1,1998 <br><br> DNA60618-1557 <br><br> 203292 <br><br> September 29,1998 <br><br> DNA60740-1615 <br><br> 203456 <br><br> November 3,1998 <br><br> DNA60764-1533 <br><br> 203452 <br><br> November 10,1998 <br><br> DNA60775-1532 <br><br> 203173 <br><br> September 1,1998 <br><br> DNA61185-1646 <br><br> 203464 <br><br> November 17,1998 <br><br> DNA61608-1606 <br><br> 203239 <br><br> September 9,1998 <br><br> DNA62808-1326 <br><br> 203358 <br><br> October 20, 1998 <br><br> DNA62809-1531 <br><br> 203237 <br><br> September 9,1998 <br><br> DNA62815-1578 <br><br> 203247 <br><br> September 9,1998 <br><br> DNA62845-1684 <br><br> 203361 <br><br> October 20, 1998 <br><br> DNA64842-1632 <br><br> 203278 <br><br> September 22,1998 <br><br> DNA64849-1604 <br><br> 203468 <br><br> November 17,1998 <br><br> DNA64863-1573 <br><br> 203251 <br><br> September 9,1998 <br><br> DNA64881-1602 <br><br> 203240 <br><br> September 9,1998 <br><br> DNA64886-1601 <br><br> 203241 <br><br> September 9,1998 <br><br> DNA64888-1542 <br><br> 203249 <br><br> September 9,1998 <br><br> DNA64889-1541 <br><br> 203250 <br><br> September 9,1998 <br><br> DNA64897-1628 <br><br> 203216 <br><br> September 15,1998 <br><br> DNA64902-1667 <br><br> 203317 <br><br> October 6,1998 <br><br> DNA64950-1590 <br><br> 203224 <br><br> September 15,1998 <br><br> DNA64952-1568 <br><br> 203222 <br><br> September 15,1998 <br><br> DNA65402-1540 <br><br> 203252 <br><br> September 9,1998 <br><br> DNA65403-1565 <br><br> 203230 <br><br> September 15,1998 <br><br> DNA65404-1551 <br><br> 203244 <br><br> September 9,1998 <br><br> DNA65405-1547 <br><br> 203476 <br><br> November 17, 1998 <br><br> DNA65408-1578 <br><br> 203217 <br><br> September 15,1998 <br><br> DNA65410-1569 <br><br> 203231 <br><br> September 15,1998 <br><br> DNA65423-1595 <br><br> 203227 <br><br> September 15,1998 <br><br> DNA66304-1546 <br><br> 203321 <br><br> October 6,1998 <br><br> DNA66511-1411 <br><br> 203228 <br><br> September 15,1998 <br><br> DNA66512-1564 <br><br> 203218 <br><br> September 15,1998 <br><br> DNA66519-1535 <br><br> 203236 <br><br> September 15,1998 <br><br> INTELLECTUAL PROPERTY OFFICE OF N.Z. <br><br> - 1 APR 2005 rftfived <br><br> H:\GabrieIa\Keep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> 83 <br><br> DNA66520-1536 <br><br> 203226 <br><br> September 15,1998 <br><br> DNA66521-1583 <br><br> 203225 <br><br> September 15,1998 <br><br> DNA66526-1616 <br><br> 203246 <br><br> September 9,1998 <br><br> DNA66658-1584 <br><br> 203229 <br><br> September 15,1998 <br><br> 5 DNA66659-1593 <br><br> 203269 <br><br> September 22,1998 <br><br> DNA66663-1598 <br><br> 203268 <br><br> September 22, 1998 <br><br> DNA66669-1597 <br><br> 203272 <br><br> September 22, 1998 <br><br> DNA66672-1586 <br><br> 203265 <br><br> September 22,1998 <br><br> DNA66674-1599 <br><br> 203281 <br><br> September 22,1998 <br><br> 10 DNA66675-1587 <br><br> 203282 <br><br> September 22,1998 <br><br> DNA67962-1649 <br><br> 203291 <br><br> September 29,1998 <br><br> DNA68836-1656 <br><br> 203455 <br><br> November 3,1998 <br><br> DNA68864-1629 <br><br> 203276 <br><br> September 22,1998 <br><br> DNA68866-1644 <br><br> 203283 <br><br> September 22, 1998 <br><br> 15 DNA68871-1638 <br><br> 203280 <br><br> September 22,1998 <br><br> DNA68874-1622 <br><br> 203277 <br><br> September 22,1998 <br><br> DNA68880-1676 <br><br> 203319 <br><br> October 6,1998 <br><br> DNA68885-1570 <br><br> 203311 <br><br> October 6, 1998 <br><br> DNA71166-1685 <br><br> 203355 <br><br> October 20,1998 <br><br> 20 DNA71169-1709 <br><br> 203467 <br><br> November 17,1998 <br><br> DNA71180-1655 <br><br> 203403 <br><br> October 27,1998 <br><br> DNA71184-1634 <br><br> 203266 <br><br> September 22, 1998 <br><br> DNA71213-1659 <br><br> 203401 <br><br> October 27,1998 <br><br> DNA71234-1651 <br><br> 203402 <br><br> October 27,1998 <br><br> 25 DNA71277-1636 <br><br> 203285 <br><br> September 22,1998 <br><br> DNA71282-1668 <br><br> 203312 <br><br> October 6,1998 <br><br> DNA71286-1604 <br><br> 203357 <br><br> October 20, 1998 <br><br> DNA71883-1660 <br><br> 203475 <br><br> November 17,1998 <br><br> DNA73401-1633 <br><br> 203273 <br><br> September 22,1998 <br><br> 30 DNA73492-1671 <br><br> 203324 <br><br> October 6, 1998 <br><br> DNA73727-1673 <br><br> 203459 <br><br> November 3,1998 <br><br> DNA73730-1679 <br><br> 203320 <br><br> October 6, 1998 <br><br> DNA73734-1680 <br><br> 203363 <br><br> October 20, 1998 <br><br> DNA73735-1681 <br><br> 203356 <br><br> October 20, 1998 <br><br> 35 DN A73736-1657 <br><br> 203466 <br><br> November 17, 1998 <br><br> DNA73737-1658 <br><br> 203412 <br><br> October 27, 1998 <br><br> DNA73739-1645 <br><br> 203270 <br><br> September 22,1998 <br><br> DNA73742-1662 <br><br> 203316 <br><br> October 6,1998 <br><br> DNA73744-1665 <br><br> 203322 <br><br> October 6, 1998 <br><br> 40 DNA73746-1654 <br><br> 203411 <br><br> October 27,1998 <br><br> DNA73760-1672 <br><br> 203314 <br><br> October 6,1998 <br><br> DNA76396-1698 <br><br> 203471 <br><br> November 17,1998 <br><br> DNA76398-1699 <br><br> 203474 <br><br> November 17,1998 <br><br> DNA76399-1700 <br><br> 203472 <br><br> November 17,1998 <br><br> 45 DNA76401-1683 <br><br> 203360 <br><br> October 20,1998 <br><br> DNA76510-2504 <br><br> 203477 <br><br> November 17,1998 <br><br> DNA76522-2500 <br><br> 203469 <br><br> November 17,1998 <br><br> DNA76529-1666 <br><br> 203315 <br><br> October 6,1998 <br><br> DNA76531-1701 <br><br> 203465 <br><br> November 17,1998 <br><br> 50 DNA76532-1702 <br><br> 203473 <br><br> November 17,1998 <br><br> DNA76541-1675 <br><br> 203409 <br><br> October 27,1998 <br><br> DNA77301-1708 <br><br> 203407 <br><br> October 27,1998 <br><br> DNA77303-2502 <br><br> 203479 <br><br> November 17,1998 <br><br> 55 DNA77648-1688 <br><br> 203408 <br><br> October 27,1998 <br><br> DN A77652-2505 <br><br> 203480 <br><br> November 17,1998 <br><br> DNA83500-2506 <br><br> 203391 <br><br> October 29,1998 <br><br> DNA77568-1626 <br><br> 203134 <br><br> August 18,1998 <br><br> INTELLECTUAL PROPERTY OFRCE <br><br> OF N.Z. <br><br> - 1 APR 2005 <br><br> H:\Gabrieia\Keep\SpecftP49662 Div No 3.doc 26/05/03 <br><br> REOFJVED <br><br> 84 <br><br> DNA23322-1393 <br><br> 203400 <br><br> October 27,1998 <br><br> DNA62812-1594 DNA66660-1585 DNA76393-1664 <br><br> 203248 203279 203323 <br><br> September 9,1998 September 22,1998 October 6, 1998 <br><br> 10 <br><br> 15 <br><br> These deposit were made under the provisions of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure and the Regulations thereunder (Budapest Treaty). This assures maintenance of a viable culture of the deposit for 30 years from the date of deposit. The deposits will be made available by ATCC under the terms of the Budapest Treaty, and subject to an agreement between Genentech, Inc. and ATCC, which assures permanent and unrestricted availability of the progeny of the culture of the deposit to the public upon issuance of the pertinent U.S. patent or upon laying open to the public of any U.S. or foreign patent application, whichever comes first, and assures availability of the progeny to one determined by the U.S. Commissioner of Patents and Trademarks to be entitled thereto according to 35 USC §122 and the Commissioner's rules pursuant thereto (including 37 CFR §1.14 with particular reference to 886 OG 638). <br><br> The assignee of the present application has agreed that if a culture of the materials on deposit should die or be lost or destroyed when cultivated under suitable conditions, the materials will be promptly replaced on notification with another of the same. Availability of the deposited material is not to be construed as a license to practice the invention in contravention of the rights granted under the authority of any government in accordance with its patent laws. <br><br> The foregoing written specification is considered to be sufficient to enable one skilled in the art to practice the invention. The present invention is not to be limited in scope by the construct deposited, since the deposited embodiment is intended as a single illustration of certain aspects of the invention and any constructs that are functionally equivalent are within the scope of this invention. The deposit of material herein does not constitute an admission that the written description herein contained is inadequate to enable the practice of any aspect of the invention, including the best mode thereof, nor is it to be construed as limiting the scope of the claims to the specific illustrations that it represents. Indeed, various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and fall within the scope of the appended claims. <br><br> Pages 85 to 489 Sequence listing on disk <br><br> INTELLECTUAL PROPERTY 0FFICF OF N.Z <br><br> - 1 APR 2005 <br><br> H:\Gabriela\Keep\Speci\P49662 Div No 3.doc 26/05/03 <br><br> RECEIVED <br><br> 85 <br><br> Sequence Listing <br><br> &lt;110&gt; Genentech, Inc. <br><br> &lt;120&gt; Novel Polypeptides and Nucleic Acids Encoding the Same <br><br> &lt;130&gt; P2830R1 <br><br> &lt;140&gt; PCT/US99/20111 &lt;141&gt; 1999-09-01 <br><br> &lt;150&gt; US 60/098,750 &lt;151&gt; 1998-09-01 <br><br> &lt;150&gt; US 60/098,803 &lt;151&gt; 1998-09-02 <br><br> &lt;150&gt; US 60/098,821 &lt;151&gt; 1998-02-09 <br><br> &lt;150&gt; US 60/098,843 &lt;151&gt; 1998-02-09 <br><br> &lt;150&gt; US 60/099,536 &lt;151&gt; 1998-09-09 <br><br> &lt;150&gt; US 60/099,596 &lt;151&gt; 1998-09-09 <br><br> &lt;150&gt; US 60/099,598 &lt;151&gt; 1998-09-09 <br><br> &lt;150&gt; US 60/099,602 &lt;151&gt; 1998-09-09 <br><br> &lt;150&gt; US 60/099,642 &lt;151&gt; 1998-09-09 <br><br> &lt;150&gt; US 60/099,741 &lt;151&gt; 1998-10-09 <br><br> &lt;150&gt; US 60/099,754 &lt;151&gt; 1998-10-09 <br><br> &lt;150&gt; US 60/099,763 &lt;151&gt; 1998-10-09 <br><br> &lt;150&gt; US 60/099,792 &lt;151&gt; 1998-10-09 <br><br> &lt;150&gt; US 60/099,808 &lt;151&gt; 1998-10-09 <br><br> &lt;150&gt; US 60/099,812 <br><br> &lt;151&gt; 1998-10-09 <br><br> &lt;150&gt; US 60/099,815 <br><br> &lt;151&gt; 1998-10-09 <br><br> &lt;150&gt; US 60/099,816 &lt;151&gt; 1998-10-09 <br><br> &lt;150&gt; US 60/100,385 &lt;151&gt; 1998-15-09 <br><br> &lt;150&gt; US 60/100,388 &lt;151&gt; 1998-15-09 <br><br> &lt;150&gt; US 60/100,390 &lt;151&gt; 1998-15-09 <br><br> &lt;150&gt; US 60/100,584 &lt;151&gt; 1998-16-09 <br><br> &lt;150&gt; US 60/100,627 &lt;151&gt; 1998-16-09 <br><br> &lt;150&gt; US 60/100,661 &lt;151&gt; 1998-16-09 <br><br> &lt;150&gt; US 60/100,662 &lt;151&gt; 1998-16-09 <br><br> &lt;150&gt; US 60/100,664 &lt;151&gt; 1998-16-09 <br><br> &lt;150&gt; US 60/100,683 &lt;151&gt; 1998-17-09 <br><br> &lt;150&gt; US 60/100,684 &lt;151&gt; 1998-17-09 <br><br> &lt;150&gt; US 60/100,710 &lt;151&gt; 1998-17-09 <br><br> &lt;150&gt; US 60/100,711 &lt;151&gt; 1998-17-09 <br><br> &lt;150&gt; US 60/100,919 &lt;151&gt; 1998-17-09 <br><br> &lt;150&gt; US 60/100,930 &lt;151&gt; 1998-17-09 <br><br> &lt;150&gt; US 60/100,848 &lt;151&gt; 1998-18-09 <br><br> &lt;150&gt; US 60/100,849 <br><br> &lt;151&gt; 1998-18-09 <br><br> &lt;150&gt; US 60/101,014 <br><br> &lt;151&gt; 1998-18-09 <br><br> &lt;150&gt; US 60/101,068 &lt;151&gt; 1998-18-09 <br><br> &lt;150&gt; US 60/101,071 &lt;151&gt; 1998-18-09 <br><br> &lt;150&gt; US 60/101,279 &lt;151&gt; 1998-22-09 <br><br> &lt;150&gt; US 60/101,471 &lt;151&gt; 1998-23-09 <br><br> &lt;150&gt; US 60/101,472 &lt;151&gt; 1998-23-09 <br><br> &lt;150&gt; US 60/101,474 &lt;151&gt; 1998-23-09 <br><br> &lt;150&gt; US 60/101,475 &lt;151&gt; 1998-23-09 <br><br> &lt;150&gt; US 60/101,476 &lt;151&gt; 1998-23-09 <br><br> &lt;150&gt; US 60/101,477 &lt;151&gt; 1998-23-09 <br><br> &lt;150&gt; US 60/101,479 &lt;151&gt; 1998-23-09 <br><br> &lt;150&gt; US 60/101,738 &lt;151&gt; 1998-24-09 <br><br> &lt;150&gt; US 60/101,741 &lt;151&gt; 1998-24-09 <br><br> &lt;150&gt; US 60/101,743 &lt;151&gt; 1998-24-09 <br><br> &lt;150&gt; US 60/101,915 &lt;151&gt; 1998-24-09 <br><br> &lt;150&gt; US 60/101,916 &lt;151&gt; 1998-24-09 <br><br> &lt;150&gt; US 60/102,207 &lt;151&gt; 1998-29-09 <br><br> &lt;150&gt; US 60/102,240 <br><br> &lt;151&gt; 1998-29-09 <br><br> &lt;150&gt; US 60/102,307 <br><br> &lt;151&gt; 1998-29-09 <br><br> &lt;150&gt; US 60/102,330 &lt;151&gt; 1998-29-09 <br><br> &lt;150&gt; US 60/102,331 &lt;151&gt; 1998-29-09 <br><br> &lt;150&gt; US 60/102,484 &lt;151&gt; 1998-30-09 <br><br> &lt;150&gt; US 60/102,487 &lt;151&gt; 1998-30-09 <br><br> &lt;150&gt; US 60/102,570 &lt;151&gt; 1998-30-09 <br><br> &lt;150&gt; US 60/102,571 &lt;151&gt; 1998-30-09 <br><br> &lt;150&gt; US 60/102,684 &lt;151&gt; 1998-01-10 <br><br> &lt;150&gt; US 60/102,687 &lt;151&gt; 1998-01-10 <br><br> &lt;150&gt; US 60/102,965 &lt;151&gt; 1998-02-10 <br><br> &lt;150&gt; US 60/103,258 &lt;151&gt; 1998-06-10 <br><br> &lt;150&gt; US 60/103,449 &lt;151&gt; 1998-06-10 <br><br> &lt;150&gt; US 60/103,314 &lt;151&gt; 1998-07-10 <br><br> &lt;150&gt; US 60/103,315 &lt;151&gt; 1998-07-10 <br><br> &lt;150&gt; US 60/103,328 &lt;151&gt; 1998-07-10 <br><br> &lt;150&gt; US 60/103,395 &lt;151&gt; 1998-07-10 <br><br> &lt;150&gt; US 60/103,396 &lt;151&gt; 1998-07-10 <br><br> &lt;150&gt; US 60/103,401 &lt;151&gt; 1998-07-10 <br><br> &lt;150&gt; US 60/103,633 <br><br> &lt;151&gt; 1998-08-10 <br><br> &lt;150&gt; US 60/103,678 &lt;151&gt; 1998-08-10 <br><br> &lt;150&gt; US 60/103,679 &lt;151&gt; 1998-08-10 <br><br> &lt;150&gt; US 60/103,711 &lt;151&gt; 1998-08-10 <br><br> &lt;150&gt; US 60/104,257 &lt;151&gt; 1998-14-10 <br><br> &lt;150&gt; US 60/104,987 &lt;151&gt; 1998-20-10 <br><br> &lt;150&gt; US 60/105,000 &lt;151&gt; 1998-20-10 <br><br> &lt;150&gt; US 60/105,002 &lt;151&gt; 1998-20-10 <br><br> &lt;150&gt; US 60/105,104 &lt;151&gt; 1998-21-10 <br><br> &lt;150&gt; US 60/105,169 &lt;151&gt; 1998-22-10 <br><br> &lt;150&gt; US 60/105,266 &lt;151&gt; 1998-22-10 <br><br> &lt;150&gt; US 60/105,693 &lt;151&gt; 1998-26-10 <br><br> &lt;150&gt; US 60/105,694 &lt;151&gt; 1998-26-10 <br><br> &lt;150&gt; US 60/105,807 &lt;151&gt; 1998-27-10 <br><br> &lt;150&gt; US 60/105,881 &lt;151&gt; 1998-27-10 <br><br> &lt;150&gt; US 60/105,882 &lt;151&gt; 1998-27-10 <br><br> &lt;150&gt; US 60/106,062 &lt;151&gt; 1998-27-10 <br><br> &lt;150&gt; US 60/106,023 &lt;151&gt; 1998-28-10 <br><br> &lt;150&gt; US 60/106,029 <br><br> &lt;151&gt; 1998-28-10 <br><br> &lt;150&gt; US 60/106,030 <br><br> &lt;151&gt; 1998-28-10 <br><br> &lt;150&gt; US 60/106,032 &lt;151&gt; 1998-28-10 <br><br> &lt;150&gt; US 60/106,033 &lt;151&gt; 1998-28-10 <br><br> &lt;150&gt; US 60/106,178 &lt;151&gt; 1998-28-10 <br><br> &lt;150&gt; US 60/106,248 &lt;151&gt; 1998-29-10 <br><br> &lt;150&gt; US 60/106,384 &lt;151&gt; 1998-29-10 <br><br> &lt;150&gt; US 60/108,500 &lt;151&gt; 1998-29-10 <br><br> &lt;150&gt; US 60/106,464 &lt;151&gt; 1998-30-10 <br><br> &lt;150&gt; US 60/106,856 &lt;151&gt; 1998-03-11 <br><br> &lt;150&gt; US 60/106,902 &lt;151&gt; 1998-03-11 <br><br> &lt;150&gt; US 60/106,905 &lt;151&gt; 1998-03-11 <br><br> &lt;150&gt; US 60/106,919 &lt;151&gt; 1998-03-11 <br><br> &lt;150&gt; US 60/106,932 &lt;151&gt; 1998-03-11 <br><br> &lt;150&gt; US 60/106,934 &lt;151&gt; 1998-03-11 <br><br> &lt;150&gt; US 60/107,783 &lt;151&gt; 1998-10-11 <br><br> &lt;150&gt; US 60/108,775 &lt;151&gt; 1998-17-11 <br><br> &lt;150&gt; US 60/108,779 &lt;151&gt; 1998-17-11 <br><br> &lt;150&gt; US 60/108,787 <br><br> &lt;151&gt; 1998-17-11 <br><br> 91 <br><br> &lt;150&gt; US 60/108,788 <br><br> &lt;151&gt; 1998-17-11 <br><br> &lt;150&gt; US 60/108,801 &lt;151&gt; 1998-17-11 <br><br> &lt;150&gt; US 60/108,802 &lt;151&gt; 1998-17-11 <br><br> &lt;150&gt; US 60/108,806 &lt;151&gt; 1998-17-11 <br><br> &lt;150&gt; US 60/108,807 &lt;151&gt; 1998-17-11 <br><br> &lt;150&gt; US 60/108,867 &lt;151&gt; 1998-17-11 <br><br> &lt;150&gt; US 60/108,925 &lt;151&gt; 1998-17-11 <br><br> &lt;150&gt; US 60/108,848 &lt;151&gt; 1998-18-11 <br><br> &lt;150&gt; US 60/108,849 &lt;151&gt; 1998-18-11 <br><br> &lt;150&gt; US 60/108,850 &lt;151&gt; 1998-18-11 <br><br> &lt;150&gt; US 60/108,851 &lt;151&gt; 1998-18-11 <br><br> &lt;150&gt; US 60/108,852 &lt;151&gt; 1998-18-11 <br><br> &lt;150&gt; US 60/108,858 &lt;151&gt; 1998-18-11 <br><br> &lt;150&gt; US 60/108,904 &lt;151&gt; 1998-18-11 <br><br> &lt;160&gt; 432 <br><br> &lt;210&gt; 1 &lt;211&gt; 43 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 1 <br><br> tgtaaaacga cggccagtta aatagacctg caattattaa tct 43 <br><br> &lt;210&gt; 2 <br><br> 92 <br><br> &lt;211&gt; 41 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 2 <br><br> caggaaacag ctatgaccac ctgcacacct gcaaatccat t 41 <br><br> &lt;210&gt; 3 <br><br> &lt;211&gt; 1110 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 3 <br><br> ccaatcgccc ggtgcggtgg tgcagggtct cgggctagtc atggcgtccc 50 cgtctcggag actgcagact aaaccagtca ttacttgttt caagagcgtt 100 ctgctaatct acacttttat tttctggatc actggcgtta tccttcttgc 150 agttggcatt tggggcaagg tgagcctgga gaattacttt tctcttttaa 200 atgagaaggc caccaatgtc cccttcgtgc tcattgctac tggtaccgtc 250 attattcttt tgggcacctt tggttgtttt gctacctgcc gagcttctgc 300 atggatgcta aaactgtatg caatgtttct gactctcgtt tttttggtcg 350 aactggtcgc tgccatcgta ggatttgttt tcagacatga gattaagaac 400 agctttaaga ataattatga gaaggctttg aagcagtata actctacagg 450 agattataga agccatgcag tagacaagat ccaaaatacg ttgcattgtt 500 gtggtgtcac cgattataga gattggacag atactaatta ttactcagaa 550 aaaggatttc ctaagagttg ctgtaaactt gaagattgta ctccacagag 600 agatgcagac aaagtaaaca atgaaggttg ttttataaag gtgatgacca 650 ttatagagtc agaaatggga gtcgttgcag gaatttcctt tggagttgct 7 00 tgcttccaac tgattggaat ctttctcgcc tactgccwct ctcgtgccat 750 aacaaataac cagtatgaga tagtgtaacc caatgtatct gtgggcctat 800 tcctctctac ctttaaggac atttagggtc ccccctgtga attagaaagt 850 tgcttggctg gagaactgac aacactactt actgatagac caaaaaacta 900 caccagtagg ttgattcaat caagatgtat gtagacctaa aactacacca 950 ataggctgat tcaatcaaga tccgtgctcg cagtgggctg attcaatcaa 1000 <br><br> 93 <br><br> gatgtatgtt tgctatgttc taagtccacc ttctatccca ttcatgttag 1050 <br><br> atcgttgaaa ccctgtatcc ctctgaaaca ctggaagagc tagtaaattg 1100 <br><br> taaatgaagt 1110 <br><br> &lt;210&gt; 4 <br><br> &lt;211&gt; 245 <br><br> &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;220&gt; <br><br> &lt;221&gt; sig_peptide &lt;222&gt; 1-42 <br><br> &lt;223&gt; Signal Peptide &lt;220&gt; <br><br> &lt;221&gt; TRANSMEM <br><br> &lt;222&gt; 19-42, 61-83, 92-114, 209-230 &lt;223&gt; Transmembrane Domains <br><br> &lt;220&gt; <br><br> &lt;221&gt; misc_feature &lt;222&gt; 69-80, 211-222 <br><br> &lt;223&gt; Prokaryotic Membrane Lipoprotein Lipid Attachment Site. &lt;220&gt; <br><br> &lt;221&gt; misc_feature <br><br> &lt;222&gt; 75-81, 78-84, 210-216, 214-220, 226-232 &lt;223&gt; N-Myristoylation Site. <br><br> &lt;220&gt; <br><br> &lt;221&gt; misc_feature &lt;222&gt; 134-138 <br><br> &lt;223&gt; N-Glycosylation Site. <br><br> &lt;220&gt; <br><br> &lt;221&gt; misc_feature &lt;222&gt; 160-168, 160-169 <br><br> &lt;223&gt; Tyrosine Kinase Phosphorylation Site. <br><br> &lt;220&gt; <br><br> &lt;221&gt; unsure &lt;222&gt; 233 <br><br> &lt;223&gt; unknown amino acid &lt;400&gt; 4 <br><br> Met Ala Ser Pro Ser Arg Arg Leu Gin Thr Lys Pro Val Ile Thr 15 10 15 <br><br> Cys Phe Lys Ser Val Leu Leu Ile Tyr Thr Phe Ile Phe Trp Ile 20 25 30 <br><br> Thr Gly Val Ile Leu Leu Ala Val Gly Ile Trp Gly Lys Val Ser <br><br> 94 <br><br> 35 40 45 <br><br> Leu Glu Asn Tyr Phe Ser Leu Leu Asn Glu Lys Ala Thr Asn Val <br><br> 50 55 60 <br><br> Pro Phe Val Leu Ile Ala Thr Gly Thr Val Ile Ile Leu Leu Gly <br><br> 65 70 75 <br><br> Thr Phe Gly Cys Phe Ala Thr Cys Arg Ala Ser Ala Trp Met Leu <br><br> 80 85 90 <br><br> Lys Leu Tyr Ala Met Phe Leu Thr Leu Val Phe Leu Val Glu Leu <br><br> 95 100 105 <br><br> Val Ala Ala Ile Val Gly Phe Val Phe Arg His Glu Ile Lys Asn <br><br> 110 115 120 <br><br> Ser Phe Lys Asn Asn Tyr Glu Lys Ala Leu Lys Gin Tyr Asn Ser <br><br> 125 130 135 <br><br> Thr Gly Asp Tyr Arg Ser His Ala Val Asp Lys Ile Gin Asn Thr <br><br> 140 145 150 <br><br> Leu His Cys Cys Gly Val Thr Asp Tyr Arg Asp Trp Thr Asp Thr <br><br> 155 160 165 <br><br> Asn Tyr Tyr Ser Glu Lys Gly Phe Pro Lys Ser Cys Cys Lys Leu <br><br> 170 175 180 <br><br> Glu Asp Cys Thr Pro Gin Arg Asp Ala Asp Lys Val Asn Asn Glu <br><br> 185 190 195 <br><br> Gly Cys Phe Ile Lys Val Met Thr Ile Ile Glu Ser Glu Met Gly <br><br> 200 205 210 <br><br> Val Val Ala Gly Ile Ser Phe Gly Val Ala Cys Phe Gin Leu Ile <br><br> 215 220 225 <br><br> Gly Ile Phe Leu Ala Tyr Cys Xaa Ser Arg Ala Ile Thr Asn Asn <br><br> 230 235 240 <br><br> Gin Tyr Glu Ile Val 245 <br><br> &lt;210&gt; 5 &lt;211&gt; 1218 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 5 <br><br> cccacgcgtc cggcgccgtg gcctcgcgtc catctttgcc gttctctcgg 50 <br><br> acctgtcaca aaggagtcgc gccgccgccg ccgccccctc cctccggtgg 100 <br><br> gcccgggagg tagagaaagt cagtgccaca gcccgaccgc gctgctctga 150 <br><br> 95 <br><br> gccctgggca cgcggaacgg gagggagtct agggagggga acagccgctc gagcctgggg cggggtaggc tctggaaagg gcccgggaga ctgagaaaca gccgagaggt tttccaccga gaagaggttc ctagaagagg gtgttccctc agaggttctt gggggtcgcc cttctgagga agaactgcca ttggatgtcc agaatcccct taagctctgc aactttcttt ggcattcagt caaattcctc aactccaggt tatgaaaaca tacctaaatg atcgtctttg gttgggccgt ttggccaggg tctgttgttg actctcgaag gggactggag gtgccgctac taccatgggt tgacagtgga acagatgaca gtgttgacac acagtgcagt acccactgct gacacaagga cggccaccaa ggaggggccg aggacctcat aaatgtggat gggctagtgt tggacacact tagataagta agtatctgac tcacggtcac ttctgcccgg aaccatgact ttaggactcc ctcgccaagc cttgtgctca cagggcaaag ctgatggcag agtaaatgat aagatttgat actttgtctg gaaatgtcta aatgtttctg ctatgatctt tattagag 1218 <br><br> &lt;210&gt; 6 <br><br> &lt;211&gt; 117 <br><br> &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;220&gt; <br><br> &lt;221&gt; sig_peptide <br><br> &lt;222&gt; 1-16 <br><br> gagggttggg gacgtctgtg 2 00 cgggcggacc ggactggggc 250 gaggtggcgt tggtcagaac 3 00 ggcccgcgct tgagggatct 350 tttcgggggt cctcaccaga 400 ggctgcggct aacagggccc 450 gtagttgata atgttgggaa 500 tgttaaaaac aaataggatg 550 <br><br> gtacttggaa aactgaaaac 600 gttcttagcg agcagaagcc 650 agcacatagc ccacttccta 700 aattcctgta tctgccgaga 750 ccaacagcaa caggccgaga 800 gccaaccacg ggaccctgtt 850 gagccaagga gaaagaaaca 900 ggcagtaata cggactcttg 950 ctccagtgga atgaaaagtg 1000 <br><br> ttcagttcct ttaggacata 1050 gagaatattt taatgctccg 1100 gtttttgctt gctgtcatct 1150 tagcagaaaa cacgataaag 12 00 <br><br> 96 <br><br> &lt;223&gt; Signal Peptide &lt;220&gt; <br><br> &lt;221&gt; misc_feature <br><br> &lt;222&gt; 18-24, 32-38, 34-40, 35-41, 51-57 &lt;223&gt; N-Myristoylation Site. <br><br> &lt;220&gt; <br><br> &lt;221&gt; misc_feature <br><br> &lt;222&gt; 22-26, 50-54, 113-117 <br><br> &lt;223&gt; Casein Kinase II Phosphorylation Site. <br><br> &lt;400&gt; 6 Met Ile Val Phe Gly 1 5 <br><br> Gly Gin Gly Leu Leu 20 <br><br> Leu Gly Thr Gly Gly 35 <br><br> Cys Arg Asp Asp Ser 50 <br><br> Gin Gin Ala Glu Asn 65 <br><br> Gin Pro Arg Asp Pro 80 <br><br> His Glu Pro Arg Arg 95 <br><br> Asp Thr Leu Ala Val 110 <br><br> &lt;210&gt; 7 &lt;211&gt; 756 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 7 <br><br> ggcacgaggc gctgtccacc cgggggcgtg ggagtgaggt accagattca <br><br> 50 <br><br> gcccatttgg ccccgacgcc tctgttctcg gaatccgggt gctgcggatt <br><br> 100 <br><br> gaggtcccgg ttcctaacgg actgcaagat ggaggaaggc gggaacctag <br><br> 150 <br><br> gaggcctgat taagatggtc catctactgg tcttgtcagg tgcctggggc <br><br> 200 <br><br> atgcaaatgt gggtgacctt cgtctcaggc ttcctgcttt tccgaagcct <br><br> 250 <br><br> tccccgacat accttcggac tagtgcagag caaactcttc cccttctact <br><br> 300 <br><br> tccacatctc catgggctgt gccttcatca acctctgcat cttggcttca <br><br> 350 <br><br> Trp Ala Val Phe Leu Ala Ser Arg Ser Leu 10 15 <br><br> Leu Thr Leu Glu Glu His Ile Ala His Phe 25 30 <br><br> Ala Ala Thr Thr Met Gly Asn Ser Cys Ile 40 45 <br><br> Gly Thr Asp Asp Ser Val Asp Thr Gin Gin 55 60 <br><br> Ser Ala Val Pro Thr Ala Asp Thr Arg Ser 70 75 <br><br> Val Arg Pro Pro Arg Arg Gly Arg Gly Pro 85 90 <br><br> Lys Lys Gin Asn Val Asp Gly Leu Val Leu 100 105 <br><br> Ile Arg Thr Leu Val Asp Lys 115 <br><br> 97 <br><br> cagcatgctt gggctcagct cacattctgg gaggccagcc agctttacct 400 <br><br> gctgttcctg agccttacgc tggccactgt caacgcccgc tggctggaac 450 <br><br> cccgcaccac agctgccatg tgggccctgc aaaccgtgga gaaggagcga 500 <br><br> ggcctgggtg gggaggtacc aggcagccac cagggtcccg atccctaccg 550 <br><br> ccagctgcga gagaaggacc ccaagtacag tgctctccgc cagaatttct 600 <br><br> tccgetacca tgggctgtcc tctctttgca atctgggctg cgtcctgagc 650 <br><br> aatgggctct gtctcgctgg ccttgccctg gaaataagga gcctctagca 700 <br><br> tgggccctgc atgctaataa atgcttcttc agaaatgaaa aaaaaaaaaa 750 <br><br> aaaaaa 756 <br><br> &lt;210&gt; 8 &lt;211&gt; 189 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;220&gt; <br><br> &lt;221&gt; sig_peptide &lt;222&gt; 1-24 <br><br> &lt;223&gt; Signal Peptide &lt;220&gt; <br><br> &lt;221&gt; misc_feature <br><br> &lt;222&gt; 4-10, 5-11, 47-53, 170-176, 176-182 &lt;223&gt; N-Myristoylation Site. <br><br> &lt;220&gt; <br><br> &lt;221&gt; misc_feature &lt;222&gt; 44-85 <br><br> &lt;223&gt; G-protein Coupled Receptors Proteins. <br><br> &lt;220&gt; <br><br> &lt;221&gt; misc_feature &lt;222&gt; 54-65 <br><br> &lt;223&gt; Prokaryotic Mmembrane Lipoprotein Lipid Attachment Site. &lt;220&gt; <br><br> &lt;221&gt; misc_feature &lt;222&gt; 82-86 <br><br> &lt;223&gt; Casein Kinase II Phosphorylation Site. <br><br> &lt;220&gt; <br><br> &lt;221&gt; TRANSMEM <br><br> &lt;222&gt; 86-103, 60-75 <br><br> &lt;223&gt; Transmembrane Domain <br><br> &lt;220&gt; <br><br> 98 <br><br> &lt;221&gt; misc_feature &lt;222&gt; 144-151 <br><br> &lt;223&gt; Tyrosine Kinase Phosphorylation Site. <br><br> &lt;400&gt; 8 <br><br> Met Glu Glu Gly Gly Asn Leu Gly Gly Leu Ile Lys Met Val His 15 10 15 <br><br> Leu Leu Val Leu Ser Gly Ala Trp Gly Met Gin Met Trp Val Thr 20 25 30 <br><br> Phe Val Ser Gly Phe Leu Leu Phe Arg Ser Leu Pro Arg His Thr 35 40 45 <br><br> Phe Gly Leu Val Gin Ser Lys Leu Phe Pro Phe Tyr Phe His Ile 50 55 60 <br><br> Ser Met Gly Cys Ala Phe Ile Asn Leu Cys Ile Leu Ala Ser Gin 65 70 75 <br><br> His Ala Trp Ala Gin Leu Thr Phe Trp Glu Ala Ser Gin Leu Tyr 80 85 90 <br><br> Leu Leu Phe Leu Ser Leu Thr Leu Ala Thr Val Asn Ala Arg Trp 95 100 105 <br><br> Leu Glu Pro Arg Thr Thr Ala Ala Met Trp Ala Leu Gin Thr Val 110 115 120 <br><br> Glu Lys Glu Arg Gly Leu Gly Gly Glu Val Pro Gly Ser His Gin 125 130 135 <br><br> Gly Pro Asp Pro Tyr Arg Gin Leu Arg Glu Lys Asp Pro Lys Tyr 140 145 150 <br><br> Ser Ala Leu Arg Gin Asn Phe Phe Arg Tyr His Gly Leu Ser Ser 155 160 165 <br><br> Leu Cys Asn Leu Gly Cys Val Leu Ser Asn Gly Leu Cys Leu Ala 170 175 180 <br><br> Gly Leu Ala Leu Glu Ile Arg Ser Leu 185 <br><br> &lt;210&gt; 9 &lt;211&gt; 1508 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 9 <br><br> aattcagatt ttaagcccat tctgcagtgg aatttcatga actagcaaga 50 ggacaccatc ttcttgtatt atacaagaaa ggagtgtacc tatcacacac 100 <br><br> agggggaaaa atgctctttt gggtgctagg cctcctaatc ctctgtggtt 150 <br><br> 99 <br><br> ttctgtggac tcgtaaagga tacattttta tcactggatg aacttttgat aaaaagggat caggatcaac agctttaaag cttctggatg tgaccgaccc gaagaaccaa gttggggaga gtgttcccgg cgtgctggct agagaaccta ttgaagtgaa tatgcttcct ttggtcaaga gtgttggagg tcgccttgca tatgcagtgg aaggtttcaa tggtgtgcac gtctcatgca cagatccagt aaaggtaatt tctccagaca tcaaacaaca agacaaactg aaaggcaata tggtagagtg catggaccac tatgccgctg gaaaagatgc gccagcagct ttgcaagact ctaatcccaa ggcagtgtga tatgaaattg gccgatttca tatctgctcc aacctggact agggagtccc accatcgctg ctttgaaaag gagggctgga gtatttaggc tttgcctgct gcccattcaa aatgatcttt agcatttaca gtaacttgtg taaaagataa gtcaacccaa aaaaaaaa 1508 <br><br> aaactaaaga ttgaagacat cactgataag 200 tgactcgggc tttggaaact tggcagccag 250 ttcatgtaat cgctgcctgt ctgactgaat 300 gcagaaacct cagagagact tcgtactgtg 3 50 agagaatgtc aagaggactg cccagtgggt 400 aaggtctctg gggtctgatc aataatgctg 450 cccactgact ggctgacact agaggactac 500 cctgtttgga ctcatcagtg tgacactaaa 550 aagctcaagg gagagttatt aatgtctcca 600 atcgttggag ggggctatac tccatccaaa 650 tgacagctta agacgggaca tgaaagcttt 7 00 ttgaaccagg attgttcaaa acaaacttgg 750 gaaaaaaaac tcgccatttg ggagcagctg 800 atatggagaa ggttacattg aaaaaagtct 850 aatcctatgt gaacatggac ctctctccgg 900 gctctaacaa gtctcttccc taagactcat 950 caaaattttc tggatacctc tgtctcacat 1000 ttttattgtt gaaacagaaa gcagagctgg 1050 ctcagctaac cacaaatgtc tcctccaggc 1100 agaacacatc tccttttcaa ccccattcct 1150 catttagatc gtgcttattt ggattgcaaa 12 00 gtggtatccc agggtccctg ctcaagtttt 1250 atggtacatc acataggcaa gtcctgccct 13 00 tggtgtgatg taagggaaat tgaaagactt 1350 accgtggcct gccccatgct tatggtcccc 1400 aatgttaagt atcatctctt atctaaatat 1450 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1500 <br><br> 100 <br><br> &lt;210&gt; 10 <br><br> &lt;211&gt; 319 <br><br> &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;220&gt; <br><br> &lt;221&gt; sig_peptide &lt;222&gt; 1-17 <br><br> &lt;223&gt; Signal Peptide &lt;220&gt; <br><br> &lt;221&gt; misc_feature <br><br> &lt;222&gt; 36-47, 108-113, 166-171,198-203, 207-212 &lt;223&gt; N-myristoylation Sites. <br><br> &lt;220&gt; <br><br> &lt;221&gt; misc_feature &lt;222&gt; 39-42 <br><br> &lt;223&gt; Glycosaminoglycan Attachment Site. <br><br> &lt;220&gt; <br><br> &lt;221&gt; TRANSMEM &lt;222&gt; 136-152 <br><br> &lt;223&gt; Transmembrane Domain &lt;220&gt; <br><br> &lt;221&gt; misc_feature &lt;222&gt; 161-163, 187-190 and 253-256 &lt;223&gt; N-glycosylation Sites. <br><br> &lt;400&gt; 10 <br><br> Met Leu Phe Trp Val Leu Gly Leu Leu 1 5 <br><br> Trp Thr Arg Lys Gly Lys Leu Lys Ile 20 <br><br> Tyr Ile Phe Ile Thr Gly Cys Asp Ser 35 <br><br> Ala Arg Thr Phe Asp Lys Lys Gly Phe 50 <br><br> Leu Thr Glu Ser Gly Ser Thr Ala Leu 65 <br><br> Arg Leu Arg Thr Val Leu Leu Asp Val 80 <br><br> Lys Arg Thr Ala Gin Trp Val Lys Asn 95 <br><br> Leu Trp Gly Leu Ile Asn Asn Ala Gly 110 <br><br> Ile Leu Cys Gly Phe Leu 10 15 <br><br> Glu Asp Ile Thr Asp Lys 25 30 <br><br> Gly Phe Gly Asn Leu Ala 40 45 <br><br> His Val Ile Ala Ala Cys 55 60 <br><br> Lys Ala Glu Thr Ser Glu 70 75 <br><br> Thr Asp Pro Glu Asn Val 85 90 <br><br> Gin Val Gly Glu Lys Gly <br><br> 100 105 <br><br> Val Pro Gly Val Leu Ala <br><br> 115 120 <br><br> Pro Thr Asp Trp Leu Thr Leu Glu Asp Tyr Arg Glu Pro Ile Glu <br><br> 101 <br><br> 125 130 135 <br><br> Val Asn Leu Phe Gly Leu Ile Ser Val Thr Leu Asn Met Leu Pro <br><br> 140 145 150 <br><br> Leu Val Lys Lys Ala Gin Gly Arg Val Ile Asn Val Ser Ser Val <br><br> 155 160 165 <br><br> Gly Gly Arg Leu Ala Ile Val Gly Gly Gly Tyr Thr Pro Ser Lys <br><br> 170 175 180 <br><br> Tyr Ala Val Glu Gly Phe Asn Asp Ser Leu Arg Arg Asp Met Lys <br><br> 185 190 195 <br><br> Ala Phe Gly Val His Val Ser Cys Ile Glu Pro Gly Leu Phe Lys 200 205 210 <br><br> Thr Asn Leu Ala Asp Pro Val Lys Val Ile Glu Lys Lys Leu Ala 215 220 225 <br><br> Ile Trp Glu Gin Leu Ser Pro Asp Ile Lys Gin Gin Tyr Gly Glu 230 235 240 <br><br> Gly Tyr Ile Glu Lys Ser Leu Asp Lys Leu Lys Gly Asn Lys Ser 245 250 255 <br><br> Tyr Val Asn Met Asp Leu Ser Pro Val Val Glu Cys Met Asp His 260 265 270 <br><br> Ala Leu Thr Ser Leu Phe Pro Lys Thr His Tyr Ala Ala Gly Lys 275 280 285 <br><br> Asp Ala Lys Ile Phe Trp Ile Pro Leu Ser His Met Pro Ala Ala 290 295 300 <br><br> Leu Gin Asp Phe Leu Leu Leu Lys Gin Lys Ala Glu Leu Ala Asn 305 310 315 <br><br> Pro Lys Ala Val <br><br> &lt;210&gt; 11 <br><br> &lt;211&gt; 2720 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapines <br><br> &lt;400&gt; 11 <br><br> gcgggctgtt gacggcgctg cgatggctgc ctgcgagggc aggagaagcg 50 gagctctcgg ttcctctcag tcggacttcc tgacgccgcc agtgggcggg 100 gccccttggg ccgtcgccac cactgtagtc atgtacccac cgccgccgcc 150 gccgcctcat cgggacttca tctcggtgac gctgagcttt ggcgagagct 2 00 <br><br> 102 <br><br> atgacaacag caagagttgg cggcggcgct caactgtcga gattgcagcg gaatatgatt gcttttctgt ggactcctct tctacatcaa ctctggcttt caggctagag gaagagcaga gggttaaaac cagcaaatcc acccgtctta caccgaccct gagaacttac ctgagatttc acatccagcg gggaccacct cacctgcaga ctgaaggatg ggacccagga ggaggccaca ggatccccgc ccggaaggag atccgcagag gagcggtgat cgagcctgag cagggcaccg gaagtgccca ccaagcctcc cctgccaccg agtgcatctg aactatcgcc agaagggcgt catggaaagg ataccgcaag tttgcatggg gtgtccaggt ccttcagtga gtggtttggc cgcgctggac accatgtgga tcttgggtct ccaggaagtg ggtgtcgaag aagttacact aacctgtttg agagcacgat ccgcatcctg ccacctgtct ggggacagcc tcttcctgag atcggctaat gcctgccttc agaacaccat gtgaacatcg gtactggagt tgcccacccg cactgtggcc gaggtgacca gcattcagct gtctcacagg ggataagaag tttcaggagg cacatccacg gcctgtctgg gaagaaggat caatacccac agtggcctct tcacccacct ccagggccga cagctactat gagtacctgc gggaagcagg agacacagct gctggaagac tgtcagaacg cacctgctgc ggcactccga tgggggagct tgcccacggc cgcttcagtg cgtgctggag gaaatggaag 250 ctcttcctcc ttgcctttct 300 cttggctgac cattggaaag 350 agatgaggcc agaaattgct 400 ccagctcctc agaaggcgga 450 gtcacagaag acacaaagac 500 ttagaccccc aagccaagac 550 aaaaggcaag aagcccctgt 600 gacagtcatc agctggaggg 650 agctcccttc aagaagagca 700 gccaggacac agggcacacc 750 gattgacgtc ttcctgcatg 800 gccatgacga gctgaagcct 850 ctcggtctca cactgatcga 900 gaggaaagaa tttgaggaag 950 ttgaaaagga cgtggacgtc 1000 ggggggctcc tgagtgccta 1050 gaaagctgag gattttggaa 1100 ccaagattcc ttactcggat 1150 ccacggtgga cctccgacag 12 00 ggagttccgg gagctctccc 1250 cagtggagaa ggtgacacag 13 00 gggctggtgc ccatgttcat 1350 gggcgtattc acgctgggcg 1400 tgaagcagtg gatccagggc 1450 tacgtggaag ccatcgaggg 1500 gcccagtaag ctcacctttg 1550 ccaagatgga ccacctggtg 1600 <br><br> 103 <br><br> tgcttcctgc cagggacgct ggctctgggc cagccacatg gagctggccc aggagctcat accggcagat ggagacgggg ctgagtcccg tacccccagc cgggccgtcg ggacgtggag caacctgctg cggccagaga ccgtggagag tcacagggga ccgcaaatac caggactggg ttcagccgat tcacacgggt cccctcgggt tgtccaggat cctcagaagc ccgagcctag tcctggggga gacgctcaag tatctgttct aacctgctca gcctggacgc ctacgtgttc gcctatctgg acccctgcct agggtggatg gggtgggcag aggcaccttg ctgggtctgt gtagcaccgg caaccgccaa gtggcccagg cctcctcgtc tctgctttaa tcaggacacc cagtcttggt gtgatgcggg gtgggctggg ttcctccaga agacacgaat catgactcac gtctctgtgg gccgaccaga ggggggcttc ggtgaccgag tggacagccc agggtgcagc ctcagatgtc cccaatccaa gggtctggag gcctgaggct ccagggctgg ctctggtgtt cctcctggcc gccccgcagg gggcttggag tagctcacgg gcccctccag tggaatgggt ttgatttgct ctaaccgcaa 2720 <br><br> &lt;210&gt; 12 &lt;211&gt; 699 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;220&gt; <br><br> &lt;221&gt; TRANSMEM <br><br> &lt;222&gt; 21-40 and 84-105 <br><br> &lt;223&gt; Transmembrane Domain (type : <br><br> gtctaccacg gcctgcccgc 1650 ggagacttgt taccagatga 17 00 agatcgtgca cttcaacctt 1750 gtcaagccag cagacaggca 1800 cctgttctac ctgtaccgcg 1850 gctgggagat tctgcagagc 1900 ggctattctt ccatcaacaa 1950 ggacaagatg gagagcttct 2 000 tgctcttctc cgatgaccca 2050 aacaccgaag cccaccctct 2100 gctgctggtg tggggacttc 2150 ggcattttcc aagggcccac 2200 ctctgaactg gctctgggct 2250 gtgaggacaa gtgaggccgt 23 00 ccgctggagc ctccgcctgc 2350 gattgctgaa gcctgagcag 2400 gaggtggtcc ctggtactgg 2450 tctgcccggg ctcgtgaagc 2500 gggctgccgt gactccagag 2 550 tacaagctgg actcagggat 2600 ggctggacgg caagtccgtc 2650 cttttcggtg gagataaaag 27 00 <br><br> 104 <br><br> &lt;400&gt; 12 <br><br> Met Ala Ala Cys Glu Gly Arg Arg Ser Gly Ala Leu Gly Ser Ser 15 10 15 <br><br> Gin Ser Asp Phe Leu Thr Pro Pro Val Gly Gly Ala Pro Trp Ala 20 25 30 <br><br> Val Ala Thr Thr Val Val Met Tyr Pro Pro Pro Pro Pro Pro Pro 35 40 45 <br><br> His Arg Asp Phe Ile Ser Val Thr Leu Ser Phe Gly Glu Ser Tyr 50 55 60 <br><br> Asp Asn Ser Lys Ser Trp Arg Arg Arg Ser Cys Trp Arg Lys Trp 65 70 75 <br><br> Lys Gin Leu Ser Arg Leu Gin Arg Asn Met Ile Leu Phe Leu Leu 80 85 90 <br><br> Ala Phe Leu Leu Phe Cys Gly Leu Leu Phe Tyr Ile Asn Leu Ala 95 100 105 <br><br> Asp His Trp Lys Ala Leu Ala Phe Arg Leu Glu Glu Glu Gin Lys 110 115 120 <br><br> Met Arg Pro Glu Ile Ala Gly Leu Lys Pro Ala Asn Pro Pro Val 125 130 135 <br><br> Leu Pro Ala Pro Gin Lys Ala Asp Thr Asp Pro Glu Asn Leu Pro 140 145 150 <br><br> Glu Ile Ser Ser Gin Lys Thr Gin Arg His Ile Gin Arg Gly Pro 155 160 165 <br><br> Pro His Leu Gin Ile Arg Pro Pro Ser Gin Asp Leu Lys Asp Gly 170 175 180 <br><br> Thr Gin Glu Glu Ala Thr Lys Arg Gin Glu Ala Pro Val Asp Pro 185 190 195 <br><br> Arg Pro Glu Gly Asp Pro Gin Arg Thr Val Ile Ser Trp Arg Gly 200 205 210 <br><br> Ala Val Ile Glu Pro Glu Gin Gly Thr Glu Leu Pro Ser Arg Arg 215 220 225 <br><br> Ala Glu Val Pro Thr Lys Pro Pro Leu Pro Pro Ala Arg Thr Gin 230 235 240 <br><br> Gly Thr Pro Val His Leu Asn Tyr Arg Gin Lys Gly Val Ile Asp 245 250 255 <br><br> Val Phe Leu His Ala Trp Lys Gly Tyr Arg Lys Phe Ala Trp Gly 260 265 270 <br><br> 105 <br><br> His Asp Glu Leu Lys Pro Val Ser Arg Ser Phe Ser Glu Trp Phe 275 280 285 <br><br> Gly Leu Gly Leu Thr Leu Ile Asp Ala Leu Asp Thr Met Trp Ile 290 295 300 <br><br> Leu Gly Leu Arg Lys Glu Phe Glu Glu Ala Arg Lys Trp Val Ser 305 310 315 <br><br> Lys Lys Leu His Phe Glu Lys Asp Val Asp Val Asn Leu Phe Glu 320 325 330 <br><br> Ser Thr lie Arg Ile Leu Gly Gly Leu Leu Ser Ala Tyr His Leu 335 340 345 <br><br> Ser Gly Asp Ser Leu Phe Leu Arg Lys Ala Glu Asp Phe Gly Asn 350 355 360 <br><br> Arg Leu Met Pro Ala Phe Arg Thr Pro Ser Lys Ile Pro Tyr Ser 365 370 375 <br><br> Asp Val Asn Ile Gly Thr Gly Val Ala His Pro Pro Arg Trp Thr 380 385 390 <br><br> Ser Asp Ser Thr Val Ala Glu Val Thr Ser Ile Gin Leu Glu Phe 395 400 405 <br><br> Arg Glu Leu Ser Arg Leu Thr Gly Asp Lys Lys Phe Gin Glu Ala 410 415 420 <br><br> Val Glu Lys Val Thr Gin His Ile His Gly Leu Ser Gly Lys Lys 425 430 435 <br><br> Asp Gly Leu Val Pro Met Phe Ile Asn Thr His Ser Gly Leu Phe 440 445 450 <br><br> Thr His Leu Gly Val Phe Thr Leu Gly Ala Arg Ala Asp Ser Tyr 455 460 465 <br><br> Tyr Glu Tyr Leu Leu Lys Gin Trp Ile Gin Gly Gly Lys Gin Glu 470 475 480 <br><br> Thr Gin Leu Leu Glu Asp Tyr Val Glu Ala Ile Glu Gly Val Arg 485 490 495 <br><br> Thr His Leu Leu Arg His Ser Glu Pro Ser Lys Leu Thr Phe Val 500 505 510 <br><br> Gly Glu Leu Ala His Gly Arg Phe Ser Ala Lys Met Asp His Leu 515 520 525 <br><br> Val Cys Phe Leu Pro Gly Thr Leu Ala Leu Gly Val Tyr His Gly 530 535 540 <br><br> Leu Pro Ala Ser His Met Glu Leu Ala Gin Glu Leu Met Glu Thr <br><br> 106 <br><br> 545 <br><br> Cys Tyr Gin Met Asn Arg Gin Met 560 <br><br> Ile Val His Phe Asn Leu Tyr Pro 575 <br><br> Glu Val Lys Pro Ala Asp Arg His 590 <br><br> Val Glu Ser Leu Phe Tyr Leu Tyr 605 <br><br> Tyr Gin Asp Trp Gly Trp Glu Ile 620 <br><br> Thr Arg Val Pro Ser Gly Gly Tyr 635 <br><br> Asp Pro Gin Lys Pro Glu Pro Arg 650 <br><br> Leu Gly Glu Thr Leu Lys Tyr Leu 665 <br><br> Pro Asn Leu Leu Ser Leu Asp Ala 680 <br><br> His Pro Leu Pro Ile Trp Thr Pro 695 <br><br> &lt;210&gt; 13 <br><br> &lt;211&gt; 24 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence <br><br> &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 13 <br><br> cgccagaagg gcgtgattga cgtc 24 <br><br> &lt;210&gt; 14 <br><br> &lt;211&gt; 24 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial sequence <br><br> &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 14 <br><br> ccatccttct tcccagacag gccg 24 <br><br> &lt;210&gt; 15 <br><br> 550 <br><br> 555 <br><br> Glu Thr Gly Leu Ser Pro Glu 565 570 <br><br> Gin Pro Gly Arg Arg Asp Val 580 585 <br><br> Asn Leu Leu Arg Pro Glu Thr 595 600 <br><br> Arg Val Thr Gly Asp Arg Lys 610 615 <br><br> Leu Gin Ser Phe Ser Arg Phe 625 630 <br><br> Ser Ser Ile Asn Asn Val Gin 640 645 <br><br> Asp Lys Met Glu Ser Phe Phe 655 660 <br><br> Phe Leu Leu Phe Ser Asp Asp 670 675 <br><br> Tyr Val Phe Asn Thr Glu Ala 685 690 <br><br> Ala <br><br> 107 <br><br> &lt;211&gt; 44 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 15 <br><br> gaagcctgtg tccaggtcct tcagtgagtg gtttggcctc ggtc 44 <br><br> &lt;210&gt; 16 &lt;211&gt; 1524 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 16 <br><br> ggcgccgcgt aggcccggga ggccgggccg gccgggctgc gagcgcctgc 50 <br><br> cccatgcgcc gccgcctctc cgcacgatgt tcccctcgcg gaggaaagcg 100 <br><br> gcgcagctgc cctgggagga cggcaggtcc gggttgctct ccggcggcct 150 <br><br> ccctcggaag tgttccgtct tccacctgtt cgtggcctgc ctctcgctgg 2 00 <br><br> gcttcttctc cctactctgg ctgcagctca gctgctctgg ggacgtggcc 250 <br><br> cgggcagtca ggggacaagg gcaggagacc tcgggccctc cccgtgcctg 300 <br><br> ccccccagag ccgccccctg agcactggga agaagacgca tcctggggcc 350 <br><br> cccaccgcct ggcagtgctg gtgcccttcc gcgaacgctt cgaggagctc 400 <br><br> ctggtcttcg tgccccacat gcgccgcttc ctgagcagga agaagatccg 450 <br><br> gcaccacatc tacgtgctca accaggtgga ccacttcagg ttcaaccggg 500 <br><br> cagcgctcat caacgtgggc ttcctggaga gcagcaacag cacggactac 550 <br><br> attgccatgc acgacgttga cctgctccct ctcaacgagg agctggacta 600 <br><br> tggctttcct gaggctgggc ccttccacgt ggcctccccg gagctccacc 650 <br><br> ctctctacca ctacaagacc tatgtcggcg gcatcctgct gctctccaag 700 <br><br> cagcactacc ggctgtgcaa tgggatgtcc aaccgcttct ggggctgggg 750 <br><br> ccgcgaggac gacgagttct accggcgcat taagggagct gggctccagc 800 <br><br> ttttccgccc ctcgggaatc acaactgggt acaagacatt tcgccacctg 850 <br><br> catgacccag cctggcggaa gagggaccag aagcgcatcg cagctcaaaa 900 <br><br> acaggagcag ttcaaggtgg acagggaggg aggcctgaac actgtgaagt 950 accatgtggc ttcccgcact gccctgtctg tgggcggggc cccctgcact 1000 <br><br> 108 <br><br> gtcctcaaca tcatgttgga ctgtgacaag accgccacac cctggtgcac 1050 attcagctga gctggatgga cagtgaggaa gcctgtacct acaggccata 1100 ttgctcaggc tcaggacaag gcctcaggtc gtgggcccag ctctgacagg 1150 atgtggagtg gccaggacca agacagcaag ctacgcaatt gcagccaccc 12 00 ggccgccaag gcaggcttgg gctgggccag gacacgtggg gtgcctggga 1250 cgctgcttgc catgcacagt gatcagagag aggctggggt gtgtcctgtc 1300 cgggaccccc cctgccttcc tgctcaccct actctgacct ccttcacgtg 1350 cccaggcctg tgggtagtgg ggagggctga acaggacaac ctctcatcac 1400 cctactctga cctccttcac gtgcccaggc ctgtgggtag tggggagggc 1450 tgaacaggac aacctctcat cacccccaaa aaaaaaaaaa aaaaaaaaaa 1500 aaaaaaaaaa aaaaaaaaaa aaaa 1524 <br><br> &lt;210&gt; 17 &lt;211&gt; 327 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;220&gt; <br><br> &lt;221&gt; sig_peptide &lt;222&gt; 1-42 <br><br> &lt;223&gt; Signal peptide. <br><br> &lt;220&gt; <br><br> &lt;221&gt; misc_feature <br><br> &lt;222&gt; 19-25, 65-71,247-253,2 85-291,303-310 &lt;223&gt; N-myristoylation site. <br><br> &lt;220&gt; <br><br> &lt;221&gt; misc_feature &lt;222&gt; 27-31 <br><br> &lt;223&gt; cAMP- and cGMP-dependent protein kinase phosphorylation site. &lt;220&gt; <br><br> &lt;221&gt; TRANSMEM &lt;222&gt; 29-49 <br><br> &lt;223&gt; Transmembrane domain (type II). <br><br> &lt;220&gt; <br><br> &lt;221&gt; misc_feature &lt;222&gt; 154-158 <br><br> &lt;223&gt; N-glycosylation site. <br><br> &lt;220&gt; <br><br> &lt;221&gt; misc_feature <br><br> 109 <br><br> &lt;222&gt; 226-233 <br><br> &lt;223&gt; Tyrosine kinase phosphorylation site. <br><br> &lt;400&gt; 17 <br><br> Met Phe Pro Ser Arg Arg Lys Ala Ala Gin Leu Pro Trp Glu Asp 15 10 15 <br><br> Gly Arg Ser Gly Leu Leu Ser Gly Gly Leu Pro Arg Lys Cys Ser 20 25 30 <br><br> Val Phe His Leu Phe Val Ala Cys Leu Ser Leu Gly Phe Phe Ser 35 40 45 <br><br> Leu Leu Trp Leu Gin Leu Ser Cys Ser Gly Asp Val Ala Arg Ala 50 55 60 <br><br> Val Arg Gly Gin Gly Gin Glu Thr Ser Gly Pro Pro Arg Ala Cys 65 70 75 <br><br> Pro Pro Glu Pro Pro Pro Glu His Trp Glu Glu Asp Ala Ser Trp 80 85 90 <br><br> Gly Pro His Arg Leu Ala Val Leu Val Pro Phe Arg Glu Arg Phe 95 100 105 <br><br> Glu Glu Leu Leu Val Phe Val Pro His Met Arg Arg Phe Leu Ser 110 115 120 <br><br> Arg Lys Lys Ile Arg His His Ile Tyr Val Leu Asn Gin Val Asp 125 130 135 <br><br> His Phe Arg Phe Asn Arg Ala Ala Leu Ile Asn Val Gly Phe Leu 140 145 150 <br><br> Glu Ser Ser Asn Ser Thr Asp Tyr Ile Ala Met His Asp Val Asp 155 160 165 <br><br> Leu Leu Pro Leu Asn Glu Glu Leu Asp Tyr Gly Phe Pro Glu Ala 170 175 180 <br><br> Gly Pro Phe His Val Ala Ser Pro Glu Leu His Pro Leu Tyr His 185 190 195 <br><br> Tyr Lys Thr Tyr Val Gly Gly Ile Leu Leu Leu Ser Lys Gin His 200 205 210 <br><br> Tyr Arg Leu Cys Asn Gly Met Ser Asn Arg Phe Trp Gly Trp Gly 215 220 225 <br><br> Arg Glu Asp Asp Glu Phe Tyr Arg Arg Ile Lys Gly Ala Gly Leu 230 235 240 <br><br> Gin Leu Phe Arg Pro Ser Gly Ile Thr Thr Gly Tyr Lys Thr Phe <br><br> 110 <br><br> 245 250 255 <br><br> Arg His Leu His Asp Pro Ala Trp Arg Lys Arg Asp Gin Lys Arg 260 265 270 <br><br> Ile Ala Ala Gin Lys Gin Glu Gin Phe Lys Val Asp Arg Glu Gly 275 280 285 <br><br> Gly Leu Asn Thr Val Lys Tyr His Val Ala Ser Arg Thr Ala Leu 290 295 300 <br><br> Ser Val Gly Gly Ala Pro Cys Thr Val Leu Asn Ile Met Leu Asp 305 310 315 <br><br> Cys Asp Lys Thr Ala Thr Pro Trp Cys Thr Phe Ser 320 325 <br><br> &lt;210&gt; 18 &lt;211&gt; 23 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 18 gcgaacgctt cgaggagtcc tgg 23 <br><br> &lt;210&gt; 19 &lt;211&gt; 24 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 19 gcagtgcggg aagccacatg gtac 24 <br><br> &lt;210&gt; 20 &lt;211&gt; 46 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 20 <br><br> cttcctgagc aggaagaaga tccggcacca catctacgtg ctcaac 46 <br><br> &lt;210&gt; 21 <br><br> &lt;211&gt; 494 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> Ill <br><br> &lt;400&gt; 21 <br><br> caatgtttgc ctatccacct cccccaagcc cctttaccta tgctgctgct 50 <br><br> aacgctgctg ctgctgctgc tgctgcttaa aggctcatgc ttggagtggg 100 <br><br> gactggtcgg tgcccagaaa gtctcttctg ccactgacgc ccccatcagg 150 <br><br> gattgggcct tctttccccc ttcctttctg tgtctcctgc ctcatcggcc 2 00 <br><br> tgccatgacc tgcagccaag cccagccccg tggggaaggg gagaaagtgg 250 <br><br> gggatggcta agaaagctgg gagataggga acagaagagg gtagtgggtg 3 00 <br><br> ggctaggggg gctgccttat ttaaagtggt tgtttatgat tcttatacta 350 <br><br> atttatacaa agatattaag gccctgttca ttaagaaatt gttcccttcc 400 <br><br> cctgtgttca atgtttgtaa agattgttct gtgtaaatat gtctttataa 450 <br><br> taaacagtta aaagctgaaa aaaaaaaaaa aaaaaaaaaa aaaa 494 <br><br> &lt;210&gt; 22 <br><br> &lt;211&gt; 73 <br><br> &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;220&gt; <br><br> &lt;221&gt; sig_peptide &lt;222&gt; 1-15 <br><br> &lt;223&gt; Signal peptide. <br><br> &lt;220&gt; <br><br> &lt;221&gt; misc_feature &lt;222&gt; 3-18 <br><br> &lt;223&gt; Growth factor and cytokines receptors family. <br><br> &lt;400&gt; 22 Met Leu Leu Leu 1 <br><br> Ser Cys Leu Glu <br><br> Ala Thr Asp Ala <br><br> Phe Leu Cys Leu <br><br> Ala Gin Pro Arg <br><br> Thr Leu Leu Leu Leu Leu Leu Leu Leu Lys Gly 5 10 15 <br><br> Trp Gly Leu Val Gly Ala Gin Lys Val Ser Ser 20 25 30 <br><br> Pro Ile Arg Asp Trp Ala Phe Phe Pro Pro Ser 35 40 45 <br><br> Leu Pro His Arg Pro Ala Met Thr Cys Ser Gin 50 55 60 <br><br> Gly Glu Gly Glu Lys Val Gly Asp Gly 65 70 <br><br> &lt;210&gt; 23 <br><br> &lt;211&gt; 2883 <br><br> &lt;212&gt; DNA <br><br> 112 <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 23 <br><br> gggacccatg cggccgtgac ccccggctcc cagcggacaa aggagcatgt ccgcgccggg ccataaggct ccggtcgccg ctgggcccgc ggctccgggg cggcccgcta ggccagtgcg cccggcccgc agcatggagc cacccggacg cgccgctgtt gctgccgctc tcgctgttag ggcggcggcg gcggcggcgc cgcggcgctg tgggcggccc cgaggggctg gcagggcggc tggtgtgcag cagcctggaa ctcgcgcagg cccaaccgca cggtcaccct gattctgagt gaagaatggc tcattttctg ggttaagtct gaaacaatct tattagtagt atagatccag tctctaaaaa gattggatct gacaaacaat agacatattt cgaggactca ccaatctggt atttgttttc ttcattatct caaggaactt cggtctttgg aattccagac tgagtatctt gtggatgcat cgctgggtaa aggagaagaa ggtgtgttta tcctaagtca ctgcaggccc caggagctgt tgacatgcga ccctccgctt gactccatct catcgccaag ttgtgtttga agtgcatggc ttcatatatt gatcaggaca gatgggagaa tagttgaaac cgatgaatcg gaacatgatt cacaactgct ccttgattgc atattcaggc tggatctact ggaaattggg cgtgggaata atacgaggac tgtggatatt acagtactgt cctccagaga gggtggtaaa ggcccagaac attggcaggc attactgcat ctagaggccc agcgcagccg 50 gaaggcccgt cctccggccg 100 gccgcgctcc tgcccgcccg 150 ccgccgctcg ccccgcaggc 2 00 ccggcggggc cgcgcgcagc 250 cgctgctcgc gctgctggga 3 00 cccgccggct gcaagcacga 350 gggcgccgcc gagggcaagg 400 tcctgccccc agatactctg 450 aacaataaga tatccgagct 500 ccttgaaaga ttggacctcc 550 gtgccttctg gggactgtca 600 cgaataggat gtctgaatgc 650 tcggctaaac ctttcgggga 7 00 ttgattatct tgcgtcatta 750 ttgtgtgact gtaacatact 800 catcacggta cgggatacca 850 aaccagtcac aggcgtgaag 900 gaattgccgt ctttctacat 950 aggagacagc cttcctttcc 1000 tgcaagtgtt gtggtatcag 1050 caaggtattt ttgttgaaaa 1100 aagtgcccta accatttcta 1150 gctgtcatgt ccagaccaaa 1200 gtggtattag agagttctgc 1250 caacaaaggt gacttcagat 13 00 atctgcagtg tacgcggaac 1350 <br><br> 113 <br><br> acccatggca gtgggatata tcccggaaac ttggcgcaga tgtgatagag gtggcttttg gctgtcagta tgcaaatgat gtcactagag atgcccctca atcttaccaa tgccgtggca ttacactgtg gaagcagcca acttttctga tggcagaaat gattgaaaaa tttggaagat aaagagctag gtgacgtgat ggttgacatt tgatgaacgt gtcctgtggc tggcgcagag ggattgtgca gtgtcttcag cgcattgcta gctcacgttt attcaacata ttcacccaat catcaagtct actggcttca cggggatgac tggcagcctc tgatcgtaca ggactttcgg gagggaaacc tggataagca gctgagcttt attttcgagt ctggcactaa aggtatgtta ctatttacag ttaaattaga atgctccaaa ccttattaaa agattttttt ttgcaggaag tactgtttta aagaaaacta accaggaaga ggccctaggc atttttgcct ttgattccct gaaattacat tttataactg cagtggtata acatgtgaaa aaattttatt tgacttaaaa gctcctgatt ttaagacaat aagatgtttt atgagccttt ggcactgcgc ctgccaagcc agaccaggtg tttaatcaag caagctgtat acacaaatat gtcatatatc tttttttaaa agcaaaatga aagcattttt actgattttt atttgactac actgtattga agcaaataga ctaatggaac cacatttttt tcacttagct gtattctctg cggtttttaa tctcacagta ccacaggatg agagaaaagc 1400 ggcagatgat gattattctc 1450 ttctttatat gtttaatcag 1500 acagctcgac agttactggc 1550 caaaatggat gttatatttg 1600 ttaccaagga ggaaaaatca 1650 gcaagtaaca tcatgttggc 17 00 ggaagctaaa gcctgcagta 1750 cctaccggct agccggtgga 1800 attgctctgg aagcttatgt 1850 ctgtaccgtg ttccagaaag 1900 attatgggag gcgggatcca 1950 aagtgcaatg tttcaaatac 2000 cattctgcaa tcatttaaga 2050 tgttctgctt cgcaaaataa 2100 ataggtatta ttgcttttgc 2150 actgcattac gactttcaag 2200 ttcttcacat aaaaatatca 2250 aatgcaaata tactattgtt 2300 gtttatttat ttgttttttt 2350 catgggcccc taaaagtatc 2400 tagtggagaa gtcaaccctg 2450 atcaaaattt ttggcagaaa 2500 aaaagtattt cattgaagca 2550 aaaattggtg ctttagatat 2600 ggaggcacaa ctccagcacc 2650 ttctgtgggc atgtgtaatt 2700 ctttatttct gtcttgtccc 2750 <br><br> 114 <br><br> tcaataatat cacaaacaat attccagtca ttttaatggc tgcataataa 2800 <br><br> ctgatccaac aggtgttagg tgttctggtt tagtgtgagc actcaataaa 2850 <br><br> tattgaatga atgaacgaaa aaaaaaaaaa aaa 2883 <br><br> &lt;210&gt; 24 <br><br> &lt;211&gt; 616 <br><br> &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;220&gt; <br><br> &lt;221&gt; sigjpeptide &lt;222&gt; 1-33 <br><br> &lt;223&gt; Signal peptide. <br><br> &lt;220&gt; <br><br> &lt;221&gt; TRANSMEM &lt;222&gt; 13-40 <br><br> &lt;223&gt; Transmembrane domain (type II). <br><br> &lt;400&gt; 24 <br><br> Met Glu Pro Pro Gly Arg Arg Arg Gly Arg Ala Gin Pro Pro Leu 15 10 15 <br><br> Leu Leu Pro Leu Ser Leu Leu Ala Leu Leu Ala Leu Leu Gly Gly 20 25 30 <br><br> Gly Gly Gly Gly Gly Ala Ala Ala Leu Pro Ala Gly Cys Lys His 35 40 45 <br><br> Asp Gly Arg Pro Arg Gly Ala Gly Arg Ala Ala Gly Ala Ala Glu 50 55 60 <br><br> Gly Lys Val Val Cys Ser Ser Leu Glu Leu Ala Gin Val Leu Pro 65 70 75 <br><br> Pro Asp Thr Leu Pro Asn Arg Thr Val Thr Leu Ile Leu Ser Asn 80 85 90 <br><br> Asn Lys Ile Ser Glu Leu Lys Asn Gly Ser Phe Ser Gly Leu Ser 95 100 105 <br><br> Leu Leu Glu Arg Leu Asp Leu Arg Asn Asn Leu Ile Ser Ser Ile 110 115 120 <br><br> Asp Pro Gly Ala Phe Trp Gly Leu Ser Ser Leu Lys Arg Leu Asp 125 130 135 <br><br> Leu Thr Asn Asn Arg Ile Gly Cys Leu Asn Ala Asp Ile Phe Arg 140 145 150 <br><br> Gly Leu Thr Asn Leu Val Arg Leu Asn Leu Ser Gly Asn Leu Phe 155 160 165 <br><br> 115 <br><br> Ser Ser Leu Ser Gin Gly Thr Phe Asp Tyr Leu Ala Ser Leu Arg <br><br> 170 175 180 <br><br> Ser Leu Glu Phe Gin Thr Glu Tyr Leu Leu Cys Asp Cys Asn Ile <br><br> 185 190 195 <br><br> Leu Trp Met His Arg Trp Val Lys Glu Lys Asn Ile Thr Val Arg <br><br> 200 205 210 <br><br> Asp Thr Arg Cys Val Tyr Pro Lys Ser Leu Gin Ala Gin Pro Val <br><br> 215 220 225 <br><br> Thr Gly Val Lys Gin Glu Leu Leu Thr Cys Asp Pro Pro Leu Glu <br><br> 230 235 240 <br><br> Leu Pro Ser Phe Tyr Met Thr Pro Ser His Arg Gin Val Val Phe <br><br> 245 250 255 <br><br> Glu Gly Asp Ser Leu Pro Phe Gin Cys Met Ala Ser Tyr Ile Asp <br><br> 260 265 270 <br><br> Gin Asp Met Gin Val Leu Trp Tyr Gin Asp Gly Arg Ile Val Glu <br><br> 275 280 285 <br><br> Thr Asp Glu Ser Gin Gly Ile Phe Val Glu Lys Asn Met Ile His <br><br> 290 295 300 <br><br> Asn Cys Ser Leu Ile Ala Ser Ala Leu Thr Ile Ser Asn Ile Gin 305 310 315 <br><br> Ala Gly Ser Thr Gly Asn Trp Gly Cys His Val Gin Thr Lys Arg 320 325 330 <br><br> Gly Asn Asn Thr Arg Thr Val Asp Ile Val Val Leu Glu Ser Ser 335 340 345 <br><br> Ala Gin Tyr Cys Pro Pro Glu Arg Val Val Asn Asn Lys Gly Asp 350 355 360 <br><br> Phe Arg Trp Pro Arg Thr Leu Ala Gly Ile Thr Ala Tyr Leu Gin 365 370 375 <br><br> Cys Thr Arg Asn Thr His Gly Ser Gly Ile Tyr Pro Gly Asn Pro 380 385 390 <br><br> Gin Asp Glu Arg Lys Ala Trp Arg Arg Cys Asp Arg Gly Gly Phe 395 400 405 <br><br> Trp Ala Asp Asp Asp Tyr Ser Arg Cys Gin Tyr Ala Asn Asp Val 410 415 420 <br><br> Thr Arg Val Leu Tyr Met Phe Asn Gin Met Pro Leu Asn Leu Thr 425 430 435 <br><br> 116 <br><br> Asn Ala Val Ala Thr Ala Arg Gin Leu Leu Ala Tyr Thr Val Glu 440 445 450 <br><br> Ala Ala Asn Phe Ser Asp Lys Met Asp Val Ile Phe Val Ala Glu 455 460 465 <br><br> Met Ile Glu Lys Phe Gly Arg Phe Thr Lys Glu Glu Lys Ser Lys 470 475 480 <br><br> Glu Leu Gly Asp Val Met Val Asp Ile Ala Ser Asn Ile Met Leu 485 490 495 <br><br> Ala Asp Glu Arg Val Leu Trp Leu Ala Gin Arg Glu Ala Lys Ala 500 505 510 <br><br> Cys Ser Arg Ile Val Gin Cys Leu Gin Arg Ile Ala Thr Tyr Arg 515 520 525 <br><br> Leu Ala Gly Gly Ala His Val Tyr Ser Thr Tyr Ser Pro Asn Ile 530 535 540 <br><br> Ala Leu Glu Ala Tyr Val Ile Lys Ser Thr Gly Phe Thr Gly Met 545 550 555 <br><br> Thr Cys Thr Val Phe Gin Lys Val Ala Ala Ser Asp Arg Thr Gly 560 565 570 <br><br> Leu Ser Asp Tyr Gly Arg Arg Asp Pro Glu Gly Asn Leu Asp Lys 575 580 585 <br><br> Gin Leu Ser Phe Lys Cys Asn Val Ser Asn Thr Phe Ser Ser Leu 590 595 600 <br><br> Ala Leu Lys Val Cys Tyr Ile Leu Gin Ser Phe Lys Thr Ile Tyr 605 610 615 <br><br> Ser <br><br> &lt;210&gt; 25 &lt;211&gt; 24 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 25 gaggactcac caatctggtt cggc 24 <br><br> &lt;210&gt; 26 &lt;211&gt; 24 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence <br><br> &lt;220&gt; <br><br> 117 <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 26 aactggaaag gaaggctgtc tccc 24 <br><br> &lt;210&gt; 27 &lt;211&gt; 50 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 27 <br><br> gtaaaggaga agaacatcac ggtacgggat accaggtgtg tttatcctaa 50 <br><br> &lt;210&gt; 28 <br><br> &lt;211&gt; 683 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 28 <br><br> gcgtggggat gtctaggagc tcgaaggtgg tgctgggcct ctcggtgctg 50 <br><br> ctgacggcgg ccacagtggc cggcgtacat gtgaagcagc agtgggacca 100 <br><br> gcagaggctt cgtgacggag ttatcagaga cattgagagg caaattcgga 150 <br><br> aaaaagaaaa cattcgtctt ttgggagaac agattatttt gactgagcaa 2 00 <br><br> cttgaagcag aaagagagaa gatgttattg gcaaaaggat ctcaaaaatc 250 <br><br> atgacttgaa tgtgaaatat ctgttggaca gacaacacga gtttgtgtgt 300 <br><br> gtgtgttgat ggagagtagc ttagtagtat cttcatcttt ttttttggtc 350 <br><br> actgtccttt taaacttgat caaataaagg acagtgggtc atataagtta 400 <br><br> ctgctttcag ggtcccttat atctgaataa aggagtgtgg gcagacactt 450 <br><br> tttggaagag tctgtctggg tgatcctggt agaagcccca ttagggtcac 500 <br><br> tgtccagtgc ttagggttgt tactgagaag cactgccgag cttgtgagaa 550 <br><br> ggaagggatg gatagtagca tccacctgag tagtctgatc agtcggcatg 600 <br><br> atgacgaagc cacgagaaca tcgacctcag aaggactgga ggaaggtgaa 650 <br><br> gtggagggag agacgctcct gatcgtcgaa tcc 683 <br><br> &lt;210&gt; 29 <br><br> &lt;211&gt; 81 <br><br> &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens <br><br> 118 <br><br> &lt;220&gt; <br><br> &lt;221&gt; sig_peptide &lt;222&gt; 1-21 <br><br> &lt;223&gt; Signal peptide. <br><br> &lt;400&gt; 29 <br><br> Met Ser Arg Ser Ser Lys Val Val Leu Gly Leu Ser Val Leu Leu 15 10 15 <br><br> Thr Ala Ala Thr Val Ala Gly Val His Val Lys Gin Gin Trp Asp 20 25 30 <br><br> Gin Gin Arg Leu Arg Asp Gly Val Ile Arg Asp Ile Glu Arg Gin 35 40 45 <br><br> lie Arg Lys Lys Glu Asn Ile Arg Leu Leu Gly Glu Gin Ile Ile 50 55 60 <br><br> Leu Thr Glu Gin Leu Glu Ala Glu Arg Glu Lys Met Leu Leu Ala 65 70 75 <br><br> Lys Gly Ser Gin Lys Ser 80 <br><br> &lt;210&gt; 30 <br><br> &lt;211&gt; 2128 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 30 <br><br> ctgtcgtctt tgcttcagcc gcagtcgcca ctggctgcct gaggtgctct 50 tacagcctgt tccaagtgtg gcttaatccg tctccaccac cagatctttc 100 tccgtggatt cctctgctaa gaccgctgcc atgccagtga cggtaacccg 150 caccaccatc acaaccacca cgacgtcatc ttcgggcctg gggtccccca 2 00 tgatcgtggg gtcccctcgg gccctgacac agcccctggg tctccttcgc 250 ctgctgcagc tggtgtctac ctgcgtggcc ttctcgctgg tggctagcgt 3 00 gggcgcctgg acggggtcca tgggcaactg gtccatgttc acctggtgct 350 tctgcttctc cgtgaccctg atcatcctca tcgtggagct gtgcgggctc 400 caggcccgct tccccctgtc ttggcgcaac ttccccatca ccttcgcctg 450 ctatgcggcc ctcttctgcc tctcggcctc catcatctac cccaccacct 500 atgtccagtt cctgtcccac ggccgttcgc gggaccacgc catcgccgcc 550 accttcttct cctgcatcgc gtgtgtggct tacgccaccg aagtggcctg 600 <br><br> 119 <br><br> gacccgggcc cggcccggcg agatcactgg ggctgctgaa ggtgctggag accttcgttg atcagcgacc ccaacctgta ccagcaccag ggcggtgtac gccatctgct tcatcctagc acctggggga gtgcaccaac gtgctaccca tcggggctgg ccttgctgtc tgtcctcctc ctggcccctc taccagttcg atgagaagta cgagagatgt aagctgcagc cgcagccatg gaccgccgac tggctgtggc catcctgacg tgtggctgac ctggtgcact ctgcccacct actctcccaa gaggctcccg ttccctctcc ccgagttttc tttatggagt acttctttcc ctcttcctgt ctcccctccc tcccaccttt tgcactctaa ccagttcttg gatgcatctt ctgtttcctt cctgtgttgt tttgttgccc agctgtttct ctttttcttt tctttctttt gattctcact ctgtggccca ggctggagtg actgcaaccc ccgcctcctg ggttcaagcg caagtagctg ggaggacagg tgtgagctgc ttttccactc ttcttttttc tcatctcttt tcttatctgc ctgttttgca agcaccttct gagacttctt tctctccttg cctccaccca acatccacac cccttgcagc cgtccatgcc attgccaaag catgcctgcc caccctcgct gtgtgtgtgt gtgtgtgttt ggggggtggg ggccctcttt ctcccagtgg aggaaggtgt ctatatggcc accgtacccg 650 cctgcatcat cttcgcgttc 700 ccggccctgg agtggtgcgt 750 <br><br> ggccatcgcc atcctgctga 800 tccccttccc cagcttcctg 850 tatgccaccg cccttgttct 900 tggcggccag cctcggcgct 950 cctactacgt gtgtgcctgg 1000 gccatcaacc tactggcgta 1050 ggtttttgtc aaggtctaag 1100 aacctctttg ttcttcttgc 1150 tccgcctttc ctctgttttc 1200 <br><br> ttctttcctt cccaattcct 1250 cttccttccc tttcctcttg 1300 acatcctgtt ttcacccctg 1350 <br><br> tttttttttt ttttaagacg 1400 cagtggtgcg atctcagctc 1450 attctcctcc cccagcctcc 1500 cgcacccagc ctgtttctct 1550 <br><br> tctgggttgc ctgtcggctt 1600 <br><br> cctgtgtcct tgggagccct 1650 <br><br> cctccaaagg tgctgagctc 1700 <br><br> acagcccccc aaggggcccc 1750 <br><br> gtgccttagt cagtgtgtac 1800 gggtgggtag ctggggattg 1850 gcagtgtact tcccctttaa 1900 <br><br> 120 <br><br> attaaaaaac atatatatat atatatttgg aggtcagtaa tttccaatgg 1950 <br><br> gcgggaggca ttaagcaccg accctgggtc cctaggcccc gcctggcact 2000 <br><br> cagccttgcc agagattggc tccagaattt ttgccaggct tacagaacac 2050 <br><br> ccactgccta gaggccatct taaaggaagc aggggctgga tgcctttcat 2100 <br><br> cccaactatt ctctgtggta tgaaaaag 212 8 <br><br> &lt;210&gt; 31 <br><br> &lt;211&gt; 322 <br><br> &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 31 <br><br> Met Pro Val Thr Val Thr Arg Thr Thr Ile Thr Thr Thr Thr Thr 15 10 15 <br><br> Ser Ser Ser Gly Leu Gly Ser Pro Met Ile Val Gly Ser Pro Arg 20 25 30 <br><br> Ala Leu Thr Gin Pro Leu Gly Leu Leu Arg Leu Leu Gin Leu Val 35 40 45 <br><br> Ser Thr Cys Val Ala Phe Ser Leu Val Ala Ser Val Gly Ala Trp 50 55 60 <br><br> Thr Gly Ser Met Gly Asn Trp Ser Met Phe Thr Trp Cys Phe Cys 65 70 75 <br><br> Phe Ser Val Thr Leu Ile Ile Leu Ile Val Glu Leu Cys Gly Leu 80 85 90 <br><br> Gin Ala Arg Phe Pro Leu Ser Trp Arg Asn Phe Pro Ile Thr Phe <br><br> 95 100 105 <br><br> Ala Cys Tyr Ala Ala Leu Phe Cys Leu Ser Ala Ser Ile Ile Tyr 110 115 120 <br><br> Pro Thr Thr Tyr Val Gin Phe Leu Ser His Gly Arg Ser Arg Asp 125 130 135 <br><br> His Ala Ile Ala Ala Thr Phe Phe Ser Cys Ile Ala Cys Val Ala 140 145 150 <br><br> Tyr Ala Thr Glu Val Ala Trp Thr Arg Ala Arg Pro Gly Glu Ile 155 160 165 <br><br> Thr Gly Tyr Met Ala Thr Val Pro Gly Leu Leu Lys Val Leu Glu 170 175 180 <br><br> Thr Phe Val Ala Cys lie Ile Phe Ala <br><br> Phe Ile Ser Asp Pro Asn <br><br> 121 <br><br> 185 190 195 <br><br> Leu Tyr Gin His Gin Pro Ala Leu Glu Trp Cys Val Ala Val Tyr <br><br> 200 205 210 <br><br> Ala Ile Cys Phe Ile Leu Ala Ala Ile Ala Ile Leu Leu Asn Leu <br><br> 215 220 225 <br><br> Gly Glu Cys Thr Asn Val Leu Pro Ile Pro Phe Pro Ser Phe Leu <br><br> 230 235 240 <br><br> Ser Gly Leu Ala Leu Leu Ser Val Leu Leu Tyr Ala Thr Ala Leu <br><br> 245 250 255 <br><br> Val Leu Trp Pro Leu Tyr Gin Phe Asp Glu Lys Tyr Gly Gly Gin <br><br> 260 265 270 <br><br> Pro Arg Arg Ser Arg Asp Val Ser Cys Ser Arg Ser His Ala Tyr <br><br> 275 280 285 <br><br> Tyr Val Cys Ala Trp Asp Arg Arg Leu Ala Val Ala Ile Leu Thr <br><br> 290 295 300 <br><br> Ala Ile Asn Leu Leu Ala Tyr Val Ala Asp Leu Val His Ser Ala 305 310 315 <br><br> His Leu Val Phe Val Lys Val 320 <br><br> &lt;210&gt; 32 <br><br> &lt;211&gt; 3680 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 32 <br><br> gaacgtgcca ccatgcccag ctaatttttg tatttttagt agagacgggg 50 tttcaccatg ttggccaggc tggtcttgaa ctcgtgacct catgatccgc 100 tcacctcggc ctcccaaagt gctgggatta caggcatgag ccactgacgc 150 ctggccagcc tatgcatttt taagaaatta ttctgtatta ggtgctgtgc 2 00 taaacattgg gcactacagt gaccaaaaca gactgaattc cccaagagcc 250 <br><br> aaagaccagt gagggagacc aacaagaaac aggaaatgca aaagagacca 300 ttattactca ctatgactaa gggtcacaaa tggggtacgt tgatggagag 350 tgatttgtta agagactaca gagggaggac agactaccaa gaggggggcc 400 aggaaagctc ctctgacgag gtggtatttc agcccaaact ggaagaatga 450 gaaagagcta gccagccatc agaatagtcc agaagagatg gggagcacta 500 <br><br> 122 <br><br> cactcactac actttggcct gagaaaatag ggggaacacc acttctgccg acctgggcag aagggcaatg gcagtagcag tagaaaggac gcaggtggaa tcattaggtc ttatcaacag gggagaattg atggtaatgc tgaggtttgg tggtgggtga tgcaaaggaa agaggtcagg agaaggtgtg ggggtttggt ttccatcttg atgggaagac caagaggagg agcaaggggc agaagtcctg gatgccacac tcttcttcct agaggtctca ctcgtggttc ttcatttcct gggtgctggg aaagtggagg attagctgaa tctgaatctc cattgctttc tgggaggaca cttatcatct tacatttccc tgtagccact tcctagctcc tgtctcctcc tcatgccttt ggggaaggtc attgctgtca gaggggcact caaggtgaat gttggagaca cagtcgcgat ccctaactat ccaggagatc gctgcgctgg atgcagcccc tcccatgttt ctggccactt gcacatccct ttggaactgt ttcctgtgag ttcttccctt gctcaggtga atctcagccc acatggatcc taactactgc cacccttcca ctggcctggt cctttaccag gcttctccac ttcccaggtg gtgaaggacc acgtgaccaa gccgagtggc tcacctcatt gagtggaagg tcacctgctg ccctggaatc agccttttcc gggcgaacaa gaggctcgct ttgcagcagg tcgcggaagc caagctccga gcatggtctt actgatgact cctatgatga ggactttgct catgggattg gaggaggctg 550 gaggcattga gggcttgaga 600 agggtaggag cagggacttt 650 atatgggcaa gcaaagccag 700 agccaggcta gatgggacag 750 aagcagggcc agacgtgggg 800 ccgagtctgc cggaatgtgg 850 agaggggaag ggaatcttaa 900 tcctcctctt ccctctcctc 950 gccctgcctc catctcctct 1000 gttttgcttc tcggggcctg 1050 taattcacct gtcctagctt 1100 gggacatatg tggtgttcct 1150 gctgggtatg ggcatgttag 12 00 gactttctaa tggtgttacc 1250 gctgcccaag tcccggcgag 13 00 ccaggtcctc cctgcatggt 1350 tgtcctttct cctcccgttt 1400 tacatgctgg ggtctcccct 1450 cttctcccac ccaaaggttc 1500 cctccctgca cctgtgctcc 1550 cctcccctat ctccaggtat 1600 gcctaccgcc atggcccagg 1650 gctggagcaa gccgagtgac 1700 tcctattcag acctcagcga 1750 agtggctgag cagtttgcca 1800 cggtggatgg cgaggactcc 1850 gggggaatgg acacagacat 1900 <br><br> ggctgggcag accggttctc tgctcacaga ggaggatggg gcgatgagct cgcagcctgg cacagagtcc actgccagcc caagcctctg ggcagagcca tcccccggct aggctcccag tctccgttgt ggctgggggc ccggggcctc ttcttaaaat agggggttgt accccccacc cgagtccatg ctcctgccct cccagctggg cttcctcttt ggatcttctc cacccttttc ctaggatgtg attcacgcag tgccacagag cacaggggtg <br><br> 123 <br><br> ctgcccctgg ggccgcacct ccaggacctg ttcaccggcc 1950 ccggcctgtg cgccagggct ccgtggagcc tgagagcgac 2000 ccgtgtcccc agacaccctg tgctctagtc tgtgcagcct 2050 ttgttgggct ccccggcccg gctggcctcc cagctgctgg 2100 gcttctcgcc aaactgcccc ccagccggga aagtgccttc 2150 gcccactgga ggcccaggac tcactctaca actcgcccct 2200 tgcctttccc ccgcggagga ggagccagcc ccctgcaagg 2250 actctgccca ccactaacgg gcagctggga acggcagcgg 23 00 acctggcctc ttctggggtg gtgtccttag atgaggatga 23 50 gaggaacagt gacccacatc atgcctggca gtggcatgca 2400 gctgccaggg gcagagcctc tgtgcccaag tgtgggctca 2450 cagagctcca cagcctagag ggctcctggg agcgctcgct 2500 gtgttttgca tgaaagtgtt tggagaggag gcaggggctg 2550 gcatgtcctg cccccactcc cggggcttgc cgggggttgc 2 600 tggggcatgg ctacagctgt ggcagacagt gatgttcatg 2650 gccacacaca catttcctcc tcggataatg tgaaccacta 27 00 gactgggctg tgtgagggtg gggtgggagg gggcccagca 2750 ctccccatgc ctctctcttc tctgcttttc ttctcacttc 2800 tgcagtgctt gatagaatca cccccacctg gaggggctgg 2850 cccggagcct atgggttgag ccgtccctca agggcccctg 2900 ctcgtgctgt gcttcattca cctctccatc gtctctaaat 2950 tttcctaaag acagaaggtt tttggtctgt tttttcagtc 3000 ttctctggga ggctttggaa tgatgaaagc atgtaccctc 3 050 ctggccccct aatggggcct gggccctttc ccaacccctc 3100 cgggcagtgt gctggcgcct cacagccagc cgggctgccc 3150 agctctctga gcgggaggtg gaagaaagga tggctctggt 3200 ctgggacttc atgttcttct agagagggcc acaagagggc 3250 gccgggagtt gtcagctgat gcctgctgag aggcaggaat 33 00 <br><br> 124 <br><br> tgtgccagtg agtgacagtc atgagggagt gtctcttctt ggggaggaaa 3350 <br><br> gaaggtagag cctttctgtc tgaatgaaag gccaaggcta cagtacaggg 3400 <br><br> ccccgcccca gccagggtgt taatgcccac gtagtggagg cctctggcag 3450 <br><br> atcctgcatt ccaaggtcac tggactgtac gtttttatgg ttgtgggaag 3500 <br><br> ggtgggtggc tttagaatta agggccttgt aggctttggc aggtaagagg 3550 <br><br> gcccaaggta agaacgagag ccaacgggca caagcattct atatataagt 3600 <br><br> ggctcattag gtgtttattt tgttctattt aagaatttgt tttattaaat 3650 <br><br> taatataaaa atctttgtaa atctctaaaa 3680 <br><br> &lt;210&gt; 33 <br><br> &lt;211&gt; 335 <br><br> &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 33 <br><br> Met Phe Leu Ala Thr Leu Ser Phe Leu Leu Pro Phe Ala His Pro 15 10 15 <br><br> Phe Gly Thr Val Ser Cys Glu Tyr Met Leu Gly Ser Pro Leu Ser 20 25 30 <br><br> Ser Leu Ala Gin Val Asn Leu Ser Pro Phe Ser His Pro Lys Val 35 40 45 <br><br> His Met Asp Pro Asn Tyr Cys His Pro Ser Thr Ser Leu His Leu 50 55 60 <br><br> Cys Ser Leu Ala Trp Ser Phe Thr Arg Leu Leu His Pro Pro Leu 65 70 75 <br><br> Ser Pro Gly Ile Ser Gin Val Val Lys Asp His Val Thr Lys Pro 80 85 90 <br><br> Thr Ala Met Ala Gin Gly Arg Val Ala His Leu Ile Glu Trp Lys 95 100 105 <br><br> Gly Trp Ser Lys Pro Ser Asp Ser Pro Ala Ala Leu Glu Ser Ala 110 115 120 <br><br> Phe Ser Ser Tyr Ser Asp Leu Ser Glu Gly Glu Gin Glu Ala Arg 125 130 135 <br><br> Phe Ala Ala Gly Val Ala Glu Gin Phe Ala Ile Ala Glu Ala Lys 140 145 150 <br><br> Leu Arg Ala Trp Ser Ser Val Asp Gly Glu Asp Ser Thr Asp Asp 155 160 165 <br><br> 125 <br><br> Ser Tyr Asp Glu Asp Phe Ala Gly Gly Met Asp Thr Asp Met Ala 170 175 180 <br><br> Gly Gin Leu Pro Leu Gly Pro His Leu Gin Asp Leu Phe Thr Gly 185 190 195 <br><br> His Arg Phe Ser Arg Pro Val Arg Gin Gly Ser Val Glu Pro Glu 200 205 210 <br><br> Ser Asp Cys Ser Gin Thr Val Ser Pro Asp Thr Leu Cys Ser Ser 215 220 225 <br><br> Leu Cys Ser Leu Glu Asp Gly Leu Leu Gly Ser Pro Ala Arg Leu 230 235 240 <br><br> Ala Ser Gin Leu Leu Gly Asp Glu Leu Leu Leu Ala Lys Leu Pro 245 250 255 <br><br> Pro Ser Arg Glu Ser Ala Phe Arg Ser Leu Gly Pro Leu Glu Ala 260 265 270 <br><br> Gin Asp Ser Leu Tyr Asn Ser Pro Leu Thr Glu Ser Cys Leu Ser 275 280 285 <br><br> Pro Ala Glu Glu Glu Pro Ala Pro Cys Lys Asp Cys Gin Pro Leu 290 295 300 <br><br> Cys Pro Pro Leu Thr Gly Ser Trp Glu Arg Gin Arg Gin Ala Ser 305 310 315 <br><br> Asp Leu Ala Ser Ser Gly Val Val Ser Leu Asp Glu Asp Glu Ala 320 325 330 <br><br> Glu Pro Glu Glu Gin 335 <br><br> &lt;210&gt; 34 &lt;211&gt; 25 &lt;212&gt; DNA &lt;213&gt; Artificial <br><br> Sequence <br><br> &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 34 tgtcctttgt cccagacttc tgtcc 25 <br><br> &lt;210&gt; 35 &lt;211&gt; 50 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 35 <br><br> 126 <br><br> ctggatgcta atgtgtccag taaatgatcc ccttatcccg tcgcgatgct 50 <br><br> &lt;210&gt; 36 &lt;211&gt; 25 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 36 ttccactcaa tgaggtgagc cactc 25 <br><br> &lt;210&gt; 37 &lt;211&gt; 23 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 37 <br><br> ggcgagccct aactatccag gag 23 <br><br> &lt;210&gt; 38 &lt;211&gt; 39 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 38 <br><br> ggagatcgct gcgctggcca ggtcctccct gcatggtat 3 9 <br><br> &lt;210&gt; 39 &lt;211&gt; 22 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 39 ctgctgcaaa gcgagcctct tg 22 <br><br> &lt;210&gt; 40 <br><br> &lt;211&gt; 2084 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 40 <br><br> ggttcctggg cgctctgtta cacaagcaag atacagccag ccccacctaa 50 ttttgtttcc ctggcaccct cctgctcagt gcgacattgt cacacttaac 100 <br><br> 127 <br><br> ccatctgttt tctctaatgc acgacagatt tgatatttca gttcctgatt gtaaatacct tactagccat tgtgagcttc agtttcttca caatctattc ttgccacatc aagggattgt aataccaaag aagcctacaa tgttggcctt caacgttgtt ttattcactt ctatcgggga gacataaaca caacacagaa cattgcagaa taaacctatt tctttggaaa gtgaagcaaa atataaccac ctcaaatctc aaggcgagtc cccaacaaca gccacggaat aacagatttc gcattctttg ggcagtctaa aacccacatc ccttgatcca tagctttgtt tctaaagtgc gatgaagatc ttttgcccat ctcagcacat gtcttcagaa aacttcactt ggtctttggt ctgataacag ttccattaca gttagcatcc ccatctgtga cccccttgat agtggaacca cagtgatagc ttcactgggt ttacccctta agcctacctt aaaattcacc aataattcaa gatccccaaa aagaaaatag aaatacagga aggtgctatt ctgggtgtct cattgcttac gtggaaaaag gaaaacggat tcattttccc agaaatgaac cagttctgcg attagacaat gagttttggg aattctagct actacaatcc tgccagaaag tgaagaaaat gcacgtgatg cctccacttc gtacttctgt atagaactaa gcaagtgtca tctacatcct agccttttga ttacacaaaa ttactgtcac gtggattttg cctttcagac aggacaactg 150 cctaagcctg aagcttctgt 200 tctgcaaaat gggcataata 250 tattccttta aaaaaaaacc 300 agccaaaatt ctgttgattt 350 gccatggaaa agaaaatcaa 400 gtttttaaaa caatggaaaa 450 cttaaactca gataaagaaa 500 attcccctcc tttgaatcta 550 tccagtaact catcagcaga 600 taccatttcc acaagccctc 650 cttggaatgc acctatagca 7 00 <br><br> cccaatgcta cacctgctct 750 caatgacacc gtgaaaactc 800 tctcttcaga accaacttct 850 agtggatggc ttaccacaaa 900 tcaagaaaaa acaactctac 950 aactctttcc aaatacgtca 1000 atagtattcg gggccatttt 1050 tcttgtgggc tacttgttgt 1100 atcggcgact ttatgacgac 1150 gcaccggaac cttatgatgt 1200 aactttgaat gattcagcca 1250 gcattcctat ggatgacata 1300 cagcaaaaag gcgttaaaca 1350 caaattcatc tttcaaaagg 1400 tcaaggagaa tcataaaagc 1450 <br><br> 128 <br><br> aggagaccag tagcagaaat gtagacagga tgtatcatcc aaaggttttc 1500 <br><br> tttcttacaa tttttggcca tcctgaggca tttactaagt agccttaatt 1550 <br><br> tgtattttag tagtattttc ttagtagaaa atatttgtgg aatcagataa 1600 <br><br> aactaaaaga tttcaccatt acagccctgc ctcataacta aataataaaa 1650 <br><br> attattccac caaaaaattc taaaacaatg aagatgactc tttactgctc 1700 <br><br> tgcctgaagc cctagtacca taattcaaga ttgcattttc ttaaatgaaa 1750 <br><br> attgaaaggg tgctttttaa agaaaatttg acttaaagct aaaaagagga 1800 <br><br> catagcccag agtttctgtt attgggaaat tgaggcaata gaaatgacag 1850 <br><br> acctgtattc tagtacgtta taattttcta gatcagcaca cacatgatca 1900 <br><br> gcccactgag ttatgaagct gacaatgact gcattcaacg gggccatggc 1950 <br><br> aggaaagctg accctaccca ggaaagtaat agcttcttta aaagtcttca 2 000 <br><br> aaggttttgg gaattttaac ttgtcttaat atatcttagg cttcaattat 2050 <br><br> ttgggtgcct taaaaactca atgagaatca tggt 2084 <br><br> &lt;210&gt; 41 &lt;211&gt; 334 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 41 <br><br> Met Leu Ala Leu Ala Lys Ile Leu Leu Ile Ser Thr Leu Phe Tyr 15 10 15 <br><br> Ser Leu Leu Ser Gly Ser His Gly Lys Glu Asn Gin Asp Ile Asn 20 25 30 <br><br> Thr Thr Gin Asn Ile Ala Glu Val Phe Lys Thr Met Glu Asn Lys <br><br> 35 40 45 <br><br> Pro Ile Ser Leu Glu Ser Glu Ala Asn Leu Asn Ser Asp Lys Glu 50 55 60 <br><br> Asn Ile Thr Thr Ser Asn Leu Lys Ala Ser His Ser Pro Pro Leu 65 70 75 <br><br> Asn Leu Pro Asn Asn Ser His Gly Ile Thr Asp Phe Ser Ser Asn 80 85 90 <br><br> Ser Ser Ala Glu His Ser Leu Gly Ser Leu Lys Pro Thr Ser Thr 95 100 105 <br><br> Ile Ser Thr Ser Pro Pro Leu Ile His Ser Phe Val Ser Lys Val 110 115 120 <br><br> 129 <br><br> Pro Trp Asn Ala Pro Ile Ala Asp Glu Asp Leu Leu Pro Ile Ser 125 130 135 <br><br> Ala His Pro Asn Ala Thr Pro Ala Leu Ser Ser Glu Asn Phe Thr 140 145 150 <br><br> Trp Ser Leu Val Asn Asp Thr Val Lys Thr Pro Asp Asn Ser Ser 155 160 165 <br><br> Ile Thr Val Ser Ile Leu Ser Ser Glu Pro Thr Ser Pro Ser Val 170 175 180 <br><br> Thr Pro Leu Ile Val Glu Pro Ser Gly Trp Leu Thr Thr Asn Ser 185 190 195 <br><br> Asp Ser Phe Thr Gly Phe Thr Pro Tyr Gin Glu Lys Thr Thr Leu 200 205 210 <br><br> Gin Pro Thr Leu Lys Phe Thr Asn Asn Ser Lys Leu Phe Pro Asn 215 220 225 <br><br> Thr Ser Asp Pro Gin Lys Glu Asn Arg Asn Thr Gly Ile Val Phe 230 235 240 <br><br> Gly Ala Ile Leu Gly Ala Ile Leu Gly Val Ser Leu Leu Thr Leu 245 250 255 <br><br> Val Gly Tyr Leu Leu Cys Gly Lys Arg Lys Thr Asp Ser Phe Ser 260 265 270 <br><br> His Arg Arg Leu Tyr Asp Asp Arg Asn Glu Pro Val Leu Arg Leu 275 280 285 <br><br> Asp Asn Ala Pro Glu Pro Tyr Asp Val Ser Phe Gly Asn Ser Ser 290 295 300 <br><br> Tyr Tyr Asn Pro Thr Leu Asn Asp Ser Ala Met Pro Glu Ser Glu 305 310 315 <br><br> Glu Asn Ala Arg Asp Gly Ile Pro Met Asp Asp Ile Pro Pro Leu 320 325 330 <br><br> Arg Thr Ser Val <br><br> &lt;210&gt; 42 <br><br> &lt;211&gt; 1594 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 42 <br><br> aacaggatct cctcttgcag tctgcagccc aggacgctga ttccagcagc 50 <br><br> 130 <br><br> gccttaccgc gcagcccgaa gattcactat cccctaccgc cgtgcaaaag gaggaggcgc ctgagccgca cggtcagaac tcagatactg tgccacccag gaaaaagagg gctcctctgg taggcctttc attcatcttg gcaggactta tacaagtact tcatgcccaa gagcaccatt ttttgattct gaggatcctg caaattccct tcctgcctgt gactgaggag gctgacattc atcattgatg tgcctgtccc cagtttctct tattcatgac tttgaaaagg gaatgactgc ggaactgcta tctgatgccc ctcaatactt aatctggtag agctctttgg caaactggcg aacttatgtg gttcgagaag acctagttgc ttagtaacct tggcatcttt atttaccaac ttccgccttc gtcgcagaga cctcttgctg tgataaatgc tggaagatta gacacttccc ccaagatctg tcaagagtaa gaggcaacag agaagtcaga gatttacaat atgactttaa tcaagatatt tactcatgca tttactctat gaaaaaaaaa aaaactacta accactgcaa taattggcat tgcttgtttt ttgaaactga ttctttgcat ttatagggtt tagatttctg cctaacatcc tgacaataaa ttccatccgt tttttctttt cctttaagta agctctttat tttaaaattt gaaatatttt aaattgtttt tatcagatct caacattgtt ggtttctttt ttcttgaatt tagaaattac atctttgcag ttaacctgac ttatatgtga acaattttca ggtgaaaatc gccttcaata 100 ggcaagacgt ggaggccctc 150 accggcaagg agctccgagt 200 gagatgtatg cttactctct 250 ttgttggtgg agcctgcatt 3 00 taccgtggag agatgtgctt 350 tcgtggagga gagcctaact 400 gtgaggatga caacattgca 450 gatagtgacc ctgcagcaat 500 ttacctggac ttgttgctgg 550 ctattgttat gcctccaaaa 600 agtggcagat atctgcctca 650 tgtggaggaa attcgtgatg 700 tttgcaataa cagaaagtcc 750 ggtttcaaca aacgtgccat 800 caacgaattt attgttgaga 850 atagagtgtc cttggtaata 900 cattaaggtt tatgggatac 95 0 tgcttatgct ttaaaaaaag 1000 gctcttgtca aattttagtt 1050 aattacatga gtttcatttt 1100 aaagcagcat gaatatatca 1150 tgtttttttt gtttgtttgt 1200 tcatcttatg gtggagcaat 1250 tgaacttttt gtgtaaaata 1300 gtttttcatt ttgtacaact 1350 ttctgttagg tgctctgtaa 1400 tgagacagtc atttttaact 1450 <br><br> 131 <br><br> aatgcagtga ttctttctca ctactatctg tattgtggaa tgcacaaaat 1500 <br><br> tgtgtaggtg ctgaatgctg taaggagttt aggttgtatg aattctacaa 1550 <br><br> ccctataata aattttactc tatacaaaaa aaaaaaaaaa aaaa 1594 <br><br> &lt;210&gt; 43 <br><br> &lt;211&gt; 263 <br><br> &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 43 <br><br> Met Val Lys Ile Ala Phe Asn Thr Pro Thr Ala Val Gin Lys Glu 15 10 15 <br><br> Glu Ala Arg Gin Asp Val Glu Ala Leu Leu Ser Arg Thr Val Arg 20 25 30 <br><br> Thr Gin Ile Leu Thr Gly Lys Glu Leu Arg Val Ala Thr Gin Glu 35 40 45 <br><br> Lys Glu Gly Ser Ser Gly Arg Cys Met Leu Thr Leu Leu Gly Leu 50 55 60 <br><br> Ser Phe Ile Leu Ala Gly Leu Ile Val Gly Gly Ala Cys Ile Tyr 65 70 75 <br><br> Lys Tyr Phe Met Pro Lys Ser Thr Ile Tyr Arg Gly Glu Met Cys 80 85 90 <br><br> Phe Phe Asp Ser Glu Asp Pro Ala Asn Ser Leu Arg Gly Gly Glu 95 100 105 <br><br> Pro Asn Phe Leu Pro Val Thr Glu Glu Ala Asp Ile Arg Glu Asp 110 115 120 <br><br> Asp Asn Ile Ala Ile Ile Asp Val Pro Val Pro Ser Phe Ser Asp 125 130 135 <br><br> Ser Asp Pro Ala Ala Ile Ile His Asp Phe Glu Lys Gly Met Thr 140 145 150 <br><br> Ala Tyr Leu Asp Leu Leu Leu Gly Asn Cys Tyr Leu Met Pro Leu 155 160 165 <br><br> Asn Thr Ser Ile Val Met Pro Pro Lys Asn Leu Val Glu Leu Phe 170 175 180 <br><br> Gly Lys Leu Ala Ser Gly Arg Tyr Leu Pro Gin Thr Tyr Val Val 185 190 195 <br><br> Arg Glu Asp Leu Val Ala Val Glu Glu Ile Arg Asp Val Ser Asn 200 205 210 <br><br> Leu Gly Ile Phe Ile Tyr Gin Leu Cys Asn Asn Arg Lys Ser Phe <br><br> 132 <br><br> 215 220 225 <br><br> Arg Leu Arg Arg Arg Asp Leu Leu Leu Gly Phe Asn Lys Arg Ala 230 235 240 <br><br> Ile Asp Lys Cys Trp Lys Ile Arg His Phe Pro Asn Glu Phe Ile 245 250 255 <br><br> Val Glu Thr Lys Ile Cys Gin Glu 260 <br><br> &lt;210&gt; 44 &lt;211&gt; 24 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 44 gaaagacacg acacagcagc ttgc 24 <br><br> &lt;210&gt; 45 &lt;211&gt; 20 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 45 gggaactgct atctgatgcc 20 <br><br> &lt;210&gt; 46 &lt;211&gt; 26 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 46 caggatctcc tcttgcagtc tgcagc 2 6 <br><br> &lt;210&gt; 47 &lt;211&gt; 28 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 47 <br><br> cttctcgaac cacataagtt tgaggcag 2 8 <br><br> 133 <br><br> &lt;210&gt; 48 &lt;211&gt; 25 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 48 cacgattccc tccacagcaa ctggg 25 <br><br> &lt;210&gt; 49 &lt;211&gt; 1969 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 49 <br><br> ggaggaggga gggcgggcag gcgccagccc agagcagccc cgggcaccag 50 cacggactct ctcttccagc ccaggtgccc cccactctcg ctccattcgg 100 cgggagcacc cagtcctgta cgccaaggaa ctggtcctgg gggcaccatg 150 gtttcggcgg cagcccccag cctcctcatc cttctgttgc tgctgctggg 200 gtctgtgcct gctaccgacg cccgctctgt gcccctgaag gccacgttcc 250 tggaggatgt ggcgggtagt ggggaggccg agggctcgtc ggcctcctcc 3 00 ccgagcctcc cgccaccctg gaccccggcc ctcagcccca catcgatggg 350 gccccagccc acaaccctgg ggggcccatc accccccacc aacttcctgg 400 atgggatagt ggacttcttc cgccagtacg tgatgctgat tgctgtggtg 450 ggctccctgg cctttctgct gatgttcatc gtctgtgccg cggtcatcac 500 ccggcagaag cagaaggcct cggcctatta cccatcgtcc ttccccaaga 550 agaagtacgt ggaccagagt gaccgggccg ggggcccccg ggccttcagt 600 gaggtccccg acagagcccc cgacagcagg cccgaggaag ccctggattc 650 ctcccggcag ctccaggccg acatcttggc cgccacccag aacctcaagt 7 00 cccccaccag ggctgcactg ggcggtgggg acggagccag gatggtggag 750 ggcaggggcg cagaggaaga ggagaagggc agccaggagg gggaccagga 800 agtccaggga catggggtcc cagtggagac accagaggcg caggaggagc 850 cgtgctcagg ggtccttgag ggggctgtgg tggccggtga gggccaaggg 900 gagctggaag ggtctctctt gttagcccag gaagcccagg gaccagtggg 950 <br><br> 134 <br><br> tccccccgaa agcccctgtg cttgcagcag tgtccacccc agtgtctaac 1000 <br><br> agtcctcccg ggctgccagc cctgactgtc gggcccccaa gtggtcacct 1050 <br><br> ccccgtgtat gaaaaggcct tcagccctga ctgcttcctg acactccctc 1100 <br><br> cttggcctcc ctgtggtgcc aatcccagca tgtgctgatt ctacagcagg 1150 <br><br> cagaaatgct ggtccccggt gccccggagg aatcttacca agtgccatca 12 00 <br><br> tccttcacct cagcagcccc aaagggctac atcctacagc acagctcccc 1250 <br><br> tgacaaagtg agggagggca cgtgtccctg tgacagccag gataaaacat 13 00 <br><br> cccccaaagt gctgggatta caggcgtgag ccaccgtgcc cggcccaaac 1350 <br><br> tactttttaa aacagctaca gggtaaaatc ctgcagcacc cactctggaa 1400 <br><br> aatactgctc ttaattttcc tgaaggtggc cccctgtttc tagttggtcc 1450 <br><br> aggattaggg atgtggggta tagggcattt aaatcctctc aagcgctctc 1500 <br><br> caagcacccc cggcctgggg gtgagtttct catcccgcta ctgctgctgg 1550 <br><br> gatcaggttg aatgaatgga actcttcctg tctggcctcc aaagcagcct 1600 <br><br> agaagctgag gggctgtgtt tgaggggacc tccaccctgg ggaagtccga 1650 <br><br> ggggctgggg aagggtttct gacgcccagc ctggagcagg ggggccctgg 1700 <br><br> ccaccccctg ttgctcacac attgtctggc agcctgtgtc cacaatattc 1750 <br><br> gtcagtcctc gacagggagc ctgggctccg tcctgcttta gggaggctct 1800 <br><br> ggcaggaggt cctctccccc atccctccat ctggggctcc cccaacctct 1850 <br><br> gcacagctct ccaggtgctg agatataatg caccagcaca ataaaccttt 1900 <br><br> attccggcct gaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1950 <br><br> aaaaaaaaaa aaaaaaaga 1969 <br><br> &lt;210&gt; 50 &lt;211&gt; 283 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 50 <br><br> Met Val Ser Ala Ala Ala Pro Ser Leu Leu Ile Leu Leu Leu Leu 15 10 15 <br><br> Leu Leu Gly Ser Val Pro Ala Thr Asp Ala Arg Ser Val Pro Leu 20 25 30 <br><br> Lys Ala Thr Phe Leu Glu Asp Val Ala Gly Ser Gly Glu Ala Glu <br><br> 135 <br><br> 35 40 45 <br><br> Gly Ser Ser Ala Ser Ser Pro Ser Leu Pro Pro Pro Trp Thr Pro 50 55 60 <br><br> Ala Leu Ser Pro Thr Ser Met Gly Pro Gin Pro Thr Thr Leu Gly 65 70 75 <br><br> Gly Pro Ser Pro Pro Thr Asn Phe Leu Asp Gly Ile Val Asp Phe 80 85 90 <br><br> Phe Arg Gin Tyr Val Met Leu Ile Ala Val Val Gly Ser Leu Ala 95 100 105 <br><br> Phe Leu Leu Met Phe Ile Val Cys Ala Ala Val Ile Thr Arg Gin 110 115 120 <br><br> Lys Gin Lys Ala Ser Ala Tyr Tyr Pro Ser Ser Phe Pro Lys Lys 125 130 135 <br><br> Lys Tyr Val Asp Gin Ser Asp Arg Ala Gly Gly Pro Arg Ala Phe 140 145 150 <br><br> Ser Glu Val Pro Asp Arg Ala Pro Asp Ser Arg Pro Glu Glu Ala 155 160 165 <br><br> Leu Asp Ser Ser Arg Gin Leu Gin Ala Asp Ile Leu Ala Ala Thr 170 175 180 <br><br> Gin Asn Leu Lys Ser Pro Thr Arg Ala Ala Leu Gly Gly Gly Asp 185 190 195 <br><br> Gly Ala Arg Met Val Glu Gly Arg Gly Ala Glu Glu Glu Glu Lys <br><br> 200 205 210 <br><br> Gly Ser Gin Glu Gly Asp Gin Glu Val Gin Gly His Gly Val Pro <br><br> 215 220 225 <br><br> Val Glu Thr Pro Glu Ala Gin Glu Glu Pro Cys Ser Gly Val Leu <br><br> 230 235 240 <br><br> Glu Gly Ala Val Val Ala Gly Glu Gly Gin Gly Glu Leu Glu Gly <br><br> 245 250 255 <br><br> Ser Leu Leu Leu Ala Gin Glu Ala Gin Gly Pro Val Gly Pro Pro <br><br> 260 265 270 <br><br> Glu Ser Pro Cys Ala Cys Ser Ser Val His Pro Ser Val <br><br> 275 280 <br><br> &lt;210&gt; 51 &lt;211&gt; 1734 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> 136 <br><br> &lt;400&gt; 51 <br><br> gtggactctg agaagcccag gcagttgagg gacccagagg gagggaggac agggagtcgg gcacagagac gcagagcaag ggcggcaagg agacactctg gagagagagg gggctgggca cctggcctgc ctcctgctgg ccctctgcct ccctgcagag cggagaggaa agcactggga ggacatggcc tgggagacgc cctgagcgaa caaagaggcc ggaggggcag ctggctctaa aagggaccag agaagcagtt ggcactggag ggcgcagcag atgctttggg caacagggtc gggaaacact gggcacgaga ttggcagaca acggagcaga tgctgtccgc ggctcctggc ggtgcttggg aaacttctgg aggccatggc ccttggaggc cagggccagg gcaatcctgg tccacggata ccccggaaac tcagcaggca ggagctccct ggggtcaagg aggcaatgga caacactcag ggagctgtgg cccagcctgg gcaaccagaa tgaagggtgc acgaatcccc ggctccagca actctggggg aggcagcggc cagtggcagc aatggtgaca acaacaatgg gcagtggcag cagcagtggc agcagcagtg agtggtggca gcagtggcaa cagtggtggc tgagtcctcc tggggatcca gcaccggctc ggagcggcgg aggaaatgga cataaacccg gaagcccgcg ggagcgggga atctgggatt agtttccagc aacatgaggg aaataagcaa gaggctctgg agacaattat cgggggcaag ggaggtgacg ctgttggtgg agtcaatact acaggagaga gaaggctgca 50 aaggaggagg acagaggagg 100 aggagaccct ggtgggagga 150 gagatgaagt tccaggggcc 200 gggcagtggg gaggctggcc 250 caaatattgg ggaggccctt 3 00 ggggtgggaa aggccattgg 350 agtcagtgag gcccttggcc 400 tcaggcaggt tccaggcttt 450 ggggaagcag cccatgctct 500 ggcagaagat gtcattcgac 550 agggggtgcc tggccacagt 600 atctttggct ctcaaggtgg 650 aggtctgggg actccgtggg 700 gctttggaat gaatcctcag 750 gggccaccaa actttgggac 800 ctatggttca gtgagagcca 850 caccatctgg ctcaggtgga 900 tcacagtcgg gcagcagtgg 950 cagcagcagt ggtggcagca 1000 gcggcagcag tggcggcagc 1050 agcagaggtg acagcggcag 1100 ctcctccggc aaccacggtg 1150 ggtgtgaaaa gccagggaat 12 00 cagggcttca gaggacaggg 1250 agagggcaat cgcctccttg 13 00 ggtcgagctg gggcagtgga 1350 gtgaactctg agacgtctcc 1400 <br><br> 137 <br><br> tgggatgttt aactttgaca ctttctggaa gaattttaaa tccaagctgg 1450 <br><br> gtttcatcaa ctgggatgcc ataaacaagg accagagaag ctctcgcatc 1500 <br><br> ccgtgacctc cagacaagga gccaccagat tggatgggag cccccacact 1550 <br><br> ccctccttaa aacaccaccc tctcatcact aatctcagcc cttgcccttg 1600 <br><br> aaataaacct tagctgcccc acaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1650 <br><br> aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1700 <br><br> aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaa 1734 <br><br> &lt;210&gt; 52 &lt;211&gt; 440 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 52 <br><br> Met Lys Phe Gin Gly Pro Leu Ala Cys Leu Leu Leu Ala Leu Cys 15 10 15 <br><br> Leu Gly Ser Gly Glu Ala Gly Pro Leu Gin Ser Gly Glu Glu Ser 20 25 30 <br><br> Thr Gly Thr Asn Ile Gly Glu Ala Leu Gly His Gly Leu Gly Asp 35 40 45 <br><br> Ala Leu Ser Glu Gly Val Gly Lys Ala Ile Gly Lys Glu Ala Gly 50 55 60 <br><br> Gly Ala Ala Gly Ser Lys Val Ser Glu Ala Leu Gly Gin Gly Thr 65 70 75 <br><br> Arg Glu Ala Val Gly Thr Gly Val Arg Gin Val Pro Gly Phe Gly 80 85 90 <br><br> Ala Ala Asp Ala Leu Gly Asn Arg Val Gly Glu Ala Ala His Ala 95 100 105 <br><br> Leu Gly Asn Thr Gly His Glu Ile Gly Arg Gin Ala Glu Asp Val 110 115 120 <br><br> Ile Arg His Gly Ala Asp Ala Val Arg Gly Ser Trp Gin Gly Val 125 130 135 <br><br> Pro Gly His Ser Gly Ala Trp Glu Thr Ser Gly Gly His Gly Ile <br><br> 140 145 150 <br><br> Phe Gly Ser Gin Gly Gly Leu Gly Gly Gin Gly Gin Gly Asn Pro <br><br> 155 160 165 <br><br> Gly Gly Leu Gly Thr Pro Trp Val His Gly Tyr Pro Gly Asn Ser <br><br> 138 <br><br> 170 <br><br> 175 <br><br> 180 <br><br> Ala Gly Ser Phe Gly Met Asn Pro Gin Gly Ala Pro Trp Gly Gin 185 190 195 <br><br> Gly Gly Asn Gly Gly Pro Pro Asn Phe Gly Thr Asn Thr Gin Gly 200 205 210 <br><br> Ala Val Ala Gin Pro Gly Tyr Gly Ser Val Arg Ala Ser Asn Gin 215 220 225 <br><br> Asn Glu Gly Cys Thr Asn Pro Pro Pro Ser Gly Ser Gly Gly Gly 230 235 240 <br><br> Ser Ser Asn Ser Gly Gly Gly Ser Gly Ser Gin Ser Gly Ser Ser 245 250 255 <br><br> Gly Ser Gly Ser Asn Gly Asp Asn Asn Asn Gly Ser Ser Ser Gly 260 265 270 <br><br> Gly Ser Ser Ser Gly Ser Ser Ser Gly Ser Ser Ser Gly Gly Ser 275 280 285 <br><br> Ser Gly Gly Ser Ser Gly Gly Ser Ser Gly Asn Ser Gly Gly Ser 290 295 300 <br><br> Arg Gly Asp Ser Gly Ser Glu Ser Ser Trp Gly Ser Ser Thr Gly 305 310 315 <br><br> Ser Ser Ser Gly Asn His Gly Gly Ser Gly Gly Gly Asn Gly His 320 325 330 <br><br> Lys Pro Gly Cys Glu Lys Pro Gly Asn Glu Ala Arg Gly Ser Gly 335 340 345 <br><br> Glu Ser Gly Ile Gin Gly Phe Arg Gly Gin Gly Val Ser Ser Asn 350 355 360 <br><br> Met Arg Glu Ile Ser Lys Glu Gly Asn Arg Leu Leu Gly Gly Ser 365 370 375 <br><br> Gly Asp Asn Tyr Arg Gly Gin Gly Ser Ser Trp Gly Ser Gly Gly 380 385 390 <br><br> Gly Asp Ala Val Gly Gly Val Asn Thr Val Asn Ser Glu Thr Ser 395 400 405 <br><br> Pro Gly Met Phe Asn Phe Asp Thr Phe Trp Lys Asn Phe Lys Ser 410 415 420 <br><br> Lys Leu Gly Phe Ile Asn Trp Asp Ala Ile Asn Lys Asp Gin Arg 425 430 435 <br><br> Ser Ser Arg Ile Pro 440 <br><br> 139 <br><br> &lt;210&gt; 53 <br><br> &lt;211&gt; 3580 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 53 <br><br> gaccggtccc tccggtcctg gatgtgcgga caggcccgcc gggcggtgct caccgtgccc ctttgctgac catgttgttc ccttgctgga ctctcctgct gcgcctgcac cggagcttgg gggaagatgt gtttcctgaa caagctgctg gcttttccag attcccacag tccctgagga gtccctcata tgcctttgag gtggacacag gacaatgcgc ctgtggtgga ccagcagctg catcggagag ctccggaaac tgctcgcttc gacggagtgg gggcttcatg aggaaaatca ctgggagccc agccttccca gaccagccag ccaggccttt ttccacaacc agccgccctc tcgtggcaga aagaattgga tcaaactgtg ctggtggcag atctggtgcg ccaggcagag ggtgacacag ggagaggaag ggggagaccc tgtgttccca gctgtgccct cacggggccc gagttctgtc aaaggaagag ccctggggct ggagaccccg gcagccgttc tgagcagtgc ttgcaacaga gaaagcctgt gcttggctgt atcaggaggg aggtgaaagc agcagtgagt tcctgaacct gctgcccggg gggagcggag gtgctctcct tggccgtggg gccacgggac agagcatctg gaacagctcc taggccagct gccagttcct gtgcccacct gctgagcagc gagttagctt ccctcctcgt tgcagatcaa ctctgctgca gcgagggctg 50 tggctggtgg agtttctctc 100 atattaccgg gacatcttca 150 tgttgtcgca ggagagtgag 2 00 ctacttgctg tcctgggctg 250 cttgttcttt ctggaagagg 3 00 tagccccaga gcatggcttg 3 50 ctctacacct gctgccccta 400 gtgggtgtca ggcagtagtg 450 cccccaccac taccaccagc 500 gggctgcagg cacagctcgc 550 cttgcgccgg accgtagagt 600 tcaaacatat caaggctaca 650 tcacttctcc aagagcagct 7 00 agcccagctg ttggagatct 750 aggcattggc cctggggcgg 800 gtgcgggcgc tgcttccaga 850 agagaacatt gctgtggggc 900 cagccaacat cacagcactg 950 cgcacacttc gagcccaggg 1000 gggctgctcc cgcgcctgac 1050 cctgacgagg gagtctcccc 1100 gggccagacg ctgcggtgcc 1150 atctggcaaa gtgctctgtg 12 00 attcctatcc tagggccccc 1250 <br><br> 140 <br><br> ggcacagtac aggctggaga gagggcaggc tcgaaggctt ctgcacatgc 13 00 tgctttcctt gtggaaggaa gactttcagg ggccggttcc gctgcagctg 1350 ctgctgagcc caagaaatgt ggggcttctg gcagacacaa ggccaaggga 1400 gtgggacttg ctgctattct tgctacggga gctggtggag aagggtctga 1450 tgggacggat ggagatagag gcctgcctgg gcagcctcca ccaggcccag 1500 tggccagggg actttgctga agaattagca acactgtcta atctgtttct 1550 agccgagccc cacctgccag aaccccagct aagagcctgt gagttggtgc 1600 agccaaaccg gggcactgtg ctggcccaga gctagggctg agaagtggcc 1650 ctgccttggg cattgcacca gaaccctgga cccccgcctc acgaggaggc 17 00 ccaagtgccc aatgcagacc ctcactggtt ggggtgtagc tgggtctaca 1750 gtcagacttc ctgctctaag ggtgtcactg cctggcatcc caccacgcga 1800 atcctagagg aaggagagtt ggcctgattt gggattatgg cagaaaagtc 1850 cagagatgcc agtcctggag tagaagaggt ggtgtttgtt tatctcttgg 1900 atactaaatg aaatgaggtg tgtgggcttg tcaacacaga attcaagcct 1950 catttgctat cccagcatct cttaaaactt tgtagtcttg gaattcatga 2 000 cagaggcaaa tgactcctgc ttaacttatg aagaaagtta aaacatgaat 2 050 cttgggagtc tacattttct tatcaccagg agctggactg ccatctcctt 2100 ataaatgcct aacacaggcc gggtctggtg gctcatgcct gtaatcccag 2150 cactttgaga ggcctgaggt cggcggactg cctgaggtca ggaattcaag 2200 accagcctgg ccaacatggc aaaaccccat ctctactaaa aataaaaaaa 2250 ttattagctg ggcatggtgg tgtgtgcctg taatcccagc tactcaggag 23 00 gatgaggcag gagacctgct tgaacctgga ggtggaggtt gcagtgagcc 2350 gaggtcgcac cactgcactc cagtctgggt aacagagcga gactttctag 2400 aaaaagccta acaaacagat aaggtaggac tcaaccaact gaaacctgac 2450 tttccccctg taccttcagc ccctgtgcag.gtagtaacct cttgagacct 2500 ctccctgacc agggaccaag cacagggcat ttagagcttt ttagaataaa 2550 ctggttttct ttaaaaaaaa aaaaaaaaaa agggcggccg cccttttttt 2 600 tttttttttt tttttttttt tttttttttt tttttttttt taaaaagggc 2650 <br><br> 141 <br><br> ttttattaaa attctcccca cacgatggct cctgcaatct gccacagctc 2700 <br><br> tggggcgtgt cctgtaggga aaggccctgt tttccctgag gcggggctgg 2750 <br><br> gcttgtccat gggtccgcgg agctggccgt gcttggcgcc ctggcgtgtg 2800 <br><br> tctagctgct tcttgccggg cacagagctg cggggtctgg gggcaccggg 2 850 <br><br> agctaagagc aggctctggt gcaggggtgg aggcctgtct cttaaccgac 2900 <br><br> accctgaggt gctcctgaga tgctgggtcc accctgagtg gcacggggag 2950 <br><br> cagctgtggc cggtgctcct tcytaggcca gtcctgggga aactaagctc 3 000 <br><br> gggcccttct ttgcaaagac cgaggatggg gtgggtgtgg gggactcatg 3050 <br><br> gggaatggcc tgaggagcta cgtgtgaaga gggcgccggt ttgttggctg 3100 <br><br> cagcggcctg gagcgcctct ctcctgagcc tcagtttccc tttccgtcta 3150 <br><br> atgaagaaca tgccgtctcg gtgtctcagg gctattagga cttgccctca 3200 <br><br> ggaagtggcc ttggacgagc gtcatgttat tttcacaact gtcctgcgac 3250 <br><br> gttggcctgg gcacgtcatg gaatggccca tgtccctctg ctgcgtggac 33 00 <br><br> gtcgcggtcg ggagtgcgca gccagaggcg gggccagacg tgcgcctggg 3350 <br><br> ggtgagggga ggcgccccgg gagggcctca caggaagttg ggctcccgca 3400 <br><br> ccaccaggca gggcgggctc ccgccgccgc cgccgccacc accgtccagg 3450 <br><br> ggccggtaga caaagtggaa gtcgcgcttg ggctcgctgc gcagcaggta 3500 <br><br> gcccttgatg cagtgcggca gcgcgtcgtc cgccagctgg aagcagcgcc 3550 <br><br> cgtccaccag cacgaacagc cggtgcgcct 3580 <br><br> &lt;210&gt; 54 <br><br> &lt;211&gt; 280 <br><br> &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 54 <br><br> Met Cys Phe Leu Asn Lys Leu Leu Leu Leu Ala Val Leu Gly Trp 15 10 15 <br><br> Leu Phe Gin Ile Pro Thr Val Pro Glu Asp Leu Phe Phe Leu Glu 20 25 30 <br><br> Glu Gly Pro Ser Tyr Ala Phe Glu Val Asp Thr Val Ala Pro Glu 35 40 45 <br><br> His Gly Leu Asp Asn Ala Pro Val Val Asp Gin Gin Leu Leu Tyr 50 55 60 <br><br> 142 <br><br> Thr Cys Cys Pro Tyr Ile Gly Glu Leu Arg Lys Leu Leu Ala Ser <br><br> 65 70 75 <br><br> Trp Val Ser Gly Ser Ser Gly Arg Ser Gly Gly Phe Met Arg Lys <br><br> 80 85 90 <br><br> Ile Thr Pro Thr Thr Thr Thr Ser Leu Gly Ala Gin Pro Ser Gin <br><br> 95 100 105 <br><br> Thr Ser Gin Gly Leu Gin Ala Gin Leu Ala Gin Ala Phe Phe His <br><br> 110 115 120 <br><br> Asn Gin Pro Pro Ser Leu Arg Arg Thr Val Glu Phe Val Ala Glu <br><br> 125 130 135 <br><br> Arg Ile Gly Ser Asn Cys Val Lys His Ile Lys Ala Thr Leu Val <br><br> 140 145 150 <br><br> Ala Asp Leu Val Arg Gin Ala Glu Ser Leu Leu Gin Glu Gin Leu <br><br> 155 160 165 <br><br> Val Thr Gin Gly Glu Glu Gly Gly Asp Pro Ala Gin Leu Leu Glu <br><br> 170 175 180 <br><br> Ile Leu Cys Ser Gin Leu Cys Pro His Gly Ala Gin Ala Leu Ala <br><br> 185 190 195 <br><br> Leu Gly Arg Glu Phe Cys Gin Arg Lys Ser Pro Gly Ala Val Arg <br><br> 200 205 210 <br><br> Ala Leu Leu Pro Glu Glu Thr Pro Ala Ala Val Leu Ser Ser Ala <br><br> 215 220 225 <br><br> Glu Asn Ile Ala Val Gly Leu Ala Thr Glu Lys Ala Cys Ala Trp <br><br> 230 235 240 <br><br> Leu Ser Ala Asn Ile Thr Ala Leu Ile Arg Arg Glu Val Lys Ala <br><br> 245 250 255 <br><br> Ala Val Ser Arg Thr Leu Arg Ala Gin Gly Pro Glu Pro Ala Ala <br><br> 260 265 270 <br><br> Arg Gly Glu Arg Arg Gly Cys Ser Arg Ala 275 280 <br><br> &lt;210&gt; 55 <br><br> &lt;211&gt; 2401 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 55 <br><br> tcccttgaca ggtctggtgg ctggttcggg gtctactgaa ggctgtcttg 50 <br><br> atcaggaaac tgaagactct ctgcttttgc cacagcagtt cctgcagctt 100 <br><br> 143 <br><br> ccttgaggtg tgaacccaca tccctgcccc cgacacctac ccctcagcag acgccggaga gcagcggtca gcagtgttcg tgatcctctt tcctctacag ctccaacagt gccaatgagg cggggccgta gccgccgacc tgtcaacctc cggctatgtc cccattctcg gcaacaagac agtgtgtgat tgtcagcagc tccagccacc cctgagatcg agcgggctga gtgtacaatc cactggctac tcagctgatg tgggcaacaa cccattccag tgtgttccgc gtgctgagga cggacccctg aaaccgtgtt catcttctgg gaagccccag ggcagcctcg tgcgtgtgat tccccaacat ggaagcatat gccgtctctc gacgacctct tccggggtga gacgggcaag gtggttgagc acaggctggt ttaccatggt accacgtgca tgtctatggc atggtccccc ccccgcctcc agcgcatgcc ctaccactac cgaatgtgtc acctacatcc agaatgagca accgcttcat caccgagaaa agggtcttct ggcatcacct tctcccaccc ctcctggacc acctcaggag ggtcagagga gaagcagcct ggaccatctt ctggccaatc aaggcttgct agggccttga ggaggatgta tcctccagcc gttggcgaat cagggatttg ggagtctatg tcttgtgcag tcagggtctg cgcacagtca tctgagtcaa tctgaggcta aggacatgtc tcagagcccc aggaatggac cccccaatca atggggtcct gtcccaagga gctgggaact cagggccacc tgcaggacgc 150 gaaatgagta gcaacaaaga 200 tgccctcatc accatcctca 250 tcttccatta cggctccctg 300 aagaagtgga gcatcactga 350 actgccctct cggtgccacc 400 tgctgggcac caagctgggc 450 cgcatgaatg atgcacccac 500 gaccacctac cgcgtcgtgg 550 ggccccagga gtttgtcaac 600 gggcccccga gcaagatgca 650 ccagcgagcg ggcctggtgt 700 ccggccgcat gcggcaattt 750 gacagggaga agtctcattc 800 gatcgcggtg gagttgtgtg 850 ccaactactg cagccagcgg 900 <br><br> tacgagccca aggggccgga 950 cagtcgcaag ggcaaccacc 1000 catcgtgggc ccagctgtat 1050 taggccaccc agcctgtggg 1100 ccgcccagcc gctaggccag 1150 ggagtgtctc ccagccaatc 1200 aatcagggcc tggggaatct 1250 tggttaatca ggggtgtctt 13 00 atcagggtag agggggtatt 1350 ctttcccatg aggccttggt 1400 ctccccactc tgctgggata 1450 tggtgttgcc ccctcaattt 1500 <br><br> 144 <br><br> ccagcaccag aaagagagat tgtgtggggg tagaagctgt ctggaggccc 1550 <br><br> ggccagagaa tttgtggggt tgtggaggtt gtgggggcgg tggggaggtc 1600 <br><br> ccagaggtgg gaggctggca tccaggtctt ggctctgccc tgagaccttg 1650 <br><br> gacaaaccct tccccctctc tgggcaccct tctgcccaca ccagtttcca 17 00 <br><br> gtgcggagtc tgagaccctt tccacctccc ctacaagtgc cctcgggtct 1750 <br><br> gtcctccccg tctggaccct cccagccact atcccttgct ggaaggctca 1800 <br><br> gctctttggg gggtctgggg tgacctcccc acctcctgga aaactttagg 1850 <br><br> gtatttttgc gcaaactcct tcagggttgg gggactctga aggaaacggg 1900 <br><br> acaaaacctt aagctgtttt cttagcccct cagccagctg ccattagctt 1950 <br><br> ggctcttaaa gggccaggcc tccttttctg ccctctagca gggaggtttt 2000 <br><br> ccaactgttg gaggcgcctt tggggctgcc cctttgtctg gagtcactgg 2050 <br><br> gggcttccga gggtctccct cgaccctctg tcgtcctggg atggctgtcg 2100 <br><br> ggagctgtat cacctgggtt ctgtcccctg gctctgtatc aggcacttta 2150 <br><br> ttaaagctgg gcctcagtgg ggtgtgtttg tctcctgctc ttctggagcc 2200 <br><br> tggaaggaaa gggcttcagg aggaggctgt gaggctggag ggaccagatg 2250 <br><br> gaggaggcca gcagctagcc attgcacact ggggtgatgg gtgggggcgg 2300 <br><br> tgactgcccc agacttggtt ttgtaatgat ttgtacagga ataaacacac 2350 <br><br> ctacgctccg gaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 2400 <br><br> a 2401 <br><br> &lt;210&gt; 56 <br><br> &lt;211&gt; 299 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 56 <br><br> Met Ser Ser Asn Lys Glu Gin Arg Ser Ala Val Phe Val Ile Leu 15 10 15 <br><br> Phe Ala Leu Ile Thr Ile Leu Ile Leu Tyr Ser Ser Asn Ser Ala 20 25 30 <br><br> Asn Glu Val Phe His Tyr Gly Ser Leu Arg Gly Arg Ser Arg Arg 35 40 45 <br><br> Pro Val Asn Leu Lys Lys Trp Ser Ile Thr Asp Gly Tyr Val Pro <br><br> 145 <br><br> 50 55 60 <br><br> Ile Leu Gly Asn Lys Thr Leu Pro Ser Arg Cys His Gin Cys Val <br><br> 65 70 75 <br><br> Ile Val Ser Ser Ser Ser His Leu Leu Gly Thr Lys Leu Gly Pro <br><br> 80 85 90 <br><br> Glu Ile Glu Arg Ala Glu Cys Thr Ile Arg Met Asn Asp Ala Pro <br><br> 95 100 105 <br><br> Thr Thr Gly Tyr Ser Ala Asp Val Gly Asn Lys Thr Thr Tyr Arg <br><br> 110 115 120 <br><br> Val Val Ala His Ser Ser Val Phe Arg Val Leu Arg Arg Pro Gin <br><br> 125 130 135 <br><br> Glu Phe Val Asn Arg Thr Pro Glu Thr Val Phe Ile Phe Trp Gly <br><br> 140 145 150 <br><br> Pro Pro Ser Lys Met Gin Lys Pro Gin Gly Ser Leu Val Arg Val <br><br> 155 160 165 <br><br> Ile Gin Arg Ala Gly Leu Val Phe Pro Asn Met Glu Ala Tyr Ala <br><br> 170 175 180 <br><br> Val Ser Pro Gly Arg Met Arg Gin Phe Asp Asp Leu Phe Arg Gly <br><br> 185 190 195 <br><br> Glu Thr Gly Lys Asp Arg Glu Lys Ser His Ser Trp Leu Ser Thr <br><br> 200 205 210 <br><br> Gly Trp Phe Thr Met Val Ile Ala Val Glu Leu Cys Asp His Val <br><br> 215 220 225 <br><br> His Val Tyr Gly Met Val Pro Pro Asn Tyr Cys Ser Gin Arg Pro <br><br> 230 235 240 <br><br> Arg Leu Gin Arg Met Pro Tyr His Tyr Tyr Glu Pro Lys Gly Pro <br><br> 245 250 255 <br><br> Asp Glu Cys Val Thr Tyr Ile Gin Asn Glu His Ser Arg Lys Gly <br><br> 260 265 270 <br><br> Asn His His Arg Phe Ile Thr Glu Lys Arg Val Phe Ser Ser Trp <br><br> 275 280 285 <br><br> Ala Gin Leu Tyr Gly Ile Thr Phe Ser His Pro Ser Trp Thr <br><br> 290 295 <br><br> &lt;210&gt; 57 <br><br> &lt;211&gt; 4277 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> 146 <br><br> &lt;400&gt; 57 gtttctcata cagcggaccg gcagaggggc ggcaaaggtg gaagtcttgt agaagtggag ggcctatggg gacgatgacg tcctcctagc gtcaccgtcc cttgggctgc atggaaagga cacgggaccc ccagtgtgtg ctgtgacact attgaagtgg gagccacccc aggcctccag gtgaatgcca cccagtgacc tgcgccgctc caaaccatca cagtggaatc tcaccggcta accaccagcg ggttgggcag aaccccctga cagagtgcca gttggcgtct tctaaaggaa ggagcgacgc agcttgaggg gaggctgaag ccgagtggcc aaagagtttc agaacaagct cgacatttat accgtctgag tgttgccagg gacggcagta acgttggctt cagacctttg gcgtggagag gaatgaggcc cacagcaggc tgctttgctg agcctgcgtc caccgtccag gtggtggaac ctccaaggat gctgaatggc tcggatgatg tcgtcatcac tgcccttaac gcccggatgc ctgcgggggc agccaatctc caggacttca atgagggaaa cacagcagtc aaagcccagg tccggtacag aggtaactac ctgatcatgc gccaggagga cgagggcatg caggaagtga aaacctccgg caccgctgag gctgcccgca tcgtcaccaa aggccagagt ccacccccac gggtcacctg caacaagacg cgcttcctgc aggaggactc aggcacctac cccggggcag cggtcatcct ggtcaccatg gagctatccc agcttacctg tgaggtgcgt aaacactaaa atgaggaact 50 aagcatccct agctgttggc 100 cgaggtgtct gaggggctgg 150 tcctggaacc catgacccat 2 00 ggtagcagct cgaaactaga 250 tctctttgtg tgaccctggc 300 tgatacacca tgctgcgtgg 350 tgaggtcaca ctggcttgcc 400 acttgaacga ggtccctcag 450 aagcccggag gcactgtgat 500 gaatgtaacc tggcgcctga 550 ctctgggtgt cctcatcacc 600 aaccacactg tgggacggta 650 tgtggccagc gtgccagcca 700 agttagatgt gcagcacgtg 750 attgcctgcc acctgcctga 800 cgtcaaacaa gagtggctgg 850 cctcagggaa cctccagatt 900 tacaagtgtg cagcctacaa 950 ctccagcgac aggctacgtg 1000 tcatctaccc cccagaggcc 1050 ctcattctgg agtgtgtggc 1100 ggccaaggat gggtccagtg 1150 tgagcaacct cctcatcgac 1200 cgctgcatgg ccgacaatgg 1250 ctacaatgtc caggtgtttg 13 00 agctggtcat cccctggggc 1350 gggaaccccc cgccctccgt 1400 <br><br> 147 <br><br> gctgtggctg aggaatgctg tgcccctcat ctccagccag cgcctccggc 1450 tctcccgcag ggccctgcgc gtgctcagca tggggcctga ggacgaaggc 1500 gtctaccagt gcatggccga gaacgaggtt gggagcgccc atgccgtagt 1550 ccagctgcgg acctccaggc caagcataac cccaaggcta tggcaggatg 1600 ctgagctggc tactggcaca cctcctgtat caccctccaa actcggcaac 1650 cctgagcaga tgctgagggg gcaaccggcg ctccccagac ccccaacgtc 1700 agtggggcct gcttccccga agtgtccagg agagaagggg cagggggctc 1750 ccgccgaggc tcccatcatc ctcagctcgc cccgcacctc caagacagac 1800 tcatatgaac tggtgtggcg gcctcggcat gagggcagtg gccgggcgcc 1850 aatcctctac tatgtggtga aacaccgcaa gcaggtcaca aattcctctg 1900 acgattggac catctctggc attccagcca accagcaccg cctgaccctc 1950 accagacttg accccgggag cttgtatgaa gtggagatgg cagcttacaa 2000 ctgtgcggga gagggccaga cagccatggt caccttccga actggacggc 2 050 ggcccaaacc cgagatcatg gccagcaaag agcagcagat ccagagagac 2100 gaccctggag ccagtcccca gagcagcagc cagccagacc acggccgcct 2150 ctccccccca gaagctcccg acaggcccac catctccacg gcctccgaga 2200 cctcagtgta cgtgacctgg attccccgtg ggaatggtgg gttcccaatc 2250 cagtccttcc gtgtggagta caagaagcta aagaaagtgg gagactggat 2300 tctggccacc agcgccatcc ccccatcgcg gctgtccgtg gagatcacgg 2350 gcctagagaa aggcacctcc tacaagtttc gagtccgggc tctgaacatg 2400 ctgggggaga gcgagcccag cgccccctct cggccctacg tggtgtcggg 2450 ctacagcggt cgcgtgtacg agaggcccgt ggcaggtcct tatatcacct 2500 tcacggatgc ggtcaatgag accaccatca tgctcaagtg gatgtacatc 2550 ccagcaagta acaacaacac cccaatccat ggcttttata tctattatcg 2 600 acccacagac agtgacaatg atagtgacta caagaaggat atggtggaag 2 650 gggacaagta ctggcactcc atcagccacc tgcagccaga gacctcctac 2700 gacattaaga tgcagtgctt caatgaagga ggggagagcg agttcagcaa 2750 cgtgatgatc tgtgagacca aagctcggaa gtcttctggc cagcctggtc 2800 <br><br> 148 <br><br> gactgccacc cccaactctg gccccaccac agccgcccct tcctgaaacc 2850 atagagcggc cggtgggcac tggggccatg gtggctcgct ccagcgacct 2900 gccctatctg attgtcgggg tcgtcctggg ctccatcgtt ctcatcatcg 2950 tcaccttcat ccccttctgc ttgtggaggg cctggtctaa gcaaaaacat 3000 acaacagacc tgggttttcc tcgaagtgcc cttccaccct cctgcccgta 3 050 tactatggtg ccattgggag gactcccagg ccaccaggcc agtggacagc 3100 cctacctcag tggcatcagt ggacgggcct gtgctaatgg gatccacatg 3150 aataggggct gcccctcggc tgcagtgggc tacccgggca tgaagcccca 3200 gcagcactgc ccaggcgagc ttcagcagca gagtgacacc agcagcctgc 3250 tgaggcagac ccatcttggc aatggatatg acccccaaag tcaccagatc 3300 acgaggggtc ccaagtctag cccggacgag ggctctttct tatacacact 3350 gcccgacgac tccactcacc agctgctgca gccccatcac gactgctgcc 3400 aacgccagga gcagcctgct gctgtgggcc agtcaggggt gaggagagcc 3450 cccgacagtc ctgtcctgga agcagtgtgg gaccctccat ttcactcagg 3500 gcccccatgc tgcttgggcc ttgtgccagt tgaagaggtg gacagtcctg 3550 actcctgcca agtgagtgga ggagactggt gtccccagca ccccgtaggg 3600 gcctacgtag gacaggaacc tggaatgcag ctctccccgg ggccactggt 3650 gcgtgtgtct tttgaaacac cacctctcac aatttaggca gaagctgata 37 00 tcccagaaag actatatatt gttttttttt taaaaaaaaa agaagaaaaa 3750 agagacagag aaaattggta tttatttttc tattatagcc atatttatat 3800 atttatgcac ttgtaaataa atgtatatgt tttataattc tggagagaca 3850 taaggagtcc tacccgttga ggttggagag ggaaaataaa gaagctgcca 3900 cctaacagga gtcacccagg aaagcaccgc acaggctggc gcgggacaga 3950 ctcctaacct ggggcctctg cagtggcagg cgaggctgca ggaggcccac 4000 agataagctg gcaagaggaa ggatcccagg cacatggttc atcacgagca 4050 tgagggaaca gcaaggggca cggtatcaca gcctggagac acccacacag 4100 atggctggat ccggtgctac gggaaacatt ttcctaagat gcccatgaga 4150 acagaccaag atgtgtacag cactatgagc attaaaaaac cttccagaat 42 00 <br><br> 149 <br><br> caataatccg tggcaacata tctctgtaaa aacaaacact gtaacttcta 4250 <br><br> aataaatgtt tagtcttccc tgtaaaa 4277 <br><br> &lt;210&gt; 58 &lt;211&gt; 1115 &lt;212&gt; PRT &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 58 <br><br> Met Leu Arg Gly Thr Met Thr Ala Trp Arg Gly Met Arg Pro Glu 15 10 15 <br><br> Val Thr Leu Ala Cys Leu Leu Leu Ala Thr Ala Gly Cys Phe Ala 20 25 30 <br><br> Asp Leu Asn Glu Val Pro Gin Val Thr Val Gin Pro Ala Ser Thr 35 40 45 <br><br> Val Gin Lys Pro Gly Gly Thr Val Ile Leu Gly Cys Val Val Glu 50 55 60 <br><br> Pro Pro Arg Met Asn Val Thr Trp Arg Leu Asn Gly Lys Glu Leu 65 70 75 <br><br> Asn Gly Ser Asp Asp Ala Leu Gly Val Leu Ile Thr His Gly Thr 80 85 90 <br><br> Leu Val Ile Thr Ala Leu Asn Asn His Thr Val Gly Arg Tyr Gin 95 100 105 <br><br> Cys Val Ala Arg Met Pro Ala Gly Ala Val Ala Ser Val Pro Ala 110 115 120 <br><br> Thr Val Thr Leu Ala Asn Leu Gin Asp Phe Lys Leu Asp Val Gin 125 130 135 <br><br> His Val Ile Glu Val Asp Glu Gly Asn Thr Ala Val Ile Ala Cys 140 145 150 <br><br> His Leu Pro Glu Ser His Pro Lys Ala Gin Val Arg Tyr Ser Val 155 160 165 <br><br> Lys Gin Glu Trp Leu Glu Ala Ser Arg Gly Asn Tyr Leu Ile Met 170 175 180 <br><br> Pro Ser Gly Asn Leu Gin Ile Val Asn Ala Ser Gin Glu Asp Glu 185 190 195 <br><br> Gly Met Tyr Lys Cys Ala Ala Tyr Asn Pro Val Thr Gin Glu Val 200 205 210 <br><br> Lys Thr Ser Gly Ser Ser Asp Arg Leu Arg Val Arg Arg Ser Thr 215 220 225 <br><br> 150 <br><br> Ala Glu Ala Ala Arg Ile Ile Tyr Pro Pro Glu Ala Gin Thr Ile <br><br> 230 235 240 <br><br> Ile Val Thr Lys Gly Gin Ser Leu Ile Leu Glu Cys Val Ala Ser <br><br> 245 250 255 <br><br> Gly Ile Pro Pro Pro Arg Val Thr Trp Ala Lys Asp Gly Ser Ser <br><br> 260 265 270 <br><br> Val Thr Gly Tyr Asn Lys Thr Arg Phe Leu Leu Ser Asn Leu Leu <br><br> 275 280 285 <br><br> Ile Asp Thr Thr Ser Glu Glu Asp Ser Gly Thr Tyr Arg Cys Met <br><br> 290 295 300 <br><br> Ala Asp Asn Gly Val Gly Gin Pro Gly Ala Ala Val Ile Leu Tyr <br><br> 305 310 315 <br><br> Asn Val Gin Val Phe Glu Pro Pro Glu Val Thr Met Glu Leu Ser <br><br> 320 325 330 <br><br> Gin Leu Val Ile Pro Trp Gly Gin Ser Ala Lys Leu Thr Cys Glu 335 340 345 <br><br> Val Arg Gly Asn Pro Pro Pro Ser Val Leu Trp Leu Arg Asn Ala <br><br> 350 355 360 <br><br> Val Pro Leu Ile Ser Ser Gin Arg Leu Arg Leu Ser Arg Arg Ala <br><br> 365 370 375 <br><br> Leu Arg Val Leu Ser Met Gly Pro Glu Asp Glu Gly Val Tyr Gin <br><br> 380 385 390 <br><br> Cys Met Ala Glu Asn Glu Val Gly Ser Ala His Ala Val Val Gin <br><br> 395 400 405 <br><br> Leu Arg Thr Ser Arg Pro Ser lie Thr Pro Arg Leu Trp Gin Asp <br><br> 410 415 420 <br><br> Ala Glu Leu Ala Thr Gly Thr Pro Pro Val Ser Pro Ser Lys Leu <br><br> 425 430 435 <br><br> Gly Asn Pro Glu Gin Met Leu Arg Gly Gin Pro Ala Leu Pro Arg <br><br> 440 445 450 <br><br> Pro Pro Thr Ser Val Gly Pro Ala Ser Pro Lys Cys Pro Gly Glu <br><br> 455 460 465 <br><br> Lys Gly Gin Gly Ala Pro Ala Glu Ala Pro Ile Ile Leu Ser Ser <br><br> 470 475 480 <br><br> Pro Arg Thr Ser Lys Thr Asp Ser Tyr Glu Leu Val Trp Arg Pro 485 490 495 <br><br> Arg His Glu Gly Ser Gly Arg Ala Pro Ile Leu Tyr Tyr Val Val <br><br> 151 <br><br> 500 <br><br> 505 <br><br> 510 <br><br> Lys His Arg Lys Gin Val Thr Asn Ser Ser Asp Asp Trp Thr Ile 515 520 525 <br><br> Ser Gly Ile Pro Ala Asn Gin His Arg Leu Thr Leu Thr Arg Leu 530 535 540 <br><br> Asp Pro Gly Ser Leu Tyr Glu Val Glu Met Ala Ala Tyr Asn Cys 545 550 555 <br><br> Ala Gly Glu Gly Gin Thr Ala Met Val Thr Phe Arg Thr Gly Arg 560 565 570 <br><br> Arg Pro Lys Pro Glu Ile Met Ala Ser Lys Glu Gin Gin Ile Gin 575 580 585 <br><br> Arg Asp Asp Pro Gly Ala Ser Pro Gin Ser Ser Ser Gin Pro Asp 590 595 600 <br><br> His Gly Arg Leu Ser Pro Pro Glu Ala Pro Asp Arg Pro Thr Ile 605 610 615 <br><br> Ser Thr Ala Ser Glu Thr Ser Val Tyr Val Thr Trp Ile Pro Arg 620 625 630 <br><br> Gly Asn Gly Gly Phe Pro Ile Gin Ser Phe Arg Val Glu Tyr Lys 635 640 645 <br><br> Lys Leu Lys Lys Val Gly Asp Trp Ile Leu Ala Thr Ser Ala Ile 650 655 660 <br><br> Pro Pro Ser Arg Leu Ser Val Glu Ile Thr Gly Leu Glu Lys Gly 665 670 675 <br><br> Thr Ser Tyr Lys Phe Arg Val Arg Ala Leu Asn Met Leu Gly Glu 680 685 690 <br><br> Ser Glu Pro Ser Ala Pro Ser Arg Pro Tyr Val Val Ser Gly Tyr 695 700 705 <br><br> Ser Gly Arg Val Tyr Glu Arg Pro Val Ala Gly Pro Tyr Ile Thr 710 715 720 <br><br> Phe Thr Asp Ala Val Asn Glu Thr Thr Ile Met Leu Lys Trp Met 725 730 735 <br><br> Tyr Ile Pro Ala Ser Asn Asn Asn Thr Pro Ile His Gly Phe Tyr 740 745 750 <br><br> Ile Tyr Tyr Arg Pro Thr Asp Ser Asp Asn Asp Ser Asp Tyr Lys 755 760 765 <br><br> Lys Asp Met Val Glu Gly Asp Lys Tyr Trp His Ser Ile Ser His <br><br> 152 <br><br> 770 775 780 <br><br> Leu Gin Pro Glu Thr Ser Tyr Asp Ile Lys Met Gin Cys Phe Asn 785 790 795 <br><br> Glu Gly Gly Glu Ser Glu Phe Ser Asn Val Met Ile Cys Glu Thr 800 805 810 <br><br> Lys Ala Arg Lys Ser Ser Gly Gin Pro Gly Arg Leu Pro Pro Pro 815 820 825 <br><br> Thr Leu Ala Pro Pro Gin Pro Pro Leu Pro Glu Thr Ile Glu Arg 830 835 840 <br><br> Pro Val Gly Thr Gly Ala Met Val Ala Arg Ser Ser Asp Leu Pro 845 850 855 <br><br> Tyr Leu Ile Val Gly Val Val Leu Gly Ser Ile Val Leu Ile Ile 860 865 870 <br><br> Val Thr Phe Ile Pro Phe Cys Leu Trp Arg Ala Trp Ser Lys Gin 875 880 885 <br><br> Lys His Thr Thr Asp Leu Gly Phe Pro Arg Ser Ala Leu Pro Pro 890 895 900 <br><br> Ser Cys Pro Tyr Thr Met Val Pro Leu Gly Gly Leu Pro Gly His 905 910 915 <br><br> Gin Ala Ser Gly Gin Pro Tyr Leu Ser Gly Ile Ser Gly Arg Ala 920 925 930 <br><br> Cys Ala Asn Gly Ile His Met Asn Arg Gly Cys Pro Ser Ala Ala 935 940 945 <br><br> Val Gly Tyr Pro Gly Met Lys Pro Gin Gin His Cys Pro Gly Glu 950 955 960 <br><br> Leu Gin Gin Gin Ser Asp Thr Ser Ser Leu Leu Arg Gin Thr His 965 970 975 <br><br> Leu Gly Asn Gly Tyr Asp Pro Gin Ser His Gin Ile Thr Arg Gly 980 985 990 <br><br> Pro Lys Ser Ser Pro Asp Glu Gly Ser Phe Leu Tyr Thr Leu Pro 995 1000 1005 <br><br> Asp Asp Ser Thr His Gin Leu Leu Gin Pro His His Asp Cys Cys 1010 1015 1020 <br><br> Gin Arg Gin Glu Gin Pro Ala Ala Val Gly Gin Ser Gly Val Arg 1025 1030 1035 <br><br> Arg Ala Pro Asp Ser Pro Val Leu Glu Ala Val Trp Asp Pro Pro 1040 1045 1050 <br><br> 153 <br><br> Phe His Ser Gly Pro Pro Cys Cys Leu Gly Leu Val Pro Val Glu 1055 1060 1065 <br><br> Glu Val Asp Ser Pro Asp Ser Cys Gin Val Ser Gly Gly Asp Trp 1070 1075 1080 <br><br> Cys Pro Gin His Pro Val Gly Ala Tyr Val Gly Gin Glu Pro Gly 1085 1090 1095 <br><br> Met Gin Leu Ser Pro Gly Pro Leu Val Arg Val Ser Phe Glu Thr 1100 1105 1110 <br><br> Pro Pro Leu Thr Ile 1115 <br><br> &lt;210&gt; 59 &lt;211&gt; 25 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 59 gggaaacaca gcagtcattg cctgc 25 <br><br> &lt;210&gt; 60 &lt;211&gt; 24 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 60 gcacacgtag cctgtcgctg gage 24 <br><br> &lt;210&gt; 61 &lt;211&gt; 42 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 61 <br><br> caccccaaag cccaggtccg gtacagcgtc aaacaagagt gg 42 <br><br> &lt;210&gt; 62 &lt;211&gt; 1661 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;220&gt; <br><br> 154 <br><br> &lt;221&gt; unsure <br><br> &lt;222&gt; 678 <br><br> &lt;223&gt; unknown base <br><br> &lt;400&gt; 62 <br><br> cgggaggctg ggtcgtcatg atccggaccc cattgtcggc ctctgcccat 50 <br><br> cgcctgctcc tcccaggctc ccgcggccga cccccgcgca acatgcagcc 100 <br><br> cacgggccgc gagggttccc gcgcgctcag ccggcggtat ctgcggcgtc 150 <br><br> tgctgctcct gctactgctg ctgctgctgc ggcagcccgt aacccgcgcg 2 00 <br><br> gagaccacgc cgggcgcccc cagagccctc tccacgctgg gctcccccag 250 <br><br> cctcttcacc acgccgggtg tccccagcgc cctcactacc ccaggcctca 300 <br><br> ctacgccagg cacccccaaa accctggacc ttcggggtcg cgcgcaggcc 350 <br><br> ctgatgcgga gtttcccact cgtggacggc cacaatgacc tgccccaggt 400 <br><br> cctgagacag cgttacaaga atgtgcttca ggatgttaac ctgcgaaatt 450 <br><br> tcagccatgg tcagaccagc ctggacaggc ttagagacgg cctcgtgggt 500 gcccagttct ggtcagcctc cgtctcatgc cagtcccagg accagactgc 550 cgtgcgcctc gccctggagc agattgacct cattcaccgc atgtgtgcct 600 cctactctga actcgagctt gtgacctcag ctgaaggtct gaacagctct 650 caaaagctgg cctgcctcat tggcgtgnag ggtggtcact cactggacag 7 00 cagcctctct gtgctgcgca gtttctatgt gctgggggtg cgctacctga 750 cacttacctt cacctgcagt acaccatggg cagagagttc caccaagttc 800 agacaccaca tgtacaccaa cgtcagcgga ttgacaagct ttggtgagaa 850 agtagtagag gagttgaacc gcctgggcat gatgatagat ttgtcctatg 900 catcggacac cttgataaga agggtcctgg aagtgtctca ggctcctgtg 950 atcttctccc actcagctgc cagagctgtg tgtgacaatt tgttgaatgt 1000 tcccgatgat atcctgcagc ttctgaagaa cggtggcatc gtgatggtga 1050 cactgtccat gggggtgctg cagtgcaacc tgcttgctaa cgtgtccact 1100 gtggcagatc actttgacca catcagggca gtcattggat ctgagttcat 1150 cgggattggt ggaaattatg acgggactgg ccggttccct caggggctgg 12 00 aggatgtgtc cacataccca gtcctgatag aggagttgct gagtcgtasc 1250 <br><br> 155 <br><br> tggagcgagg aagagcttca aggtgtcctt cgtggaaacc tgctgcgggt 1300 <br><br> cttcagacaa gtggaaaagg tgagagagga gagcagggcg cagagccccg 1350 <br><br> tggaggctga gtttccatat gggcaactga gcacatcctg ccactcccac 1400 <br><br> ctcgtgcctc agaatggaca ccaggctact catctggagg tgaccaagca 1450 <br><br> gccaaccaat cgggtcccct ggaggtcctc aaatgcctcc ccataccttg 1500 <br><br> ttccaggcct tgtggctgct gccaccatcc caaccttcac ccagtggctc 1550 <br><br> tgctgacaca gtcggtcccc gcagaggtca ctgtggcaaa gcctcacaaa 1600 <br><br> gccccctctc ctagttcatt cacaagcata tgctgagaat aaacatgtta 1650 <br><br> cacatggaaa a 1661 <br><br> &lt;210&gt; 63 &lt;211&gt; 487 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;220&gt; <br><br> &lt;221&gt; unsure <br><br> &lt;222&gt; 196, 386 <br><br> &lt;223&gt; unknown amino acid <br><br> &lt;400&gt; 63 <br><br> Met Gin Pro Thr Gly Arg Glu Gly Ser Arg Ala Leu Ser Arg Arg 15 10 15 <br><br> Tyr Leu Arg Arg Leu Leu Leu Leu Leu Leu Leu Leu Leu Leu Arg 20 25 30 <br><br> Gin Pro Val Thr Arg Ala Glu Thr Thr Pro Gly Ala Pro Arg Ala 35 40 45 <br><br> Leu Ser Thr Leu Gly Ser Pro Ser Leu Phe Thr Thr Pro Gly Val 50 55 60 <br><br> Pro Ser Ala Leu Thr Thr Pro Gly Leu Thr Thr Pro Gly Thr Pro 65 70 75 <br><br> Lys Thr Leu Asp Leu Arg Gly Arg Ala Gin Ala Leu Met Arg Ser 80 85 90 <br><br> Phe Pro Leu Val Asp Gly His Asn Asp Leu Pro Gin Val Leu Arg 95 100 105 <br><br> Gin Arg Tyr Lys Asn Val Leu Gin Asp Val Asn Leu Arg Asn Phe 110 115 120 <br><br> Ser His Gly Gin Thr Ser Leu Asp Arg Leu Arg Asp Gly Leu Val 125 130 135 <br><br> 156 <br><br> Gly Ala Gin Phe Trp Ser Ala Ser Val Ser Cys Gin Ser Gin Asp 140 145 150 <br><br> Gin Thr Ala Val Arg Leu Ala Leu Glu Gin Ile Asp Leu Ile His 155 160 165 <br><br> Arg Met Cys Ala Ser Tyr Ser Glu Leu Glu Leu Val Thr Ser Ala 170 175 180 <br><br> Glu Gly Leu Asn Ser Ser Gin Lys Leu Ala Cys Leu Ile Gly Val 185 190 195 <br><br> Xaa Gly Gly His Ser Leu Asp Ser Ser Leu Ser Val Leu Arg Ser 200 205 210 <br><br> Phe Tyr Val Leu Gly Val Arg Tyr Leu Thr Leu Thr Phe Thr Cys 215 220 225 <br><br> Ser Thr Pro Trp Ala Glu Ser Ser Thr Lys Phe Arg His His Met 230 235 240 <br><br> Tyr Thr Asn Val Ser Gly Leu Thr Ser Phe Gly Glu Lys Val Val 245 250 255 <br><br> Glu Glu Leu Asn Arg Leu Gly Met Met Ile Asp Leu Ser Tyr Ala 260 265 270 <br><br> Ser Asp Thr Leu Ile Arg Arg Val Leu Glu Val Ser Gin Ala Pro 275 280 285 <br><br> Val Ile Phe Ser His Ser Ala Ala Arg Ala Val Cys Asp Asn Leu 290 295 300 <br><br> Leu Asn Val Pro Asp Asp Ile Leu Gin Leu Leu Lys Asn Gly Gly 305 310 315 <br><br> Ile Val Met Val Thr Leu Ser Met Gly Val Leu Gin Cys Asn Leu 320 325 330 <br><br> Leu Ala Asn Val Ser Thr Val Ala Asp His Phe Asp His Ile Arg 335 340 345 <br><br> Ala Val Ile Gly Ser Glu Phe Ile Gly Ile Gly Gly Asn Tyr Asp 350 355 360 <br><br> Gly Thr Gly Arg Phe Pro Gin Gly Leu Glu Asp Val Ser Thr Tyr 365 370 375 <br><br> Pro Val Leu Ile Glu Glu Leu Leu Ser Arg Xaa Trp Ser Glu Glu 380 385 390 <br><br> Glu Leu Gin Gly Val Leu Arg Gly Asn Leu Leu Arg Val Phe Arg 395 400 405 <br><br> 157 <br><br> Gin Val Glu Lys Val Arg Glu Glu Ser Arg Ala Gin Ser Pro Val 410 415 420 <br><br> Glu Ala Glu Phe Pro Tyr Gly Gin Leu Ser Thr Ser Cys His Ser 425 430 435 <br><br> His Leu Val Pro Gin Asn Gly His Gin Ala Thr His Leu Glu Val 440 445 450 <br><br> Thr Lys Gin Pro Thr Asn Arg Val Pro Trp Arg Ser Ser Asn Ala 455 460 465 <br><br> Ser Pro Tyr Leu Val Pro Gly Leu Val Ala Ala Ala Thr Ile Pro 470 475 480 <br><br> Thr Phe Thr Gin Trp Leu Cys 485 <br><br> &lt;210&gt; 64 &lt;211&gt; 25 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial sequence <br><br> &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 64 ccttcacctg cagtacacca tgggc 25 <br><br> &lt;210&gt; 65 &lt;211&gt; 25 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 65 gtcacacaca gctctggcag ctgag 25 <br><br> &lt;210&gt; 66 &lt;211&gt; 47 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 66 <br><br> ccaagttcag acaccacatg tacaccaacg tcagcggatt gacaagc 47 <br><br> &lt;210&gt; 67 <br><br> &lt;211&gt; 1564 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> 158 <br><br> &lt;400&gt; 67 <br><br> tgctaggctc tgtcccacaa tgcacccgag aacacccaca gatccctcta tgactgcaat ggcccagcaa gcctgataag catgaagctc cgggtgtttg ctggtgcccc cagctgaagc tccggtgcaa atgcatctgt ccaccttata tacaaccaga atgtatccca gaaggactgc gcccatgcca gtgcctggcc atgacgtgga agtgcaggta cgaggagcgc agcaccacca atctacctgt ccgtggtggg tgccctgttg gctggtggac cctctgatcc gaaagccgga acaatgagga ggagaatgag gatgctcgct tccctcgggg gaccccgagc aaacacagtc ccagcagcgg tggaagctgc aggtgcagga atcggcacaa gatgctcagc tagatgggct ccaacaccat ggctgccagc ttccaggctg ctcccttccc tcggttccag tcttcccttt ctccttctcc ctaactttag aaatgttgta aagagggatg tggtctctga tctctgttgt gaagggaggg ggaaggcagg ccagaaggga ctcaggagtg gatgcgatct gtctctcctg cagctctgag tcttgggaat gttgttaccc ttcaggaact cagtgtctgg gaggaaagca gttcctttct gcagtggttc ttatcaccac ctcagcccca gccccagctc cagccctgag tgggccccct gagcccactg ggtcttcagg cgctgtcccc tgtgcacttc tcgcactggg ctctgctgcc ggtcccctca cctgcacttg agcaggagct gaaagcctct 50 gtgaggtgtc cggctttgct 100 ttatctttgg tggctgtggt 150 caacaagagt tctgaagata 2 00 gaaacatcag tgggcacatt 2 50 aactgcctgc acgtggtgga 3 00 ggcctactgc ctgctgtgcg 3 50 ccatcaaggt catcattgtc 400 ctctacatgg ccttcctgat 450 tgcatacact gagcaactgc 500 ctatggcagc agctgctgca 550 ctggagcgtg tggaaggtgc 600 <br><br> gcagcggaag acagtcttcg 650 ggtgtggttg ggtcaaggcc 700 gacaaagcag ggggctactt 750 aaaagcctgt ggcatttttc 800 cttggctatt ttgattaggg 850 cttcttgggt ctttggggtt 900 atggagacat tcgaggcggc 950 gctccactct tgccgccttc 1000 ttggaagata aagctgggtc 1050 tggcccagca ttcagcatgt 1100 ctccctccca gccccggcgc 1150 gacagctctg atgggagagc 12 00 gtgcactgga agctggtgtt 1250 gcatggagtg cccatgcata 13 00 aggggtctgg gcagtccctc 1350 <br><br> 159 <br><br> ctctccccag tgtccacagt cactgagcca gacggtcggt tggaacatga 1400 <br><br> gactcgaggc tgagcgtgga tctgaacacc acagcccctg tacttgggtt 1450 <br><br> gcctcttgtc cctgaacttc gttgtaccag tgcatggaga gaaaattttg 1500 <br><br> tcctcttgtc ttagagttgt gtgtaaatca aggaagccat cattaaattg 1550 <br><br> ttttatttct ctca 1564 <br><br> &lt;210&gt; 68 <br><br> &lt;211&gt; 183 <br><br> &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 68 <br><br> Met Lys Leu Leu Ser Leu Val Ala Val Val Gly Cys Leu Leu Val 15 10 15 <br><br> Pro Pro Ala Glu Ala Asn Lys Ser Ser Glu Asp Ile Arg Cys Lys 20 25 30 <br><br> Cys Ile Cys Pro Pro Tyr Arg Asn Ile Ser Gly His Ile Tyr Asn 35 40 45 <br><br> Gin Asn Val Ser Gin Lys Asp Cys Asn Cys Leu His Val Val Glu 50 55 60 <br><br> Pro Met Pro Val Pro Gly His Asp Val Glu Ala Tyr Cys Leu Leu 65 70 75 <br><br> Cys Glu Cys Arg Tyr Glu Glu Arg Ser Thr Thr Thr Ile Lys Val 80 85 90 <br><br> Ile Ile Val Ile Tyr Leu Ser Val Val Gly Ala Leu Leu Leu Tyr 95 100 105 <br><br> Met Ala Phe Leu Met Leu Val Asp Pro Leu Ile Arg Lys Pro Asp 110 115 120 <br><br> Ala Tyr Thr Glu Gin Leu His Asn Glu Glu Glu Asn Glu Asp Ala 125 130 135 <br><br> Arg Ser Met Ala Ala Ala Ala Ala Ser Leu Gly Gly Pro Arg Ala 140 145 150 <br><br> Asn Thr Val Leu Glu Arg Val Glu Gly Ala Gin Gin Arg Trp Lys 155 160 165 <br><br> Leu Gin Val Gin Glu Gin Arg Lys Thr Val Phe Asp Arg His Lys 170 175 180 <br><br> Met Leu Ser <br><br> 160 <br><br> &lt;210&gt; 69 &lt;211&gt; 3170 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 69 <br><br> agcgggtctc gcttgggttc cgctaatttc agttcatagg gtcctgggtc cccgaaccag tctgcaagcc cccgcgaccc aagtgagggg tccctttgca ttcccacccc tccgggcttt tcgccgggag atggccgcgt tgatgcggag tgctcctact ggccgcggtg ctgatggtgg tcgcgggcca aactcaactc catcaagtcc tggtcaggcc gccaatcgat ctgcgggcat gcggcagtaa gaagggcaaa aacctggggc gataaggagt gtgaagttgg gaggtattgc atcggcctgc atggtgtgtc ggagaaaaaa gcatgtgctg ccccagtacc cgctgcaata actgaaagca tcttaacccc tcacatcccg cagagatcga aaccacggtc attactcaaa atctaggaag accacacact aagatgtcac gacccctgcc tacgatcatc agactgcatt tcatttctgg accaaaatct gcaaaccagt gtaccaaaca acgcaagaag ggttctcatg tgcgactgtg cgaagggcct gtcttgcaaa ctcctccaaa gccagactcc atgtgtgtca ggaacatcat caattgcaga ctgtgaagtt catggtggaa aataaggttc agatgcagaa gtgataagaa tatagatgat cacaaaaagg aatagattag aatgggtgac aaatgcagtg caacttgtct atgtaaataa tgtacacatt tgtcctgagg cgtgagactg 50 gaagggttga gggaacacaa 100 ccccgtgttg gggtcctccc 15 0 gcgtcttcct ggggaccccc 200 caaggattcg tcctgctgcc 25 0 agagctcaca gatcggcagt 3 00 tctctgggcg gggagacgcc 350 gtaccaagga ctggcattcg 400 aggcctaccc ttgtagcagt 450 cacagtcccc accaaggatc 500 gaagcgctgc caccgagatg 550 atggcatctg tatcccagtt 600 gctctggatg gtactcggca 650 ccatgacttg ggatggcaga 7 00 atataaaagg gcatgaagga 750 gaagggtttt gctgtgctcg 800 gctccatcag ggggaagtct 850 ggctggaaat tttccagcgt 900 <br><br> gtatggaaag atgccaccta 950 gaaaatttga tcaccattga 1000 gtgtatttaa tgcattatag 1050 gaatggctaa aataagaaac 1100 gagaaagaaa acatgaactg 1150 cagccagtgt ttccattatg 12 00 tgtggaaaat gctattatta 1250 <br><br> 161 <br><br> agagaacaag cacacagtgg aaattactga aagagtttag gttgtgctgg aggagaggtt ttatacaaat aacctacatg ccagatttct aaaatactcc tagaataact tgttatacaa gctaaacaag aaatgaaaac atggagcatt taccttttga tttgtaacac tacttctgct agataagaaa aaaatcagtc aatatttcca cagttgttta ggaaggcctt taggaagaca ccacaaatac ttttttttca aaattttagt actgatacaa gacaaaaaca gttccttcag atctctcttt atcctatgtg attcctgctc aactataccc ataaattgtg actagtaaaa ttcacagatg gcaaaaaaat ttaaagatgt gctaacagag agatcattat ttcttaaaga gatagaatta gattggtaaa tacatgtatt agagacttaa gctggatctg tactgcactg aaaacttttt cgtttgttca ggttttggca aggcacaagt tggctgttca tctttgaaac tgaatatctg catgggattt gctatcataa tcagtgtgag gtcctgtgtc cgtactatcc tgctgagatc ctcaaataat ctcaatttca tcctgaagta gacagagtag tgaggtttca actagccaat ggcatcatcc aattttcttc ctttattgcc aaagggctag tttcggtttt aaatataagt aggataactt gtaaaacctg accacagttt ctaaattctt tgaaaccact aactcagttc taaatacttt gtctggagca ttatagtcgt gactttaaac ttttgtagac tgagtagcat gtgactttcc 1300 tccttcagat tgctgattgc 1350 attcaacgtt agagtttaac 1400 taggttctaa aaataaaatt 1450 gttaatttac aacagaaaat 1500 gttcaatcaa gagtcttggt 1550 aataattgca aaataatggc 1600 aataaataac aaacaaacag 1650 tttacctgta attaataaga 1700 attctacgga atgacagtat 1750 tgaatgcatt atattttcca 1800 tacttacaca gagcagaatt 1850 ccaatatatg tgggaaaaga 1900 ttggccataa cctatatttt 1950 catacatact ctgtggtaat 2000 gagtaagcaa gaaaattggg 2 050 acacatagat catatgtctg 2100 caggggatgc acagtctaaa 215 0 tatttactat gcagatgaat 2200 tcaaattatt tattttatag 2250 ggaggtttca caaaatgtac 2300 ttgccctcta taagcttctg 2350 ccaaacctct gcagcatctg 2400 ctgcagccat tgcggttaaa 2450 catattgcta atctatagac 2500 ttactacttt ttttaaactt 2550 caaaacaata aaaggttatc 2 600 cacaattcac tttttagttt 2650 <br><br> 162 <br><br> tcttttactt aaatcccatc tgcagtctca aatttaagtt ctcccagtag 27 00 <br><br> agattgagtt tgagcctgta tatctattaa aaatttcaac ttcccacata 2750 <br><br> tatttactaa gatgattaag acttacattt tctgcacagg tctgcaaaaa 2800 <br><br> caaaaattat aaactagtcc atccaagaac caaagtttgt ataaacaggt 2850 <br><br> tgctataagc ttgtgaaatg aaaatggaac atttcaatca aacatttcct 2900 <br><br> atataacaat tattatattt acaatttggt ttctgcaata tttttcttat 2950 <br><br> gtccaccctt ttaaaaatta ttatttgaag taatttattt acaggaaatg 3000 <br><br> ttaatgagat gtattttctt atagagatat ttcttacaga aagctttgta 3050 <br><br> gcagaatata tttgcagcta ttgactttgt aatttaggaa aaatgtataa 3100 <br><br> taagataaaa tctattaaat ttttctcctc taaaaactga aaaaaaaaaa 3150 <br><br> aaaaaaaaaa aaaaaaaaaa 317 0 <br><br> &lt;210&gt; 70 <br><br> &lt;211&gt; 259 <br><br> &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 70 <br><br> Met Ala Ala Leu Met Arg Ser Lys Asp Ser Ser Cys Cys Leu Leu 15 10 15 <br><br> Leu Leu Ala Ala Val Leu Met Val Glu Ser Ser Gin Ile Gly Ser 20 25 30 <br><br> Ser Arg Ala Lys Leu Asn Ser Ile Lys Ser Ser Leu Gly Gly Glu 35 40 45 <br><br> Thr Pro Gly Gin Ala Ala Asn Arg Ser Ala Gly Met Tyr Gin Gly 50 55 60 <br><br> Leu Ala Phe Gly Gly Ser Lys Lys Gly Lys Asn Leu Gly Gin Ala 65 70 75 <br><br> Tyr Pro Cys Ser Ser Asp Lys Glu Cys Glu Val Gly Arg Tyr Cys 80 85 90 <br><br> His Ser Pro His Gin Gly Ser Ser Ala Cys Met Val Cys Arg Arg 95 100 105 <br><br> Lys Lys Lys Arg Cys His Arg Asp Gly Met Cys Cys Pro Ser Thr 110 115 120 <br><br> Arg Cys Asn Asn Gly Ile Cys Ile 125 <br><br> Pro Val Thr Glu Ser Ile Leu 130 135 <br><br> 163 <br><br> Thr Pro His <br><br> Asn His Gly <br><br> Gly Arg Pro <br><br> Asp Pro Cys <br><br> Ala Arg His <br><br> Gly Glu Val <br><br> Glu Ile Phe <br><br> Val Trp Lys <br><br> Cys Gin Lys <br><br> &lt;210&gt; 71 &lt;211&gt; 1809 &lt;212&gt; DNA &lt;213&gt; Homo s; <br><br> &lt;400&gt; 71 <br><br> tctcaatctg ctgacctcgt gatccgcctg accttgtaat ccacctacct 50 tggcctccca aagtgttggg attacaggcg tgagccaccg cgcccggcca 100 acatcacgtt tttaaaaatt gatttcttca aattcatggc aaatatttcc 150 cttcccttta acttcttatg tcagaatgag gaaggatagc tgcatttatt 200 tagtcagttt tcattgcata gtaatatttt catgtagtat tttctaagtt 250 atattttagt aattcatatg ttttagatta taggttttaa catacttgtg 300 aaaatacttg atgtgtttta aagccttggg cagaaattct gtattgttga 350 ggatttgttc ttttatcccc cttttaaagt catccgtcct tggctcagga 400 tttggagagc ttgcaccacc aaaaatggca aacatcacca gctcccagat 450 tttggaccag ttgaaagctc cgagtttggg ccagtttacc accaccccaa 500 gtacacagca gaatagtaca agtcacccta caactactac ttcttgggac 550 ctcaagcccc caacatccca gtcctcagtc ctcagtcatc ttgacttcaa 600 <br><br> Ile Pro Ala Leu Asp Gly Thr Arg His Arg Asp Arg 140 145 150 <br><br> His Tyr Ser Asn His Asp Leu Gly Trp Gin Asn Leu 155 160 165 <br><br> His Thr Lys Met Ser His Ile Lys Gly His Glu Gly 170 175 180 <br><br> Leu Arg Ser Ser Asp Cys Ile Glu Gly Phe Cys Cys 185 190 195 <br><br> Phe Trp Thr Lys Ile Cys Lys Pro Val Leu His Gin 200 205 210 <br><br> Cys Thr Lys Gin Arg Lys Lys Gly Ser His Gly Leu 215 220 225 <br><br> Gin Arg Cys Asp Cys Ala Lys Gly Leu Ser Cys Lys 230 235 240 <br><br> Asp Ala Thr Tyr Ser Ser Lys Ala Arg Leu His Val 245 250 255 <br><br> Ile apiens <br><br> 164 <br><br> atctcaacct gagccatccc cagttcttag agcaccagag ccaggcagtc actgttcctc ccttcccagg caaaacttcg agaatcaaca tgtgaacaag cttttgcagc ttcccagcac tgtctgtcca ccagccacag cccaaacaca atacccccag cttctaagat cccagcttct agcagatgtc acaggattaa atgtgcagtt cagaaccttc tctctctgaa tttggatcag aatcagattc ccatcagctt gtattcgaag tacatcttta tcaatgacca gtgcagtaca ccgtcattac ctcctgcagt ctgacaagct ccagtagcaa tgtcttcctc ttatgaccag cccataccaa agccctgtga gttcatcaga tgaatggaca tggtggtggt cgaagtcagc agcagcaagc tactcttgtc atggctggtg gatagctcac gtgatgtgga aaacaccagt aaaaagcagc ccttttgctt ttttgttttt tgttattaga aatgtcttaa ccacagcaag ttcttctgcc ctaatcagac tgcaccacaa tttaaagatg cttgggccag gcggggtggc ctttgggggg ccaaggcagg cagattgccc accctgggca acatggtgaa actctgtctc gccgggtgtg gtggcggcgc gtgcctgtaa gaggcacaag aatcgcttga gccagcttgg ctgaaaaga 1809 <br><br> &lt;210&gt; 72 <br><br> &lt;211&gt; 363 <br><br> &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens ccagttgagc cagcgacaac 650 ctcctggttt ggagtccttt 7 00 cctggagaca gtccctccac 750 gaccattgaa aatatctctg 800 tcaaacttgc taagcggcgg 850 gcagtggaaa tgcctggttc 900 tggggctctg gaatttgggt 950 ctccaagcag tgaaaatagt 1000 tctttaagtg agcctttgaa 1050 gaactccaca tatacaactt 1100 catcactgaa ttctgctagt 1150 agttctgtgc ataacaggat 1200 gtcagctcca ggaaccatca 1250 agacactaga cagtaagtat 13 00 ccaaccaaac agaggaagag 1350 tggtcaatgg ctcattcgtt 1400 ggaccaggtg ttggctgtgg 1450 aaggaggtgg tggtctcata 1500 gtgcagcata cagtatgcat 1550 tgatgcccat aatcccagtg 1600 aagctcagga gtttgagacc 1650 tactaaaata cgaaaaacta 17 00 tcccagctac ttgggaggct 1750 gctacaaagt gagactccgt 1800 <br><br> 165 <br><br> &lt;400&gt; 72 <br><br> Met Cys Phe Lys Ala Leu Gly Arg Asn Ser Val Leu Leu Arg Ile <br><br> 15 10 15 <br><br> Cys Ser Phe Ile Pro Leu Leu Lys Ser Ser Val Leu Gly Ser Gly <br><br> 20 25 30 <br><br> Phe Gly Glu Leu Ala Pro Pro Lys Met Ala Asn Ile Thr Ser Ser <br><br> 35 40 45 <br><br> Gin Ile Leu Asp Gin Leu Lys Ala Pro Ser Leu Gly Gin Phe Thr <br><br> 50 55 60 <br><br> Thr Thr Pro Ser Thr Gin Gin Asn Ser Thr Ser His Pro Thr Thr <br><br> 65 70 75 <br><br> Thr Thr Ser Trp Asp Leu Lys Pro Pro Thr Ser Gin Ser Ser Val <br><br> 80 85 90 <br><br> Leu Ser His Leu Asp Phe Lys Ser Gin Pro Glu Pro Ser Pro Val <br><br> 95 100 105 <br><br> Leu Ser Gin Leu Ser Gin Arg Gin Gin His Gin Ser Gin Ala Val <br><br> 110 115 120 <br><br> Thr Val Pro Pro Pro Gly Leu Glu Ser Phe Pro Ser Gin Ala Lys <br><br> 125 130 135 <br><br> Leu Arg Glu Ser Thr Pro Gly Asp Ser Pro Ser Thr Val Asn Lys <br><br> 140 145 150 <br><br> Leu Leu Gin Leu Pro Ser Thr Thr Ile Glu Asn Ile Ser Val Ser <br><br> 155 160 165 <br><br> Val His Gin Pro Gin Pro Lys His Ile Lys Leu Ala Lys Arg Arg <br><br> 170 175 180 <br><br> Ile Pro Pro Ala Ser Lys Ile Pro Ala Ser Ala Val Glu Met Pro <br><br> 185 190 195 <br><br> Gly Ser Ala Asp Val Thr Gly Leu Asn Val Gin Phe Gly Ala Leu <br><br> 200 205 210 <br><br> Glu Phe Gly Ser Glu Pro Ser Leu Ser Glu Phe Gly Ser Ala Pro <br><br> 215 220 225 <br><br> Ser Ser Glu Asn Ser Asn Gin Ile Pro Ile Ser Leu Tyr Ser Lys <br><br> 230 235 240 <br><br> Ser Leu Ser Glu Pro Leu Asn Thr Ser Leu Ser Met Thr Ser Ala <br><br> 245 250 255 <br><br> Val Gin Asn Ser Thr Tyr Thr Thr Ser Val Ile Thr Ser Cys Ser 260 265 270 <br><br> Leu Thr Ser Ser Ser Leu Asn Ser Ala Ser Pro Val Ala Met Ser <br><br> 166 <br><br> 275 <br><br> Ser Ser Tyr Asp Gin Ser 290 <br><br> Ser Pro Val Ser Ser Ser 305 <br><br> Gly His Gly Gly Gly Arg 320 <br><br> Ser Ser Lys Leu Leu Leu 335 <br><br> Lys Arg Ile Ala His Val 350 <br><br> Leu Ile Arg <br><br> &lt;210&gt; 73 &lt;211&gt; 26 &lt;212&gt; DNA &lt;213&gt; Artificial Sequence <br><br> &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 73 aattcatggc aaatatttcc cttccc 2 6 <br><br> &lt;210&gt; 74 &lt;211&gt; 22 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 74 tggtaaactg gcccaaactc gg 22 <br><br> &lt;210&gt; 75 &lt;211&gt; 50 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 75 <br><br> ttaaagtcat ccgtccttgg ctcaggattt ggagagcttg caccaccaaa 50 <br><br> 280 <br><br> 285 <br><br> Ser Val His Asn Arg Ile Pro Tyr Gin 295 300 <br><br> Glu Ser Ala Pro Gly Thr Ile Met Asn 310 315 <br><br> Ser Gin Gin Thr Leu Asp Ser Lys Tyr 325 330 <br><br> Ser Trp Leu Val Pro Thr Lys Gin Arg 340 345 <br><br> Met Trp Lys Thr Pro Val Gly Gin Trp 355 360 <br><br> &lt;210&gt; 76 &lt;211&gt; 1989 <br><br> 167 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 76 <br><br> gccgagtggg acaaagcctg gggctgggcg ggggccatgg cgctgccatc 50 <br><br> ccgaatcctg ctttggaaac ttgtgcttct gcagagctct gctgttctcc 100 <br><br> tgcactcagc ggtggaggag acggacgcgg ggctgtacac ctgcaacctg 15 0 <br><br> caccatcact actgccacct ctacgagagc ctggccgtcc gcctggaggt 2 00 <br><br> caccgacggc cccccggcca cccccgccta ctgggacggc gagaaggagg 25 0 <br><br> tgctggcggt ggcgcgcggc gcacccgcgc ttctgacctg cgtgaaccgc 300 <br><br> gggcacgtgt ggaccgaccg gcacgtggag gaggctcaac aggtggtgca 350 <br><br> ctgggaccgg cagccgcccg gggtcccgca cgaccgcgcg gaccgcctgc 400 <br><br> tggacctcta cgcgtcgggc gagcgccgcg cctacgggcc cctttttctg 450 <br><br> cgcgaccgcg tggctgtggg cgcggatgcc tttgagcgcg gtgacttctc 500 <br><br> actgcgtatc gagccgctgg aggtcgccga cgagggcacc tactcctgcc 550 <br><br> acctgcacca ccattactgt ggcctgcacg aacgccgcgt cttccacctg 600 <br><br> acggtcgccg aaccccacgc ggagccgccc ccccggggct ctccgggcaa 650 <br><br> cggctccagc cacagcggcg ccccaggccc agaccccaca ctggcgcgcg 700 <br><br> gccacaacgt catcaatgtc atcgtccccg agagccgagc ccacttcttc 750 <br><br> cagcagctgg gctacgtgct ggccacgctg ctgctcttca tcctgctact 800 <br><br> ggtcactgtc ctcctggccg cccgcaggcg ccgcggaggc tacgaatact 850 <br><br> cggaccagaa gtcgggaaag tcaaagggga aggatgttaa cttggcggag 900 <br><br> ttcgctgtgg ctgcagggga ccagatgctt tacaggagtg aggacatcca 950 <br><br> gctagattac aaaaacaaca tcctgaagga gagggcggag ctggcccaca 1000 <br><br> gccccctgcc tgccaagtac atcgacctag acaaagggtt ccggaaggag 1050 <br><br> aactgcaaat agggaggccc tgggctcctg gctgggccag cagctgcacc 1100 <br><br> tctcctgtct gtgctcctcg gggcatctcc tgatgctccg gggctcaccc 1150 <br><br> cccttccagc ggctggtccc gctttcctgg aatttggcct gggcgtatgc 1200 <br><br> agaggccgcc tccacacccc tcccccaggg gcttggtggc agcatagccc 1250 <br><br> ccacccctgc ggcctttgct cacgggtggc cctgcccacc cctggcacaa 1300 <br><br> 168 <br><br> ccaaaatccc actgatgccc atcatgccct cagacccttc tgggctctgc 1350 <br><br> ccgctggggg cctgaagaca ttcctggagg acactcccat cagaacctgg 1400 <br><br> cagccccaaa actggggtca gcctcagggc aggagtccca ctcctccagg 1450 <br><br> gctctgctcg tccggggctg ggagatgttc ctggaggagg acactcccat 15 00 <br><br> cagaacttgg cagccttgaa gttggggtca gcctcggcag gagtcccact 1550 <br><br> cctcctgggg tgctgcctgc caccaagagc tcccccacct gtaccaccat 1600 <br><br> gtgggactcc aggcaccatc tgttctcccc agggacctgc tgacttgaat 1650 <br><br> gccagccctt gctcctctgt gttgctttgg gccacctggg gctgcacccc 1700 <br><br> ctgccctttc tctgccccat ccctacccta gccttgctct cagccacctt 1750 <br><br> gatagtcact gggctccctg tgacttctga ccctgacacc cctcccttgg 1800 <br><br> actctgcctg ggctggagtc tagggctggg gctacatttg gcttctgtac 1850 <br><br> tggctgagga caggggaggg agtgaagttg gtttggggtg gcctgtgttg 1900 <br><br> ccactctcag caccccacat ttgcatctgc tggtggacct gccaccatca 1950 <br><br> caataaagtc cccatctgat ttttaaaaaa aaaaaaaaa 1989 <br><br> &lt;210&gt; 77 &lt;211&gt; 341 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 77 <br><br> Met Ala Leu Pro Ser Arg Ile Leu Leu Trp Lys Leu Val Leu Leu 15 10 15 <br><br> Gin Ser Ser Ala Val Leu Leu His Ser Ala Val Glu Glu Thr Asp 20 25 30 <br><br> Ala Gly Leu Tyr Thr Cys Asn Leu His His His Tyr Cys His Leu <br><br> 35 40 45 <br><br> Tyr Glu Ser Leu Ala Val Arg Leu Glu Val Thr Asp Gly Pro Pro 50 55 60 <br><br> Ala Thr Pro Ala Tyr Trp Asp Gly Glu Lys Glu Val Leu Ala Val 65 70 75 <br><br> Ala Arg Gly Ala Pro Ala Leu Leu Thr Cys Val Asn Arg Gly His 80 85 90 <br><br> Val Trp Thr Asp Arg His Val Glu Glu Ala Gin Gin Val Val His 95 100 105 <br><br> 169 <br><br> Trp Asp Arg Gin Pro Pro Gly Val Pro His Asp Arg Ala Asp Arg 110 115 120 <br><br> Leu Leu Asp Leu Tyr Ala Ser Gly Glu Arg Arg Ala Tyr Gly Pro 125 130 135 <br><br> Leu Phe Leu Arg Asp Arg Val Ala Val Gly Ala Asp Ala Phe Glu 140 145 150 <br><br> Arg Gly Asp Phe Ser Leu Arg Ile Glu Pro Leu Glu Val Ala Asp 155 160 165 <br><br> Glu Gly Thr Tyr Ser Cys His Leu His His His Tyr Cys Gly Leu 170 175 180 <br><br> His Glu Arg Arg Val Phe His Leu Thr Val Ala Glu Pro His Ala 185 190 195 <br><br> Glu Pro Pro Pro Arg Gly Ser Pro Gly Asn Gly Ser Ser His Ser 200 205 210 <br><br> Gly Ala Pro Gly Pro Asp Pro Thr Leu Ala Arg Gly His Asn Val 215 220 225 <br><br> Ile Asn Val Ile Val Pro Glu Ser Arg Ala His Phe Phe Gin Gin 230 235 240 <br><br> Leu Gly Tyr Val Leu Ala Thr Leu Leu Leu Phe Ile Leu Leu Leu 245 250 255 <br><br> Val Thr Val Leu Leu Ala Ala Arg Arg Arg Arg Gly Gly Tyr Glu 260 265 270 <br><br> Tyr Ser Asp Gin Lys Ser Gly Lys Ser Lys Gly Lys Asp Val Asn 275 280 285 <br><br> Leu Ala Glu Phe Ala Val Ala Ala Gly Asp Gin Met Leu Tyr Arg 290 295 300 <br><br> Ser Glu Asp Ile Gin Leu Asp Tyr Lys Asn Asn Ile Leu Lys Glu 305 310 315 <br><br> Arg Ala Glu Leu Ala His Ser Pro Leu Pro Ala Lys Tyr Ile Asp 320 325 330 <br><br> Leu Asp Lys Gly Phe Arg Lys Glu Asn Cys Lys 335 340 <br><br> &lt;210&gt; 78 <br><br> &lt;211&gt; 2243 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 78 <br><br> 170 <br><br> cgccggaggc agcggcggcg tggcgcagcg gaggacgact ttcagcacag ttcaaactcc cagtctccga gctgaccagg aggcactgct cgccccctgg cctgcagagg cccgaggacc atcttcttca gcctgggcat tggcagtcta cactgccaag gagtactgga tgttcaaact ccaccgggga ggaccctgag ggctcagaca taccttgccg ttgcctccac cgtgccctcc cttcctgctt gtcaacaggg ttgcagtcca tgacggtcat cctggccatc ttcatggtga gacacttcct cctggacccg tggttttttt ggtgatcctc agcggtgcct ccactgtctt tgaccggctc ctttcctatg aggaactccc gccatgggcg ggacggtcag cgccgtggcc atccagtgat gtgaggaaca gcgccctggc tcttcctcgt gctctgcatg ggactctacc tatgccaggt actacatgag gcctgttctt tgaagaggag cttccccagg actccctcag gattcattga ttcccacaca ccccctctcc gccagcctgg gcttctgtgt cacctacgtc ctaccccgcc gtctgcacca acatcgagtc cactgtggac caccaagttt ttcatccccc aactttgctg acctatgtgg ccggcagctc agggcccaac agcaaggcgc tcccagggtt tcatccccct cttcgtgctc tgtaactacc actgtggtct tccagtccga tgtgtacccc ggggctcagc aacggctacc tcagcaccct agattgtgcc cagggagctg gctgaggcca gcgacatggc cgttgtctca 50 acctacggaa ccacaagcag 100 tgagaagctg ctggaccgcc 150 gcttctgtgg cacatacatc 200 ctgccatgga acttctttat 250 ccgcaactcc tccagcccag 3 00 tcctgaacta ctttgagagc 350 atgctgtgcc tggtggccaa 400 catccgtgtc ctggcctcac 450 taactgcact ggtgaaggtg 500 gcggtcacca ttgtctgcat 550 cagcagcagc atctacggca 600 aagcactgat atcaggagga 650 tcattggtgg acttggctgc 7 00 cttcttcctg acggccacca 750 tgctgctgtc caggctggag 800 gcggcccatg tgttttctgg 850 tgccccttcg gtggcctcca 900 gccccatcct gaagaagacg 950 ttcttcatca ccagcctcat 1000 cctcaacaag ggctcgggct 1050 tcactacctt cctcctgtac 1100 accgcctgga tccaggtgcc 1150 cgtgctcctc cggacctgcc 12 00 agccccgcgt ccacctgaag 1250 gcactcctca gctccctgct 1300 ggccctcctc tacgggccta 1350 cgggagtggt gatgtccttt 1400 <br><br> 171 <br><br> tatgtgtgct tgggcttaac actgggctca gcctgctcta ccctcctggt 1450 <br><br> gcacctcatc tagaagggag gacacaagga cattggtgct tcagagcctt 1500 <br><br> tgaagatgag aagagagtgc aggagggctg ggggccatgg aggaaaggcc 1550 <br><br> taaagtttca cttggggaca gagagcagag cacactcggg cctcatccct 1600 <br><br> cccaagatgc cagtgagcca cgtccatgcc cattccgtgc aaggcagata 1650 <br><br> ttccagtcat attaacagaa cactcctgag acagttgaag aagaaatagc 1700 <br><br> acaaatcagg ggtactccct tcacagctga tggttaacat tccaccttct 1750 <br><br> ttctagccct tcaaagatgc tgccagtgtt cgccctagag ttattacaaa 1800 <br><br> gccagtgcca aaacccagcc atgggctctt tgcaacctcc cagctgcgct 1850 <br><br> cattccagct gacagcgaga tgcaagcaaa tgctcagctc tccttaccct 1900 <br><br> gaaggggtct ccctggaatg gaagtcccct ggcatggtca gtcctcaggc 1950 <br><br> ccaagactca agtgtgcaca gacccctgtg ttctgcgggt gaacaactgc 2 000 <br><br> ccactaacca gactggaaaa cccagaaaga tgggccttcc atgaatgctt 2050 <br><br> cattccagag ggaccagagg gcctccctgt gcaagggatc aagcatgtct 2100 <br><br> ggcctgggtt ttcaaaaaaa gagggatcct catgacctgg tggtctatgg 2150 <br><br> cctgggtcaa gatgagggtc tttcagtgtt cctgtttaca acatgtcaaa 2200 <br><br> gccattggtt caagggcgta ataaatactt gcgtattcaa aaa 2243 <br><br> &lt;210&gt; 79 &lt;211&gt; 475 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 79 <br><br> Met Ala Val Val Ser Glu Asp Asp Phe Gin His Ser Ser Asn Ser <br><br> 15 10 15 <br><br> Thr Tyr Gly Thr Thr Ser Ser Ser Leu Arg Ala Asp Gin Glu Ala <br><br> 20 25 30 <br><br> Leu Leu Glu Lys Leu Leu Asp Arg Pro Pro Pro Gly Leu Gin Arg <br><br> 35 40 45 <br><br> Pro Glu Asp Arg Phe Cys Gly Thr Tyr Ile Ile Phe Phe Ser Leu <br><br> 50 55 60 <br><br> Gly Ile Gly Ser Leu Leu Pro Trp Asn Phe Phe Ile Thr Ala Lys <br><br> 65 70 75 <br><br> 172 <br><br> Glu Tyr Trp Met Phe Lys Leu Arg Asn Ser Ser Ser Pro Ala Thr 80 85 90 <br><br> Gly Glu Asp Pro Glu Gly Ser Asp Ile Leu Asn Tyr Phe Glu Ser 95 100 105 <br><br> Tyr Leu Ala Val Ala Ser Thr Val Pro Ser Met Leu Cys Leu Val 110 115 120 <br><br> Ala Asn Phe Leu Leu Val Asn Arg Val Ala Val His Ile Arg Val 125 130 135 <br><br> Leu Ala Ser Leu Thr Val Ile Leu Ala Ile Phe Met Val Ile Thr 140 145 150 <br><br> Ala Leu Val Lys Val Asp Thr Ser Ser Trp Thr Arg Gly Phe Phe 155 160 165 <br><br> Ala Val Thr Ile Val Cys Met Val Ile Leu Ser Gly Ala Ser Thr 170 175 180 <br><br> Val Phe Ser Ser Ser Ile Tyr Gly Met Thr Gly Ser Phe Pro Met 185 190 195 <br><br> Arg Asn Ser Gin Ala Leu Ile Ser Gly Gly Ala Met Gly Gly Thr 200 205 210 <br><br> Val Ser Ala Val Ala Ser Leu Val Asp Leu Ala Ala Ser Ser Asp 215 220 225 <br><br> Val Arg Asn Ser Ala Leu Ala Phe Phe Leu Thr Ala Thr Ile Phe 230 235 240 <br><br> Leu Val Leu Cys Met Gly Leu Tyr Leu Leu Leu Ser Arg Leu Glu 245 250 255 <br><br> Tyr Ala Arg Tyr Tyr Met Arg Pro Val Leu Ala Ala His Val Phe 260 265 270 <br><br> Ser Gly Glu Glu Glu Leu Pro Gin Asp Ser Leu Ser Ala Pro Ser 275 280 285 <br><br> Val Ala Ser Arg Phe Ile Asp Ser His Thr Pro Pro Leu Arg Pro 290 295 300 <br><br> Ile Leu Lys Lys Thr Ala Ser Leu Gly Phe Cys Val Thr Tyr Val 305 310 315 <br><br> Phe Phe Ile Thr Ser Leu Ile Tyr Pro Ala Val Cys Thr Asn Ile <br><br> 320 325 330 <br><br> Glu Ser Leu Asn Lys Gly Ser Gly Ser Leu Trp Thr Thr Lys Phe <br><br> 335 340 345 <br><br> Phe Ile Pro Leu Thr Thr Phe Leu Leu Tyr Asn Phe Ala Asp Leu <br><br> 173 <br><br> 350 355 360 <br><br> Cys Gly Arg Gin Leu Thr Ala Trp Ile Gin Val Pro Gly Pro Asn 365 370 375 <br><br> Ser Lys Ala Leu Pro Gly Phe Val Leu Leu Arg Thr Cys Leu Ile 380 385 390 <br><br> Pro Leu Phe Val Leu Cys Asn Tyr Gin Pro Arg Val His Leu Lys 395 400 405 <br><br> Thr Val Val Phe Gin Ser Asp Val Tyr Pro Ala Leu Leu Ser Ser 410 415 420 <br><br> Leu Leu Gly Leu Ser Asn Gly Tyr Leu Ser Thr Leu Ala Leu Leu 425 430 435 <br><br> Tyr Gly Pro Lys Ile Val Pro Arg Glu Leu Ala Glu Ala Thr Gly 440 445 450 <br><br> Val Val Met Ser Phe Tyr Val Cys Leu Gly Leu Thr Leu Gly Ser 455 460 465 <br><br> Ala Cys Ser Thr Leu Leu Val His Leu Ile 470 475 <br><br> &lt;210&gt; 80 &lt;211&gt; 22 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 80 <br><br> ttttgcggtc accattgtct gc 22 <br><br> &lt;210&gt; 81 &lt;211&gt; 23 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 81 <br><br> cgtaggtgac acagaagccc agg 23 <br><br> &lt;210&gt; 82 &lt;211&gt; 49 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence <br><br> &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> 174 <br><br> &lt;400&gt; 82 <br><br> tacggcatga ccggctcctt tcctatgagg aactcccagg cactgatat 49 <br><br> &lt;210&gt; 83 &lt;211&gt; 1844 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 83 <br><br> gacagtggag ggcagtggag aggaccgcgc tgtcctgctg tcaccaagag 50 ctggagacac catctcccac cgagagtcat ggccccattg gccctgcacc 100 tcctcgtcct cgtccccatc ctcctcagcc tggtggcctc ccaggactgg 150 aaggctgaac gcagccaaga ccccttcgag aaatgcatgc aggatcctga 2 00 ctatgagcag ctgctcaagg tggtgacctg ggggctcaat cggaccctga 250 agccccagag ggtgattgtg gttggcgctg gtgtggccgg gctggtggcc 3 00 gccaaggtgc tcagcgatgc tggacacaag gtcaccatcc tggaggcaga 350 taacaggatc gggggccgca tcttcaccta ccgggaccag aacacgggct 400 <br><br> ggattgggga gctgggagcc atgcgcatgc ccagctctca caggatcctc 450 cacaagctct gccagggcct ggggctcaac ctgaccaagt tcacccagta 500 cgacaagaac acgtggacgg aggtgcacga agtgaagctg cgcaactatg 550 tggtggagaa ggtgcccgag aagctgggct acgccttgcg tccccaggaa 600 aagggccact cgcccgaaga catctaccag atggctctca accaggccct 650 caaagacctc aaggcactgg gctgcagaaa ggcgatgaag aagtttgaaa 700 ggcacacgct cttggaatat cttctcgggg aggggaacct gagccggccg 750 gccgtgcagc ttctgggaga cgtgatgtcc gaggatggct tcttctatct 800 cagcttcgcc gaggccctcc gggcccacag ctgcctcagc gacagactcc 850 agtacagccg catcgtgggt ggctgggacc tgctgccgcg cgcgctgctg 900 agctcgctgt ccgggcttgt gctgttgaac gcgcccgtgg tggcgatgac 950 ccagggaccg cacgatgtgc acgtgcagat cgagacctct cccccggcgc 1000 ggaatctgaa ggtgctgaag gccgacgtgg tgctgctgac ggcgagcgga 1050 ccggcggtga agcgcatcac cttctcgccg ccgctgcccc gccacatgca 1100 ggaggcgctg cggaggctgc actacgtgcc ggccaccaag gtgttcctaa 1150 <br><br> 175 <br><br> gcttccgcag gcccttctgg cgcgaggagc acattgaagg cggccactca 12 00 <br><br> aacaccgatc gcccgtcgcg catgattttc tacccgccgc cgcgcgaggg 1250 <br><br> cgcgctgctg ctggcctcgt acacgtggtc ggacgcggcg gcagcgttcg 1300 <br><br> ccggcttgag ccgggaagag gcgttgcgct tggcgctcga cgacgtggcg 13 50 <br><br> gcattgcacg ggcctgtcgt gcgccagctc tgggacggca ccggcgtcgt 1400 <br><br> caagcgttgg gcggaggacc agcacagcca gggtggcttt gtggtacagc 1450 <br><br> cgccggcgct ctggcaaacc gaaaaggatg actggacggt cccttatggc 1500 <br><br> cgcatctact ttgccggcga gcacaccgcc tacccgcacg gctgggtgga 1550 <br><br> gacggcggtc aagtcggcgc tgcgcgccgc catcaagatc aacagccgga 1600 <br><br> aggggcctgc atcggacacg gccagccccg aggggcacgc atctgacatg 1650 <br><br> gaggggcagg ggcatgtgca tggggtggcc agcagcccct cgcatgacct 17 00 <br><br> ggcaaaggaa gaaggcagcc accctccagt ccaaggccag ttatctctcc 1750 <br><br> aaaacacgac ccacacgagg acctcgcatt aaagtatttt cggaaaaaaa 1800 <br><br> aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaa 1844 <br><br> &lt;210&gt; 84 &lt;211&gt; 567 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 84 <br><br> Met Ala Pro Leu Ala Leu His Leu Leu Val Leu Val Pro Ile Leu 15 10 15 <br><br> Leu Ser Leu Val Ala Ser Gin Asp Trp Lys Ala Glu Arg Ser Gin 20 25 30 <br><br> Asp Pro Phe Glu Lys Cys Met Gin Asp Pro Asp Tyr Glu Gin Leu 35 40 45 <br><br> Leu Lys Val Val Thr Trp Gly Leu Asn Arg Thr Leu Lys Pro Gin 50 55 60 <br><br> Arg Val Ile Val Val Gly Ala Gly Val Ala Gly Leu Val Ala Ala 65 70 75 <br><br> Lys Val Leu Ser Asp Ala Gly His Lys Val Thr Ile Leu Glu Ala 80 85 90 <br><br> Asp Asn Arg Ile Gly Gly Arg Ile Phe Thr Tyr Arg Asp Gin Asn 95 100 105 <br><br> 176 <br><br> Thr Gly Trp Ile Gly Glu Leu Gly Ala Met Arg Met Pro Ser Ser 110 115 120 <br><br> His Arg Ile Leu His Lys Leu Cys Gin Gly Leu Gly Leu Asn Leu 125 130 135 <br><br> Thr Lys Phe Thr Gin Tyr Asp Lys Asn Thr Trp Thr Glu Val His 140 145 150 <br><br> Glu Val Lys Leu Arg Asn Tyr Val Val Glu Lys Val Pro Glu Lys 155 160 165 <br><br> Leu Gly Tyr Ala Leu Arg Pro Gin Glu Lys Gly His Ser Pro Glu 170 175 180 <br><br> Asp Ile Tyr Gin Met Ala Leu Asn Gin Ala Leu Lys Asp Leu Lys 185 190 195 <br><br> Ala Leu Gly Cys Arg Lys Ala Met Lys Lys Phe Glu Arg His Thr 200 205 210 <br><br> Leu Leu Glu Tyr Leu Leu Gly Glu Gly Asn Leu Ser Arg Pro Ala <br><br> 215 220 225 <br><br> Val Gin Leu Leu Gly Asp Val Met Ser Glu Asp Gly Phe Phe Tyr <br><br> 230 235 240 <br><br> Leu Ser Phe Ala Glu Ala Leu Arg Ala His Ser Cys Leu Ser Asp <br><br> 245 250 255 <br><br> Arg Leu Gin Tyr Ser Arg Ile Val Gly Gly Trp Asp Leu Leu Pro <br><br> 260 265 270 <br><br> Arg Ala Leu Leu Ser Ser Leu Ser Gly Leu Val Leu Leu Asn Ala <br><br> 275 280 285 <br><br> Pro Val Val Ala Met Thr Gin Gly Pro His Asp Val His Val Gin <br><br> 290 295 300 <br><br> Ile Glu Thr Ser Pro Pro Ala Arg Asn Leu Lys Val Leu Lys Ala <br><br> 305 310 315 <br><br> Asp Val Val Leu Leu Thr Ala Ser Gly Pro Ala Val Lys Arg Ile <br><br> 320 325 330 <br><br> Thr Phe Ser Pro Pro Leu Pro Arg His Met Gin Glu Ala Leu Arg <br><br> 335 340 345 <br><br> Arg Leu His Tyr Val Pro Ala Thr Lys Val Phe Leu Ser Phe Arg <br><br> 350 355 360 <br><br> Arg Pro Phe Trp Arg Glu Glu His Ile Glu Gly Gly His Ser Asn 365 370 375 <br><br> 177 <br><br> Thr Asp Arg Pro Ser Arg Met Ile Phe Tyr Pro Pro Pro Arg Glu 380 385 390 <br><br> Gly Ala Leu Leu Leu Ala Ser Tyr Thr Trp Ser Asp Ala Ala Ala 395 400 405 <br><br> Ala Phe Ala Gly Leu Ser Arg Glu Glu Ala Leu Arg Leu Ala Leu 410 415 420 <br><br> Asp Asp Val Ala Ala Leu His Gly Pro Val Val Arg Gin Leu Trp 425 430 435 <br><br> Asp Gly Thr Gly Val Val Lys Arg Trp Ala Glu Asp Gin His Ser 440 445 450 <br><br> Gin Gly Gly Phe Val Val Gin Pro Pro Ala Leu Trp Gin Thr Glu 455 460 465 <br><br> Lys Asp Asp Trp Thr Val Pro Tyr Gly Arg Ile Tyr Phe Ala Gly 470 475 480 <br><br> Glu His Thr Ala Tyr Pro His Gly Trp Val Glu Thr Ala Val Lys 485 490 495 <br><br> Ser Ala Leu Arg Ala Ala Ile Lys Ile Asn Ser Arg Lys Gly Pro 500 505 510 <br><br> Ala Ser Asp Thr Ala Ser Pro Glu Gly His Ala Ser Asp Met Glu 515 520 525 <br><br> Gly Gin Gly His Val His Gly Val Ala Ser Ser Pro Ser His Asp 530 535 540 <br><br> Leu Ala Lys Glu Glu Gly Ser His Pro Pro Val Gin Gly Gin Leu 545 550 555 <br><br> Ser Leu Gin Asn Thr Thr His Thr Arg Thr Ser His 560 565 <br><br> &lt;210&gt; 85 <br><br> &lt;211&gt; 3316 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 85 <br><br> ctgacatggc ctgactcggg acagctcaga gcagggcaga actggggaca 50 <br><br> ctctgggccg gccttctgcc tgcatggacg ctctgaagcc accctgtctc 100 <br><br> tggaggaacc acgagcgagg gaagaaggac agggactcgt gtggcaggaa 150 <br><br> gaactcagag ccgggaagcc cccattcact agaageactg agagatgcgg 2 00 ccccctcgca gggtctgaat ttcctgctgc tgttcacaaa gatgcttttt 250 <br><br> 178 <br><br> atctttaact ttttgttttc cccacttccg cctgacattt ggagctgcca tcttcttgtg ccgtcttacc tcttcttgac ctgaacaatc ggagcacgga agggggtttc ccagaagaac cttctcagat gccaagacta tgtatgaggt tgtctgacaa tgggccctgc ttgggatata agatggctat cttacaaaca ggtgtctgat ctgtctcttg cataaaggtt ataaatcatc tctttgctca gaataggcca gagtggatca acgtactcta tggtagctgt acctctgtat catcgtacat attgtcaaca aggctgatat caccccaaaa ggcattggtg ctgataggga ccgagcctga aggtgatcat ccttatggac gcaaagaggg gagaagagtg gaattgagat agaacctagg caaagagcac ttcagaaaac gacctgagcg tcatctgctt caccagtggg agccatgata acccatcaaa atattgtttc aatgtgtgga gcatgcttat gagcccactc tacctccctc tggctcatat gtttgagagg cagctgtgga gccagagttg gattcttcca ctgacgacat gaagactttg aagcccacat ctccttaaca ggatctacga taaggtacaa gaagaagttc ttgttgaagc tggctgtttc aaaagggtat catcaggcat gatagtttct aagatccagg acagcctggg cggaagggtt tgcccccatg tccacttcag tcatgacatt gtcaggtgta tgaagcttat ggtcaaacag tttacattac ctggggactg gacatcaggt accccggcgt tgatctgcat 300 gctgatcacc agacctcaac 350 agtctgtggg aattgaggga 400 aatgacctaa caagttgctg 450 tttccaaaga ggactcgctg 500 gaaaaccaaa ccagccctac 550 agagcagagt acctgggttc 600 accagaccag tttgtcggca 650 tctccgaatt ggcttgttac 700 gacaccttgg gaccagaagc 750 cgccatggtg atctgtgaca 800 atgtagagaa aggcttcacc 850 ccctttgatg atgacctgaa 900 cttatcccta tatgatgctg 950 ctgtgcctcc tagcccagaa 1000 accacaggtg accccaaagg 1050 aaatgctgct gcctttctca 1100 ctgatgatgt ggccatatcc 1150 attgtacagg ctgttgtgta 12 00 aggggatatt cggttgctgg 1250 tgtttcccgc ggtgcctcga 1300 aatgaggcca agacaccctt 1350 cagtaaattc aaagagcttc 1400 gggacaagct catctttgca 1450 cgtgtaattg tcactggagc 1500 cttccgggca gcaatgggat 1550 aatgcacagg tggctgtaca 1600 cacgttgggg tgcccctggc 1650 <br><br> 179 <br><br> ttgcaattac gtgaagctgg aagatgtggc tgacatgaac tactttacag 17 00 tgaataatga aggagaggtc tgcatcaagg gtacaaacgt gttcaaagga 1750 tacctgaagg accctgagaa gacacaggaa gccctggaca gtgatggctg 1800 gcttcacaca ggagacattg gtcgctggct cccgaatgga actctgaaga 1850 tcatcgaccg taaaaagaac attttcaagc tggcccaagg agaatacatt 1900 gcaccagaga agatagaaaa tatctacaac aggagtcaac cagtgttaca 1950 aatttttgta cacggggaga gcttacggtc atccttagta ggagtggtgg 2 000 ttcctgacac agatgtactt ccctcatttg cagccaagct tggggtgaag 2050 ggctcctttg aggaactgtg ccaaaaccaa gttgtaaggg aagccatttt 2100 agaagacttg cagaaaattg ggaaagaaag tggccttaaa acttttgaac 2150 aggtcaaagc catttttctt catccagagc cattttccat tgaaaatggg 2200 ctcttgacac caacattgaa agcaaagcga ggagagcttt ccaaatactt 2250 tcggacccaa attgacagcc tgtatgagca catccaggat taggataagg 2300 tacttaagta cctgccggcc cactgtgcac tgcttgtgag aaaatggatt 2350 aaaaactatt cttacatttg ttttgccttt cctcctattt ttttttaacc 2400 tgttaaactc taaagccata gcttttgttt tatattgaga catataatgt 2450 gtaaacttag ttcccaaata aatcaatcct gtctttccca tcttcgatgt 2500 tgctaatatt aaggcttcag ggctactttt atcaacatgc ctgtcttcaa 2550 gatcccagtt tatgttctgt gtccttcctc atgatttcca accttaatac 2600 tattagtaac cacaagttca agggtcaaag ggaccctctg tgccttcttc 2650 tttgttttgt gataaacata acttgccaac agtctctatg cttatttaca 2700 tcttctactg ttcaaactaa gagattttta aattctgaaa aactgcttac 2750 aattcatgtt ttctagccac tccacaaacc actaaaattt tagttttagc 2800 ctatcactca tgtcaatcat atctatgaga caaatgtctc cgatgctctt 2 850 ctgcgtaaat taaattgtgt actgaaggga aaagtttgat cataccaaac 2 900 atttcctaaa ctctctagtt agatatctga cttgggagta ttaaaaattg 2950 ggtctatgac atactgtcca aaaggaatgc tgttcttaaa gcattattta 3000 cagtaggaac tggggagtaa atctgttccc tacagtttgc tgctgagctg 3050 <br><br> 180 <br><br> gaagctgtgg gggaaggagt tgacaggtgg gcccagtgaa cttttccagt 3100 <br><br> aaatgaagca agcactgaat aaaaacctcc tgaactggga acaaagatct 3150 <br><br> acaggcaagc aagatgccca cacaacaggc ttattttctg tgaaggaacc 3200 <br><br> aactgatctc ccccaccctt ggattagagt tcctgctcta ccttacccac 3250 <br><br> agataacaca tgttgtttct acttgtaaat gtaaagtctt taaaataaac 3300 <br><br> tattacagat aaaaaa 3316 <br><br> &lt;210&gt; 86 <br><br> &lt;211&gt; 739 <br><br> &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 86 <br><br> Met Asp Ala Leu Lys Pro Pro Cys Leu Trp Arg Asn His Glu Arg 15 10 15 <br><br> Gly Lys Lys Asp Arg Asp Ser Cys Gly Arg Lys Asn Ser Glu Pro 20 25 30 <br><br> Gly Ser Pro His Ser Leu Glu Ala Leu Arg Asp Ala Ala Pro Ser 35 40 45 <br><br> Gin Gly Leu Asn Phe Leu Leu Leu Phe Thr Lys Met Leu Phe Ile 50 55 60 <br><br> Phe Asn Phe Leu Phe Ser Pro Leu Pro Thr Pro Ala Leu Ile Cys 65 70 75 <br><br> Ile Leu Thr Phe Gly Ala Ala Ile Phe Leu Trp Leu Ile Thr Arg 80 85 90 <br><br> Pro Gin Pro Val Leu Pro Leu Leu Asp Leu Asn Asn Gin Ser Val 95 100 105 <br><br> Gly Ile Glu Gly Gly Ala Arg Lys Gly Val Ser Gin Lys Asn Asn 110 115 120 <br><br> Asp Leu Thr Ser Cys Cys Phe Ser Asp Ala Lys Thr Met Tyr Glu 125 130 135 <br><br> Val Phe Gin Arg Gly Leu Ala Val Ser Asp Asn Gly Pro Cys Leu 140 145 150 <br><br> Gly Tyr Arg Lys Pro Asn Gin Pro Tyr Arg Trp Leu Ser Tyr Lys 155 160 165 <br><br> Gin Val Ser Asp Arg Ala Glu Tyr Leu Gly Ser Cys Leu Leu His 170 175 180 <br><br> Lys Gly Tyr Lys Ser Ser Pro Asp 185 <br><br> Gin Phe Val Gly Ile Phe Ala 190 195 <br><br> 181 <br><br> Gin Asn Arg Pro Glu Trp Ile Ile Ser Glu Leu Ala Cys Tyr Thr <br><br> 200 205 210 <br><br> Tyr Ser Met Val Ala Val Pro Leu Tyr Asp Thr Leu Gly Pro Glu <br><br> 215 220 225 <br><br> Ala Ile Val His Ile Val Asn Lys Ala Asp Ile Ala Met Val Ile <br><br> 230 235 240 <br><br> Cys Asp Thr Pro Gin Lys Ala Leu Val Leu lie Gly Asn Val Glu <br><br> 245 250 255 <br><br> Lys Gly Phe Thr Pro Ser Leu Lys Val Ile Ile Leu Met Asp Pro <br><br> 260 265 270 <br><br> Phe Asp Asp Asp Leu Lys Gin Arg Gly Glu Lys Ser Gly Ile Glu <br><br> 275 280 285 <br><br> Ile Leu Ser Leu Tyr Asp Ala Glu Asn Leu Gly Lys Glu His Phe 290 295 300 <br><br> Arg Lys Pro Val Pro Pro Ser Pro Glu Asp Leu Ser Val Ile Cys 305 310 315 <br><br> Phe Thr Ser Gly Thr Thr Gly Asp Pro Lys Gly Ala Met Ile Thr 320 325 330 <br><br> His Gin Asn lie Val Ser Asn Ala Ala Ala Phe Leu Lys Cys Val 335 340 345 <br><br> Glu His Ala Tyr Glu Pro Thr Pro Asp Asp Val Ala Ile Ser Tyr 350 355 360 <br><br> Leu Pro Leu Ala His Met Phe Glu Arg lie Val Gin Ala Val Val 365 370 375 <br><br> Tyr Ser Cys Gly Ala Arg Val Gly Phe Phe Gin Gly Asp Ile Arg 380 385 390 <br><br> Leu Leu Ala Asp Asp Met Lys Thr Leu Lys Pro Thr Leu Phe Pro 395 400 405 <br><br> Ala Val Pro Arg Leu Leu Asn Arg Ile Tyr Asp Lys Val Gin Asn 410 415 420 <br><br> Glu Ala Lys Thr Pro Leu Lys Lys Phe Leu Leu Lys Leu Ala Val 425 430 435 <br><br> Ser Ser Lys Phe Lys Glu Leu Gin Lys Gly Ile Ile Arg His Asp <br><br> 440 445 450 <br><br> Ser Phe Trp Asp Lys Leu Ile Phe Ala Lys Ile Gin Asp Ser Leu <br><br> 455 460 465 <br><br> 182 <br><br> Gly Gly Arg Val Arg Val Ile Val Thr Gly Ala Ala Pro Met Ser 470 475 480 <br><br> Thr Ser Val Met Thr Phe Phe Arg Ala Ala Met Gly Cys Gin Val 485 490 495 <br><br> Tyr Glu Ala Tyr Gly Gin Thr Glu Cys Thr Gly Gly Cys Thr Phe 500 505 510 <br><br> Thr Leu Pro Gly Asp Trp Thr Ser Gly His Val Gly Val Pro Leu 515 520 525 <br><br> Ala Cys Asn Tyr Val Lys Leu Glu Asp Val Ala Asp Met Asn Tyr 530 535 540 <br><br> Phe Thr Val Asn Asn Glu Gly Glu Val Cys Ile Lys Gly Thr Asn 545 550 555 <br><br> Val Phe Lys Gly Tyr Leu Lys Asp Pro Glu Lys Thr Gin Glu Ala 560 565 570 <br><br> Leu Asp Ser Asp Gly Trp Leu His Thr Gly Asp Ile Gly Arg Trp 575 580 585 <br><br> Leu Pro Asn Gly Thr Leu Lys Ile Ile Asp Arg Lys Lys Asn Ile 590 595 600 <br><br> Phe Lys Leu Ala Gin Gly Glu Tyr Ile Ala Pro Glu Lys Ile Glu 605 610 615 <br><br> Asn Ile Tyr Asn Arg Ser Gin Pro Val Leu Gin Ile Phe Val His 620 625 630 <br><br> Gly Glu Ser Leu Arg Ser Ser Leu Val Gly Val Val Val Pro Asp 635 640 645 <br><br> Thr Asp Val Leu Pro Ser Phe Ala Ala Lys Leu Gly Val Lys Gly 650 655 660 <br><br> Ser Phe Glu Glu Leu Cys Gin Asn Gin Val Val Arg Glu Ala Ile 665 670 675 <br><br> Leu Glu Asp Leu Gin Lys Ile Gly Lys Glu Ser Gly Leu Lys Thr 680 685 690 <br><br> Phe Glu Gin Val Lys Ala Ile Phe Leu His Pro Glu Pro Phe Ser 695 700 705 <br><br> Ile Glu Asn Gly Leu Leu Thr Pro Thr Leu Lys Ala Lys Arg Gly 710 715 720 <br><br> Glu Leu Ser Lys Tyr Phe Arg Thr Gin Ile Asp Ser Leu Tyr Glu 725 730 735 <br><br> 183 <br><br> His Ile Gin Asp <br><br> &lt;210&gt; 87 <br><br> &lt;211&gt; 2725 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 87 <br><br> ggaggcggag gccgcggcga gccgggccga gcccgagcgg ggcccggggc ccctaagcca ccaggacatt ggtgacccgc caatccggta cccctcatca agccctttgg ggctcggaag ctggaagtat aaactgacaa accagcgggc caggggccgt gcttttcctg ctggtgactg atcctggaca ctcggcgagc catcagtgaa agagcaagac tatgatgagg ccctaggccg gaggcagtgg tccccggcgg gtcctggacg agcaaagtat atgtggcagt ggatggcacc ccgggagcag ggccggggca tccatgtcat gccacgtgat ggcaaaacgt gtgtttgaca gaggccatgg tgctattcct caacatggta ctgcactgtc aaggatgagg gctccttcca ctctgctgag gagcctgggc agccaggctg gacacatggg ccttcgtggg acgaaaagga acattctaag tcacctgccc tctcttcctg agacagatgt gccattgagc tcagcagaag gacacagagc tgaaccgtcg ccgccggcgc ctatggaagt gtatgcagct gcaaggaccc ctgacccact cccagacaac aaggtcctca gcagggaacc gacccaatta cctgtacagg agcccagggg gtgtctcctc agatgataac atgaggaacc catggatgtg gtggcactgt gcagtgaggg ccctagcggg 50 ttcctgaagt catgggctgg 100 tggacgactg gaagcccagc 150 aagcggagct ggtaccttac 200 cctgcggaga ttctgtcaga 250 tcattgtcaa tatcaagttg 300 gccaatgaag acccagagcc 350 cctggagccc ccacggcgca 400 tagaggtgta ttcaagtcgc 450 acggtgctgg aggatgaggc 500 tgtcctcaac caggccacgg 550 cgtactcacc tcatgaggat 600 gcgcccggcc gagtgctcat 650 cctcaaggac acagccaagg 7 00 gccctgccct gggctggagg 750 ggtcctgtct tcggggagaa 800 gggggaccca gtcctgctga 850 aggcagagtg ccactgggca 900 ttctgcagca aagttgaggg 950 cacacccatc gagttcagcc 1000 atgtgcctgt ggctgtcatt 1050 atgctgcgct ctctgctttc 1100 agttttcatt gacggctact 1150 ttggtctgag gggcatccag 12 00 <br><br> 184 <br><br> catactccca tcagcatcaa gaatgcccgc gtgtctcagc actacaaggc 1250 cagcctcact gccactttca acctgtttcc ggaggccaag tttgctgtgg 13 00 ttctggaaga ggacctggac attgctgtgg attttttcag tttcctgagc 1350 caatccatcc acctactgga ggaggatgac agcctgtact gcatctctgc 1400 ctggaatgac caggggtatg aacacacggc tgaggaccca gcactactgt 1450 accgtgtgga gaccatgcct gggctgggct gggtgctcag gaggtccttg 1500 tacaaggagg agcttgagcc caagtggcct acaccggaaa agctctggga 1550 ttgggacatg tggatgcgga tgcctgaaca acgccggggc cgagagtgca 1600 tcatccctga cgtttcccga tcctaccact ttggcatcgt cggcctcaac 1650 atgaatggct actttcacga ggcctacttc aagaagcaca agttcaacac 1700 ggttccaggt gtccagctca ggaatgtgga cagtctgaag aaagaagctt 1750 atgaagtgga agttcacagg ctgctcagtg aggctgaggt tctggaccac 1800 agcaagaacc cttgtgaaga ctctttcctg ccagacacag agggccacac 1850 ctacgtggcc tttattcgaa tggagaaaga tgatgacttc accacctgga 1900 cccagcttgc caagtgcctc catatctggg acctggatgt gcgtggcaac 1950 catcggggcc tgtggagatt gtttcggaag aagaaccact tcctggtggt 2000 gggggtcccg gcttccccct actcagtgaa gaagccaccc tcagtcaccc 2050 caattttcct ggagccaccc ccaaaggagg agggagcccc aggagcccca 2100 gaacagacat gagacctcct ccaggaccct gcggggctgg gtactgtgta 2150 cccccaggct ggctagccct tccctccatc ctgtaggatt ttgtagatgc 22 00 tggtaggggc tggggctacc ttgtttttaa catgagactt aattactaac 2250 tccaagggga gggttcccct gctccaacac cccgttcctg agttaaaagt 23 00 ctatttattt acttccttgt tggagaaggg caggagagta cctgggaatc 2350 attacgatcc ctagcagctc atcctgccct ttgaataccc tcactttcca 2400 ggcctggctc agaatctaac ctatttattg actgtcctga gggccttgaa 2450 aacaggccga acctggaggg cctggatttc tttttgggct ggaatgctgc 2500 cctgagggtg gggctggctc ttactcagga aactgctgtg cccaacccat 2550 ggacaggccc agctggggcc cacatgctga cacagactca ctcagagacc 2600 <br><br> 185 <br><br> cttagacact ggaccaggcc tcctctcagc cttctctttg tccagatttc 2650 <br><br> caaagctgga taagttggtc attgattaaa aaaggagaag ccctctggga 27 00 <br><br> aaaaaaaaaa aaaaaaaaaa aaaaa 2725 <br><br> &lt;210&gt; 88 <br><br> &lt;211&gt; 660 <br><br> &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 88 <br><br> Met Asp Asp Trp Lys Pro Ser Pro Leu Ile Lys Pro Phe Gly Ala 15 10 15 <br><br> Arg Lys Lys Arg Ser Trp Tyr Leu Thr Trp Lys Tyr Lys Leu Thr 20 25 30 <br><br> Asn Gin Arg Ala Leu Arg Arg Phe Cys Gin Thr Gly Ala Val Leu 35 40 45 <br><br> Phe Leu Leu Val Thr Val Ile Val Asn Ile Lys Leu Ile Leu Asp 50 55 60 <br><br> Thr Arg Arg Ala Ile Ser Glu Ala Asn Glu Asp Pro Glu Pro Glu 65 70 75 <br><br> Gin Asp Tyr Asp Glu Ala Leu Gly Arg Leu Glu Pro Pro Arg Arg 80 85 90 <br><br> Arg Gly Ser Gly Pro Arg Arg Val Leu Asp Val Glu Val Tyr Ser 95 100 105 <br><br> Ser Arg Ser Lys Val Tyr Val Ala Val Asp Gly Thr Thr Val Leu 110 115 120 <br><br> Glu Asp Glu Ala Arg Glu Gin Gly Arg Gly Ile His Val Ile Val 125 130 135 <br><br> Leu Asn Gin Ala Thr Gly His Val Met Ala Lys Arg Val Phe Asp 140 145 150 <br><br> Thr Tyr Ser Pro His Glu Asp Glu Ala Met Val Leu Phe Leu Asn 155 160 165 <br><br> Met Val Ala Pro Gly Arg Val Leu Ile Cys Thr Val Lys Asp Glu 170 175 180 <br><br> Gly Ser Phe His Leu Lys Asp Thr Ala Lys Ala Leu Leu Arg Ser 185 190 195 <br><br> Leu Gly Ser Gin Ala Gly Pro Ala Leu Gly Trp Arg Asp Thr Trp 200 205 210 <br><br> 186 <br><br> Ala Phe Val Gly Arg Lys Gly Gly Pro Val Phe Gly Glu Lys His 215 220 225 <br><br> Ser Lys Ser Pro Ala Leu Ser Ser Trp Gly Asp Pro Val Leu Leu 230 235 240 <br><br> Lys Thr Asp Val Pro Leu Ser Ser Ala Glu Glu Ala Glu Cys His 245 250 255 <br><br> Trp Ala Asp Thr Glu Leu Asn Arg Arg Arg Arg Arg Phe Cys Ser 260 265 270 <br><br> Lys Val Glu Gly Tyr Gly Ser Val Cys Ser Cys Lys Asp Pro Thr 275 280 285 <br><br> Pro Ile Glu Phe Ser Pro Asp Pro Leu Pro Asp Asn Lys Val Leu 290 295 300 <br><br> Asn Val Pro Val Ala Val Ile Ala Gly Asn Arg Pro Asn Tyr Leu 305 310 315 <br><br> Tyr Arg Met Leu Arg Ser Leu Leu Ser Ala Gin Gly Val Ser Pro 320 325 330 <br><br> Gin Met Ile Thr Val Phe Ile Asp Gly Tyr Tyr Glu Glu Pro Met 335 340 345 <br><br> Asp Val Val Ala Leu Phe Gly Leu Arg Gly Ile Gin His Thr Pro 350 355 360 <br><br> Ile Ser Ile Lys Asn Ala Arg Val Ser Gin His Tyr Lys Ala Ser 365 370 375 <br><br> Leu Thr Ala Thr Phe Asn Leu Phe Pro Glu Ala Lys Phe Ala Val 380 385 390 <br><br> Val Leu Glu Glu Asp Leu Asp Ile Ala Val Asp Phe Phe Ser Phe 395 400 405 <br><br> Leu Ser Gin Ser Ile His Leu Leu Glu Glu Asp Asp Ser Leu Tyr 410 415 420 <br><br> Cys Ile Ser Ala Trp Asn Asp Gin Gly Tyr Glu His Thr Ala Glu 425 430 435 <br><br> Asp Pro Ala Leu Leu Tyr Arg Val Glu Thr Met Pro Gly Leu Gly 440 445 450 <br><br> Trp Val Leu Arg Arg Ser Leu Tyr Lys Glu Glu Leu Glu Pro Lys 455 460 465 <br><br> Trp Pro Thr Pro Glu Lys Leu Trp Asp Trp Asp Met Trp Met Arg 470 475 480 <br><br> Met Pro Glu Gin Arg Arg Gly Arg Glu Cys Ile Ile Pro Asp Val <br><br> 187 <br><br> 485 490 495 <br><br> Ser Arg Ser Tyr His Phe Gly Ile Val Gly Leu Asn Met Asn Gly 500 505 510 <br><br> Tyr Phe His Glu Ala Tyr Phe Lys Lys His Lys Phe Asn Thr Val 515 520 525 <br><br> Pro Gly Val Gin Leu Arg Asn Val Asp Ser Leu Lys Lys Glu Ala 530 535 540 <br><br> Tyr Glu Val Glu Val His Arg Leu Leu Ser Glu Ala Glu Val Leu 545 550 555 <br><br> Asp His Ser Lys Asn Pro Cys Glu Asp Ser Phe Leu Pro Asp Thr 560 565 570 <br><br> Glu Gly His Thr Tyr Val Ala Phe Ile Arg Met Glu Lys Asp Asp 575 580 585 <br><br> Asp Phe Thr Thr Trp Thr Gin Leu Ala Lys Cys Leu His Ile Trp 590 595 600 <br><br> Asp Leu Asp Val Arg Gly Asn His Arg Gly Leu Trp Arg Leu Phe 605 610 615 <br><br> Arg Lys Lys Asn His Phe Leu Val Val Gly Val Pro Ala Ser Pro 620 625 630 <br><br> Tyr Ser Val Lys Lys Pro Pro Ser Val Thr Pro Ile Phe Leu Glu 635 640 645 <br><br> Pro Pro Pro Lys Glu Glu Gly Ala Pro Gly Ala Pro Glu Gin Thr 650 655 660 <br><br> &lt;210&gt; 89 &lt;211&gt; 25 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence <br><br> &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 89 gatggcaaaa cgtgtgtttg acacg 25 <br><br> &lt;210&gt; 90 &lt;211&gt; 22 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 90 <br><br> 188 <br><br> cctcaaccag gccacgggcc ac 22 <br><br> &lt;210&gt; 91 &lt;211&gt; 24 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 91 cccaggcaga gatgcagtac aggc 24 <br><br> &lt;210&gt; 92 &lt;211&gt; 26 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 92 cctccagtag gtggatggat tggctc 2 6 <br><br> &lt;210&gt; 93 &lt;211&gt; 47 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 93 <br><br> ctcacctcat gaggatgagg ccatggtgct attcctcaac atggtag 47 <br><br> &lt;210&gt; 94 <br><br> &lt;211&gt; 3037 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 94 <br><br> cggacgcgtg ggctgctggt gggaaggcct aaagaactgg aaagcccact 50 ctcttggaac caccacacct gtttaaagaa cctaagcacc atttaaagcc 100 actggaaatt tgttgtctag tggttgtggg tgaataaagg agggcagaat 150 ggatgatttc atctccatta gcctgctgtc tctggctatg ttggtgggat 2 00 <br><br> gttacgtggc cggaatcatt cccttggctg ttaatttctc agaggaacga 250 ctgaagctgg tgactgtttt gggtgctggc cttctctgtg gaactgctct 300 ggcagtcatc gtgcctgaag gagtacatgc cctttatgaa gatattcttg 350 <br><br> 189 <br><br> agggaaaaca ccaccaagca agtgaaacac aaagcagcag aaaaatcagt tgtccatgaa cacacagctg catgcctata ttggtgtttc tcatgttgct ggtggaccag attggtaact gatccagaag cagcaaggtc tagcaattcc tctggttgtc catgctgcag ctgatggtgt ctacttcaca gaccagtgtc cagttaattg cataaggcac cagctgcttt tggactggtt cttagagcgg aatcgaatca gaaagcactt caccagttat gtccatggtg acatacttag gaagcccttt cagaggtgaa cgccacggga cgggacattt ctttatgttg ccacagtaca gaatagggca cagccacaag cccgatgcca cgcctggaag tggcagccct ggttctgggt gtcagtagga caccagcatt aaatgttcaa ccgtttgcca tccagtgaga acagccggca tcagtctctt gtctcacctt gcgcatctct gaggggaggt gaggttaaaa cctgagtaat aacacattta cgttgcagtt agctatagac aaaaggccct tgacattttg cgttttaata agggaagatg gaatttagtt ttaaggaaaa aatgaaatag tgattatgaa aatacagtgt ctttcttctt agtttagagg ctctgctact tggttcccac catgtaagac tggtgcttta gatggaaggt catagcaccc actcacttag taatctggga ttagggtcag gaaaatgata tctttatact caaaagagat atccattgaa taaacagctc ctttggcacg tgcctctctg ataatgtgat tgcatcagac 400 catgagcaca gccacgacca 450 cctcgttctg ggcttcgttt 500 cccatgtgca ttctactgac 550 aaaatcacca ccacgctggg 600 tgctttggga gcagcagcat 650 tgtttgtggc aatcatgcta 7 00 tccttcttga tgcatgctgg 750 gctggtcttt gcattggcag 800 gactgagtaa gagcagtaaa 850 gtggccatgc ttttctctgc 900 tgtcctccct gaggtgggcg 950 cgggagggag aggcctcagc 1000 tgcctcatcc ctctcatcct 1050 ggtccagcct tggtccaggg 1100 cgtgacagct actcacttcc 1150 acatgtattc ctagagtcca 12 00 ggaaaagctt ttagagtaga 1250 atcccattgt gttatctttt 1300 tttctcttaa ccctattctc 1350 gaggagaact tcatactcac 1400 tctgtaatta agctatgtct 1450 ttatccattg atttttaaca 1500 gcatctatgc cacatgcgtt 1550 atgctaaagg tgattctagt 1600 gcaagacaca ttgaaagctc 1650 aagggatgtc tagagggatt 1700 aatccagcct gccattccat 1750 <br><br> 190 <br><br> caaatggagc aggagaggtg ggaggagctt ctaaagaggt gactggtatt 1800 ttgtagcatt ccttgtcaag ttctcctttg cagaatacct gtctccacat 1850 tcctagagag gagccaagtt ctagtagttt cagttctagg ctttccttca 1900 agaacagtca gatcacaaag tgtctttgga aattaaggga tattaaattt 1950 taagtgattt ttggatggtt attgatatct ttgtagtagc tttttttaaa 2 000 agactaccaa aatgtatggt tgtccttttt ttttgttttt ttttttttta 2050 attatttctc ttagcagatc agcaatccct ctagggacct aaatactagg 2100 tcagctttgg cgacactgtg tcttctcaca taaccacctg tagcaagatg 2150 gatcataaat gagaagtgtt tgcctattga tttaaagctt attggaatca 2200 tgtctcttgt ctcttcgtct tttctttgct tttcttctaa cttttccctc 2250 tagcctctcc tcgccacaat ttgctgctta ctgctggtgt taatatttgt 2300 gtgggatgaa ttcttatcag gacaaccact tctcgaactg taataatgaa 2350 gataataata tctttattct ttatcccctt caaagaaatt acctttgtgt 2400 caaatgccgc tttgttgagc ccttaaaata ccacctcctc atgtgtaaat 2450 tgacacaatc actaatctgg taatttaaac aattgagata gcaaaagtgt 2500 ttaacagact aggataattt ttttttcata tttgccaaaa tttttgtaaa 2550 ccctgtcttg tcaaataagt gtataatatt gtattattaa tttattttta 2600 ctttctatac catttcaaaa cacattacac taagggggaa ccaagactag 2650 tttcttcagg gcagtggacg tagtagtttg taaaaacgtt ttctatgacg 27 00 cataagctag catgcctatg atttatttcc ttcatgaatt tgtcactgga 2750 tcagcagctg tggaaataaa gcttgtgagc cctctgctgg ccacagtgag 2800 gaaagtagca caaataggat acagttgtat gtagtcattg gcaacaattg 2850 catacaattt tactaccaag agaaggtata gtatggaaag tccaaatgac 2900 ttccttgatt ggatgttaac agctgactgg tgtgagactt gaggtttcat 2 950 ctagtccttc aaaactatat ggttgcctag attctctctg gaaactgact 3000 ttgtcaaata aatagcagat tgtagtgtca aaaaaaa 3 037 <br><br> &lt;210&gt; 95 <br><br> &lt;211&gt; 307 <br><br> &lt;212&gt; PRT <br><br> 191 <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 95 <br><br> Met Asp Asp Phe Ile Ser Ile Ser Leu Leu Ser Leu Ala Met Leu 15 10 15 <br><br> Val Gly Cys Tyr Val Ala Gly Ile Ile Pro Leu Ala Val Asn Phe 20 25 30 <br><br> Ser Glu Glu Arg Leu Lys Leu Val Thr Val Leu Gly Ala Gly Leu 35 40 45 <br><br> Leu Cys Gly Thr Ala Leu Ala Val Ile Val Pro Glu Gly Val His 50 55 60 <br><br> Ala Leu Tyr Glu Asp Ile Leu Glu Gly Lys His His Gin Ala Ser 65 70 75 <br><br> Glu Thr His Asn Val Ile Ala Ser Asp Lys Ala Ala Glu Lys Ser 80 85 90 <br><br> Val Val His Glu His Glu His Ser His Asp His Thr Gin Leu His 95 100 105 <br><br> Ala Tyr Ile Gly Val Ser Leu Val Leu Gly Phe Val Phe Met Leu 110 115 120 <br><br> Leu Val Asp Gin Ile Gly Asn Ser His Val His Ser Thr Asp Asp 125 130 135 <br><br> Pro Glu Ala Ala Arg Ser Ser Asn Ser Lys Ile Thr Thr Thr Leu 140 145 150 <br><br> Gly Leu Val Val His Ala Ala Ala Asp Gly Val Ala Leu Gly Ala 155 160 165 <br><br> Ala Ala Ser Thr Ser Gin Thr Ser Val Gin Leu Ile Val Phe Val 170 175 180 <br><br> Ala Ile Met Leu His Lys Ala Pro Ala Ala Phe Gly Leu Val Ser 185 190 195 <br><br> Phe Leu Met His Ala Gly Leu Glu Arg Asn Arg Ile Arg Lys His 200 205 210 <br><br> Leu Leu Val Phe Ala Leu Ala Ala Pro Val Met Ser Met Val Thr 215 220 225 <br><br> Tyr Leu Gly Leu Ser Lys Ser Ser Lys Glu Ala Leu Ser Glu Val 230 235 240 <br><br> Asn Ala Thr Gly Val Ala Met Leu Phe Ser Ala Gly Thr Phe Leu 245 250 255 <br><br> Tyr Val Ala Thr Val His Val Leu Pro Glu Val Gly Gly Ile Gly 260 265 270 <br><br> 192 <br><br> His Ser His Lys Pro Asp Ala Thr Gly Gly Arg Gly Leu Ser Arg 275 280 285 <br><br> Leu Glu Val Ala Ala Leu Val Leu Gly Cys Leu Ile Pro Leu Ile 290 2 95 300 <br><br> Leu Ser Val Gly His Gin His 305 <br><br> &lt;210&gt; 96 &lt;211&gt; 25 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence <br><br> &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 96 gttgtgggtg aataaaggag ggcag 25 <br><br> &lt;210&gt; 97 &lt;211&gt; 25 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 97 ctgtgctcat gttcatggac aactg 25 <br><br> &lt;210&gt; 98 &lt;211&gt; 50 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 98 <br><br> ggatgatttc atctccatta gcctgctgtc tctggctatg ttggtgggat 50 <br><br> &lt;210&gt; 99 &lt;211&gt; 1429 &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 99 <br><br> gctcgaggcc ggcggcggcg ggagagcgac ccgggcggcc tcgtagcggg 50 gccccggatc cccgagtggc ggccggagcc tcgaaaagag attctcagcg 100 ctgattttga gatgatgggc ttgggaaacg ggcgtcgcag catgaagtcg 150 <br><br> 193 <br><br> ccgcccctcg tgctggccgc cctggtggcc tgcatcatcg tcttgggctt 2 00 <br><br> caactactgg attgcgagct cccggagcgt ggacctccag acacggatca 250 <br><br> tggagctgga aggcagggtc cgcagggcgg ctgcagagag aggcgccgtg 3 00 <br><br> gagctgaaga agaacgagtt ccagggagag ctggagaagc agcgggagca 350 <br><br> gcttgacaaa atccagtcca gccacaactt ccagctggag agcgtcaaca 400 <br><br> agctgtacca ggacgaaaag gcggttttgg tgaataacat caccacaggt 450 <br><br> gagaggctca tccgagtgct gcaagaccag ttaaagaccc tgcagaggaa 500 <br><br> ttacggcagg ctgcagcagg atgtcctcca gtttcagaag aaccagacca 550 <br><br> acctggagag gaagttctcc tacgacctga gccagtgcat caatcagatg 600 <br><br> aaggaggtga aggaacagtg tgaggagcga atagaagagg tcaccaaaaa 650 <br><br> ggggaatgaa gctgtagctt ccagagacct gagtgaaaac aacgaccaga 7 00 <br><br> gacagcagct ccaagccctc agtgagcctc agcccaggct gcaggcagca 750 <br><br> ggcctgccac acacagaggt gccacaaggg aagggaaacg tgcttggtaa 800 <br><br> cagcaagtcc cagacaccag cccccagttc cgaagtggtt ttggattcaa 850 <br><br> agagacaagt tgagaaagag gaaaccaatg agatccaggt ggtgaatgag 900 <br><br> gagcctcaga gggacaggct gccgcaggag ccaggccggg agcaggtggt 950 <br><br> ggaagacaga cctgtaggtg gaagaggctt cgggggagcc ggagaactgg 1000 <br><br> gccagacccc acaggtgcag gctgccctgt cagtgagcca ggaaaatcca 1050 <br><br> gagatggagg gccctgagcg agaccagctt gtcatccccg acggacagga 1100 <br><br> ggaggagcag gaagctgccg gggaagggag aaaccagcag aaactgagag 1150 <br><br> gagaagatga ctacaacatg gatgaaaatg aagcagaatc tgagacagac 12 00 <br><br> aagcaagcag ccctggcagg gaatgacaga aacatagatg tttttaatgt 1250 <br><br> tgaagatcag aaaagagaca ccataaattt acttgatcag cgtgaaaagc 1300 <br><br> ggaatcatac actctgaatt gaactggaat cacatatttc acaacagggc 1350 <br><br> cgaagagatg actataaaat gttcatgagg gactgaatac tgaaaactgt 1400 <br><br> gaaatgtact aaataaaatg tacatctga 1429 <br><br> &lt;210&gt; 100 <br><br> &lt;211&gt; 401 <br><br> &lt;212&gt; PRT <br><br> 194 <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 100 <br><br> Met Met Gly Leu Gly Asn Gly Arg Arg Ser Met Lys Ser Pro Pro 15 10 15 <br><br> Leu Val Leu Ala Ala Leu Val Ala Cys Ile Ile Val Leu Gly Phe 20 25 30 <br><br> Asn Tyr Trp Ile Ala Ser Ser Arg Ser Val Asp Leu Gin Thr Arg 35 40 45 <br><br> Ile Met Glu Leu Glu Gly Arg Val Arg Arg Ala Ala Ala Glu Arg 50 55 60 <br><br> Gly Ala Val Glu Leu Lys Lys Asn Glu Phe Gin Gly Glu Leu Glu 65 70 75 <br><br> Lys Gin Arg Glu Gin Leu Asp Lys Ile Gin Ser Ser His Asn Phe 80 85 90 <br><br> Gin Leu Glu Ser Val Asn Lys Leu Tyr Gin Asp Glu Lys Ala Val 95 100 105 <br><br> Leu Val Asn Asn Ile Thr Thr Gly Glu Arg Leu Ile Arg Val Leu 110 115 120 <br><br> Gin Asp Gin Leu Lys Thr Leu Gin Arg Asn Tyr Gly Arg Leu Gin 125 130 135 <br><br> Gin Asp Val Leu Gin Phe Gin Lys Asn Gin Thr Asn Leu Glu Arg 140 145 150 <br><br> Lys Phe Ser Tyr Asp Leu Ser Gin Cys Ile Asn Gin Met Lys Glu 155 160 165 <br><br> Val Lys Glu Gin Cys Glu Glu Arg Ile Glu Glu Val Thr Lys Lys 170 175 180 <br><br> Gly Asn Glu Ala Val Ala Ser Arg Asp Leu Ser Glu Asn Asn Asp 185 190 195 <br><br> Gin Arg Gin Gin Leu Gin Ala Leu Ser Glu Pro Gin Pro Arg Leu 200 205 210 <br><br> Gin Ala Ala Gly Leu Pro His Thr Glu Val Pro Gin Gly Lys Gly 215 220 225 <br><br> Asn Val Leu Gly Asn Ser Lys Ser Gin Thr Pro Ala Pro Ser Ser 230 235 240 <br><br> Glu Val Val Leu Asp Ser Lys Arg Gin Val Glu Lys Glu Glu Thr 245 250 255 <br><br> Asn Glu Ile Gin Val Val Asn Glu Glu Pro Gin Arg Asp Arg Leu 260 265 270 <br><br> 195 <br><br> Pro Gin Glu Pro Gly Arg 275 <br><br> Gly Gly Arg Gly Phe Gly 290 <br><br> Gin Val Gin Ala Ala Leu 305 <br><br> Glu Gly Pro Glu Arg Asp 320 <br><br> Glu Glu Gin Glu Ala Ala 335 <br><br> Arg Gly Glu Asp Asp Tyr 350 <br><br> Glu Thr Asp Lys Gin Ala 365 <br><br> Asp Val Phe Asn Val Glu 380 <br><br> Leu Asp Gin Arg Glu Lys 395 <br><br> &lt;210&gt; 101 &lt;211&gt; 3671 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 101 ggatgcagaa agcctcagtg ttctacgctg gcattgccct ggagctcacc aaccatagca tgccatgggg gagccaaggg ttttcgcggg ttgtgttggt ccagccccag cattcacacg tcctgggcaa actaagctcc catgcccggc tctaccgatc gcgcctcaag gccctcacca gtagtaactt cgccagccac ctcaccagtg caggaaggcg <br><br> Glu Gin Val Val Glu 280 <br><br> Gly Ala Gly Glu Leu 295 <br><br> Ser Val Ser Gin Glu 310 <br><br> Gin Leu Val Ile Pro 325 <br><br> Gly Glu Gly Arg Asn 340 <br><br> Asn Met Asp Glu Asn 355 <br><br> Ala Leu Ala Gly Asn 370 <br><br> Asp Gin Lys Arg Asp 385 <br><br> Arg Asn His Thr Leu 400 <br><br> tggcctgggt ggcttcctgc gcccccaggc cctgctggat gctctgcgat gcctcctgtc tcctggagat cctcctacca gcctaccttt aagacaatct atgggagatg ttgctcttcc cttcaccagt gctgccaaga aaacctgggg gctgatagat tgcctagaga ttgcagagga tcaggttgac ctggctcact gccatagtgg tgtagtcttc <br><br> Asp Arg Pro Val 285 <br><br> Gly Gin Thr Pro 300 <br><br> Asn Pro Glu Met 315 <br><br> Asp Gly Gin Glu 330 <br><br> Gin Gin Lys Leu 345 <br><br> Glu Ala Glu Ser 360 <br><br> Asp Arg Asn Ile 375 <br><br> Thr Ile Asn Leu 390 <br><br> 50 <br><br> 100 <br><br> 150 <br><br> 200 <br><br> 250 <br><br> 300 <br><br> 350 <br><br> 400 <br><br> 450 <br><br> 500 <br><br> 550 <br><br> ctgcttcctc tcacccgttt cctgggtccc ggcttcccga ttgacttcgc tccctaccct tcagccccac ccaccatgca attgatgctg cattaagcag atacctggaa <br><br> 196 <br><br> agaccttttc cctggtgctt tctccaaagc atgtcagaga cctagacaca gtggacaatg cccaccatgg acagtggtga atgggacgtg tgtggaccac tgtggccaca agcatggccc agaaacttag ccagatggac caggtgatcc gagaatgaca cactgctggt agtggctggg tggagaccat ggaggggaca gtgagctgga tgtatagccc cacagcagtc ttccccagca gtgattcctc aagttagcct tgtgcccacg gcccatccca tttgggaata tcggggaagt ggggtgagga ctcccagccc cactcctctg ctccatctca atgctcagca ggtgtcccga tgctactcag gaccttcaag ctaaggagct tctccaaggc ctctgctgac taccagtggc gctgaggcga cactgccgac tgtgattgct gggagctcgg gccatgtgca tcgagtcttg gcatggcggg gggtactgct•ctcttggctg ctggcatctc agtgggcaat atccccaggc cctgacacct gtggcctggg gcctggttgg tcctgggaac tattgagctg aagctagatc gctgcagtga gctcattcct cccttttctg ggggtccaag aggcccctgg caaccctgtt tgttactcct gctgtttcgc ttggctgtgt gtagctgagg ccagggccac ccccttcctt cctggttgtc cagcttcact gggagggcca tcacaatgcc ccgccttggc acttcagcca aatggtgcat atgccctgag gcttggaatt gctagctggg ctttttcatc gttgccctga tttcttcttc ccatccttca 600 gcatcctgga acacctctac 650 ctgattgctc acttcctggg 7 00 tcaccaccct gaaatggcca 750 agggacttgt ggagcgtctg 800 gaccatggga tgaccacaaa 850 ggtctcagct gctctctttc 900 <br><br> ccccaccaga ggagccagag 950 ctggccctgc tgctgggcct 1000 gatggctgag ctattctcag 1050 ctttagccca agcctcagct 1100 tttcttcata cctactcagc 1150 tcatcagctg cagaacctct 1200 ttctccagag ccccaagggg 12 50 gagctgcagc agttcctgcg 13 00 ggctcgtttc tctctggtcc 1350 cttcctgctt tatctgcctg 1400 tttccattct gccctctact 1450 ggccatagcg tatgctggac 1500 tagtgcttct aggggctgtg 1550 tggaaagcct gggctggctg 1600 tcccatccct gggcccgtcc 1650 tcttctctga tagttttgtt 1700 ttgggctcat tcatcctgct 1750 gctgcttcca cctaagctac 1800 caacaaaccc cccacggcac 1850 gggttgcttt tatgtacaag 1900 agagacacct gtttgccact 1950 <br><br> 197 <br><br> cctctccctg gctgagtcct ctggcatcca tggtgggtgg tcgagccaag 2000 aatttatggt atggagcttg tgtggcggcg ctggtggccc tgttagctgc 2050 cgtgcgcttg tggcttcgcc gctatggtaa tctcaagagc cccgagccac 2100 ccatgctctt tgtgcgctgg ggactgcccc taatggcatt gggtactgct 2150 gcctactggg cattggcgtc gggggcagat gaggctcccc cccgtctccg 2200 ggtcctggtc tctggggcat ccatggtgct gcctcgggct gtagcagggc 2250 tggctgcttc agggctcgcg ctgctgctct ggaagcctgt gacagtgctg 2300 gtgaaggctg gggcaggcgc tccaaggacc aggactgtcc tcactccctt 2350 ctcaggcccc cccacttctc aagctgactt ggattatgtg gtccctcaaa 2400 tctaccgaca catgcaggag gagttccggg gccggttaga gaggaccaaa 2450 tctcagggtc ccctgactgt ggctgcttat cagttgggga gtgtctactc 2500 agctgctatg gtcacagccc tcaccctgtt ggccttccca cttctgctgt 2550 tgcatgcgga gcgcatcagc cttgtgttcc tgcttctgtt tctgcagagc 2 600 ttccttctcc tacatctgct tgctgctggg atacccgtca ccacccctgg 2650 tccttttact gtgccatggc aggcagtctc ggcttgggcc ctcatggcca 27 00 cacagacctt ctactccaca ggccaccagc ctgtctttcc agccatccat 2750 tggcatgcag ccttcgtggg attcccagag ggtcatggct cctgtacttg 2800 gctgcctgct ttgctagtgg gagccaacac ctttgcctcc cacctcctct 2 850 ttgcagtagg ttgcccactg ctcctgctct ggcctttcct gtgtgagagt 2900 caagggctgc ggaagagaca gcagccccca gggaatgaag ctgatgccag 2950 agtcagaccc gaggaggaag aggagccact gatggagatg cggctccggg 3 000 atgcgcctca gcacttctat gcagcactgc tgcagctggg cctcaagtac 3050 ctctttatcc ttggtattca gattctggcc tgtgccttgg cagcctccat 3100 ccttcgcagg catctcatgg tctggaaagt gtttgcccct aagttcatat 3150 ttgaggctgt gggcttcatt gtgagcagcg tgggacttct cctgggcata 32 00 gctttggtga tgagagtgga tggtgctgtg agctcctggt tcaggcagct 3250 atttctggcc cagcagaggt agcctagtct gtgattactg gcacttggct 3300 acagagagtg ctggagaaca gtgtagcctg gcctgtacag gtactggatg 3350 <br><br> 198 <br><br> atctgcaaga caggctcagc catactctta ctatcatgca gccaggggcc 3400 <br><br> gctgacatct aggacttcat tattctataa ttcaggacca cagtggagta 3450 <br><br> tgatccctaa ctcctgattt ggatgcatct gagggacaag gggggcggtc 3500 <br><br> tccgaagtgg aataaaatag gccgggcgtg gtgacttgca cctataatcc 3550 <br><br> cagcactttg ggaggcagag gtgggaggat tgcttggtcc caggagttca 3600 <br><br> agaccagcct gtggaacata acaagacccc gtctctacta tttaaaaaaa 3650 <br><br> agtgtaataa aatgataata t 3671 <br><br> &lt;210&gt; 102 &lt;211&gt; 1089 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 102 <br><br> Met Gin Lys Ala Ser Val Leu Leu Phe Leu Ala Trp Val Cys Phe 15 10 15 <br><br> Leu Phe Tyr Ala Gly Ile Ala Leu Phe Thr Ser Gly Phe Leu Leu 20 25 30 <br><br> Thr Arg Leu Glu Leu Thr Asn His Ser Ser Cys Gin Glu Pro Pro 35 40 45 <br><br> Gly Pro Gly Ser Leu Pro Trp Gly Ser Gin Gly Lys Pro Gly Ala 50 55 60 <br><br> Cys Trp Met Ala Ser Arg Phe Ser Arg Val Val Leu Val Leu Ile 65 70 75 <br><br> Asp Ala Leu Arg Phe Asp Phe Ala Gin Pro Gin His Ser His Val 80 85 90 <br><br> Pro Arg Glu Pro Pro Val Ser Leu Pro Phe Leu Gly Lys Leu Ser 95 100 105 <br><br> Ser Leu Gin Arg Ile Leu Glu Ile Gin Pro His His Ala Arg Leu 110 115 120 <br><br> Tyr Arg Ser Gin Val Asp Pro Pro Thr Thr Thr Met Gin Arg Leu 125 130 135 <br><br> Lys Ala Leu Thr Thr Gly Ser Leu Pro Thr Phe Ile Asp Ala Gly 140 145 150 <br><br> Ser Asn Phe Ala Ser His Ala Ile Val Glu Asp Asn Leu Ile Lys 155 160 165 <br><br> Gin Leu Thr Ser Ala Gly Arg Arg Val Val Phe Met Gly Asp Asp <br><br> 199 <br><br> 170 <br><br> 175 <br><br> 180 <br><br> Thr Trp Lys Asp Leu Phe Pro Gly Ala Phe Ser Lys Ala Phe Phe 185 190 195 <br><br> Phe Pro Ser Phe Asn Val Arg Asp Leu Asp Thr Val Asp Asn Gly 200 205 210 <br><br> Ile Leu Glu His Leu Tyr Pro Thr Met Asp Ser Gly Glu Trp Asp 215 220 225 <br><br> Val Leu Ile Ala His Phe Leu Gly Val Asp His Cys Gly His Lys 230 235 240 <br><br> His Gly Pro His His Pro Glu Met Ala Lys Lys Leu Ser Gin Met 245 250 255 <br><br> Asp Gin Val Ile Gin Gly Leu Val Glu Arg Leu Glu Asn Asp Thr 260 265 270 <br><br> Leu Leu Val Val Ala Gly Asp His Gly Met Thr Thr Asn Gly Asp 275 280 285 <br><br> His Gly Gly Asp Ser Glu Leu Glu Val Ser Ala Ala Leu Phe Leu 290 295 300 <br><br> Tyr Ser Pro Thr Ala Val Phe Pro Ser Thr Pro Pro Glu Glu Pro 305 310 315 <br><br> Glu Val Ile Pro Gin Val Ser Leu Val Pro Thr Leu Ala Leu Leu 320 325 330 <br><br> Leu Gly Leu Pro Ile Pro Phe Gly Asn Ile Gly Glu Val Met Ala 335 340 345 <br><br> Glu Leu Phe Ser Gly Gly Glu Asp Ser Gin Pro His Ser Ser Ala 350 355 360 <br><br> Leu Ala Gin Ala Ser Ala Leu His Leu Asn Ala Gin Gin Val Ser <br><br> 365 370 375 <br><br> Arg Phe Leu His Thr Tyr Ser Ala Ala Thr Gin Asp Leu Gin Ala 380 385 390 <br><br> Lys Glu Leu His Gin Leu Gin Asn Leu Phe Ser Lys Ala Ser Ala 395 400 405 <br><br> Asp Tyr Gin Trp Leu Leu Gin Ser Pro Lys Gly Ala Glu Ala Thr 410 415 420 <br><br> Leu Pro Thr Val Ile Ala Glu Leu Gin Gin Phe Leu Arg Gly Ala 425 430 , 435 <br><br> Arg Ala Met Cys Ile Glu Ser Trp Ala Arg Phe Ser Leu Val Arg <br><br> 200 <br><br> 440 <br><br> 445 <br><br> 450 <br><br> Met Ala Gly Gly Thr Ala Leu Leu Ala Ala Ser Cys Phe Ile Cys 455 460 465 <br><br> Leu Leu Ala Ser Gin Trp Ala Ile Ser Pro Gly Phe Pro Phe Cys 470 475 480 <br><br> Pro Leu Leu Leu Thr Pro Val Ala Trp Gly Leu Val Gly Ala Ile 485 490 495 <br><br> Ala Tyr Ala Gly Leu Leu Gly Thr Ile Glu Leu Lys Leu Asp Leu 500 505 510 <br><br> Val Leu Leu Gly Ala Val Ala Ala Val Ser Ser Phe Leu Pro Phe 515 520 525 <br><br> Leu Trp Lys Ala Trp Ala Gly Trp Gly Ser Lys Arg Pro Leu Ala 530 535 540 <br><br> Thr Leu Phe Pro Ile Pro Gly Pro Val Leu Leu Leu Leu Leu Phe 545 550 555 <br><br> Arg Leu Ala Val Phe Phe Ser Asp Ser Phe Val Val Ala Glu Ala 560 565 570 <br><br> Arg Ala Thr Pro Phe Leu Leu Gly Ser Phe Ile Leu Leu Leu Val 575 580 585 <br><br> Val Gin Leu His Trp Glu Gly Gin Leu Leu Pro Pro Lys Leu Leu 590 595 600 <br><br> Thr Met Pro Arg Leu Gly Thr Ser Ala Thr Thr Asn Pro Pro Arg 605 610 615 <br><br> His Asn Gly Ala Tyr Ala Leu Arg Leu Gly Ile Gly Leu Leu Leu 620 625 630 <br><br> Cys Thr Arg Leu Ala Gly Leu Phe His Arg Cys Pro Glu Glu Thr 635 640 645 <br><br> Pro Val Cys His Ser Ser Pro Trp Leu Ser Pro Leu Ala Ser Met 650 655 660 <br><br> Val Gly Gly Arg Ala Lys Asn Leu Trp Tyr Gly Ala Cys Val Ala 665 670 675 <br><br> Ala Leu Val Ala Leu Leu Ala Ala Val Arg Leu Trp Leu Arg Arg 680 685 690 <br><br> Tyr Gly Asn Leu Lys Ser Pro Glu Pro Pro Met Leu Phe Val Arg 695 700 705 <br><br> Trp Gly Leu Pro Leu Met Ala Leu Gly Thr Ala Ala Tyr Trp Ala 710 715 720 <br><br> 201 <br><br> Leu Ala Ser Gly Ala Asp Glu Ala Pro Pro Arg Leu Arg Val Leu 725 730 735 <br><br> Val Ser Gly Ala Ser Met Val Leu Pro Arg Ala Val Ala Gly Leu 740 745 750 <br><br> Ala Ala Ser Gly Leu Ala Leu Leu Leu Trp Lys Pro Val Thr Val 755 760 765 <br><br> Leu Val Lys Ala Gly Ala Gly Ala Pro Arg Thr Arg Thr Val Leu 770 775 780 <br><br> Thr Pro Phe Ser Gly Pro Pro Thr Ser Gin Ala Asp Leu Asp Tyr 785 790 795 <br><br> Val Val Pro Gin Ile Tyr Arg His Met Gin Glu Glu Phe Arg Gly 800 805 810 <br><br> Arg Leu Glu Arg Thr Lys Ser Gin Gly Pro Leu Thr Val Ala Ala 815 820 825 <br><br> Tyr Gin Leu Gly Ser Val Tyr Ser Ala Ala Met Val Thr Ala Leu 830 835 840 <br><br> Thr Leu Leu Ala Phe Pro Leu Leu Leu Leu His Ala Glu Arg Ile 845 850 855 <br><br> Ser Leu Val Phe Leu Leu Leu Phe Leu Gin Ser Phe Leu Leu Leu 860 865 870 <br><br> His Leu Leu Ala Ala Gly Ile Pro Val Thr Thr Pro Gly Pro Phe 875 880 885 <br><br> Thr Val Pro Trp Gin Ala Val Ser Ala Trp Ala Leu Met Ala Thr 890 895 900 <br><br> Gin Thr Phe Tyr Ser Thr Gly His Gin Pro Val Phe Pro Ala Ile 905 910 915 <br><br> His Trp His Ala Ala Phe Val Gly Phe Pro Glu Gly His Gly Ser 920 925 930 <br><br> Cys Thr Trp Leu Pro Ala Leu Leu Val Gly Ala Asn Thr Phe Ala 935 940 945 <br><br> Ser His Leu Leu Phe Ala Val Gly Cys Pro Leu Leu Leu Leu Trp 950 955 960 <br><br> Pro Phe Leu Cys Glu Ser Gin Gly Leu Arg Lys Arg Gin Gin Pro 965 970 975 <br><br> Pro Gly Asn Glu Ala Asp Ala Arg Val Arg Pro Glu Glu Glu Glu 980 985 990 <br><br> 202 <br><br> Glu Pro Leu Met Glu Met Arg Leu Arg Asp Ala Pro Gin His Phe 995 1000 1005 <br><br> Tyr Ala Ala Leu Leu Gin Leu Gly Leu Lys Tyr Leu Phe Ile Leu 1010 1015 1020 <br><br> Gly Ile Gin Ile Leu Ala Cys Ala Leu Ala Ala Ser Ile Leu Arg 1025 1030 1035 <br><br> Arg His Leu Met Val Trp Lys Val Phe Ala Pro Lys Phe Ile Phe 1040 1045 1050 <br><br> Glu Ala Val Gly Phe Ile Val Ser Ser Val Gly Leu Leu Leu Gly 1055 1060 1065 <br><br> Ile Ala Leu Val Met Arg Val Asp Gly Ala Val Ser Ser Trp Phe 1070 1075 1080 <br><br> Arg Gin Leu Phe Leu Ala Gin Gin Arg 1085 <br><br> &lt;210&gt; 103 &lt;211&gt; 1743 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 103 <br><br> tgccgctgcc gccgctgctg ctgttgctcc tggcggcgcc ttggggacgg 50 gcagttccct gtgtctctgg tggtttgcct aaacctgcaa acatcacctt 100 cttatccatc aacatgaaga atgtcctaca atggactcca ccagagggtc 150 ttcaaggagt taaagttact tacactgtgc agtatttcat cacaaattgg 200 cccaccagag gtggcactga ctacagatga gaagtccatt tctgttgtcc 250 tgacagctcc agagaagtgg aagagaaatc cagaagacct tcctgtttcc 300 atgcaacaaa tatactccaa tctgaagtat aacgtgtctg tgttgaatac 3 50 taaatcaaac agaacgtggt cccagtgtgt gaccaaccac acgctggtgc 400 tcacctggct ggagccgaac actctttact gcgtacacgt ggagtccttc 450 gtcccagggc cccctcgccg tgctcagcct tctgagaagc agtgtgccag 500 gactttgaaa gatcaatcat cagagttcaa ggctaaaatc atcttctggt 550 atgttttgcc catatctatt accgtgtttc ttttttctgt gatgggctat 600 tccatctacc gatatatcca cgttggcaaa gagaaacacc cagcaaattt 650 gattttgatt tatggaaatg aatttgacaa aagattcttt gtgcctgctg 700 <br><br> 203 <br><br> aaaaaatcgt gattaacttt atcaccctca atatctcgga tgattctaaa 750 atttctcatc aggatatgag tttactggga aaaagcagtg atgtatccag 800 ccttaatgat cctcagccca gcgggaacct gaggccccct caggaggaag 850 aggaggtgaa acatttaggg tatgcttcgc atttgatgga aattttttgt 900 <br><br> gactctgaag aaaacacgga aggtacttct ctcacccagc aagagtccct 950 <br><br> cagcagaaca atacccccgg ataaaacagt cattgaatat gaatatgatg 1000 <br><br> tcagaaccac tgacatttgt gcggggcctg aagagcagga gctcagtttg 1050 <br><br> caggaggagg tgtccacaca aggaacatta ttggagtcgc aggcagcgtt 1100 <br><br> ggcagtcttg ggcccgcaaa cgttacagta ctcatacacc cctcagctcc 1150 <br><br> aagacttaga ccccctggcg caggagcaca cagactcgga ggaggggccg 12 00 <br><br> gaggaagagc catcgacgac cctggtcgac tgggatcccc aaactggcag 1250 <br><br> gctgtgtatt ccttcgctgt ccagcttcga ccaggattca gagggctgcg 13 00 <br><br> agccttctga gggggatggg ctcggagagg agggtcttct atctagactc 13 50 <br><br> tatgaggagc cggctccaga caggccacca ggagaaaatg aaacctatct 1400 <br><br> catgcaattc atggaggaat gggggttata tgtgcagatg gaaaactgat 1450 <br><br> gccaacactt ccttttgcct tttgtttcct gtgcaaacaa gtgagtcacc 1500 <br><br> cctttgatcc cagccataaa gtacctggga tgaaagaagt tttttccagt 1550 <br><br> ttgtcagtgt ctgtgagaat tacttatttc ttttctctat tctcatagca 1600 <br><br> cgtgtgtgat tggttcatgc atgtaggtct cttaacaatg atggtgggcc 1650 <br><br> tctggagtcc aggggctggc cggttgttct atgcagagaa agcagtcaat 17 00 <br><br> aaatgtttgc cagactgggt gcagaattta ttcaggtggg tgt 1743 <br><br> &lt;210&gt; 104 &lt;211&gt; 442 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 104 <br><br> Met Ser Tyr Asn Gly Leu His Gin Arg Val Phe Lys Glu Leu Lys 1 5 10 15 <br><br> Leu Leu Thr Leu Cys Ser Ile Ser Ser Gin Ile Gly Pro Pro Glu 20 25 30 <br><br> Val Ala Leu Thr Thr Asp Glu Lys Ser Ile Ser Val Val Leu Thr <br><br> 204 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> Ala Pro Glu Lys Trp Lys Arg Asn Pro Glu Asp Leu Pro Val Ser 50 55 60 <br><br> Met Gin Gin Ile Tyr Ser Asn Leu Lys Tyr Asn Val Ser Val Leu 65 70 75 <br><br> Asn Thr Lys Ser Asn Arg Thr Trp Ser Gin Cys Val Thr Asn His 80 85 90 <br><br> Thr Leu Val Leu Thr Trp Leu Glu Pro Asn Thr Leu Tyr Cys Val 95 100 105 <br><br> His Val Glu Ser Phe Val Pro Gly Pro Pro Arg Arg Ala Gin Pro 110 115 120 <br><br> Ser Glu Lys Gin Cys Ala Arg Thr Leu Lys Asp Gin Ser Ser Glu 125 130 135 <br><br> Phe Lys Ala Lys Ile Ile Phe Trp Tyr Val Leu Pro Ile Ser Ile 140 145 150 <br><br> Thr Val Phe Leu Phe Ser Val Met Gly Tyr Ser Ile Tyr Arg Tyr 155 160 165 <br><br> Ile His Val Gly Lys Glu Lys His Pro Ala Asn Leu Ile Leu Ile 170 175 180 <br><br> Tyr Gly Asn Glu Phe Asp Lys Arg Phe Phe Val Pro Ala Glu Lys 185 190 195 <br><br> Ile Val Ile Asn Phe Ile Thr Leu Asn Ile Ser Asp Asp Ser Lys 200 205 210 <br><br> Ile Ser His Gin Asp Met Ser Leu Leu Gly Lys Ser Ser Asp Val 215 220 225 <br><br> Ser Ser Leu Asn Asp Pro Gin Pro Ser Gly Asn Leu Arg Pro Pro 230 235 240 <br><br> Gin Glu Glu Glu Glu Val Lys His Leu Gly Tyr Ala Ser His Leu 245 250 255 <br><br> Met Glu Ile Phe Cys Asp Ser Glu Glu Asn Thr Glu Gly Thr Ser 260 265 270 <br><br> Leu Thr Gin Gin Glu Ser Leu Ser Arg Thr Ile Pro Pro Asp Lys 275 280 285 <br><br> Thr Val Ile Glu Tyr Glu Tyr Asp Val Arg Thr Thr Asp Ile Cys 290 295 300 <br><br> Ala Gly Pro Glu Glu Gin Glu Leu Ser Leu Gin Glu Glu Val Ser 305 310 315 <br><br> 205 <br><br> Thr Gin Gly Thr Leu Leu Glu Ser Gin Ala Ala Leu Ala Val Leu 320 325 330 <br><br> Gly Pro Gin Thr Leu Gin Tyr Ser Tyr Thr Pro Gin Leu Gin Asp 335 340 345 <br><br> Leu Asp Pro Leu Ala Gin Glu His Thr Asp Ser Glu Glu Gly Pro 350 355 360 <br><br> Glu Glu Glu Pro Ser Thr Thr Leu Val Asp Trp Asp Pro Gin Thr 365 370 375 <br><br> Gly Arg Leu Cys Ile Pro Ser Leu Ser Ser Phe Asp Gin Asp Ser 38&amp; 385 390 <br><br> Glu Gly Cys Glu Pro Ser Glu Gly Asp Gly Leu Gly Glu Glu Gly 395 400 405 <br><br> Leu Leu Ser Arg Leu Tyr Glu Glu Pro Ala Pro Asp Arg Pro Pro 410 415 420 <br><br> Gly Glu Asn Glu Thr Tyr Leu Met Gin Phe Met Glu Glu Trp Gly 425 430 435 <br><br> Leu Tyr Val Gin Met Glu Asn 440 <br><br> &lt;210&gt; 105 &lt;211&gt; 21 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;22 0&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 105 cgctgctgct gttgctcctg g 21 <br><br> &lt;210&gt; 106 &lt;211&gt; 18 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 106 cagtgtgcca ggactttg 18 <br><br> &lt;210&gt; 107 &lt;211&gt; 18 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> 206 <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 107 agtcgcaggc agcgttgg 18 <br><br> &lt;210&gt; 108 &lt;211&gt; 25 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 108 ctcctccgag tctgtgtgct cctgc 25 <br><br> &lt;210&gt; 109 &lt;211&gt; 51 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 109 <br><br> ggacgggcag ttccctgtgt ctctggtggt ttgcctaaac ctgcaaacat 50 <br><br> c 51 <br><br> &lt;210&gt; 110 &lt;211&gt; 1114 &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 110 <br><br> cggacgcgtg ggcggacgcg tgggcggacg cgtgggtctc tgcggggaga 50 cgccagcctg cgtctgccat ggggctcggg ttgaggggct ggggacgtcc 100 tctgctgact gtggccaccg ccctgatgct gcccgtgaag ccccccgcag 150 gctcctgggg ggcccagatc atcgggggcc acgaggtgac cccccactcc 200 aggccctaca tggcatccgt gcgcttcggg ggccaacatc actgcggagg 250 cttcctgctg cgagcccgct gggtggtctc ggccgcccac tgcttcagcc 300 acagagacct ccgcactggc ctggtggtgc tgggcgccca cgtcctgagt 350 actgcggagc ccacccagca ggtgtttggc atcgatgctc tcaccacgca 400' ccccgactac caccccatga cccacgccaa cgacatctgc ctgctgcggc 450 tgaacggctc tgctgtcctg ggccctgcag tggggctgct gaggctgcca 500 <br><br> 207 <br><br> gggagaaggg ccaggccccc 'cacagcgggg acacggtgcc gggtggctgg 550 <br><br> ctggggcttc gtgtctgact ttgaggagct gccgcctgga ctgatggagg 600 <br><br> ccaaggtccg agtgctggac ccggacgtct gcaacagctc ctggaagggc 650 <br><br> cacctgacac ttaccatgct ctgcacccgc agtggggaca gccacagacg 700 <br><br> gggcttctgc tcggccgact ccggagggcc cctggtgtgc aggaaccggg 750 <br><br> ctcacggcct cgtttccttc tcgggcctct ggtgcggcga ccccaagacc 800 <br><br> cccgacgtgt acacgcaggt gtccgccttt gtggcctgga tctgggacgt 850 <br><br> ggttcggcgg agcagtcccc agcccggccc cctgcctggg accaccaggc 900 <br><br> ccccaggaga agccgcctga gccacaacct tgcggcatgc aaatgagatg 950 <br><br> gccgctccag gcctggaatg ttccgtggct gggccccacg ggaagcctga 1000 <br><br> tgttcagggt tggggtggga cgggcagcgg tggggcacac ccattccaca 1050 <br><br> tgcaaagggc agaagcaaac ccagtaaaat gttaactgac aaaaaaaaaa 1100 <br><br> aaaaaaaaaa gaaa 1114 <br><br> &lt;210&gt; 111 &lt;211&gt; 283 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 111 <br><br> Met Gly Leu Gly Leu Arg Gly Trp Gly Arg Pro Leu Leu Thr Val 15 10 15 <br><br> Ala Thr Ala Leu Met Leu Pro Val Lys Pro Pro Ala Gly Ser Trp 20 25 30 <br><br> Gly Ala Gin Ile Ile Gly Gly His Glu Val Thr Pro His Ser Arg 35 40 45 <br><br> Pro Tyr Met Ala Ser Val Arg Phe Gly Gly Gin His His Cys Gly 50 55 60 <br><br> Gly Phe Leu Leu Arg Ala Arg Trp Val Val Ser Ala Ala His Cys 65 70 75 <br><br> Phe Ser His Arg Asp Leu Arg Thr Gly Leu Val Val Leu Gly Ala 80 85 90 <br><br> His Val Leu Ser Thr Ala Glu Pro Thr Gin Gin Val Phe Gly Ile 95 100 105 <br><br> Asp Ala Leu Thr Thr His Pro Asp Tyr His Pro Met Thr His Ala 110 115 120 <br><br> 208 <br><br> Asn Asp Ile Cys Leu Leu Arg Leu Asn Gly Ser Ala Val Leu Gly <br><br> 125 130 135 <br><br> Pro Ala Val Gly Leu Leu Arg Leu Pro Gly Arg Arg Ala Arg Pro <br><br> 140 145 150 <br><br> Pro Thr Ala Gly Thr Arg Cys Arg Val Ala Gly Trp Gly Phe Val <br><br> 155 160 165 <br><br> Ser Asp Phe Glu Glu Leu Pro Pro Gly Leu Met Glu Ala Lys Val <br><br> 170 175 180 <br><br> Arg Val Leu Asp Pro Asp Val Cys Asn Ser Ser Trp Lys Gly His <br><br> 185 190 195 <br><br> Leu Thr Leu Thr Met Leu Cys Thr Arg Ser Gly Asp Ser His Arg <br><br> 200 205 210 <br><br> Arg Gly Phe Cys Ser Ala Asp Ser Gly Gly Pro Leu Val Cys Arg <br><br> 215 220 225 <br><br> Asn Arg Ala His Gly Leu Val Ser Phe Ser Gly Leu Trp Cys Gly <br><br> 230 235 240 <br><br> Asp Pro Lys Thr Pro Asp Val Tyr Thr Gin Val Ser Ala Phe Val <br><br> 245 250 255 <br><br> Ala Trp Ile Trp Asp Val Val Arg Arg Ser Ser Pro Gin Pro Gly <br><br> 260 265 270 <br><br> Pro Leu Pro Gly Thr Thr Arg Pro Pro Gly Glu Ala Ala <br><br> 275 280 <br><br> &lt;210&gt; 112 &lt;211&gt; 24 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence <br><br> &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 112 gacgtctgca acagctcctg gaag 24 <br><br> &lt;210&gt; 113 &lt;211&gt; 23 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 113 cgagaaggaa acgaggccgt gag 23 <br><br> &lt;210&gt; 114 <br><br> 209 <br><br> &lt;211&gt; 44 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 114 <br><br> tgacacttac catgctctgc acccgcagtg gggacagcca caga 44 <br><br> &lt;210&gt; 115 &lt;211&gt; 1808 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 115 <br><br> gagctaccca ggcggctggt gtgcagcaag ctccgcgccg actccggacg 50 cctgacgcct gacgcctgtc cccggcccgg catgagccgc tacctgctgc 100 cgctgtcggc gctgggcacg gtagcaggcg ccgccgtgct gctcaaggac 150 tatgtcaccg gtggggcttg ccccagcaag gccaccatcc ctgggaagac 200 ggtcatcgtg acgggcgcca acacaggcat cgggaagcag accgccttgg 250 aactggccag gagaggaggc aacatcatcc tggcctgccg agacatggag 3 00 aagtgtgagg cggcagcaaa ggacatccgc ggggagaccc tcaatcacca 350 tgtcaacgcc cggcacctgg acttggcttc cctcaagtct atccgagagt 4 00 ttgcagcaaa gatcattgaa gaggaggagc gagtggacat tctaatcaac 450 aacgcgggtg tgatgcggtg cccccactgg accaccgagg acggcttcga 500 gatgcagttt ggcgttaacc acctgggtca ctttctcttg acaaacttgc 550 tgctggacaa gctgaaagcc tcagcccctt cgcggatcat caacctctcg 600 tccctggccc atgttgctgg gcacatagac tttgacgact tgaactggca 650 gacgaggaag tataacacca aagccgccta ctgccagagc aagctcgcca 700 tcgtcctctt caccaaggag ctgagccggc ggctgcaagg ctctggtgtg 750 actgtcaacg ccctgcaccc cggcgtggcc aggacagagc tgggcagaca 800 cacgggcatc catggctcca ccttctccag caccacactc gggcccatct 850 tctggctgct ggtcaagagc cccgagctgg ccgcccagcc cagcacatac 900 ctggccgtgg cggaggaact ggcggatgtt tccggaaagt acttcgatgg 950 actcaaacag aaggccccgg cccccgaggc tgaggatgag gaggtggccc 1000 <br><br> 210 <br><br> ggaggctttg ggctgaaagt gcccgcctgg tgggcttaga ggctccctct 1050 <br><br> gtgagggagc agcccctccc cagataacct ctggagcaga tttgaaagcc 1100 <br><br> aggatggcgc ctccagaccg aggacagctg tccgccatgc ccgcagcttc 1150 <br><br> ctggcactac ctgagccggg agacccagga ctggcggccg ccatgcccgc 12 00 <br><br> agtaggttct agggggcggt gctggccgca gtggactggc ctgcaggtga 1250 <br><br> gcactgcccc gggctctggc tggttccgtc tgctctgctg ccagcagggg 1300 <br><br> agaggggcca tctgatgctt cccctgggaa tctaaactgg gaatggccga 1350 <br><br> ggaggaaggg gctctgtgca cttgcaggcc acgtcaggag agccagcggt 1400 <br><br> gcctgtcggg gagggttcca aggtgctccg tgaagagcat gggcaagttg 1450 <br><br> tctgacactt ggtggattct tgggtccctg tgggaccttg tgcatgcatg 1500 <br><br> gtcctctctg agccttggtt tcttcagcag tgagatgctc agaataactg 1550 <br><br> ctgtctccca tgatggtgtg gtacagcgag ctgttgtctg gctatggcat 1600 <br><br> ggctgtgccg ggggtgtttg ctgagggctt cctgtgccag agcccagcca 1650 <br><br> gagagcaggt gcaggtgtca tcccgagttc aggctctgca cggcatggag 17 00 <br><br> tgggaacccc accagctgct gctacaggac ctgggattgc ctgggactcc 1750 <br><br> caccttccta tcaattctca tggtagtcca aactgcagac tctcaaactt 1800 <br><br> gctcattt 1808 <br><br> &lt;210&gt; 116 &lt;211&gt; 331 &lt;212&gt; PRT &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 116 <br><br> Met Ser Arg Tyr Leu Leu Pro Leu Ser Ala Leu Gly Thr Val Ala 15 10 15 <br><br> Gly Ala Ala Val Leu Leu Lys Asp Tyr Val Thr Gly Gly Ala Cys 20 • 25 30 <br><br> Pro Ser Lys Ala Thr Ile Pro Gly Lys Thr Val Ile Val Thr Gly 35 40 45 <br><br> Ala Asn Thr Gly Ile Gly Lys Gin Thr Ala Leu Glu Leu Ala Arg 50 55 60 <br><br> Arg Gly Gly Asn Ile Ile Leu Ala Cys Arg Asp Met Glu Lys Cys 65 70 75 <br><br> 211 <br><br> Glu Ala Ala Ala Lys Asp Ile Arg Gly Glu Thr Leu Asn His His 80 85 90 <br><br> Val Asn Ala Arg His Leu Asp Leu Ala Ser Leu Lys Ser Ile Arg 95 100 105 <br><br> Glu Phe Ala Ala Lys Ile Ile Glu Glu Glu Glu Arg Val Asp Ile 110 115 120 <br><br> Leu Ile Asn Asn Ala Gly Val Met Arg Cys Pro His Trp Thr Thr 125 130 135 <br><br> Glu Asp Gly Phe Glu Met Gin Phe Gly Val Asn His Leu Gly His 140 145 150 <br><br> Phe Leu Leu Thr Asn Leu Leu Leu Asp Lys Leu Lys Ala Ser Ala 155 160 165 <br><br> Pro Ser Arg Ile Ile Asn Leu Ser Ser Leu Ala His Val Ala Gly 170 175 180 <br><br> His Ile Asp Phe Asp Asp Leu Asn Trp Gin Thr Arg Lys Tyr Asn 185 190 195 <br><br> Thr Lys Ala Ala Tyr Cys Gin Ser Lys Leu Ala Ile Val Leu Phe 200 205 210 <br><br> Thr Lys Glu Leu Ser Arg Arg Leu Gin Gly Ser Gly Val Thr Val 215 220 225 <br><br> Asn Ala Leu His Pro Gly Val Ala Arg Thr Glu Leu Gly Arg His 230 235 240 <br><br> Thr Gly Ile His Gly Ser Thr Phe Ser Ser Thr Thr Leu Gly Pro 245 250 255 <br><br> Ile Phe Trp Leu Leu Val Lys Ser Pro Glu Leu Ala Ala Gin Pro 260 265 270 <br><br> Ser Thr Tyr Leu Ala Val Ala Glu Glu Leu Ala Asp Val Ser Gly 275 280 285 <br><br> Lys Tyr Phe Asp Gly Leu Lys Gin Lys Ala Pro Ala Pro Glu Ala 290 295 300 <br><br> Glu Asp Glu Glu Val Ala Arg Arg Leu Trp Ala Glu Ser Ala Arg 305 310 315 <br><br> Leu Val Gly Leu Glu Ala Pro Ser Val Arg Glu Gin Pro Leu Pro 320 325 330 <br><br> Arg <br><br> &lt;210&gt; 117 <br><br> 212 <br><br> &lt;211&gt; 2249 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 117 <br><br> gaagttcgcg agcgctggca tgtggtcctg gggcgcggct ggcggcgctg 50 ctggcggtgc tggcgctcgg gacaggagac ccagaaaggg ctgcggctcg 100 gggcgacacg ttctcggcgc tgaccagcgt ggcgcgcgcc ctggcgcccg 150 agcgccggct gctggggctg ctgaggcggt acctgcgcgg ggaggaggcg 2 00 cggctgcggg acctgactag attctacgac aaggtacttt ctttgcatga 2 50 ggattcaaca acccctgtgg ctaaccctct gcttgcattt actctcatca 300 <br><br> aacgcctgca gtctgactgg aggaatgtgg tacatagtct ggaggccagt 350 gagaacatcc gagctctgaa ggatggctat gagaaggtgg agcaagacct 400 tccagccttt gaggaccttg agggagcagc aagggccctg atgcggctgc 450 <br><br> aggacgtgta catgctcaat gtgaaaggcc tggcccgagg tgtctttcag 500 <br><br> agagtcactg gctctgccat cactgacctg tacagcccca aacggctctt 550 <br><br> ttctctcaca ggggatgact gcttccaagt tggcaaggtg gcctatgaca 600 <br><br> tgggggatta ttaccatgcc attccatggc tggaggaggc tgtcagtctc 650 <br><br> ttccgaggat cttacggaga gtggaagaca gaggatgagg caagtctaga 7 00 <br><br> agatgccttg gatcacttgg cctttgctta tttccgggca ggaaatgttt 750 <br><br> cgtgtgccct cagcctctct cgggagtttc ttctctacag cccagataat 800 <br><br> aagaggatgg ccaggaatgt cttgaaatat gaaaggctct tggcagagag 850 ccccaaccac gtggtagctg aggctgtcat ccagaggccc aatatacccc 900 <br><br> acctgcagac cagagacacc tacgaggggc tatgtcagac cctgggttcc 950 <br><br> cagcccactc tctaccagat ccctagcctc tactgttcct atgagaccaa 1000 <br><br> ttccaacgcc tacctgctgc tccagcccat ccggaaggag gtcatccacc 1050 <br><br> tggagcccta cattgctctc taccatgact tcgtcagtga ctcagaggct 1100 <br><br> cagaaaatta gagaacttgc agaaccatgg ctacagaggt cagtggtggc 1150 <br><br> atcaggggag aagcagttac aagtggagta ccgcatcagc aaaagtgcct 1200 <br><br> ggctgaagga cactgttgac ccaaaactgg tgaccctcaa ccaccgcatt 1250 <br><br> 213 <br><br> gctgccctca caggccttga tgtccggcct ccctatgcag agtatctgca 1300 <br><br> ggtggtgaac tatggcatcg gaggacacta tgagcctcac tttgaccatg 1350 <br><br> ctacgtcacc aagcagcccc ctctacagaa tgaagtcagg aaaccgagtt 1400 <br><br> gcaacattta tgatctatct gagctcggtg gaagctggag gagccacagc 1450 <br><br> cttcatctat gccaacctca gcgtgcctgt ggttaggaat gcagcactgt 1500 <br><br> tttggtggaa cctgcacagg agtggtgaag gggacagtga cacacttcat 1550 <br><br> gctggctgtc ctgtcctggt gggagataag tgggtggcca acaagtggat 1600 <br><br> acatgagtat ggacaggaat tccgcagacc ctgcagctcc agccctgaag 1650 <br><br> actgaactgt tggcagagag aagctggtgg agtcctgtgg ctttccagag 1700 <br><br> aagccaggag ccaaaagctg gggtaggaga ggagaaagca gagcagcctc 1750 <br><br> ctggaagaag gccttgtcag ctttgtctgt gcctcgcaaa tcagaggcaa 1800 <br><br> gggagaggtt gttaccaggg gacactgaga atgtacattt gatctgcccc 1850 <br><br> agccacggaa gtcagagtag gatgcacagt acaaaggagg ggggagtgga 1900 <br><br> ggcctgagag ggaagtttct ggagttcaga tactctctgt tgggaacagg 1950 <br><br> acatctcaac agtctcaggt tcgatcagtg ggtcttttgg cactttgaac 2 000 <br><br> cttgaccaca gggaccaaga agtggcaatg aggacacctg caggaggggc 2050 <br><br> tagcctgact cccagaactt taagactttc tccccactgc cttctgctgc 2100 <br><br> agcccaagca gggagtgtcc ccctcccaga agcatatccc agatgagtgg 2150 <br><br> tacattatat aaggattttt tttaagttga aaacaacttt cttttctttt 2200 <br><br> tgtatgatgg ttttttaaca cagtcattaa aaatgtttat aaatcaaaa 2249 <br><br> &lt;210&gt; 118 &lt;211&gt; 544 &lt;212&gt; PRT &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 118 <br><br> Met Gly Pro Gly Ala Arg Leu Ala Ala Leu Leu Ala Val Leu Ala 15 10 15 <br><br> Leu Gly Thr Gly Asp Pro Glu Arg Ala Ala Ala Arg Gly Asp Thr 20 25 30 <br><br> Phe Ser Ala Leu Thr Ser Val Ala Arg Ala Leu Ala Pro Glu Arg 35 40 45 <br><br> Arg Leu Leu Gly Leu Leu Arg Arg Tyr Leu Arg Gly Glu Glu Ala <br><br> 214 <br><br> 50 <br><br> 55 <br><br> 60 <br><br> Arg Leu Arg Asp Leu Thr Arg Phe Tyr Asp Lys Val Leu Ser Leu 65 70 75 <br><br> His Glu Asp Ser Thr Thr Pro Val Ala Asn Pro Leu Leu Ala Phe 80 85 90 <br><br> Thr Leu Ile Lys Arg Leu Gin Ser Asp Trp Arg Asn Val Val His 95 100 105 <br><br> Ser Leu Glu Ala Ser Glu Asn Ile Arg Ala Leu Lys Asp Gly Tyr 110 115 120 <br><br> Glu Lys Val Glu Gin Asp Leu Pro Ala Phe Glu Asp Leu Glu Gly 125 130 135 <br><br> Ala Ala Arg Ala Leu Met Arg Leu Gin Asp Val Tyr Met Leu Asn 140 145 150 <br><br> Val Lys Gly Leu Ala Arg Gly Val Phe Gin Arg Val Thr Gly Ser 155 160 165 <br><br> Ala Ile Thr Asp Leu Tyr Ser Pro Lys Arg Leu Phe Ser Leu Thr 170 175 180 <br><br> Gly Asp Asp Cys Phe Gin Val Gly Lys Val Ala Tyr Asp Met Gly 185 190 195 <br><br> Asp Tyr Tyr His Ala Ile Pro Trp Leu Glu Glu Ala Val Ser Leu 200 205 210 <br><br> Phe Arg Gly Ser Tyr Gly Glu Trp Lys Thr Glu Asp Glu Ala Ser 215 220 225 <br><br> Leu Glu Asp Ala Leu Asp His Leu Ala Phe Ala Tyr Phe Arg Ala 230 235 240 <br><br> Gly Asn Val Ser Cys Ala Leu Ser Leu Ser Arg Glu Phe Leu Leu 245 250 255 <br><br> Tyr Ser Pro Asp Asn Lys Arg Met Ala Arg Asn Val Leu Lys Tyr 260 265 270 <br><br> Glu Arg Leu Leu Ala Glu Ser Pro Asn His Val Val Ala Glu Ala 275 280 285 <br><br> Val Ile Gin Arg Pro Asn Ile Pro His Leu Gin Thr Arg Asp Thr 290 295 300 <br><br> Tyr Glu Gly Leu Cys Gin Thr Leu Gly Ser Gin Pro Thr Leu Tyr 305 310 315 <br><br> Gin Ile Pro Ser Leu Tyr Cys Ser Tyr Glu Thr Asn Ser Asn Ala 320 325 330 <br><br> 215 <br><br> Tyr Leu Leu Leu Gin Pro Ile Arg Lys Glu Val Ile His Leu Glu 335 340 345 <br><br> Pro Tyr Ile Ala Leu Tyr His Asp Phe Val Ser Asp Ser Glu Ala 350 355 360 <br><br> Gin Lys Ile Arg Glu Leu Ala Glu Pro Trp Leu Gin Arg Ser Val 365 370 375 <br><br> Val Ala Ser Gly Glu Lys Gin Leu Gin Val Glu Tyr Arg Ile Ser 380 385 390 <br><br> Lys Ser Ala Trp Leu Lys Asp Thr Val Asp Pro Lys Leu Val Thr 395 400 405 <br><br> Leu Asn His Arg Ile. Ala Ala Leu Thr Gly Leu Asp Val Arg Pro 410 415 420 <br><br> Pro Tyr Ala Glu Tyr Leu Gin Val Val Asn Tyr Gly Ile Gly Gly 425 430 435 <br><br> His Tyr Glu Pro His Phe Asp His Ala Thr Ser Pro Ser Ser Pro 440 445 450 <br><br> Leu Tyr Arg Met Lys Ser Gly Asn Arg Val Ala Thr Phe Met Ile 455 460 465 <br><br> Tyr Leu Ser Ser Val Glu Ala Gly Gly Ala Thr Ala Phe Ile Tyr 470 475 480 <br><br> Ala Asn Leu Ser Val Pro Val Val Arg Asn Ala Ala Leu Phe Trp 485 490 495 <br><br> Trp Asn Leu His Arg Ser Gly Glu Gly Asp Ser Asp Thr Leu His 500 505 510 <br><br> Ala Gly Cys Pro Val Leu Val Gly Asp Lys Trp Val Ala Asn Lys 515 520 525 <br><br> Trp Ile His Glu Tyr Gly Gin Glu Phe Arg Arg Pro Cys Ser Ser 530 535 540 <br><br> Ser Pro Glu Asp <br><br> &lt;210&gt; 119 &lt;211&gt; 23 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 119 <br><br> 216 <br><br> cgggacagga gacccagaaa ggg 23 <br><br> &lt;210&gt; 120 &lt;211&gt; 24 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 120 ggccaagtga tccaaggcat cttc 24 <br><br> &lt;210&gt; 121 &lt;211&gt; 49 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 121 <br><br> ctgcgggacc tgactagatt ctacgacaag gtactttctt tgcatgggg 49 <br><br> &lt;210&gt; 122 &lt;211&gt; 1778 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 122 <br><br> gagataggga gtctgggttt aagttcctgc tccatctcag gagcccctgc 50 tcccacccct aggaagccac cagactccac ggtgtggggc caatcaggtg 100 gaatcggccc tggcaggtgg ggccacgagc gctggctgag ggaccgagcc 150 ggagagcccc ggagcccccg taacccgcgc ggggagcgcc caggatgccg 200 cgcggggact cggagcaggt gcgctactgc gcgcgcttct cctacctctg 250 gctcaagttt tcacttatca tctattccac cgtgttctgg ctgattgggg 300 ccctggtcct gtctgtgggc atctatgcag aggttgagcg gcagaaatat 350 aaaacccttg aaagtgcctt cctggctcca gccatcatcc tcatcctcct 400 gggcgtcgtc atgttcatgg tctccttcat tggtgtgctg gcgtccctcc 450 gtgacaacct gtaccttctc caagcattca tgtacatcct tgggatctgc 500 ctcatcatgg agctcattgg tggcgtggtg gccttgacct tccggaacca 550 gaccattgac ttcctgaacg acaacattcg aagaggaatt gagaactact 600 atgatgatct ggacttcaaa aacatcatgg actttgttca gaaaaagttc 650 <br><br> 217 <br><br> aagtgctgtg gcggggagga ctaccgagat tggagcaaga atcagtacca 7 00 <br><br> cgactgcagt gcccctggac ccctggcctg tggggtgccc tacacctgct 750 <br><br> gcatcaggaa cacgacagaa gttgtcaaca ccatgtgtgg ctacaaaact 800 <br><br> atcgacaagg agcgtttcag tgtgcaggat gtcatctacg tgcggggctg 850 <br><br> caccaacgcc gtgatcatct ggttcatgga caactacacc atcatggcgt 900 <br><br> gcatcctcct gggcatcctg cttccccagt tcctgggggt gctgctgacg 950 <br><br> ctgctgtaca tcacccgggt ggaggacatc atcatggagc actctgtcac 1000 <br><br> tgatgggctc ctggggcccg gtgccaagcc cagcgtggag gcggcaggca 1050 <br><br> cgggatgctg cttgtgctac cccaattagg gcccagcctg ccatggcagc 1100 <br><br> tccaacaagg accgtctggg atagcacctc tcagtcaaca tcgtggggct 1150 <br><br> ggacagggct gcggcccctc tgcccacact cagtactgac caaagccagg 12 00 <br><br> gctgtgtgtg cctgtgtgta ggtcccacgg cctctgcctc cccagggagc 12 50 <br><br> agagcctggg cctcccctaa gaggctttcc ccgaggcagc tctggaatct 13 00 <br><br> gtgcccacct ggggcctggg gaacaaggcc ctcctttctc caggcctggg 1350 <br><br> ctacagggga gggagagcct gaggctctgc tcagggccca tttcatctct 1400 <br><br> ggcagtgcct tggcggtggt attcaaggca gttttgtagc acctgtaatt 1450 <br><br> ggggagaggg agtgtgcccc tcggggcagg agggaagggc atctggggaa 1500 <br><br> gggcaggagg gaagagctgt ccatgcagcc acgcccatgg ccaggttggc 1550 <br><br> ctcttctcag cctcccaggt gccttgagcc ctcttgcaag ggcggctgct 1600 <br><br> tccttgagcc tagttttttt ttacgtgatt tttgtaacat tcattttttt 1650 <br><br> gtacagataa caggagtttc tgactaatca aagctggtat ttccccgcat 1700 <br><br> gtcttattct tgcccttccc ccaaccagtt tgttaatcaa acaataaaaa 1750 <br><br> catgttttgt tttgttttta aaaaaaaa 1778 <br><br> &lt;210&gt; 123 &lt;211&gt; 294 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 123 <br><br> Met Pro Arg Gly Asp Ser Glu Gin Val Arg Tyr Cys Ala Arg Phe 15 10 15 <br><br> Ser Tyr Leu Trp Leu Lys Phe Ser Leu Ile Ile Tyr Ser Thr Val <br><br> 218 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> Phe Trp Leu Ile Gly Ala Leu Val Leu Ser Val Gly Ile Tyr Ala 35 40 45 <br><br> Glu Val Glu Arg Gin Lys Tyr Lys Thr Leu Glu Ser Ala Phe Leu 50 55 60 <br><br> Ala Pro Ala Ile Ile Leu Ile Leu Leu Gly Val Val Met Phe Met 65 70 75 <br><br> Val Ser Phe Ile Gly Val Leu Ala Ser Leu Arg Asp Asn Leu Tyr 80 85 90 <br><br> Leu Leu Gin Ala Phe Met Tyr Ile Leu Gly Ile Cys Leu Ile Met 95 100 105 <br><br> Glu Leu Ile Gly Gly Val Val Ala Leu Thr Phe Arg Asn Gin Thr 110 115 120 <br><br> Ile Asp Phe Leu Asn Asp Asn Ile Arg Arg Gly Ile Glu Asn Tyr 125 130 135 <br><br> Tyr Asp Asp Leu Asp Phe Lys Asn Ile Met Asp Phe Val Gin Lys 140 145 150 <br><br> Lys Phe Lys Cys Cys Gly Gly Glu Asp Tyr Arg Asp Trp Ser Lys 155 160 165 <br><br> Asn Gin Tyr His Asp Cys Ser Ala Pro Gly Pro Leu Ala Cys Gly 170 175 180 <br><br> Val Pro Tyr Thr Cys Cys Ile Arg Asn Thr Thr Glu Val Val Ash 185 190 195 <br><br> Thr Met Cys Gly Tyr Lys Thr Ile Asp Lys Glu Arg Phe Ser Val 200 205 210 <br><br> Gin Asp Val Ile Tyr Val Arg Gly Cys Thr Asn Ala Val Ile Ile <br><br> 215 220 225 <br><br> Trp Phe Met Asp Asn Tyr Thr Ile Met Ala Cys Ile Leu Leu Gly <br><br> 230 235 240 <br><br> Ile Leu Leu Pro Gin Phe Leu Gly Val Leu Leu Thr Leu Leu Tyr <br><br> 245 250 255 <br><br> Ile Thr Arg Val Glu Asp Ile Ile Met Glu His Ser Val Thr Asp <br><br> 260 265 270 <br><br> Gly Leu Leu Gly Pro Gly Ala Lys Pro Ser Val Glu Ala Ala Gly <br><br> 275 280 285 <br><br> Thr Gly Cys Cys Leu Cys Tyr Pro Asn 290 <br><br> 219 <br><br> &lt;210&gt; 124 &lt;211&gt; 25 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 124 <br><br> atcatctatt ccaccgtgtt ctggc 25 <br><br> &lt;210&gt; 125 &lt;211&gt; 25 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 125 gacagagtgc tccatgatga tgtcc 25 <br><br> &lt;210&gt; 126 &lt;211&gt; 50 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 126 <br><br> cctgtctgtg ggcatctatg cagaggttga gcggcagaaa tataaaaccc 50 <br><br> &lt;210&gt; 127 <br><br> &lt;211&gt; 1636 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 127 <br><br> gaggagcggg ccgaggactc cagcgtgccc aggtctggca tcctgcactt 50 gctgccctct gacacctggg aagatggccg gcccgtggac cttcaccctt 100 ctctgtggtt tgctggcagc caccttgatc caagccaccc tcagtcccac 150 tgcagttctc atcctcggcc caaaagtcat caaagaaaag ctgacacagg 2 00 agctgaagga ccacaacgcc accagcatcc tgcagcagct gccgctgctc 250 agtgccatgc gggaaaagcc agccggaggc atccctgtgc tgggcagcct 300 ggtgaacacc gtcctgaagc acatcatctg gctgaaggtc atcacagcta 350 acatcctcca gctgcaggtg aagccctcgg ccaatgacca ggagctgcta 400 <br><br> 220 <br><br> gtcaagatcc ccctggacat ggtggctgga gaccatcgtg gagttccaca tgacgactga tggacaccag tgcaagtggc cccacccgcc accagccatg ggagcctgcg catccaactg ggtgaacgcc ttagctaagc aggtcatgaa ccaatctagt gaaaaaccag ctgtgtcccg ggcatgtatg cagacctcct gcagctggtg cattgaccgt ctggagtttg accttctgta ccattcagct ctacctgggg gccaagttgt accaagtggt tcaataactc tgcagcttcc caacatcccg ttcagcctca tcgtgagtca tggctgctgt gctctctcca gaagaattca cttcctgaga gtgcccatcg gctgaagtca aaaggctgca gataagctgg gatctaccca aggacactcc cgagtttttt atagaccaag ctgatcgtgc tggaagtgtt tccctccagt caccctgggc atcgaagcca gctcggaagc accaacttat actcaacttg aataacatca atgaactctg ggattggctg gttccaacct cactgagatc atccactcca tcctgctgcc gatctggggt cccagtgtca ttggtgaagg gagtcctcac tgaccaagga tgcccttgtg gaaacccagc tctcctgtct cccagtgaag ggaaggctgg gtcccagctg ggagtatggg cctctctgca atcaataaac acttgcctgt <br><br> &lt;210&gt; 128 <br><br> &lt;211&gt; 484 <br><br> &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens ttcaacacgc ccctggtcaa 450 ggcccaagcc accatccgca 500 tggtcctcag tgactgtgcc 550 ctgtataagc tctccttcct 600 cctcctagtg ccatccctgc 650 tgatcgaggc ttccttcaat 700 aaggtgccca tttccctcag 750 tcctgccatc aagggtgaca 800 tggactcaca gggaaaggtg 850 ctgacaatgc ccaccctgga 900 ggacgtggtg aaagctgcag 950 tggtcctgtt ggactctgtg 1000 agcatcgggc tgatcaatga 1050 gatcgtgaag atcctaactc 1100 gccatgccaa ggtggcccaa 1150 gaagccctcc gccctttgtt 1200 tcagttttac accaaaggtg 1250 gctctgatcg gatccagctg 1300 gatgttctga aaaacatcat 1350 gaaccagaat ggcaaattaa 1400 ccttgggatt cgaggcagct 1450 cttactccag cctccttgtg 1500 acttggatgg cagccatcag 1550 tgtgagctct atagaccatc 1600 gaaaaa 1636 <br><br> 221 <br><br> &lt;400&gt; 128 <br><br> Met Ala Gly Pro Trp Thr Phe Thr Leu Leu Cys Gly Leu Leu Ala <br><br> 1 5 10 15 <br><br> Ala Thr Leu Ile Gin Ala Thr Leu Ser Pro Thr Ala Val Leu Ile <br><br> 20 25 30 <br><br> Leu Gly Pro Lys Val Ile Lys Glu Lys Leu Thr Gin Glu Leu Lys <br><br> 35 40 45 <br><br> Asp His Asn Ala Thr Ser Ile Leu Gin Gin Leu Pro Leu Leu Ser <br><br> 50 55 60 <br><br> Ala Met Arg Glu Lys Pro Ala Gly Gly Ile Pro Val Leu Gly Ser <br><br> 65 70 75 <br><br> Leu Val Asn Thr Val Leu Lys His Ile Ile Trp Leu Lys Val Ile <br><br> 80 85 90 <br><br> Thr Ala Asn Ile Leu Gin Leu Gin Val Lys Pro Ser Ala Asn Asp <br><br> 95 100 105 <br><br> Gin Glu Leu Leu Val Lys Ile Pro Leu Asp Met Val Ala Gly Phe <br><br> 110 115 120 <br><br> Asn Thr Pro Leu Val Lys Thr Ile Val Glu Phe His Met Thr Thr <br><br> 125 130 135 <br><br> Glu Ala Gin Ala Thr Ile Arg Met Asp Thr Ser Ala Ser Gly Pro <br><br> 140 145 150 <br><br> Thr Arg Leu Val Leu Ser Asp Cys Ala Thr Ser His Gly Ser Leu <br><br> 155 160 165 <br><br> Arg Ile Gin Leu Leu Tyr Lys Leu Ser Phe Leu Val Asn Ala Leu <br><br> 170 175 180 <br><br> Ala Lys Gin Val Met Asn Leu Leu Val Pro Ser Leu Pro Asn Leu <br><br> 185 190 195 <br><br> Val Lys Asn Gin Leu Cys Pro Val Ile Glu Ala Ser Phe Asn Gly <br><br> 200 205 * 210 <br><br> Met Tyr Ala Asp Leu Leu Gin Leu Val Lys Val Pro Ile Ser Leu <br><br> 215 220 225 <br><br> Ser Ile Asp Arg Leu Glu Phe Asp Leu Leu Tyr Pro Ala Ile Lys <br><br> 230 235 240 <br><br> Gly Asp Thr Ile Gin Leu Tyr Leu Gly Ala Lys Leu Leu Asp Ser <br><br> 245 250 255 <br><br> Gin Gly Lys Val Thr Lys Trp Phe Asn Asn Ser Ala Ala Ser Leu 260 265 270 <br><br> 222 <br><br> Thr Met Pro Thr Leu Asp Asn Ile Pro Phe Ser Leu Ile Val Ser 275 280 285 <br><br> Gin Asp Val Val Lys Ala Ala Val Ala Ala Val Leu Ser Pro Glu 290 295 300 <br><br> Glu Phe Met Val Leu Leu Asp Ser Val Leu Pro Glu Ser Ala His 305 310 315 <br><br> Arg Leu Lys Ser Ser Ile Gly Leu Ile Asn Glu Lys Ala Ala Asp 320 325 330 <br><br> Lys Leu Gly Ser Thr Gin Ile Val Lys Ile Leu Thr Gin Asp Thr 335 340 345 <br><br> Pro Glu Phe Phe Ile Asp Gin Gly His Ala Lys Val Ala Gin Leu 350 355 360 <br><br> Ile Val Leu Glu Val Phe Pro Ser Ser Glu Ala Leu Arg Pro Leu 365 370 375 <br><br> Phe Thr Leu Gly Ile Glu Ala Ser Ser Glu Ala Gin Phe Tyr Thr 380 385 390 <br><br> Lys Gly Asp Gin Leu Ile Leu Asn Leu Asn Asn Ile Ser Ser Asp 395 400 405 <br><br> Arg Ile Gin Leu Met Asn Ser Gly Ile Gly Trp Phe Gin Pro Asp 410 415 420 <br><br> Val Leu Lys Asn Ile Ile Thr Glu Ile Ile His Ser Ile Leu Leu 425 430 435 <br><br> Pro Asn Gin Asn Gly Lys Leu Arg Ser Gly Val Pro Val Ser Leu 440 445 450 <br><br> Val Lys Ala Leu Gly Phe Glu Ala Ala Glu Ser Ser Leu Thr Lys 455 460 465 <br><br> Asp Ala Leu Val Leu Thr Pro Ala Ser Leu Trp Lys Pro Ser Ser 470 475 480 <br><br> Pro Val Ser Gin <br><br> &lt;210&gt; 129 <br><br> &lt;211&gt; 2213 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 129 <br><br> gagcgaacat ggcagcgcgt tggcggtttt ggtgtgtctc tgtgaccatg 50 gtggtggcgc tgctcatcgt ttgcgacgtt ccctcagcct ctgcccaaag 100 <br><br> 223 <br><br> aaagaaggag atggtgttat ctgaaaaggt ctaacaaaag acctgtaata agaatgaatg gtgaaagccc caccgagaaa ttactccgtt ccaactgcat agacagtgtg tcgtttgcaa agatcctggc aaactcctgg cgatactcca ttttttgcca tggtggattt tgatgaaggc aaacatgaat tcagctccaa ctttcatcaa ccaaacgggg tgatacatat gagttacagg cagattgccc ggtggatcgc cgacagaact tagaccccca aattatgctg gtccccttat ttattggtgg acttgtgtat cttcgaagaa aataaaactg gatgggcttt tgcagctttg atctggtcaa atgtggaacc atataagagg atccccacac gggacatgtg aattatatcc tttgtagctg aaacacacat tgttcttctg aggaatggtg cttttatgtg aagctgctac agcgaaagat aatgtgtgtg gctggtattg agttggatgc tctctatttt tagatctaaa ctttctgatg agttaaaaag gtcccagaga ggaaattgaa aaacgaaaat cgtgtgtgtt gtatattttg tattacctct ttttttcaag ttaaccaaag aagatgtgta gtgccttaac ctgaggtatt tgaaaataat tatcctctta tttatggaac atttaattta gtacaattaa aactactact ttgttttagt tagaacaaag cttggtcatc tgattttata ttgccttatc cctgaccagg tgttcccaca tatgcctgtt ttcattctta gcttcttcat ctttgtgtgg tagtcagctg atggaatgga 150 gagacaagtt ccgtcgcctt 2 00 atcgtcatgt tcactgctct 250 gcaagctgat gaagaattcc 3 00 gtgcattcac caacaggata 350 tctgatgtat ttcagatgct 400 ctttcctgca aaagggaaac 450 tgcggggttt ttcagctgag 500 gatgtcaata ttagagtgat 550 gttgggattg cttttggctg 600 gtaatatgga atttctcttt 650 tgttttgtgc ttgctatgac 7 00 accaccatat gcccataaga 750 atggaagcag tcaagcccag 800 tttaatggtg gagttacctt 850 ctctgacatg gatattggaa 900 gacttgttgt attattcttc 950 tatcatggct acccatacag 1000 tatatagaca ctggagtact 1050 tgaaaagaag aatgcaactt 1100 tgatttaaat agttaatcat 1150 <br><br> aagcaatcct ctgtcaaaat 12 00 accttctctt cccagtgaac 1250 gtatattata aaaattgtaa 13 00 ctcaaaacta ctttagttaa 1350 caaagatggg gaaagtaagt 1400 acagataact acattaggaa 1450 atgtgtatac tttacgcatc 1500 <br><br> 224 <br><br> tttccttttg agtagagaaa ttatgtgtgt catgtggtct tctgaaaatg 1550 <br><br> gaacaccatt cttcagagca cacgtctagc cctcagcaag acagttgttt 1600 <br><br> ctcctcctcc ttgcatattt cctactgcgc tccagcctga gtgatagagt 1650 <br><br> gagactctgt ctcaaaaaaa agtatctcta aatacaggat tataatttct 1700 <br><br> gcttgagtat ggtgttaact accttgtatt tagaaagatt tcagattcat 1750 <br><br> tccatctcct tagttttctt ttaaggtgac ccatctgtga taaaaatata 1800 <br><br> gcttagtgct aaaatcagtg taacttatac atggcctaaa atgtttctac 1850 <br><br> aaattagagt ttgtcactta ttccatttgt acctaagaga aaaataggct 1900 <br><br> cagttagaaa aggactccct ggccaggcgc agtgacttac gcctgtaatc 1950 <br><br> tcagcacttt gggaggccaa ggcaggcaga tcacgaggtc aggagttcga 2000 <br><br> gaccatcctg gccaacatgg tgaaaccccg tctctactaa aaatataaaa 2050 <br><br> attagctggg tgtggtggca ggagcctgta atcccagcta cacaggaggc 2100 <br><br> tgaggcacga gaatcacttg aactcaggag atggaggttt cagtgagccg 2150 <br><br> agatcacgcc actgcactcc agcctggcaa cagagcgaga ctccatctca 2200 <br><br> aaaaaaaaaa aaa 2213 <br><br> &lt;210&gt; 130 &lt;211&gt; 335 &lt;212&gt; PRT &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 130 <br><br> Met Ala Ala Arg Trp Arg Phe Trp Cys Val Ser Val Thr Met Val 15 10 15 <br><br> Val Ala Leu Leu Ile Val Cys Asp Val Pro Ser Ala Ser Ala Gin 20 25 30 <br><br> Arg Lys Lys Glu Met Val Leu Ser Glu Lys Val Ser Gin Leu Met 35 40 45 <br><br> Glu Trp Thr Asn Lys Arg Pro Val Ile Arg Met Asn Gly Asp Lys 50 55 60 <br><br> Phe Arg Arg Leu Val Lys Ala Pro Pro Arg Asn Tyr Ser Val Ile <br><br> 65 70 75 <br><br> Val Met Phe Thr Ala Leu Gin Leu His Arg Gin Cys Val Val Cys 80 85 90 <br><br> 225 <br><br> Lys Gin Ala Asp Glu Glu Phe Gin Ile Leu Ala Asn Ser Trp Arg 95 100 105 <br><br> Tyr Ser Ser Ala Phe Thr Asn Arg Ile Phe Phe Ala Met Val Asp 110 115 120 <br><br> Phe Asp Glu Gly Ser Asp Val Phe Gin Met Leu Asn Met Asn Ser 125 130 135 <br><br> Ala Pro Thr Phe Ile Asn Phe Pro Ala Lys Gly Lys Pro Lys Arg 140 145 150 <br><br> Gly Asp Thr Tyr Glu Leu Gin Val Arg Gly Phe Ser Ala Glu Gin 155 160 165 <br><br> Ile Ala Arg Trp Ile Ala Asp Arg Thr Asp Val Asn Ile Arg Val 170 175 180 <br><br> Ile Arg Pro Pro Asn Tyr Ala Gly Pro Leu Met Leu Gly Leu Leu 185 190 195 <br><br> Leu Ala Val Ile Gly Gly Leu Val Tyr Leu Arg Arg Ser Asn Met 200 205 210 <br><br> Glu Phe Leu Phe Asn Lys Thr Gly Trp Ala Phe Ala Ala Leu Cys 215 220 225 <br><br> Phe Val Leu Ala Met Thr Ser Gly Gin Met Trp Asn His Ile Arg 230 235 240 <br><br> Gly Pro Pro Tyr Ala His Lys Asn Pro His Thr Gly His Val Asn 245 250 255 <br><br> Tyr Ile His Gly Ser Ser Gin Ala Gin Phe Val Ala Glu Thr His 260 265 270 <br><br> Ile Val Leu Leu Phe Asn Gly Gly Val Thr Leu Gly Met Val Leu 275 280 285 <br><br> Leu Cys Glu Ala Ala Thr Ser Asp Met Asp Ile Gly Lys Arg Lys 290 295 300 <br><br> Ile Met Cys Val Ala Gly Ile Gly Leu Val Val Leu Phe Phe Ser 305 310 315 <br><br> Trp Met Leu Ser Ile Phe Arg Ser Lys Tyr His Gly Tyr Pro Tyr 320 325 330 <br><br> Ser Phe Leu Met Ser 335 <br><br> &lt;210&gt; 131 <br><br> &lt;211&gt; 2476 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> 226 <br><br> &lt;400&gt; 131 aagcaaccaa actgcaagct ttgggagttg ctgctaggga gagaacgcca gagggaggcg tcagaaccgc taccggcgat gctactgctg cttggcgctg gcggtactgg cccccggagc cagccaaagc gcccaatgtg gtgctggtcg aggttaacat ttcatccagg aagtcaggta ctttatgaag acacgtggga cttcctttct caatttgttg cccatcacgc gcagcaatgt ttaacagaat cttggaataa ttttaagggt atggatggat gtcatggaga ggcatggcta aactggacta tacttcagga catcactcca tggacaagag atgttgcttt cttactcaga taatcttatc cgtaacagga ctaaagtcag agaatacaga caaagcagta aactggttaa actgaaccat ttgttattta cttgggatta ttcaccatct tctggagaaa attttggatc tttattggct tgaaaaagtg tctcatgatg tcacctttgt cagaaatgca ccctgtagat aaactgcact ggaagattta caaaaaaaga tttattatgc tatgtgtgct gagacagatg ttggcccttc atcaattaga tcttcttcag ctcagaccat ggagagctgg ccatggaaca gcatgtacga ggctagtgca catgttccgc attaaagccg gcctacaagt atcaaatgtg ccctaccatg cttgatattg ctggaattcc gatactcttt gttgccgtta tcatcagaaa gtcaaaaacc tgcatccacc ctggattctg tgtgaatgcc tccacctaca tgcttcgaac ttcgctgtcc ctgccctgct 50 gctggcccgg cggcaggctc 100 tgggtgtcgg tggtcgcagc 150 aggggagcag aggcggagag 2 00 tgagcgactc cttcgatgga 2 50 gtgaaacttc cttttatcaa 300 gaatgcctac acaaactctc 350 ggagtggcct cttcactcac 400 ctagatccaa attatacaac 450 ccgaacacag aaatttggga 500 ttagtaatcg tgtggaagcg 550 caagaaggca ggcccatggt 600 agtgatggaa agggattggc 650 gaaaggaagc aattaattac 7 00 aatttaccac acccttaccc 750 ttcaacattt cacacatctc 800 ccatcaaaat cccaaagtgg 850 tattactctt cttatacaaa 900 aattaagaat attagagcat 950 ccatgcttgg tgaaattatt 1000 aaaactattg tcatatactc 1050 tcgacagttt tataaaatga 1100 ttttgatgat gggaccagga 1150 gtttctcttg tggatattta 1200 tctgcctcag aacctgagtg 1250 catttaagaa tgaacataaa 13 00 agtgaattcc atggatgtaa 1350 taaccactgg aaatatatag 1400 <br><br> 227 <br><br> cctattcgga tggtgcatca atattgcctc aactctttga tctttcctcg 1450 <br><br> gatccagatg aattaacaaa tgttgctgta aaatttccag aaattactta 1500 <br><br> ttctttggat cagaagcttc attccattat aaactaccct aaagtttctg 1550 <br><br> cttctgtcca ccagtataat aaagagcagt ttatcaagtg gaaacaaagt 1600 <br><br> ataggacaga attattcaaa cgttatagca aatcttaggt ggcaccaaga 1650 <br><br> ctggcagaag gaaccaagga agtatgaaaa tgcaattgat cagtggctta 17 00 <br><br> aaacccatat gaatccaaga gcagtttgaa caaaaagttt aaaaatagtg 1750 <br><br> ttctagagat acatataaat atattacaag atcataatta tgtattttaa 1800 <br><br> atgaaacagt tttaataatt accaagtttt ggccgggcac agtggctcac 1850 <br><br> acctgtaatc ccaggacttt gggaggctga ggaaagcaga tcacaaggtc 1900 <br><br> aagagattga gaccatcctg gccaacatgg tgaaaccctg tctctactaa 1950 <br><br> aaatacaaaa attagctggg cgcggtggtg cacacctata gtctcagcta 2 000 <br><br> ctcagaggct gaggcaggag gatcgcttga acccgggagg cagcagttgc 2050 <br><br> agtgagctga gattgcgcca ctgtactcca gcctggcaac agagtgagac 2100 <br><br> tgtgtcgcaa aaaaataaaa ataaaataat aataattacc aatttttcat 2150 <br><br> tattttgtaa gaatgtagtg tattttaaga taaaatgcca atgattataa 22 00 <br><br> aatcacatat tttcaaaaat ggttattatt taggcctttg tacaatttct 2250 <br><br> aacaatttag tggaagtatc aaaaggattg aagcaaatac tgtaacagtt 2300 <br><br> atgttccttt aaataataga gaatataaaa tattgtaata atatgtatca 2350 <br><br> taaaatagtt gtatgtgagc atttgatggt gaaaaaaaaa aaaaaaaaaa 2400 <br><br> aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 2450 <br><br> aaaaaaaaaa aaaaaaaaaa aaaaaa 2476 <br><br> &lt;210&gt; 132 &lt;211&gt; 536 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 132 <br><br> Met Leu Leu Leu Trp Val Ser Val Val Ala Ala Leu Ala Leu Ala 15 10 15 <br><br> Val Leu Ala Pro Gly Ala Gly Glu Gin Arg Arg Arg Ala Ala Lys 20 25 30 <br><br> 228 <br><br> Ala Pro Asn Val Val Leu Val Val Ser Asp Ser Phe Asp Gly Arg 35 40 45 <br><br> Leu Thr Phe His Pro Gly Ser Gin Val Val Lys Leu Pro Phe Ile 50 55 60 <br><br> Asn Phe Met Lys Thr Arg Gly Thr Ser Phe Leu Asn Ala Tyr Thr 65 70 75 <br><br> Asn Ser Pro Ile Cys Cys Pro Ser Arg Ala Ala Met Trp Ser Gly 80 85 90 <br><br> Leu Phe Thr His Leu Thr Glu Ser Trp Asn Asn Phe Lys Gly Leu 95 100 105 <br><br> Asp Pro Asn Tyr Thr Thr Trp Met Asp Val Met Glu Arg His Gly 110 115 120 <br><br> Tyr Arg Thr Gin Lys Phe Gly Lys Leu Asp Tyr Thr Ser Gly His 125 130 135 <br><br> His Ser Ile Ser Asn Arg Val Glu Ala Trp Thr Arg Asp Val Ala 140 145 150 <br><br> Phe Leu Leu Arg Gin Glu Gly Arg Pro Met Val Asn Leu Ile Arg 155 160 165 <br><br> Asn Arg Thr Lys Val Arg Val Met Glu Arg Asp Trp Gin Asn Thr 170 175 180 <br><br> Asp Lys Ala Val Asn Trp Leu Arg Lys Glu Ala Ile Asn Tyr Thr 185 190 195 <br><br> Glu Pro Phe Val Ile Tyr Leu Gly Leu Asn Leu Pro His Pro Tyr 200 205 210 <br><br> Pro Ser Pro Ser Ser Gly Glu Asn Phe Gly Ser Ser Thr Phe His 215 220 225 <br><br> Thr Ser Leu Tyr Trp Leu Glu Lys Val Ser His Asp Ala Ile Lys 230 235 240 <br><br> Ile Pro Lys Trp Ser Pro Leu Ser Glu Met His Pro Val Asp Tyr 245 250 255 <br><br> Tyr Ser Ser Tyr Thr Lys Asn Cys Thr Gly Arg Phe Thr Lys Lys 260 265 270 <br><br> Glu Ile Lys Asn Ile Arg Ala Phe Tyr Tyr Ala Met Cys Ala Glu 275 280 285 <br><br> Thr Asp Ala Met Leu Gly Glu Ile Ile Leu Ala Leu His Gin Leu 290 295 300 <br><br> 229 <br><br> Asp Leu Leu Gin Lys Thr Ile Val Ile Tyr Ser Ser Asp His Gly 305 310 315 <br><br> Glu Leu Ala Met Glu His Arg Gin Phe Tyr Lys Met Ser Met Tyr 320 325 330 <br><br> Glu Ala Ser Ala His Val Pro Leu Leu Met Met Gly Pro Gly Ile 335 340 345 <br><br> Lys Ala Gly Leu Gin Val Ser Asn Val Val Ser Leu Val Asp Ile 350 355 360 <br><br> Tyr Pro Thr Met Leu Asp Ile Ala Gly Ile Pro Leu Pro Gin Asn 365 370 375 <br><br> Leu Ser Gly Tyr Ser Leu Leu Pro Leu Ser Ser Glu Thr Phe Lys 380 385 390 <br><br> Asn Glu His Lys Val Lys Asn Leu His Pro Pro Trp Ile Leu Ser 395 400 405 <br><br> Glu Phe His Gly Cys Asn Val Asn Ala Ser Thr Tyr Met Leu Arg 410 415 420 <br><br> Thr Asn His Trp Lys Tyr Ile Ala Tyr Ser Asp Gly Ala Ser Ile 425 430 435 <br><br> Leu Pro Gin Leu Phe Asp Leu Ser Ser Asp Pro Asp Glu Leu Thr 440 445 450 <br><br> Asn Val Ala Val Lys Phe Pro Glu Ile Thr Tyr Ser Leu Asp Gin 455 460 465 <br><br> Lys Leu His Ser Ile Ile Asn Tyr Pro Lys Val Ser Ala Ser Val 470 475 480 <br><br> His Gin Tyr Asn Lys Glu Gin Phe Ile Lys Trp Lys Gin Ser Ile 485 490 495 <br><br> Gly Gin Asn Tyr Ser Asn Val Ile Ala Asn Leu Arg Trp His Gin 500 505 510 <br><br> Asp Trp Gin Lys Glu Pro Arg Lys Tyr Glu Asn Ala Ile Asp Gin 515 520 525 <br><br> Trp Leu Lys Thr His Met Asn Pro Arg Ala Val 530 535 <br><br> &lt;210&gt; 133 <br><br> &lt;211&gt; 1475 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 133 <br><br> gagagaagtc agcctggcag agagactctg aaatgaggga ttagaggtgt 50 <br><br> 230 <br><br> tcaaggagca agagcttcag cctgaagaca gcttctactg agaggtctgc catggcctct ctacatccta ggccttctgg ggcttttggg tccccagctg gaaaacaagt tcttatgtcg gttggcttct ccaagggcct ctggatggaa catcacccag tgtgacatct atagcaccct tccaggctgc ccaggccatg atggtgacat gcctgcatta tctctgtggt gggcatgaga atcccgagcc aaagacagag tggcggtagc ttggaggcct cctgggattc attcctgttg ctacgggact tctactcacc actggtgcct tggagaggct ctttacttgg gcattatttc ctggaatcat cctctgcttt tcctgctcat tactacgatg cctaccaagc ccaacctctt gcctggtcaa cctcccaaag tcaagagtga cagggtatgt gtgaagaacc aggggccaga gtgaaaaaca gtggacagca ccccgagggc actggatcgt gtcagaaggt gctgctgagg ggattgagca aaggcagaaa tgggggctag attgccaagg atgctcgcca tgccagcctt gctcccctgc cctaagtccc caaccctcaa agccaggact cagaggatcc ctttgccctc ccccaaaccc actaatcaca tcccactgac ccctctctct ggctgaggtt ggctcttagc gagaagcagt ggcttttgtg ggcattgctc cctccaaaga aactgattgg ccctggaacc actccacagt gtccagacta atttgtgcat agggagcagt ccctgaagac 100 cttggcctcc aacttgtggg 150 cacactggtt gccatgctgc 200 gtgccagcat tgtgacagca 250 tgtgccacac acagcacagg 3 00 tctgggcctg cccgctgaca 350 ccagtgcaat ctcctccctg 400 tgcacagtct tctgccagga 450 aggtggagtc tttttcatcc 500 cctggaatct tcatgggatc 550 gacagcatga aatttgagat 600 ttccctgttc tccctgatag 650 cccagagaaa tcgctccaac 700 gccacaagga gctctccaag 750 gttcaattcc tacagcctga 800 gctggggggt ggctgggtct 850 cacaggtgag ggacactacc 900 <br><br> atagactgac tttggccatt 950 tgtaacagca tgcaggttga 1000 tctgttttcc tcaccttgct 1050 cttgaaaccc cattccctta 1100 tggtttacct gggactccat 1150 tgaccctctg tgatcaaaga 12 00 tcattgctgg ggatgggaag 1250 taacctactt ctcaagcttc 1300 tccatcccac tcttgttatg 1350 gaactgaaat aaaaccatcc 1400 <br><br> 231 <br><br> tacggtatcc agggaacaga aagcaggatg caggatggga ggacaggaag 1450 <br><br> gcagcctggg acatttaaaa aaata 1475 <br><br> &lt;210&gt; 134 &lt;211&gt; 230 &lt;212&gt; PRT &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 134 <br><br> Met Ala Ser Leu Gly Leu Gin Leu Val Gly Tyr Ile Leu Gly Leu 15 10 15 <br><br> Leu Gly Leu Leu Gly Thr Leu Val Ala Met Leu Leu Pro Ser Trp 20 25 30 <br><br> Lys Thr Ser Ser Tyr Val Gly Ala Ser Ile Val Thr Ala Val Gly 35 40 45 <br><br> Phe Ser Lys Gly Leu Trp Met Glu Cys Ala Thr His Ser Thr Gly 50 55 60 <br><br> Ile Thr Gin Cys Asp Ile Tyr Ser Thr Leu Leu Gly Leu Pro Ala 65 70 75 <br><br> Asp Ile Gin Ala Ala Gin Ala Met Met Val Thr Ser Ser Ala Ile 80 85 90 <br><br> Ser Ser Leu Ala Cys Ile Ile Ser Val Val Gly Met Arg Cys Thr 95 100 105 <br><br> Val Phe Cys Gin Glu Ser Arg Ala Lys Asp Arg Val Ala Val Ala 110 115 120 <br><br> Gly Gly Val Phe Phe Ile Leu Gly Gly Leu Leu Gly Phe Ile Pro 125 130 135 <br><br> Val Ala Trp Asn Leu His Gly Ile Leu Arg Asp Phe Tyr Ser Pro 140 145 150 <br><br> Leu Val Pro Asp Ser Met Lys Phe Glu Ile Gly Glu Ala Leu Tyr 155 160 165 <br><br> Leu Gly Ile Ile Ser Ser Leu Phe Ser Leu Ile Ala Gly Ile Ile <br><br> 170 175 180 <br><br> Leu Cys Phe Ser Cys Ser Ser Gin Arg Asn Arg Ser Asn Tyr Tyr <br><br> 185 190 195 <br><br> Asp Ala Tyr Gin Ala Gin Pro Leu Ala Thr Arg Ser Ser Pro Arg <br><br> 200 205 210 <br><br> Pro Gly Gin Pro Pro Lys Val Lys Ser Glu Phe Asn Ser Tyr Ser <br><br> 215 220 225 <br><br> 232 <br><br> Leu Thr Gly Tyr Val 230 <br><br> &lt;210&gt; 135 &lt;211&gt; 610 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 135 <br><br> gcactgctgc tgtcccatca gctgctctga agctccatgg tgcccagaat 50 cttcgctcct gcttatgtgt cagtctgtct cctcctcttg tgtccaaggg 100 aagtcatcgc tcccgctggc tcagaaccat ggctgtgcca gccggcaccc 150 aggtgtggag acaagatcta caaccccttg gagcagtgct gttacaatga 2 00 cgccatcgtg tccctgagcg agacccgcca atgtggtccc ccctgcacct 250 <br><br> tctggccctg ctttgagctc tgctgtcttg attcctttgg cctcacaaac 300 <br><br> gattttgttg tgaagctgaa ggttcagggt gtgaattccc agtgccactc 350 <br><br> atctcccatc tccagtaaat gtgaaagcag aagacgtttt, ccctgagaag 400 <br><br> acatagaaag aaaatcaact ttcactaagg catctcagaa acataggcta 450 <br><br> aggtaatatg tgtaccagta gagaagcctg aggaatttac aaaatgatgc 500 <br><br> agctccaagc cattgtatgg cccatgtggg agactgatgg gacatggaga 55 0 <br><br> atgacagtag attatcagga aataaataaa gtggtttttc caatgtacac 600 <br><br> acctgtaaaa 610 <br><br> &lt;210&gt; 136 &lt;211&gt; 119 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 136 <br><br> Met Val Pro Arg Ile Phe Ala Pro Ala Tyr Val Ser Val Cys Leu 1 5 10 15 <br><br> Leu Leu Leu Cys Pro Arg Glu Val Ile Ala Pro Ala Gly Ser Glu 20 25 30 <br><br> Pro Trp Leu Cys Gin Pro Ala Pro Arg Cys Gly Asp Lys Ile Tyr 35 40 45 <br><br> Asn Pro Leu Glu Gin Cys Cys Tyr Asn Asp Ala Ile Val Ser Leu <br><br> 50 55 60 <br><br> Ser Glu Thr Arg Gin <br><br> Cys Gly Pro Pro Cys Thr Phe Trp Pro Cys <br><br> 233 <br><br> 65 70 75 <br><br> Phe Glu Leu Cys Cys Leu Asp Ser Phe Gly Leu Thr Asn Asp Phe 80 85 90 <br><br> Val Val Lys Leu Lys Val Gin Gly Val Asn Ser Gin Cys His Ser 95 100 105 <br><br> Ser Pro Ile Ser Ser Lys Cys Glu Ser Arg Arg Arg Phe Pro 110 115 <br><br> &lt;210&gt; 137 &lt;211&gt; 771 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 137 <br><br> ctccactgca accacccaga gccatggctc cccgaggctg catcgtagct 50 <br><br> gtctttgcca ttttctgcat ctccaggctc ctctgctcac acggagcccc 100 <br><br> agtggccccc atgactcctt acctgatgct gtgccagcca cacaagagat 150 <br><br> gtggggacaa gttctacgac cccctgcagc actgttgcta tgatgatgcc 2 00 <br><br> gtcgtgccct tggccaggac ccagacgtgt ggaaactgca ccttcagagt 250 <br><br> ctgctttgag cagtgctgcc cctggacctt catggtgaag ctgataaacc 300 <br><br> agaactgcga ctcagcccgg acctcggatg acaggctttg tcgcagtgtc 350 <br><br> agctaatgga acatcagggg aacgatgact cctggattct ccttcctggg 400 <br><br> tgggcctgga gaaagaggct ggtgttacct gagatctggg atgctgagtg 450 <br><br> gctgtttggg ggccagagaa acacacactc aactgcccac ttcattctgt 500 <br><br> gacctgtctg aggcccaccc tgcagctgcc ctgaggaggc ccacaggtcc 550 <br><br> ccttctagaa ttctggacag catgagatgc gtgtgctgat gggggcccag 600 <br><br> ggactctgaa ccctcctgat gacccctatg gccaacatca acccggcacc 650 <br><br> accccaaggc tggctgggga acccttcacc cttctgtgag attttccatc 7 00 <br><br> atctcaagtt ctcttctatc caggagcaaa gcacaggatc ataataaatt 750 <br><br> tatgtacttt ataaatgaaa a 771 <br><br> &lt;210&gt; 138 &lt;211&gt; 110 &lt;212&gt; PRT &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 138 <br><br> 234 <br><br> Met Ala Pro Arg Gly Cys Ile Val Ala Val Phe Ala Ile Phe Cys 15 10 15 <br><br> Ile Ser Arg Leu Leu Cys Ser His Gly Ala Pro Val Ala Pro Met 20 25 30 <br><br> Thr Pro Tyr Leu Met Leu Cys Gin Pro His Lys Arg Cys Gly Asp 35 40 45 <br><br> Lys Phe Tyr Asp Pro Leu Gin His Cys Cys Tyr Asp Asp Ala Val . 50 55 60 <br><br> Val Pro Leu Ala Arg Thr Gin Thr Cys Gly Asn Cys Thr Phe Arg 65 70 75 <br><br> Val Cys Phe Glu Gin Cys Cys Pro Trp Thr Phe Met Val Lys Leu 80 85 90 <br><br> Ile Asn Gin Asn Cys Asp Ser Ala Arg Thr Ser Asp Asp Arg Leu 95 100 105 <br><br> Cys Arg Ser Val Ser 110 <br><br> &lt;210&gt; 139 &lt;211&gt; 2044 &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 139 <br><br> ggwgcg'g'g't gcctggagca cggcgctggg gccgcccgca gcgctcactc 50 gctcgcactc agtcgcggga ggcttccccg cgccggccgc gtcccgcccg 100 ctccccggca ccagaagttc gtctgcgcgt ccgacggcga catgggcgtc 150 cccacggccc tggaggccgg cagctggcgc tggggatccc tgctcttcgc 2 00 tctcttcctg gctgcgtccc taggtccggt ggcagccttc aaggtcgcca 250 cgccgtattc cctgtatgtc tgtcccgagg ggcagaacgt caccctcacc 3 00 tgcaggctct tgggccctgt ggacaaaggg cacgatgtga ccttctacaa 350 gacgtggtac cgcagctcga ggggcgaggt gcagacctgc tcagagcgcc 400 ggcccatccg caacctcacg ttccaggacc ttcacctgca ccatggaggc 450 caccaggctg ccaacaccag ccacgacctg gctcagcgcc acgggctgga 500 gtcggcctcc gaccaccatg gcaacttctc catcaccatg cgcaacctga 550 ccctgctgga tagcggcctc tactgctgcc tggtggtgga gatcaggcac 600 caccactcgg agcacagggt ccatggtgcc atggagctgc aggtgcagac 650 <br><br> 235 <br><br> aggcaaagat gcaccatcca actgtgtggt atagtgaaaa catcacggct gcagccctgg ggaatcctct gcctccccct catcctgctc ggcagcctcc aaccgccgtg cccaggagct ttcaagggat tgaaaacccc ggctttgaag atacccgagg ccaaagtcag gcaccccctg gccttctgag tctgggcggc atctgctttc ctcctccagg ccccggagac gtcttcttcc gactctccaa actttgaggt catctagccc ttgtggctgg gtctggggca ggtgcatttg gtggcctcct tggcctcggc cctggttccc gatactgtga catcccagaa gcccagcccc atggggatgc tggacggctc agcccctgtt agattctccc ctagagacct gaaattcacc ttacatctta agaagtctca gaacgtccag tgagacatga gccttgggat gtggcagcat tgggccaccc tcccaggcac cagacacagg ccccgtggcc gccttggctc ccccgttttg agacttcctc tttgtaccac agtggctctg ctggccatcg ccaccttccc cagctgcctc gatctgtcaa caggttaagt caatctgggg gtccccagag cttggtggtc ccgaaacggg tggcctccgt gagcaaatgg tgtcttgggc gttgccccac ccactggaga tggtgctgag gggaaggtga gtggagaggg gcacctgccc ctcccactgc tcagcgcggg ccattgcaag ccaccctggg acacttctga gtatgaagcg tggggaaaaa aaaaaaaaaa aaaaaaaaaa gtacccatcc tcctcccagg 700 ctacgggtgc ctgcatcgta 750 ctggtctaca agcaaaggca 800 ggtgcggatg gacagcaaca 850 cctcaccacc tgcccagggg 900 tcctatgtgg cccagcggca 950 ggagcccagc acccccctgt 1000 catccctgga ccctgtccct 1050 agctggggga cagtgggctg 1100 agccagggct ggctctgtga 1150 tccctcctgc tctgggctca 1200 tcaacccctc tggatgctac 1250 ccaaggattt tggggtgctg 13 00 agctacagat gccaaatgac 1350 cccttcagca gctctcgttc 1400 cagtgggaca agatggacac 1450 gcacggtgga gagacttctc 1500 cccgaggctg ctcttctgtc 1550 gggccaggcc tgcctgccca 1600 ctaccagcag tttctctgaa 1650 cttccactgc ctgcattcca 1700 aagtacatat tggggcatgg 1750 aatctgaggc caggacagat 1800 ggaggtgggt ggggccttct 1850 cccgccctcc ccatccccta 1900 ggtgccacac aatgtcttgt 1950 ggatgctatt aaaaactaca 2 000 aaaaaaaaaa aaga 2 044 <br><br> 236 <br><br> &lt;210&gt; 140 &lt;211&gt; 311 &lt;212&gt; PRT &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 140 <br><br> Met Gly Val Pro Thr Ala Leu Glu Ala Gly Ser Trp Arg Trp Gly 15 10 15 <br><br> Ser Leu Leu Phe Ala Leu Phe Leu Ala Ala Ser Leu Gly Pro Val 20 25 30 <br><br> Ala Ala Phe Lys Val Ala Thr Pro Tyr Ser Leu Tyr Val Cys Pro 35 40 45 <br><br> Glu Gly Gin Asn Val Thr Leu Thr Cys Arg Leu Leu Gly Pro Val 50 55 60 <br><br> Asp Lys Gly His Asp Val Thr Phe Tyr Lys Thr Trp Tyr Arg Ser 65 70 75 <br><br> Ser Arg Gly Glu Val Gin Thr Cys Ser Glu Arg Arg Pro Ile Arg 80 85 90 <br><br> Asn Leu Thr Phe Gin Asp Leu His Leu His His Gly Gly His Gin 95 100 105 <br><br> Ala Ala Asn Thr Ser His Asp Leu Ala Gin Arg His Gly Leu Glu 110 115 120 <br><br> Ser Ala Ser Asp His His Gly Asn Phe Ser Ile Thr Met Arg Asn 125 130 135 <br><br> Leu Thr Leu Leu Asp Ser Gly Leu Tyr Cys Cys Leu Val Val Glu 140 145 150 <br><br> Ile Arg His His His Ser Glu His Arg Val His Gly Ala Met Glu 155 160 165 <br><br> Leu Gin Val Gin Thr Gly Lys Asp Ala Pro Ser Asn Cys Val Val 170 175 180 <br><br> Tyr Pro Ser Ser Ser Gin Asp Ser Glu Asn Ile Thr Ala Ala Ala 185 190 195 <br><br> Leu Ala Thr Gly Ala Cys Ile Val Gly Ile Leu Cys Leu Pro Leu 200 205 210 <br><br> Ile Leu Leu Leu Val Tyr Lys Gin Arg Gin Ala Ala Ser Asn Arg 215 220 225 <br><br> Arg Ala Gin Glu Leu Val Arg Met Asp Ser Asn Ile Gin Gly Ile 230 235 240 <br><br> 237 <br><br> Glu Asn Pro Gly Phe 245 <br><br> Glu Ala Lys Val Arg 260 <br><br> Pro Ser Glu Ser Gly 275 <br><br> Leu Ser Pro Pro Gly 290 <br><br> Pro Val Pro Asp Ser 305 <br><br> &lt;210&gt; 141 &lt;211&gt; 1732 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 141 <br><br> cccacgcgtc cgcgcctctc ccttctgctg gaccttcctt cgtctctcca 50 <br><br> tctctccctc ctttccccgc gttctctttc cacctttctc ttcttcccac 100 <br><br> cttagacctc ccttcctgcc ctcctttcct gcccaccgct gcttcctggc 150 <br><br> ccttctccga ccccgctcta gcagcagacc tcctggggtc tgtgggttga 200 <br><br> tctgtggccc ctgtgcctcc gtgtcctttt cgtctccctt cctcccgact 250 <br><br> ccgctcccgg accagcggcc tgaccctggg gaaaggatgg ttcccgaggt 300 <br><br> gagggtcctc tcctccttgc tgggactcgc gctgctctgg ttccccctgg 350 <br><br> actcccacgc tcgagcccgc ccagacatgt tctgcctttt ccatgggaag 400 <br><br> agatactccc ccggcgagag ctggcacccc tacttggagc cacaaggcct 450 <br><br> gatgtactgc ctgcgctgta cctgctcaga gggcgcccat gtgagttgtt 500 <br><br> accgcctcca ctgtccgcct gtccactgcc cccagcctgt gacggagcca 550 <br><br> cagcaatgct gtcccaagtg tgtggaacct cacactccct ctggactccg 600 <br><br> ggccccacca aagtcctgcc agcacaacgg gaccatgtac caacacggag 650 <br><br> agatcttcag tgcccatgag ctgttcccct cccgcctgcc caaccagtgt 700 <br><br> gtcctctgca gctgcacaga gggccagatc tactgcggcc tcacaacctg 750 <br><br> ccccgaacca ggctgcccag cacccctccc actgccagac tcctgctgcc 800 <br><br> aagcctgcaa agatgaggca agtgagcaat cggatgaaga ggacagtgtg 850 <br><br> Glu Ala Ser Pro Pro Ala Gin Gly Ile Pro 250 255 <br><br> His Pro Leu Ser Tyr Val Ala Gin Arg Gin 265 270 <br><br> Arg His Leu Leu Ser Glu Pro Ser Thr Pro 280 285 <br><br> Pro Gly Asp Val Phe Phe Pro Ser Leu Asp 295 300 <br><br> Pro Asn Phe Glu Val Ile 310 <br><br> 238 <br><br> cagtcgctcc atggggtgag acatcctcag gatccatgtt ccagtgatgc 900 <br><br> tgggagaaag agaggcccgg gcaccccagc ccccactggc ctcagcgccc 950 <br><br> ctctgagctt catccctcgc cacttcagac ccaagggagc aggcagcaca 1000 <br><br> actgtcaaga tcgtcctgaa ggagaaacat aagaaagcct gtgtgcatgg 1050 <br><br> cgggaagacg tactcccacg gggaggtgtg gcacccggcc ttccgtgcct 1100 <br><br> tcggcccctt gccctgcatc ctatgcacct gtgaggatgg ccgccaggac 1150 <br><br> tgccagcgtg tgacctgtcc caccgagtac ccctgccgtc accccgagaa 12 00 <br><br> agtggctggg aagtgctgca agatttgccc agaggacaaa gcagaccctg 1250 <br><br> gccacagtga gatcagttct accaggtgtc ccaaggcacc gggccgggtc 1300 <br><br> ctcgtccaca catcggtatc cccaagccca gacaacctgc gtcgctttgc 1350 <br><br> cctggaacac gaggcctcgg acttggtgga gatctacctc tggaagctgg 1400 <br><br> taaaagatga ggaaactgag gctcagagag gtgaagtacc tggcccaagg 1450 <br><br> ccacacagcc agaatcttcc acttgactca gatcaagaaa gtcaggaagc 1500 <br><br> aagacttcca gaaagaggca cagcacttcc gactgctcgc tggcccccac 1550 <br><br> gaaggtcact ggaacgtctt cctagcccag accctggagc tgaaggtcac 1600 <br><br> ggccagtcca gacaaagtga ccaagacata acaaagacct aacagttgca 1650 <br><br> gatatgagct gtataattgt tgttattata tattaataaa taagaagttg 1700 <br><br> cattaccctc aaaaaaaaaa aaaaaaaaaa aa 1732 <br><br> &lt;210&gt; 142 &lt;211&gt; 451 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 142 <br><br> Met Val Pro Glu Val Arg Val Leu Ser Ser Leu Leu Gly Leu Ala 15 10 15 <br><br> Leu Leu Trp Phe Pro Leu Asp Ser His Ala Arg Ala Arg Pro Asp 20 25 30 <br><br> Met Phe Cys Leu Phe His Gly Lys Arg Tyr Ser Pro Gly Glu Ser 35 40 45 <br><br> Trp His Pro Tyr Leu Glu Pro Gin Gly Leu Met Tyr Cys Leu Arg 50 55 60 <br><br> Cys Thr Cys Ser Glu Gly Ala His Val Ser Cys Tyr Arg Leu His <br><br> 239 <br><br> 65 <br><br> 70 <br><br> 75 <br><br> Cys Pro Pro Val His Cys Pro Gin Pro Val Thr Glu Pro Gin Gin 80 85 90 <br><br> Cys Cys Pro Lys Cys Val Glu Pro His Thr Pro Ser Gly Leu Arg 95 100 105 <br><br> Ala Pro Pro Lys Ser Cys Gin His Asn Gly Thr Met Tyr Gin His 110 115 120 <br><br> Gly Glu Ile Phe Ser Ala His Glu Leu Phe Pro Ser Arg Leu Pro 125 130 135 <br><br> Asn Gin Cys Val Leu Cys Ser Cys Thr Glu Gly Gin Ile Tyr Cys 140 145 150 <br><br> Gly Leu Thr Thr Cys Pro Glu Pro Gly Cys Pro Ala Pro Leu Pro 155 160 165 <br><br> Leu Pro Asp Ser Cys Cys Gin Ala Cys Lys Asp Glu Ala Ser Glu 170 175 180 <br><br> Gin Ser Asp Glu Glu Asp Ser Val Gin Ser Leu His Gly Val Arg 185 190 195 <br><br> His Pro Gin Asp Pro Cys Ser Ser Asp Ala Gly Arg Lys Arg Gly 200 205 210 <br><br> Pro Gly Thr Pro Ala Pro Thr Gly Leu Ser Ala Pro Leu Ser Phe 215 220 225 <br><br> Ile Pro Arg His Phe Arg Pro Lys Gly Ala Gly Ser Thr Thr Val 230 235 240 <br><br> Lys Ile Val Leu Lys Glu Lys His Lys Lys Ala Cys Val His Gly 245 250 255 <br><br> Gly Lys Thr Tyr Ser His Gly Glu Val Trp His Pro Ala Phe Arg 260 265 270 <br><br> Ala Phe Gly Pro Leu Pro Cys Ile Leu Cys Thr Cys Glu Asp Gly 275 280 285 <br><br> Arg Gin Asp Cys Gin Arg Val Thr Cys Pro Thr Glu Tyr Pro Cys 290 295 300 <br><br> Arg His Pro Glu Lys Val Ala Gly Lys Cys Cys Lys Ile Cys Pro <br><br> 305 310 315 <br><br> Glu Asp Lys Ala Asp Pro Gly His Ser Glu Ile Ser Ser Thr Arg <br><br> 320 325 330 <br><br> Cys Pro Lys Ala Pro Gly Arg Val Leu Val His Thr Ser Val Ser <br><br> 335 340 345 <br><br> 240 <br><br> Pro Ser Pro <br><br> Ser Asp Leu <br><br> Glu Thr Glu <br><br> Ser Gin Asn <br><br> Arg Leu Pro <br><br> Pro Arg Arg <br><br> Glu Gly His <br><br> Thr <br><br> &lt;210&gt; 143 &lt;211&gt; 693 &lt;212&gt; DNA &lt;213&gt; Homo s&lt; <br><br> &lt;400&gt; 143 <br><br> ctagcctgcg ccaaggggta gtgagaccgc gcggcaacag cttgcggctg 50 cggggagctc ccgtgggcgc tccgctggct gtgcaggcgg ccatggattc 100 cttgcggaaa atgctgatct cagtcgcaat gctgggcgca ggggctggcg 150 tgggctacgc gctcctcgtt atcgtgaccc cgggagagcg gcggaagcag 2 00 gaaatgctaa aggagatgcc actgcaggac ccaaggagca gggaggaggc 250 ggccaggacc cagcagctat tgctggccac tctgcaggag gcagcgacca 3 00 cgcaggagaa cgtggcctgg aggaagaact ggatggttgg cggcgaaggc 350 ggcgccagcg ggaggtcacc gtgagaccgg acttgcctcc gtgggcgccg 400 gaccttggct tgggcgcagg aatccgaggc agcctttctc cttcgtgggc 450 ccagcggaga gtccggaccg agataccatg ccaggactct ccggggtcct 500 gtgagctgcc gtcgggtgag cacgtttccc ccaaaccctg gactgactgc 550 tttaaggtcc gcaaggcggg ccagggccga gacgcgagtc ggatgtggtg 600 <br><br> Asp Asn Leu Arg Arg Phe Ala Leu Glu His Glu Ala 350 355 360 <br><br> Val Glu Ile Tyr Leu Trp Lys Leu Val Lys Asp Glu 365 370 375 <br><br> Ala Gin Arg Gly Glu Val Pro Gly Pro Arg Pro His 380 385 390 <br><br> Leu Pro Leu Asp Ser Asp Gin Glu Ser Gin Glu Ala 395 400 405 <br><br> Glu Arg Gly Thr Ala Leu Pro Thr Ala Arg Trp Pro 410 415 420 <br><br> Ser Leu Glu Arg Leu Pro Ser Pro Asp Pro Gly Ala 425 430 435 <br><br> Gly Gin Ser Arg Gin Ser Asp Gin Asp Ile Thr Lys 440 445 450 <br><br> apxens <br><br> 241 <br><br> aactgaaaga accaataaaa tcatgttcct ccaaaaaaaa aaaaaaaaaa 650 <br><br> aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaa 693 <br><br> &lt;210&gt; 144 &lt;211&gt; 93 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 144 <br><br> Met Asp Ser Leu Arg Lys Met Leu Ile Ser Val Ala Met Leu Gly 15 10 15 <br><br> Ala Gly Ala Gly Val Gly Tyr Ala Leu Leu Val Ile Val Thr Pro 20 25 30 <br><br> Gly Glu Arg Arg Lys Gin Glu Met Leu Lys Glu Met Pro Leu Gin 35 40 45 <br><br> Asp Pro Arg Ser Arg Glu Glu Ala Ala Arg Thr Gin Gin Leu Leu 50 55 60 <br><br> Leu Ala Thr Leu Gin Glu Ala Ala Thr Thr Gin Glu Asn Val Ala 65 70 75 <br><br> Trp Arg Lys Asn Trp Met Val Gly Gly Glu Gly Gly Ala Ser Gly 80 85 90 <br><br> Arg Ser Pro <br><br> &lt;210&gt; 145 <br><br> &lt;211&gt; 1883 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 145 <br><br> caggagagaa ggcaccgccc ccaccccgcc tccaaagcta accctcgggc 50 ttgaggggaa gaggctgact gtacgttcct tctactctgg caccactctc 100 caggctgcca tggggcccag cacccctctc ctcatcttgt tccttttgtc 15 0 atggtcggga cccctccaag gacagcagca ccaccttgtg gagtacatgg 2 00 aacgccgact agctgcttta gaggaacggc tggcccagtg ccaggaccag 250 agtagtcggc atgctgctga gctgcgggac ttcaagaaca agatgctgcc 3 00 actgctggag gtggcagaga aggagcggga ggcactcaga actgaggccg 3 50 acaccatctc cgggagagtg gatcgtctgg agcgggaggt agactatctg 400 gagacccaga acccagctct gccctgtgta gagtttgatg agaaggtgac 450 tggaggccct gggaccaaag gcaagggaag aaggaatgag aagtacgata 500 <br><br> 242 <br><br> tggtgacaga ctgtggctac acaatctctc aagtgagatc aatgaagatt 550 ctgaagcgat ttggtggccc agctggtcta tggaccaagg atccactggg 600 gcaaacagag aagatctacg tgttagatgg gacacagaat gacacagcct 650 <br><br> ttgtcttccc aaggctgcgt gacttcaccc ttgccatggc tgcccggaaa 700 gcttcccgag tccgggtgcc cttcccctgg gtaggcacag ggcagctggt 750 atatggtggc tttctttatt ttgctcggag gcctcctgga agacctggtg 800 gaggtggtga gatggagaac actttgcagc taatcaaatt ccacctggca 850 aaccgaacag tggtggacag ctcagtattc ccagcagagg ggctgatccc 900 cccctacggc ttgacagcag acacctacat cgacctggta gctgatgagg 950 aaggtctttg ggctgtctat gccacccggg aggatgacag gcacttgtgt 1000 ctggccaagt tagatccaca gacactggac acagagcagc agtgggacac 1050 accatgtccc agagagaatg ctgaggctgc ctttgtcatc tgtgggaccc 1100 tctatgtcgt ctataacacc cgtcctgcca gtcgggcccg catccagtgc 1150 tcctttgatg ccagcggcac cctgacccct gaacgggcag cactccctta 12 00 ttttccccgc agatatggtg cccatgccag cctccgctat aacccccgag 1250 aacgccagct ctatgcctgg gatgatggct accagattgt ctataagctg 1300 gagatgagga agaaagagga ggaggtttga ggagctagcc ttgttttttg 1350 catctttctc actcccatac atttatatta tatccccact aaatttcttg 1400 ttcctcattc ttcaaatgtg ggccagttgt ggctcaaatc ctctatattt 1450 ttagccaatg gcaatcaaat tctttcagct cctttgtttc atacggaact 1500 ccagatcctg agtaatcctt ttagagcccg aagagtcaaa accctcaatg 1550 ttccctcctg ctctcctgcc ccatgtcaac aaatttcagg ctaaggatgc 1600 cccagaccca gggctctaac cttgtatgcg ggcaggccca gggagcaggc 1650 agcagtgttc ttcccctcag agtgacttgg ggagggagaa ataggaggag 17 00 acgtccagct ctgtcctctc ttcctcactc ctcccttcag tgtcctgagg 1750 aacaggactt tctccacatt gttttgtatt gcaacatttt gcattaaaag 1800 gaaaatccac aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1850 <br><br> 243 <br><br> aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaa 1883 <br><br> &lt;210&gt; 146 &lt;211&gt; 406 &lt;212&gt; PRT &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 146 <br><br> Met Gly Pro Ser Thr Pro Leu Leu Ile Leu Phe Leu Leu Ser Trp <br><br> 15 10 15 <br><br> Ser Gly Pro Leu Gin Gly Gin Gin His His Leu Val Glu Tyr Met <br><br> 20 25 30 <br><br> Glu Arg Arg Leu Ala Ala Leu Glu Glu Arg Leu Ala Gin Cys Gin <br><br> 35 40 45 <br><br> Asp Gin Ser Ser Arg His Ala Ala Glu Leu Arg Asp Phe Lys Asn <br><br> 50 55 60 <br><br> Lys Met Leu Pro Leu Leu Glu Val Ala Glu Lys Glu Arg Glu Ala <br><br> 65 70 75 <br><br> Leu Arg Thr Glu Ala Asp Thr Ile Ser Gly Arg Val Asp Arg Leu <br><br> 80 85 90 <br><br> Glu Arg Glu Val Asp Tyr Leu Glu Thr Gin Asn Pro Ala Leu Pro <br><br> 95 100 105 <br><br> Cys Val Glu Phe Asp Glu Lys Val Thr Gly Gly Pro Gly Thr Lys <br><br> 110 115 120 <br><br> Gly Lys Gly Arg Arg Asn Glu Lys Tyr Asp Met Val Thr Asp Cys <br><br> 125 130 135 <br><br> Gly Tyr Thr Ile Ser Gin Val Arg Ser Met Lys Ile Leu Lys Arg <br><br> 140 145 150 <br><br> Phe Gly Gly Pro Ala Gly Leu Trp Thr Lys Asp Pro Leu Gly Gin <br><br> 155 160 165 <br><br> Thr Glu Lys Ile Tyr Val Leu Asp Gly Thr Gin Asn Asp Thr Ala <br><br> 170 175 180 <br><br> Phe Val Phe Pro Arg Leu Arg Asp Phe Thr Leu Ala Met Ala Ala <br><br> 185 190 195 <br><br> Arg Lys Ala Ser Arg Val Arg Val Pro Phe Pro Trp Val Gly Thr <br><br> 200 205 210 <br><br> Gly Gin Leu Val Tyr Gly Gly Phe Leu Tyr Phe Ala Arg Arg Pro <br><br> 215 220 225 <br><br> Pro Gly Arg Pro Gly Gly Gly Gly Glu Met Glu Asn Thr Leu Gin 230 235 240 <br><br> 244 <br><br> Leu Ile Lys Phe His Leu Ala Asn Arg Thr Val Val Asp Ser Ser 245 250 255 <br><br> Val Phe Pro Ala Glu Gly Leu Ile Pro Pro Tyr Gly Leu Thr Ala 260 265 270 <br><br> Asp Thr Tyr Ile Asp Leu Val Ala Asp Glu Glu Gly Leu Trp Ala 275 280 285 <br><br> Val Tyr Ala Thr Arg Glu Asp Asp Arg His Leu Cys Leu Ala Lys 290 295 300 <br><br> Leu Asp Pro Gin Thr Leu Asp Thr Glu Gin Gin Trp Asp Thr Pro 305 310 315 <br><br> Cys Pro Arg Glu Asn Ala Glu Ala Ala Phe Val Ile Cys Gly Thr 320 325 330 <br><br> Leu Tyr Val Val Tyr Asn Thr Arg Pro Ala Ser Arg Ala Arg Ile 335 340 345 <br><br> Gin Cys Ser Phe Asp Ala Ser Gly Thr Leu Thr Pro Glu Arg Ala 350 355 360 <br><br> Ala Leu Pro Tyr Phe Pro Arg Arg Tyr Gly Ala His Ala Ser Leu 365 370 375 <br><br> Arg Tyr Asn Pro Arg Glu Arg Gin Leu Tyr Ala Trp Asp Asp Gly 380 385 390 <br><br> Tyr Gin Ile Val Tyr Lys Leu Glu Met Arg Lys Lys Glu Glu Glu 395 400 405 <br><br> Val <br><br> &lt;210&gt; 147 <br><br> &lt;211&gt; 2052 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 147 <br><br> gacagctgtg tctcgatgga gtagactctc agaacagcgc agtttgccct 50 ccgctcacgc agagcctctc cgtggcttcc gcaccttgag cattaggcca 100 gttctcctct tctctctaat ccatccgtca cctctcctgt catccgtttc 150 catgccgtga ggtccattca cagaacacat ccatggctct catgctcagt 2 00 ttggttctga gtctcctcaa gctgggatca gggcagtggc aggtgtttgg 250 gccagacaag cctgtccagg ccttggtggg ggaggacgca gcattctcct 3 00 <br><br> 245 <br><br> gtttcctgtc tcctaagacc aatgcagagg aggggccagt tctctagcgt ggtccacctc gccatttatg cagatgccac agtatcaagg attctattgc ggaggggcgc atctctctga ttggatgctg gcctctatgg gtgcaggatt gaaggccatc tgggagctac aggtgtcagc tttccatcac gggatatgtt gatagagaca tcgggctggt tcccccggcc cacagcgaag ggatttgtcc acagactcca ggacaaacag atgtggagat ctctctgacc gtccaagaga tccatgcggc atgctcatct gagccgagag aggagatacc tttttcgagc ctatatcgtg tgggaatact ctgctgtggc ctattttttg ttcttctcca aattccagtg gaaaatccag aaagcacgga caggcagaat tgagagacgc tgactctgga tccagagacg gctcacccga aaaactgtaa cccatagaaa agctccccag gagatttaca aggaagagtg tggtggcttc aacattactg ggaggtggac ggaggacaca gtgtgccggg atgatgtgga caggaggaag cgatcatggg tactgggtcc tcagactgaa cattaaatcc ccgttttatc agcgtcttcc ataggggtct tcctggacta tgagtgtggg aaatgaccag tcccttattt ataccctgac tgaggcccta cattgagtat ccgtcctata atagtcatct gcccagtcac ccaggaatca aagggcctct gcaatcccag agacaagcaa caaccacgcc cttcctcccc aggggtgaaa ccatggaagt gcggttcttc 350 tacagggacg ggaaggacca 400 caggacaaaa ctggtgaagg 450 ggctggaaaa cattactgtg 500 agttcccagt cttactacca 550 actgggctca gttcctctca 600 tccagctact ctgtcagtcc 650 tggaaaggtc cacaaggaca 700 agacatgcat ggcctgtttg 750 acgccgggag catatcctgt 800 gtggaatcca gggtacagat 850 gcacctggct accaaagtac 900 gcattgttgg actgaagatt 950 gcggaactgg actggagaag 1000 ccggaaacac gcagtggagg 1050 agctctgcgt ttctgatctg 1100 gaggtgcctc actctgagaa 1150 tcagagtttc caagcaggga 12 00 ataaaaggtg gcgcgtggga 1250 gagtacgtga ctttgtctcc 1300 tggagaacat ttgtatttca 1350 ccaggacccc acctacaaaa 1400 accatctcct tcttcaacat 1450 atgtcggttt gaaggcttat 1500 atgagcaaaa tggaactccc 1550 gagaaagagg cctcttggca 1600 cagtgagtcc tcctcacagg 1650 tgtaggatga atcacatccc 1700 <br><br> 246 <br><br> acattcttct ttagggatat taaggtctct ctcccagatc caaagtcccg 1750 <br><br> cagcagccgg ccaaggtggc ttccagatga agggggactg gcctgtccac 1800 <br><br> atgggagtca ggtgtcatgg ctgccctgag ctgggaggga agaaggctga 1850 <br><br> cattacattt agtttgctct cactccatct ggctaagtga tcttgaaata 1900 <br><br> ccacctctca ggtgaagaac cgtcaggaat tcccatctca caggctgtgg 1950 <br><br> tgtagattaa gtagacaagg aatgtgaata atgcttagat cttattgatg 2 000 <br><br> acagagtgta tcctaatggt ttgttcatta tattacactt tcagtaaaaa 2050 <br><br> aa 2052 <br><br> &lt;210&gt; 148 &lt;211&gt; 500 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 148 <br><br> Met Ala Leu Met Leu Ser Leu Val Leu Ser Leu Leu Lys Leu Gly 15 10 15 <br><br> Ser Gly Gin Trp Gin Val Phe Gly Pro Asp Lys Pro Val Gin Ala 20 25 30 <br><br> Leu Val Gly Glu Asp Ala Ala Phe Ser Cys Phe Leu Ser Pro Lys 35 40 45 <br><br> Thr Asn Ala Glu Ala Met Glu Val Arg Phe Phe Arg Gly Gin Phe 50 55 60 <br><br> Ser Ser Val Val His Leu Tyr Arg Asp Gly Lys Asp Gin Pro Phe 65 70 75 <br><br> Met Gin Met Pro Gin Tyr Gin Gly Arg Thr Lys Leu Val Lys Asp 80 85 90 <br><br> Ser Ile Ala Glu Gly Arg Ile Ser Leu Arg Leu Glu Asn Ile Thr 95 100 105 <br><br> Val Leu Asp Ala Gly Leu Tyr Gly Cys Arg Ile Ser Ser Gin Ser 110 115 120 <br><br> Tyr Tyr Gin Lys Ala Ile Trp Glu Leu Gin Val Ser Ala Leu Gly 125 130 135 <br><br> Ser Val Pro Leu Ile Ser Ile Thr Gly Tyr Val Asp Arg Asp Ile 140 145 150 <br><br> Gin Leu Leu Cys Gin Ser Ser Gly Trp Phe Pro Arg Pro Thr Ala 155 160 165 <br><br> 247 <br><br> Lys Trp Lys Gly Pro Gin Gly Gin Asp Leu Ser Thr Asp Ser Arg 170 175 180 <br><br> Thr Asn Arg Asp Met His Gly Leu Phe Asp Val Glu Ile Ser Leu 185 190 195 <br><br> Thr Val Gin Glu Asn Ala Gly Ser Ile Ser Cys Ser Met Arg His 200 205 210 <br><br> Ala His Leu Ser Arg Glu Val Glu Ser Arg Val Gin Ile Gly Asp 215 220 225 <br><br> Thr Phe Phe Glu Pro Ile Ser Trp His Leu Ala Thr Lys Val Leu 230 235 240 <br><br> Gly Ile Leu Cys Cys Gly Leu Phe Phe Gly Ile Val Gly Leu Lys 245 250 255 <br><br> Ile Phe Phe Ser Lys Phe Gin Trp Lys Ile Gin Ala Glu Leu Asp 260 265 270 <br><br> Trp Arg Arg Lys His Gly Gin Ala Glu Leu Arg Asp Ala Arg Lys 275 280 285 <br><br> His Ala Val Glu Val Thr Leu Asp Pro Glu Thr Ala His Pro Lys 290 295 300 <br><br> Leu Cys Val Ser Asp Leu Lys Thr Val Thr His Arg Lys Ala Pro 305 310 315 <br><br> Gin Glu Val Pro His Ser Glu Lys Arg Phe Thr Arg Lys Ser Val 320 325 330 <br><br> Val Ala Ser Gin Ser Phe Gin Ala Gly Lys His Tyr Trp Glu Val 335 340 345 <br><br> Asp Gly Gly His Asn Lys Arg Trp Arg Val Gly Val Cys Arg Asp 350 355 360 <br><br> Asp Val Asp Arg Arg Lys Glu Tyr Val Thr Leu Ser Pro Asp His 365 370 375 <br><br> Gly Tyr Trp Val Leu Arg Leu Asn Gly Glu His Leu Tyr Phe Thr 380 385 390 <br><br> Leu Asn Pro Arg Phe Ile Ser Val Phe Pro Arg Thr Pro Pro Thr 395 400 405 <br><br> Lys Ile Gly Val Phe Leu Asp Tyr Glu Cys Gly Thr Ile Ser Phe 410 415 420 <br><br> Phe Asn Ile Asn Asp Gin Ser Leu Ile Tyr Thr Leu Thr Cys Arg 425 430 435 <br><br> Phe Glu Gly Leu Leu Arg Pro Tyr Ile Glu Tyr Pro Ser Tyr Asn <br><br> 248 <br><br> 440 445 450 <br><br> Glu Gin Asn Gly Thr Pro Ile Val Ile Cys Pro Val Thr Gin Glu 455 460 465 <br><br> Ser Glu Lys Glu Ala Ser Trp Gin Arg Ala Ser Ala Ile Pro Glu 470 475 480 <br><br> Thr Ser Asn Ser Glu Ser Ser Ser Gin Ala Thr Thr Pro Phe Leu 485 490 495 <br><br> Pro Arg Gly Glu Met 500 <br><br> &lt;210&gt; 149 &lt;211&gt; 24 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 149 gcgtggtcca cctctacagg gacg 24 <br><br> &lt;210&gt; 150 &lt;211&gt; 23 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 150 ggaactgacc cagtgctgac acc 23 <br><br> &lt;210&gt; 151 &lt;211&gt; 45 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 151 <br><br> gcagatgcca cagtatcaag gcaggacaaa actggtgaag gattc 45 <br><br> &lt;210&gt; 152 <br><br> &lt;211&gt; 2294 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 152 <br><br> gcgatggtgc gcccggtggc ggtggcggcg gcggttgcgg aggcttcctt 50 <br><br> ggtcggattg caacgaggag aagatgactg accaaccgac tggctgaatg 100 <br><br> 249 <br><br> aatgaatggc ggagccgagc gcgccatgag gagcctgccg agcctgggcg 150 gcctcgccct gttgtgctgc gccgccgccg ccgccgccgt cgcctcagcc 2 00 gcctcggcgg ggaatgtcac cggtggcggc ggggccgcgg ggcaggtgga 2 50 cgcgtcgccg ggccccgggt tgcggggcga gcccagccac cccttcccta 300 gggcgacggc tcccacggcc caggccccga ggaccgggcc cccgcgcgcc 350 accgtccacc gacccctggc tgcgacttct ccagcccagt ccccggagac 400 cacccctctt tgggcgactg ctggaccctc ttccaccacc tttcaggcgc 450 cgctcggccc ctcgccgacc acccctccgg cggcggaacg cacttcgacc 500 acctctcagg cgccgaccag acccgcgccg accacccttt cgacgaccac 550 tggcccggcg ccgaccaccc ctgtagcgac caccgtaccg gcgcccacga 600 ctccccggac cccgaccccc gatctcccca gcagcagcaa cagcagcgtc 650 ctccccaccc cacctgccac cgaggccccc tcttcgcctc ctccagagta 700 tgtatgtaac tgctctgtgg ttggaagcct gaatgtgaat cgctgcaacc 750 agaccacagg gcagtgtgag tgtcggccag gttatcaggg gcttcactgt 800 gaaacctgca aagagggctt ttacctaaat tacacttctg ggctctgtca 850 gccatgtgac tgtagtccac atggagctct cagcataccg tgcaacaggt 900 aagcaacaga gggtggaact gaagtttatt ttattttagc aagggaaaaa 950 aaaaggctgc tactctcaag gaccatactg gtttaaacaa aggaggatga 1000 gggtcataga tttacaaaat attttatata cttttattct cttactttat 1050 atgttatatt taatgtcagg atttaaaaac atctaattta ctgatttagt 1100 tcttcaaaag cactagagtc gccaattttt ctctgggata atttctgtaa 1150 atttcatggg aaaaaattat tgaagaataa atctgctttc tggaagggct 12 00 ttcaggcatg aaacctgcta ggaggtttag aaatgttctt atgtttatta 1250 atataccatt ggagtttgag gaaatttgtt gtttggttta tttttctctc 1300 taatcaaaat tctacatttg tttctttgga catctaaagc ttaacctggg 1350 ggtaccctaa tttatttaac tagtggtaag tagactggtt ttactctatt 1400 taccagtaca tttttgagac caaaagtaga ttaagcagga attatcttta 1450 aactattatg ttatttggag gtaatttaat ctagtggaat aatgtactgt 1500 <br><br> 250 <br><br> tatctaagca tttgccttgt actgcactga aagtaattat tctttgacct 1550 <br><br> tatgtgaggc acttggcttt ttgtggaccc caagtcaaaa aactgaagag 1600 <br><br> acagtattaa ataatgaaaa aaataatgac aggttatact cagtgtaacc 1650 <br><br> tgggtataac ccaagatctg ctgccactta cgagctgtgt tccttgggca 1700 <br><br> agtaatttcc tttcactgag cttgtttctt ctcaaggttg ttgtgaagat 1750 <br><br> taaatgagtt gatatatata aaatgcctag cacatgtcac tcaataaatt 1800 <br><br> ctggtttgtt ttaatttcaa aggaatatta tggactgaaa tgagagaaca 1850 <br><br> tgttttaaga acttttagct ccttgacaaa gaagtgcttt atactttagc 1900 <br><br> actaaatatt ttaaatgctt tataaatgat attatactgt tatggaatat 1950 <br><br> tgtatcatat tgtagtttat taaaaatgta gaagaggctg ggcgcggtgg 2000 <br><br> ctcacgcctg taatcctagc actttgggag gccaaggcgg gtggatcact 2050 <br><br> tgaggccagg agttctagat gagcctggcc agcacagtga aaccccgtct 2100 <br><br> ctactaaaaa tacaaacaaa ttagctgggc gtggtggcac acacctgtag 2150 <br><br> tcccagctac tcgggaggct gaggcaggag aatcggttga acccgggagg 2200 <br><br> tggaggttgc agtgagctga gatcgcgcca ctgcactcca gcctggtgag 2250 <br><br> agagggagac tctgtcttaa aaaaaaaaaa aaaaaaaaaa aaaa 22 94 <br><br> &lt;210&gt; 153 &lt;211&gt; 258 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 153 <br><br> Met Arg Ser Leu Pro Ser Leu Gly Gly Leu Ala Leu Leu Cys Cys 15 10 15 <br><br> Ala Ala Ala Ala Ala Ala Val Ala Ser Ala Ala Ser Ala Gly Asn 20 25 30 <br><br> Val Thr Gly Gly Gly Gly Ala Ala Gly Gin Val Asp Ala Ser Pro 35 40 45 <br><br> Gly Pro Gly Leu Arg Gly Glu Pro Ser His Pro Phe Pro Arg Ala 50 55 60 <br><br> Thr Ala Pro Thr Ala Gin Ala Pro Arg Thr Gly Pro Pro Arg Ala 65 70 75 <br><br> Thr Val His Arg Pro Leu Ala Ala Thr Ser Pro Ala Gin Ser Pro 80 85 90 <br><br> 251 <br><br> Glu Thr Thr Pro Leu Trp Ala Thr Ala Gly Pro Ser Ser Thr Thr 95 100 105 <br><br> Phe Gin Ala Pro Leu Gly Pro Ser Pro Thr Thr Pro Pro Ala Ala 110 115 120 <br><br> Glu Arg Thr Ser Thr Thr Ser Gin Ala Pro Thr Arg Pro Ala Pro 125 130 135 <br><br> Thr Thr Leu Ser Thr Thr Thr Gly Pro Ala Pro Thr Thr Pro Val 140 145 150 <br><br> Ala Thr Thr Val Pro Ala Pro Thr Thr Pro Arg Thr Pro Thr Pro 155 160 165 <br><br> Asp Leu Pro Ser Ser Ser Asn Ser Ser Val Leu Pro Thr Pro Pro <br><br> 170 175 180 <br><br> Ala Thr Glu Ala Pro Ser Ser Pro Pro Pro Glu Tyr Val Cys Asn <br><br> 185 190 195 <br><br> Cys Ser Val Val Gly Ser Leu Asn Val Asn Arg Cys Asn Gin Thr <br><br> 200 205 210 <br><br> Thr Gly Gin Cys Glu Cys Arg Pro Gly Tyr Gin Gly Leu His Cys <br><br> 215 220 225 <br><br> Glu Thr Cys Lys Glu Gly Phe Tyr Leu Asn Tyr Thr Ser Gly Leu <br><br> 230 235 240 <br><br> Cys Gin Pro Cys Asp Cys Ser Pro His Gly Ala Leu Ser Ile Pro <br><br> 245 250 255 <br><br> Cys Asn Arg <br><br> &lt;210&gt; 154 &lt;211&gt; 24 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence <br><br> &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 154 aactgctctg tggttggaag cctg 24 <br><br> &lt;210&gt; 155 &lt;211&gt; 24 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> 252 <br><br> &lt;400&gt; 155 cagtcacatg gctgacagac ccac 24 <br><br> &lt;210&gt; 156 &lt;211&gt; 38 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 156 <br><br> aggttatcag gggcttcact gtgaaacctg caaagagg 38 <br><br> &lt;210&gt; 157 &lt;211&gt; 689 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 157 <br><br> tgcggcgcag tgtagacctg ggaggatggg cggcctgctg ctggctgctt 50 <br><br> ttctggcttt ggtctcggtg cccagggccc aggccgtgtg gttgggaaga 100 <br><br> ctggaccctg agcagcttct tgggccctgg tacgtgcttg cggtggcctc 150 <br><br> ccgggaaaag ggctttgcca tggagaagga catgaagaac gtcgtggggg 2 00 <br><br> tggtggtgac cctcactcca gaaaacaacc tgcggacgct gtcctctcag 250 <br><br> cacgggctgg gagggtgtga ccagagtgtc atggacctga taaagcgaaa 3 00 <br><br> ctccggatgg gtgtttgaga atccctcaat aggcgtgctg gagctctggg 3 50 <br><br> tgctggccac caacttcaga gactatgcca tcatcttcac tcagctggag 400 <br><br> ttcggggacg agcccttcaa caccgtggag ctgtacagtc tgacggagac 450 <br><br> agccagccag gaggccatgg ggctcttcac caagtggagc aggagcctgg 500 <br><br> gcttcctgtc acagtagcag gcccagctgc agaaggacct cacctgtgct 550 <br><br> cacaagatcc ttctgtgagt gctgcgtccc cagtagggat ggcgcccaca 600 <br><br> gggtcctgtg acctcggcca gtgtccaccc acctcgctca gcggctcccg 650 <br><br> gggcccagca ccagctcaga ataaagcgat tccacagca 689 <br><br> &lt;210&gt; 158 &lt;211&gt; 163 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 158 <br><br> 253 <br><br> Met Gly Gly Leu Leu Leu Ala Ala Phe Leu Ala Leu Val Ser Val 15 10 15 <br><br> Pro Arg Ala Gin Ala Val Trp Leu Gly Arg Leu Asp Pro Glu Gin 20 25 30 <br><br> Leu Leu Gly Pro Trp Tyr Val Leu Ala Val Ala Ser Arg Glu Lys 35 40 45 <br><br> Gly Phe Ala Met Glu Lys Asp Met Lys Asn Val Val Gly Val Val 50 55 60 <br><br> Val Thr Leu Thr Pro Glu Asn Asn Leu Arg Thr Leu Ser Ser Gin 65 70 75 <br><br> His Gly Leu Gly Gly Cys Asp Gin Ser Val Met Asp Leu Ile Lys 80 85 90 <br><br> Arg Asn Ser Gly Trp Val Phe Glu Asn Pro Ser Ile Gly Val Leu 95 100 105 <br><br> Glu Leu Trp Val Leu Ala Thr Asn Phe Arg Asp Tyr Ala Ile Ile 110 115 120 <br><br> Phe Thr Gin Leu Glu Phe Gly Asp Glu Pro Phe Asn Thr Val Glu 125 130 135 <br><br> Leu Tyr Ser Leu Thr Glu Thr Ala Ser Gin Glu Ala Met Gly Leu 140 145 150 <br><br> Phe Thr Lys Trp Ser Arg Ser Leu Gly Phe Leu Ser Gin 155 160 <br><br> &lt;210&gt; 159 <br><br> &lt;211&gt; 1665 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 159 <br><br> aacagacgtt ccctcgcggc cctggcacct ctaaccccag acatgctgct 50 gctgctgctg cccctgctct gggggaggga gagggcggaa ggacagacaa 100 gtaaactgct gacgatgcag agttccgtga cggtgcagga aggcctgtgt 150 gtccatgtgc cctgctcctt ctcctacccc tcgcatggct ggatttaccc 200 tggcccagta gttcatggct actggttccg ggaaggggcc aatacagacc 250 aggatgctcc agtggccaca aacaacccag ctcgggcagt gtgggaggag 300 actcgggacc gattccacct ccttggggac ccacatacca agaattgcac 350 cctgagcatc agagatgcca gaagaagtga tgcggggaga tacttctttc 400 <br><br> 254 <br><br> gtatggagaa aggaagtata aaatggaatt ataaacatca ccggctctct 450 gtgaatgtga cagccttgac ccacaggccc aacatcctca tcccaggcac 500 cctggagtcc ggctgccccc agaatctgac ctgctctgtg ccctgggcct 550 gtgagcaggg gacaccccct atgatctcct ggatagggac ctccgtgtcc 600 cccctggacc cctccaccac ccgctcctcg gtgctcaccc tcatcccaca 650 gccccaggac catggcacca gcctcacctg tcaggtgacc ttccctgggg 700 ccagcgtgac cacgaacaag accgtccatc tcaacgtgtc ctacccgcct 750 cagaacttga ccatgactgt cttccaagga gacggcacag tatccacagt 800 cttgggaaat ggctcatctc tgtcactccc agagggccag tctctgcgcc 850 tggtctgtgc agttgatgca gttgacagca atccccctgc caggctgagc 900 ctgagctgga gaggcctgac cctgtgcccc tcacagccct caaacccggg 950 ggtgctggag ctgccttggg tgcacctgag ggatgcagct gaattcacct 1000 gcagagctca gaaccctctc ggctctcagc aggtctacct gaacgtctcc 1050 ctgcagagca aagccacatc aggagtgact cagggggtgg tcgggggagc 1100 tggagccaca gccctggtct tcctgtcctt ctgcgtcatc ttcgttgtag 1150 tgaggtcctg caggaagaaa tcggcaaggc cagcagcggg cgtgggagat 12 00 acgggcatag aggatgcaaa cgctgtcagg ggttcagcct ctcaggggcc 1250 cctgactgaa ccttgggcag aagacagtcc cccagaccag cctcccccag 1300 cttctgcccg ctcctcagtg ggggaaggag agctccagta tgcatccctc 1350 agcttccaga tggtgaagcc ttgggactcg cggggacagg aggccactga 1400 caccgagtac tcggagatca agatccacag atgagaaact gcagagactc 1450 accctgattg agggatcaca gcccctccag gcaagggaga agtcagaggc 1500 tgattcttgt agaattaaca gccctcaacg tgatgagcta tgataacact 1550 atgaattatg tgcagagtga aaagcacaca ggctttagag tcaaagtatc 1600 tcaaacctga atccacactg tgccctccct tttatttttt taactaaaag 1650 acagacaaat tccta 1665 <br><br> &lt;210&gt; 160 <br><br> &lt;211&gt; 463 <br><br> &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens <br><br> 255 <br><br> &lt;400&gt; 160 <br><br> Met Leu Leu Leu Leu Leu Pro Leu Leu Trp Gly Arg Glu Arg Ala 15 10 15 <br><br> Glu Gly Gin Thr Ser Lys Leu Leu Thr Met Gin Ser Ser Val Thr 20 25 30 <br><br> Val Gin Glu Gly Leu Cys Val His Val Pro Cys Ser Phe Ser Tyr 35 40 45 <br><br> Pro Ser His Gly Trp Ile Tyr Pro Gly Pro Val Val His Gly Tyr 50 55 60 <br><br> Trp Phe Arg Glu Gly Ala Asn Thr Asp Gin Asp Ala Pro Val Ala 65 70 75 <br><br> Thr Asn Asn Pro Ala Arg Ala Val Trp Glu Glu Thr Arg Asp Arg 80 85 90 <br><br> Phe His Leu Leu Gly Asp Pro His Thr Lys Asn Cys Thr Leu Ser 95 100 105 <br><br> Ile Arg Asp Ala Arg Arg Ser Asp Ala Gly Arg Tyr Phe Phe Arg 110 115 120 <br><br> Met Glu Lys Gly Ser Ile Lys Trp Asn Tyr Lys His His Arg Leu 125 130 135 <br><br> Ser Val Asn Val Thr Ala Leu Thr His Arg Pro Asn Ile Leu Ile 140 145 150 <br><br> Pro Gly Thr Leu Glu Ser Gly Cys Pro Gin Asn Leu Thr Cys Ser 155 160 165 <br><br> Val Pro Trp Ala Cys Glu Gin Gly Thr Pro Pro Met Ile Ser Trp 170 175 180 <br><br> Ile Gly Thr Ser Val Ser Pro Leu Asp Pro Ser Thr Thr Arg Ser 185 190 195 <br><br> Ser Val Leu Thr Leu Ile Pro Gin Pro Gin Asp His Gly Thr Ser 200 205 210 <br><br> Leu Thr Cys Gin Val Thr Phe Pro Gly Ala Ser Val Thr Thr Asn 215 220 225 <br><br> Lys Thr Val His Leu Asn Val Ser Tyr Pro Pro Gin Asn Leu Thr 230 235 240 <br><br> Met Thr Val Phe Gin Gly Asp Gly Thr Val Ser Thr Val Leu Gly 245 250 255 <br><br> Asn Gly Ser Ser Leu Ser Leu Pro Glu Gly Gin Ser Leu Arg Leu 260 265 270 <br><br> 256 <br><br> Val Cys Ala Val Asp Ala Val Asp Ser Asn Pro Pro Ala Arg Leu <br><br> 275 280 285 <br><br> Ser Leu Ser Trp Arg Gly Leu Thr Leu Cys Pro Ser Gin Pro Ser <br><br> 290 295 300 <br><br> Asn Pro Gly Val Leu Glu Leu Pro Trp Val His Leu Arg Asp Ala 305 310 315 <br><br> Ala Glu Phe Thr Cys Arg Ala Gin Asn Pro Leu Gly Ser Gin Gin 320 325 330 <br><br> Val Tyr Leu Asn Val Ser Leu Gin Ser Lys Ala Thr Ser Gly Val 335 340 345 <br><br> Thr Gin Gly Val Val Gly Gly Ala Gly Ala Thr Ala Leu Val Phe 350 355 360 <br><br> Leu Ser Phe Cys Val Ile Phe Val Val Val Arg Ser Cys Arg Lys 365 370 375 <br><br> Lys Ser Ala Arg Pro Ala Ala Gly Val Gly Asp Thr Gly Ile Glu 380 385 390 <br><br> Asp Ala Asn Ala Val Arg Gly Ser Ala Ser Gin Gly Pro Leu Thr 395 400 405 <br><br> Glu Pro Trp Ala Glu Asp Ser Pro Pro Asp Gin Pro Pro Pro Ala 410 415 420 <br><br> Ser Ala Arg Ser Ser Val Gly Glu Gly Glu Leu Gin Tyr Ala Ser 425 430 435 <br><br> Leu Ser Phe Gin Met Val Lys Pro Trp Asp Ser Arg Gly Gin Glu 440 445 450 <br><br> Ala Thr Asp Thr Glu Tyr Ser Glu Ile Lys Ile His Arg 455 460 <br><br> &lt;210&gt; 161 &lt;211&gt; 739 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 161 <br><br> gacgcccagt gacctgccga ggtcggcagc acagagctct ggagatgaag 50 accctgttcc tgggtgtcac gctcggcctg gccgctgccc tgtccttcac 100 cctggaggag gaggatatca cagggacctg gtacgtgaag gccatggtgg 150 tcgataagga ctttccggag gacaggaggc ccaggaaggt gtccccagtg 2 00 aaggtgacag ccctgggcgg tgggaagttg gaagccacgt tcaccttcat 250 <br><br> 257 <br><br> gagggaggat cggtgcatcc agaagaaaat cctgatgcgg aagacggagg 300 <br><br> agcctggcaa atacagcgcc tatgggggca ggaagctcat gtacctgcag 350 <br><br> gagctgccca ggagggacca ctacatcttt tactgcaaag accagcacca 400 <br><br> tgggggcctg ctccacatgg gaaagcttgt gggtaggaat tctgatacca 450 <br><br> accgggaggc cctggaagaa tttaagaaat tggtgcagcg caagggactc 500 <br><br> tcggaggagg acattttcac gcccctgcag acgggaagct gcgttcccga 550 <br><br> acactaggca gcccccgggt ctgcacctcc agagcccacc ctaccaccag 600 <br><br> acacagagcc cggaccacct ggacctaccc tccagccatg acccttccct 650 <br><br> gctcccaccc acctgactcc aaataaagtc cttttccccc aaaaaaaaaa 7 00 <br><br> aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaa 739 <br><br> &lt;210&gt; 162 &lt;211&gt; 170 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 162 <br><br> Met Lys Thr Leu Phe Leu Gly Val Thr Leu Gly Leu Ala Ala Ala 15 10 15 <br><br> Leu Ser Phe Thr Leu Glu Glu Glu Asp Ile Thr Gly Thr Trp Tyr 20 25 30 <br><br> Val Lys Ala Met Val Val Asp Lys Asp Phe Pro Glu Asp Arg Arg 35 40 45 <br><br> Pro Arg Lys Val Ser Pro Val Lys Val Thr Ala Leu Gly Gly Gly 50 55 60 <br><br> Lys Leu Glu Ala Thr Phe Thr Phe Met Arg Glu Asp Arg Cys Ile 65 70 75 <br><br> Gin Lys Lys Ile Leu Met Arg Lys Thr Glu Glu Pro Gly Lys Tyr 80 85 90 <br><br> Ser Ala Tyr Gly Gly Arg Lys Leu Met Tyr Leu Gin Glu Leu Pro 95 100 105 <br><br> Arg Arg Asp His Tyr Ile Phe Tyr Cys Lys Asp Gin His His Gly 110 115 120 <br><br> Gly Leu Leu His Met Gly Lys Leu Val Gly Arg Asn Ser Asp Thr 125 130 135 <br><br> Asn Arg Glu Ala Leu Glu Glu Phe Lys Lys Leu Val Gin Arg Lys 140 145 150 <br><br> 258 <br><br> Gly Leu Ser Glu Glu Asp Ile Phe Thr Pro Leu Gin Thr Gly Ser 155 160 165 <br><br> Cys Val Pro Glu His 170 <br><br> &lt;210&gt; 163 &lt;211&gt; 22 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 163 ggagatgaag accctgttcc tg 22 <br><br> &lt;210&gt; 164 &lt;211&gt; 26 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 164 ggagatgaag accctgttcc tgggtg 2 6 <br><br> &lt;210&gt; 165 &lt;211&gt; 21 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 165 gtcctccgga aagtccttat c 21 <br><br> &lt;210&gt; 166 &lt;211&gt; 25 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 166 gcctagtgtt cgggaacgca gcttc 25 <br><br> &lt;210&gt; 167 &lt;211&gt; 50 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence <br><br> 259 <br><br> &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 167 <br><br> cagggacctg gtacgtgaag gccatggtgg tcgataagga ctttccggag 50 <br><br> &lt;210&gt; 168 &lt;211&gt; 45 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 168 <br><br> ctgtccttca ccctggagga ggaggatatc acagggacct ggtac 45 <br><br> &lt;210&gt; 169 &lt;211&gt; 1204 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 169 <br><br> gttccgcaga tgcagaggtt gaggtggctg cgggactgga agtcatcggg 50 cagaggtctc acagcagcca aggaacctgg ggcccgctcc tcccccctcc 100 aggccatgag gattctgcag ttaatcctgc ttgctctggc aacagggctt 150 gtagggggag agaccaggat catcaagggg ttcgagtgca agcctcactc 2 00 ccagccctgg caggcagccc tgttcgagaa gacgcggcta ctctgtgggg 250 cgacgctcat cgcccccaga tggctcctga cagcagccca ctgcctcaag 3 00 ccccgctaca tagttcacct ggggcagcac aacctccaga aggaggaggg 350 ctgtgagcag acccggacag ccactgagtc cttcccccac cccggcttca 400 acaacagcct ccccaacaaa gaccaccgca atgacatcat gctggtgaag 450 atggcatcgc cagtctccat cacctgggct gtgcgacccc tcaccctctc 500 ctcacgctgt gtcactgctg gcaccagctg cctcatttcc ggctggggca 550 gcacgtccag cccccagtta cgcctgcctc acaccttgcg atgcgccaac 600 atcaccatca ttgagcacca gaagtgtgag aacgcctacc ccggcaacat 650 cacagacacc atggtgtgtg ccagcgtgca ggaagggggc aaggactcct 700 gccagggtga ctccgggggc cctctggtct gtaaccagtc tcttcaaggc 750 attatctcct ggggccagga tccgtgtgcg atcacccgaa agcctggtgt 800 <br><br> 260 <br><br> ctacacgaaa gtctgcaaat atgtggactg gatccaggag acgatgaaga 850 <br><br> acaattagac tggacccacc caccacagcc catcaccctc catttccact 900 <br><br> tggtgtttgg ttcctgttca ctctgttaat aagaaaccct aagccaagac 950 <br><br> cctctacgaa cattctttgg gcctcctgga ctacaggaga tgctgtcact 1000 <br><br> taataatcaa cctggggttc gaaatcagtg agacctggat tcaaattctg 1050 <br><br> ccttgaaata ttgtgactct gggaatgaca acacctggtt tgttctctgt 1100 <br><br> tgtatcccca gccccaaaga cagctcctgg ccatatatca aggtttcaat 1150 <br><br> aaatatttgc taaatgaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 12 00 <br><br> aaaa 12 04 <br><br> &lt;210&gt; 170 &lt;211&gt; 250 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 170 <br><br> Met Arg Ile Leu Gin Leu Ile Leu Leu Ala Leu Ala Thr Gly Leu <br><br> 15 10 15 <br><br> Val Gly Gly Glu Thr Arg Ile Ile Lys Gly Phe Glu Cys Lys Pro 20 25 30 <br><br> His Ser Gin Pro Trp Gin Ala Ala Leu Phe Glu Lys Thr Arg Leu 35 40 45 <br><br> Leu Cys Gly Ala Thr Leu Ile Ala Pro Arg Trp Leu Leu Thr Ala 50 55 60 <br><br> Ala His Cys Leu Lys Pro Arg Tyr Ile Val His Leu Gly Gin His 65 70 75 <br><br> Asn Leu Gin Lys Glu Glu Gly Cys- Glu Gin Thr Arg Thr Ala Thr 80 85 90 <br><br> Glu Ser Phe Pro His Pro Gly Phe Asn Asn Ser Leu Pro Asn Lys 95 100 105 <br><br> Asp His Arg Asn Asp Ile Met Leu Val Lys Met Ala Ser Pro Val 110 115 120 <br><br> Ser Ile Thr Trp Ala Val Arg Pro Leu Thr Leu Ser Ser Arg Cys 125 130 135 <br><br> Val Thr Ala Gly Thr Ser Cys Leu Ile Ser Gly Trp Gly Ser Thr 140 145 150 <br><br> 261 <br><br> Ser Ser Pro Gin Leu Arg Leu Pro His Thr Leu Arg Cys Ala Asn 155 160 165 <br><br> Ile Thr Ile Ile Glu His Gin Lys Cys Glu Asn Ala Tyr Pro Gly 170 175 180 <br><br> Asn Ile Thr Asp Thr Met Val Cys Ala Ser Val Gin Glu Gly Gly 185 190 195 <br><br> Lys Asp Ser Cys Gin Gly Asp Ser Gly Gly Pro Leu Val Cys Asn 200 205 210 <br><br> Gin Ser Leu Gin Gly Ile Ile Ser Trp Gly Gin Asp Pro Cys Ala 215 220 225 <br><br> Ile Thr Arg Lys Pro Gly Val Tyr Thr Lys Val Cys Lys Tyr Val 230 235 240 <br><br> Asp Trp Ile Gin Glu Thr Met Lys Asn Asn 245 250 <br><br> &lt;210&gt; 171 &lt;211&gt; 25 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence <br><br> &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 171 ggctgcggga ctggaagtca tcggg 25 <br><br> &lt;210&gt; 172 &lt;211&gt; 24 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 172 ctccaggcca tgaggattct gcag 24 <br><br> &lt;210&gt; 173 &lt;211&gt; 18 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 173 cctctggtct gtaaccag 18 <br><br> &lt;210&gt; 174 <br><br> 262 <br><br> &lt;211&gt; 24 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 174 tctgtgatgt tgccggggta ggcg 24 <br><br> &lt;210&gt; 175 &lt;211&gt; 25 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 175 cgtgtagaca ccaggctttc gggtg 25 <br><br> &lt;210&gt; 176 &lt;211&gt; 18 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 176 cccttgatga tcctggtc 18 <br><br> &lt;210&gt; 177 &lt;211&gt; 50 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 177 <br><br> aggccatgag gattctgcag ttaatcctgc ttgctctggc aacagggctt 50 <br><br> &lt;210&gt; 178 &lt;211&gt; 43 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 178 <br><br> gagagaccag gatcatcaag gggttcgagt gcaagcctca ctc 43 <br><br> &lt;210&gt; 179 <br><br> 263 <br><br> &lt;211&gt; 907 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 179 <br><br> gagcagtgtt ctgctggagc cgatgccaaa aaccatgcat ttcttattca 50 <br><br> gattcattgt tttcttttat ctgtggggcc tttttactgc tcagagacaa 100 <br><br> aagaaagagg agagcaccga agaagtgaaa atagaagttt tgcatcgtcc 150 <br><br> agaaaactgc tctaagacaa gcaagaaggg agacctacta aatgcccatt 200 <br><br> atgacggcta cctggctaaa gacggctcga aattctactg cagccggaca 250 <br><br> caaaatgaag gccaccccaa atggtttgtt cttggtgttg ggcaagtcat 300 <br><br> aaaaggccta gacattgcta tgacagatat gtgccctgga gaaaagcgaa 350 <br><br> aagtagttat acccccttca tttgcatacg gaaaggaagg ctatgcagaa 400 <br><br> ggcaagattc caccggatgc tacattgatt tttgagattg aactttatgc 450 <br><br> tgtgaccaaa ggaccacgga gcattgagac atttaaacaa atagacatgg 500 <br><br> acaatgacag gcagctctct aaagccgaga taaacctcta cttgcaaagg 550 <br><br> gaatttgaaa aagatgagaa gccacgtgac aagtcatatc aggatgcagt 600 <br><br> tttagaagat atttttaaga agaatgacca tgatggtgat ggcttcattt 650 <br><br> ctcccaagga atacaatgta taccaacacg atgaactata gcatatttgt 7 00 <br><br> atttctactt ttttttttta gctatttact gtactttatg tataaaacaa 750 <br><br> agtcactttt ctccaagttg tatttgctat ttttccccta tgagaagata 800 <br><br> ttttgatctc cccaatacat tgattttggt ataataaatg tgaggctgtt 850 <br><br> ttgcaaactt aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 900 <br><br> aaaaaaa 907 <br><br> &lt;210&gt; 180 &lt;211&gt; 222 &lt;212&gt; PRT &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 180 <br><br> Met Pro Lys Thr Met His Phe Leu Phe Arg Phe Ile Val Phe Phe 15 10 15 <br><br> Tyr Leu Trp Gly Leu Phe Thr Ala Gin Arg Gin Lys Lys Glu Glu 20 25 30 <br><br> Ser Thr Glu Glu Val Lys Ile Glu Val Leu His Arg Pro Glu Asn <br><br> 264 <br><br> 35 40 45 <br><br> Cys Ser Lys Thr Ser Lys Lys Gly Asp Leu Leu Asn Ala His Tyr <br><br> 50 55 60 <br><br> Asp Gly Tyr Leu Ala Lys Asp Gly Ser Lys Phe Tyr Cys Ser Arg <br><br> 65 70 75 <br><br> Thr Gin Asn Glu Gly His Pro Lys Trp Phe Val Leu Gly Val Gly <br><br> 80 85 90 <br><br> Gin Val Ile Lys Gly Leu Asp Ile Ala Met Thr Asp Met Cys Pro <br><br> 95 100 105 <br><br> Gly Glu Lys Arg Lys Val Val Ile Pro Pro Ser Phe Ala Tyr Gly 110 115 120 <br><br> Lys Glu Gly Tyr Ala Glu Gly Lys Ile Pro Pro Asp Ala Thr Leu 125 130 135 <br><br> Ile Phe Glu Ile Glu Leu Tyr Ala Val Thr Lys Gly Pro Arg Ser 140 145 150 <br><br> Ile Glu Thr Phe Lys Gin Ile Asp Met Asp Asn Asp Arg Gin Leu 155 160 165 <br><br> Ser Lys Ala Glu Ile Asn Leu Tyr Leu Gin Arg Glu Phe Glu Lys 170 175 180 <br><br> Asp Glu Lys Pro Arg Asp Lys Ser Tyr Gin Asp Ala Val Leu Glu 185 190 195 <br><br> Asp Ile Phe Lys Lys Asn Asp His Asp Gly Asp Gly Phe Ile Ser 200 205 210 <br><br> Pro Lys Glu Tyr Asn Val Tyr Gin His Asp Glu Leu 215 220 <br><br> &lt;210&gt; 181 <br><br> &lt;211&gt; 22 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence <br><br> &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 181 <br><br> gtgttctgct ggagccgatg cc 22 <br><br> &lt;210&gt; 182 <br><br> &lt;211&gt; 18 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence <br><br> &lt;220&gt; <br><br> 265 <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 182 gacatggaca atgacagg 18 <br><br> &lt;210&gt; 183 &lt;211&gt; 18 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 183 cctttcagga tgtaggag 18 <br><br> &lt;210&gt; 184 &lt;211&gt; 18 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 184 gatgtctgcc accccaag 18 <br><br> &lt;210&gt; 185 &lt;211&gt; 27 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 185 gcatcctgat atgacttgtc acgtggc 27 <br><br> &lt;210&gt; 186 &lt;211&gt; 24 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 186 tacaagaggg aagaggagtt gcac 24 <br><br> &lt;210&gt; 187 &lt;211&gt; 52 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> 266 <br><br> &lt;400&gt; 187 <br><br> gcccattatg acggctacct ggctaaagac ggctcgaaat tctactgcag 50 <br><br> cc 52 <br><br> &lt;210&gt; 188 &lt;211&gt; 573 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 188 <br><br> cagaaatgca gggaccattg cttcttccag gcctctgctt tctgctgagc 50 <br><br> ctctttggag ctgtgactca gaaaaccaaa acttcctgtg ctaagtgccc 100 <br><br> cccaaatgct tcctgtgtca ataacactca ctgcacctgc aaccatggat 150 <br><br> atacttctgg atctgggcag aaactattca cattcccctt ggagacatgt 2 00 <br><br> aacgccaggc atggtggctc gcgcctgtaa tcccagttct ttgggaagcc 250 <br><br> aaggcaggtg gatcacctga ggtcaggagt ttgagaccag cctggccaac 3 00 <br><br> atagtgaaac cccgtgtcta ctaaaaatac aaaaatcagc cgggcgtggt 350 <br><br> ggtgcatgcc tgcaatccca gttactcggg aggctgaggc aggagaatcg 400 <br><br> cttgaactca ggaggcagaa gttgcagtga acccagatcc tgccattgca 450 <br><br> ctccagcatg gatgacagag caagactccg tctcaaaaag aaaagatagt 500 <br><br> ttcttgtttc atttcgcgac tgccctctca gtgtttcctg ggatcccctc 550 <br><br> ccaaataaag tacttatatt ctc 573 <br><br> &lt;210&gt; 189 <br><br> &lt;211&gt; 74 <br><br> &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 189 <br><br> Met Gin Gly Pro Leu Leu Leu Pro Gly Leu Cys Phe Leu Leu Ser 15 10 15 <br><br> Leu Phe Gly Ala Val Thr Gin Lys Thr Lys Thr Ser Cys Ala Lys 20 25 30 <br><br> Cys Pro Pro Asn Ala Ser Cys Val Asn Asn Thr His Cys Thr Cys 35 40 45 <br><br> Asn His Gly Tyr Thr Ser Gly Ser Gly Gin Lys Leu Phe Thr Phe 50 55 60 <br><br> Pro Leu Glu Thr Cys Asn Ala Arg His Gly Gly Ser Arg Leu <br><br> 267 <br><br> 65 70 <br><br> &lt;210&gt; 190 &lt;211&gt; 24 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 190 agggaccatt gcttcttcca ggcc 24 <br><br> &lt;210&gt; 191 &lt;211&gt; 24 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 191 cgttacatgt ctccaagggg aatg 24 <br><br> &lt;210&gt; 192 &lt;211&gt; 50 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 192 <br><br> cctgtgctaa gtgcccccca aatgcttcct gtgtcaataa cactcactgc 50 <br><br> &lt;210&gt; 193 &lt;211&gt; 1091 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 193 <br><br> caagcaggtc atccccttgg tgaccttcaa agagaagcag agagggcaga 50 ggtggggggc acagggaaag ggtgacctct gagattcccc ttttccccca 100 gactttggaa gtgacccacc atggggctca gcatcttttt gctcctgtgt 150 gttcttgggc tcagccaggc agccacaccg aagattttca atggcactga 2 00 gtgtgggcgt aactcacagc cgtggcaggt ggggctgttt gagggcacca 250 gcctgcgctg cgggggtgtc cttattgacc acaggtgggt cctcacagcg 300 gctcactgca gcggcagcag gtactgggtg cgcctggggg aacacagcct 350 <br><br> 268 <br><br> cagccagctc gactggaccg agcagatccg gcacagcggc ttctctgtga 400 <br><br> cccatcccgg ctacctggga gcctcgacga gccacgagca cgacctccgg 450 <br><br> ctgctgcggc tgcgcctgcc cgtccgcgta accagcagcg ttcaacccct 500 <br><br> gcccctgccc aatgactgtg caaccgctgg caccgagtgc cacgtctcag 550 <br><br> gctggggcat caccaaccac ccacggaacc cattcccgga tctgctccag 600 <br><br> tgcctcaacc tctccatcgt ctcccatgcc acctgccatg gtgtgtatcc 650 <br><br> cgggagaatc acgagcaaca tggtgtgtgc aggcggcgtc ccggggcagg 7 00 <br><br> atgcctgcca gggtgattct gggggccccc tggtgtgtgg gggagtcctt 750 <br><br> caaggtctgg tgtcctgggg gtctgtgggg ccctgtggac aagatggcat 800 <br><br> ccctggagtc tacacctata tttgcaagta tgtggactgg atccggatga 850 <br><br> tcatgaggaa caactgacct gtttcctcca cctccacccc caccccttaa 900 <br><br> cttgggtacc cctctggccc tcagagcacc aatatctcct ccatcacttc 950 <br><br> ccctagctcc actcttgttg gcctgggaac ttcttggaac tttaactcct 1000 <br><br> gccagccctt ctaagaccca cgagcggggt gagagaagtg tgcaatagtc 1050 <br><br> tggaataaat ataaatgaag gaggggcaaa aaaaaaaaaa a 1091 <br><br> &lt;210&gt; 194 &lt;211&gt; 248 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 194 <br><br> Met Gly Leu Ser Ile Phe Leu Leu Leu Cys Val Leu Gly Leu Ser 15 10 15 <br><br> Gin Ala Ala Thr Pro Lys Ile Phe Asn Gly Thr Glu Cys Gly Arg 20 25 30 <br><br> Asn Ser Gin Pro Trp Gin Val Gly Leu Phe Glu Gly Thr Ser Leu 35 40 45 <br><br> Arg Cys Gly Gly Val Leu Ile Asp His Arg Trp Val Leu Thr Ala 50 55 60 <br><br> Ala His Cys Ser Gly Ser Arg Tyr Trp Val Arg Leu Gly Glu His 65 70 75 <br><br> Ser Leu Ser Gin Leu Asp Trp Thr Glu Gin Ile Arg His Ser Gly 80 85 90 <br><br> Phe Ser Val Thr His Pro Gly Tyr Leu Gly Ala Ser Thr Ser His 95 100 105 <br><br> 269 <br><br> Glu His Asp Leu Arg Leu Leu Arg Leu Arg Leu Pro Val Arg Val 110 115 120 <br><br> Thr Ser Ser Val Gin Pro Leu Pro Leu Pro Asn Asp Cys Ala Thr 125 130 135 <br><br> Ala Gly Thr Glu Cys His Val Ser Gly Trp Gly Ile Thr Asn His 140 145 150 <br><br> Pro Arg Asn Pro Phe Pro Asp Leu Leu Gin Cys Leu Asn Leu Ser 155 160 165 <br><br> Ile Val Ser His Ala Thr Cys His Gly Val Tyr Pro Gly Arg Ile 170 175 180 <br><br> Thr Ser Asn Met Val Cys Ala Gly Gly Val Pro Gly Gin Asp Ala 185 190 195 <br><br> Cys Gin Gly Asp Ser Gly Gly Pro Leu Val Cys Gly Gly Val Leu 200 205 210 <br><br> Gin Gly Leu Val Ser Trp Gly Ser Val Gly Pro Cys Gly Gin Asp 215 220 225 <br><br> Gly Ile Pro Gly Val Tyr Thr Tyr Ile Cys Lys Tyr Val Asp Trp 230 235 240 <br><br> Ile Arg Met Ile Met Arg Asn Asn 245 <br><br> &lt;210&gt; 195 <br><br> &lt;211&gt; 1485 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 195 <br><br> gcggccacac gcagctagcc ggagcccgga ccaggcgcct gtgcctcctc 50 ctcgtccctc gccgcgtccg cgaagcctgg agccggcggg agccccgcgc 100 tcgccatgtc gggcgagctc agcaacaggt tccaaggagg gaaggcgttc 150 ggcttgctca aagcccggca ggagaggagg ctggccgaga tcaaccggga 2 00 gtttctgtgt gaccagaagt acagtgatga agagaacctt ccagaaaagc 250 tcacagcctt caaagagaag tacatggagt ttgacctgaa caatgaaggc 300 gagattgacc tgatgtcttt aaagaggatg atggagaagc ttggtgtccc 350 caagacccac ctggagatga agaagatgat ctcagaggtg acaggagggg 400 tcagtgacac tatatcctac cgagactttg tgaacatgat gctggggaaa 450 <br><br> 270 <br><br> cggtcggctg tcctcaagtt agtcatgatg tttgaaggaa aagccaacga 500 <br><br> gagcagcccc aagccagttg gcccccctcc agagagagac attgctagcc 550 <br><br> tgccctgagg accccgcctg gactccccag ccttcccacc ccatacctcc 600 <br><br> ctcccgatct tgctgccctt cttgacacac tgtgatctct ctctctctca 650 <br><br> tttgtttggt cattgagggt ttgtttgtgt tttcatcaat gtctttgtaa 700 <br><br> agcacaaatt atctgcctta aaggggctct gggtcgggga atcctgagcc 750 <br><br> ttgggtcccc tccctctctt cttccctcct tccccgctcc ctgtgcagaa 800 <br><br> gggctgatat caaaccaaaa actagagggg gcagggccag ggcagggagg 850 <br><br> cttccagcct gtgttcccct cacttggagg aaccagcact ctccatcctt 900 <br><br> tcagaaagtc tccaagccaa gttcaggctc actgacctgg ctctgacgag 950 <br><br> gaccccaggc cactctgaga agaccttgga gtagggacaa ggctgcaggg 1000 <br><br> cctctttcgg gtttccttgg acagtgccat ggttccagtg ctctggtgtc 1050 <br><br> acccaggaca cagccactcg gggccccgct gccccagctg atccccactc 1100 <br><br> attccacacc tcttctcatc ctcagtgatg tgaaggtggg aaggaaagga 1150 <br><br> gcttggcatt gggagccctt caagaaggta ccagaaggaa ccctccagtc 12 00 <br><br> ctgctctctg gccacacctg tgcaggcagc tgagaggcag cgtgcagccc 1250 <br><br> tactgtccct tactggggca gcagagggct tcggaggcag aagtgaggcc 1300 <br><br> tggggtttgg ggggaaaggt cagctcagtg ctgttccacc ttttagggag 1350 <br><br> gatactgagg ggaccaggat gggagaatga ggagtaaaat gctcacggca 1400 <br><br> aagtcagcag cactggtaag ccaagactga gaaatacaag gttgcttgtc 1450 <br><br> tgaccccaat ctgcttgaaa aaaaaaaaaa aaaaa 1485 <br><br> &lt;210&gt; 196 &lt;211&gt; 150 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 196 <br><br> Met Ser Gly Glu Leu Ser Asn Arg Phe Gin Gly Gly Lys Ala Phe 15 10 15 <br><br> Gly Leu Leu Lys Ala Arg Gin Glu Arg Arg Leu Ala Glu Ile Asn 20 25 30 <br><br> Arg Glu Phe Leu Cys Asp Gin Lys Tyr Ser Asp Glu Glu Asn Leu <br><br> 271 <br><br> Pro Glu Lys <br><br> Leu Asn Asn <br><br> Met Glu Lys <br><br> Met Ile Ser <br><br> Arg Asp Phe <br><br> Lys Leu Val <br><br> Lys Pro Val <br><br> &lt;210&gt; 197 &lt;211&gt; 4842 &lt;212&gt; DNA &lt;213&gt; Homo si <br><br> &lt;400&gt; 197 <br><br> cgcgctcccc gcgcgcctcc tcgggctcca cgcgtcttgc cccgcagagg 50 cagcctcctc caggagcggg gccctgcaca ccatggcccc cgggtgggca 100 ggggtcggcg ccgccgtgcg cgcccgcctg gcgctggcct tggcgctggc 150 gagcgtcctg agtgggcctc cagccgtcgc ctgccccacc aagtgtacct 2 00 gctccgctgc cagcgtggac tgccacgggc tgggcctccg cgcggttcct 250 cggggcatcc cccgcaacgc tgagcgcctt gacctggaca gaaataatat 3 00 caccaggatc accaagatgg acttcgctgg gctcaagaac ctccgagtct 350 tgcatctgga agacaaccag gtcagcgtca tcgagagagg cgccttccag 400 gacctgaagc agctagagcg actgcgcctg aacaagaata agctgcaagt 450 ccttccagaa ttgcttttcc agagcacgcc gaagctcacc agactagatt 500 tgagtgaaaa ccagatccag gggatcccga ggaaggcgtt ccgcggcatc 550 accgatgtga agaacctgca actggacaac aaccacatca gctgcattga 600 <br><br> agatggagcc ttccgagcgc tgcgcgattt ggagatcctt accctcaaca 650 <br><br> 35 40 45 <br><br> Leu Thr Ala Phe Lys Glu Lys Tyr Met Glu Phe Asp 50 55 60 <br><br> Glu Gly Glu Ile Asp Leu Met Ser Leu Lys Arg Met 65 70 75 <br><br> Leu Gly Val Pro Lys Thr His Leu Glu Met Lys Lys 80 85 90 <br><br> Glu Val Thr Gly Gly Val Ser Asp Thr Ile Ser Tyr 95 100 105 <br><br> Val Asn Met Met Leu Gly Lys Arg Ser Ala Val Leu 110 115 120 <br><br> Met Met Phe Glu Gly Lys Ala Asn Glu Ser Ser Pro 125 130 135 <br><br> Gly Pro Pro Pro Glu Arg Asp Ile Ala Ser Leu Pro 140 145 150 <br><br> apiens <br><br> 272 <br><br> acaacaacat cagtcgcatc ctggtcacca atccgaactc tgcgcctcca ctccaaccac ggcctggctc tcggattggc tgcgacagcg cactctgcat ggctcctgtg catttgaggg cagaagaagg agtacgtgtg cccagccccc caatgccaac tccatctcct gcccttcgcc tcgtggactg tcgaggaaag ggcttgatgg gagggcatcg tcgaaatacg cctagaacag tgcaggagcc ttcacccagt acaagaaact agaatcagat atcggatatt gctccagatg ctcacatcgc tggtcctgta tgggaacaag actgtttgat gggctggtgt ccctacagct agatcaactg cctgcgggtg aacacgtttc ttgctctccc tgtatgacaa caagctgcag cgcccctctg cagtccatcc agacactcca tgtgcgactg ccacttgaag tggctggccg atcgagacaa gcggggcccg ctgcagcagc gcgcatcagc cagatcaaga gcaagaagtt attaccgcag caggttcagc agcgagtgct gagaagtgtc gctgtgaggg cacgattgtg ggtccgcatc ccaagccacc tccctgaata atgacaatga ggtatctgtt ctggaggcca cccaacctgc ggaaaataaa tctgagtaac agagggagct ttcgatggag cagccagcgt ggaaccagct ggagaccgtg cacgggcgcg ctcaaaacct tgatgctgag gagtaacttg cacctttgcc ggcctgagtt cggtgagact ggatcaccac catcacccct ggggccttca gcttcaacca catgccgaag 700 ctctactgcg actgccacct 750 acggacagtt ggccagttca 800 gcttcaacgt ggcggatgtg 850 cactcggagc ccccatcctg 900 ctgcacgtgc agcaataaca 950 agattcctgc caacttgccg 1000 aactccatca aagccatccc 1050 gaagcgaata gacatcagca 1100 ccttccaggg cctgaaatca 1150 atcaccgaga ttgccaaggg 12 00 gctcctcctc aatgccaaca 1250 aggacctgca gaacctcaac 13 00 accatcagca aggggctctt 13 50 cttagcccaa aacccatttg 1400 actacctcca ggacaacccc 1450 ccgcgccgac tcgccaacaa 1500 ccgctgctca ggctccgagg 1550 tcatggacct cgtgtgcccc 1600 gactgctcca accagaagct 1650 tgtcaccgac ctgcgactga 1700 ctggcatctt caagaagttg 1750 aataagatca aggaggtgcg 1800 gcaggagctg atgctgacag 1850 tgttccgtgg cctcagtggc 1900 atcagctgtg tgagtaatga 1950 gctgtccctc tatgacaatc 2000 ccacgcttgt ctccctgtcc 2050 <br><br> 273 <br><br> accataaacc tcctgtccaa ccccttcaac gctcggcaag tggttgagga agaggcggat gccagaagcc atttttcctc aaggagattc caggacttca cctgtgatgg caacgaggag gcgctgcccg gagcagtgca cctgtatgga acaaggggct ccgcgccctc cccagaggca ctgtacctgg aaggaaacca cctaacagcc cctccgacac ctgacgctta ttgacctgag tgaccaatta caccttcagt aacatgtctc agctacaacc ggctgaggtg catccccgtc gtccctgcga gtgctaaccc tccatggcaa aaggctcctt caacgacctc acatctcttt aacccactcc actgtgactg cagtcttcgg ggcggggtac aaggagcctg gcatcgcccg tggctgacag gctcctgctc accaccccaa gggccagtgg acatcaacat tgtggccaaa cccgtgcaag aataacggga catgcaccca gctgtgcctg cccctacagc tacaagggca aacacctgca tccagaaccc ctgtcagcat tgacagccac aaggatgggt tcagctgctc ggcagcggtg tgagatcaac ccagatgact aacaatgcca cctgcgtgga cgggatcaac gcctaactac acaggtgagc tatgcgacga ctgagctgaa cctctgtcag catgaggcca ggattcagct gcgagtgtgt ccctggctac agacaatgat gactgtgtgg cccacaagtg tggacacaat caatggctac acatgcacct cccttctgtg aacacccccc acccatggtc tgcaactgcc acctggcctg 2100 cgtcagtggg aaccctaggt 2150 ccatccagga tgtggccatc 2200 agtagctgcc agctgagccc 2250 gacagtggtg cgatgcagca 23 00 tgcccaagga tgtgaccgag 2350 gtgcccagag agctgtccgc 2400 caacaacagc atcagcatgc 2450 acctctccac tctgatcctg 2500 cacgccttca acgggctgcg 2550 tgacatttcc agcgttcctg 2 600 cccatctggc gctgggaacc 2650 tggctgtcgg agtgggtgaa 27 00 ctgcagtagc cctgagccca 2750 cccaccgctt ccagtgcaaa 2800 tgcaatgcct gcctctccag 2850 ggaccctgtg gagctgtacc 2900 aggactgcac tgtgcccatc 2950 ggaggcacct gccacctgag 3 000 ctgccctctg ggctttgagg 3050 gtgaggacaa cgactgcgaa 3100 aactacgtgt gtatctgtcc 3150 ggtgattgac cactgtgtgc 32 00 agtgcatccc cctggacaaa 32 50 agcgggaagc tctgtgagac 3300 ccgccacggg gcccagtgcg 3350 gcccccaggg cttcagtgga 3400 ctactgcaga ccagcccatg 3450 <br><br> 274 <br><br> cgaccagtac gagtgccaga acggggccca gtgcatcgtg gtgcagcagg 3500 agcccacctg ccgctgccca ccaggcttcg ccggccccag atgcgagaag 3550 ctcatcactg tcaacttcgt gggcaaagac tcctacgtgg aactggcctc 3600 cgccaaggtc cgaccccagg ccaacatctc cctgcaggtg gccactgaca 3 650 aggacaacgg catccttctc tacaaaggag acaatgaccc cctggcactg 37 00 gagctgtacc agggccacgt gcggctggtc tatgacagcc tgagttcccc 3750 tccaaccaca gtgtacagtg tggagacagt gaatgatggg cagtttcaca 3800 gtgtggagct ggtgacgcta aaccagaccc tgaacctagt agtggacaaa 3850 ggaactccaa agagcctggg gaagctccag aagcagccag cagtgggcat 3900 caacagcccc ctctaccttg gaggcatccc cacctccacc ggcctctccg 3950 ccttgcgcca gggcacggac cggcctctag gcggcttcca cggatgcatc 4000 catgaggtgc gcatcaacaa cgagctgcag gacttcaagg ccctcccacc 4050 acagtccctg ggggtgtcac caggctgcaa gtcctgcacc gtgtgcaagc 4100 acggcctgtg ccgctccgtg gagaaggaca gcgtggtgtg cgagtgccgc 4150 ccaggctgga ccggcccact ctgcgaccag gaggcccggg acccctgcct 42 00 cggccacaga tgccaccatg gaaaatgtgt ggcaactggg acctcataca 4250 tgtgcaagtg tgccgagggc tatggagggg acttgtgtga caacaagaat 43 00 gactctgcca atgcctgctc agccttcaag tgtcaccatg ggcagtgcca 4350 catctcagac caaggggagc cctactgcct gtgccagccc ggctttagcg 4400 gcgagcactg ccaacaagag aatccgtgcc tgggacaagt agtccgagag 4450 gtgatccgcc gccagaaagg ttatgcatca tgtgccacag cctccaaggt 4500 gcccatcatg gaatgtcgtg ggggctgtgg gccccagtgc tgccagccca 4550 cccgcagcaa gcggcggaaa tacgtcttcc agtgcacgga cggctcctcg 4600 tttgtagaag aggtggagag acacttagag tgcggctgcc tcgcgtgttc 4650 ctaagcccct gcccgcctgc ctgccacctc tcggactcca gcttgatgga 4700 gttgggacag ccatgtggga ccccctggtg attcagcatg aaggaaatga 4750 agctggagag gaaggtaaag aagaagagaa tattaagtat attgtaaaat 4800 aaacaaaaaa tagaacttaa aaaaaaaaaa aaaaaaaaaa aa 4842 <br><br> 275 <br><br> &lt;210&gt; 198 &lt;211&gt; 1523 &lt;212&gt; PRT &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 198 <br><br> Met Ala Pro Gly Trp Ala Gly Val Gly Ala Ala Val Arg Ala Arg 15 10 15 <br><br> Leu Ala Leu Ala Leu Ala Leu Ala Ser Val Leu Ser Gly Pro Pro 20 25 30 <br><br> Ala Val Ala Cys Pro Thr Lys Cys Thr Cys Ser Ala Ala Ser Val 35 40 45 <br><br> Asp Cys His Gly Leu Gly Leu Arg Ala Val Pro Arg Gly Ile Pro 50 55 60 <br><br> Arg Asn Ala Glu Arg Leu Asp Leu Asp Arg Asn Asn Ile Thr Arg 65 70 75 <br><br> Ile Thr Lys Met Asp Phe Ala Gly Leu Lys Asn Leu Arg Val Leu 80 85 90 <br><br> His Leu Glu Asp Asn Gin Val Ser Val Ile Glu Arg Gly Ala Phe 95 100 105 <br><br> Gin Asp Leu Lys Gin Leu Glu Arg Leu Arg Leu Asn Lys Asn Lys 110 115 120 <br><br> Leu Gin Val Leu Pro Glu Leu Leu Phe Gin Ser Thr Pro Lys Leu 125 130 135 <br><br> Thr Arg Leu Asp Leu Ser Glu Asn Gin Ile Gin Gly Ile Pro Arg 140 145 150 <br><br> Lys Ala Phe Arg Gly Ile Thr Asp Val Lys Asn Leu Gin Leu Asp 155 160 165 <br><br> Asn Asn His Ile Ser Cys Ile Glu Asp Gly Ala Phe Arg Ala Leu 170 175 180 <br><br> Arg Asp Leu Glu Ile Leu Thr Leu Asn Asn Asn Asn Ile Ser Arg 185 190 195 <br><br> Ile Leu Val Thr Ser Phe Asn His Met Pro Lys Ile Arg Thr Leu 200 205 210 <br><br> Arg Leu His Ser Asn His Leu Tyr Cys Asp Cys His Leu Ala Trp 215 220 225 <br><br> Leu Ser Asp Trp Leu Arg Gin Arg Arg Thr Val Gly Gin Phe Thr 230 235 240 <br><br> Leu Cys Met Ala Pro Val His Leu Arg Gly Phe Asn Val Ala Asp <br><br> 276 <br><br> 245 250 255 <br><br> Val Gin Lys Lys Glu Tyr Val Cys Pro Ala Pro His Ser Glu Pro 260 265 270 <br><br> Pro Ser Cys Asn Ala Asn Ser Ile Ser Cys Pro Ser Pro Cys Thr 275 280 285 <br><br> Cys Ser Asn Asn Ile Val Asp Cys Arg Gly Lys Gly Leu Met Glu 290 295 300 <br><br> Ile Pro Ala Asn Leu Pro Glu Gly Ile Val Glu Ile Arg Leu Glu 305 310 315 <br><br> Gin Asn Ser Ile Lys Ala Ile Pro Ala Gly Ala Phe Thr Gin Tyr 320 325 330 <br><br> Lys Lys Leu Lys Arg Ile Asp Ile Ser Lys Asn Gin Ile Ser Asp 335 340 345 <br><br> Ile Ala Pro Asp Ala Phe Gin Gly Leu Lys Ser Leu Thr Ser Leu 350 355 360 <br><br> Val Leu Tyr Gly Asn Lys Ile Thr Glu Ile Ala Lys Gly Leu Phe 365 370 375 <br><br> Asp Gly Leu Val Ser Leu Gin Leu Leu Leu Leu Asn Ala Asn Lys 380 385 390 <br><br> Ile Asn Cys Leu Arg Val Asn Thr Phe Gin Asp Leu Gin Asn Leu 395 400 405 <br><br> Asn Leu Leu Ser Leu Tyr Asp Asn Lys Leu Gin Thr Ile Ser Lys 410 415 420 <br><br> Gly Leu Phe Ala Pro Leu Gin Ser Ile Gin Thr Leu His Leu Ala 425 430 435 <br><br> Gin Asn Pro Phe Val Cys Asp Cys His Leu Lys Trp Leu Ala Asp 440 445 450 <br><br> Tyr Leu Gin Asp Asn Pro Ile Glu Thr Ser Gly Ala Arg Cys Ser 455 460 465 <br><br> Ser Pro Arg Arg Leu Ala Asn Lys Arg Ile Ser Gin Ile Lys Ser 470 475 480 <br><br> Lys Lys Phe Arg Cys Ser Gly Ser Glu Asp Tyr Arg Ser Arg Phe <br><br> 485 490 495 <br><br> Ser Ser Glu Cys Phe Met Asp Leu Val Cys Pro Glu Lys Cys Arg <br><br> 500 505 510 <br><br> Cys Glu Gly Thr Ile Val Asp Cys Ser Asn Gin Lys Leu Val Arg <br><br> 277 <br><br> 515 <br><br> 520 <br><br> 525 <br><br> Ile Pro Ser His Leu Pro Glu Tyr Val Thr Asp Leu Arg Leu Asn 530 535 540 <br><br> Asp Asn Glu Val Ser Val Leu Glu Ala Thr Gly Ile Phe Lys Lys 545 550 555 <br><br> Leu Pro Asn Leu Arg Lys Ile Asn Leu Ser Asn Asn Lys Ile Lys 560 565 570 <br><br> Glu Val Arg Glu Gly Ala Phe Asp Gly Ala Ala Ser Val Gin Glu 575 580 585 <br><br> Leu Met Leu Thr Gly Asn Gin Leu Glu Thr Val His Gly Arg Val 590 595 600 <br><br> Phe Arg Gly Leu Ser Gly Leu Lys Thr Leu Met Leu Arg Ser Asn 605 610 615 <br><br> Leu Ile Ser Cys Val Ser Asn Asp Thr Phe Ala Gly Leu Ser Ser 620 625 630 <br><br> Val Arg Leu Leu Ser Leu Tyr Asp Asn Arg Ile Thr Thr Ile Thr 635 640 645 <br><br> Pro Gly Ala Phe Thr Thr Leu Val Ser Leu Ser Thr Ile Asn Leu 650 655 660 <br><br> Leu Ser Asn Pro Phe Asn Cys Asn Cys His Leu Ala Trp Leu Gly 665 670 675 <br><br> Lys Trp Leu Arg Lys Arg Arg Ile Val Ser Gly Asn Pro Arg Cys 680 685 690 <br><br> Gin Lys Pro Phe Phe Leu Lys Glu Ile Pro Ile Gin Asp Val Ala 695 700 705 <br><br> Ile Gin Asp Phe Thr Cys Asp Gly Asn Glu Glu Ser Ser Cys Gin 710 715 720 <br><br> Leu Ser Pro Arg Cys Pro Glu Gin Cys Thr Cys Met Glu Thr Val 725 730 735 <br><br> Val Arg Cys Ser Asn Lys Gly Leu Arg Ala Leu Pro Arg Gly Met 740 745 750 <br><br> Pro Lys Asp Val Thr Glu Leu Tyr Leu Glu Gly Asn His Leu Thr 755 760 765 <br><br> Ala Val Pro Arg Glu Leu Ser Ala Leu Arg His Leu Thr Leu Ile 770 775 780 <br><br> Asp Leu Ser Asn Asn Ser Ile Ser Met Leu Thr Asn Tyr Thr Phe 785 790 795 <br><br> 278 <br><br> Ser Asn Met Ser His Leu Ser Thr Leu Ile Leu Ser Tyr Asn Arg 800 805 810 <br><br> Leu Arg Cys Ile Pro Val His Ala Phe Asn Gly Leu Arg Ser Leu 815 820 825 <br><br> Arg Val Leu Thr Leu His Gly Asn Asp Ile Ser Ser Val Pro Glu 830 835 840 <br><br> Gly Ser Phe Asn Asp Leu Thr Ser Leu Ser His Leu Ala Leu Gly 845 850 855 <br><br> Thr Asn Pro Leu His Cys Asp Cys Ser Leu Arg Trp Leu Ser Glu 860 865 870 <br><br> Trp Val Lys Ala Gly Tyr Lys Glu Pro Gly Ile Ala Arg Cys Ser 875 880 885 <br><br> Ser Pro Glu Pro Met Ala Asp Arg Leu Leu Leu Thr Thr Pro Thr 890 895 900 <br><br> His Arg Phe Gin Cys Lys Gly Pro Val Asp Ile Asn Ile Val Ala 905 910 915 <br><br> Lys Cys Asn Ala Cys Leu Ser Ser Pro Cys Lys Asn Asn Gly Thr 920 925 930 <br><br> Cys Thr Gin Asp Pro Val Glu Leu Tyr Arg Cys Ala Cys Pro Tyr 935 940 945 <br><br> Ser Tyr Lys Gly Lys Asp Cys Thr Val Pro Ile Asn Thr Cys Ile 950 955 960 <br><br> Gin Asn Pro Cys Gin His Gly Gly Thr Cys His Leu Ser Asp Ser 965 970 975 <br><br> His Lys Asp Gly Phe Ser Cys Ser Cys Pro Leu Gly Phe Glu Gly 980 985 990 <br><br> Gin Arg Cys Glu Ile Asn Pro Asp Asp Cys Glu Asp Asn Asp Cys 995 1000 1005 <br><br> Glu Asn Asn Ala Thr Cys Val Asp Gly Ile Asn Asn Tyr Val Cys 1010 1015 1020 <br><br> Ile Cys Pro Pro Asn Tyr Thr Gly Glu Leu Cys Asp Glu Val Ile 1025 1030 1035 <br><br> Asp His Cys Val Pro Glu Leu Asn Leu Cys Gin His Glu Ala Lys 1040 1045 1050 <br><br> Cys Ile Pro Leu Asp Lys Gly Phe Ser Cys Glu Cys Val Pro Gly 1055 1060 1065 <br><br> 279 <br><br> Tyr Ser Gly Lys Leu Cys Glu Thr Asp Asn Asp Asp Cys Val Ala 1070 1075 1080 <br><br> His Lys Cys Arg His Gly Ala Gin Cys Val Asp Thr Ile Asn Gly 1085 1090 1095 <br><br> Tyr Thr Cys Thr Cys Pro Gin Gly Phe Ser Gly Pro Phe Cys Glu 1100 1105 1110 <br><br> His Pro Pro Pro Met Val Leu Leu Gin Thr Ser Pro Cys Asp Gin 1115 1120 1125 <br><br> Tyr Glu Cys Gin Asn Gly Ala Gin Cys Ile Val Val Gin Gin Glu 1130 1135 1140 <br><br> Pro Thr Cys Arg Cys Pro Pro Gly Phe Ala Gly Pro Arg Cys Glu 1145 1150 1155 <br><br> Lys Leu Ile Thr Val Asn Phe Val Gly Lys Asp Ser Tyr Val Glu 1160 1165 1170 <br><br> Leu Ala Ser Ala Lys Val Arg Pro Gin Ala Asn Ile Ser Leu Gin 1175 1180 1185 <br><br> Val Ala Thr Asp Lys Asp Asn Gly Ile Leu Leu Tyr Lys Gly Asp 1190 1195 1200 <br><br> Asn Asp Pro Leu Ala Leu Glu Leu Tyr Gin Gly His Val Arg Leu 1205 1210 1215 <br><br> Val Tyr Asp Ser Leu Ser Ser Pro Pro Thr Thr Val Tyr Ser Val 1220 1225 1230 <br><br> Glu Thr Val Asn Asp Gly Gin Phe His Ser Val Glu Leu Val Thr 1235 1240 1245 <br><br> Leu Asn Gin Thr Leu Asn Leu Val Val Asp Lys Gly Thr Pro Lys 1250 1255 1260 <br><br> Ser Leu Gly Lys Leu Gin Lys Gin Pro Ala Val Gly Ile Asn Ser 1265 1270 1275 <br><br> Pro Leu Tyr Leu Gly Gly Ile Pro Thr Ser Thr Gly Leu Ser Ala 1280 1285 1290 <br><br> Leu Arg Gin Gly Thr Asp Arg Pro Leu Gly Gly Phe His Gly Cys 1295 1300 1305 <br><br> Ile His Glu Val Arg Ile Asn Asn Glu Leu Gin Asp Phe Lys Ala 1310 1315 1320 <br><br> Leu Pro Pro Gin Ser Leu Gly Val Ser Pro Gly Cys Lys Ser Cys 1325 1330 1335 <br><br> 280 <br><br> Thr Val Cys Lys His Gly Leu Cys Arg Ser Val Glu Lys Asp Ser 1340 1345 1350 <br><br> Val Val Cys Glu Cys Arg Pro Gly Trp Thr Gly Pro Leu Cys Asp 1355 1360 1365 <br><br> Gin Glu Ala Arg Asp Pro Cys Leu Gly His Arg Cys His His Gly 1370 1375 1380 <br><br> Lys Cys Val Ala Thr Gly Thr Ser Tyr Met Cys Lys Cys Ala Glu 1385 1390 1395 <br><br> Gly Tyr Gly Gly Asp Leu Cys Asp Asn Lys Asn Asp Ser Ala Asn 1400 1405 1410 <br><br> Ala Cys Ser Ala Phe Lys Cys His His Gly Gin Cys His Ile Ser 1415 1420 1425 <br><br> Asp Gin Gly Glu Pro Tyr Cys Leu Cys Gin Pro Gly Phe Ser Gly 1430 1435 1440 <br><br> Glu His Cys Gin Gin Glu Asn Pro Cys Leu Gly Gin Val Val Arg 1445 1450 1455 <br><br> Glu Val Ile Arg Arg Gin Lys Gly Tyr Ala Ser Cys Ala Thr Ala 1460 1465 1470 <br><br> Ser Lys Val Pro Ile Met Glu Cys Arg Gly Gly Cys Gly Pro Gin 1475 1480 1485 <br><br> Cys Cys Gin Pro Thr Arg Ser Lys Arg Arg Lys Tyr Val Phe Gin 1490 1495 1500 <br><br> Cys Thr Asp Gly Ser Ser Phe Val Glu Glu Val Glu Arg His Leu 1505 1510 1515 <br><br> Glu Cys Gly Cys Leu Ala Cys Ser 1520 <br><br> &lt;210&gt; 199 &lt;211&gt; 24 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 199 atggagattc ctgccaactt gccg 24 <br><br> &lt;210&gt; 200 &lt;211&gt; 24 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Service <br><br> 281 <br><br> &lt;220&gt; <br><br> &lt;221&gt; Artificial Sequence &lt;222&gt; full <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 200 ttgttggcat tgaggaggag cagc 24 <br><br> &lt;210&gt; 201 &lt;211&gt; 50 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 201 <br><br> gagggcatcg tcgaaatacg cctagaacag aactccatca aagccatccc 50 <br><br> &lt;210&gt; 202 &lt;211&gt; 753 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 202 <br><br> ggatgcagga cgctcccctg agctgcctgt caccgactag gtggagcagt 50 <br><br> gtttcttccg cagactcaac tgagaagtca gcctctgggg caggcaccag <br><br> 100 <br><br> gaatctgcct tttcagttct gtctccggca ggctttgagg atgaaggctg <br><br> 150 <br><br> cgggcattct gaccctcatt ggctgcctgg tcacaggcgc cgagtccaaa <br><br> 200 <br><br> atctacactc gttgcaaact ggcaaaaata ttctcgaggg ctggcctgga <br><br> 250 <br><br> caattactgg ggcttcagcc ttggaaactg gatctgcatg gcatattatg <br><br> 300 <br><br> agagcggcta caacaccaca gccccgacgg tcctggatga cggcagcatc <br><br> 350 <br><br> gactatggca tcttccagat caacagcttc gcgtggtgca gacgcggaaa <br><br> 400 <br><br> gctgaaggag aacaaccact gccatgtcgc ctgctcagcc ttgatcactg <br><br> 450 <br><br> atgacctcac agatgcaatt atctgtgcca ggaaaattgt taaagagaca <br><br> 500 <br><br> caaggaatga actattggca aggctggaag aaacattgtg agggcagaga <br><br> 550 <br><br> cctgtccgag tggaaaaaag gctgtgaggt ttcctaaact ggaactggac <br><br> 600 <br><br> ccaggatgct ttgcagcaac gccctaggat ttgcagtgaa tgtccaaatg <br><br> 650 <br><br> cctgtgtcat cttgtcccgt ttcctcccaa tattccttct caaacttgga <br><br> 700 <br><br> gagggaaaat taagctatac ttttaagaaa ataaatattt ccatttaaat <br><br> 750 <br><br> 282 <br><br> gtc 753 <br><br> &lt;210&gt; 203 &lt;211&gt; 148 &lt;212&gt; PRT &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 203 Met Lys Ala Ala Gly Ile 1 5 <br><br> Gly Ala Glu Ser Lys Ile 20 <br><br> Phe Ser Arg Ala Gly Leu 35 <br><br> Asn Trp Ile Cys Met Ala 50 <br><br> Ala Pro Thr Val Leu Asp 65 <br><br> Gin Ile Asn Ser Phe Ala 80 <br><br> Asn Asn His Cys His Val 95 <br><br> Leu Thr Asp Ala Ile Ile 110 <br><br> Gin Gly Met Asn Tyr Trp 125 <br><br> Arg Asp Leu Ser Glu Trp 140 <br><br> &lt;210&gt; 204 &lt;211&gt; 24 &lt;212&gt; DNA &lt;213&gt; Artificial Sequence <br><br> &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 204 gcaggctttg aggatgaagg ctgc 24 <br><br> &lt;210&gt; 205 &lt;211&gt; 24 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence <br><br> Leu Thr Leu Ile Gly Cys Leu Val Thr 10 15 <br><br> Tyr Thr Arg Cys Lys Leu Ala Lys Ile 25 30 <br><br> Asp Asn Tyr Trp Gly Phe Ser Leu Gly 40 45 <br><br> Tyr Tyr Glu Ser Gly Tyr Asn Thr Thr 55 60 <br><br> Asp Gly Ser Ile Asp Tyr Gly Ile Phe 70 75 <br><br> Trp Cys Arg Arg Gly Lys Leu Lys Glu 85 90 <br><br> Ala Cys Ser Ala Leu Ile Thr Asp Asp 100 105 <br><br> Cys Ala Arg Lys Ile Val Lys Glu Thr 115 120 <br><br> Gin Gly Trp Lys Lys His Cys Glu Gly 130 135 <br><br> Lys Lys Gly Cys Glu Val Ser 145 <br><br> &lt;220&gt; <br><br> 283 <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 205 ctcattggct gcctggtcac aggc 24 <br><br> &lt;210&gt; 206 &lt;211&gt; 24 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 206 ccagtcggac aggtctctcc cctc 24 <br><br> &lt;210&gt; 207 &lt;211&gt; 24 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 207 <br><br> tcagtgacca aggctgagca ggcg 24 <br><br> &lt;210&gt; 208 &lt;211&gt; 47 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;22 0&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 208 <br><br> ctacactcgt tgcaaactgg caaaaatatt ctcgagggct ggcctgg 47 <br><br> &lt;210&gt; 209 &lt;211&gt; 1648 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 209 <br><br> caggccattt gcatcccact gtccttgtgt tcggagccag gccacaccgt 50 cctcagcagt gtcatgtgtt aaaaacgcca agctgaatat atcatgcccc 100 tattaaaact tgtacatggc tccccattgg tttttggaga aaagttcaag 150 ctttttacct tggtgtctgc ctgtatccca gtgttcaggc tggctagacg 2 00 gcggaagaag atcctatttt actgtcactt cccagatctg cttctcacca 250 agagagattc ttttcttaaa cgactataca gggccccaat tgactggata 300 <br><br> 284 <br><br> gaggaataca ccacaggcat ggcagactgc cacagctgct gtttttaagg aaacattcaa ctgatgtcct ctatccatct ctaaatgtca cctgaaaagc tggatgacct agtccccaag ctccatcaac agatacgaaa ggaagaaaaa ccctagtaca gctgcgtgga agattgacat catctgatcg tggcaggtgg ttatgacgag acattatcag gaattgaaga aaatggtcca atgtgacctt cttgaggtct ttctcagaca cacagctgca cgtgtgtgct ttacacacca tgtccctctg gaagccatgt acatgcagtg cgggtggacc cttggagtcc attgaccaca gagcctgacc cggtgcactt ctcagaagca accttcctta aaagccacca tgggcctggc aaaaattttc ccctgaagca tttacagaac aaactgctgg tataatcaga ttgtttttaa ttatggattg tagacccagt tttgaaacca atgcagaaga gatcttttaa aaaataaact ctttcctata taccacacct ccctgtccac tttatgctat aatcattcca aattttgcca tgtcattcca tgttcagcag agtattttaa tgctcttctg tctataaatt ttgaatgata atagtttaag tgtgtatcat tatcaaagtt ataatgagag cagggctatt gtagttccca tcactgtcat ctgttaggga atttttgttt catagcgaga gtgctctgta ttttttttaa actgagatat aataaaaggt gtttatcata atcttagtca acagccagtt 350 gtccctgtct cacatagacc 400 ccagctttga ctcagttgtt 450 gggaaaaaat tcctgctgct 500 tctgactttg gcactggaag 550 cccaagattg ggagagggtt 600 agagtcctgg agaatgtgga 650 acagtccgac cttggccagt 7 00 aacagaaaat ctccctcctc 750 agcaatgagc actttggcat 800 cccagtcatt gctgttaatt 850 gtgtcacagg gtttctgtgt 900 atagaaaagt tcatccgtga 950 tggaagagcc agagtgaagg 1000 agctctaccg atatgttacc 1050 gatctccatt aatgtcattt 1100 <br><br> aaaaagaaac ctagaatcta 1150 tgagtcttga atgtgagcca 1200 ttttcagaaa aaccatgtct 1250 gtgttaagtt acaaatgtgg 1300 ttatattttc tcgggattat 1350 ctgtgcctta attggttttc 1400 gattaatttg gcttcatagt 1450 gattcaatcc accgaagtgt 1500 gtcctgtctt tgcctggatc 1550 gataatttgt atttttgcac 1600 aaaaaaaaaa aaaaaaaa 1648 <br><br> 285 <br><br> &lt;210&gt; 210 &lt;211&gt; 323 &lt;212&gt; PRT &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 210 <br><br> Met Pro Leu Leu Lys Leu Val His Gly Ser Pro Leu Val Phe Gly 15 10 15 <br><br> Glu Lys Phe Lys Leu Phe Thr Leu Val Ser Ala Cys Ile Pro Val 20 25 30 <br><br> Phe Arg Leu Ala Arg Arg Arg Lys Lys Ile Leu Phe Tyr Cys His 35 40 45 <br><br> Phe Pro Asp Leu Leu Leu Thr Lys Arg Asp Ser Phe Leu Lys Arg 50 55 60 <br><br> Leu Tyr Arg Ala Pro Ile Asp Trp Ile Glu Glu Tyr Thr Thr Gly 65 70 75 <br><br> Met Ala Asp Cys Ile Leu Val Asn Ser Gin Phe Thr Ala Ala Val 80 85 90 <br><br> Phe Lys Glu Thr Phe Lys Ser Leu Ser His Ile Asp Pro Asp Val 95 100 105 <br><br> Leu Tyr Pro Ser Leu Asn Val Thr Ser Phe Asp Ser Val Val Pro 110 115 120 <br><br> Glu Lys Leu Asp Asp Leu Val Pro Lys Gly Lys Lys Phe Leu Leu 125 130 135 <br><br> Leu Ser Ile Asn Arg Tyr Glu Arg Lys Lys Asn Leu Thr Leu Ala 140 145 150 <br><br> Leu Glu Ala Leu Val Gin Leu Arg Gly Arg Leu Thr Ser Gin Asp 155 160 165 <br><br> Trp Glu Arg Val His Leu Ile Val Ala Gly Gly Tyr Asp Glu Arg 170 175 180 <br><br> Val Leu Glu Asn Val Glu His Tyr Gin Glu Leu Lys Lys Met Val 185 190 195 <br><br> Gin Gin Ser Asp Leu Gly Gin Tyr Val Thr Phe Leu Arg Ser Phe 200 205 210 <br><br> Ser Asp Lys Gin Lys Ile Ser Leu Leu His Ser Cys Thr Cys Val 215 220 225 <br><br> Leu Tyr Thr Pro Ser Asn Glu His Phe Gly Ile Val Pro Leu Glu 230 235 240 <br><br> Ala Met Tyr Met Gin Cys Pro Val Ile Ala Val Asn Ser Gly Gly 245 250 255 <br><br> 286 <br><br> Pro Leu Glu Ser Ile Asp His Ser Val Thr Gly Phe Leu Cys Glu 260 265 270 <br><br> Pro Asp Pro Val His Phe Ser Glu Ala Ile Glu Lys Phe Ile Arg 275 280 285 <br><br> Glu Pro Ser Leu Lys Ala Thr Met Gly Leu Ala Gly Arg Ala Arg 290 295 300 <br><br> Val Lys Glu Lys Phe Ser Pro Glu Ala Phe Thr Glu Gin Leu Tyr 305 310 315 <br><br> Arg Tyr Val Thr Lys Leu Leu Val 320 <br><br> &lt;210&gt; 211 &lt;211&gt; 1554 &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 211 <br><br> gactacgccg atccgagacg tggctccctg ggcggcagaa ccatgttgga 50 cttcgcgatc ttcgccgtta ccttcttgct ggcgttggtg ggagccgtgc 100 tctacctcta tccggcttcc agacaagctg caggaattcc agggattact 150 ccaactgaag aaaaagatgg taatcttcca gatattgtga atagtggaag 2 00 tttgcatgag ttcctggtta atttgcatga gagatatggg cctgtggtct 250 ccttctggtt tggcaggcgc ctcgtggtta gtttgggcac tgttgatgta 3 00 ctgaagcagc atatcaatcc caataagaca tcggaccctt ttgaaaccat 350 gctgaagtca ttattaaggt atcaatctgg tggtggcagt gtgagtgaaa 400 accacatgag gaaaaaattg tatgaaaatg gtgtgactga ttctctgaag 450 agtaactttg ccctcctcct aaagctttca gaagaattat tagataaatg 500 gctctcctac ccagagaccc agcacgtgcc cctcagccag catatgcttg 550 gttttgctat gaagtctgtt acacagatgg taatgggtag tacatttgaa 600 gatgatcagg aagtcattcg cttccagaag aatcatggca cagtttggtc 650 tgagattgga aaaggctttc tagatgggtc acttgataaa aacatgactc 700 ggaaaaaaca atatgaagat gccctcatgc aactggagtc tgttttaagg 750 aacatcataa aagaacgaaa aggaaggaac ttcagtcaac atattttcat 800 tgactcctta gtacaaggga accttaatga ccaacagatc ctagaagaca 850 <br><br> 287 <br><br> gtatgatatt ttctctggcc agttgcataa taactgcaaa attgtgtacc 900 <br><br> tgggcaatct gttttttaac cacctctgaa gaagttcaaa aaaaattata 950 <br><br> tgaagagata aaccaagttt ttggaaatgg tcctgttact ccagagaaaa 1000 <br><br> ttgagcagct cagatattgt cagcatgtgc tttgtgaaac tgttcgaact 1050 <br><br> gccaaactga ctccagtttc tgcccagctt caagatattg aaggaaaaat 1100 <br><br> tgaccgattt attattccta gagagaccct cgtcctttat gcccttggtg 1150 <br><br> tggtacttca ggatcctaat acttggccat ctccacacaa gtttgatcca 1200 <br><br> gatcggtttg atgatgaatt agtaatgaaa actttttcct cacttggatt 1250 <br><br> ctcaggcaca caggagtgtc cagagttgag gtttgcatat atggtgacca 1300 <br><br> cagtacttct tagtgtattg gtgaagagac tgcacctact ttctgtggag 1350 <br><br> ggacaggtta ttgaaacaaa gtatgaactg gtaacatcat caagggaaga 1400 <br><br> agcttggatc actgtctcaa agagatatta aaattttata catttaaaat 1450 <br><br> cattgttaaa ttgattgagg aaaacaacca tttaaaaaaa atctatgttg 1500 <br><br> aatcctttta taaaccagta tcactttgta atataaacac ctatttgtac 1550 <br><br> ttaa 1554 <br><br> &lt;210&gt; 212 &lt;211&gt; 462 &lt;212&gt; PRT &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 212 <br><br> Met Leu Asp Phe Ala Ile Phe Ala Val Thr Phe Leu Leu Ala Leu 15 10 15 <br><br> Val Gly Ala Val Leu Tyr Leu Tyr Pro Ala Ser Arg Gin Ala Ala 20 25 30 <br><br> Gly Ile Pro Gly Ile Thr Pro Thr Glu Glu Lys Asp Gly Asn Leu 35 40 45 <br><br> Pro Asp Ile Val Asn Ser Gly Ser Leu His Glu Phe Leu Val Asn 50 55 60 <br><br> Leu His Glu Arg Tyr Gly Pro Val Val Ser Phe Trp Phe Gly Arg 65 70 75 <br><br> Arg Leu Val Val Ser Leu Gly Thr Val Asp Val Leu Lys Gin His 80 85 90 <br><br> Ile Asn Pro Asn Lys Thr Ser Asp Pro Phe Glu Thr Met Leu Lys <br><br> 288 <br><br> 95 <br><br> 100 <br><br> 105 <br><br> Ser Leu Leu Arg Tyr Gin Ser Gly Gly Gly Ser Val Ser Glu Asn 110 115 120 <br><br> His Met Arg Lys Lys Leu Tyr Glu Asn Gly Val Thr Asp Ser Leu 125 130 135 <br><br> Lys Ser Asn Phe Ala Leu Leu Leu Lys Leu Ser Glu Glu Leu Leu 140 145 150 <br><br> Asp Lys Trp Leu Ser Tyr Pro Glu Thr Gin His Val Pro Leu Ser 155 160 165 <br><br> Gin His Met Leu Gly Phe Ala Met Lys Ser Val Thr Gin Met Val 170 175 180 <br><br> Met Gly Ser Thr Phe Glu Asp Asp Gin Glu Val Ile Arg Phe Gin 185 190 195 <br><br> Lys Asn His Gly Thr Val Trp Ser Glu Ile Gly Lys Gly Phe Leu 200 205 210 <br><br> Asp Gly Ser Leu Asp Lys Asn Met Thr Arg Lys Lys Gin Tyr Glu 215 220 225 <br><br> Asp Ala Leu Met Gin Leu Glu Ser Val Leu Arg Asn Ile Ile Lys 230 235 240 <br><br> Glu Arg Lys Gly Arg Asn Phe Ser Gin His Ile Phe Ile Asp Ser 245 250 255 <br><br> Leu Val Gin Gly Asn Leu Asn Asp Gin Gin Ile Leu Glu Asp Ser 260 265 270 <br><br> Met Ile Phe Ser Leu Ala Ser Cys Ile Ile Thr Ala Lys Leu Cys 275 280 285 <br><br> Thr Trp Ala Ile Cys Phe Leu Thr Thr Ser Glu Glu Val Gin Lys 290 295 300 <br><br> Lys Leu Tyr Glu Glu Ile Asn Gin Val Phe Gly Asn Gly Pro Val 305 310 315 <br><br> Thr Pro Glu Lys Ile Glu Gin Leu Arg Tyr Cys Gin His Val Leu 320 325 330 <br><br> Cys Glu Thr Val Arg Thr Ala Lys Leu Thr Pro Val Ser Ala Gin 335 340 345 <br><br> Leu Gin Asp Ile Glu Gly Lys Ile Asp Arg Phe Ile Ile Pro Arg 350 355 360 <br><br> Glu Thr Leu Val Leu Tyr Ala Leu Gly Val Val Leu Gin Asp Pro 365 370 375 <br><br> 289 <br><br> Asn Thr Trp Pro Ser Pro 380 <br><br> Asp Glu Leu Val Met Lys 395 <br><br> Thr Gin Glu Cys Pro Glu 410 <br><br> Val Leu Leu Ser Val Leu 425 <br><br> Glu Gly Gin Val Ile Glu 440 <br><br> Arg Glu Glu Ala Trp Ile 455 <br><br> &lt;210&gt; 213 &lt;211&gt; 759 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 213 <br><br> ctagatttgt cggcttgcgg ggagacttca ggagtcgctg tctctgaact 50 tccagcctca gagaccgccg cccttgtccc cgagggccat gggccgggtc 100 tcagggcttg tgccctctcg cttcctgacg ctcctggcgc atctggtggt 150 cgtcatcacc ttattctggt cccgggacag caacatacag gcctgcctgc 200 ctctcacgtt cacccccgag gagtatgaca agcaggacat tcagctggtg 250 gccgcgctct ctgtcaccct gggcctcttt gcagtggagc tggccggttt 300 cctctcagga gtctccatgt tcaacagcac ccagagcctc atctccattg 350 gggctcactg tagtgcatcc gtggccctgt ccttcttcat attcgagcgt 400 tgggagtgca ctacgtattg gtacattttt gtcttctgca gtgcccttcc 450 agctgtcact gaaatggctt tattcgtcac cgtctttggg ctgaaaaaga 500 aacccttctg attaccttca tgacgggaac ctaaggacga agcctacagg 550 ggcaagggcc gcttcgtatt cctggaagaa ggaaggcata ggcttcggtt 600 ttcccctcgg aaactgcttc tgctggagga tatgtgttgg aataattacg 650 tcttgagtct gggattatcc gcattgtatt tagtgctttg taataaaata 700 tgttttgtag taacattaag acttatatac agttttaggg gacaattaaa 750 <br><br> His Lys Phe Asp Pro Asp Arg Phe Asp 385 390 <br><br> Thr Phe Ser Ser Leu Gly Phe Ser Gly 400 405 <br><br> Leu Arg Phe Ala Tyr Met Val Thr Thr 415 420 <br><br> Val Lys Arg Leu His Leu Leu Ser Val 430 435 <br><br> Thr Lys Tyr Glu Leu Val Thr Ser Ser 445 450 <br><br> Thr Val Ser Lys Arg Tyr 460 <br><br> 290 <br><br> aaaaaaaaa 759 <br><br> &lt;210&gt; 214 &lt;211&gt; 140 &lt;212&gt; PRT &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 214 <br><br> Met Gly Arg Val Ser Gly Leu Val Pro Ser Arg Phe Leu Thr Leu 15 10 15 <br><br> Leu Ala His Leu Val Val Val Ile Thr Leu Phe Trp Ser Arg Asp 20 25 30 <br><br> Ser Asn Ile Gin Ala Cys Leu Pro Leu Thr Phe Thr Pro Glu Glu 35 40 45 <br><br> Tyr Asp Lys Gin Asp Ile Gin Leu Val Ala Ala Leu Ser Val Thr <br><br> 50 55 60 <br><br> Leu Gly Leu Phe Ala Val Glu Leu Ala Gly Phe Leu Ser Gly Val 65 70 75 <br><br> Ser Met Phe Asn Ser Thr Gin Ser Leu Ile Ser Ile Gly Ala His 80 85 90 <br><br> Cys Ser Ala Ser Val Ala Leu Ser Phe Phe Ile Phe Glu Arg Trp 95 100 105 <br><br> Glu Cys Thr Thr Tyr Trp Tyr Ile Phe Val Phe Cys Ser Ala Leu 110 115 120 <br><br> Pro Ala Val Thr Glu Met Ala Leu Phe Val Thr Val Phe Gly Leu 125 130 135 <br><br> Lys Lys Lys Pro Phe 140 <br><br> &lt;210&gt; 215 &lt;211&gt; 697 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 215 <br><br> tcccggaccc tgccgccctg ccactatgtc ccgccgctct atgctgcttg 50 cctgggctct ccccagcctc cttcgactcg gagcggctca ggagacagaa 100 gacccggcct gctgcagccc catagtgccc cggaacgagt ggaaggccct 150 ggcatcagag tgcgcccagc acctgagcct gcccttacgc tatgtggtgg 2 00 tatcgcacac ggcgggcagc agctgcaaca cccccgcctc gtgccagcag 250 caggcccgga atgtgcagca ctaccacatg aagacactgg gctggtgcga 300 <br><br> 291 <br><br> cgtgggctac aacttcctga ttggagaaga cgggctcgta tacgagggcc 350 <br><br> gtggctggaa cttcacgggt gcccactcag gtcacttatg gaaccccatg 400 <br><br> tccattggca tcagcttcat gggcaactac atggatcggg tgcccacacc 450 <br><br> ccaggccatc cgggcagccc agggtctact ggcctgcggt gtggctcagg 500 <br><br> gagccctgag gtccaactat gtgctcaaag gacaccggga tgtgcagcgt 550 <br><br> acactctctc caggcaacca gctctaccac ctcatccaga attggccaca 600 <br><br> ctaccgctcc ccctgaggcc ctgctgatcc gcaccccatt cctcccctcc 650 <br><br> catggccaaa aaccccactg tctccttctc caataaagat gtagctc 697 <br><br> &lt;210&gt; 216 &lt;211&gt; 196 &lt;212&gt; PRT &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 216 <br><br> Met Ser Arg Arg Ser Met Leu Leu Ala Trp Ala Leu Pro Ser Leu 15 10 15 <br><br> Leu Arg Leu Gly Ala Ala Gin Glu Thr Glu Asp Pro Ala Cys Cys 20 25 30 <br><br> Ser Pro Ile Val Pro Arg Asn Glu Trp Lys Ala Leu Ala Ser Glu 35 40 45 <br><br> Cys Ala Gin His Leu Ser Leu Pro Leu Arg Tyr Val Val Val Ser 50 55 60 <br><br> His Thr Ala Gly Ser Ser Cys Asn Thr Pro Ala Ser Cys Gin Gin 65 70 75 <br><br> Gin Ala Arg Asn Val Gin His Tyr His Met Lys Thr Leu Gly Trp 80 85 90 <br><br> Cys Asp Val Gly Tyr Asn Phe Leu Ile Gly Glu Asp Gly Leu Val 95 100 105 <br><br> Tyr Glu Gly Arg Gly Trp Asn Phe Thr Gly Ala His Ser Gly His 110 115 120 <br><br> Leu Trp Asn Pro Met Ser Ile Gly Ile Ser Phe Met Gly Asn Tyr 125 130 135 <br><br> Met Asp Arg Val Pro Thr Pro Gin Ala Ile Arg Ala Ala Gin Gly 140 145 150 <br><br> Leu Leu Ala Cys Gly Val Ala Gin Gly Ala Leu Arg Ser Asn Tyr 155 160 165 <br><br> 292 <br><br> Val Leu Lys Gly His Arg Asp Val Gin Arg Thr Leu Ser Pro Gly 170 175 180 <br><br> Asn Gin Leu Tyr His Leu Ile Gin Asn Trp Pro His Tyr Arg Ser 185 190 195 <br><br> Pro <br><br> &lt;210&gt; 217 <br><br> &lt;211&gt; 1871 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 217 <br><br> ctgggacccc gaaaagagaa ggggagagcg aggggacgag agcggaggag 50 gaagatgcaa ctgactcgct gctgcttcgt gttcctggtg cagggtagcc 100 tctatctggt catctgtggc caggatgatg gtcctcccgg ctcagaggac 15 0 cctgagcgtg atgaccacga gggccagccc cggccccggg tgcctcggaa 2 00 gcggggccac atctcaccta agtcccgccc catggccaat tccactctcc 250 tagggctgct ggccccgcct ggggaggctt ggggcattct tgggcagccc 300 cccaaccgcc cgaaccacag ccccccaccc tcagccaagg tgaagaaaat 350 ctttggctgg ggcgacttct actccaacat caagacggtg gccctgaacc 400 tgctcgtcac agggaagatt gtggaccatg gcaatgggac cttcagcgtc 450 <br><br> cacttccaac acaatgccac aggccaggga aacatctcca tcagcctcgt 500 gccccccagt aaagctgtag agttccacca ggaacagcag atcttcatcg 550 aagccaaggc ctccaaaatc ttcaactgcc ggatggagtg ggagaaggta 600 gaacggggcc gccggacctc gctttgcacc cacgacccag ccaagatctg 650 ctcccgagac cacgctcaga gctcagccac ctggagctgc tcccagccct 7 00 tcaaagtcgt ctgtgtctac atcgccttct acagcacgga ctatcggctg 750 gtccagaagg tgtgcccaga ttacaactac catagtgata ccccctacta 800 cccatctggg tgacccgggg caggccacag aggccaggcc agggctggaa 850 ggacaggcct gcccatgcag gagaccatct ggacaccggg cagggaaggg 900 gttgggcctc aggcagggag gggggtggag acgaggagat gccaagtggg 950 gccagggcca agtctcaagt ggcagagaaa gggtcccaag tgctggtccc 1000 <br><br> 293 <br><br> aacctgaagc tgtggagtga ctagatcaca ggagcactgg aggaggagtg 1050 <br><br> ggctctctgt gcagcctcac agggctttgc cacggagcca cagagagatg 1100 <br><br> ctgggtcccc gaggcctgtg ggcaggccga tcagtgtggc cccagatcaa 1150 <br><br> gtcatgggag gaagctaagc ccttggttct tgccatcctg aggaaagata 1200 <br><br> gcaacaggga gggggagatt tcatcagtgt ggacagcctg tcaacttagg 1250 <br><br> atggatggct gagagggctt cctaggagcc agtcagcagg gtggggtggg 13 00 <br><br> gccagaggag ctctccagcc ctgcctagtg ggcgccctga gccccttgtc 1350 <br><br> gtgtgctgag catggcatga ggctgaagtg gcaaccctgg ggtctttgat 1400 <br><br> gtcttgacag attgaccatc tgtctccagc caggccaccc ctttccaaaa 1450 <br><br> ttccctcttc tgccagtact ccccctgtac cacccattgc tgatggcaca 1500 <br><br> cccatcctta agctaagaca ggacgattgt ggtcctccca cactaaggcc 1550 <br><br> acagcccatc cgcgtgctgt gtgtccctct tccaccccaa cccctgctgg 1600 <br><br> ctcctctggg agcatccatg tcccggagag gggtccctca acagtcagcc 1650 <br><br> tcacctgtca gaccggggtt ctcccggatc tggatggcgc cgccctctca 17 00 <br><br> gcagcgggca cgggtggggc ggggccgggc cgcagagcat gtgctggatc 1750 <br><br> tgttctgtgt gtctgtctgt gggtgggggg aggggaggga agtcttgtga 1800 <br><br> aaccgctgat tgctgacttt tgtgtgaaga atcgtgttct tggagcagga 1850 <br><br> aataaagctt gccccggggc a 1871 <br><br> &lt;210&gt; 218 <br><br> &lt;211&gt; 252 &lt;212&gt; PRT &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 218 <br><br> Met Gin Leu Thr Arg Cys Cys Phe Val Phe Leu Val Gin Gly Ser 15 10 15 <br><br> Leu Tyr Leu Val Ile Cys Gly Gin Asp Asp Gly Pro Pro Gly Ser 20 25 30 <br><br> Glu Asp Pro Glu Arg Asp Asp His Glu Gly Gin Pro Arg Pro Arg 35 40 45 <br><br> Val Pro Arg Lys Arg Gly His Ile Ser Pro Lys Ser Arg Pro Met 50 55 60 <br><br> 294 <br><br> Ala Asn Ser Thr Leu Leu Gly Leu Leu Ala Pro Pro Gly Glu Ala 65 70 75 <br><br> Trp Gly Ile Leu Gly Gin Pro Pro Asn Arg Pro Asn His Ser Pro 80 85 90 <br><br> Pro Pro Ser Ala Lys Val Lys Lys Ile Phe Gly Trp Gly Asp Phe 95 100 105 <br><br> Tyr Ser Asn Ile Lys Thr Val Ala Leu Asn Leu Leu Val Thr Gly 110 115 120 <br><br> Lys Ile Val Asp His Gly Asn Gly Thr Phe Ser Val His Phe Gin 125 130 135 <br><br> His Asn Ala Thr Gly Gin Gly Asn Ile Ser Ile Ser Leu Val Pro 140 145 150 <br><br> Pro Ser Lys Ala Val Glu Phe His Gin Glu Gin Gin Ile Phe Ile 155 160 165 <br><br> Glu Ala Lys Ala Ser Lys Ile Phe Asn Cys Arg Met Glu Trp Glu 170 175 180 <br><br> Lys Val Glu Arg Gly Arg Arg Thr Ser Leu Cys Thr His Asp Pro 185 190 195 <br><br> Ala Lys Ile Cys Ser Arg Asp His Ala Gin Ser Ser Ala Thr Trp 200 205 210 <br><br> Ser Cys Ser Gin Pro Phe Lys Val Val Cys Val Tyr Ile Ala Phe 215 220 225 <br><br> Tyr Ser Thr Asp Tyr Arg Leu Val Gin Lys Val Cys Pro Asp Tyr 230 235 240 <br><br> Asn Tyr His Ser Asp Thr Pro Tyr Tyr Pro Ser Gly 245 250 <br><br> &lt;210&gt; 219 <br><br> &lt;211&gt; 2065 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 219 <br><br> gtgaatgtga gggtttgatg actttcagat gtctaggaac cagagtgggt 5 0 gcaggggccc caggcagggc tgattcttgg gcggaggaga gtagggtaaa 100 gggttctgca tgagctcctt aaaggacaaa ggtaacagag ccagcgagag 150 agctcgaggg gagactttga cttcaagcca cagaattggt ggaagtgtgc 200 gcgccgccgc cgccgtcgct cctgcagcgc tgtcgaccta gccgctagca 250 <br><br> 295 <br><br> tcttcccgag caccgggatc ccggggtagg agcgccagcc ggctgcggct gcccacacgg ccgggcgctg tccgcggtgc cggccgtgct ggctgcccgt ctgggcacag aacgacacgg aagtgtctgg tggtgtgcga ctcgaacccg ctcttcctcc ccgctgggga tatcggtccg ccttctcggc ggtgcggagc accaaccacg aagacgcgca tcatttactt cgatcagatc tttcacattg gagtctgtct ttgtagcacc tcagttttca cgtgattaaa gtctaccaga ttgatgttaa atggaaaacc agtaatatct tgttactcgt gaagctgcca cgaatggtgt aggataaggt ttacctaaaa ctggagaaag cagtattcca cgttttctgg ctttctggtg ttctccatga tgttcatcca ggtgagggat gaagatcatt ttttcatcat tggattgatg ggtggatatg gattctaagg attctagcct tcacagatta tttgtgtgtg tctgtttcag aagcagataa tacctatgct taaatgtaac acttattctg aatttcattt cctgggatta gaattttatt tgtttagttt taaaagactg gaaaactcta aagttctgac ttcaatcaac agaactgtat actgtgttaa tatattgatt ggaattagtt tgtttggttc ttgtaaaaaa aactggtatt atgttttctc ttaaaataag aaatttacct tgactacgat atcatcgaca gaatgcttca tagttgtatt ttaattgtat ccaagttata ttttctaaga agaagaatag aggcgacgcg ggcgagcacc 3 00 ctcaccatgg gctccgggcg 350 gctggtcctc acgctgccgg 400 agcccatcgt gctggagggc 450 gccacggact ccaagggctc 500 ggcggccaac tccaaggtcg 550 agccatccga gatgagcaac 600 ctggtgaatg tgggtaattt 650 aagaaaagga atttacagtt 7 00 gccaaactat ccaggttaac 750 gcctttgcgg gggacaaaga 800 cctgctctac ctagataaag 850 gtaatttggt tggaggctgg 900 ttccccctat aggattcaat 950 gacccactcc tgagttattg 1000 tcttttattg gtttctcatg 1050 gtctgaacca atacaaaatt 1100 tatatttgga ttgggactct 1150 agtcaaaagc tgtctgcaag 1200 ctgaattagt tacagatgtg 1250 gcaaccaggt ctaaggatta 1300 ggttagtgtg atactgccaa 1350 atatttgttt ttattccttt 1400 cttggatttt ttttttcagt 1450 gtaatgaatg gcttgcccac 1500 tgacttctct caaaaaaaaa 1550 atgtgaaaga gtcatatttt 1600 atcataaatc tgacaaggaa 1650 <br><br> 296 <br><br> aaagttgctt acccaaaatc taagtgctca atccctgagc ctcagcaaaa 17 00 cagctcccct ccgagggaaa tcttatactt tattgctcaa ctttaattaa 1750 aatgattgat aataaccact ttattaaaaa cctaaggttt tttttttttc 1800 cgtagacatg accactttat taactggtgg tgggatgctg ttgtttctaa 1850 ttatacctat ttttcaaggc ttctgttgta tttgaagtat catctggttt 1900 tgccttaact ctttaaattg tatatattta tctgtttagc taatattaaa 1950 ttcaaatatc ccatatctaa atttagtgca atatcttgtc ttttgtatag 2000 gtcatatgaa ttcataaaat tatttatgtc tgttatagaa taaagattaa 2050 tatatgttaa aaaaa 2065 <br><br> &lt;210&gt; 220 &lt;211&gt; 201 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 220 <br><br> Met Gly Ser Gly Arg Arg Ala Leu Ser Ala Val Pro Ala Val Leu <br><br> 15 10 15 <br><br> Leu Val Leu Thr Leu Pro Gly Leu Pro Val Trp Ala Gin Asn Asp <br><br> 20 25 30 <br><br> Thr Glu Pro Ile Val Leu Glu Gly Lys Cys Leu Val Val Cys Asp <br><br> 35 40 45 <br><br> Ser Asn Pro Ala Thr Asp Ser Lys Gly Ser Ser Ser Ser Pro Leu <br><br> 50 55 60 <br><br> Gly Ile Ser Val Arg Ala Ala Asn Ser Lys Val Ala Phe Ser Ala <br><br> 65 70 75 <br><br> Val Arg Ser Thr Asn His Glu Pro Ser Glu Met Ser Asn Lys Thr <br><br> 80 85 90 <br><br> Arg Ile Ile Tyr Phe Asp Gin Ile Leu Val Asn Val Gly Asn Phe <br><br> 95 100 105 <br><br> Phe Thr Leu Glu Ser Val Phe Val Ala Pro Arg Lys Gly Ile Tyr <br><br> 110 115 120 <br><br> Ser Phe Ser Phe His Val Ile Lys Val Tyr Gin Ser Gin Thr Ile <br><br> 125 130 135 <br><br> Gin Val Asn Leu Met Leu Asn Gly Lys Pro Val Ile Ser Ala Phe <br><br> 140 145 150 <br><br> Ala Gly Asp Lys Asp Val Thr Arg Glu Ala Ala Thr Asn Gly Val <br><br> 297 <br><br> 155 160 165 <br><br> Leu Leu Tyr Leu Asp Lys Glu Asp Lys Val Tyr Leu Lys Leu Glu 170 175 180 <br><br> Lys Gly Asn Leu Val Gly Gly Trp Gin Tyr Ser Thr Phe Ser Gly 185 190 195 <br><br> Phe Leu Val Phe Pro Leu 200 <br><br> &lt;210&gt; 221 <br><br> &lt;211&gt; 20 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 221 acggctcacc atgggctccg 2 0 <br><br> &lt;210&gt; 222 &lt;211&gt; 24 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 222 aggaagagga gcccttggag tccg 24 <br><br> &lt;210&gt; 223 &lt;211&gt; 40 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 223 <br><br> cgtgctggag ggcaagtgtc tggtggtgtg cgactcgaac 40 <br><br> &lt;210&gt; 224 &lt;211&gt; 902 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 224 <br><br> cggtggccat gactgcggcc gtgttcttcg gctgcgcctt cattgccttc 50 gggcctgcgc tcgcccttta tgtcttcacc atcgccatcg agccgttgcg 100 tatcatcttc ctcatcgccg gagctttctt ctggttggtg tctctactga 150 <br><br> 298 <br><br> tttcgtccct tgtttggttc atggcaagag tcattattga caacaaagat 2 00 <br><br> ggaccaacac agaaatatct gctgatcttt ggagcgtttg tctctgtcta 250 <br><br> tatccaagaa atgttccgat ttgcatatta taaactctta aaaaaagcca 3 00 <br><br> gtgaaggttt gaagagtata aacccaggtg agacagcacc ctctatgcga 350 <br><br> ctgctggcct atgtttctgg cttgggcttt ggaatcatga gtggagtatt 400 <br><br> ttcctttgtg aataccctat ctgactcctt ggggccaggc acagtgggca 450 <br><br> ttcatggaga ttctcctcaa ttcttccttt attcagcttt catgacgctg 500 <br><br> gtcattatct tgctgcatgt attctggggc attgtatttt ttgatggctg 550 <br><br> tgagaagaaa aagtggggca tcctccttat cgttctcctg acccacctgc 600 <br><br> tggtgtcagc ccagaccttc ataagttctt attatggaat aaacctggcg 650 <br><br> tcagcattta taatcctggt gctcatgggc acctgggcat tcttagctgc 700 <br><br> gggaggcagc tgccgaagcc tgaaactctg cctgctctgc caagacaaga 750 <br><br> actttcttct ttacaaccag cgctccagat aacctcaggg aaccagcact 800 <br><br> tcccaaaccg cagactacat ctttagagga agcacaactg tgcctttttc 850 <br><br> tgaaaatccc tttttctggt ggaattgaga aagaaataaa actatgcaga 900 <br><br> ta 902 <br><br> &lt;210&gt; 225 &lt;211&gt; 257 &lt;212&gt; PRT &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 225 <br><br> Met Thr Ala Ala Val Phe Phe Gly Cys Ala Phe Ile Ala Phe Gly 15 10 15 <br><br> Pro Ala Leu Ala Leu Tyr Val Phe Thr Ile Ala Ile Glu Pro Leu 20 25 30 <br><br> Arg Ile Ile Phe Leu Ile Ala Gly Ala Phe Phe Trp Leu Val Ser 35 40 45 <br><br> Leu Leu Ile Ser Ser Leu Val Trp Phe Met Ala Arg Val Ile Ile 50 55 60 <br><br> Asp Asn Lys Asp Gly Pro Thr Gin Lys Tyr Leu Leu Ile Phe Gly 65 70 75 <br><br> Ala Phe Val Ser Val 80 <br><br> Tyr Ile Gin Glu Met Phe Arg Phe Ala Tyr 85 90 <br><br> 299 <br><br> Tyr Lys Leu Leu Lys Lys Ala Ser Glu Gly Leu Lys Ser Ile Asn 95 100 105 <br><br> Pro Gly Glu Thr Ala Pro Ser Met Arg Leu Leu Ala Tyr Val Ser 110 115 120 <br><br> Gly Leu Gly Phe Gly Ile Met Ser Gly Val Phe Ser Phe Val Asn 125 130 135 <br><br> Thr Leu Ser Asp Ser Leu Gly Pro Gly Thr Val Gly Ile His Gly 140 145 150 <br><br> Asp Ser Pro Gin Phe Phe Leu Tyr Ser Ala Phe Met Thr Leu Val 155 160 165 <br><br> Ile Ile Leu Leu His Val Phe Trp Gly Ile Val Phe Phe Asp Gly 170 175 180 <br><br> Cys Glu Lys Lys Lys Trp Gly Ile Leu Leu Ile Val Leu Leu Thr 185 190 195 <br><br> His Leu Leu Val Ser Ala Gin Thr Phe Ile Ser Ser Tyr Tyr Gly 200 205 210 <br><br> Ile Asn Leu Ala Ser Ala Phe Ile Ile Leu Val Leu Met Gly Thr 215 220 225 <br><br> Trp Ala Phe Leu Ala Ala Gly Gly Ser Cys Arg Ser Leu Lys Leu <br><br> 230 235 240 <br><br> Cys Leu Leu Cys Gin Asp Lys Asn Phe Leu Leu Tyr Asn Gin Arg <br><br> 245 250 255 <br><br> Ser Arg <br><br> &lt;210&gt; 226 &lt;211&gt; 3939 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 226 <br><br> cggcaaccag ccgccgccac caccgctgcc actgccgccc tgccggggcc 50 atgttcgctc tgggcttgcc cttcttggtg ctcttggtgg cctcggtcga 100 gagccatctg ggggttctgg ggcccaagaa cgtctcgcag aaagacgccg 150 agtttgagcg cacctacgtg gacgaggtca acagcgagct ggtcaacatc 2 00 tacaccttca accatactgt gacccgcaac aggacagagg gcgtgcgtgt 250 gtctgtgaac gtcctgaaca agcagaaggg ggcgccgttg ctgtttgtgg 3 00 <br><br> 300 <br><br> tccgccagaa ggaggctgtg gtgtccttcc gggatgtttc agcgcaagta cctctaccaa tcagcccccc accaagaatg agtcggagat tgtccaccct gtcaccagtc aacaccacat atggacgatt ttgtgctcag gactggggag agcagcacag ccccagtact tcaagtatga cggtaattgt caaggtgacc tccaacaagg tccattcagg atgtgctgtg tcctgtctat cttcatcggc atgtaccaga cgatgaccaa agcgcaaaga cttccccagc aacagctttt accgaagacc aagcctgcgg gggctccctg agatgaaccg gtcgatcaag ggcaccgcca tgtctcaagc agtcacgtct gaggcatacg ctgggtatat ttctctcctt ttacctgctg ggagaactgg aggcagaaga agaagaccct cctgcccaga aagcggtcac cctcgagtcc agttcccctt atgagggtta caactatggc atctaccgat ggtctggttg acagcgctgg gttaccaggg ccgctccttt gaacctgtag tccatgagct ctgtggagga ggatgactac ttccgacaag aatgtcattc gcaccaagca tggcacggaa ggacaagcgt gttctgcgga tggaacattg ccaccattgc tgtcttctat ggtgatcacc taccagacgg tggtgaatgt gctactacaa cttcctctgc gcccacccac aacaacatcc tcagcaacct ggggtacatc gctcatcatc ctgcaacggg agatcaacca atgacctctg tgccctggaa tgtgggatcc aggtgcccct aatcctgcga 350 aaagtggaac gaaccctgtg 400 tcagttcttc tacgtggatg 450 accagctccg ggtcagccgc 500 cagttcagct tcaataccac 550 gttccctgaa ggcgtggact 600 ccttcccctg ctcagtcatc 650 gacctggaca acaacgtagc 7 00 gaaggcggcc atcaccgtac 750 atgtggtggt ggtggtgaag 800 cctttctacc ccttcgcaga 850 gaaaaccctg tcagtgctgg 900 tcagtgggat gctcttttgc 950 accgtcctcc tggcctgctg 1000 gctggtggcc attgaccgag 1050 tggctgattc ttttcctggc 1100 tcctttgaga atgtttctgg 1150 cactggggac ctctcttacg 12 00 <br><br> gtactcggcc ccgagtggac 1250 gacacattga ccgacatcga 13 00 atacctctat gtggctgacc 1350 aaaagtacca gatctacttc 1400 gcccttcctg tggtgcagct 1450 cacagggaat caggacatct 1500 tgggcaatct cagcgccttc 1550 ctgctggggc tgcttttcct 1600 caaccgggcc ctgctgcgca 1650 ccaaacactt tgggcttttc 1700 <br><br> 301 <br><br> tacgccatgg gcacagccct gatgatggag gggctgctca gtgcttgcta 1750 tcatgtgtgc cccaactata ccaatttcca gtttgacaca tcgttcatgt 1800 acatgatcgc cggactctgc atgctgaagc tctaccagaa gcggcacccg 1850 gacatcaacg ccagcgccta cagtgcctac gcctgcctgg ccattgtcat 1900 cttcttctct gtgctgggcg tggtctttgg caaagggaac acggcgttct 1950 ggatcgtctt ctccatcatt cacatcatcg ccaccctgct cctcagcacg 2000 cagctctatt acatgggccg gtggaaactg gactcgggga tcttccgccg 2050 catcctccac gtgctctaca cagactgcat ccggcagtgc agcgggccgc 2100 tctacgtgga ccgcatggtg ctgctggtca tgggcaacgt catcaactgg 2150 tcgctggctg cctatgggct tatcatgcgc cccaatgatt tcgcttccta 2200 cttgttggcc attggcatct gcaacctgct cctttacttc gccttctaca 2250 tcatcatgaa gctccggagt ggggagagga tcaagctcat ccccctgctc 2300 tgcatcgttt gcacctccgt ggtctggggc ttcgcgctct tcttcttctt 2350 ccagggactc agcacctggc agaaaacccc tgcagagtcg agggagcaca 2400 accgggactg catcctcctc gacttctttg acgaccacga catctggcac 2450 ttcctctcct ccatcgccat gttcgggtcc ttcctggtgt tgctgacact 2500 ggatgacgac ctggatactg tgcagcggga caagatctat gtcttctagc 2550 aggagctggg cccttcgctt cacctcaagg ggccctgagc tcctttgtgt 2 600 catagaccgg tcactctgtc gtgctgtggg gatgagtccc agcaccgctg 2650 cccagcactg gatggcagca ggacagccag gtctagctta ggcttggcct 27 00 gggacagcca tggggtggca tggaaccttg cagctgccct ctgccgagga 2750 gcaggcctgc tcccctggaa cccccagatg ttggccaaat tgctgctttc 2800 ttctcagtgt tggggccttc catgggcccc tgtcctttgg ctctccattt 2850 gtccctttgc aagaggaagg atggaaggga caccctcccc atttcatgcc 2900 ttgcattttg cccgtcctcc tccccacaat gccccagcct gggacctaag 2 950 gcctcttttt cctcccatac tcccactcca gggcctagtc tggggcctga 3000 atctctgtcc tgtatcaggg ccccagttct ctttgggctg tccctggctg 3050 ccatcactgc ccattccagt cagccaggat ggatgggggt atgagatttt 3100 <br><br> 302 <br><br> gggggttggc cagctggtgc cagacttttg gtgctaaggc ctgcaagggg 3150 <br><br> cctggggcag tgcgtattct cttccctctg acctgtgctc agggctggct 3200 <br><br> ctttagcaat gcgctcagcc caatttgaga accgccttct gattcaagag 3250 <br><br> gctgaattca gaggtcacct cttcatccca tcagctccca gactgatgcc 33 00 <br><br> agcaccagga ctggagggag aagcgcctca ccccttccct tccttctttc 3350 <br><br> caggccctta gtcttgccaa accccagctg gtggcctttc agtgccattg 3400 <br><br> acactgccca agaatgtcca ggggcaaagg agggatgata cagagttcag 3450 <br><br> cccgttctgc ctccacagct gtgggcaccc cagtgcctac cttagaaagg 3500 <br><br> ggcttcagga agggatgtgc tgtttccctc tacgtgccca gtcctagcct 3550 <br><br> cgctctagga cccagggctg gcttctaagt ttccgtccag tcttcaggca 3600 <br><br> agttctgtgt tagtcatgca cacacatacc tatgaaacct tggagtttac 3650 <br><br> aaagaattgc cccagctctg ggcaccctgg ccaccctggt ccttggatcc 37 00 <br><br> ccttcgtccc acctggtcca ccccagatgc tgaggatggg ggagctcagg 3750 <br><br> cggggcctct gctttgggga tgggaatgtg tttttctccc aaacttgttt 3 800 <br><br> ttatagctct gcttgaaggg ctgggagatg aggtgggtct ggatcttttc 3850 <br><br> tcagagcgtc tccatgctat ggttgcattt ccgttttcta tgaatgaatt 3900 <br><br> tgcattcaat aaacaaccag actcaaaaaa aaaaaaaaa 3939 <br><br> &lt;210&gt; 227 &lt;211&gt; 832 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 227 <br><br> Met Phe Ala Leu Gly Leu Pro Phe Leu Val Leu Leu Val Ala Ser 15 10 15 <br><br> Val Glu Ser His Leu Gly Val Leu Gly Pro Lys Asn Val Ser Gin 20 25 30 <br><br> Lys Asp Ala Glu Phe Glu Arg Thr Tyr Val Asp Glu Val Asn Ser 35 40 45 <br><br> Glu Leu Val Asn Ile Tyr Thr Phe Asn His Thr Val Thr Arg Asn 50 55 60 <br><br> Arg Thr Glu Gly Val Arg Val Ser Val Asn Val Leu Asn Lys Gin 65 70 75 <br><br> 303 <br><br> Lys Gly Ala Pro Leu Leu Phe Val Val Arg Gin Lys Glu Ala Val 80 85 90 <br><br> Val Ser Phe Gin Val Pro Leu Ile Leu Arg Gly Met Phe Gin Arg 95 100 105 <br><br> Lys Tyr Leu Tyr Gin Lys Val Glu Arg Thr Leu Cys Gin Pro Pro 110 115 120 <br><br> Thr Lys Asn Glu Ser Glu Ile Gin Phe Phe Tyr Val Asp Val Ser 125 130 135 <br><br> Thr Leu Ser Pro Val Asn Thr Thr Tyr Gin Leu Arg Val Ser Arg 140 145 150 <br><br> Met Asp Asp Phe Val Leu Arg Thr Gly Glu Gin Phe Ser Phe Asn 155 160 165 <br><br> Thr Thr Ala Ala Gin Pro Gin Tyr Phe Lys Tyr Glu Phe Pro Glu 170 175 180 <br><br> Gly Val Asp Ser Val Ile Val Lys Val Thr Ser Asn Lys Ala Phe 185 190 195 <br><br> Pro Cys Ser Val Ile Ser Ile Gin Asp Val Leu Cys Pro Val Tyr 200 205 210 <br><br> Asp Leu Asp Asn Asn Val Ala Phe Ile Gly Met Tyr Gin Thr Met 215 220 225 <br><br> Thr Lys Lys Ala Ala Ile Thr Val Gin Arg Lys Asp Phe Pro Ser 230 235 240 <br><br> Asn Ser Phe Tyr Val Val Val Val Val Lys Thr Glu Asp Gin Ala 245 250 255 <br><br> Cys Gly Gly Ser Leu Pro Phe Tyr Pro Phe Ala Glu Asp Glu Pro 260 265 270 <br><br> Val Asp Gin Gly His Arg Gin Lys Thr Leu Ser Val Leu Val Ser 275 280 285 <br><br> Gin Ala Val Thr Ser Glu Ala Tyr Val Ser Gly Met Leu Phe Cys 290 295 300 <br><br> Leu Gly Ile Phe Leu Ser Phe Tyr Leu Leu Thr Val Leu Leu Ala 305 310 315 <br><br> Cys Trp Glu Asn Trp Arg Gin Lys Lys Lys Thr Leu Leu Val Ala 320 325 330 <br><br> Ile Asp Arg Ala Cys Pro Glu Ser Gly His Pro Arg Val Leu Ala 335 340 345 <br><br> Asp Ser Phe Pro Gly Ser Ser Pro Tyr Glu Gly Tyr Asn Tyr Gly 350 355 360 <br><br> 304 <br><br> Ser Phe Glu Asn Val Ser Gly Ser Thr Asp Gly Leu Val Asp Ser 365 370 375 <br><br> Ala Gly Thr Gly Asp Leu Ser Tyr Gly Tyr Gin Gly Arg Ser Phe 380 385 390 <br><br> Glu Pro Val Gly Thr Arg Pro Arg Val Asp Ser Met Ser Ser Val 395 400 405 <br><br> Glu Glu Asp Asp Tyr Asp Thr Leu Thr Asp Ile Asp Ser Asp Lys 410 415 420 <br><br> Asn Val Ile Arg Thr Lys Gin Tyr Leu Tyr Val Ala Asp Leu Ala 425 430 435 <br><br> Arg Lys Asp Lys Arg Val Leu Arg Lys Lys Tyr Gin Ile Tyr Phe 440 445 450 <br><br> Trp Asn Ile Ala Thr Ile Ala Val Phe Tyr Ala Leu Pro Val Val 455 460 465 <br><br> Gin Leu Val Ile Thr Tyr Gin Thr Val Val Asn Val Thr Gly Asn 470 475 480 <br><br> Gin Asp Ile Cys Tyr Tyr Asn Phe Leu Cys Ala His Pro Leu Gly 485 490 495 <br><br> Asn Leu Ser Ala Phe Asn Asn Ile Leu Ser Asn Leu Gly Tyr Ile 500 505 510 <br><br> Leu Leu Gly Leu Leu Phe Leu Leu Ile Ile Leu Gin Arg Glu Ile 515 520 525 <br><br> Asn His Asn Arg Ala Leu Leu Arg Asn Asp Leu Cys Ala Leu Glu 530 535 540 <br><br> Cys Gly Ile Pro Lys His Phe Gly Leu Phe Tyr Ala Met Gly Thr 545 550 555 <br><br> Ala Leu Met Met Glu Gly Leu Leu Ser Ala Cys Tyr His Val Cys 560 565 570 <br><br> Pro Asn Tyr Thr Asn Phe Gin Phe Asp Thr Ser Phe Met Tyr Met 575 580 585 <br><br> Ile Ala Gly Leu Cys Met Leu Lys Leu Tyr Gin Lys Arg His Pro 590 595 600 <br><br> Asp Ile Asn Ala Ser Ala Tyr Ser Ala Tyr Ala Cys Leu Ala Ile 605 610 615 <br><br> Val Ile Phe Phe Ser Val Leu Gly Val Val Phe Gly Lys Gly Asn 620 625 630 <br><br> 305 <br><br> Thr Ala Phe Trp Ile Val Phe Ser Ile Ile His Ile Ile Ala Thr 635 640 645 <br><br> Leu Leu Leu Ser Thr Gin Leu Tyr Tyr Met Gly Arg Trp Lys Leu 650 655 660 <br><br> Asp Ser Gly Ile Phe Arg Arg Ile Leu His Val Leu Tyr Thr Asp 665 670 675 <br><br> Cys Ile Arg Gin Cys Ser Gly Pro Leu Tyr Val Asp Arg Met Val 680 685 690 <br><br> Leu Leu Val Met Gly Asn Val Ile Asn Trp Ser Leu Ala Ala Tyr 695 700 705 <br><br> Gly Leu Ile Met Arg Pro Asn Asp Phe Ala Ser Tyr Leu Leu Ala 710 715 720 <br><br> Ile Gly Ile Cys Asn Leu Leu Leu Tyr Phe Ala Phe Tyr Ile Ile 725 730 735 <br><br> Met Lys Leu Arg Ser Gly Glu Arg Ile Lys Leu Ile Pro Leu Leu 740 745 750 <br><br> Cys Ile Val Cys Thr Ser Val Val Trp Gly Phe Ala Leu Phe Phe 755 760 765 <br><br> Phe Phe Gin Gly Leu Ser Thr Trp Gin Lys Thr Pro Ala Glu Ser 770 775 780 <br><br> Arg Glu His Asn Arg Asp Cys Ile Leu Leu Asp Phe Phe Asp Asp 785 790 795 <br><br> His Asp Ile Trp His Phe Leu Ser Ser Ile Ala Met Phe Gly Ser 800 805 810 <br><br> Phe Leu Val Leu Leu Thr Leu Asp Asp Asp Leu Asp Thr Val Gin 815 820 825 <br><br> Arg Asp Lys Ile Tyr Val Phe 830 <br><br> &lt;210&gt; 228 &lt;211&gt; 2848 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 228 <br><br> gctcaagtgc cctgccttgc cccacccagc ccagcctggc cagagccccc 50 <br><br> tggagaagga gctctcttct tgcttggcag ctggaccaag ggagccagtc 100 <br><br> ttgggcgctg gagggcctgt cctgaccatg gtccctgcct ggctgtggct 150 <br><br> gctttgtgtc tccgtccccc aggctctccc caaggcccag cctgcagagc 200 <br><br> 306 <br><br> tgtctgtgga agttccagaa aactatggtg accaagttgc cgctgccccg tgagggggct aggggactca ggcaaggcaa ctgagggccc ctggcttcct gctggtgacc agggccctgg taccagctac aggtcaccct ggagatgcag tccacagcct gtgcttgtgc acgtgaagga atttctctca agccatctac agagctcggc ggcatcccct tcctcttcct tgaggcttca agccaactcg gatcttcgat tccacatcct cttccccaga catgttccag ctggagcctc agccccaagg ggagcaccag ccttgaccac gctgttggta caggtcaagg acatgggtga ccactgccac cgtggaagtc tccatcatag gagcctatcc acctggcaga gaatctcaaa ggcccaggta cactggagtg ggggtgatgt atcccccggg accctttgaa gtgaatgcag agagagctgg acagagaagc ccaggctgag tcagaattcc catggcgagg actatgcggc tggtgatgga tgagaatgac aacgtgccta acagtcagca tccctgagct cagtccacca gtcagcagag gatgcagatg cccccggctc atcagctcct gagccctgag cctgaggatg caggtggacc ccacttcagg cagtgtgacg agcaggccag aacatcctgc ttctggtgct cagagggtgg cttcagcagc acgtgtgaag atcaatgatc acgcccctga gttcatcact gaaatttccc tttatacctg 250 gaaggccaga tcgtgctgtc 3 00 atttgctatg gatccagatt 350 accgagagga gcaggcagag 400 gatggacatg tcttgtgggg 450 tgagaatgac caggtgcccc 500 tgagccgggg taccaggcct 550 gaccgggatg agccaggcac 600 gagccaggct ccagcccagc 650 ggctgggggc tctggccctc 700 gccctggaga ggacctacca 750 ccaggcctca ggccaccagg 800 agagcacctg ggtgtcccta 850 gtcctatacc cgcaccacat 900 gcactatcac ctggagagcc 950 agggaaacct ctacgtgacc 1000 tacctgctcc aggtgcgggc 1050 <br><br> ccctctggag ctgcacgtgc 1100 tctgccctcc ccgtgacccc 1150 ggtactgaag tgactagact 12 00 ccccaattcc cacgttgtgt 1250 <br><br> gggtagaggg gagagccttc 1300 ctgggggtgc tcccactccg 1350 ggccatggac ctggcaggcg 1400 tcgaagtcgc agtcacagat 1450 <br><br> tcccagattg ggcctataag 1500 <br><br> 307 <br><br> cctccctgag gatgtggagc ccgggactct ggtggccatg ctaacagcca 1550 ttgatgctga cctcgagccc gccttccgcc tcatggattt tgccattgag 1600 aggggagaca cagaagggac ttttggcctg gattgggagc cagactctgg 1650 <br><br> gcatgttaga ctcagactct gcaagaacct cagttatgag gcagctccaa 17 00 gtcatgaggt ggtggtggtg gtgcagagtg tggcgaagct ggtggggcca 1750 ggcccaggcc ctggagccac cgccacggtg actgtgctag tggagagagt 1800 gatgccaccc cccaagttgg accaggagag ctacgaggcc agtgtcccca 1850 <br><br> tcagtgcccc agccggctct ttcctgctga ccatccagcc ctccgacccc 1900 atcagccgaa ccctcaggtt ctccctagtc aatgactcag agggctggct 1950 ctgcattgag aaattctccg gggaggtgca caccgcccag tccctgcagg 2 000 gcgcccagcc tggggacacc tacacggtgc ttgtggaggc ccaggataca 2 050 <br><br> gccctgactc ttgcccctgt gccctcccaa tacctctgca caccccgcca 2100 agaccatggc ttgatcgtga gtggacccag caaggacccc gatctggcca 2150 gtgggcacgg tccctacagc ttcacccttg gtcccaaccc cacggtgcaa 2200 cgggattggc gcctccagac tctcaatggt tcccatgcct acctcacctt 2250 <br><br> ggccctgcat tgggtggagc cacgtgaaca cataatcccc gtggtggtca 2300 gccacaatgc ccagatgtgg cagctcctgg ttcgagtgat cgtgtgtcgc 2350 tgcaacgtgg aggggcagtg catgcgcaag gtgggccgca tgaagggcat 2400 gcccacgaag ctgtcggcag tgggcatcct tgtaggcacc ctggtagcaa 2450 <br><br> taggaatctt cctcatcctc attttcaccc actggaccat gtcaaggaag 2500 aaggacccgg atcaaccagc agacagcgtg cccctgaagg cgactgtctg 2550 aatggcccag gcagctctag ctgggagctt ggcctctggc tccatctgag 2600 tcccctggga gagagcccag cacccaagat ccagcagggg acaggacaga 2 650 <br><br> gtagaagccc ctccatctgc cctggggtgg aggcaccatc accatcacca 2700 ggcatgtctg cagagcctgg acaccaactt tatggactgc ccatgggagt 2750 <br><br> 308 <br><br> gctccaaatg tcagggtgtt tgcccaataa taaagcccca gagaactggg 2800 ctgggcccta tgggaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaag 2848 <br><br> &lt;210&gt; 229 &lt;211&gt; 807 &lt;212&gt; PRT &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 229 <br><br> Met Val Pro Ala Trp Leu Trp Leu Leu Cys Val Ser Val Pro Gin 15 10 15 <br><br> Ala Leu Pro Lys Ala Gin Pro Ala Glu Leu Ser Val Glu Val Pro 20 25 30 <br><br> Glu Asn Tyr Gly Gly Asn Phe Pro Leu Tyr Leu Thr Lys Leu Pro 35 40 45 <br><br> Leu Pro Arg Glu Gly Ala Glu Gly Gin Ile Val Leu Ser Gly Asp 50 55 60 <br><br> Ser Gly Lys Ala Thr Glu Gly Pro Phe Ala Met Asp Pro Asp Ser 65 70 75 <br><br> Gly Phe Leu Leu Val Thr Arg Ala Leu Asp Arg Glu Glu Gin Ala 80 85 90 <br><br> Glu Tyr Gin Leu Gin Val Thr Leu Glu Met Gin Asp Gly His Val 95 100 105 <br><br> Leu Trp Gly Pro Gin Pro Val Leu Val His Val Lys Asp Glu Asn 110 115 120 <br><br> Asp Gin Val Pro His Phe Ser Gin Ala Ile Tyr Arg Ala Arg Leu 125 130 135 <br><br> Ser Arg Gly Thr Arg Pro Gly Ile Pro Phe Leu Phe Leu Glu Ala 140 145 150 <br><br> Ser Asp Arg Asp Glu Pro Gly Thr Ala Asn Ser Asp Leu Arg Phe 155 160 165 <br><br> His Ile Leu Ser Gin Ala Pro Ala Gin Pro Ser Pro Asp Met Phe 170 175 180 <br><br> Gin Leu Glu Pro Arg Leu Gly Ala Leu Ala Leu Ser Pro Lys Gly 185 190 195 <br><br> Ser Thr Ser Leu Asp His Ala Leu Glu Arg Thr Tyr Gin Leu Leu 200 205 210 <br><br> Val Gin Val Lys Asp Met Gly Asp Gin Ala Ser Gly His Gin Ala 215 220 225 <br><br> 309 <br><br> Thr Ala Thr Val Glu Val Ser Ile Ile Glu Ser Thr Trp Val Ser 230 235 240 <br><br> Leu Glu Pro Ile His Leu Ala Glu Asn Leu Lys Val Leu Tyr Pro 245 250 255 <br><br> His His Met Ala Gin Val His Trp Ser Gly Gly Asp Val His Tyr 260 265 270 <br><br> His Leu Glu Ser His Pro Pro Gly Pro Phe Glu Val Asn Ala Glu 275 280 285 <br><br> Gly Asn Leu Tyr Val Thr Arg Glu Leu Asp Arg Glu Ala Gin Ala 290 295 300 <br><br> Glu Tyr Leu Leu Gin Val Arg Ala Gin Asn Ser His Gly Glu Asp 305 310 315 <br><br> Tyr Ala Ala Pro Leu Glu Leu His Val Leu Val Met Asp Glu Asn 320 325 330 <br><br> Asp Asn Val Pro Ile Cys Pro Pro Arg Asp Pro Thr Val Ser Ile 335 340 345 <br><br> Pro Glu Leu Ser Pro Pro Gly Thr Glu Val Thr Arg Leu Ser Ala 350 355 360 <br><br> Glu Asp Ala Asp Ala Pro Gly Ser Pro Asn Ser His Val Val Tyr 365 370 375 <br><br> Gin Leu Leu Ser Pro Glu Pro Glu Asp Gly Val Glu Gly Arg Ala 380 385 390 <br><br> Phe Gin Val Asp Pro Thr Ser Gly Ser Val Thr Leu Gly Val Leu 395 400 405 <br><br> Pro Leu Arg Ala Gly Gin Asn Ile Leu Leu Leu Val Leu Ala Met 410 415 420 <br><br> Asp Leu Ala Gly Ala Glu Gly Gly Phe Ser Ser Thr Cys Glu Val 425 430 435 <br><br> Glu Val Ala Val Thr Asp Ile Asn Asp His Ala Pro Glu Phe Ile 440 445 450 <br><br> Thr Ser Gin Ile Gly Pro Ile Ser Leu Pro Glu Asp Val Glu Pro 455 460 465 <br><br> Gly Thr Leu Val Ala Met Leu Thr Ala Ile Asp Ala Asp Leu Glu 470 475 480 <br><br> Pro Ala Phe Arg Leu Met Asp Phe Ala Ile Glu Arg Gly Asp Thr 485 490 495 <br><br> 310 <br><br> Glu Gly Thr Phe Gly Leu Asp Trp Glu Pro Asp Ser Gly His Val 500 505 510 <br><br> Arg Leu Arg Leu Cys Lys Asn Leu Ser Tyr Glu Ala Ala Pro Ser 515 520 525 <br><br> His Glu Val Val Val Val Val Gin Ser Val Ala Lys Leu Val Gly 530 535 540 <br><br> Pro Gly Pro Gly Pro Gly Ala Thr Ala Thr Val Thr Val Leu Val 545 550 555 <br><br> Glu Arg Val Met Pro Pro Pro Lys Leu Asp Gin Glu Ser Tyr Glu 560 565 570 <br><br> Ala Ser Val Pro Ile Ser Ala Pro Ala Gly Ser Phe Leu Leu Thr 575 580 585 <br><br> Ile Gin Pro Ser Asp Pro Ile Ser Arg Thr Leu Arg Phe Ser Leu 590 595 600 <br><br> Val Asn Asp Ser Glu Gly Trp Leu Cys Ile Glu Lys Phe Ser Gly 605 610 615 <br><br> Glu Val His Thr Ala Gin Ser Leu Gin Gly Ala Gin Pro Gly Asp 620 625 630 <br><br> Thr Tyr Thr Val Leu Val Glu Ala Gin Asp Thr Ala Leu Thr Leu 635 640 645 <br><br> Ala Pro Val Pro Ser Gin Tyr Leu Cys Thr Pro Arg Gin Asp His 650 655 660 <br><br> Gly Leu Ile Val Ser Gly Pro Ser Lys Asp Pro Asp Leu Ala Ser 665 670 675 <br><br> Gly His Gly Pro Tyr Ser Phe Thr Leu Gly Pro Asn Pro Thr Val 680 685 690 <br><br> Gin Arg Asp Trp Arg Leu Gin Thr Leu Asn Gly Ser His Ala Tyr 695 700 705 <br><br> Leu Thr Leu Ala Leu His Trp Val Glu Pro Arg Glu His Ile Ile 710 715 720 <br><br> Pro Val Val Val Ser His Asn Ala Gin Met Trp Gin Leu Leu Val 725 730 735 <br><br> Arg Val Ile Val Cys Arg Cys Asn Val Glu Gly Gin Cys Met Arg 740 745 750 <br><br> Lys Val Gly Arg Met Lys Gly Met Pro Thr Lys Leu Ser Ala Val 755 760 765 <br><br> Gly Ile Leu Val Gly Thr Leu Val Ala Ile Gly Ile Phe Leu Ile <br><br> 311 <br><br> 770 775 780 <br><br> Leu Ile Phe Thr His Trp Thr Met Ser Arg Lys Lys Asp Pro Asp 785 790 795 <br><br> Gin Pro Ala Asp Ser Val Pro Leu Lys Ala Thr Val 800 805 <br><br> &lt;210&gt; 230 &lt;211&gt; 50 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 230 <br><br> cgccttaccg cgcagcccga agattcacta tggtgaaaat cgccttcaat 50 <br><br> &lt;210&gt; 231 &lt;211&gt; 1257 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 231 <br><br> ggagagaggc gcgcgggtga aaggcgcatt gatgcagcct gcggcggcct 50 cggagcgcgg cggagccaga cgctgaccac gttcctctcc tcggtctcct 100 ccgcctccag ctccgcgctg cccggcagcc gggagccatg cgaccccagg 150 gccccgccgc ctccccgcag cggctccgcg gcctcctgct gctcctgctg 2 00 ctgcagctgc ccgcgccgtc gagcgcctct gagatcccca aggggaagca 250 aaaggcgcag ctccggcaga gggaggtggt ggacctgtat aatggaatgt 3 00 gcttacaagg gccagcagga gtgcctggtc gagacgggag ccctggggcc 350 aatgttattc cgggtacacc tgggatccca ggtcgggatg gattcaaagg 400 agaaaagggg gaatgtctga gggaaagctt tgaggagtcc tggacaccca 450 actacaagca gtgttcatgg agttcattga attatggcat agatcttggg 500 aaaattgcgg agtgtacatt tacaaagatg cgttcaaata gtgctctaag 550 agttttgttc agtggctcac ttcggctaaa atgcagaaat gcatgctgtc 600 agcgttggta tttcacattc aatggagctg aatgttcagg acctcttccc 650 attgaagcta taatttattt ggaccaagga agccctgaaa tgaattcaac 700 aattaatatt catcgcactt cttctgtgga aggactttgt gaaggaattg 750 <br><br> 312 <br><br> gtgctggatt agtggatgtt gctatctggg ttggcacttg ttcagattac 800 ccaaaaggag atgcttctac tggatggaat tcagtttctc gcatcattat 850 tgaagaacta ccaaaataaa tgctttaatt ttcatttgct acctcttttt 900 ttattatgcc ttggaatggt tcacttaaat gacattttaa ataagtttat 950 gtatacatct gaatgaaaag caaagctaaa tatgtttaca gaccaaagtg 1000 tgatttcaca ctgtttttaa atctagcatt attcattttg cttcaatcaa 1050 aagtggtttc aatatttttt ttagttggtt agaatacttt cttcatagtc 1100 acattctctc aacctataat ttggaatatt gttgtggtct tttgtttttt 1150 <br><br> ctcttagtat agcattttta aaaaaatata aaagctacca atctttgtac 1200 <br><br> aatttgtaaa tgttaagaat tttttttata tctgttaaat aaaaattatt 1250 <br><br> tccaaca 1257 <br><br> &lt;210&gt; 232 &lt;211&gt; 243 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 232 <br><br> Met Arg Pro Gin Gly Pro Ala Ala Ser Pro Gin Arg Leu Arg Gly 15 10 15 <br><br> Leu Leu Leu Leu Leu Leu Leu Gin Leu Pro Ala Pro Ser Ser Ala 20 25 30 <br><br> Ser Glu Ile Pro Lys Gly Lys Gin Lys Ala Gin Leu Arg Gin Arg 35 40 45 <br><br> Glu Val Val Asp Leu Tyr Asn Gly Met Cys Leu Gin Gly Pro Ala 50 55 60 <br><br> Gly Val Pro Gly Arg Asp Gly Ser Pro Gly Ala Asn Val Ile Pro 65 70 75 <br><br> Gly Thr Pro Gly Ile Pro Gly Arg Asp Gly Phe Lys Gly Glu Lys 80 85 90 <br><br> Gly Glu Cys Leu Arg Glu Ser Phe Glu Glu Ser Trp Thr Pro Asn 95 100 105 <br><br> Tyr Lys Gin Cys Ser Trp Ser Ser Leu Asn Tyr Gly Ile Asp Leu 110 115 120 <br><br> Gly Lys Ile Ala Glu Cys Thr Phe Thr Lys Met Arg Ser Asn Ser 125 130 135 <br><br> 313 <br><br> Ala Leu Arg Val Leu Phe Ser Gly Ser Leu Arg Leu Lys Cys Arg 140 145 150 <br><br> Asn Ala Cys Cys Gin Arg Trp Tyr Phe Thr Phe Asn Gly Ala Glu 155 160 165 <br><br> Cys Ser Gly Pro Leu Pro Ile Glu Ala Ile Ile Tyr Leu Asp Gin 170 175 180 <br><br> Gly Ser Pro Glu Met Asn Ser Thr Ile Asn Ile His Arg Thr Ser 185 190 195 <br><br> Ser Val Glu Gly Leu Cys Glu Gly lie Gly Ala Gly Leu Val Asp 200 205 210 <br><br> Val Ala Ile Trp Val Gly Thr Cys Ser Asp Tyr Pro Lys Gly Asp 215 220 225 <br><br> Ala Ser Thr Gly Trp Asn Ser Val Ser Arg Ile Ile Ile Glu Glu 230 235 240 <br><br> Leu Pro Lys <br><br> &lt;210&gt; 233 &lt;211&gt; 2786 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 233 <br><br> ccggggacat gaggtggata ctgttcattg gggcccttat tgggtccagc 50 atctgtggcc aagaaaaatt ttttggggac caagttttga ggattaatgt 100 cagaaatgga gacgagatca gcaaattgag tcaactagtg aattcaaaca 150 acttgaagct caatttctgg aaatctccct cctccttcaa tcggcctgtg 200 gatgtcctgg tcccatctgt cagtctgcag gcatttaaat ccttcctgag 250 atcccagggc ttagagtacg cagtgacaat tgaggacctg caggcccttt 300 tagacaatga agatgatgaa atgcaacaca atgaagggca agaacggagc 350 agtaataact tcaactacgg ggcttaccat tccctggaag ctatttacca 400 cgagatggac aacattgccg cagactttcc tgacctggcg aggagggtga 450 agattggaca ttcgtttgaa aaccggccga tgtatgtact gaagttcagc 500 actgggaaag gcgtgaggcg gccggccgtt tggctgaatg caggcatcca 550 ttcccgagag tggatctccc aggccactgc aatctggacg gcaaggaaga 600 ttgtatctga ttaccagagg gatccagcta tcacctccat cttggagaaa 650 <br><br> 314 <br><br> atggatattt tcttgttgcc tgtggccaat tcaaactcaa aaccgattat ggaggaagac gctcctgcat tggtgctgac ccaaatagaa ggaaagggag ccagcgacaa cccttgctcc cgccaattcg gaagtggagg tgaaatcagt atgggaattt caagggcttc atcgacctgc atgtatccat atgggtactc agtcaaaaag cgacaaggtg gcgaggcttg cggccaaagc ctgagtacca agtgggtccc acctgcacca agcagcatcg actgggcgta tgacaacggc tgagttgaga gataccggga cctatggctt tcatccccac tgcagaggag acgtggctgg catgtgcggg acaacctcta ctaggcgatg atttgtaccc acacgtgcac gcactgaggc cctacctgtg tgagtcagag ccctctgggt cccctctcca gccagctccc tggagtcgtg aagaactggt tctgccagcc tgctcaattt agccttttgt ctgtttctcc ttccaccctg agcatcaccc cttcctgggt ggcatgtctc ccaaagaaca tctgagatga ttctctaccc cagtgacctt gctctggtgg cactgtggga gggtctcaaa gatgatgtag aatttccttt gaaaatattt tcctttgagc agcaaatctt ctctccctcc ctcctctcct gttttttttt tcttgttgcc caggctggag tgtgatggct ctctgcctcc tgggttcaag caattctcct ttggtttata ggcgcatgcc accatgcctg agagacaggg tttctccatg ttggtcaggc cctgatggat atgtgtatac 700 gcggtcccga aatcctggaa 750 actggaacgc tagttttgca 800 gaagtgtacc atggacccca 850 ggtagatttc atccaaaaac 900 acagctactc gcagctgctg 950 gccccagatg ccgaggaact 1000 tctggcttct gtgtcgggca 1050 ctgtctatcc agctagcggg 1100 atcaaatttg cattcacatt 1150 cctcctgcca gctaaccaga 12 00 ggctgaagac catcatggag 1250 gctctgctct gtctacattt 1300 cattgttaaa ggagctcttt 1350 ttgtggagca cacaggcctg 1400 tgtcctggcg gtgtccctgc 1450 tggtcctgct gtttttgatg 1500 ctggctgggc ggctgcactc 1550 tctctacctc atttttagaa 1600 tcatccacat ctagccaagc 1650 gacaccactt gtctttaggt 1700 aatttctcgc agtcttcctg 1750 gtagggatat cagtgaaggt 1800 tttttgagac agagttttgc 1850 cgatcttggc tcaccacaac 1900 gcctcagcct cttgagtagc 1950 gctaattttg tgtttttagt 2000 tggtctcaaa ctcccaacct 2 050 <br><br> 315 <br><br> caggtgatct gccctccttg gcctcccaga gtgctgggat tacaggtgtg 2100 <br><br> agccactgtg ccgggcccgt cccctccttt tttaggcctg aatacaaagt 2150 <br><br> agaagatcac tttccttcac tgtgctgaga atttctagat actacagttc 2200 <br><br> ttactcctct cttccctttg ttattcagtg tgaccaggat ggcgggaggg 2250 <br><br> gatctgtgtc actgtaggta ctgtgcccag gaaggctggg tgaagtgacc 2300 <br><br> atctaaattg caggatggtg aaattatccc catctgtcct aatgggctta 2350 <br><br> cctcctcttt gccttttgaa ctcacttcaa agatctaggc ctcatcttac 2400 <br><br> aggtcctaaa tcactcatct ggcctggata atctcactgc cctggcacat 2450 <br><br> tcccatttgt gctgtggtgt atcctgtgtt tccttgtcct ggtttgtgtg 2500 <br><br> tgtgtgtgtg tgtgtgtgtg tgtgtgtgtt tgtgtgtgtg tgtctgtcta 2550 <br><br> ttttgtatcc tggaccacaa gttcctaagt agagcaagaa ttcatcaacc 2600 <br><br> agctgcctct tgtttcattt cacctcagca cgtaccatct gtccttttgt 2650 <br><br> tgttgttgtt ttgtttttgt ttttttgctt ttaccaaaca tgtctgtaaa 2700 <br><br> tcttaacctc ctgcctagga tttgtacagc atctggtgtg tgcttataag 2750 <br><br> ccaataaata ttcaatgtga aaaaaaaaaa aaaaaa 2786 <br><br> &lt;210&gt; 234 &lt;211&gt; 421 &lt;212&gt; PRT &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 234 <br><br> Met Arg Trp Ile Leu Phe Ile Gly Ala Leu Ile Gly Ser Ser Ile 15 10 15 <br><br> Cys Gly Gin Glu Lys Phe Phe Gly Asp Gin Val Leu Arg Ile Asn 20 25 30 <br><br> Val Arg Asn Gly Asp Glu Ile Ser Lys Leu Ser Gin Leu Val Asn 35 40 45 <br><br> Ser Asn Asn Leu Lys Leu Asn Phe Trp Lys Ser Pro Ser Ser Phe 50 55 60 <br><br> Asn Arg Pro Val Asp Val Leu Val Pro Ser Val Ser Leu Gin Ala 65 70 75 <br><br> Phe Lys Ser Phe Leu Arg Ser Gin Gly Leu Glu Tyr Ala Val Thr 80 85 90 <br><br> 316 <br><br> lie Glu Asp Leu Gin Ala Leu Leu Asp Asn Glu Asp Asp Glu Met 95 100 105 <br><br> Gin His Asn Glu Gly Gin Glu Arg Ser Ser Asn Asn Phe Asn Tyr 110 115 120 <br><br> Gly Ala Tyr His Ser Leu Glu Ala Ile Tyr His Glu Met Asp Asn 125 130 135 <br><br> Ile Ala Ala Asp Phe Pro Asp Leu Ala Arg Arg Val Lys Ile Gly 140 145 150 <br><br> His Ser Phe Glu Asn Arg Pro Met Tyr Val Leu Lys Phe Ser Thr 155 160 165 <br><br> Gly Lys Gly Val Arg Arg Pro Ala Val Trp Leu Asn Ala Gly Ile 170 175 180 <br><br> His Ser Arg Glu Trp Ile Ser Gin Ala Thr Ala Ile Trp Thr Ala 185 190 195 <br><br> Arg Lys Ile Val Ser Asp Tyr Gin Arg Asp Pro Ala Ile Thr Ser 200 205 210 <br><br> Ile Leu Glu Lys Met Asp Ile Phe Leu Leu Pro Val Ala Asn Pro 215 220 225 <br><br> Asp Gly Tyr Val Tyr Thr Gin Thr Gin Asn Arg Leu Trp Arg Lys 230 235 240 <br><br> Thr Arg Ser Arg Asn Pro Gly Ser Ser Cys Ile Gly Ala Asp Pro 245 250 255 <br><br> Asn Arg Asn Trp Asn Ala Ser Phe Ala Gly Lys Gly Ala Ser Asp 260 265 270 <br><br> Asn Pro Cys Ser Glu Val Tyr His Gly Pro His Ala Asn Ser Glu 275 280 285 <br><br> Val Glu Val Lys Ser Val Val Asp Phe Ile Gin Lys His Gly Asn 290 295 300 <br><br> Phe Lys Gly Phe Ile Asp Leu His Ser Tyr Ser Gin Leu Leu Met 305 310 315 <br><br> Tyr Pro Tyr Gly Tyr Ser Val Lys Lys Ala Pro Asp Ala Glu Glu 320 325 330 <br><br> Leu Asp Lys Val Ala Arg Leu Ala Ala Lys Ala Leu Ala Ser Val <br><br> 335 340 345 <br><br> Ser Gly Thr Glu Tyr Gin Val Gly Pro Thr Cys Thr Thr Val Tyr <br><br> 350 355 360 <br><br> 317 <br><br> Pro Ala Ser Gly Ser Ser Ile Asp Trp Ala Tyr Asp Asn Gly Ile 365 370 375 <br><br> Lys Phe Ala Phe Thr Phe Glu Leu Arg Asp Thr Gly Thr Tyr Gly 380 385 390 <br><br> Phe Leu Leu Pro Ala Asn Gin Ile Ile Pro Thr Ala Glu Glu Thr 395 400 405 <br><br> Trp Leu Gly Leu Lys Thr Ile Met Glu His Val Arg Asp Asn Leu 410 415 420 <br><br> Tyr <br><br> &lt;210&gt; 235 <br><br> &lt;211&gt; 1743 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 235 <br><br> caaccatgca aggacagggc aggagaagag gaacctgcaa agacatattt 50 <br><br> tgttccaaaa tggcatctta cctttatgga gtactctttg ctgttggcct 100 <br><br> ctgtgctcca atctactgtg tgtccccggc caatgccccc agtgcatacc 150 <br><br> cccgcccttc ctccacaaag agcacccctg cctcacaggt gtattccctc 2 00 <br><br> aacaccgact ttgccttccg cctataccgc aggctggttt tggagacccc 250 <br><br> gagtcagaac atcttcttct cccctgtgag tgtctccact tccctggcca 300 <br><br> tgctctccct tggggcccac tcagtcacca agacccagat tctccagggc 350 <br><br> ctgggcttca acctcacaca cacaccagag tctgccatcc accagggctt 400 <br><br> ccagcacctg gttcactcac tgactgttcc cagcaaagac ctgaccttga 450 <br><br> agatgggaag tgccctcttc gtcaagaagg agctgcagct gcaggcaaat 500 <br><br> ttcttgggca atgtcaagag gctgtatgaa gcagaagtct tttctacaga 550 <br><br> tttctccaac ccctccattg cccaggcgag gatcaacagc catgtgaaaa 600 <br><br> agaagaccoa agggaaggtt gtagacataa tccaaggcct tgaccttctg 650 <br><br> acggccatgg ttctggtgaa tcacattttc tttaaagcca agtgggagaa 7 00 <br><br> gccctttcac cttgaatata caagaaagaa cttcccattc ctggtgggcg 750 <br><br> agcaggtcac tgtgcaagtc cccatgatgc accagaaaga gcagttcgct 800 <br><br> tttggggtgg atacagagct gaactgcttt gtgctgcaga tggattacaa 850 <br><br> gggagatgcc gtggccttct ttgtcctccc tagcaagggc aagatgaggc 900 <br><br> 318 <br><br> aactggaaca ggccttgtca gccagaacac tgataaagtg gagccactca 950 <br><br> ctccagaaaa ggtggataga ggtgttcatc cccagatttt ccatttctgc 1000 <br><br> ctcctacaat ctggaaacca tcctcccgaa gatgggcatc caaaatgcct 1050 <br><br> ttgacaaaaa tgctgatttt tctggaattg caaagagaga ctccctgcag 1100 <br><br> gtttctaaag caacccacaa ggctgtgctg gatgtcagtg aagagggcac 1150 <br><br> . tgaggccaca gcagctacca ccaccaagtt catagtccga tcgaaggatg 12 00 <br><br> gtccctctta cttcactgtc tccttcaata ggaccttcct gatgatgatt 1250 <br><br> acaaataaag ccacagacgg tattctcttt ctagggaaag tggaaaatcc 1300 <br><br> cactaaatcc taggtgggaa atggcctgtt aactgatggc acattgctaa 1350 <br><br> tgcacaagaa ataacaaacc acatccctct ttctgttctg agggtgcatt 1400 <br><br> tgaccccagt ggagctggat tcgctggcag ggatgccact tccaaggctc 1450 <br><br> aatcaccaaa ccatcaacag ggaccccagt cacaagccaa cacccattaa 1500 <br><br> ccccagtcag tgcccttttc cacaaattct cccaggtaac tagcttcatg 1550 <br><br> ggatgttgct gggttaccat atttccattc cttggggctc ccaggaatgg 1600 <br><br> aaatacgcca acccaggtta ggcacctcta ttgcagaatt acaataacac 1650 <br><br> attcaataaa actaaaatat gaattcaaaa aaaaaaaaaa aaaaaaaaaa 1700 <br><br> aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaa 1743 <br><br> &lt;210&gt; 236 &lt;211&gt; 417 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 236 <br><br> Met Ala Ser Tyr Leu Tyr Gly Val Leu Phe Ala Val Gly Leu Cys 15 10 15 <br><br> Ala Pro Ile Tyr Cys Val Ser Pro Ala Asn Ala Pro Ser Ala Tyr 20 25 30 <br><br> Pro Arg Pro Ser Ser Thr Lys Ser Thr Pro Ala Ser Gin Val Tyr 35 40 45 <br><br> Ser Leu Asn Thr Asp Phe Ala Phe Arg Leu Tyr Arg Arg Leu Val 50 55 60 <br><br> Leu Glu Thr Pro Ser Gin Asn Ile Phe Phe Ser Pro Val Ser Val <br><br> 319 <br><br> 65 <br><br> 70 <br><br> 75 <br><br> Ser Thr Ser Leu Ala Met Leu Ser Leu Gly Ala His Ser Val Thr 80 85 90 <br><br> Lys Thr Gin Ile Leu Gin Gly Leu Gly Phe Asn Leu Thr His Thr 95 100 105 <br><br> Pro Glu Ser Ala Ile His Gin Gly Phe Gin His Leu Val His Ser 110 115 120 <br><br> Leu Thr Val Pro Ser Lys Asp Leu Thr Leu Lys Met Gly Ser Ala 125 130 135 <br><br> Leu Phe Val Lys Lys Glu Leu Gin Leu Gin Ala Asn Phe Leu Gly 140 145 150 <br><br> Asn Val Lys Arg Leu Tyr Glu Ala Glu Val Phe Ser Thr Asp Phe 155 160 165 <br><br> Ser Asn Pro Ser Ile Ala Gin Ala Arg Ile Asn Ser His Val Lys 170 175 180 <br><br> Lys Lys Thr Gin Gly Lys Val Val Asp Ile Ile Gin Gly Leu Asp 185 190 195 <br><br> Leu Leu Thr Ala Met Val Leu Val Asn His Ile Phe Phe Lys Ala 200 205 210 <br><br> Lys Trp Glu Lys Pro Phe His Leu Glu Tyr Thr Arg Lys Asn Phe 215 220 225 <br><br> Pro Phe Leu Val Gly Glu Gin Val Thr Val Gin Val Pro Met Met 230 235 240 <br><br> His Gin Lys Glu Gin Phe Ala Phe Gly Val Asp Thr Glu Leu Asn 245 250 255 <br><br> Cys Phe Val Leu Gin Met Asp Tyr Lys Gly Asp Ala Val Ala Phe 260 265 270 <br><br> Phe Val Leu Pro Ser Lys Gly Lys Met Arg Gin Leu Glu Gin Ala 275 280 285 <br><br> Leu Ser Ala Arg Thr Leu Ile Lys Trp Ser His Ser Leu Gin Lys 290 295 300 <br><br> Arg Trp Ile Glu Val Phe Ile Pro Arg Phe Ser Ile Ser Ala Ser 305 310 315 <br><br> Tyr Asn Leu Glu Thr Ile Leu Pro Lys Met Gly Ile Gin Asn Ala 320 325 330 <br><br> Phe Asp Lys Asn Ala Asp Phe Ser Gly Ile Ala Lys Arg Asp Ser 335 340 345 <br><br> 320 <br><br> Leu Gin Val Ser Lys Ala Thr His Lys Ala Val Leu Asp Val Ser 350 355 360 <br><br> Glu Glu Gly Thr Glu Ala Thr Ala Ala Thr Thr Thr Lys Phe Ile 365 370 375 <br><br> Val Arg Ser Lys Asp Gly Pro Ser Tyr Phe Thr Val Ser Phe Asn 380 385 390 <br><br> Arg Thr Phe Leu Met Met Ile Thr Asn Lys Ala Thr Asp Gly Ile 395 400 405 <br><br> Leu Phe Leu Gly Lys Val Glu Asn Pro Thr Lys Ser 410 415 <br><br> &lt;210&gt; 237 &lt;211&gt; 23 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial <br><br> &lt;220&gt; <br><br> &lt;221&gt; misc_feature &lt;222&gt; 1-23 <br><br> &lt;223&gt; Synthetic construct. <br><br> &lt;400&gt; 237 caaccatgca aggacagggc agg 23 <br><br> &lt;210&gt; 238 &lt;211&gt; 47 &lt;212&gt; DNA &lt;213&gt; Artificial <br><br> &lt;220&gt; <br><br> &lt;221&gt; misc_feature &lt;222&gt; 1-47 <br><br> &lt;223&gt; Synthetic construct. <br><br> &lt;400&gt; 238 <br><br> ctttgctgtt ggcctctgtg ctcccaacca tgcaaggaca gggcagg 47 <br><br> &lt;210&gt; 239 &lt;211&gt; 24 &lt;212&gt; DNA &lt;213&gt; Artificial <br><br> &lt;220&gt; <br><br> &lt;221&gt; misc_feature &lt;222&gt; 1-24 <br><br> &lt;223&gt; Synthetic construct. <br><br> &lt;400&gt; 239 tgactcgggg tctccaaaac cagc 24 <br><br> 321 <br><br> &lt;210&gt; 240 &lt;211&gt; 24 &lt;212&gt; DNA &lt;213&gt; Artificial <br><br> &lt;220&gt; <br><br> &lt;221&gt; misc_feature &lt;222&gt; 1-24 <br><br> &lt;223&gt; Synthetic construct. <br><br> &lt;400&gt; 240 ggtataggcg gaaggcaaag tcgg 24 <br><br> &lt;210&gt; 241 &lt;211&gt; 48 &lt;212&gt; DNA &lt;213&gt; Artificial <br><br> &lt;220&gt; <br><br> &lt;221&gt; misc_feature &lt;222&gt; 1-48 <br><br> &lt;223&gt; Synthetic construct. <br><br> &lt;400&gt; 241 <br><br> ggcatcttac ctttatggag tactctttgc tgttggcctc tgtgctcc 48 <br><br> &lt;210&gt; 242 <br><br> &lt;211&gt; 2436 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 242 <br><br> ggctgaccgt gctacattgc ctggaggaag cctaaggaac ccaggcatcc 50 agctgcccac gcctgagtcc aagattcttc ccaggaacac aaacgtagga 100 gacccacgct cctggaagca ccagccttta tctcttcacc ttcaagtccc 150 ctttctcaag aatcctctgt tctttgccct ctaaagtctt ggtacatcta 200 ggacccaggc atcttgcttt ccagccacaa agagacagat gaagatgcag 250 aaaggaaatg ttctccttat gtttggtcta ctattgcatt tagaagctgc 300 aacaaattcc aatgagacta gcacctctgc caacactgga tccagtgtga 350 tctccagtgg agccagcaca gccaccaact ctgggtccag tgtgacctcc 400 agtggggtca gcacagccac catctcaggg tccagcgtga cctccaatgg 450 ggtcagcata gtcaccaact ctgagttcca tacaacctcc agtgggatca 500 gcacagccac caactctgag ttcagcacag cgtccagtgg gatcagcata 550 gccaccaact ctgagtccag cacaacctcc agtggggcca gcacagccac 600 <br><br> 322 <br><br> caactctgag tccagcacac cctccagtgg ctgggtccag tgtgacctcc agtggagcca tccagcacag tgtccagtag ggccagcact cacactctcc agtggggcca gcacagccac cctccagtgg ggctagcaca gccaccaact agtggggcca gcacagccac caactctgag ggccagcact gccaccaact ctgagtccag gcacagccac caactctgag tccagaacga gccaccaact ctgagtccag cacgacctcc caactctgac tccagcacag tgtccagtgg ctgagtccag cacgacctcc agtggggcca tccagcacga cctccagtgg ggctagcaca cacaacctcc agtggggccg gcacagccac tgtccagtgg gatcagcaca gtcaccaatt agtggggcca acacagccac caactctgag ggccaacaca gccaccaact ctgagtccag gcactgccac caactctgag tccagcacaa gccaccaact ctgagtccag cacaacctcc caactctgac tccagcacaa cctccagtga ctgagtctag cacagtgtcc agtgggatca tccagcacaa cctccagtgg ggccaacaca tgtgacctct gcaggctctg gaacagcagc cttcccatag tgcatctact gcagtgagtg ctggtgccgt gggaaatctt cctcatcacc cgtggggctc tttgctgggc tcttcttctg tgagaaacac ctttaacaca gctgtctacc ggccttggtc caggccctgg agggaatcat ggccagcaca gtcaccaact 650 gcactgccac caactctgag 700 gccaccaact ctgagtctag 750 caactctgac tccagcacaa 800 ctgagtccag cacaacctcc 850 tccagcacag tgtccagtag 900 cacaacctcc agtggggcca 950 cctccaatgg ggctggcaca 1000 agtggggcca gcacagccac 1050 ggccagcact gccaccaact 1100 gcacagccac caactctgag 1150 gccaccaact ctgactccag 12 00 caactctgag tccagcacag 1250 ctgagtccag cacaccctcc 1300 tccagtacga cctccagtgg 1350 cacagtgtcc agtggggcca 1400 cctccagtgg ggtcagcaca 1450 <br><br> agtggggcta gcacagccac 1500 ggccagcaca gccaccaact 1550 gcacagtcac caattctgag 1600 gccaccaact ctgggtccag 1650 tctgactgga atgcacacaa 1700 aggcaaagcc tggtgggtcc 1750 ctggtctcgg ttgtggcggc 1800 tgtgagaaac agcctgtccc 1850 accctcatgg cctcaaccat 1900 ggagcccccc acaggcccag 195 0 <br><br> 323 <br><br> gtggagtcct aactggttct ggaggagacc agtatcatcg atagccatgg 2000 <br><br> agatgagcgg gaggaacagc gggccctgag cagccccgga agcaagtgcc 2 050 <br><br> gcattcttca ggaaggaaga gacctgggca cccaagacct ggtttccttt 2100 <br><br> cattcatccc aggagacccc tcccagcttt gtttgagatc ctgaaaatct 2150 <br><br> tgaagaaggt attcctcacc tttcttgcct ttaccagaca ctggaaagag 2200 <br><br> aatactatat tgctcattta gctaagaaat aaatacatct catctaacac 2250 <br><br> acacgacaaa gagaagctgt gcttgccccg gggtgggtat ctagctctga 23 00 <br><br> gatgaactca gttataggag aaaacctcca tgctggactc catctggcat 2350 <br><br> tcaaaatctc cacagtaaaa tccaaagacc tcaaaaaaaa aaaaaaaaaa 2400 <br><br> aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaa 2436 <br><br> &lt;210&gt; 243 &lt;211&gt; 596 &lt;212&gt; PRT &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 243 <br><br> Met Lys Met Gin Lys Gly Asn Val Leu Leu Met Phe Gly Leu Leu 15 10 15 <br><br> Leu His Leu Glu Ala Ala Thr Asn Ser Asn Glu Thr Ser Thr Ser 20 25 30 <br><br> Ala Asn Thr Gly Ser Ser Val Ile Ser Ser Gly Ala Ser Thr Ala 35 40 45 <br><br> Thr Asn Ser Gly Ser Ser Val Thr Ser Ser Gly Val Ser Thr Ala 50 55 60 <br><br> Thr Ile Ser Gly Ser Ser Val Thr Ser Asn Gly Val Ser Ile Val 65 70 75 <br><br> Thr Asn Ser Glu Phe His Thr Thr Ser Ser Gly Ile Ser Thr Ala <br><br> 80 85 90 <br><br> Thr Asn Ser Glu Phe Ser Thr Ala Ser Ser Gly Ile Ser Ile Ala 95 100 105 <br><br> Thr Asn Ser Glu Ser Ser Thr Thr Ser Ser Gly Ala Ser Thr Ala 110 115 120 <br><br> Thr Asn Ser Glu Ser Ser Thr Pro Ser Ser Gly Ala Ser Thr Val 125 130 135 <br><br> Thr Asn Ser Gly Ser Ser Val Thr Ser Ser Gly Ala Ser Thr Ala 140 145 150 <br><br> 324 <br><br> Thr Asn Ser Glu Ser Ser Thr Val Ser Ser Arg Ala Ser Thr Ala <br><br> 155 160 165 <br><br> Thr Asn Ser Glu Ser Ser Thr Leu Ser Ser Gly Ala Ser Thr Ala <br><br> 170 175 180 <br><br> Thr Asn Ser Asp Ser Ser Thr Thr Ser Ser Gly Ala Ser Thr Ala <br><br> 185 190 195 <br><br> Thr Asn Ser Glu Ser Ser Thr Thr Ser Ser Gly Ala Ser Thr Ala <br><br> 200 205 210 <br><br> Thr Asn Ser Glu Ser Ser Thr Val Ser Ser Arg Ala Ser Thr Ala <br><br> 215 220 225 <br><br> Thr Asn Ser Glu Ser Ser Thr Thr Ser Ser Gly Ala Ser Thr Ala <br><br> 230 235 240 <br><br> Thr Asn Ser Glu Ser Arg Thr Thr Ser Asn Gly Ala Gly Thr Ala <br><br> 245 250 255 <br><br> Thr Asn Ser Glu Ser Ser Thr Thr Ser Ser Gly Ala Ser Thr Ala <br><br> 260 265 270 <br><br> Thr Asn Ser Asp Ser Ser Thr Val Ser Ser Gly Ala Ser Thr Ala <br><br> 275 280 285 <br><br> Thr Asn Ser Glu Ser Ser Thr Thr Ser Ser Gly Ala Ser Thr Ala <br><br> 290 295 300 <br><br> Thr Asn Ser Glu Ser Ser Thr Thr Ser Ser Gly Ala Ser Thr Ala <br><br> 305 310 315 <br><br> Thr Asn Ser Asp Ser Ser Thr Thr Ser Ser Gly Ala Gly Thr Ala <br><br> 320 325 330 <br><br> Thr Asn Ser Glu Ser Ser Thr Val Ser Ser Gly Ile Ser Thr Val <br><br> 335 340 345 <br><br> Thr Asn Ser Glu Ser Ser Thr Pro Ser Ser Gly Ala Asn Thr Ala <br><br> 350 355 360 <br><br> Thr Asn Ser Glu Ser Ser Thr Thr Ser Ser Gly Ala Asn Thr Ala <br><br> 365 370 375 <br><br> Thr Asn Ser Glu Ser Ser Thr Val Ser Ser Gly Ala Ser Thr Ala <br><br> 380 385 390 <br><br> Thr Asn Ser Glu Ser Ser Thr Thr Ser Ser Gly Val Ser Thr Ala <br><br> 395 400 405 <br><br> Thr Asn Ser Glu Ser Ser Thr Thr Ser Ser Gly Ala Ser Thr Ala 410 415 420 <br><br> 325 <br><br> Thr Asn Ser Asp Ser Ser Thr Thr Ser Ser Glu Ala Ser Thr Ala 425 430 435 <br><br> Thr Asn Ser Glu Ser Ser Thr Val Ser Ser Gly Ile Ser Thr Val 440 445 450 <br><br> Thr Asn Ser Glu Ser Ser Thr Thr Ser Ser Gly Ala Asn Thr Ala 455 460 465 <br><br> Thr Asn Ser Gly Ser Ser Val Thr Ser Ala Gly Ser Gly Thr Ala 470 475 480 <br><br> Ala Leu Thr Gly Met His Thr Thr Ser His Ser Ala Ser Thr Ala 485 490 . 495 <br><br> Val Ser Glu Ala Lys Pro Gly Gly Ser Leu Val Pro Trp Glu Ile 500 505 510 <br><br> Phe Leu Ile Thr Leu Val Ser Val Val Ala Ala Val Gly Leu Phe 515 520 525 <br><br> Ala Gly Leu Phe Phe Cys Val Arg Asn Ser Leu Ser Leu Arg Asn 530 535 540 <br><br> Thr Phe Asn Thr Ala Val Tyr His Pro His Gly Leu Asn His Gly 545 550 555 <br><br> Leu Gly Pro Gly Pro Gly Gly Asn His Gly Ala Pro His Arg Pro 560 565 570 <br><br> Arg Trp Ser Pro Asn Trp Phe Trp Arg Arg Pro Val Ser Ser Ile 575 580 585 <br><br> Ala Met Glu Met Ser Gly Arg Asn Ser Gly Pro 590 595 <br><br> &lt;210&gt; 244 &lt;211&gt; 26 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 244 gaagcaccag cctttatctc ttcacc 2 6 <br><br> &lt;210&gt; 245 &lt;211&gt; 24 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> 326 <br><br> &lt;400&gt; 245 gtcagagttg gtggctgtgc tagc 24 <br><br> &lt;210&gt; 246 &lt;211&gt; 48 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 246 <br><br> ggacccaggc atcttgcttt ccagccacaa agagacagat gaagatgc 48 <br><br> &lt;210&gt; 247 &lt;211&gt; 957 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 247 <br><br> gggagagagg ataaatagca gcgtggcttc cctggctcct ctctgcatcc 50 ttcccgacct tcccagcaat atgcatcttg cacgtctggt cggctcctgc 100 tccctccttc tgctactggg ggccctgtct ggatgggcgg ccagcgatga 150 ccccattgag aaggtcattg aagggatcaa ccgagggctg agcaatgcag 200 agagagaggt gggcaaggcc ctggatggca tcaacagtgg aatcacgcat 250 gccggaaggg aagtggagaa ggttttcaac ggacttagca acatggggag 3 00 ccacaccggc aaggagttgg acaaaggcgt ccaggggctc aaccacggca 3 50 tggacaaggt tgcccatgag atcaaccatg gtattggaca agcaggaaag 400 gaagcagaga agcttggcca tggggtcaac aacgctgctg gacaggccgg 450 gaaggaagca gacaaagcgg tccaagggtt ccacactggg gtccaccagg 500 ctgggaagga agcagagaaa cttggccaag gggtcaacca tgctgctgac 550 caggctggaa aggaagtgga gaagcttggc caaggtgccc accatgctgc 600 tggccaggcc gggaaggagc tgcagaatgc tcataatggg gtcaaccaag 650 ccagcaagga ggccaaccag ctgctgaatg gcaaccatca aagcggatct 7 00 tccagccatc aaggaggggc cacaaccacg ccgttagcct ctggggcctc 750 agtcaacacg cctttcatca accttcccgc cctgtggagg agcgtcgcca 800 acatcatgcc ctaaactggc atccggcctt gctgggagaa taatgtcgcc 850 gttgtcacat cagctgacat gacctggagg ggttgggggt gggggacagg 900 <br><br> 327 <br><br> tttctgaaat ccctgaaggg ggttgtactg ggatttgtga ataaacttga 950 <br><br> tacacca 957 <br><br> &lt;210&gt; 248 &lt;211&gt; 247 &lt;212&gt; PRT &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 248 <br><br> Met His Leu Ala Arg Leu Val Gly Ser Cys Ser Leu Leu Leu Leu 15 10 15 <br><br> Leu Gly Ala Leu Ser Gly Trp Ala Ala Ser Asp Asp Pro Ile Glu 20 25 30 <br><br> Lys Val Ile Glu Gly Ile Asn Arg Gly Leu Ser Asn Ala Glu Arg 35 40 45 <br><br> Glu Val Gly Lys Ala Leu Asp Gly Ile Asn Ser Gly Ile Thr His 50 55 60 <br><br> Ala Gly Arg Glu Val Glu Lys Val Phe Asn Gly Leu Ser Asn Met 65 70 75 <br><br> Gly Ser His Thr Gly Lys Glu Leu Asp Lys Gly Val Gin Gly Leu 80 85 90 <br><br> Asn His Gly Met Asp Lys Val Ala His Glu Ile Asn His Gly Ile 95 100 105 <br><br> Gly Gin Ala Gly Lys Glu Ala Glu Lys Leu Gly His Gly Val Asn 110 115 120 <br><br> Asn Ala Ala Gly Gin Ala Gly Lys Glu Ala Asp Lys Ala Val Gin 125 130 135 <br><br> Gly Phe His Thr Gly Val His Gin Ala Gly Lys Glu Ala Glu Lys 140 , 145 150 <br><br> Leu Gly Gin Gly Val Asn His Ala Ala Asp Gin Ala Gly Lys Glu 155 160 165 <br><br> Val Glu Lys Leu Gly Gin Gly Ala His His Ala Ala Gly Gin Ala 170 175 180 <br><br> Gly Lys Glu Leu Gin Asn Ala His Asn Gly Val Asn Gin Ala Ser 185 190 195 <br><br> Lys Glu Ala Asn Gin Leu Leu Asn Gly Asn His Gin Ser Gly Ser 200 205 210 <br><br> Ser Ser His Gin Gly Gly Ala Thr Thr Thr Pro Leu Ala Ser Gly 215 220 225 <br><br> 328 <br><br> Ala Ser Val Asn Thr Pro Phe Ile Asn Leu Pro Ala Leu Trp Arg 230 235 240 <br><br> Ser Val Ala Asn Ile Met Pro 245 <br><br> &lt;210&gt; 249 &lt;211&gt; 23 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 249 caatatgcat cttgcacgtc tgg 23 <br><br> &lt;210&gt; 250 &lt;211&gt; 24 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 250 aagcttctct gcttcctttc ctgc 24 <br><br> &lt;210&gt; 251 &lt;211&gt; 43 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 251 <br><br> tgaccccatt gagaaggtca ttgaagggat caaccgaggg ctg 43 <br><br> &lt;210&gt; 252 &lt;211&gt; 3781 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 252 <br><br> ctccgggtcc ccaggggctg cgccgggccg gcctggcaag ggggacgagt 50 cagtggacac tccaggaaga gcggccccgc ggggggcgat gaccgtgcgc 100 tgaccctgac tcactccagg tccggaggcg ggggcccccg gggcgactcg 150 ggggcggacc gcggggcgga gctgccgccc gtgagtccgg ccgagccacc 2 00 tgagcccgag ccgcgggaca ccgtcgctcc tgctctccga atgctgcgca 250 <br><br> 329 <br><br> ccgcgatggg cctgaggagc tggctcgccg cctcggccac cgctgctgct gctcctgctg gccgcctccg acctgggcgc tcagcccccg ctgaagagcg gccattcctc agattcgaag acagcccttc tgctgagcag ggatggcagg agaggccctc tttgcactca gtagcaacct agtaccagga gctgctttgg ggtgcagacg agcttcaagg gcaaggaccc acagcgcgac cctcctgccg ctcagcggca gtcacctgtt tcagccccat gtgtacctac atcaacatgg gacgagaagg ggaatgtcct cctggaagat cgacccgaat ttcaagtcca ctgccctggt ctggaacagt cagcagcttc caagggaatg caaagccttc gccccaccaa gaccgagagc cccagctttt gtggcctcag cctacattcc aaggcgatga tgacaagatc tactttttct tttgagttct ttgagaacac cattgtgtcc gggcgatgag ggtggagagc gggtgctaca tcaaggccca gctgctgtgc tcacggcccg gtgctgcagg atgtcttcac gctgagcccc cacccttttc tatggggtct tcacttccca aaggctctgc cgtctgtgtc ttcacaatga agcggcctct acaaggaggt gaaccgtgag gacccacccg gtgcccacac cccggcctgg cccgggaaag gaagatcaac tcatccctgc aacttcctca aggaccactt cctgatggac gctgctgctg cagccccagg ctcgctacca tccctggcct gcaccacacc tacgatgtcc ccccatgggg cgcgctgccg 300 ctgctgctcc tgctgcagcc 350 gatcagcctg cctctgggct 400 ctgaacacat ctccaactac 450 accctgtacg tgggtgctcg 500 cagcttcctg ccaggcgggg 550 cagagaagaa acagcagtgc 600 tgtcaaaact acatcaagat 650 cacctgtggc acagcagcct 700 agaacttcac cctggcaagg 750 ggcaagggcc gttgtccctt 800 ggttgatggc gagctctaca 850 acccggccat ctcgcggagc 900 tccctcaact ggctgcaaga 950 tgagagcctg ggcagcttgc 1000 <br><br> tcagcgagac tggccaggaa 1050 cgcattgccc gcatctgcaa 1100 gcagcgctgg acctccttcc 1150 acgatggctt ccccttcaac 12 00 agcccccagg actggcgtga 1250 gtggcacagg ggaactacag 13 00 aggatgtgca gagagtcttc 1350 acacagcagt ggtacaccgt 1400 agcgtgcatc accaacagtg 1450 agctcccaga ccgcgtgctg 1500 gggcaggtcc gaagccgcat 1550 gcgcgtggct gtacaccgcg 1600 tcttcctggg cactggtgac 1650 <br><br> 330 <br><br> ggccggctcc acaaggcagt gagcgtgggc ccccgggtgc acatcattga 1700 ggagctgcag atcttctcat cgggacagcc cgtgcagaat ctgctcctgg 1750 acacccacag ggggctgctg tatgcggcct cacactcggg cgtagtccag 1800 gtgcccatgg ccaactgcag cctgtaccgg agctgtgggg actgcctcct 1850 cgcccgggac ccctactgtg cttggagcgg ctccagctgc aagcacgtca 1900 gcctctacca gcctcagctg gccaccaggc cgtggatcca ggacatcgag 1950 ggagccagcg ccaaggacct ttgcagcgcg tcttcggttg tgtccccgtc 2000 ttttgtacca acaggggaga agccatgtga gcaagtccag ttccagccca 2 050 acacagtgaa cactttggcc tgcccgctcc tctccaacct ggcgacccga 2100 ctctggctac gcaacggggc ccccgtcaat gcctcggcct cctgccacgt 2150 gctacccact ggggacctgc tgctggtggg cacccaacag ctgggggagt 2200 tccagtgctg gtcactagag gagggcttcc agcagctggt agccagctac 2250 tgcccagagg tggtggagga cggggtggca gaccaaacag atgagggtgg 23 00 cagtgtaccc gtcattatca gcacatcgcg tgtgagtgca ccagctggtg 23 50 gcaaggccag ctggggtgca gacaggtcct actggaagga gttcctggtg 2400 atgtgcacgc tctttgtgct ggccgtgctg ctcccagttt tattcttgct 2450 ctaccggcac cggaacagca tgaaagtctt cctgaagcag ggggaatgtg 2500 ccagcgtgca ccccaagacc tgccctgtgg tgctgccccc tgagacccgc 2550 ccactcaacg gcctagggcc ccctagcacc ccgctcgatc accgagggta 2 600 ccagtccctg tcagacagcc ccccgggggc ccgagtcttc actgagtcag 2 650 agaagaggcc actcagcatc caagacagct tcgtggaggt atccccagtg 2700 tgcccccggc cccgggtccg ccttggctcg gagatccgtg actctgtggt 2750 gtgagagctg acttccagag gacgctgccc tggcttcagg ggctgtgaat 2800 gctcggagag ggtcaactgg acctcccctc cgctctgctc ttcgtggaac 2850 acgaccgtgg tgcccggccc ttgggagcct tggagccagc tggcctgctg 2900 ctctccagtc aagtagcgaa gctcctacca cccagacacc caaacagccg 2950 tggccccaga ggtcctggcc aaatatgggg gcctgcctag gttggtggaa 3000 cagtgctcct tatgtaaact gagccctttg tttaaaaaac aattccaaat 3050 <br><br> 331 <br><br> gtgaaactag aatgagaggg aagagatagc atggcatgca gcacacacgg 3100 <br><br> ctgctccagt tcatggcctc ccaggggtgc tggggatgca tccaaagtgg 3150 <br><br> ttgtctgaga cagagttgga aaccctcacc aactggcctc ttcaccttcc 3200 <br><br> acattatccc gctgccaccg gctgccctgt ctcactgcag attcaggacc 3250 <br><br> agcttgggct gcgtgcgttc tgccttgcca gtcagccgag gatgtagttg 3300 <br><br> ttgctgccgt cgtcccacca cctcagggac cagagggcta ggttggcact 3350 <br><br> gcggccctca ccaggtcctg ggctcggacc caactcctgg acctttccag 3400 <br><br> cctgtatcag gctgtggcca cacgagagga cagcgcgagc tcaggagaga 3450 <br><br> tttcgtgaca atgtacgcct ttccctcaga attcagggaa gagactgtcg 3500 <br><br> cctgccttcc tccgttgttg cgtgagaacc cgtgtgcccc ttcccaccat 3550 <br><br> atccaccctc gctccatctt tgaactcaaa cacgaggaac taactgcacc 3600 <br><br> ctggtcctct ccccagtccc cagttcaccc tccatccctc accttcctcc 3650 <br><br> actctaaggg atatcaacac tgcccagcac aggggccctg aatttatgtg 37 00 <br><br> gtttttatac attttttaat aagatgcact ttatgtcatt ttttaataaa 3750 <br><br> gtctgaagaa ttactgttta aaaaaaaaaa a 3781 <br><br> &lt;210&gt; 253 &lt;211&gt; 837 &lt;212&gt; PRT &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 253 <br><br> Met Leu Arg Thr Ala Met Gly Leu Arg Ser Trp Leu Ala Ala Pro 15 10 15 <br><br> Trp Gly Ala Leu Pro Pro Arg Pro Pro Leu Leu Leu Leu Leu Leu 20 25 30 <br><br> Leu Leu Leu Leu Leu Gin Pro Pro Pro Pro Thr Trp Ala Leu Ser 35 40 45 <br><br> Pro Arg Ile Ser Leu Pro Leu Gly Ser Glu Glu Arg Pro Phe Leu 50 55 60 <br><br> Arg Phe Glu Ala Glu His Ile Ser Asn Tyr Thr Ala Leu Leu Leu 65 70 75 <br><br> Ser Arg Asp Gly Arg Thr Leu Tyr Val Gly Ala Arg Glu Ala Leu 80 85 90 <br><br> 332 <br><br> Phe Ala Leu Ser Ser Asn Leu Ser Phe Leu Pro Gly Gly Glu Tyr 95 100 105 <br><br> Gin Glu Leu Leu Trp Gly Ala Asp Ala Glu Lys Lys Gin Gin Cys 110 115 120 <br><br> Ser Phe Lys Gly Lys Asp Pro Gin Arg Asp Cys Gin Asn Tyr Ile 125 130 135 <br><br> Lys Ile Leu Leu Pro Leu Ser Gly Ser His Leu Phe Thr Cys Gly 140 145 150 <br><br> Thr Ala Ala Phe Ser Pro Met Cys Thr Tyr Ile Asn Met Glu Asn 155 160 165 <br><br> Phe Thr Leu Ala Arg Asp Glu Lys Gly Asn Val Leu Leu Glu Asp 170 175 180 <br><br> Gly Lys Gly Arg Cys Pro Phe Asp Pro Asn Phe Lys Ser Thr Ala 185 190 195 <br><br> Leu Val Val Asp Gly Glu Leu Tyr Thr Gly Thr Val Ser Ser Phe 200 205 210 <br><br> Gin Gly Asn Asp Pro Ala Ile Ser Arg Ser Gin Ser Leu Arg Pro 215 220 225 <br><br> Thr Lys Thr Glu Ser Ser Leu Asn Trp Leu Gin Asp Pro Ala Phe 230 235 240 <br><br> Val Ala Ser Ala Tyr Ile Pro Glu Ser Leu Gly Ser Leu Gin Gly 245 250 255 <br><br> Asp Asp Asp Lys Ile Tyr Phe Phe Phe Ser Glu Thr Gly Gin Glu 260 265 270 <br><br> Phe Glu Phe Phe Glu Asn Thr Ile Val Ser Arg Ile Ala Arg Ile 275 280 285 <br><br> Cys Lys Gly Asp Glu Gly Gly Glu Arg Val Leu Gin Gin Arg Trp 290 295 300 <br><br> Thr Ser Phe Leu Lys Ala Gin Leu Leu Cys Ser Arg Pro Asp Asp 305 310 315 <br><br> Gly Phe Pro Phe Asn Val Leu Gin Asp Val Phe Thr Leu Ser Pro 320 325 330 <br><br> Ser Pro Gin Asp Trp Arg Asp Thr Leu Phe Tyr Gly Val Phe Thr 335 340 345 <br><br> Ser Gin Trp His Arg Gly Thr Thr Glu Gly Ser Ala Val Cys Val 350 355 360 <br><br> Phe Thr Met Lys Asp Val Gin Arg Val Phe Ser Gly Leu Tyr Lys <br><br> 333 <br><br> 365 <br><br> 370 <br><br> 375 <br><br> Glu Val Asn Arg Glu Thr Gin Gin Trp Tyr Thr Val Thr His Pro 380 385 390 <br><br> Val Pro Thr Pro Arg Pro Gly Ala Cys Ile Thr Asn Ser Ala Arg 395 400 405 <br><br> Glu Arg Lys Ile Asn Ser Ser Leu Gin Leu Pro Asp Arg Val Leu 410 415 420 <br><br> Asn Phe Leu Lys Asp His Phe Leu Met Asp Gly Gin Val Arg Ser 425 430 435 <br><br> Arg Met Leu Leu Leu Gin Pro Gin Ala Arg Tyr Gin Arg Val Ala 440 445 450 <br><br> Val His Arg Val Pro Gly Leu His His Thr Tyr Asp Val Leu Phe 455 460 465 <br><br> Leu Gly Thr Gly Asp Gly Arg Leu His Lys Ala Val Ser Val Gly 470 475 480 <br><br> Pro Arg Val His Ile Ile Glu Glu Leu Gin Ile Phe Ser Ser Gly 485 490 495 <br><br> Gin Pro Val Gin Asn Leu Leu Leu Asp Thr His Arg Gly Leu Leu 500 505 510 <br><br> Tyr Ala Ala Ser His Ser Gly Val Val Gin Val Pro Met Ala Asn 515 520 525 <br><br> Cys Ser Leu Tyr Arg Ser Cys Gly Asp Cys Leu Leu Ala Arg Asp 530 535 540 <br><br> Pro Tyr Cys Ala Trp Ser Gly Ser Ser Cys Lys His Val Ser Leu 545 550 555 <br><br> Tyr Gin Pro Gin Leu Ala Thr Arg Pro Trp Ile Gin Asp Ile Glu 560 565 570 <br><br> Gly Ala Ser Ala Lys Asp Leu Cys Ser Ala Ser Ser Val Val Ser 575 580 585 <br><br> Pro Ser Phe Val Pro Thr Gly Glu Lys Pro Cys Glu Gin Val Gin 590 595 600 <br><br> Phe Gin Pro Asn Thr Val Asn Thr Leu Ala Cys Pro Leu Leu Ser 605 610 615 <br><br> Asn Leu Ala Thr Arg Leu Trp Leu Arg Asn Gly Ala Pro Val Asn 620 625 630 <br><br> Ala Ser Ala Ser Cys His Val Leu Pro Thr Gly Asp Leu Leu Leu 635 640 645 <br><br> 334 <br><br> Val Gly Thr Gin Gin Leu Gly Glu Phe Gin Cys Trp Ser Leu Glu 650 655 660 <br><br> Glu Gly Phe Gin Gin Leu Val Ala Ser Tyr Cys Pro Glu Val Val 665 670 675 <br><br> Glu Asp Gly Val Ala Asp Gin Thr Asp Glu Gly Gly Ser Val Pro 680 685 690 <br><br> Val Ile Ile Ser Thr Ser Arg Val Ser Ala Pro Ala Gly Gly Lys 695 700 705 <br><br> Ala Ser Trp Gly Ala Asp Arg Ser Tyr Trp Lys Glu Phe Leu Val 710 715 720 <br><br> Met Cys Thr Leu Phe Val Leu Ala Val Leu Leu Pro Val Leu Phe 725 730 735 <br><br> Leu Leu Tyr Arg His Arg Asn Ser Met Lys Val Phe Leu Lys Gin 740 745 750 <br><br> Gly Glu Cys Ala Ser Val His Pro Lys Thr Cys Pro Val Val Leu 755 760 765 <br><br> Pro Pro Glu Thr Arg Pro Leu Asn Gly Leu Gly Pro Pro Ser Thr 770 775 780 <br><br> Pro Leu Asp His Arg Gly Tyr Gin Ser Leu Ser Asp Ser Pro Pro 785 790 795 <br><br> Gly Ala Arg Val Phe Thr Glu Ser Glu Lys Arg Pro Leu Ser Ile 800 805 810 <br><br> Gin Asp Ser Phe Val Glu Val Ser Pro Val Cys Pro Arg Pro Arg 815 820 825 <br><br> Val Arg Leu Gly Ser Glu Ile Arg Asp Ser Val Val 830 835 <br><br> &lt;210&gt; 254 <br><br> &lt;211&gt; 24 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence <br><br> &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 254 <br><br> agcccgtgca gaatctgctc ctgg 24 <br><br> &lt;210&gt; 255 <br><br> &lt;211&gt; 24 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence <br><br> 335 <br><br> &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 255 tgaagccagg gcagcgtcct ctgg 24 <br><br> &lt;210&gt; 256 &lt;211&gt; 18 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 256 gtacaggctg cagttggc 18 <br><br> &lt;210&gt; 257 &lt;211&gt; 41 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 257 <br><br> agaagccatg tgagcaagtc cagttccagc ccaacacagt g 41 <br><br> &lt;210&gt; 258 &lt;211&gt; 45 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 258 <br><br> gagctgcaga tcttctcatc gggacagccc gtgcagaatc tgctc 45 <br><br> &lt;210&gt; 259 <br><br> &lt;211&gt; 4563 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;220&gt; <br><br> &lt;221&gt; unsure <br><br> &lt;222&gt; 3635 <br><br> &lt;223&gt; unknown base <br><br> &lt;400&gt; 259 <br><br> ctaagccgga ggatgtgcag ctgcggcggc ggcgccggct acgaagagga 50 cggggacagg cgccgtgcga accgagccca gccagccgga ggacgcgggc 100 agggcgggac gggagcccgg actcgtctgc cgccgccgtc gtcgccgtcg 150 <br><br> 336 <br><br> tgccggcccc gcgtccccgc gcgcgagcgg cgcccgagcc gccgctagcg cgcgccgggc caggccgcgg cggcgggggc gggtgtgcgg cctgcgggcg gctcgggggc cgcgatgggc gcggcgctgc ccgggccggg cctcgcggcg tgggcggggg cagcgggctg agggcgcgcg ggcggcggcg gcggcccggc gggcggagcg ggccggcgcg cctggctcag cgtgctgctc gctggcctcg cggctcgtcc tgccccgggc gcccacggcg ccgcgccagc cccgagggct gcttcccagg ccggcggggc gcgcggcgat gccgcccggc tcggacccag atggcggccc tcgtgggagt catgaccgcc cagaaatacc gcctacagaa catggtccaa gacaattcct aagtgagggt tctgacacat ctgtaccaat gtgtggacga ctcctacccg ccccagaaga tacatgcacg accactactt ggacaagtat tgatgacgtg tacatcaaag gagaccgtct tgaacagcag cgagcccctc tttcttgggc gaagaaatgg gaaaactggc cctggagcct ggggcctggc gtgatcatga gccgggaggt acattggcaa gtgtctccgg gagatgtaca gtgggaaggt gtgtccggag gtttgcaggg tgagatgcgg cagctttttt atgagaatta acattagaga tctccataac agtaaaattc cccaacaaaa acccacccta ccagtacagg ccgcaagata tccgagctcc gccatcgcac ttgtcctgat gagcaaatac agcaacacag gaggagccgc cgccacctcg 200 atggtcccct cttaaaggcg 250 aacaaagcgc cggcgcgggg 3 00 gcggcgggcc cgcggcggcg 350 ctagggcggg ctggcctccg 400 gagcctgcgg cggcggcggc 450 gcgcgggcat ggccgcgcgc 500 gggctcgtcc tgggcttcgt 550 ttccgagctg aagcgagcgg 600 gccggtccgg gcaggcggcg 650 gcgcgcgggg cgcagctctg 700 gcgcgacagg aactttctct 750 tgcagactcg ggccgtggcc 800 gggaaagttc agttcttctc 850 tccagtagtg ccactacggg 900 agtccttcat gatgctcaag 950 gaatggttta tgagagcaga 1000 ggagaacttc ctgaggagtt 1050 agacaggcct gggcaccacg 1100 ggtgagaact tctgcatggg 1150 gcttcggaga atggtgccgc 12 00 ccacccatga ggacgtggag 1250 gtgcagtgtg tctggtctta 13 00 cgagcagaac aaaaaggggt 1350 accaagctat cacattacac 1400 ctccacagct acatgctgag 1450 aatacagctg caccgcgaaa 1500 aaattcataa agaggacctc 1550 <br><br> 337 <br><br> cagctgggaa tccatccctc cttcatgagg tttcagcccc gccagcgaga 1600 ggagattctg gaatgggagt ttctgactgg aaaatacttg tattcggcag 1650 ttgacggcca gccccctcga agaggaatgg actccgccca gagggaagcc 1700 ttggacgaca ttgtcatgca ggtcatggag atgatcaatg ccaacgccaa 1750 gaccagaggg cgcatcattg acttcaaaga gatccagtac ggctaccgcc 1800 gggtgaaccc catgtatggg gctgagtaca tcctggacct gctgcttctg 1850 tacaaaaagc acaaagggaa gaaaatgacg gtccctgtga ggaggcacgc 1900 gtatttacag cagactttca gcaaaatcca gtttgtggag catgaggagc 1950 tggatgcaca agagttggcc aagagaatca atcaggaatc tggatccttg 2 000 tcctttctct caaactccct gaagaagctc gtcccctttc agctccctgg 2050 gtcgaagagt gagcacaaag aacccaaaga taaaaagata aacatactga 2100 ttcctttgtc tgggcgtttc gacatgtttg tgagatttat gggaaacttt 2150 gagaagacgt gtcttatccc caatcagaac gtcaagctcg tggttctgct 2200 tttcaattct gactccaacc ctgacaaggc caaacaagtt gaactgatga 22 50 gagattaccg cattaagtac cctaaagccg acatgcagat tttgcctgtg 2300 tctggagagt tttcaagagc cctggccctg gaagtaggat cctcccagtt 2350 taacaatgaa tctttgctct tcttctgcga cgtcgacctc gtgtttacta 2400 cagaattcct tcagcgatgt cgagcaaata cagttctggg ccaacaaata 2450 tattttccaa tcatcttcag ccagtatgac ccaaagattg tttatagtgg 2500 gaaagttccc agtgacaacc attttgcctt tactcagaaa actggcttct 2550 ggagaaacta tgggtttggc atcacgtgta tttataaggg agatcttgtc 2 600 cgagtgggtg gctttgatgt ttccatccaa ggctgggggc tggaggatgt 2650 ggaccttttc aacaaggttg tccaggcagg tttgaagacg tttaggagcc 27 00 aggaagtagg agtagtccac gtccaccatc ctgtcttttg tgatcccaat 2750 cttgacccca aacagtacaa aatgtgcttg gggtccaaag catcgaccta 2800 tgggtccacc cagcagctgg ctgagatgtg gctggaaaaa aatgatccaa 2850 gttacagtaa aagcagcaat aataatggct cagtgaggac agcctaatgt 2900 ccagctttgc tggaaaagac gtttttaatt atctaattta tttttcaaaa 2950 <br><br> 338 <br><br> attttttgta tgatcagttt ttgaagtccg tatacaagga tatattttac 3000 aagtggtttt cttacatagg actcctttaa gattgagctt tctgaacaag 3050 aaggtgatca gtgtttgcct ttgaacacat cttcttgctg aacattatgt 3100 agcagacctg cttaactttg acttgaaatg tacctgatga acaaaacttt 3150 tttaaaaaaa tgttttcttt tgagaccctt tgctccagtc ctatggcaga 3200 aaacgtgaac attcctgcaa agtattattg taacaaaaca ctgtaactct 3250 ggtaaatgtt ctgttgtgat tgttaacatt ccacagattc taccttttgt 3300 gttttgtttt ttttttttac aattgtttta aagccatttc atgttccagt 3350 tgtaagataa ggaaatgtga taatagctgt ttcatcattg tcttcaggag 3400 agctttccag agttgatcat ttcctctcat ggtactctgc tcagcatggc 3450 cacgtaggtt ttttgtttgt tttgttttgt tctttttttg agacggagtc 3500 tcactctgtt acccaggctg gaatgcagtg gcgcaatctt ggctcacttt 3550 aacctccact tccctggttc aagcaattcc cctgcctttg cctcccgagt 3600 agctgggatt acaggcacac accaccacgc ccagntagtt tttttgtatt 3650 tttagtagag acggggtttc accatgcaag cccagctggc cacgtaggtt 3700 ttaaagcaag gggcgtgaag aaggcacagt gaggtatgtg gctgttctcg 3750 tggtagttca ttcggcctaa atagacctgg cattaaattt caagaaggat 3800 ttggcatttt ctcttcttga cccttctctt taaagggtaa aatattaatg 3850 tttagaatga caaagatgaa ttattacaat aaatctgatg tacacagact 3900 gaaacataca cacatacacc ctaatcaaaa cgttggggaa aaatgtattt 3950 ggttttgttc ctttcatcct gtctgtgtta tgtgggtgga gatggttttc 4000 attctttcat tactgttttg ttttatcctt tgtatctgaa atacctttaa 4050 tttatttaat atctgttgtt cagagctctg ccatttcttg agtacctgtt 4100 agttagtatt atttatgtgt atcgggagtg tgtttagtct gttttatttg 4150 cagtaaaccg atctccaaag atttcctttt ggaaacgctt tttcccctcc 4200 ttaattttta tattccttac tgttttacta aatattaagt gttctttgac 4250 aattttggtg ctcatgtgtt ttggggacaa aagtgaaatg aatctgtcat 43 00 tataccagaa agttaaattc tcagatcaaa tgtgccttaa taaatttgtt 4350 <br><br> 339 <br><br> ttcatttaga tttcaaacag tgatagactt gccattttaa tacacgtcat 4400 <br><br> tggagggctg cgtatttgta aatagcctga tgctcatttg gaaaaataaa 4450 <br><br> ccagtgaaca atatttttct attgtacttt tcgaaccatt ttgtctcatt 4500 <br><br> attcctgttt tagctgaaga attgtattac atttggagag taaaaaactt 4550 <br><br> aaacacgaaa aaa 4563 <br><br> &lt;210&gt; 260 &lt;211&gt; 802 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 260 <br><br> Met Ala Ala Arg Gly Arg Arg Ala Trp Leu Ser Val Leu Leu Gly 15 10 15 <br><br> Leu Val Leu Gly Phe Val Leu Ala Ser Arg Leu Val Leu Pro Arg 20 25 30 <br><br> Ala Ser Glu Leu Lys Arg Ala Gly Pro Arg Arg Arg Ala Ser Pro 35 40 45 <br><br> Glu Gly Cys Arg Ser Gly Gin Ala Ala Ala Ser Gin Ala Gly Gly 50 55 60 <br><br> Ala Arg Gly Asp Ala Arg Gly Ala Gin Leu Trp Pro Pro Gly Ser 65 70 75 <br><br> Asp Pro Asp Gly Gly Pro Arg Asp Arg Asn Phe Leu Phe Val Gly 80 85 90 <br><br> Val Met Thr Ala Gin Lys Tyr Leu Gin Thr Arg Ala Val Ala Ala 95 100 105 <br><br> Tyr Arg Thr Trp Ser Lys Thr Ile Pro Gly Lys Val Gin Phe Phe 110 115 120 <br><br> Ser Ser Glu Gly Ser Asp Thr Ser Val Pro Ile Pro Val Val Pro 125 130 135 <br><br> Leu Arg Gly Val Asp Asp Ser Tyr Pro Pro Gin Lys Lys Ser Phe 140 145 150 <br><br> Met Met Leu Lys Tyr Met His Asp His Tyr Leu Asp Lys Tyr Glu 155 160 165 <br><br> Trp Phe Met Arg Ala Asp Asp Asp Val Tyr Ile Lys Gly Asp Arg 170 175 180 <br><br> Leu Glu Asn Phe <br><br> Leu Arg Ser Leu Asn Ser 185 190 <br><br> Ser Glu Pro Leu Phe 195 <br><br> 340 <br><br> Leu Gly Gin Thr Gly Leu Gly Thr Thr Glu Glu Met Gly Lys Leu 200 205 210 <br><br> Ala Leu Glu Pro Gly Glu Asn Phe Cys Met Gly Gly Pro Gly Val 215 220 225 <br><br> Ile Met Ser Arg Glu Val Leu Arg Arg Met Val Pro His Ile Gly 230 235 240 <br><br> Lys Cys Leu Arg Glu Met Tyr Thr Thr His Glu Asp Val Glu Val 245 250 255 <br><br> Gly Arg Cys Val Arg Arg Phe Ala Gly Val Gin Cys Val Trp Ser 260 265 270 <br><br> Tyr Glu Met Arg Gin Leu Phe Tyr Glu Asn Tyr Glu Gin Asn Lys 275 280 285 <br><br> Lys Gly Tyr Ile Arg Asp Leu His Asn Ser Lys Ile His Gin Ala 290 295 300 <br><br> Ile Thr Leu His Pro Asn Lys Asn Pro Pro Tyr Gin Tyr Arg Leu 305 310 315 <br><br> His Ser Tyr Met Leu Ser Arg Lys Ile Ser Glu Leu Arg His Arg 320 325 330 <br><br> Thr Ile Gin Leu His Arg Glu Ile Val Leu Met Ser Lys Tyr Ser 335 340 345 <br><br> Asn Thr Glu Ile His Lys Glu Asp Leu Gin Leu Gly Ile Pro Pro 350 355 360 <br><br> Ser Phe Met Arg Phe Gin Pro Arg Gin Arg Glu Glu Ile Leu Glu 365 370 375 <br><br> Trp Glu Phe Leu Thr Gly Lys Tyr Leu Tyr Ser Ala Val Asp Gly 380 385 390 <br><br> Gin Pro Pro Arg Arg Gly Met Asp Ser Ala Gin Arg Glu Ala Leu 395 400 405 <br><br> Asp Asp Ile Val Met Gin Val Met Glu Met Ile Asn Ala Asn Ala 410 415 420 <br><br> Lys Thr Arg Gly Arg Ile Ile Asp Phe Lys Glu Ile Gin Tyr Gly 425 430 435 <br><br> Tyr Arg Arg Val Asn Pro Met Tyr Gly Ala Glu Tyr Ile Leu Asp 440 445 450 <br><br> Leu Leu Leu Leu Tyr Lys Lys His Lys Gly Lys Lys Met Thr Val 455 460 465 <br><br> Pro Val Arg Arg His Ala Tyr Leu Gin Gin Thr Phe Ser Lys Ile <br><br> 341 <br><br> 470 <br><br> 475 <br><br> 480 <br><br> Gin Phe Val Glu His Glu Glu Leu Asp Ala Gin Glu Leu Ala Lys 485 490 495 <br><br> Arg Ile Asn Gin Glu Ser Gly Ser Leu Ser Phe Leu Ser Asn Ser 500 505 510 <br><br> Leu Lys Lys Leu Val Pro Phe Gin Leu Pro Gly Ser Lys Ser Glu 515 520 525 <br><br> His Lys Glu Pro Lys Asp Lys Lys Ile Asn Ile Leu Ile Pro Leu 530 535 540 <br><br> Ser Gly Arg Phe Asp Met Phe Val Arg Phe Met Gly Asn Phe Glu 545 550 555 <br><br> Lys Thr Cys Leu Ile Pro Asn Gin Asn Val Lys Leu Val Val Leu 560 565 570 <br><br> Leu Phe Asn Ser Asp Ser Asn Pro Asp Lys Ala Lys Gin Val Glu 575 580 585 <br><br> Leu Met Arg Asp Tyr Arg Ile Lys Tyr Pro Lys Ala Asp Met Gin 590 595 600 <br><br> Ile Leu Pro Val Ser Gly Glu Phe Ser Arg Ala Leu Ala Leu Glu 605 610 615 <br><br> Val Gly Ser Ser Gin Phe Asn Asn Glu Ser Leu Leu Phe Phe Cys 620 625 630 <br><br> Asp Val Asp Leu Val Phe Thr Thr Glu Phe Leu Gin Arg Cys Arg 635 640 645 <br><br> Ala Asn Thr Val Leu Gly Gin Gin Ile Tyr Phe Pro Ile Ile Phe 650 655 660 <br><br> Ser Gin Tyr Asp Pro Lys Ile Val Tyr Ser Gly Lys Val Pro Ser 665 670 675 <br><br> Asp Asn His Phe Ala Phe Thr Gin Lys Thr Gly Phe Trp Arg Asn 680 685 690 <br><br> Tyr Gly Phe Gly Ile Thr Cys Ile Tyr Lys Gly Asp Leu Val Arg 695 700 705 <br><br> Val Gly Gly Phe Asp Val Ser Ile Gin Gly Trp Gly Leu Glu Asp 710 715 720 <br><br> Val Asp Leu Phe Asn Lys Val Val Gin Ala Gly Leu Lys Thr Phe 725 730 735 <br><br> Arg Ser Gin Glu Val Gly Val Val His Val His His Pro Val Phe 740 745 750 <br><br> 342 <br><br> Cys Asp Pro Asn Leu Asp Pro Lys Gin Tyr Lys Met Cys Leu Gly <br><br> 755 760 765 <br><br> Ser Lys Ala Ser Thr Tyr Gly Ser Thr Gin Gin Leu Ala Glu Met <br><br> 770 775 780 <br><br> Trp Leu Glu Lys Asn Asp Pro Ser Tyr Ser Lys Ser Ser Asn Asn 785 790 795 <br><br> Asn Gly Ser Val Arg Thr Ala 800 <br><br> &lt;210&gt; 261 &lt;211&gt; 24 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 261 gtgccactac ggggtgtgga cgac 24 <br><br> &lt;210&gt; 262 &lt;211&gt; 24 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 262 tcccatttct tccgtggtgc ccag 24 <br><br> &lt;210&gt; 263 &lt;211&gt; 46 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 263 <br><br> ccagaagaag tccttcatga tgctcaagta catgcacgac cactac 46 <br><br> &lt;210&gt; 264 <br><br> &lt;211&gt; 1419 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 264 <br><br> ggacaaccgt tgctgggtgt cccagggcct gaggcaggac ggtactccgc 50 tgacaccttc cctttcggcc ttgaggttcc cagcctggtg gccccaggac 100 <br><br> gttccggtcg tccttctagt agcataactg agttttagag agaaaaaatc tcaaaattta tgttttaacc gcttcacacc tggtcgatca ttatattgaa aaactgaggc ccatatgtta tggcattgag aaactgcgat aataatgatg acaggcactt aagcctctaa gaacataaat aacaagtaat attctagatc gagatgagag tagatcaagg aaaaatttta ctgcattttt ataaaaatat atgtgttatg attttggttc &lt;210&gt; 265 <br><br> 343 <br><br> catggcagag tgctacggac gacgcctatg aagcccttag 150 tgcgcttttg ctatggcctt cgtctgtgcc ggcttatccg 200 tgacacctga tgaagagcaa aacttgaatc attatataca 250 aacctagtac gaagtgttcc ctctggggag ccaggtcgtg 3 00 taactctcca aaacatgttt attctatagc atcaaaggga 350 aggagctagt tacacatgga gacgcttcaa ctgagaatga 400 aatcctatca gtgaagaaac tacaactttc cctacaggag 450 <br><br> ggaaatagga aagaaaaaac acacggaaag taccccattc 500 aaccaaacaa tgtttccatt gttttgcatg cagaggaacc 550 aatgaagagc cagagccaga gccggagcca gctgcaaaac 600 accaagaatg ttgccagttg ttactgaatc atctacaagt 650 cctcatacaa gtcacctgtc accactttag ataagagcac 700 atctctacag aatcagaaga tgttcctcag ctctcaggtg 750 agaaaaaccc gaagagtttg gaaagcaccc agagagttgg 800 acattttgaa aaaaatttta gatattaatt cacaagtgca 850 cttagtgaca ccagcaaccc agcatataga gaagatattg 900 agatcaccta aaacgaagcc ttgctctagc agcagcagca 950 taaaaacaat gtataagtcc cagttattgc cagtaggacg 1000 aaaattgatg acatcgaaac tgttattaac atgctgtgta 1050 taaactctat gaatatttag atattaaatg tgttccacca 1100 aaaaagctgc tacagtattc aatacattaa aaaatatgtg 1150 agagtcacag ccttattaaa agtttattaa acaataatat 12 00 aacctacttg atattccata acaaagctga tttaagcaaa 1250 tcacaggaga aataatcata ttcgtaattt caaaagttgt 13 00 tttctattgt agttcaaatg tgccaacatc tttatgtgtc 1350 aacaattttc atatgcacta aaaacctaat ttaaaataaa 1400 aggaaaaaa 1419 <br><br> 344 <br><br> &lt;211&gt; 350 &lt;212&gt; PRT &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 265 <br><br> Met Lys Pro Leu Val Leu Leu Val Ala Leu Leu Leu Trp Pro Ser 15 10 15 <br><br> Ser Val Pro Ala Tyr Pro Ser Ile Thr Val Thr Pro Asp Glu Glu 20 25 30 <br><br> Gin Asn Leu Asn His Tyr Ile Gin Val Leu Glu Asn Leu Val Arg 35 40 45 <br><br> Ser Val Pro Ser Gly Glu Pro Gly Arg Glu Lys Lys Ser Asn Ser 50 55 60 <br><br> Pro Lys His Val Tyr Ser Ile Ala Ser Lys Gly Ser Lys Phe Lys 65 70 75 <br><br> Glu Leu Val Thr His Gly Asp Ala Ser Thr Glu Asn Asp Val Leu 80 85 90 <br><br> Thr Asn Pro Ile Ser Glu Glu Thr Thr Thr Phe Pro Thr Gly Gly 95 100 105 <br><br> Phe Thr Pro Glu Ile Gly Lys Lys Lys His Thr Glu Ser Thr Pro 110 115 120 <br><br> Phe Trp Ser Ile Lys Pro Asn Asn Val Ser Ile Val Leu His Ala 125 130 135 <br><br> Glu Glu Pro Tyr Ile Glu Asn Glu Glu Pro Glu Pro Glu Pro Glu 140 145 150 <br><br> Pro Ala Ala Lys Gin Thr Glu Ala Pro Arg Met Leu Pro Val Val 155 160 165 <br><br> Thr Glu Ser Ser Thr Ser Pro Tyr Val Thr Ser Tyr Lys Ser Pro 170 175 180 <br><br> Val Thr Thr Leu Asp Lys Ser Thr Gly Ile Glu Ile Ser Thr Glu 185 190 195 <br><br> Ser Glu Asp Val Pro Gin Leu Ser Gly Glu Thr Ala Ile Glu Lys 200 205 210 <br><br> Pro Glu Glu Phe Gly Lys His Pro Glu Ser Trp Asn Asn Asp Asp 215 220 225 <br><br> Ile Leu Lys Lys Ile Leu Asp Ile Asn Ser Gin Val Gin Gin Ala 230 235 240 <br><br> Leu Leu Ser Asp Thr Ser Asn Pro Ala Tyr Arg Glu Asp Ile Glu 245 250 255 <br><br> 345 <br><br> Ala Ser Lys <br><br> Ala Glu His <br><br> Val Gly Arg <br><br> Asn Met Leu <br><br> Ile Lys Cys <br><br> Phe Asn Thr <br><br> Leu Leu Lys <br><br> &lt;21Q&gt; 266 &lt;211&gt; 2403 &lt;212&gt; DNA &lt;213&gt; Homo s&lt; <br><br> &lt;400&gt; 266 <br><br> cggctcgagc ggctcgagtg aagagcctct ccacggctcc tgcgcctgag 50 acagctggcc tgacctccaa atcatccatc cacccctgct gtcatctgtt 100 ttcatagtgt gagatcaacc cacaggaata tccatggctt ttgtgctcat 150 tttggttctc agtttctacg agctggtgtc aggacagtgg caagtcactg 2 00 gaccgggcaa gtttgtccag gccttggtgg gggaggacgc cgtgttctcc 250 tgctccctct ttcctgagac cagtgcagag gctatggaag tgcggttctt 3 00 caggaatcag ttccatgctg tggtccacct ctacagagat ggggaagact 350 gggaatctaa gcagatgcca cagtatcgag ggagaactga gtttgtgaag 400 gactccattg caggggggcg tgtctctcta aggctaaaaa acatcactcc 450 ctcggacatc ggcctgtatg ggtgctggtt cagttcccag atttacgatg 500 aggaggccac ctgggagctg cgggtggcag cactgggctc acttcctctc 550 atttccatcg tgggatatgt tgacggaggt atccagttac tctgcctgtc 600 ctcaggctgg ttcccccagc ccacagccaa gtggaaaggt ccacaaggac 650 aggatttgtc ttcagactcc agagcaaatg cagatgggta cagcctgtat 700 gatgtggaga tctccattat agtccaggaa aatgctggga gcatattgtg 750 <br><br> Asp His Leu Lys Arg Ser Leu Ala Leu Ala Ala Ala 260 265 270 <br><br> Lys Leu Lys Thr Met Tyr Lys Ser Gin Leu Leu Pro 275 280 285 <br><br> Thr Ser Asn Lys Ile Asp Asp Ile Glu Thr Val Ile 290 295 300 <br><br> Cys Asn Ser Arg Ser Lys Leu Tyr Glu Tyr Leu Asp 305 310 315 <br><br> Val Pro Pro Glu Met Arg Glu Lys Ala Ala Thr Val 320 325 330 <br><br> Leu Lys Asn Met Cys Arg Ser Arg Arg Val Thr Ala 335 340 345 <br><br> Val Tyr 350 <br><br> apiens <br><br> 346 <br><br> ttccatccac cttgctgagc agagtcatga taggagagac gtttttccag ccctcacctt ctcgggttac tctgtggtgc cctgtgtggt tgttttcttc aaatccaaag ggaaaatcca gaaagcacgg acaggcagaa ttgagagacg gtgactctgg atccagagac ggctcacccg gaaaactgta acccatagaa aagctcccca agagatttac aaggaagagt gtggtggctt agacattact gggaggtgga cgtgggacaa agtgtgtcgg gatgacgtag acagggggaa ccaacaatgg gtattgggtc ctcagactga acattcaatc cccattttat cagcctcccc agtaggggtc ttcctggact atgagggtgg caaatgacca gtcccttatt tataccctgc ttgttgagac cctatatcca gcatgcgatg tcccatattc atatgtccag tgtcctgggg cttaaagggc cccacaccac agacccagac ccgacaggtg gccccagctt cctctccgga gccccccact ctcctttagg gagctgaggt agcagcggca gtcacagctt ccagatgagg gggagtcaga agccatggct gccctgaagt ttaggtttag tttgtgaaaa ctccatccag cacaacctcc caggctcctc atttgctagt tcacaggtga agattaaaga gacaacgaat tgagggcaca gtgtttgcta atgatgtgtt accataaact ctgtttgctt attccacatt aaatcaccca tggaatagtt attgaacacc ataaagagga ggtaggattt ttcactgatt ggtggaatcc aaggtattga 800 ggcgcctggc ttctatttta 850 gttgtcatgg ggatgataat 900 ggcggaactg gactggagaa 950 cccggaaaca cgcagtggag 1000 aagctctgcg tttctgatct 1050 ggaggtgcct cactctgaga 1100 ctcagggttt ccaagcaggg 1150 aatgtagggt ggtatgtggg 1200 gaacaatgtg actttgtctc 12 50 caacagaaca tttgtatttc 1300 cccagcaccc ctcctacacg 1350 gaccatctcc ttcttcaata 1400 tgacatgtca gtttgaaggc 1450 tatgacgagg aaaaggggac 1500 atgagacaga gaagaccctg 1550 acagccaagg gagagtgctc 1600 gcctgcgcac agagagtcac 1650 tcttctgccc tgagccctgc 1700 ggggattggc ctgaccctgt 1750 ggggacggaa tagactcaca 1800 ctaagcgatc ttgaacaagt 1850 cacggacagt gattcctgcc 1900 gtgaatcatg cttgcaggtt 1950 tttatattat acattttccc 2000 aatttacttt tctctatacc 2050 tgctttgtga ggctcaaaga 2100 ctataagccc agcattacct 2150 <br><br> 347 <br><br> gataccaaaa ccaggcaaag aaaacagaag aagaggaagg aaaactacag 2200 <br><br> gtccatatcc ctcattaaca cagacacaaa aattctaaat aaaattttaa 2250 <br><br> caaattaaac taaacaatat atttaaagat gatatataac tactcagtgt 2300 <br><br> ggtttgtccc acaaatgcag agttggttta atatttaaat atcaaccagt 2350 <br><br> gtaattcagc acattaataa agtaaaaaag aaaaccataa aaaaaaaaaa 2400 <br><br> aaa 2403 <br><br> &lt;210&gt; 267 &lt;211&gt; 466 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 267 <br><br> Met Ala Phe Val Leu Ile Leu Val Leu Ser Phe Tyr Glu Leu Val 1 5 10 15 <br><br> Ser Gly Gin Trp Gin Val Thr Gly Pro Gly Lys Phe Val Gin Ala 20 25 30 <br><br> Leu Val Gly Glu Asp Ala Val Phe Ser Cys Ser Leu Phe Pro Glu 35 40 45 <br><br> Thr Ser Ala Glu Ala Met Glu Val Arg Phe Phe Arg Asn Gin Phe 50 55 60 <br><br> His Ala Val Val His Leu Tyr Arg Asp Gly Glu Asp Trp Glu Ser 65 70 75 <br><br> Lys Gin Met Pro Gin Tyr Arg Gly Arg Thr Glu Phe Val Lys Asp 80 85 90 <br><br> Ser Ile Ala Gly Gly Arg Val Ser Leu Arg Leu Lys Asn Ile Thr 95 100 105 <br><br> Pro Ser Asp Ile Gly Leu Tyr Gly Cys Trp Phe Ser Ser Gin Ile 110 115 120 <br><br> Tyr Asp Glu Glu Ala Thr Trp Glu Leu Arg Val Ala Ala Leu Gly 125 130 135 <br><br> Ser Leu Pro Leu Ile Ser Ile Val Gly Tyr Val Asp Gly Gly Ile <br><br> 140 145 150 <br><br> Gin Leu Leu Cys Leu Ser Ser Gly Trp Phe Pro Gin Pro Thr Ala <br><br> 155 160 165 <br><br> Lys Trp Lys Gly Pro Gin Gly Gin Asp Leu Ser Ser Asp Ser Arg 170 175 180 <br><br> 348 <br><br> Ala Asn Ala Asp Gly Tyr Ser Leu Tyr Asp Val Glu Ile Ser Ile 185 190 195 <br><br> Ile Val Gin Glu Asn Ala Gly Ser Ile Leu Cys Ser Ile His Leu 200 205 210 <br><br> Ala Glu Gin Ser His Glu Val Glu Ser Lys Val Leu Ile Gly Glu 215 220 225 <br><br> Thr Phe Phe Gin Pro Ser Pro Trp Arg Leu Ala Ser Ile Leu Leu 230 235 240 <br><br> Gly Leu Leu Cys Gly Ala Leu Cys Gly Val Val Met Gly Met Ile 245 250 255 <br><br> Ile Val Phe Phe Lys Ser Lys Gly Lys Ile Gin Ala Glu Leu Asp 260 265 270 <br><br> Trp Arg Arg Lys His Gly Gin Ala Glu Leu Arg Asp Ala Arg Lys 275 280 285 <br><br> His Ala Val Glu Val Thr Leu Asp Pro Glu Thr Ala His Pro Lys 290 295 300 <br><br> Leu Cys Val Ser Asp Leu Lys Thr Val Thr His Arg Lys Ala Pro 305 310 315 <br><br> Gin Glu Val Pro His Ser Glu Lys Arg Phe Thr Arg Lys Ser Val 320 325 330 <br><br> Val Ala Ser Gin Gly Phe Gin Ala Gly Arg His Tyr Trp Glu Val 335 340 345 <br><br> Asp Val Gly Gin Asn Val Gly Trp Tyr Val Gly Val Cys Arg Asp 350 355 360 <br><br> Asp Val Asp Arg Gly Lys Asn Asn Val Thr Leu Ser Pro Asn Asn 365 370 375 <br><br> Gly Tyr Trp Val Leu Arg Leu Thr Thr Glu His Leu Tyr Phe Thr 380 385 390 <br><br> Phe Asn Pro His Phe Ile Ser Leu Pro Pro Ser Thr Pro. Pro Thr 395 400 405 <br><br> Arg Val Gly Val Phe Leu Asp Tyr Glu Gly Gly Thr Ile Ser Phe 410 415 420 <br><br> Phe Asn Thr Asn Asp Gin Ser Leu Ile Tyr Thr Leu Leu Thr Cys 425 430 435 <br><br> Gin Phe Glu Gly Leu Leu Arg Pro Tyr Ile Gin His Ala Met Tyr 440 445 450 <br><br> Asp Glu Glu Lys Gly Thr Pro Ile Phe Ile Cys Pro Val Ser Trp <br><br> 349 <br><br> 455 460 465 <br><br> Gly <br><br> &lt;210&gt; 268 <br><br> &lt;211&gt; 2103 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 268 <br><br> ccttcacagg actcttcatt gctggttggc aatgatgtat cggccagatg 50 tggtgagggc taggaaaaga gtttgttggg aaccctgggt tatcggcctc 100 gtcatcttca tatccctgat tgtcctggca gtgtgcattg gactcactgt 150 tcattatgtg agatataatc aaaagaagac ctacaattac tatagcacat 2 00 tgtcatttac aactgacaaa ctatatgctg agtttggcag agaggcttct 250 aacaatttta cagaaatgag ccagagactt gaatcaatgg tgaaaaatgc 3 00 attttataaa tctccattaa gggaagaatt tgtcaagtct caggttatca 350 agttcagtca acagaagcat ggagtgttgg ctcatatgct gttgatttgt 400 agatttcact ctactgagga tcctgaaact gtagataaaa ttgttcaact 450 tgttttacat gaaaagctgc aagatgctgt aggaccccct aaagtagatc 500 ctcactcagt taaaattaaa aaaatcaaca agacagaaac agacagctat 550 ctaaaccatt gctgcggaac acgaagaagt aaaactctag gtcagagtct 600 caggatcgtt ggtgggacag aagtagaaga gggtgaatgg ccctggcagg 650 ctagcctgca gtgggatggg agtcatcgct gtggagcaac cttaattaat 7 00 gccacatggc ttgtgagtgc tgctcactgt tttacaacat ataagaaccc 750 tgccagatgg actgcttcct ttggagtaac aataaaacct tcgaaaatga 800 aacggggtct ccggagaata attgtccatg aaaaatacaa acacccatca 850 <br><br> catgactatg atatttctct tgcagagctt tctagccctg ttccctacac 900 aaatgcagta catagagttt gtctccctga tgcatcctat gagtttcaac 950 caggtgatgt gatgtttgtg acaggatttg gagcactgaa aaatgatggt 1000 tacagtcaaa atcatcttcg acaagcacag gtgactctca tagacgctac 1050 aacttgcaat gaacctcaag cttacaatga cgccataact cctagaatgt 1100 <br><br> 350 <br><br> tatgtgctgg ctccttagaa ggaaaaacag atgcatgcca gggtgactct 1150 <br><br> ggaggaccac tggttagttc agatgctaga gatatctggt accttgctgg 12 00 <br><br> aatagtgagc tggggagatg aatgtgcgaa acccaacaag cctggtgttt 1250 <br><br> atactagagt tacggccttg cgggactgga ttacttcaaa aactggtatc 1300 <br><br> taagagacaa aagcctcatg gaacagataa catttttttt tgttttttgg 1350 <br><br> gtgtggaggc catttttaga gatacagaat tggagaagac ttgcaaaaca 1400 <br><br> gctagatttg actgatctca ataaactgtt tgcttgatgc atgtattttc 1450 <br><br> ttcccagctc tgttccgcac gtaagcatcc tgcttctgcc agatcaactc 1500 <br><br> tgtcatctgt gagcaatagt tgaaacttta tgtacataga gaaatagata 1550 <br><br> atacaatatt acattacagc ctgtattcat ttgttctcta gaagttttgt 1600 <br><br> cagaattttg acttgttgac ataaatttgt aatgcatata tacaatttga 1650 <br><br> agcactcctt ttcttcagtt cctcagctcc tctcatttca gcaaatatcc 17 00 <br><br> attttcaagg tgcagaacaa ggagtgaaag aaaatataag aagaaaaaaa 1750 <br><br> tcccctacat tttattggca cagaaaagta ttaggtgttt ttcttagtgg 1800 <br><br> aatattagaa atgatcatat tcattatgaa aggtcaagca aagacagcag 1850 <br><br> aataccaatc acttcatcat ttaggaagta tgggaactaa gttaaggaag 1900 <br><br> tccagaaaga agccaagata tatccttatt ttcatttcca aacaactact 1950 <br><br> atgataaatg tgaagaagat tctgtttttt tgtgacctat aataattata 2000 <br><br> caaacttcat gcaatgtact tgttctaagc aaattaaagc aaatatttat 2050 <br><br> ttaacattgt tactgaggat gtcaacatat aacaataaaa tataaatcac 2100 <br><br> cca 2103 <br><br> &lt;210&gt; 269 &lt;211&gt; 423 &lt;212&gt; PRT &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 269 <br><br> Met Met Tyr Arg Pro Asp Val Val Arg Ala Arg Lys Arg Val Cys 1 5 10 15 <br><br> Trp Glu Pro Trp Val Ile Gly Leu Val Ile Phe Ile Ser Leu Ile 20 25 30 <br><br> Val Leu Ala Val Cys Ile Gly Leu Thr Val His Tyr Val Arg Tyr 35 40 45 <br><br> 351 <br><br> Asn Gin Lys Lys Thr Tyr Asn Tyr Tyr Ser Thr Leu Ser Phe Thr 50 55 60 <br><br> Thr Asp Lys Leu Tyr Ala Glu Phe Gly Arg Glu Ala Ser Asn Asn 65 70 75 <br><br> Phe Thr Glu Met Ser Gin Arg Leu Glu Ser Met Val Lys Asn Ala 80 85 90 <br><br> Phe Tyr Lys Ser Pro Leu Arg Glu Glu Phe Val Lys Ser Gin Val 95 100 105 <br><br> Ile Lys Phe Ser Gin Gin Lys His Gly Val Leu Ala His Met Leu 110 115 120 <br><br> Leu Ile Cys Arg Phe His Ser Thr Glu Asp Pro Glu Thr Val Asp 125 130 135 <br><br> Lys Ile Val Gin Leu Val Leu His Glu Lys Leu Gin Asp Ala Val 140 145 150 <br><br> Gly Pro Pro Lys Val Asp Pro His Ser Val Lys Ile Lys Lys Ile 155 160 165 <br><br> Asn Lys Thr Glu Thr Asp Ser Tyr Leu Asn His Cys Cys Gly Thr 170 175 180 <br><br> Arg Arg Ser Lys Thr Leu Gly Gin Ser Leu Arg Ile Val Gly Gly 185 190 195 <br><br> Thr Glu Val Glu Glu Gly Glu Trp Pro Trp Gin Ala Ser Leu Gin 200 205 210 <br><br> Trp Asp Gly Ser His Arg Cys Gly Ala Thr Leu Ile Asn Ala Thr 215 220 225 <br><br> Trp Leu Val Ser Ala Ala His Cys Phe Thr Thr Tyr Lys Asn Pro 230 235 240 <br><br> Ala Arg Trp Thr Ala Ser Phe Gly Val Thr Ile Lys Pro Ser Lys 245 250 255 <br><br> Met Lys Arg Gly Leu Arg Arg Ile Ile Val His Glu Lys Tyr Lys 260 265 270 <br><br> His Pro Ser His Asp Tyr Asp Ile Ser Leu Ala Glu Leu Ser Ser 275 280 285 <br><br> Pro Val Pro Tyr Thr Asn Ala Val His Arg Val Cys Leu Pro Asp 290 295 300 <br><br> Ala Ser Tyr Glu Phe Gin Pro Gly Asp Val Met Phe Val Thr Gly 305 310 315 <br><br> Phe Gly Ala Leu Lys Asn Asp Gly Tyr Ser Gin Asn His Leu Arg <br><br> 352 <br><br> 320 325 330 <br><br> Gin Ala Gin Val Thr Leu Ile Asp Ala Thr Thr Cys Asn Glu Pro 335 340 345 <br><br> Gin Ala Tyr Asn Asp Ala Ile Thr Pro Arg Met Leu Cys Ala Gly 350 355 360 <br><br> Ser Leu Glu Gly Lys Thr Asp Ala Cys Gin Gly Asp Ser Gly Gly 365 370 375 <br><br> Pro Leu Val Ser Ser Asp Ala Arg Asp Ile Trp Tyr Leu Ala Gly 380 385 390 <br><br> Ile Val Ser Trp Gly Asp Glu Cys Ala Lys Pro Asn Lys Pro Gly 395 400 405 <br><br> Val Tyr Thr Arg Val Thr Ala Leu Arg Asp Trp Ile Thr Ser Lys 410 415 420 <br><br> Thr Gly Ile <br><br> &lt;210&gt; 270 &lt;211&gt; 1170 &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 270 <br><br> gtcgaaggtt ataaaagctt ccagccaaac ggcattgaag ttgaagatac 50 aacctgacag cacagcctga gatcttgggg atccctcagc ctaacaccca 100 cagacgtcag ctggtggatt cccgctgcat caaggcctac ccactgtctc 150 catgctgggc tctccctgcc ttctgtggct cctggccgtg accttcttgg 200 ttcccagagc tcagcccttg gcccctcaag actttgaaga agaggaggca 250 gatgagactg agacggcgtg gccgcctttg ccggctgtcc cctgcgacta 300 cgaccactgc cgacacctgc aggtgccctg caaggagcta cagagggtcg 350 ggccggcggc ctgcctgtgc ccaggactct ccagccccgc ccagccgccc 400 gacccgccgc gcatgggaga agtgcgcatt gcggccgaag agggccgcgc 450 agtggtccac tggtgtgccc ccttctcccc ggtcctccac tactggctgc 500 tgctttggga cggcagcgag gctgcgcaga aggggccccc gctgaacgct 550 acggtccgca gagccgaact gaaggggctg aagccagggg gcatttatgt 600 cgtttgcgta gtggccgcta acgaggccgg ggcaagccgc gtgccccagg 650 <br><br> 353 <br><br> ctggaggaga gggcctcgag ggggccgaca tccctgcctt cgggccttgc 700 <br><br> agccgccttg cggtgccgcc caacccccgc actctggtcc acgcggccgt 750 <br><br> cggggtgggc acggccctgg ccctgctaag ctgtgccgcc ctggtgtggc 800 <br><br> acttctgcct gcgcgatcgc tggggctgcc cgcgccgagc cgccgcccga 850 <br><br> gccgcagggg cgctctgaaa ggggcctggg ggcatctcgg gcacagacag 900 <br><br> ccccacctgg ggcgctcagc ctggcccccg ggaaagagga aaacccgctg 950 <br><br> cctccaggga gggctggacg gcgagctggg agccagcccc aggctccagg 1000 <br><br> gccacggcgg agtcatggtt ctcaggactg agcgcttgtt taggtccggt 1050 <br><br> acttggcgct ttgtttcctg gctgaggtct gggaaggaat agaaaggggc 1100 <br><br> ccccaatttt tttttaagcg gccagataat aaataatgta acctttgcgg 1150 <br><br> ttaaaaaaaa aaaaaaaaaa 1170 <br><br> &lt;210&gt; 271 &lt;211&gt; 238 &lt;212&gt; PRT &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 271 <br><br> Met Leu Gly Ser Pro Cys Leu Leu Trp Leu Leu Ala Val Thr Phe 15 10 15 <br><br> Leu Val Pro Arg Ala Gin Pro Leu Ala Pro Gin Asp Phe Glu Glu 20 25 30 <br><br> Glu Glu Ala Asp Glu Thr Glu Thr Ala Trp Pro Pro Leu Pro Ala 35 40 45 <br><br> Val Pro Cys Asp Tyr Asp His Cys Arg His Leu Gin Val Pro Cys 50 55 60 <br><br> Lys Glu Leu Gin Arg Val Gly Pro Ala Ala Cys Leu Cys Pro Gly 65 70 75 <br><br> Leu Ser Ser Pro Ala Gin Pro Pro Asp Pro Pro Arg Met Gly Glu 80 85 90 <br><br> Val Arg Ile Ala Ala Glu Glu Gly Arg Ala Val Val His Trp Cys 95 100 105 <br><br> Ala Pro Phe Ser Pro Val Leu His Tyr Trp Leu Leu Leu Trp Asp 110 115 120 <br><br> Gly Ser Glu Ala Ala Gin Lys Gly Pro Pro Leu Asn Ala Thr Val 125 130 135 <br><br> 354 <br><br> Arg Arg Ala <br><br> Val Cys Val <br><br> Gin Ala Gly <br><br> Gly Pro Cys <br><br> Val His Ala <br><br> Cys Ala Ala <br><br> Cys Pro Arg <br><br> &lt;210&gt; 272 &lt;211&gt; 2397 &lt;212&gt; DNA &lt;213&gt; Homo s; <br><br> &lt;400&gt; 272 <br><br> agagaaagaa gcgtctccag ctgaagccaa tgcagccctc cggctctccg 50 <br><br> cgaagaagtt ccctgccccg atgagccccc gccgtgcgtc cccgactatc 100 cccaggcggg cgtggggcac cgggcccagc gccgacgatc gctgccgttt 150 tgcccttggg agtaggatgt ggtgaaagga tggggcttct cccttacggg 2 00 gctcacaatg gccagagaag attccgtgaa gtgtctgcgc tgcctgctct 250 acgccctcaa tctgctcttt tggttaatgt ccatcagtgt gttggcagtt 3 00 <br><br> tctgcttgga tgagggacta cctaaataat gttctcactt taactgcaga 350 aacgagggta gaggaagcag tcattttgac ttactttcct gtggttcatc 400 cggtcatgat tgctgtttgc tgtttcctta tcattgtggg gatgttagga 450 tattgtggaa cggtgaaaag aaatctgttg cttcttgcat ggtactttgg 500 aagtttgctt gtcattttct gtgtagaact ggcttgtggc gtttggacat 550 atgaacagga acttatggtt ccagtacaat ggtcagatat ggtcactttg 600 aaagccagga tgacaaatta tggattacct agatatcggt ggcttactca 650 tgcttggaat ttttttcaga gagagtttaa gtgctgtgga gtagtatatt 7 00 <br><br> Glu Leu Lys Gly Leu Lys Pro Gly Gly Ile Tyr Val 140 145 150 <br><br> Val Ala Ala Asn Glu Ala Gly Ala Ser Arg Val Pro 155 160 165 <br><br> Gly Glu Gly Leu Glu Gly Ala Asp Ile Pro Ala Phe 170 175 180 <br><br> Ser Arg Leu Ala Val Pro Pro Asn Pro Arg Thr Leu 185 190 195 <br><br> Ala Val Gly Val Gly Thr Ala Leu Ala Leu Leu Ser 200 205 210 <br><br> Leu Val Trp His Phe Cys Leu Arg Asp Arg Trp Gly 215 220 225 <br><br> Arg Ala Ala Ala Arg Ala Ala Gly Ala Leu 230 235 <br><br> apiens <br><br> 355 <br><br> tcactgactg gttggaaatg acagagatgg tgtgttagag aattcccagg atgttccaaa cagtgacctt tatcaagagg gttgtgggaa gaggaaccaa acaactgcag gtgctgaggt gtgacacaaa tcctggccat gattctcacc gtattatgat agaagggagc ctgggacaga atgacaactc tcagcacctg tcatgtccct agcctgtcaa gaatctttga acacacatcc acactttgag atggaggagt tataaaaaga caaacttgtt ttattggact tgtgaatttt cagaaatatg tagaaataaa aatgttgcca tactattcta tgctttaaaa tgaggatgga accacctgga caataattga tgcccttaaa acccactgtg tagcctgtgt atgactttta aggcagcatg gtttgattag catttccgca atggtgggac tggagccata gtaaaggttg atataaagta ctaattaaat gctaacatag acttttatta ctcagcgatc tattcttctg cagaaaactt tcaatattgg tgactaccta ctaaaatatt cttaccactt aaaagagcaa tgatcaggga ttttttgtat ataagtctgt tcgatttcag ttctgataat gttaagaata ttgtcctgta tagcatcatt atttttagcc actattctgt cctgggctta tattacacat taaccactaa ttttgaaaat taccagtgtg agaatgtagt ctggtcttta ggaagtatta cttagttgat tcagaaagga cttgtatgct ctctttttga cactaaacac tttttaaaaa actggccccc agattcctgc 750 caggcccacc aggaagatct 800 gaaaatgtat tcctttttga 850 ttctgggaat ctccattggg 900 attactctgc tctgggctct 950 ccaaatgatg tccttgaaga 1000 cagtagaact gttgaaacca 1050 atggcaaaca gctttaatac 1100 aatgtcacag aagaaaacca 1150 tgagtacata ctatgtgttt 1200 taaaataaca cctaagcata 1250 aaagtttcat gtcataagtc 13 00 atgctgaaga cagatgtcat 1350 ctgaacacag ttatgttttg 1400 tccatgcaaa cgagtcacat 1450 atttacttct accaactagt 1500 gaagttagaa aatactaata 1550 atgctaaata aattatatat 1600 aatgtgattt ttgctggtta 1650 gctaacacat tgtcttaagc 17 00 gttaaatctg tataattcag 1750 accattatga aaaggaaaat 1800 tttcctgtta ataaagcttt 1850 ataactgtta tttaaatact 1900 atacatagga atcattattc 1950 ataagaaaat ttgcacataa 2000 gtttttctcc caaatgaaga 2 050 gcttatcttt gccttctcca 2100 <br><br> 356 <br><br> aacaagaagc aatagtctcc aagtcaatat aaattctaca gaaaatagtg 2150 <br><br> ttctttttct ccagaaaaat gcttgtgaga atcattaaaa catgtgacaa 2200 <br><br> tttagagatt ctttgtttta tttcactgat taatatactg tggcaaatta 2250 <br><br> cacagattat taaatttttt tacaagagta tagtatattt atttgaaatg 2300 <br><br> ggaaaagtgc attttactgt attttgtgta ttttgtttat ttctcagaat 2350 <br><br> atggaaagaa aattaaaatg tgtcaataaa tattttctag agagtaa 2397 <br><br> &lt;210&gt; 273 &lt;211&gt; 305 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 273 <br><br> Met Ala Arg Glu Asp Ser Val Lys Cys Leu Arg Cys Leu Leu Tyr 15 10 15 <br><br> Ala Leu Asn Leu Leu Phe Trp Leu Met Ser Ile Ser Val Leu Ala 20 25 30 <br><br> Val Ser Ala Trp Met Arg Asp Tyr Leu Asn Asn Val Leu Thr Leu 35 40 45 <br><br> Thr Ala Glu Thr Arg Val Glu Glu Ala Val Ile Leu Thr Tyr Phe 50 55 60 <br><br> Pro Val Val His Pro Val Met Ile Ala Val Cys Cys Phe Leu Ile 65 70 75 <br><br> Ile Val Gly Met Leu Gly Tyr Cys Gly Thr Val Lys Arg Asn Leu 80 85 90 <br><br> Leu Leu Leu Ala Trp Tyr Phe Gly Ser Leu Leu Val Ile Phe Cys 95 100 105 <br><br> Val Glu Leu Ala Cys Gly Val Trp Thr Tyr Glu Gin Glu Leu Met 110 115 120 <br><br> Val Pro Val Gin Trp Ser Asp Met Val Thr Leu Lys Ala Arg Met 125 130 135 <br><br> Thr Asn Tyr Gly Leu Pro Arg Tyr Arg Trp Leu Thr His Ala Trp 140 145 150 <br><br> Asn Phe Phe Gin Arg Glu Phe Lys Cys Cys Gly Val Val Tyr Phe 155 160 165 <br><br> Thr Asp Trp Leu Glu Met Thr Glu Met Asp Trp Pro Pro Asp Ser 170 175 180 <br><br> Cys Cys Val Arg Glu Phe Pro Gly Cys Ser Lys Gin Ala <br><br> His Gin <br><br> 357 <br><br> 185 190 195 <br><br> Glu Asp Leu Ser Asp Leu Tyr Gin Glu Gly Cys Gly Lys Lys Met 200 205 210 <br><br> Tyr Ser Phe Leu Arg Gly Thr Lys Gin Leu Gin Val Leu Arg Phe 215 220 225 <br><br> Leu Gly Ile Ser Ile Gly Val Thr Gin Ile Leu Ala Met Ile Leu 230 235 240 <br><br> Thr Ile Thr Leu Leu Trp Ala Leu Tyr Tyr Asp Arg Arg Glu Pro 245 250 255 <br><br> Gly Thr Asp Gin Met Met Ser Leu Lys Asn Asp Asn Ser Gin His 260 265 270 <br><br> Leu Ser Cys Pro Ser Val Glu Leu Leu Lys Pro Ser Leu Ser Arg 275 280 285 <br><br> Ile Phe Glu His Thr Ser Met Ala Asn Ser Phe Asn Thr His Phe 290 295 300 <br><br> Glu Met Glu Glu Leu 305 <br><br> &lt;210&gt; 274 <br><br> &lt;211&gt; 2063 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 274 <br><br> gagagaggca gcagcttgct cagcggacaa ggatgctggg cgtgagggac 50 caaggcctgc cctgcactcg ggcctcctcc agccagtgct gaccagggac 100 ttctgacctg ctggccagcc aggacctgtg tggggaggcc ctcctgctgc 150 cttggggtga caatctcagc tccaggctac agggagaccg ggaggatcac 2 00 agagccagca tgttacagga tcctgacagt gatcaacctc tgaacagcct 250 cgatgtcaaa cccctgcgca aaccccgtat ccccatggag accttcagaa 3 00 aggtggggat ccccatcatc atagcactac tgagcctggc gagtatcatc 350 attgtggttg tcctcatcaa ggtgattctg gataaatact acttcctctg 400 cgggcagcct ctccacttca tcccgaggaa gcagctgtgt gacggagagc 450 tggactgtcc cttgggggag gacgaggagc actgtgtcaa gagcttcccc 500 gaagggcctg cagtggcagt ccgcctctcc aaggaccgat ccacactgca 550 ggtgctggac tcggccacag ggaactggtt ctctgcctgt ttcgacaact 600 <br><br> 358 <br><br> tcacagaagc tctcgctgag acagcctgta ggcagatggg ctacagcaga 650 gctgtggaga ttggcccaga ccaggatctg gatgttgttg aaatcacaga 7 00 aaacagccag gagcttcgca tgcggaactc aagtgggccc tgtctctcag 750 gctccctggt ctccctgcac tgtcttgcct gtgggaagag cctgaagacc 800 ccccgtgtgg tgggtgggga ggaggcctct gtggattctt ggccttggca 850 ggtcagcatc cagtacgaca aacagcacgt ctgtggaggg agcatcctgg 900 acccccactg ggtcctcacg gcagcccact gcttcaggaa acataccgat 950 gtgttcaact ggaaggtgcg ggcaggctca gacaaactgg gcagcttccc 1000 atccctggct gtggccaaga tcatcatcat tgaattcaac cccatgtacc 1050 ccaaagacaa tgacatcgcc ctcatgaagc tgcagttccc actcactttc 1100 tcaggcacag tcaggcccat ctgtctgccc ttctttgatg aggagctcac 1150 tccagccacc ccactctgga tcattggatg gggctttacg aagcagaatg 12 00 gagggaagat gtctgacata ctgctgcagg cgtcagtcca ggtcattgac 1250 agcacacggt gcaatgcaga cgatgcgtac cagggggaag tcaccgagaa 13 00 gatgatgtgt gcaggcatcc cggaaggggg tgtggacacc tgccagggtg 1350 acagtggtgg gcccctgatg taccaatctg accagtggca tgtggtgggc 1400 atcgttagct ggggctatgg ctgcgggggc ccgagcaccc caggagtata 1450 caccaaggtc tcagcctatc tcaactggat ctacaatgtc tggaaggctg 1500 agctgtaatg ctgctgcccc tttgcagtgc tgggagccgc ttccttcctg 1550 ccctgcccac ctggggatcc cccaaagtca gacacagagc aagagtcccc 1600 ttgggtacac ccctctgccc acagcctcag catttcttgg agcagcaaag 1650 ggcctcaatt cctgtaagag accctcgcag cccagaggcg cccagaggaa 1700 gtcagcagcc ctagctcggc cacacttggt gctcccagca tcccagggag 1750 agacacagcc cactgaacaa ggtctcaggg gtattgctaa gccaagaagg 1800 aactttccca cactactgaa tggaagcagg ctgtcttgta aaagcccaga 1850 tcactgtggg ctggagagga gaaggaaagg gtctgcgcca gccctgtccg 1900 tcttcaccca tccccaagcc tactagagca agaaaccagt tgtaatataa 1950 aatgcactgc cctactgttg gtatgactac cgttacctac tgttgtcatt 2000 <br><br> 359 <br><br> gttattacag ctatggccac tattattaaa gagctgtgta acatctctgg 2050 <br><br> caaaaaaaaa aaa 2063 <br><br> &lt;210&gt; 275 &lt;211&gt; 432 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 275 <br><br> Met Leu Gin Asp Pro Asp Ser Asp Gin Pro Leu Asn Ser Leu Asp 15 10 15 <br><br> Val Lys Pro Leu Arg Lys Pro Arg Ile Pro Met Glu Thr Phe Arg 20 25 30 <br><br> Lys Val Gly Ile Pro Ile lie Ile Ala Leu Leu Ser Leu Ala Ser 35 40 45 <br><br> Ile Ile Ile Val Val Val Leu Ile Lys Val Ile Leu Asp Lys Tyr 50 55 60 <br><br> Tyr Phe Leu Cys Gly Gin Pro Leu His Phe Ile Pro Arg Lys Gin 65 70 75 <br><br> Leu Cys Asp Gly Glu Leu Asp Cys Pro Leu Gly Glu Asp Glu Glu 80 85 90 <br><br> His Cys Val Lys Ser Phe Pro Glu Gly Pro Ala Val Ala Val Arg 95 100 105 <br><br> Leu Ser Lys Asp Arg Ser Thr Leu Gin Val Leu Asp Ser Ala Thr 110 115 120 <br><br> Gly Asn Trp Phe Ser Ala Cys Phe Asp Asn Phe Thr Glu Ala Leu 125 130 135 <br><br> Ala Glu Thr Ala Cys Arg Gin Met Gly Tyr Ser Arg Ala Val Glu 140 145 150 <br><br> Ile Gly Pro Asp Gin Asp Leu Asp Val Val Glu Ile Thr Glu Asn 155 160 165 <br><br> Ser Gin Glu Leu Arg Met Arg Asn Ser Ser Gly Pro Cys Leu Ser 170 175 180 <br><br> Gly Ser Leu Val Ser Leu His Cys Leu Ala Cys Gly Lys Ser Leu 185 190 195 <br><br> Lys Thr Pro Arg Val Val Gly Gly Glu Glu Ala Ser Val Asp Ser 200 205 210 <br><br> Trp Pro Trp Gin Val Ser Ile Gin Tyr Asp Lys Gin His Val Cys 215 220 225 <br><br> 360 <br><br> Gly Gly Ser Ile Leu Asp Pro His Trp Val Leu Thr Ala Ala His 230 235 240 <br><br> Cys Phe Arg Lys His Thr Asp Val Phe Asn Trp Lys Val Arg Ala 245 250 255 <br><br> Gly Ser Asp Lys Leu Gly Ser Phe Pro Ser Leu Ala Val Ala Lys 260 265 270 <br><br> Ile Ile Ile Ile Glu Phe Asn Pro Met Tyr Pro Lys Asp Asn Asp 275 280 285 <br><br> Ile Ala Leu Met Lys Leu Gin Phe Pro Leu Thr Phe Ser Gly Thr 290 295 300 <br><br> Val Arg Pro Ile Cys Leu Pro Phe Phe Asp Glu Glu Leu Thr Pro 305 310 315 <br><br> Ala Thr Pro Leu Trp Ile Ile Gly Trp Gly Phe Thr Lys Gin Asn 320 325 330 <br><br> Gly Gly Lys Met Ser Asp Ile Leu Leu Gin Ala Ser Val Gin Val 335 340 345 <br><br> Ile Asp Ser Thr Arg Cys Asn Ala Asp Asp Ala Tyr Gin Gly Glu 350 355 360 <br><br> Val Thr Glu Lys Met Met Cys Ala Gly Ile Pro Glu Gly Gly Val 365 370 375 <br><br> Asp Thr Cys Gin Gly Asp Ser Gly Gly Pro Leu Met Tyr Gin Ser 380 385 390 <br><br> Asp Gin Trp His Val Val Gly Ile Val Ser Trp Gly Tyr Gly Cys 395 400 405 <br><br> Gly Gly Pro Ser Thr Pro Gly Val Tyr Thr Lys Val Ser Ala Tyr 410 415 420 <br><br> Leu Asn Trp Ile Tyr Asn Val Trp Lys Ala Glu Leu 425 430 <br><br> &lt;210&gt; 276 <br><br> &lt;211&gt; 3143 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 276 <br><br> gggctgaggc actgagagac cggaaagcct ggcattccag agggagggaa 50 <br><br> acgcagcggc atccccaggc tccagagctc cctggtgaca gtctgtggct 100 <br><br> gagcatggcc ctcccagccc tgggcctgga cccctggagc ctcctgggcc 150 <br><br> ttttcctctt ccaactgctt cagctgctgc tgccgacgac gaccgcgggg 2 00 <br><br> 361 <br><br> ggaggcgggc aggggcccat gcccagggtc acgtagggca cttagcttct tccaccagaa ctctgctcct gagtggtgat ggaaatactc gccattctgg ccttggatat ccaggatcca catgataccg tggccagcca gtgacagaaa agaagaagag caatgagaca cagtgtttca tcttacaatg tcacccatct ctacacctgc tgcttgtacc ttcattgaac ttcaagattc aggacaaggt catggaggga aaaggccaaa aagcatacgg ctgtcttggt ggatgggatg caacttcctg ggcagtgagc ccatcctgat ctgtcctcaa gaccgacaac ttcctccgct tttgtggcag ccatcccttc gacccaggtc gacagccagc gagtttgact tctttgagag ctagagtctg caagaatgac gtgggcggcg tggaccacct tcctgaaggc ccagctgctc gcccttcaac gtcatccgcc acgcggtcct cagctcccca catctacgca gtcttcacct accaggagct ctgcggtttg tgccttctct ctttaagggg aaatacaaag agttgaacaa cttatagggg ccctgagacc aacccccggc ccctcctctg ataaggccct gaccttcatg tgagcaagtg gtggggacgc ccctgctggt cacggcttgc agtggagaca gcccagggcc gtcatgtacc tgggaaccac cacagggtcg tggggacagc agtgctcatc tggtggaaga ctgaacctgt tcgcaacctg cagctggccc gtaggcttct caggaggtgt ctggagggtg agatactatg caggggatga 250 gggcctccag gattttgaca 3 00 tctacgtggg ggctcgagaa 3 50 ggggtcccca ggctaaagaa 400 aaagagtgaa tgtgccttta 450 acttcatccg tgtcctggtt 500 ggcaccttcg ccttcagccc 550 ctacctgttg cccatctcgg 600 gcccctttga ccccgctcac 650 ctctattctg gtactatgaa 700 gcgcacactg ggatcccagc 750 ggctgcatca tgacgcctcc 800 gtctacttct tcttcgagga 850 gctccacaca tcgcgggtgg 900 aaaagctgct gcagaagaag 950 tgcacccagc cggggcagct 1000 gctccccgcc gattctccca 1050 cccagtggca ggttggcggg 1100 ctcttggaca ttgaacgtgt 1150 agaaacttca cgctggacta 12 00 caggcagttg ctcagtgggc 1250 aaggaccatt tcctgatgga 1300 gaaatctggc gtggagtata 1350 ttgatgggca cagccatctt 1400 ctccacaagg ctgtggtaag 1450 gattcagctg ttccctgacc 1500 ccacccaggg tgcagtgttt 1550 ccccgagcca actgtagtgt 1600 <br><br> 362 <br><br> ctatgagagc tgtgtggact gtgtccttgc ccgggacccc cactgtgcct 1650 gggaccctga gtcccgaacc tgttgcctcc tgtctgcccc caacctgaac 1700 tcctggaagc aggacatgga gcgggggaac ccagagtggg catgtgccag 1750 tggccccatg agcaggagcc ttcggcctca gagccgcccg caaatcatta 1800 aagaagtcct ggctgtcccc aactccatcc tggagctccc ctgcccccac 1850 ctgtcagcct tggcctctta ttattggagt catggcccag cagcagtccc 1900 agaagcctct tccactgtct acaatggctc cctcttgctg atagtgcagg 1950 atggagttgg gggtctctac cagtgctggg caactgagaa tggcttttca 2 000 taccctgtga tctcctactg ggtggacagc caggaccaga ccctggccct 2050 ggatcctgaa ctggcaggca tcccccggga gcatgtgaag gtcccgttga 2100 ccagggtcag tggtggggcc gccctggctg cccagcagtc ctactggccc 2150 cactttgtca ctgtcactgt cctctttgcc ttagtgcttt caggagccct 2200 catcatcctc gtggcctccc cattgagagc actccgggct cggggcaagg 2250 ttcagggctg tgagaccctg cgccctgggg agaaggcccc gttaagcaga 2300 gagcaacacc tccagtctcc caaggaatgc aggacctctg ccagtgatgt 2350 ggacgctgac aacaactgcc taggcactga ggtagcttaa actctaggca 2400 caggccgggg ctgcggtgca ggcacctggc catgctggct gggcggccca 2450 agcacagccc tgactaggat gacagcagca caaaagacca cctttctccc 2500 ctgagaggag cttctgctac tctgcatcac tgatgacact cagcagggtg 2550 atgcacagca gtctgcctcc cctatgggac tcccttctac caagcacatg 2 600 agctctctaa cagggtgggg gctaccccca gacctgctcc tacactgata 2650 ttgaagaacc tggagaggat ccttcagttc tggccattcc agggaccctc 27 00 cagaaacaca gtgtttcaag agaccctaaa aaacctgcct gtcccaggac 2750 cctatggtaa tgaacaccaa acatctaaac aatcatatgc taacatgcca 2800 ctcctggaaa ctccactctg aagctgccgc tttggacacc aacactccct 2850 tctcccaggg tcatgcaggg atctgctccc tcctgcttcc cttaccagtc 2 900 gtgcaccgct gactcccagg aagtctttcc tgaagtctga ccacctttct 2 950 tcttgcttca gttggggcag actctgatcc cttctgccct ggcagaatgg 3000 <br><br> 363 <br><br> caggggtaat ctgagccttc ttcactcctt taccctagct gaccccttca 3050 <br><br> cctctccccc tcccttttcc tttgttttgg gattcagaaa actgcttgtc 3100 <br><br> agagactgtt tattttttat taaaaatata aggcttaaaa aaa 3143 <br><br> &lt;210&gt; 277 &lt;211&gt; 761 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 277 <br><br> Met Ala Leu Pro Ala Leu Gly Leu Asp Pro Trp Ser Leu Leu Gly 15 10 15 <br><br> Leu Phe Leu Phe Gin Leu Leu Gin Leu Leu Leu Pro Thr Thr Thr 20 25 30 <br><br> Ala Gly Gly Gly Gly Gin Gly Pro Met Pro Arg Val Arg Tyr Tyr 35 40 45 <br><br> Ala Gly Asp Glu Arg Arg Ala Leu Ser Phe Phe His Gin Lys Gly 50 55 60 <br><br> Leu Gin Asp Phe Asp Thr Leu Leu Leu Ser Gly Asp Gly Asn Thr 65 70 75 <br><br> Leu Tyr Val Gly Ala Arg Glu Ala Ile Leu Ala Leu Asp Ile Gin 80 85 90 <br><br> Asp Pro Gly Val Pro Arg Leu Lys Asn Met Ile Pro Trp Pro Ala 95 ' 100 105 <br><br> Ser Asp Arg Lys Lys Ser Glu Cys Ala Phe Lys Lys Lys Ser Asn 110 115 120 <br><br> Glu Thr Gin Cys Phe Asn Phe Ile Arg Val Leu Val Ser Tyr Asn 125 130 135 <br><br> Val Thr His Leu Tyr Thr Cys Gly Thr Phe Ala Phe Ser Pro Ala 140 145 150 <br><br> Cys Thr Phe Ile Glu Leu Gin Asp Ser Tyr Leu Leu Pro Ile Ser 155 160 165 <br><br> Glu Asp Lys Val Met Glu Gly Lys Gly Gin Ser Pro Phe Asp Pro 170 175 180 <br><br> Ala His Lys His Thr Ala Val Leu Val Asp Gly Met Leu Tyr Ser 185 190 195 <br><br> Gly Thr Met Asn Asn Phe Leu Gly Ser Glu Pro Ile Leu Met Arg 200 205 210 <br><br> 364 <br><br> Thr Leu Gly Ser Gin Pro Val Leu Lys Thr Asp Asn Phe Leu Arg <br><br> 215 220 225 <br><br> Trp Leu His His Asp Ala Ser Phe Val Ala Ala Ile Pro Ser Thr <br><br> 230 235 240 <br><br> Gin Val Val Tyr Phe Phe Phe Glu Glu Thr Ala Ser Glu Phe Asp <br><br> 245 250 255 <br><br> Phe Phe Glu Arg Leu His Thr Ser Arg Val Ala Arg Val Cys Lys <br><br> 260 265 270 <br><br> Asn Asp Val Gly Gly Glu Lys Leu Leu Gin Lys Lys Trp Thr Thr <br><br> 275 280 285 <br><br> Phe Leu Lys Ala Gin Leu Leu Cys Thr Gin Pro Gly Gin Leu Pro <br><br> 290 295 300 <br><br> Phe Asn Val Ile Arg His Ala Val Leu Leu Pro Ala Asp Ser Pro <br><br> 305 310 315 <br><br> Thr Ala Pro His Ile Tyr Ala Val Phe Thr Ser Gin Trp Gin Val <br><br> 320 325 330 <br><br> Gly Gly Thr Arg Ser Ser Ala Val Cys Ala Phe Ser Leu Leu Asp <br><br> 335 340 345 <br><br> Ile Glu Arg Val Phe Lys Gly Lys Tyr Lys Glu Leu Asn Lys Glu <br><br> 350 355 360 <br><br> Thr Ser Arg Trp Thr Thr Tyr Arg Gly Pro Glu Thr Asn Pro Arg <br><br> 365 370 375 <br><br> Pro Gly Ser Cys Ser Val Gly Pro Ser Ser Asp Lys Ala Leu Thr <br><br> 380 385 390 <br><br> Phe Met Lys Asp His Phe Leu Met Asp Glu Gin Val Val Gly Thr <br><br> 395 400 405 <br><br> Pro Leu Leu Val Lys Ser Gly Val Glu Tyr Thr Arg Leu Ala Val <br><br> 410 415 420 <br><br> Glu Thr Ala Gin Gly Leu Asp Gly His Ser His Leu Val Met Tyr <br><br> 425 430 435 <br><br> Leu Gly Thr Thr Thr Gly Ser Leu His Lys Ala Val Val Ser Gly <br><br> 440 445 450 <br><br> Asp Ser Ser Ala His Leu Val Glu Glu Ile Gin Leu Phe Pro Asp <br><br> 455 460 465 <br><br> Pro Glu Pro Val Arg Asn Leu Gin Leu Ala Pro Thr Gin Gly Ala <br><br> 470 475 480 <br><br> Val Phe Val Gly Phe Ser Gly Gly Val Trp Arg Val Pro Arg Ala 485 490 495 <br><br> 365 <br><br> Asn Cys Ser Val Tyr Glu Ser Cys Val Asp Cys Val Leu Ala Arg 500 505 510 <br><br> Asp Pro His Cys Ala Trp Asp Pro Glu Ser Arg Thr Cys Cys Leu 515 520 525 <br><br> Leu Ser Ala Pro Asn Leu Asn Ser Trp Lys Gin Asp Met Glu Arg 530 535 540 <br><br> Gly Asn Pro Glu Trp Ala Cys Ala Ser Gly Pro Met Ser Arg Ser 545 550 555 <br><br> Leu Arg Pro Gin Ser Arg Pro Gin Ile Ile Lys Glu Val Leu Ala 560 565 570 <br><br> Val Pro Asn Ser Ile Leu Glu Leu Pro Cys Pro His Leu Ser Ala 575 580 585 <br><br> Leu Ala Ser Tyr Tyr Trp Ser His Gly Pro Ala Ala Val Pro Glu 590 595 600 <br><br> Ala Ser Ser Thr Val Tyr Asn Gly Ser Leu Leu Leu Ile Val Gin 605 610 615 <br><br> Asp Gly Val Gly Gly Leu Tyr Gin Cys Trp Ala Thr Glu Asn Gly 620 625 630 <br><br> Phe Ser Tyr Pro Val Ile Ser Tyr Trp Val Asp Ser Gin Asp Gin 635 640 645 <br><br> Thr Leu Ala Leu Asp Pro Glu Leu Ala Gly Ile Pro Arg Glu His 650 655 660 <br><br> Val Lys Val Pro Leu Thr Arg Val Ser Gly Gly Ala Ala Leu Ala 665 670 675 <br><br> Ala Gin Gin Ser Tyr Trp Pro His Phe Val Thr Val Thr Val Leu 680 685 690 <br><br> Phe Ala Leu Val Leu Ser Gly Ala Leu Ile Ile Leu Val Ala Ser 695 700 705 <br><br> Pro Leu Arg Ala Leu Arg Ala Arg Gly Lys Val Gin Gly Cys Glu 710 715 720 <br><br> Thr Leu Arg Pro Gly Glu Lys Ala Pro Leu Ser Arg Glu Gin His 725 730 735 <br><br> Leu Gin Ser Pro Lys Glu Cys Arg Thr Ser Ala Ser Asp Val Asp 740 745 750 <br><br> Ala Asp Asn Asn Cys Leu Gly Thr Glu Val Ala 755 760 <br><br> 366 <br><br> &lt;210&gt; 278 &lt;211&gt; 24 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 278 <br><br> ctgctggtga aatctggcgt ggag 24 <br><br> &lt;210&gt; 279 &lt;211&gt; 24 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 279 gtctggtcct ggctgtccac ccag 24 <br><br> &lt;210&gt; 280 &lt;211&gt; 45 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 280 <br><br> catcttgtca tgtacctggg aaccaccaca gggtcgctcc acaag 45 <br><br> &lt;210&gt; 281 <br><br> &lt;211&gt; 2320 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 281 <br><br> agggtccctt agccgggcgc agggcgcgca gcccaggctg agatccgcgg 50 cttccgtaga agtgagcatg gctgggcagc gagtgcttct tctagtgggc 100 ttccttctcc ctggggtcct gctctcagag gctgccaaaa tcctgacaat 150 atctacagta ggtggaagcc attatctact gatggaccgg gtttctcaga 2 00 ttcttcaaga tcacggtcat aatgtcacca tgcttaacca caaaagaggt 250 ccttttatgc cagattttaa aaaggaagaa aaatcatatc aagttatcag 3 00 ttggcttgca cctgaagatc atcaaagaga atttaaaaag agttttgatt 350 tctttctgga agaaacttta ggtggcagag gaaaatttga aaacttatta 400 <br><br> 367 <br><br> aatgttctag aatacttggc gttgcagtgc ggatatcatg gattccttaa agaatgagaa aaacttttga ctactgtcct ttcctgattg tttgtggcca ttctttccac ttcattcggc aatccccttg tcttatgttc cagtattccg tggacttctg gggccgagtg aagaattttc aggaggcaac agcacatgca gtctacattt tttcacagaa ggctctaggc cagttttgtc agttgtggtt cattaactct gactttgcct cttcccaaca ctgtttatgt tggaggcttg agtaccacaa gacttggaga acttcattgc ttgtccttgt gaccttgggc tccatggtga atcttcaagg agatgaacaa tgcctttgct atggaagtgt cagtgttctc attggcccaa atgtgaaaat tgtggactgg cttcctcaga agcatccgtc tgtttgtcac ccacggcggg catccagcat ggtgtgccca tggtggggat ctgaaaacat ggtccgagta gaagccaaaa ttaaagaagc tcaaggcaga gacattggct ggaagacaag agatacaagt ccgcggcagt gctcccaccc gctcagcccc acacagcggc gtcctccaga cagggggcgc gacgcacctc gccctggcat gagcagtacc tgttcgacgt tcactctggg gactctatgg ctttgtggga tggtggctgc gtggggccag aaaggtgaag gccttggcgg ggtctgtttg gtgggcgatg cccactagtt ctggcagccc cattctctag tttcttgaag aacaggaaaa atggccaaaa agtcattttt taaatagaaa 450 cttcgacatg gtgatagttg 500 ctgagaagct tgggaagcca 550 tctttggaat ttgggctacc 600 ttccttgctg actgatcaca 650 tgatgttctt tagtttctgc 700 gacaacacca tcaaggaaca 7 50 tcatcttcta ctgaaagcag 800 ttgattttgc tcgacctctg 850 atggaaaaac ctattaaacc 900 caagtttggg gactctggtt 950 acacctgtca gaatccggaa 1000 cacctacccc aaggggtgat 1050 agatgtccac ctggctgcaa 1100 gtgacctcct ggctcaccca 1150 cagaatagca taatggaggc 12 00 ccctctcttt ggagaccagc 1250 agtttggtgt ttctattcag 1300 cttaagatga aacaaatcat 13 50 ggctgccagt gtcatcctgc 1400 tggtgggctg gattgaccac 1450 aagccctatg tctttcagca 1500 ttttgtgttt ctgctggggc 1550 agctgctggg catggctgtc 1600 gagacataag gccaggtgca 1650 tcaccatttc tagggagctt 1700 tccttctagt tatctcctgt 1750 atcatccttt ccacttgcta 1800 <br><br> 368 <br><br> attttgctac aaattcatcc ttactagctc ctgcctgcta gcagaaatct 1850 <br><br> ttccagtcct cttgtcctcc tttgtttgcc atcagcaagg gctatgctgt 1900 <br><br> gattctgtct ctgagtgact tggaccactg accctcagat ttccagcctt 1950 <br><br> aaaatccacc ttccttctca tgcgcctctc cgaatcacac cctgactctt 2000 <br><br> ccagcctcca tgtccagacc tagtcagcct ctctcactcc tgcccctact 2050 <br><br> atctatcatg gaataacatc caagaaagac accttgcata ttctttcagt 2100 <br><br> ttctgttttg ttctcccaca tattctcttc aatgctcagg aagcctgccc 2150 <br><br> tgtgcttgag agttcagggc cggacacagg ctcacaggtc tccacattgg 22 00 <br><br> gtccctgtct ctggtgccca cagtgagctc cttcttggct gagcaggcat 2250 <br><br> ggagactgta ggtttccaga tttcctgaaa aataaaagtt tacagcgtta 2300 <br><br> tctctcccca acctcactaa 2320 <br><br> &lt;210&gt; 282 &lt;211&gt; 523 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 282 <br><br> Met Ala Gly Gin Arg Val Leu Leu Leu Val Gly Phe Leu Leu Pro 15 10 15 <br><br> Gly Val Leu Leu Ser Glu Ala Ala Lys Ile Leu Thr Ile Ser Thr 20 25 30 <br><br> Val Gly Gly Ser His Tyr Leu Leu Met Asp Arg Val Ser Gin Ile 35 40 45 <br><br> Leu Gin Asp His Gly His Asn Val Thr Met Leu Asn His Lys Arg 50 55 60 <br><br> Gly Pro Phe Met Pro Asp Phe Lys Lys Glu Glu Lys Ser Tyr Gin 65 70 75 <br><br> Val Ile Ser Trp Leu Ala Pro Glu Asp His Gin Arg Glu Phe Lys 80 85 90 <br><br> Lys Ser Phe Asp Phe Phe Leu Glu Glu Thr Leu Gly Gly Arg Gly 95 100 105 <br><br> Lys Phe Glu Asn Leu Leu Asn Val Leu Glu Tyr Leu Ala Leu Gin 110 115 120 <br><br> Cys Ser His Phe Leu Asn Arg Lys Asp Ile Met Asp Ser Leu Lys 125 130 135 <br><br> 369 <br><br> Asn Glu Asn Phe Asp Met Val Ile Val Glu Thr Phe Asp Tyr Cys 140 145 150 <br><br> Pro Phe Leu Ile Ala Glu Lys Leu Gly Lys Pro Phe Val Ala Ile 155 160 165 <br><br> Leu Ser Thr Ser Phe Gly Ser Leu Glu Phe Gly Leu Pro Ile Pro 170 175 180 <br><br> Leu Ser Tyr Val Pro Val Phe Arg Ser Leu Leu Thr Asp His Met 185 190 195 <br><br> Asp Phe Trp Gly Arg Val Lys Asn Phe Leu Met Phe Phe Ser Phe 200 205 210 <br><br> Cys Arg Arg Gin Gin His Met Gin Ser Thr Phe Asp Asn Thr Ile 215 220 225 <br><br> Lys Glu His Phe Thr Glu Gly Ser Arg Pro Val Leu Ser His Leu 230 235 240 <br><br> Leu Leu Lys Ala Glu Leu Trp Phe Ile Asn Ser Asp Phe Ala Phe 245 250 255 <br><br> Asp Phe Ala Arg Pro Leu Leu Pro Asn Thr Val Tyr Val Gly Gly 260 265 270 <br><br> Leu Met Glu Lys Pro Ile Lys Pro Val Pro Gin Asp Leu Glu Asn 275 280 285 <br><br> Phe Ile Ala Lys Phe Gly Asp Ser Gly Phe Val Leu Val Thr Leu 290 295 300 <br><br> Gly Ser Met Val Asn Thr Cys Gin Asn Pro Glu Ile Phe Lys Glu 305 310 315 <br><br> Met Asn Asn Ala Phe Ala His Leu Pro Gin Gly Val Ile Trp Lys 320 325 330 <br><br> Cys Gin Cys Ser His Trp Pro Lys Asp Val His Leu Ala Ala Asn 335 340 345 <br><br> Val Lys Ile Val Asp Trp Leu Pro Gin Ser Asp Leu Leu Ala His 350 355 360 <br><br> Pro Ser Ile Arg Leu Phe Val Thr His Gly Gly Gin Asn Ser Ile 365 370 375 <br><br> Met Glu Ala Ile Gin His Gly Val Pro Met Val Gly Ile Pro Leu 380 385 390 <br><br> Phe Gly Asp Gin Pro Glu Asn Met Val Arg Val Glu Ala Lys Lys 395 400 405 <br><br> Phe Gly Val Ser Ile Gin Leu Lys Lys Leu Lys Ala Glu Thr Leu <br><br> 370 <br><br> Ala Leu Lys <br><br> Ala Ala Val <br><br> Pro Thr Gin <br><br> Gly Gly Ala <br><br> His Glu Gin <br><br> Thr Leu Gly <br><br> Val Trp Trp <br><br> &lt;210&gt; 283 &lt;211&gt; 24 &lt;212&gt; DNA &lt;213&gt; Artificial Sequence <br><br> &lt;22 0&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 283 tgcctttgct cacctacccc aagg 24 <br><br> &lt;210&gt; 284 &lt;211&gt; 24 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 284 tcaggctggt ctccaaagag aggg 24 <br><br> &lt;210&gt; 285 &lt;211&gt; 45 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 285 <br><br> cccaaagatg tccacctggc tgcaaatgtg aaaattgtgg actgg 45 <br><br> 410 <br><br> 415 <br><br> 420 <br><br> Met Lys Gin Ile Met Glu Asp 425 430 <br><br> Lys Arg Tyr Lys Ser 435 <br><br> Ala Ala Ser Val Ile Leu Arg 440 445 <br><br> Ser His Pro Leu Ser 450 <br><br> Arg Leu Val Gly Trp Ile Asp 455 460 <br><br> His Val Leu Gin Thr 465 <br><br> Thr His Leu Lys Pro Tyr Val 470 475 <br><br> Phe Gin Gin Pro Trp 480 <br><br> Tyr Leu Phe Asp Val Phe Val 485 490 <br><br> Phe Leu Leu Gly Leu 495 <br><br> Thr Leu Trp Leu Cys Gly Lys 500 505 <br><br> Leu Leu Gly Met Ala 510 <br><br> Leu Arg Gly Ala Arg Lys Val Lys Glu Thr 515 520 <br><br> 371 <br><br> &lt;210&gt; 286 <br><br> &lt;211&gt; 2340 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 286 <br><br> gggctgttga tttgtggggg attttgaaga ggttgagggg ctgcctctgg catatgcaca cccgtcacac acacatacca tgttctccat gtgctgtccc atccagcagg gctaccctga cgtccagtgg gcaggcggct tcatccctcc tgctgtcact gcatgctctg ccaaggagga gagtaagagt gggaggcagg acagagctgg gttcagcgag cctagagagg gcagactatc ccagggagag gagcggaaac agaagagggg gggttgcaga gcccctcagc catgttggga aggtccccta cacagtcccg ggctgccctt tgggggccgg gtgggcccag gaggggtcag gagtgcctgg tggtctgtga gcctggccga gggagcagcc ctgggagagg caccccctgg tccgaagcca ccaccatgag ccagcagggg ggggccatct acttcgacca ggtcctggtg ccgggcctct ggctccttcg tagcccctgt ggttccatgt ggtgaaggtg tacaaccgcc atgctgaaca cgtggcctgt catctcagcc gacccgggag gcagccacca gctctgtgct accgagtgtc tctgcgcctg cgtcggggga tactcaagtt tctctggctt cctcatcttc tttcaagcac aagaatccag cccctgacaa ccccagaaac agcagaggca ggagagagac cctctttgca tgggaccctg tgccaaacac gaggaggaat aggaggaagg 50 cactcacaca ttctgtcaca 100 ccccccaggt ccagccctca 150 agctctggct gcagccctcc 200 tttctctccc aaagcccaac 250 gggaactgca gtgacagcag 3 00 gacacaggta tggagagggg 350 agggtgccgg cggtgagaat 400 cagaagaccg gggcacttgt 450 gccaagccac actggctacc 500 ggttctggtg cttctggccc 550 agcccgtcct gctggagggg 600 gctgctgcag gggggcccgg 650 gcgagtggca tttgctgcgg 700 aaaccggcaa tggcaccagt 750 aacgagggcg gtggctttga 800 ccggggtgtc tacagcttcc 850 aaactgtcca ggtgagcctg 900 tttgccaatg atcctgacgt 950 actgcccttg gaccctgggg 1000 atctactggg tggttggaaa 1050 cctctctgag gacccaagtc 1100 ctttcttctg ccctctcttg 1150 tccctctggc tcctatccca 1200 ccaagtttaa gagaagagta 1250 <br><br> 372 <br><br> gagctgtggc atctccagac caggcctttc cacccaccca cccccagtta 13 00 <br><br> ccctcccagc cacctgctgc atctgttcct gcctgcagcc ctaggatcag 1350 <br><br> ggcaaggttt ggcaagaagg aagatctgca ctactttgcg gcctctgctc 1400 <br><br> ctccggttcc cccaccccag cttcctgctc aatgctgatc agggacaggt 1450 <br><br> ggcgcaggtg agcctgacag gcccccacag gagcccagat ggacaagcct 1500 <br><br> cagcgtaccc tgcaggcttc ttcctgtgag gaaagccagc atcacggatc 1550 <br><br> tcagccagca ccgtcagaag ctgagccagc accgtatggg ctagggtggg 1600 <br><br> aggctcagcc acaggcagaa gggtgggaag ggcctggagt ctgtggctgg 1650 <br><br> tgaggaagga aggagggtgt attgtctaga ctgaacatgg tacacattct 1700 <br><br> gcatgtatag cagagcagcc agcaggtagc aatcctggct gtccttctat 1750 <br><br> gctggatccc agatggactc tggcccttac ctccccacct gagattaggg 1800 <br><br> tgagtgtgtt tgctctggct gagagcagag ctgagagcag gtatacagag 1850 <br><br> ctggaagtgg accatggaaa acatcgataa ccatgcatcc tcttgcttgg 1900 <br><br> ccacctcctg aaactgctcc acctttgaag tttgaacttt agtccctcca 1950 <br><br> cactctgact gctgcctcct tcctcccagc tctctcactg agttatcttc 2000 <br><br> actgtacctg ttccagcata tccccactat ctctctttct cctgatctgt 2050 <br><br> gctgtcttat tctcctcctt aggcttccta ttacctggga ttccatgatt 2100 <br><br> cattccttca gaccctctcc tgccagtatg ctaaaccctc cctctctctt 2150 <br><br> tcttatcccg ctgtcccatt ggcccagcct ggatgaatct atcaataaaa 2200 <br><br> caactagaga atggtggtca gtgagacact atagaattac taaggagaag 2250 <br><br> atgcctctgg agtttggatc gggtgttaca ggtacaagta ggtatgttgc 2300 <br><br> agaggaaaat aaatatcaaa ctgtatacta aaattaaaaa 2340 <br><br> &lt;210&gt; 287 &lt;211&gt; 205 &lt;212&gt; PRT &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 287 <br><br> Met Leu Gly Ala Lys Pro His Trp Leu Pro Gly Pro Leu His Ser 1 5 10 15 <br><br> Pro Gly Leu Pro Leu Val Leu Val Leu Leu Ala Leu Gly Ala Gly 20 25 30 <br><br> 373 <br><br> Trp Ala Gin Glu Gly Ser Glu Pro Val Leu Leu Glu Gly Glu Cys <br><br> 35 40 45 <br><br> Leu Val Val Cys Glu Pro Gly Arg Ala Ala Ala Gly Gly Pro Gly 50 55 60 <br><br> Gly Ala Ala Leu Gly Glu Ala Pro Pro Gly Arg Val Ala Phe Ala 65 70 75 <br><br> Ala Val Arg Ser His His His Glu Pro Ala Gly Glu Thr Gly Asn 80 85 90 <br><br> Gly Thr Ser Gly Ala Ile Tyr Phe Asp Gin Val Leu Val Asn Glu 95 100 105 <br><br> Gly Gly Gly Phe Asp Arg Ala Ser Gly Ser Phe Val Ala Pro Val 110 115 120 <br><br> Arg Gly Val Tyr Ser Phe Arg Phe His Val Val Lys Val Tyr Asn 125 130 135 <br><br> Arg Gin Thr Val Gin Val Ser Leu Met Leu Asn Thr Trp Pro Val 140 145 150 <br><br> Ile Ser Ala Phe Ala Asn Asp Pro Asp Val Thr Arg Glu Ala Ala 155 160 165 <br><br> Thr Ser Ser Val Leu Leu Pro Leu Asp Pro Gly Asp Arg Val Ser 170 175 180 <br><br> Leu Arg Leu Arg Arg Gly Asn Leu Leu Gly Gly Trp Lys Tyr Ser 185 190 195 <br><br> Ser Phe Ser Gly Phe Leu Ile Phe Pro Leu 200 205 <br><br> &lt;210&gt; 288 &lt;211&gt; 24 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 288 aggcagccac cagctctgtg ctac 24 <br><br> &lt;210&gt; 289 &lt;211&gt; 27 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence <br><br> &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> 374 <br><br> &lt;400&gt; 289 cagagaggga agatgaggaa gccagag 27 <br><br> &lt;210&gt; 290 &lt;211&gt; 42 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 290 <br><br> ctgtgctact gcccttggac cctggggacc gagtgtctct gc 42 <br><br> &lt;210&gt; 291 &lt;211&gt; 1570 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 291 <br><br> gctgtttctc tcgcgccacc actggccgcc ggccgcagct ccaggtgtcc 50 <br><br> tagccgccca gcctcgacgc cgtcccggga cccctgtgct ctgcgcgaag 100 <br><br> ccctggcccc gggggccggg gcatgggcca ggggcgcggg gtgaagcggc 150 <br><br> ttcccgcggg gccgtgactg ggcgggcttc agccatgaag accctcatag 2 00 <br><br> ccgcctactc cggggtcctg cgcggcgagc gtcaggccga ggctgaccgg 250 <br><br> agccagcgct ctcacggagg acctgcgctg tcgcgcgagg ggtctgggag 3 00 <br><br> atggggcact ggatccagca tcctctccgc cctccaggac ctcttctctg 350 <br><br> tcacctggct caataggtcc aaggtggaaa agcagctaca ggtcatctca 400 <br><br> gtgctccagt gggtcctgtc cttccttgta ctgggagtgg cctgcagtgc 450 <br><br> catcctcatg tacatattct gcactgattg ctggctcatc gctgtgctct 500 <br><br> acttcacttg gctggtgttt gactggaaca cacccaagaa aggtggcagg 550 <br><br> aggtcacagt gggtccgaaa ctgggctgtg tggcgctact ttcgagacta 600 <br><br> ctttcccatc cagctggtga agacacacaa cctgctgacc accaggaact 650 <br><br> atatctttgg ataccacccc catggtatca tgggcctggg tgccttctgc 700 <br><br> aacttcagca cagaggccac agaagtgagc aagaagttcc caggcatacg 750 <br><br> gccttacctg gctacactgg caggcaactt ccgaatgcct gtgttgaggg 800 <br><br> agtacctgat gtctggaggt atctgccctg tcagccggga caccatagac 850 <br><br> tatttgcttt caaagaatgg gagtggcaat gctatcatca tcgtggtcgg 900 <br><br> 375 <br><br> gggtgcggct gagtctctga gctccatgcc tggcaagaat gcagtcaccc 950 tgcggaaccg caagggcttt gtgaaactgg ccctgcgtca tggagctgac 1000 <br><br> ctggttccca tctactcctt tggagagaat gaagtgtaca agcaggtgat 1050 <br><br> cttcgaggag ggctcctggg gccgatgggt ccagaagaag ttccagaaat 1100 <br><br> acattggttt cgccccatgc atcttccatg gtcgaggcct cttctcctcc 1150 <br><br> gacacctggg ggctggtgcc ctactccaag cccatcacca ctgttgtggg 12 00 <br><br> agagcccatc accatcccca agctggagca cccaacccag caagacatcg 1250 acctgtacca caccatgtac atggaggccc tggtgaagct cttcgacaag 13 00 <br><br> cacaagacca agttcggcct cccggagact gaggtcctgg aggtgaactg 1350 <br><br> agccagcctt cggggccaat tccctggagg aaccagctgc aaatcacttt 1400 <br><br> tttgctctgt aaatttggaa gtgtcatggg tgtctgtggg ttatttaaaa 1450 <br><br> gaaattataa caattttgct aaaccaaaaa aaaaaaaaaa aaaaaaaaaa 1500 <br><br> aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1550 <br><br> aaaaaaaaaa aaaaaaaaaa 157 0 <br><br> &lt;210&gt; 292 &lt;211&gt; 388 &lt;212&gt; PRT &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 292 <br><br> Met Lys Thr Leu Ile Ala Ala Tyr Ser Gly Val Leu Arg Gly Glu 15 10 15 <br><br> Arg Gin Ala Glu Ala Asp Arg Ser Gin Arg Ser His Gly Gly Pro 20 25 30 <br><br> Ala Leu Ser Arg Glu Gly Ser Gly Arg Trp Gly Thr Gly Ser Ser 35 40 45 <br><br> Ile Leu Ser Ala Leu Gin Asp Leu Phe Ser Val Thr Trp Leu Asn 50 55 60 <br><br> Arg Ser Lys Val Glu Lys Gin Leu Gin Val Ile Ser Val Leu Gin 65 70 75 <br><br> Trp Val Leu Ser Phe Leu Val Leu Gly Val Ala Cys Ser Ala Ile 80 85 90 <br><br> 376 <br><br> Leu Met Tyr Ile Phe Cys Thr Asp Cys Trp Leu lie Ala Val Leu 95 100 105 <br><br> Tyr Phe Thr Trp Leu Val Phe Asp Trp Asn Thr Pro Lys Lys Gly 110 115 120 <br><br> Gly Arg Arg Ser Gin Trp Val Arg Asn Trp Ala Val Trp Arg Tyr 125 130 135 <br><br> Phe Arg Asp Tyr Phe Pro Ile Gin Leu Val Lys Thr His Asn Leu 140 145 150 <br><br> Leu Thr Thr Arg Asn Tyr Ile Phe Gly Tyr His Pro His Gly Ile 155 160 165 <br><br> Met Gly Leu Gly Ala Phe Cys Asn Phe Ser Thr Glu Ala Thr Glu 170 175 180 <br><br> Val Ser Lys Lys Phe Pro Gly Ile Arg Pro Tyr Leu Ala Thr Leu 185 190 195 <br><br> Ala Gly Asn Phe Arg Met Pro Val Leu Arg Glu Tyr Leu Met Ser 200 205 210 <br><br> Gly Gly Ile Cys Pro Val Ser Arg Asp Thr Ile Asp Tyr Leu Leu 215 220 225 <br><br> Ser Lys Asn Gly Ser Gly Asn Ala Ile Ile Ile Val Val Gly Gly 230 235 240 <br><br> Ala Ala Glu Ser Leu Ser Ser Met Pro Gly Lys Asn Ala Val Thr 245 250 255 <br><br> Leu Arg Asn Arg Lys Gly Phe Val Lys Leu Ala Leu Arg His Gly 260 265 270 <br><br> Ala Asp Leu Val Pro Ile Tyr Ser Phe Gly Glu Asn Glu Val Tyr 275 280 285 <br><br> Lys Gin Val Ile Phe Glu Glu Gly Ser Trp Gly Arg Trp Val Gin 290 295 300 <br><br> Lys Lys Phe Gin Lys Tyr Ile Gly Phe Ala Pro Cys Ile Phe His 305 310 315 <br><br> Gly Arg Gly Leu Phe Ser Ser Asp Thr Trp Gly Leu Val Pro Tyr 320 325 330 <br><br> Ser Lys Pro Ile Thr Thr Val Val Gly Glu Pro Ile Thr Ile Pro 335 340 345 <br><br> Lys Leu Glu His Pro Thr Gin Gin Asp Ile Asp Leu Tyr His Thr 350 355 360 <br><br> Met Tyr Met Glu Ala Leu Val Lys Leu Phe Asp Lys His Lys Thr <br><br> 377 <br><br> 365 370 375 <br><br> Lys Phe Gly Leu Pro Glu Thr Glu Val Leu Glu Val Asn 380 385 <br><br> &lt;210&gt; 293 &lt;211&gt; 24 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 293 gctgacctgg ttcccatcta ctcc 24 <br><br> &lt;210&gt; 294 &lt;211&gt; 24 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 294 cccacagaca cccatgacac ttcc 24 <br><br> &lt;210&gt; 295 &lt;211&gt; 50 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 295 <br><br> aagaatgaat tgtacaaagc aggtgatctt cgaggagggc tcctggggcc 50 <br><br> &lt;210&gt; 296 <br><br> &lt;211&gt; 3060 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 296 <br><br> gggcggcggg atgggggccg ggggcggcgg gcgccgcact cgctgaggcc 50 ccgacgcagg gccgggccgg gcccagggcc gaggagcgcg gcggccagag 100 cggggccgcg gaggcgacgc cggggacgcc cgcgcgacga gcaggtggcg 150 gcggctgcag gcttgtccag ccggaagccc tgagggcagc tgttcccact 2 00 ggctctgctg accttgtgcc ttggacggct gtcctcagcg aggggccgtg 250 cacccgctcc tgagcagcgc catgggcctg ctggccttcc tgaagaccca 300 <br><br> 378 <br><br> gttcgtgctg cacctgctgg tcggctttgt tcatcaactt cgtccagctg tgcacgctgg cagctctacc gccgcctcaa ctgccgcctc actggtcatg ctgctggagt ggtggtcctg cggaccaggc cacggtagag cgctttggga ctcaaccaca acttcgagat cgacttcctc gcgcttcgga gtgctgggga gctccaaggt tctacgtgcc cctcatcggc tggacgtggt tgcaagcgga agtgggagga ggaccgggac gcgcctgtcg gactaccccg agtacatgtg ggacgcgctt cacggagacc aagcaccgcg gctaaggggc ttcctgtcct caagtaccac cttcaccacc gcagtcaagt gcctccgggg atgtaaccct gaacttcaga ggaaacaaga ctctacggga agaagtacga ggcggacatg ggaagacatc ccgctggatg aaaaggaagc tgtaccagga gaaggacgcg ctccaggaga tttccagggg agcagtttaa gcctgcccgg cttcctgtcc tgggccacca ttctcctgtc tgggcgtctt tgccagcgga tcacctctcc tttgtgggag cagcttcctt tggagttcgc tgaacctggg aggtggagat tgcagtgagc ccagcctagg caacagagca agactcagtc aaaaacccca gaaattctgg agttgaactg attcactaga ggctgaacag cagatttgag agcttgaaga tggtaccttg agatttttca aggaaaatta acagcctcag agacccatgg cttcgtggtg agtggtctgg 350 cgctctggcc ggtcagcaag 400 gcctactcac tctggagcca 450 cacggagtgt acactgttca 500 aggagcacgc agtcatcatc 550 tgtgggtgga ccatgtgtga 600 cctcgctaag aaggagctgc 650 actttctgga gattgtgttc 700 accgtggtcg aagggctgag 750 gtttctcctg tactgcgagg 800 ttagcatgga ggtggcggct 850 ctgctgccgc ggaccaaggg 900 gacagtcgca gctgtctatg 950 acccgtccct gctggggatc 1000 tgcgtgagga gatttcctct 1050 agctcagtgg cttcataaac 1100 tatataatca gaagggcatg 1150 aggccgtgga ccctcctgaa 1200 tcccctcttc agttttgtct 1250 tgatcctgac tttcttgggg 13 00 agactgatag gagaatcgct 1350 <br><br> tgagatggca tcactgtact 14 00 tcaaaaaaaa aaaaaaacaa 1450 tgtagttact gacatgaaaa 1500 caggcagaaa aaaatcagca 1550 ggctaatgaa aaaagaatga 1600 tgcaccgtca cacaaatcaa 1650 <br><br> 379 <br><br> catatgcatg atgagagtcc cagaaggaga ggagagaaag ggtcagaaag 1700 aatggccaca agctgatgaa aaacagtaac ctacccactc aggaagctca 1750 gtgaactcca atgaggatga atatcagaga tccacaccta gatatttcat 1800 aatcaaagtg tcaaatgaca aagaatcttg aaagcagcaa gagatgagca 1850 acttatcttg ttcaaaggat ctttgatcag attaacagct catttctcct 1900 cagaaatcat gggagccagg agatagtggg atgaacactg ttgaaggcaa 1950 aaccttcaac tgtaattatt ggacttttga gtcttagatg gtcctgacct 2000 ctttgtcttc agggacagtt tttcaattta atccctaata acaattagtc 2050 aagcttcctt gacctgtagg aaggcctgtc tttaggccgg gcacagtggc 2100 ttacacctgt aatcccagca ctttgggagg cccagacggg tggatcattt 2150 ggggtcaggc tgatctcaaa ctcctgagtt caggtgatct gcccgcctca 2200 gcctcccaaa gtgttgtgat tgcaggcgtg agccactgcg cctggccgga 2250 atttcttttt aaggctgaat gatgggggcc aggcacgatg gctcacgcct 23 00 gtgatcccaa gtagcttgga ttgtaaacat gcaccaccat gcctggctaa 2350 tttttgtatt tttagtagag acgtgttagc caggctggtc tcgatctcct 2400 gacctcaagt gaccacctgc ctcagcctcc caaagtactg ggattacagg 2450 cgtgagccac tgtgcctggc cttgagcatc ttgtgatgtg cttattggcc 2500 atttgtatat cttctatctt ctttggggaa atgtctgttc aagtcctttg 2550 cctttttaaa tttttattat ttatttattt atttattttg agacagggtc 2600 ttgttctgtt gcccaggctg gagtacagtg gcacagtctt ggctcactgc 2650 agcctcgacc tcctgggctg cagtgatcct cccacctcag cctcccttgt 2700 agctgtattt ttttgtattt tgtattttgt agctgtagtt tttgtatttt 2750 ttgtggagac agcatttcac catgatgccc aggctggtct tgaactcctg 2800 agctcaagtg atctgcctgc ttcagcctcc caaagtgctg ggattacaga 2 850 catgagccac tgcacctggc aaactcccaa aattcaacac acacacacaa 2900 aaaaccacct gattcaaaat gggcagaggg gccgggtgtg gccccaacta 2950 ccagggagac tgaagtggga ggatcgcttg ggcatgagaa gtcgaggctg 3 000 cagtgagtcg aggttgtgcg actgcattcc agcctggaca acagagtgag 3050 <br><br> 380 <br><br> accctgtctc 3060 <br><br> &lt;210&gt; 297 &lt;211&gt; 368 &lt;212&gt; PRT &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 297 <br><br> Met Gly Leu Leu Ala Phe Leu Lys Thr Gin Phe Val Leu His Leu 15 10 15 <br><br> Leu Val Gly Phe Val Phe Val Val Ser Gly Leu Val Ile Asn Phe 20 25 30 <br><br> Val Gin Leu Cys Thr Leu Ala Leu Trp Pro Val Ser Lys Gin Leu 35 40 45 <br><br> Tyr Arg Arg Leu Asn Cys Arg Leu Ala Tyr Ser Leu Trp Ser Gin 50 55 60 <br><br> Leu Val Met Leu Leu Glu Trp Trp Ser Cys Thr Glu Cys Thr Leu 65 70 75 <br><br> Phe Thr Asp Gin Ala Thr Val Glu Arg Phe Gly Lys Glu His Ala 80 85 90 <br><br> Val Ile Ile Leu Asn His Asn Phe Glu Ile Asp Phe Leu Cys Gly 95 100 105 <br><br> Trp Thr Met Cys Glu Arg Phe Gly Val Leu Gly Ser Ser Lys Val 110 115 120 <br><br> Leu Ala Lys Lys Glu Leu Leu Tyr Val Pro Leu Ile Gly Trp Thr 125 130 135 <br><br> Trp Tyr Phe Leu Glu Ile Val Phe Cys Lys Arg Lys Trp Glu Glu 140 145 150 <br><br> Asp Arg Asp Thr Val Val Glu Gly Leu Arg Arg Leu Ser Asp Tyr 155 160 165 <br><br> Pro Glu Tyr Met Trp Phe Leu Leu Tyr Cys Glu Gly Thr Arg Phe 170 175 180 <br><br> Thr Glu Thr Lys His Arg Val Ser Met Glu Val Ala Ala Ala Lys 185 190 195 <br><br> Gly Leu Pro Val Leu Lys Tyr His Leu Leu Pro Arg Thr Lys Gly 200 205 210 <br><br> Phe Thr Thr Ala Val Lys Cys Leu Arg Gly Thr Val Ala Ala Val 215 220 225 <br><br> Tyr Asp Val Thr Leu Asn Phe Arg Gly Asn Lys Asn Pro Ser Leu 230 235 240 <br><br> 381 <br><br> Leu Gly Ile Leu Tyr Gly Lys Lys Tyr Glu Ala Asp Met Cys Val 245 250 255 <br><br> Arg Arg Phe Pro Leu Glu Asp Ile Pro Leu Asp Glu Lys Glu Ala 260 265 270 <br><br> Ala Gin Trp Leu His Lys Leu Tyr Gin Glu Lys Asp Ala Leu Gin 275 280 285 <br><br> Glu Ile Tyr Asn Gin Lys Gly Met Phe Pro Gly Glu Gin Phe Lys 290 295 300 <br><br> Pro Ala Arg Arg Pro Trp Thr Leu Leu Asn Phe Leu Ser Trp Ala 305 310 315 <br><br> Thr Ile Leu Leu Ser Pro Leu Phe Ser Phe Val Leu Gly Val Phe 320 325 330 <br><br> Ala Ser Gly Ser Pro Leu Leu Ile Leu Thr Phe Leu Gly Phe Val 335 340 345 <br><br> Gly Ala Ala Ser Phe Gly Val Arg Arg Leu Ile Gly Glu Ser Leu 350 355 360 <br><br> Glu Pro Gly Arg Trp Arg Leu Gin 365 <br><br> &lt;210&gt; 298 &lt;211&gt; 24 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 298 cttcctctgt gggtggacca tgtg 24 <br><br> &lt;210&gt; 299 &lt;211&gt; 21 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 299 gccacctcca tgctaacgcg g 21 <br><br> &lt;210&gt; 300 &lt;211&gt; 45 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence <br><br> 382 <br><br> &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 300 <br><br> ccaaggtcct cgctaagaag gagctgctct acgtgcccct catcg 45 <br><br> &lt;210&gt; 301 &lt;211&gt; 1334 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 301 <br><br> gatattcttt atttttaaga atctgaagta ctatgcatca ctccctccaa 50 <br><br> tgtcctgggg cagccaccag gcatattcat ctttgtgtgt gtttttcttt 100 <br><br> tgctttagca ctggggcact tcttgcttat ttctttggta ggaaaggggc 150 <br><br> tcagtttgtc ttgtggggtt ggtggcaggc aggccggctt acgcctgata 2 00 <br><br> cggccctggg ttagaaggga agggaagata aacttttata caaatgggga 250 <br><br> tagctggggt ctgagacctg cttcctcagt aaaattcctg ggatctgcct 300 <br><br> ataccttctt ttctctaacc tggcataccc tgcttaaagc ctctcagggc 350 <br><br> ttctctctgt tcttaggatc aaagtattta gagctacaag agccctcatg 400 <br><br> gtctggcccc tgcccccctg gccagcttca ttgtacatgt ggtgttctct 450 <br><br> tgtcgttcct gtaatgtggt atgccatggg gtctttgcac aagcctttcc 500 <br><br> tctttggctg gacactgttc cctgcccccc ccatactctt cctacttaat 550 <br><br> atgtagtcat cctgcagatt tcaattctaa catcattttc tccagggatc 600 <br><br> ctggcctgac agaatctcat cttgtttaat gctctcataa gaccacttgt 650 <br><br> ttcccttttg cagcacttgc cactcagttg tatctttatg tgcgtttgtg 700 <br><br> gttgtatggg ttgtgtctgt tccccagaat gcccagctct gagctgcgtg 750 <br><br> agggtcaagg gcattgctgt gcctgccagg tatagtgcct acatgtggtg 800 <br><br> ggtgctcatg ttttagagac taaatggagg aggagatgag gaaaagattg 850 <br><br> aaatctctca gttcaccaga tggtgtaggg cccagcattg taaattcaca 900 <br><br> cgttgactgt gcttgtgaat tatctgggga tgcaggtcct gattcagtag 950 <br><br> gcccaggttg ggcatctcta acaaactccc acgtgatgct gatgctggtc 1000 <br><br> ctatgaacta tactaaatag taagaatcta tggagccagg ctgggcatgg 1050 <br><br> tggctcacac ctatgatccc agcactttgg gaggctgagg caggctgatc 1100 <br><br> 383 <br><br> acctggagtc aggatttcaa gactagcctg gccaacatgg tggaacccca 1150 <br><br> tctgtactaa aaatacacaa attagctggg catggtggca catgcctgta 12 00 <br><br> gtcccagcta cttgggaggc tgaagcaaga gaatcgcttg aacctgggag 1250 <br><br> gcggaggttg cagtgagccg agatcaggcc actgtattcc aaccagggtg 13 00 <br><br> acagagtgag actctatgtc caaaaaaaaa aaaa 1334 <br><br> &lt;210&gt; 302 &lt;211&gt; 143 &lt;212&gt; PRT &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 302 <br><br> Met His His Ser Leu Gin Cys Pro Gly Ala Ala Thr Arg His Ile 15 10 15 <br><br> His Leu Cys Val Cys Phe Ser Phe Ala Leu Ala Leu Gly His Phe 20 25 30 <br><br> Leu Leu Ile Ser Leu Val Gly Lys Gly Leu Ser Leu Ser Cys Gly 35 40 45 <br><br> Val Gly Gly Arg Gin Ala Gly Leu Arg Leu Ile Arg Pro Trp Val 50 55 6.0 <br><br> Arg Arg Glu Gly Lys Ile Asn Phe Tyr Thr Asn Gly Asp Ser Trp 65 70 75 <br><br> Gly Leu Arg Pro Ala Ser Ser Val Lys Phe Leu Gly Ser Ala Tyr 80 85 90 <br><br> Thr Phe Phe Ser Leu Thr Trp His Thr Leu Leu Lys Ala Ser Gin 95 100 105 <br><br> Gly Phe Ser Leu Phe Leu Gly Ser Lys Tyr Leu Glu Leu Gin Glu 110 115 120 <br><br> Pro Ser Trp Ser Gly Pro Cys Pro Pro Gly Gin Leu His Cys Thr 125 130 135 <br><br> Cys Gly Val Leu Leu Ser Phe Leu 140 <br><br> &lt;210&gt; 303 &lt;211&gt; 1768 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 303 <br><br> ggctggactg gaactcctgg tcccaagtga tccacccgcc tcagcctccc 50 <br><br> 384 <br><br> aaggtgctgt gattataggt gtaagccacc tttttcagca actaaaaaag ccacaggagt tatgctgtgg tggctagtgc tcctactcct tttgttctct tgtaactagc ctttaccttc ctgtggctct ggcccaaacc tgaccttcac ttctacccac accgtcccct cgaagccggg ctctcgctgg agcagtgccc tcaccaactg actcgggcag tgcaggtagc tgagcctctt tgggccttgc cctggccgta gaagggattg ggcgatggct cccactgccc aggcatcagc ccctggggcc aggacgggcc gtggacacct acatcacgct gcccgcccat ctaacctttt atccatgggc taatctgaac tctgtcccaa gctgtggctc agacccagaa ggggtctgct acaggacttg cattctcctg gaacatgagg gtggcaggga aggaacttgt gccaaattat gttgggttat cacaaggcat cgagtctcct ggaagggctg ccgatggcgc atgacacact atcagacagc cgtttccgcc ccgatccacg ctgcaggccg atgctctcat cagccaggca ccagccaggg gcagccgtct gggaaggagc ctcccctcct tccctctgag aggccctcct agcaagacat agctgacagg ggctaatggc cagcaaggcc tgagagctga tcagaagggc tgcctccagt aagcacaggc tgcaaaatcc ctcaatttaa atcatgttct agtaattgga agctagagct tggttcaaat gatctccaag gtgtctggcc tctgaacaac 100 tgaactgcta ggattctgac 150 acctacatta aaatctgttt 200 ctaacacaga ggatctgtca 250 tctggaacga gaacagaggt 300 <br><br> gacagcctca ccttgctggc 350 tctcacgtct ggaggcactg 400 ggtagctgcg gctttcaagg 450 acaagcccga agatttcata 500 cttgctgtag tcaatcactg 550 gctcagaagc agtgggtgag 600 catgtcctgc acatcacctg 650 ggaacccaga gcttgagtga 7 00 tagaccacct ggtttatgtg 750 <br><br> gaacgccgga ggaaagcaaa 800 gggtcagaaa agatggaggt 850 gcattcagtg gacatgtggg 900 cgggactcac ctctggggcc 950 taccagctgc tgaagggcaa 1000 gcagccaaaa tctgcgatca 1050 aagcaaagtg accatttctc 1100 atgtccctac taaagccacc 1150 tcagtgttgg cccaggaggt 12 00 ctgctgtgcg aacacggaaa 1250 ccaggcaaag gactgtgtgg 1300 gctgtcccca agaccaaagg 1350 ggcccttata ccccaggaga 1400 <br><br> 385 <br><br> ctttgatttg aatttgaaac cccaaatcca aacctaagaa ccaggtgcat 1450 <br><br> taagaatcag ttattgccgg gtgtggtggc ctgtaatgcc aacattttgg 1500 <br><br> gaggccgagg cgggtagatc acctgaggtc aggagttcaa gaccagcctg 1550 <br><br> gccaacatgg tgaaacccct gtctctacta aaaatacaaa aaaactagcc 1600 <br><br> aggcatggtg gtgtgtgcct gtatcccagc tactcgggag gctgagacag 1650 <br><br> gagaattact tgaacctggg aggtgaagga ggctgagaca ggagaatcac 1700 <br><br> ttcagcctga gcaacacagc gagactctgt ctcagaaaaa ataaaaaaag 1750 <br><br> aattatggtt atttgtaa 1768 <br><br> &lt;210&gt; 304 &lt;211&gt; 109 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 304 <br><br> Met Leu Trp Trp Leu Val Leu Leu Leu Leu Pro Thr Leu Lys Ser 15 10 15 <br><br> Val Phe Cys Ser Leu Val Thr Ser Leu Tyr Leu Pro Asn Thr Glu 20 25 30 <br><br> Asp Leu Ser Leu Trp Leu Trp Pro Lys Pro Asp Leu His Ser Gly 35 40 45 <br><br> Thr Arg Thr Glu Val Ser Thr His Thr Val Pro Ser Lys Pro Gly 50 55 60 <br><br> Thr Ala Ser Pro Cys Trp Pro Leu Ala Gly Ala Val Pro Ser Pro 65 70 75 <br><br> Thr Val Ser Arg Leu Glu Ala Leu Thr Arg Ala Val Gin Val Ala 80 85 90 <br><br> Glu Pro Leu Gly Ser Cys Gly Phe Gin Gly Gly Pro Cys Pro Gly 95 100 105 <br><br> Arg Arg Arg Asp <br><br> &lt;210&gt; 305 &lt;211&gt; 989 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 305 <br><br> gcgggcccgc gagtccgaga cctgtcccag gagctccagc tcacgtgacc 50 <br><br> tgtcactgcc tcccgccgcc tcctgcccgc gccatgaccc agccggtgcc 100 <br><br> 386 <br><br> ccggctctcc gtgcccgccg cgctggccct gggctcagcc gcactgggcg 150 <br><br> ccgccttcgc cactggcctc ttcctgggga ggcggtgccc cccatggcga 2 00 <br><br> ggccggcgag agcagtgcct gcttcccccc gaggacagcc gcctgtggca 250 <br><br> gtatcttctg agccgctcca tgcgggagca cccggcgctg cgaagcctga 3 00 <br><br> ggctgctgac cctggagcag ccgcaggggg attctatgat gacctgcgag 350 <br><br> caggcccagc tcttggccaa cctggcgcgg ctcatccagg ccaagaaggc 400 <br><br> gctggacctg ggcaccttca cgggctactc cgccctggcc ctggccctgg 450 <br><br> cgctgcccgc ggacgggcgc gtggtgacct gcgaggtgga cgcgcagccc 500 <br><br> ccggagctgg gacggcccct gtggaggcag gccgaggcgg agcacaagat 550 <br><br> cgacctccgg ctgaagcccg ccttggagac cctggacgag ctgctggcgg 600 <br><br> cgggcgaggc cggcaccttc gacgtggccg tggtggatgc ggacaaggag 650 <br><br> aactgctccg cctactacga gcgctgcctg cagctgctgc gacccggagg 7 00 <br><br> catcctcgcc gtcctcagag tcctgtggcg cgggaaggtg ctgcaacctc 750 <br><br> cgaaagggga cgtggcggcc gagtgtgtgc gaaacctaaa cgaacgcatc 800 <br><br> cggcgggacg tcagggtcta catcagcctc ctgcccctgg gcgatggact 850 <br><br> caccttggcc ttcaagatct agggctggcc cctagtgagt gggctcgagg 900 <br><br> gagggttgcc tgggaacccc aggaattgac cctgagtttt aaattcgaaa 950 <br><br> ataaagtggg gctgggacac aaaaaaaaaa aaaaaaaaa 989 <br><br> &lt;210&gt; 306 &lt;211&gt; 262 &lt;212&gt; PRT &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 306 <br><br> Met Thr Gin Pro Val Pro Arg Leu Ser Val Pro Ala Ala Leu Ala 15 10 15 <br><br> Leu Gly Ser Ala Ala Leu Gly Ala Ala Phe Ala Thr Gly Leu Phe 20 25 30 <br><br> Leu Gly Arg Arg Cys Pro Pro Trp Arg Gly Arg Arg Glu Gin Cys 35 40 45 <br><br> Leu Leu Pro Pro Glu Asp Ser Arg Leu Trp Gin Tyr Leu Leu Ser 50 55 60 <br><br> Arg Ser Met Arg Glu His Pro Ala Leu Arg Ser Leu Arg Leu Leu <br><br> 387 <br><br> 65 70 75 <br><br> Thr Leu Glu Gin Pro Gin Gly Asp Ser Met Met Thr Cys Glu Gin 80 85 90 <br><br> Ala Gin Leu Leu Ala Asn Leu Ala Arg Leu Ile Gin Ala Lys Lys 95 100 105 <br><br> Ala Leu Asp Leu Gly Thr Phe Thr Gly Tyr Ser Ala Leu Ala Leu 110 115 120 <br><br> Ala Leu Ala Leu Pro Ala Asp Gly Arg Val Val Thr Cys Glu Val 125 130 135 <br><br> Asp Ala Gin Pro Pro Glu Leu Gly Arg Pro Leu Trp Arg Gin Ala 140 145 150 <br><br> Glu Ala Glu His Lys Ile Asp Leu Arg Leu Lys Pro Ala Leu Glu 155 160 165 <br><br> Thr Leu Asp Glu Leu Leu Ala Ala Gly Glu Ala Gly Thr Phe Asp 170 175 180 <br><br> Val Ala Val Val Asp Ala Asp Lys Glu Asn Cys Ser Ala Tyr Tyr 185 190 195 <br><br> Glu Arg Cys Leu Gin Leu Leu Arg Pro Gly Gly Ile Leu Ala Val 200 205 210 <br><br> Leu Arg Val Leu Trp Arg Gly Lys Val Leu Gin Pro Pro Lys Gly 215 220 225 <br><br> Asp Val Ala Ala Glu Cys Val Arg Asn Leu Asn Glu Arg Ile Arg 230 235 240 <br><br> Arg Asp Val Arg Val Tyr Ile Ser Leu Leu Pro Leu Gly Asp Gly 245 250 255 <br><br> Leu Thr Leu Ala Phe Lys Ile 260 <br><br> &lt;210&gt; 307 <br><br> &lt;211&gt; 2272 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 307 <br><br> ccgccgccgc agccgctacc gccgctgcag ccgctttccg cggcctgggc 50 <br><br> ctctcgccgt cagcatgcca cacgccttca agcccgggga cttggtgttc 100 <br><br> gctaagatga agggctaccc tcactggcct gccaggatcg acgacatcgc 150 <br><br> ggatggcgcc gtgaagcccc cacccaacaa gtaccccatc tttttctttg 2 00 <br><br> 388 <br><br> gcacacacga aacagccttc ctgggaccca aaatgtaaag acaagtacgg gaagcccaac agggctgtgg gagatccaga acaaccccca cgccagtgag ctcctccgac agcgaggccc ggcagtgacg ctgacgagga cgatgaggac agcggtaacc gccacagctg ccagcgacag cagacaagag tagcgacaac agtggcctga aagatgtcgg tctcgaaacg agcccgaaag ggccagcgtg tccccatccg aagaggagaa cggagaagac cagcgaccag gacttcacac cgggcgccac ggaggggccc tctgggggga gtcagcctcc gactccgact ccaaggccga agccggtggc catggcgcgg tcggcgtcct tcctccgact ccgatgtgtc tgtgaagaag agcggagaag cctctcccga agccgcgagg ggcctccgtc cagctccagc agtgacagtg atcagtgagt ggaagcggcg ggacgaggcg ccggcggcgg cgagagcagg aggaggagct agaaggagga gaaggagcgg aggcgcgagc gagcggggca gcggcggcag cagcggggac gcccgtcaag aagcggggac gcaagggccg cctctgactc cgagcccgag gccgagctgg gcgaagaagc cgcagtcctc aagcacagag gaaggagaag agagtgcggc ccgaggagaa aggtggagcg gacccggaag cggtccgagg gtagagaaga agaaagagcc ctccgtggag cagtgagatc aagtttgccc taaaggtcga gcctgaatgc cctagaggag ctgggaaccc aggacctgtt cccctacgac 250 aagaggaaag gcttcaatga 3 00 cgccagctac agcgcccctc 350 ccgaggccaa ccccgccgac 400 cggggggtca tggccgtcac 450 gatggagagc gactcagact 500 agaggaagac gcctgcgcta 550 gcctccagcg acctggatca 600 ctcggaaagc tcatctgagt 650 ctgagaagaa agcagcggtc 7 00 cggaaaaaaa agaaggcgcc 750 ttcggacggg gccaagcctg 800 cctcctcctc ttcctcctcc 850 cctccgaggg gcaggaagcc 900 gcggaaaccg aagcctgaac 950 acagcgacga ggtggaccgc 1000 cggaggcgcg agctggaggc 1050 gcggcgcctg cgggagcagg 1100 gggccgaccg cggggaggct 1150 gagctcaggg aggacgatga 1200 gggccggggt cccccgtcct 1250 agagagaggc caagaaatca 13 00 cccgccagga aacctggcca 1350 gcaacaagcc aagcccgtga 1400 gcttctcgat ggacaggaag 1450 gagaagctgc agaagctgca 1500 cagcccggac gtgaagaggt 1550 tgcaggtgac ctctcagatc 1600 <br><br> 389 <br><br> ctccagaaga acacagacgt ggtggccacc ttgaagaaga ttcgccgtta 1650 <br><br> caaagcgaac aaggacgtaa tggagaaggc agcagaagtc tatacccggc 1700 <br><br> tcaagtcgcg ggtcctcggc ccaaagatcg aggcggtgca gaaagtgaac 1750 <br><br> aaggctggga tggagaagga gaaggccgag gagaagctgg ccggggagga 1800 <br><br> gctggccggg gaggaggccc cccaggagaa ggcggaggac aagcccagca 1850 <br><br> ccgatctctc agccccagtg aatggcgagg ccacatcaca gaagggggag 1900 <br><br> agcgcagagg acaaggagca cgaggagggt cgggactcgg aggaggggcc 1950 <br><br> aaggtgtggc tcctctgaag acctgcacga cagcgtacgg gagggtcccg 2 000 <br><br> acctggacag gcctgggagc gaccggcagg agcgcgagag ggcacggggg 2 050 <br><br> gactcggagg ccctggacga ggagagctga gccgcgggca gccaggccca 2100 <br><br> gcccccgccc gagctcaggc tgcccctctc cttccccggc tcgcaggaga 2150 <br><br> gcagagcaga gaactgtggg gaacgctgtg ctgtttgtat ttgttccctt 2200 <br><br> gggttttttt ttcctgccta atttctgtga tttccaacca acatgaaatg 2250 <br><br> actataaacg gttttttaat ga 2272 <br><br> &lt;210&gt; 308 &lt;211&gt; 671 &lt;212&gt; PRT &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 308 <br><br> Met Pro His Ala Phe Lys Pro Gly Asp Leu Val Phe Ala Lys Met 15 10 15 <br><br> Lys Gly Tyr Pro His Trp Pro Ala Arg Ile Asp Asp Ile Ala Asp 20 25 30 <br><br> Gly Ala Val Lys Pro Pro Pro Asn Lys Tyr Pro Ile Phe Phe Phe 35 40 45 <br><br> Gly Thr His Glu Thr Ala Phe Leu Gly Pro Lys Asp Leu Phe Pro 50 55 60 <br><br> Tyr Asp Lys Cys Lys Asp Lys Tyr Gly Lys Pro Asn Lys Arg Lys 65 70 75 <br><br> Gly Phe Asn Glu Gly Leu Trp Glu Ile Gin Asn Asn Pro His Ala 80 85 90 <br><br> Ser Tyr Ser Ala Pro Pro Pro Val Ser Ser Ser Asp Ser Glu Ala 95 100 105 <br><br> Pro Glu Ala Asn Pro Ala Asp Gly Ser Asp Ala Asp Glu Asp Asp <br><br> 390 <br><br> no <br><br> 115 <br><br> 120 <br><br> Glu Asp Arg Gly Val Met Ala Val Thr Ala Val Thr Ala Thr Ala 125 130 135 <br><br> Ala Ser Asp Arg Met Glu Ser Asp Ser Asp Ser Asp Lys Ser Ser 140 145 150 <br><br> Asp Asn Ser Gly Leu Lys Arg Lys Thr Pro Ala Leu Lys Met Ser 155 160 165 <br><br> Val Ser Lys Arg Ala Arg Lys Ala Ser Ser Asp Leu Asp Gin Ala 170 175 180 <br><br> Ser Val Ser Pro Ser Glu Glu Glu Asn Ser Glu Ser Ser Ser Glu 185 190 195 <br><br> Ser Glu Lys Thr Ser Asp Gin Asp Phe Thr Pro Glu Lys Lys Ala 200 205 210 <br><br> Ala Val Arg Ala Pro Arg Arg Gly Pro Leu Gly Gly Arg Lys Lys 215 220 225 <br><br> Lys Lys Ala Pro Ser Ala Ser Asp Ser Asp Ser Lys Ala Asp Ser 230 235 240 <br><br> Asp Gly Ala Lys Pro Glu Pro Val Ala Met Ala Arg Ser Ala Ser 245 250 255 <br><br> Ser Ser Ser Ser Ser Ser Ser Ser Ser Asp Ser Asp Val Ser Val 260 265 270 <br><br> Lys Lys Pro Pro Arg Gly Arg Lys Pro Ala Glu Lys Pro Leu Pro 275 280 285 <br><br> Lys Pro Arg Gly Arg Lys Pro Lys Pro Glu Arg Pro Pro Ser Ser 290 295 300 <br><br> Ser Ser Ser Asp Ser Asp Ser Asp Glu Val Asp Arg Ile Ser Glu <br><br> Trp Lys Arg Arg Asp Glu Ala Arg Arg Arg Glu Leu Glu Ala Arg 320 325 330 <br><br> Arg Arg Arg Glu Gin Glu Glu Glu Leu Arg Arg Leu Arg Glu Gin 335 340 345 <br><br> Glu Lys Glu Glu Lys Glu Arg Arg Arg Glu Arg Ala Asp Arg Gly 350 355 360 <br><br> Glu Ala Glu Arg Gly Ser Gly Gly Ser Ser Gly Asp Glu Leu Arg <br><br> 305 <br><br> 310 <br><br> 315 <br><br> 365 <br><br> 370 <br><br> 375 <br><br> Glu Asp Asp Glu Pro Val Lys Lys Arg Gly Arg Lys Gly Arg Gly 380 385 390 <br><br> 391 <br><br> Arg Gly Pro Pro Ser Ser Ser Asp Ser Glu Pro Glu Ala Glu Leu 395 400 405 <br><br> Glu Arg Glu Ala Lys Lys Ser Ala Lys Lys Pro Gin Ser Ser Ser 410 415 420 <br><br> Thr Glu Pro Ala Arg Lys Pro Gly Gin Lys Glu Lys Arg Val Arg 425 430 435 <br><br> Pro Glu Glu Lys Gin Gin Ala Lys Pro Val Lys Val Glu Arg Thr 440 445 450 <br><br> Arg Lys Arg Ser Glu Gly Phe Ser Met Asp Arg Lys Val Glu Lys 455 460 465 <br><br> Lys Lys Glu Pro Ser Val Glu Glu Lys Leu Gin Lys Leu His Ser 470 475 480 <br><br> Glu Ile Lys Phe Ala Leu Lys Val Asp Ser Pro Asp Val Lys Arg 485 490 495 <br><br> Cys Leu Asn Ala Leu Glu Glu Leu Gly Thr Leu Gin Val Thr Ser 500 505 510 <br><br> Gin Ile Leu Gin Lys Asn Thr Asp Val Val Ala Thr Leu Lys Lys 515 520 525 <br><br> Ile Arg Arg Tyr Lys Ala Asn Lys Asp Val Met Glu Lys Ala Ala 530 535 540 <br><br> Glu Val Tyr Thr Arg Leu Lys Ser Arg Val Leu Gly Pro Lys Ile 545 550 555 <br><br> Glu Ala Val Gin Lys Val Asn Lys Ala Gly Met Glu Lys Glu Lys 560 565 570 <br><br> Ala Glu Glu Lys Leu Ala Gly Glu Glu Leu Ala Gly Glu Glu Ala 575 580 585 <br><br> Pro Gin Glu Lys Ala Glu Asp Lys Pro Ser Thr Asp Leu Ser Ala 590 595 600 <br><br> Pro Val Asn Gly Glu Ala Thr Ser Gin Lys Gly Glu Ser Ala Glu 605 610 615 <br><br> Asp Lys Glu His Glu Glu Gly Arg Asp Ser Glu Glu Gly Pro Arg 620 625 630 <br><br> Cys Gly Ser Ser Glu Asp Leu His Asp Ser Val Arg Glu Gly Pro 635 640 645 <br><br> Asp Leu Asp Arg Pro Gly Ser Asp Arg Gin Glu Arg Glu Arg Ala 650 655 660 <br><br> 392 <br><br> Arg Gly Asp Ser Glu Ala Leu Asp Glu Glu Ser 665 670 <br><br> &lt;210&gt; 309 <br><br> &lt;211&gt; 3871 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 309 <br><br> gttggttctc ctggatcttc accttaccaa ctgcagatct tgggactcat 50 <br><br> cagcctcaat aattatatta aattaacacc atttgaaaga gaacattgtt 100 <br><br> ttcatcatga atgctaataa agatgaaaga cttaaagcca gaagccaaga 150 <br><br> ttttcacctt tttcctgctt tgatgatgct aagcatgacc atgttgtttc 200 <br><br> ttccagtcac tggcactttg aagcaaaata ttccaagact caagctaacc 250 <br><br> tacaaagact tgctgctttc aaatagctgt attccctttt tgggttcatc 300 <br><br> agaaggactg gattttcaaa ctcttctctt agatgaggaa agaggcaggc 350 <br><br> tgctcttggg agccaaagac cacatctttc tactcagtct ggttgactta 400 <br><br> aacaaaaatt ttaagaagat ttattggcct gctgcaaagg aacgggtgga 450 <br><br> attatgtaaa ttagctggga aagatgccaa tacagaatgt gcaaatttca 500 <br><br> tcagagtact tcagccctat aacaaaactc acatatatgt gtgtggaact 550 <br><br> ggagcatttc atccaatatg tgggtatatt gatcttggag tctacaagga 600 <br><br> ggatattata ttcaaactag acacacataa tttggagtct ggcagactga 650 <br><br> aatgtccttt cgatcctcag cagccttttg cttcagtaat gacagatgag 700 <br><br> tacctctact ctggaacagc ttctgatttc cttggcaaag atactgcatt 750 <br><br> cactcgatcc cttgggccta ctcatgacca ccactacatc agaactgaca 800 <br><br> tttcagagca ctactggctc aatggagcaa aatttattgg aactttcttc 850 <br><br> ataccagaca cctacaatcc agatgatgat aaaatatatt tcttctttcg 900 <br><br> tgaatcatct caagaaggca gtacctccga taaaaccatc ctttctcgag 950 <br><br> ttggaagagt ttgtaagaat gatgtaggag gacaacgcag cctgataaac 1000 <br><br> aagtggacga cttttcttaa ggccagactg atttgctcaa ttcctggaag 1050 <br><br> tgatggggca gatacttact ttgatgagct tcaagatatt tatttactcc 1100 <br><br> ccacaagaga tgaaagaaat cctgtagtat atggagtctt tactacaacc 1150 <br><br> agctccatct tcaaaggctc tgctgtttgt gtgtatagca tggctgacat 12 00 <br><br> 393 <br><br> cagagcagtt tttaatggtc catatgctca gttgggtgca gtatgatggg agaattcctt ccaagcaaaa cctatgaccc actgattaag tgatgtcatc agtttcataa agcggcactc acccagttgc aggaggacca acgttcaaga ctgacacaga tagtggtgga tcatgtcatt tgtaatgttt cttggaacag acattggaac tttcaaagga aaagtggaat atggaagagg atattcaagc actcatcaat catcttgaac gcaacaattg tacattggtt cccgagatgg acagatgcga cacttatggg aaagcttgcg gacccctact gtgcctggga tggaaatgca ttctaaaagg agagctagac gccaagatgt cccagtgctg ggacatcgaa gacagcatta aaggtgattt ttggcattga atttaactca taaatcccaa caagcaacta ttaaatggta agcatcgaga ggagttgaag cccgatgaaa gggctactga ttcgaagttt gcagaagaag caaagcccag gagcacactt tcatccacac atgtcattga gaatgaacag atggaaaata gaggggcagg tcaaggatct attggctgag ctacatccaa atccttagca gcccaaactt aacagatgtg gcacagggag aagcggagac aagtggaagc acatgcagga aatgaagaag cagagacctg gatgagctcc ctagagctgt aatttaaaga aaagaattcc ttacctataa tatatccctt atagtaattc ataaatgctt cacaagacaa taatctgaat aagacaatat taaggaaagt gcagaccatc 1250 atccacggcc tggtacatgt 1300 tccacccgag attttccaga 1350 tgtgatgtat aagtccgtat 1400 gaatcaatgt ggattacaga 1450 gcagaagatg gccagtacga 1500 tgtcctcaaa gttgtcagca 1550 tagtgctgga ggagttgcag 1600 atggaattgt ctctgaagca 1650 attagttcag ctctccttgc 1700 cagactgttg tcttgccaga 1750 tgctctcgat atgctcctac 1800 aaaatatggc gacccaatca 1850 gtcatgaaac tgctgatgaa 1900 acctttctgg aatgtatacc 1950 tatccagagg tcaggggatg 2 000 gaatcatcaa aacggaatat 2050 gattctggga tgtattactg 2100 catagtgaag ctgactttga 2150 cccagagggc agagcatgag 22 00 tcacggttga gatacaaaga 2250 cagcctcgac cagtactgcg 23 00 agagaaacaa ggggggccca 2350 aaacgaaatc gaagacatca 2400 agccacgtag ttttctactt 2450 aaacattgcc ttctgttttg 2500 cccatggagt tttgctaagg 2550 gtgatgaata taagaaaggg 2 600 <br><br> 394 <br><br> caaaaaattc atttgaacca gttttccaag aacaaatctt gcacaagcaa 2650 <br><br> agtataagaa ttatcctaaa aatagggggt ttacagttgt aaatgtttta 27 00 <br><br> tgttttgagt tttggaattt attgtcatgt aaatagttga gctaagcaag 2750 <br><br> ccccgaattt gatagtgtat aaggtgcttt attccctcga atgtccatta 2800 <br><br> agcatggaat ttaccatgca gttgtgctat gttcttatga acagatatat 2850 <br><br> cattcctatt gagaaccagc taccttgtgg tagggaataa gaggtcagac 2900 <br><br> acaaattaag acaactccca ttatcaacag gaactttctc agtgagccat 2950 <br><br> tcactcctgg agaatggtat aggaatttgg agaggtgcat tatttctttc 3 000 <br><br> tggccactgg ggttaaattt agtgtactac aacattgatt tactgaaggg 3050 <br><br> cactaatgtt tcccccagga tttctattga ctagtcagga gtaacaggtt 3100 <br><br> cacagagaga agttggtgct tagttatgtg ttttttagag tatatactaa 3150 <br><br> gctctacagg gacagaatgc ttaataaata ctttaataag atatgggaaa 3200 <br><br> atattttaat aaaacaagga aaacataatg atgtataatg catcctgatg 3250 <br><br> ggaaggcatg cagatgggat ttgttagaag acagaaggaa agacagccat 33 00 <br><br> aaattctggc tttggggaaa actcatatcc ccatgaaaag gaagaacaat 3350 <br><br> cacaaataaa gtgagagtaa tgtaatggag ctcttttcac tagggtataa 3400 <br><br> gtagctgcca atttgtaatt catctgttaa aaaaaatcta gattataaca 3450 <br><br> aactgctagc aaaatctgag gaaacataaa ttcttctgaa gaatcatagg 3500 <br><br> aagagtagac attttattta taaccaatga tatttcagta tatattttct 3550 <br><br> ctcttttaaa aaatatttat catactctgt atattatttc tttttactgc 3600 <br><br> ctttattctc tcctgtatat tggattttgt gattatattt gagtgaatag 3650 <br><br> gagaaaacaa tatataacac acagagaatt aagaaaatga catttctggg 37 00 <br><br> gagtggggat atatatttgt tgaataacag aacgagtgta aaattttaac 3750 <br><br> aacggaaagg gttaaattaa ctctttgaca tcttcactca accttttctc 3800 <br><br> attgctgagt taatctgttg taattgtagt attgtttttg taatttaaca 3850 ataaataagc ctgctacatg t 3871 <br><br> &lt;210&gt; 310 <br><br> &lt;211&gt; 777 <br><br> &lt;212&gt; PRT <br><br> 395 <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 310 <br><br> Met Asn Ala Asn Lys Asp Glu Arg Leu Lys Ala Arg Ser Gin Asp 15 10 15 <br><br> Phe His Leu Phe Pro Ala Leu Met Met Leu Ser Met Thr Met Leu 20 25 30 <br><br> Phe Leu Pro Val Thr Gly Thr Leu Lys Gin Asn Ile Pro Arg Leu 35 40 45 <br><br> Lys Leu Thr Tyr Lys Asp Leu Leu Leu Ser Asn Ser Cys Ile Pro 50 55 60 <br><br> Phe Leu Gly Ser Ser Glu Gly Leu Asp Phe Gin Thr Leu Leu Leu 65 70 75 <br><br> Asp Glu Glu Arg Gly Arg Leu Leu Leu Gly Ala Lys Asp His Ile 80 85 90 <br><br> Phe Leu Leu Ser Leu Val Asp Leu Asn Lys Asn Phe Lys Lys Ile 95 100 105 <br><br> Tyr Trp Pro Ala Ala Lys Glu Arg Val Glu Leu Cys Lys Leu Ala 110 115 120 <br><br> Gly Lys Asp Ala Asn Thr Glu Cys Ala Asn Phe Ile Arg Val Leu 125 130 135 <br><br> Gin Pro Tyr Asn Lys Thr His Ile Tyr Val Cys Gly Thr Gly Ala 140 145 150 <br><br> Phe His Pro Ile Cys Gly Tyr Ile Asp Leu Gly Val Tyr Lys Glu 155 160 165 <br><br> Asp Ile Ile Phe Lys Leu Asp Thr His Asn Leu Glu Ser Gly Arg 170 175 180 <br><br> Leu Lys Cys Pro Phe Asp Pro Gin Gin Pro Phe Ala Ser Val Met 185 190 195 <br><br> Thr Asp Glu Tyr Leu Tyr Ser Gly Thr Ala Ser Asp Phe Leu Gly 200 205 210 <br><br> Lys Asp Thr Ala Phe Thr Arg Ser Leu Gly Pro Thr His Asp His 215 220 225 <br><br> His Tyr Ile Arg Thr Asp Ile Ser Glu His Tyr Trp Leu Asn Gly 230 235 240 <br><br> Ala Lys Phe Ile Gly Thr Phe Phe Ile Pro Asp Thr Tyr Asn Pro 245 250 255 <br><br> Asp Asp Asp Lys Ile Tyr Phe Phe Phe Arg Glu Ser Ser Gin Glu <br><br> 396 <br><br> 260 <br><br> 265 <br><br> 270 <br><br> Gly Ser Thr Ser Asp Lys Thr Ile Leu Ser Arg Val Gly Arg Val 275 280 285 <br><br> Cys Lys Asn Asp Val Gly Gly Gin Arg Ser Leu Ile Asn Lys Trp 290 295 300 <br><br> Thr Thr Phe Leu Lys Ala Arg Leu Ile Cys Ser Ile Pro Gly Ser 305 310 315 <br><br> Asp Gly Ala Asp Thr Tyr Phe Asp Glu Leu Gin Asp Ile Tyr Leu 320 325 330 <br><br> Leu Pro Thr Arg Asp Glu Arg Asn Pro Val Val Tyr Gly Val Phe 335 340 345 <br><br> Thr Thr Thr Ser Ser Ile Phe Lys Gly Ser Ala Val Cys Val Tyr 350 355 360 <br><br> Ser Met Ala Asp Ile Arg Ala Val Phe Asn Gly Pro Tyr Ala His 365 370 375 <br><br> Lys Glu Ser Ala Asp His Arg Trp Val Gin Tyr Asp Gly Arg Ile 380 385 390 <br><br> Pro Tyr Pro Arg Pro Gly Thr Cys Pro Ser Lys Thr Tyr Asp Pro 395 400 405 <br><br> Leu Ile Lys Ser Thr Arg Asp Phe Pro Asp Asp Val Ile Ser Phe 410 415 420 <br><br> Ile Lys Arg His Ser Val Met Tyr Lys Ser Val Tyr Pro Val Ala 425 430 435 <br><br> Gly Gly Pro Thr Phe Lys Arg Ile Asn Val Asp Tyr Arg Leu Thr 440 445 450 <br><br> Gin Ile Val Val Asp His Val Ile Ala Glu Asp Gly Gin Tyr Asp 455 460 465 <br><br> Val Met Phe Leu Gly Thr Asp Ile Gly Thr Val Leu Lys Val Val 470 475 480 <br><br> Ser Ile Ser Lys Glu Lys Trp Asn Met Glu Glu Val Val Leu Glu 485 490 495 <br><br> Glu Leu Gin Ile Phe Lys His Ser Ser Ile Ile Leu Asn Met Glu 500 505 510 <br><br> Leu Ser Leu Lys Gin Gin Gin Leu Tyr Ile Gly Ser Arg Asp Gly 515 520 525 <br><br> Leu Val Gin Leu Ser Leu His Arg Cys Asp Thr Tyr Gly Lys Ala 530 535 540 <br><br> 397 <br><br> Cys Ala Asp Cys Cys Leu Ala Arg Asp Pro Tyr Cys Ala Trp Asp <br><br> 545 550 555 <br><br> Gly Asn Ala Cys Ser Arg Tyr Ala Pro Thr Ser Lys Arg Arg Ala <br><br> 560 565 570 <br><br> Arg Arg Gin Asp Val Lys Tyr Gly Asp Pro Ile Thr Gin Cys Trp <br><br> 575 580 585 <br><br> Asp Ile Glu Asp Ser Ile Ser His Glu Thr Ala Asp Glu Lys Val <br><br> 590 595 600 <br><br> Ile Phe Gly Ile Glu Phe Asn Ser Thr Phe Leu Glu Cys Ile Pro <br><br> 605 610 615 <br><br> Lys Ser Gin Gin Ala Thr Ile Lys Trp Tyr Ile Gin Arg Ser Gly <br><br> 620 625 630 <br><br> Asp Glu His Arg Glu Glu Leu Lys Pro Asp Glu Arg Ile Ile Lys <br><br> 635 640 645 <br><br> Thr Glu Tyr Gly Leu Leu Ile Arg Ser Leu Gin Lys Lys Asp Ser <br><br> 650 655 660 <br><br> Gly Met Tyr Tyr Cys Lys Ala Gin Glu His Thr Phe Ile His Thr <br><br> 665 670 675 <br><br> Ile Val Lys Leu Thr Leu Asn Val Ile Glu Asn Glu Gin Met Glu <br><br> 680 685 690 <br><br> Asn Thr Gin Arg Ala Glu His Glu Glu Gly Gin Val Lys Asp Leu <br><br> 695 700 705 <br><br> Leu Ala Glu Ser Arg Leu Arg Tyr Lys Asp Tyr Ile Gin Ile Leu <br><br> 710 715 720 <br><br> Ser Ser Pro Asn Phe Ser Leu Asp Gin Tyr Cys Glu Gin Met Trp <br><br> 725 730 735 <br><br> His Arg Glu Lys Arg Arg Gin Arg Asn Lys Gly Gly Pro Lys Trp <br><br> 740 745 750 <br><br> Lys His Met Gin Glu Met Lys Lys Lys Arg Asn Arg Arg His His <br><br> 755 760 765 <br><br> Arg Asp Leu Asp Glu Leu Pro Arg Ala Val Ala Thr <br><br> 770 775 <br><br> &lt;210&gt; 311 &lt;211&gt; 25 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence <br><br> &lt;220&gt; <br><br> 398 <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 311 caacgcagcc gtgataaaca agtgg 25 <br><br> &lt;210&gt; 312 &lt;211&gt; 24 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 312 gcttggacat gtaccaggcc gtgg 24 <br><br> &lt;210&gt; 313 &lt;211&gt; 45 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 313 <br><br> ggccagactg atttgctcaa ttcctggaag tgatggggca gatac 45 <br><br> &lt;210&gt; 314 &lt;211&gt; 3934 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 314 <br><br> ccctgacctc cctgagccac actgagctgg aagccgcaga ggtcatcctg 50 gagcatgccc accgcgggga gcagacaacc tcccaggtaa gctgggagca 100 agacctgaag ctgtttcttc aggagcctgg tgtattttcc cccaccccac 150 ctcagcagtt tcagccagca gggactgatc aggtgtgtgt cctggagtgg 2 00 ggagcagaag gcgtggctgg caagagtggc ctggagaaag aggttcagcg 250 cttgaccagc cgagctgccc gtgactacaa gatccagaac catgggcatc 3 00 gggtgaggtg ggggggcaca ggtgtcatgt gcaccttctt gtctcagcaa 350 gaagagctga gagaggggat cttggagcca ttgagggtgt catggagcta 400 cagaggggag ggaaaggtat tttaaggtaa cagtgtggca caatagttaa 450 gagcacagtt tttggagcta gaccgacata ggttcaaatt ctcttctgtt 500 gcttcctagt tctgtagccc caggtaaggg agtgacttaa cctctctgga 550 cttcaatttc ctcatcacta aagtagggcc aataatagca cccacctcat 600 <br><br> 399 <br><br> agggaagatt aaatgacata atgtatgtga tcccatagta agtcatgccc cacagtattt ccttcccaac caggtactgc aacgactgga cagagcggga ggctccaagc atagaacaga agcatccgcc gggcacaggt gagccaggtg cctgctgcag ggggctggct tagatgtgga tgacccaggc ccaggatgag gtggagcagg cggctgtccc agagggacct ctctccaacc tgactttgag gaatgtgagg agacgggaga cccaagccct ggccacgagg gccctcccct cgctatcagg cagggcgtga ggatgagctg gctggaggtc atagaggagg gagatgctga accagcacgg cgaggtaggc tttgtccctg gacctctccc tcccagagag cagccaagac agagcccaca gcattcctgg cacaggccct gtgcagagga gctgagcttc cctgaggggg cgggcccaag atggagtaga tgacggcttc ccgtgttggg gtcttcccct ccctgctggt cagggccacc tgaactctct gaccctgaac cctcccagct tctccccacc tgcacctacc tgcacctgtc ctgcctgggg acaaagccct acatgatggc acctcgactc aggccgatgc gctaaagccc cggatcctgg ccacccagat gaagccttga cccccagtga tgctgctgtc ccacaccatc aatgatccag agcaacacag tatttccacc ctcacctcca agggtggaaa gagctggaac ccactccttt ttttcccatt tgcaactagc aaagtaccag 650 ccacccaccc ctgttctctg 7 00 gcagaggcgg cagcaggctt 750 ggttacagga agtgcgagag 800 aagggggctg cccggctggc 850 gcgctggctg aagccagcca 900 agcggcggct cagtgaggct 950 gctgaggatg ctgagctttc 1000 gctctttgag gagcctgccc 1050 gccctgcaca cgtggtattt 1100 acaatcacgg agggtgagtg 1150 <br><br> cgaatgggtc aaggctcgga 12 00 agcgatatct caacttcccg 1250 agtgacaatc cctgcggggc 13 00 gtacagctac accggacaga 1350 cactcatccg tctgctgccc 1400 tggaggggag aatttggggg 1450 ggaagagctg cttggccccc 1500 agatgctgcc gtccccttct 1550 tctgtgttgg atgggccccc 1600 ggacttccct gggttcctgg 1650 gtccaccacc tcccccgccg 1700 cccctcacct gaaggccagg 1750 cctatcttca agctgtcaga 1800 ccaaaagctg gaatcgccct 1850 cttgcccctt cccatttcta 1900 gttctatcat ctctaggacc 1950 <br><br> 400 <br><br> ggaactacta ccttctcttc tgtcatgacc ctatctaggg tggtgaaatg 2 000 cctgaaatct ctggggctgg aaaccatcca tcaaggtctc tagtagttct 2050 ggcccacctc tttccccacc ctggctccat gacccacccc actctggatg 2100 ccagggtcac tggggttggg ctggggagag gaacaggcct tgggaatcag 2150 gagctggagc caggatgcga agcagctgta atggtctgag cggatttatt 2200 gacaatgaat aaagggcacg aaggccaggc cagggcctgg gcctcttgtg 2250 ctaagagggc agggggccta cggtgctatt gctttagggg cccaccacgg 2300 gcaggggcct gctcccagct gccacgctct atcatatgga gcgaggtgtt 2350 ggggaaggcg gggcaggcag cctgttgcag gcaggggaag gagaagagac 2400 tgaggggctg tgacctctcc tgaggccccc agcctgagac tgtgcaactc 2450 caggtggaag tagagctggt ccctcagctg gggggcagtg ctgtccagtg 2500 gaggggaggg ctttcacgcc cacccacccc ctggccctgc cagctggtag 2550 tccatcagca caatgaagga gacttggaga agaggaagaa taacactgtt 2 600 gcttcctgtt caagctgtgt ccagcttttc ccctggggct ccaggacctt 2 650 ccctacctcc accaccaaac caagggattt atagcaaagg ctaagcctgc 2700 agtttactct gggggttcag ggagccgaaa ggcttaaata gtttaagtag 2750 gtgatgggaa gatgagatta cctcatttag ggctcaggca gactcacctc 2800 acatactccc tgctccctgt ggtagagaca cctgagagaa aggggagggg 2850 tcaacaatga gagaccagga gtaggtccta tcagtgcccc ccagagtaga 2900 gagcaataag agcccagccc agtgcagtcc cggctgtgtt ttcctacctg 2950 gtgatcagaa gtgtctggtt tgcttggctg cccatttgcc tcttgagtgg 3 000 gcagccctgg gcttgggccc ctccctccgg ccctcagtgt tggctctgca 3050 gaagctctgg ggttcccttc aagtgcacga ggggttaggc tgctgtccct 3100 gagtcctcca ttctgtactg gggggctggc taggacctgg ggctgtggcc 3150 tctcaggggg cagcctctcc atggcaggca tccctgcctt gggctgccct 3200 cccccagacc cctgaccacc ccctgggtcc tgtcccccac cagagcccca 3250 gctcctgtct gtgggggagc catcacggtg ttcgtgcagt ccatagcgct 3300 tctcaatgtg tgtcacccgg aacctgggag gggagggaac actggggttt 3350 <br><br> 401 <br><br> aggaccacaa ctcagaggct gcttggccct cccctctgac cagggacatc 3400 ctgagtttgg tggctacttc cctctggcct aaggtagggg aggccttctc 3450 agattgtggg gcacattgtg tagcctgact tctgctggag ctcccagtcc 3500 aggaggaaag agccaaggcc cacttttggg atcaggtgcc tgatcactgg 3550 gccccctacc tcagcccccc tttccctgga gcacctgccc cacctgccca 3600 cagagaacac agtggtctcc cctgtccggg ggcggctttt tccttccttg 3650 gagcgtccct gacggacaag tggaggcctc ttgctgcggc tgcaatggat 3700 gcaaggggct gcagagccca ggtgcactgt gtgatgatgg gagggggctc 3750 cgtcctgcag gctggaggtg gcatccacac tggacagcag gaggagggga 3800 gtgagggtaa catttccatt tcccttcatg ttttgtttct tacgttcttt 3850 cagcatgctc cttaaaaccc cagaagcccc aatttcccca agccccattt 3900 tttcttgtct ttatctaata aactcaatat taag 3934 <br><br> &lt;210&gt; 315 &lt;211&gt; 370 &lt;212&gt; PRT &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 315 <br><br> Met Gin Leu Ala Lys Tyr Gin Ser His Ser Lys Ser Cys Pro Thr 15 10 15 <br><br> Val Phe Pro Pro Thr Pro Val Leu Cys Leu Pro Asn Gin Val Leu <br><br> 20 25 30 <br><br> Gin Arg Leu Glu Gin Arg Arg Gin Gin Ala Ser Glu Arg Glu Ala 35 40 45 <br><br> Pro Ser Ile Glu Gin Arg Leu Gin Glu Val Arg Glu Ser Ile Arg 50 55 60 <br><br> Arg Ala Gin Val Ser Gin Val Lys Gly Ala Ala Arg Leu Ala Leu 65 70 75 <br><br> Leu Gin Gly Ala Gly Leu Asp Val Glu Arg Trp Leu Lys Pro Ala 80 85 90 <br><br> Met Thr Gin Ala Gin Asp Glu Val Glu Gin Glu Arg Arg Leu Ser 95 100 105 <br><br> Glu Ala Arg Leu Ser Gin Arg Asp Leu Ser Pro Thr Ala Glu Asp 110 115 120 <br><br> 402 <br><br> Ala Glu Leu Ser Asp Phe Glu Glu Cys Glu Glu Thr Gly Glu Leu 125 130 135 <br><br> Phe Glu Glu Pro Ala Pro Gin Ala Leu Ala Thr Arg Ala Leu Pro 140 145 150 <br><br> Cys Pro Ala His Val Val Phe Arg Tyr Gin Ala Gly Arg Glu Asp 155 160 165 <br><br> Glu Leu Thr Ile Thr Glu Gly Glu Trp Leu Glu Val Ile Glu Glu 170 175 180 <br><br> Gly Asp Ala Asp Glu Trp Val Lys Ala Arg Asn Gin His Gly Glu 185 190 195 <br><br> Val Gly Phe Val Pro Glu Arg Tyr Leu Asn Phe Pro Asp Leu Ser 200 205 210 <br><br> Leu Pro Glu Ser Ser Gin Asp Ser Asp Asn Pro Cys Gly Ala Glu 215 220 225 <br><br> Pro Thr Ala Phe Leu Ala Gin Ala Leu Tyr Ser Tyr Thr Gly Gin 230 235 240 <br><br> Ser Ala Glu Glu Leu Ser Phe Pro Glu Gly Ala Leu Ile Arg Leu 245 250 255 <br><br> Leu Pro Arg Ala Gin Asp Gly Val Asp Asp Gly Phe Trp Arg Gly 260 265 270 <br><br> Glu Phe Gly Gly Arg Val Gly Val Phe Pro Ser Leu Leu Val Glu 275 280 285 <br><br> Glu Leu Leu Gly Pro Pro Gly Pro Pro Glu Leu Ser Asp Pro Glu 290 295 300 <br><br> Gin Met Leu Pro Ser Pro Ser Pro Pro Ser Phe Ser Pro Pro Ala 305 310 315 <br><br> Pro Thr Ser Val Leu Asp Gly Pro Pro Ala Pro Val Leu Pro Gly 320 325 330 <br><br> Asp Lys Ala Leu Asp Phe Pro Gly Phe Leu Asp Met Met Ala Pro 335 340 345 <br><br> Arg Leu Arg Pro Met Arg Pro Pro Pro Pro Pro Pro Ala Lys Ala 350 355 360 <br><br> Pro Asp Pro Gly His Pro Asp Pro Leu Thr 365 370 <br><br> &lt;210&gt; 316 <br><br> &lt;211&gt; 4407 <br><br> &lt;212&gt; DNA <br><br> 403 <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 316 <br><br> cacagggaga cccacagaca catatgcacg agagagacag aggaggaaag 50 agacagagac aaaggcacag cggaagaagg cagagacagg gcaggcacag 100 aagcggccca gacagagtcc tacagaggga gaggccagag aagctgcaga 150 agacacaggc agggagagac aaagatccag gaaaggaggg ctcaggagga 2 00 gagtttggag aagccagacc cctgggcacc tctcccaagc ccaaggacta 250 agttttctcc atttccttta acggtcctca gcccttctga aaactttgcc 300 tctgaccttg gcaggagtcc aagcccccag gctacagaga ggagctttcc 350 aaagctaggg tgtggaggac ttggtgccct agacggcctc agtccctccc 400 agctgcagta ccagtgccat gtcccagaca ggctcgcatc ccgggagggg 450 cttggcaggg cgctggctgt ggggagccca accctgcctc ctgctcccca 500 ttgtgccgct ctcctggctg gtgtggctgc ttctgctact gctggcctct 550 ctcctgccct cagcccggct ggccagcccc ctcccccggg aggaggagat 600 cgtgtttcca gagaagctca acggcagcgt cctgcctggc tcgggcgccc 650 ctgccaggct gttgtgccgc ttgcaggcct ttggggagac gctgctacta 7 00 gagctggagc aggactccgg tgtgcaggtc gaggggctga cagtgcagta 750 cctgggccag gcgcctgagc tgctgggtgg agcagagcct ggcacctacc 800 tgactggcac catcaatgga gatccggagt cggtggcatc tctgcactgg 850 gatgggggag ccctgttagg cgtgttacaa tatcgggggg ctgaactcca 900 cctccagccc ctggagggag gcacccctaa ctctgctggg ggacctgggg 950 ctcacatcct acgccggaag agtcctgcca gcggtcaagg tcccatgtgc 1000 aacgtcaagg ctcctcttgg aagccccagc cccagacccc gaagagccaa 1050 gcgctttgct tcactgagta gatttgtgga gacactggtg gtggcagatg 1100 acaagatggc cgcattccac ggtgcggggc taaagcgcta cctgctaaca 1150 gtgatggcag cagcagccaa ggccttcaag cacccaagca tccgcaatcc 12 00 tgtcagcttg gtggtgactc ggctagtgat cctggggtca ggcgaggagg 1250 ggccccaagt ggggcccagt gctgcccaga ccctgcgcag cttctgtgcc 1300 tggcagcggg gcctcaacac ccctgaggac tcgggccctg accactttga 1350 <br><br> 404 <br><br> cacagccatt ctgtttaccc gtcaggacct acacgctggg tatggctgat gtgggcaccg tgtgccattg tggaggatga tgggctccag tgaactgggt catgtcttca acatgctcca tcagtttgaa tgggcctttg agcacctctc atggctcatg tggatcctga ggagccctgg catcactgac ttcctggaca atggctatgg cagaggctcc attgcatctg cctgtgactt gctgaccgcc agtgccagct gaccttcggg acagctgccg ccgccctgtg ctgccctctg gccatgccat gtgccagacc aaacactcgc tgcgggcccg cacaggcctg catgggtggt gctccaggac ttcaatattc cacaggctgg catggggtga ctgctctcgg acctgtgggg cgagactgca cgaggcctgt cccccggaat ccgccgtacc cgcttccgct cctgcaacac cagccctgac cttccgcgag gagcagtgtg gacctcttca agagcttccc agggcccatg aggcgtggcc ccccaggacc agtgcaaact tgggctacta ctatgtgctg gagccacggg tccccggaca gctcctcggt ctgtgtccag ctgtgatcgc atcattggct ccaagaagaa gcggagggga cggttctggt tgcagcaagc ttcaggtacg gatacaacaa tgtggtcact cattcttgtc cggcagcagg gaaaccctgg ccctgaagct gccagatggc tcctatgccc atgccctccc ccacagatgt ggtactgcct gtgtggagtc tccacttgcg 1400 tctgtgaccc ggctcggagc 1450 tcagccttca ctgctgctca 1500 tgacaactcc aagccatgca 1550 gccatgtcat ggcccctgtg 1600 tccccctgca gtgcccgctt 1650 gcactgtctc ttagacaaac 1700 tccctggcaa ggactatgat 1750 cccgactcac gccattgtcc 1800 gtgctctggc cacctcaatg 1850 cctgggccga tggcacaccc 1900 cgctgcctcc acatggacca 1950 tggctggggt ccttggggac 2 000 gtggtgtcca gttctcctcc 2050 ggtggcaagt actgtgaggg 2100 tgaggactgc ccaactggct 2150 ctgcctacaa ccaccgcacc 2200 gactgggttc ctcgctacac 2250 cacctgccag gcccgggcac 2300 tggtagatgg gaccccctgt 2350 ggccgatgca tccatgctgg 2400 gtttgacaag tgcatggtgt 2450 agtcaggctc cttcaggaaa 2500 atccccgcgg gggccaccca 2550 ccaccggagc atctacttgg 2600 tcaatggtga atacacgctg 2650 ggggcagtca gcttgcgcta 27 00 <br><br> 405 <br><br> cagcggggcc actgcagcct cagagacact gtcaggccat gggccactgg 2750 cccagccttt gacactgcaa gtcctagtgg ctggcaaccc ccaggacaca 2 800 cgcctccgat acagcttctt cgtgccccgg ccgacccctt caacgccacg 2850 ccccactccc caggactggc tgcaccgaag agcacagatt ctggagatcc 2900 ttcggcggcg cccctgggcg ggcaggaaat aacctcacta tcccggctgc 2950 cctttctggg caccggggcc tcggacttag ctgggagaaa gagagagctt 3000 ctgttgctgc ctcatgctaa gactcagtgg ggaggggctg tgggcgtgag 3050 acctgcccct cctctctgcc ctaatgcgca ggctggccct gccctggttt 3100 cctgccctgg gaggcagtga tgggttagtg gatggaaggg gctgacagac 3150 agccctccat ctaaactgcc ccctctgccc tgcgggtcac aggagggagg 3200 gggaaggcag ggagggcctg ggccccagtt gtatttattt agtatttatt 3250 cacttttatt tagcaccagg gaaggggaca aggactaggg tcctggggaa 3300 cctgacccct gacccctcat agccctcacc ctggggctag gaaatccagg 3350 gtggtggtga taggtataag tggtgtgtgt atgcgtgtgt gtgtgtgtgt 3400 gaaaatgtgt gtgtgcttat gtatgaggta caacctgttc tgctttcctc 3450 ttcctgaatt ttattttttg ggaaaagaaa agtcaagggt agggtgggcc 3500 ttcagggagt gagggattat cttttttttt ttttctttct ttctttcttt 3550 tttttttttg agacagaatc tcgctctgtc gcccaggctg gagtgcaatg 3 600 gcacaatctc ggctcactgc atcctccgcc tcccgggttc aagtgattct 3650 catgcctcag cctcctgagt agctgggatt acaggctcct gccaccacgc 3700 ccagctaatt tttgttttgt tttgtttgga gacagagtct cgctattgtc 3750 accagggctg gaatgatttc agctcactgc aaccttcgcc acctgggttc 3800 cagcaattct cctgcctcag cctcccgagt agctgagatt ataggcacct 3850 accaccacgc ccggctaatt tttgtatttt tagtagagac ggggtttcac 3 900 catgttggcc aggctggtct cgaactcctg accttaggtg atccactcgc 3950 cttcatctcc caaagtgctg ggattacagg cgtgagccac cgtgcctggc 4000 cacgcccaac taatttttgt atttttagta gagacagggt ttcaccatgt 4050 tggccaggct gctcttgaac tcctgacctc aggtaatcga cctgcctcgg 4100 <br><br> 406 <br><br> cctcccaaag tgctgggatt acaggtgtga gccaccacgc ccggtacata 4150 <br><br> ttttttaaat tgaattctac tatttatgtg atccttttgg agtcagacag 4200 <br><br> atgtggttgc atcctaactc catgtctctg agcattagat ttctcatttg 4250 <br><br> ccaataataa tacctccctt agaagtttgt tgtgaggatt aaataatgta 4300 <br><br> aataaagaac tagcataaca ctcaaaaaaa aaaaaaaaaa aaaaaaaaaa 43 50 <br><br> aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 4400 <br><br> aaggaaa 4407 <br><br> &lt;210&gt; 317 &lt;211&gt; 837 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 317 <br><br> Met Ser Gin Thr Gly Ser His Pro Gly Arg Gly Leu Ala Gly Arg 15 10 15 <br><br> Trp Leu Trp Gly Ala Gin Pro Cys Leu Leu Leu Pro Ile Val Pro 20 25 30 <br><br> Leu Ser Trp Leu Val Trp Leu Leu Leu Leu Leu Leu Ala Ser Leu 35 40 45 <br><br> Leu Pro Ser Ala Arg Leu Ala Ser Pro Leu Pro Arg Glu Glu Glu 50 55 60 <br><br> Ile Val Phe Pro Glu Lys Leu Asn Gly Ser Val Leu Pro Gly Ser 65 70 75 <br><br> Gly Ala Pro Ala Arg Leu Leu Cys Arg Leu Gin Ala Phe Gly Glu 80 85 . 90 <br><br> Thr Leu Leu Leu Glu Leu Glu Gin Asp Ser Gly Val Gin Val Glu 95 100 105 <br><br> Gly Leu Thr Val Gin Tyr Leu Gly Gin Ala Pro Glu Leu Leu Gly 110 115 120 <br><br> Gly Ala Glu Pro Gly Thr Tyr Leu Thr Gly Thr Ile Asn Gly Asp 125 130 135 <br><br> Pro Glu Ser Val Ala Ser Leu His Trp Asp Gly Gly Ala Leu Leu 140 145 150 <br><br> Gly Val Leu Gin Tyr Arg Gly Ala Glu Leu His Leu Gin Pro Leu 155 160 165 <br><br> Glu Gly Gly Thr Pro Asn Ser Ala Gly Gly Pro Gly Ala His Ile 170 175 180 <br><br> 407 <br><br> Leu Arg Arg Lys Ser Pro Ala Ser Gly Gin Gly Pro Met Cys Asn 185 190 195 <br><br> Val Lys Ala Pro Leu Gly Ser Pro Ser Pro Arg Pro Arg Arg Ala 200 205 210 <br><br> Lys Arg Phe Ala Ser Leu Ser Arg Phe Val Glu Thr Leu Val Val 215 220 225 <br><br> Ala Asp Asp Lys Met Ala Ala Phe His Gly Ala Gly Leu Lys Arg 230 235 240 <br><br> Tyr Leu Leu Thr Val Met Ala Ala Ala Ala Lys Ala Phe Lys His 245 250 255 <br><br> Pro Ser Ile Arg Asn Pro Val Ser Leu Val Val Thr Arg Leu Val 260 265 270 <br><br> Ile Leu Gly Ser Gly Glu Glu Gly Pro Gin Val Gly Pro Ser Ala 275 280 285 <br><br> Ala Gin Thr Leu Arg Ser Phe Cys Ala Trp Gin Arg Gly Leu Asn 290 295 300 <br><br> Thr Pro Glu Asp Ser Gly Pro Asp His Phe Asp Thr Ala Ile Leu 305 310 315 <br><br> Phe Thr Arg Gin Asp Leu Cys Gly Val Ser Thr Cys Asp Thr Leu 320 325 330 <br><br> Gly Met Ala Asp Val Gly Thr Val Cys Asp Pro Ala Arg Ser Cys 335 340 345 <br><br> Ala Ile Val Glu Asp Asp Gly Leu Gin Ser Ala Phe Thr Ala Ala 350 355 360 <br><br> His Glu Leu Gly His Val Phe Asn Met Leu His Asp Asn Ser Lys 365 370 375 <br><br> Pro Cys Ile Ser Leu Asn Gly Pro Leu Ser Thr Ser Arg His Val 380 385 390 <br><br> Met Ala Pro Val Met Ala His Val Asp Pro Glu Glu Pro Trp Ser 395 400 405 <br><br> Pro Cys Ser Ala Arg Phe Ile Thr Asp Phe Leu Asp Asn Gly Tyr 410 415 420 <br><br> Gly His Cys Leu Leu Asp Lys Pro Glu Ala Pro Leu His Leu Pro 425 430 435 <br><br> Val Thr Phe Pro Gly Lys Asp Tyr Asp Ala Asp Arg Gin Cys Gin 440 445 450 <br><br> 408 <br><br> Leu Thr Phe Gly Pro Asp Ser Arg His Cys Pro Gin Leu Pro Pro 455 460 465 <br><br> Pro Cys Ala Ala Leu Trp Cys Ser Gly His Leu Asn Gly His Ala 470 475 480 <br><br> Met Cys Gin Thr Lys His Ser Pro Trp Ala Asp Gly Thr Pro Cys 485 490 495 <br><br> Gly Pro Ala Gin Ala Cys Met Gly Gly Arg Cys Leu His Met Asp 500 505 510 <br><br> Gin Leu Gin Asp Phe Asn Ile Pro Gin Ala Gly Gly Trp Gly Pro 515 520 525 <br><br> Trp Gly Pro Trp Gly Asp Cys Ser Arg Thr Cys Gly Gly Gly Val 530 535 540 <br><br> Gin Phe Ser Ser Arg Asp Cys Thr Arg Pro Val Pro Arg Asn Gly 545 550 555 <br><br> Gly Lys Tyr Cys Glu Gly Arg Arg Thr Arg Phe Arg Ser Cys Asn 560 565 570 <br><br> Thr Glu Asp Cys Pro Thr Gly Ser Ala Leu Thr Phe Arg Glu Glu 575 580 585 <br><br> Gin Cys Ala Ala Tyr Asn His Arg Thr Asp Leu Phe Lys Ser Phe 590 595 600 <br><br> Pro Gly Pro Met Asp Trp Val Pro Arg Tyr Thr Gly Val Ala Pro 605 610 615 <br><br> Gin Asp Gin Cys Lys Leu Thr Cys Gin Ala Arg Ala Leu Gly Tyr 620 625 630 <br><br> Tyr Tyr Val Leu Glu Pro Arg Val Val Asp Gly Thr Pro Cys Ser 635 640 645 <br><br> Pro Asp Ser Ser Ser Val Cys Val Gin Gly Arg Cys Ile His Ala 650 655 660 <br><br> Gly Cys Asp Arg Ile Ile Gly Ser Lys Lys Lys Phe Asp Lys Cys 665 670 675 <br><br> Met Val Cys Gly Gly Asp Gly Ser Gly Cys Ser Lys Gin Ser Gly 680 685 690 <br><br> Ser Phe Arg Lys Phe Arg Tyr Gly Tyr Asn Asn Val Val Thr Ile 695 700 705 <br><br> Pro Ala Gly Ala Thr His Ile Leu Val Arg Gin Gin Gly Asn Pro 710 715 720 <br><br> 409 <br><br> Gly His Arg <br><br> Tyr Ala Leu <br><br> Val Val Leu <br><br> Ala Ala Ser <br><br> Leu Thr Leu <br><br> Leu Arg Tyr <br><br> Arg Pro Thr <br><br> Glu Ile Leu <br><br> &lt;210&gt; 318 &lt;211&gt; 23 &lt;212&gt; DNA &lt;213&gt; Artificial Sequence <br><br> &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 318 ccctgaagct gccagatggc tcc 23 <br><br> &lt;210&gt; 319 &lt;211&gt; 24 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 319 ctgtgctctt cggtgcagcc agtc 24 <br><br> &lt;210&gt; 320 &lt;211&gt; 43 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 320 <br><br> ccacagatgt ggtactgcct ggggcagtca gcttgcgcta cag 43 <br><br> Ser Ile Tyr Leu Ala Leu Lys Leu Pro Asp Gly Ser 725 730 735 <br><br> Asn Gly Glu Tyr Thr Leu Met Pro Ser Pro Thr Asp 740 745 750 <br><br> Pro Gly Ala Val Ser Leu Arg Tyr Ser Gly Ala Thr 755 760 765 <br><br> Glu Thr Leu Ser Gly His Gly Pro Leu Ala Gin Pro 770 775 780 <br><br> Gin Val Leu Val Ala Gly Asn Pro Gin Asp Thr Arg 785 790 795 <br><br> Ser Phe Phe Val Pro Arg Pro Thr Pro Ser Thr Pro 800 805 810 <br><br> Pro Gin Asp Trp Leu His Arg Arg Ala Gin Ile Leu 815 820 825 <br><br> Arg Arg Arg Pro Trp Ala Gly Arg Lys 830 835 <br><br> 410 <br><br> &lt;210&gt; 321 <br><br> &lt;211&gt; 1197 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 321 <br><br> cagcagtggt ctctcagtcc tctcaaagca aggaaagagt actgtgtgct 50 gagagaccat ggcaaagaat cctccagaga attgtgaaga ctgtcacatt 100 ctaaatgcag aagcttttaa atccaagaaa atatgtaaat cacttaagat 150 ttgtggactg gtgtttggta tcctggccct aactctaatt gtcctgtttt 200 gggggagcaa gcacttctgg ccggaggtac ccaaaaaagc ctatgacatg 250 gagcacactt tctacagcaa tggagagaag aagaagattt acatggaaat 300 tgatcctgtg accagaactg aaatattcag aagcggaaat ggcactgatg 350 aaacattgga agtgcacgac tttaaaaacg gatacactgg catctacttc 400 gtgggtcttc aaaaatgttt tatcaaaact cagattaaag tgattcctga 450 attttctgaa ccagaagagg aaatagatga gaatgaagaa attaccacaa 500 <br><br> ctttctttga acagtcagtg atttgggtcc cagcagaaaa gcctattgaa 550 aaccgagatt ttcttaaaaa ttccaaaatt ctggagattt gtgataacgt 600 gaccatgtat tggatcaatc ccactctaat atcagtttct gagttacaag 650 actttgagga ggagggagaa gatcttcact ttcctgccaa cgaaaaaaaa 7 00 gggattgaac aaaatgaaca gtgggtggtc cctcaagtga aagtagagaa 750 gacccgtcac gccagacaag caagtgagga agaacttcca ataaatgact 800 atactgaaaa tggaatagaa tttgatccca tgctggatga gagaggttat 850 tgttgtattt actgccgtcg aggcaaccgc tattgccgcc gcgtctgtga 900 acctttacta ggctactacc catatccata ctgctaccaa ggaggacgag 950 tcatctgtcg tgtcatcatg ccttgtaact ggtgggtggc ccgcatgctg 1000 gggagggtct aataggaggt ttgagctcaa atgcttaaac tgctggcaac 1050 atataataaa tgcatgctat tcaatgaatt tctgcctatg aggcatctgg 1100 cccctggtag ccagctctcc agaattactt gtaggtaatt cctctcttca 1150 tgttctaata aacttctaca ttatcaccaa aaaaaaaaaa aaaaaaa 1197 <br><br> 411 <br><br> &lt;210&gt; 322 &lt;211&gt; 317 &lt;212&gt; PRT &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 322 <br><br> Met Ala Lys Asn Pro Pro Glu Asn Cys Glu Asp Cys His Ile Leu 15 10 15 <br><br> Asn Ala Glu Ala Phe Lys Ser Lys Lys Ile Cys Lys Ser Leu Lys 20 25 30 <br><br> Ile Cys Gly Leu Val Phe Gly Ile Leu Ala Leu Thr Leu Ile Val 35 40 45 <br><br> Leu Phe Trp Gly Ser Lys His Phe Trp Pro Glu Val Pro Lys Lys 50 55 60 <br><br> Ala Tyr Asp Met Glu His Thr Phe Tyr Ser Asn Gly Glu Lys Lys 65 70 75 <br><br> Lys Ile Tyr Met Glu Ile Asp Pro Val Thr Arg Thr Glu Ile Phe 80 85 90 <br><br> Arg Ser Gly Asn Gly Thr Asp Glu Thr Leu Glu Val His Asp Phe 95 100 105 <br><br> Lys Asn Gly Tyr Thr Gly Ile Tyr Phe Val Gly Leu Gin Lys Cys 110 115 120 <br><br> Phe Ile Lys Thr Gin Ile Lys Val Ile Pro Glu Phe Ser Glu Pro 125 130 135 <br><br> Glu Glu Glu Ile Asp Glu Asn Glu Glu Ile Thr Thr Thr Phe Phe 140 145 150 <br><br> Glu Gin Ser Val Ile Trp Val Pro Ala Glu Lys Pro Ile Glu Asn 155 160 165 <br><br> Arg Asp Phe Leu Lys Asn Ser Lys Ile Leu Glu Ile Cys Asp Asn 170 175 180 <br><br> Val Thr Met Tyr Trp Ile Asn Pro Thr Leu Ile Ser Val Ser Glu 185 190 195 <br><br> Leu Gin Asp Phe Glu Glu Glu Gly Glu Asp Leu His Phe Pro Ala 200 205 210 <br><br> Asn Glu Lys Lys Gly Ile Glu Gin Asn Glu Gin Trp Val Val Pro 215 220 225 <br><br> Gin Val Lys Val Glu Lys Thr Arg His Ala Arg Gin Ala Ser Glu 230 235 240 <br><br> Glu Glu Leu Pro Ile Asn Asp Tyr Thr Glu Asn Gly Ile Glu Phe 245 250 255 <br><br> 412 <br><br> Asp Pro Met Leu Asp Glu Arg Gly Tyr Cys Cys Ile Tyr Cys Arg 260 265 270 <br><br> Arg Gly Asn Arg Tyr Cys Arg Arg Val Cys Glu Pro Leu Leu Gly 275 280 285 <br><br> Tyr Tyr Pro Tyr Pro Tyr Cys Tyr Gin Gly Gly Arg Val Ile Cys 290 295 300 <br><br> Arg Val Ile Met Pro Cys Asn Trp Trp Val Ala Arg Met Leu Gly 305 310 315 <br><br> Arg Val <br><br> &lt;210&gt; 323 &lt;211&gt; 1174 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 323 <br><br> gcggaactgg ctccggctgg cacctgagga gcggcgtgac cccgagggcc 50 cagggagctg cccggctggc ctaggcaggc agccgcacca tggccagcac 100 ggccgtgcag cttctgggct tcctgctcag cttcctgggc atggtgggca 150 cgttgatcac caccatcctg ccgcactggc ggaggacagc gcacgtgggc 2 00 accaacatcc tcacggccgt gtcctacctg aaagggctct ggatggagtg 250 tgtgtggcac agcacaggca tctaccagtg ccagatctac cgatccctgc 3 00 tggcgctgcc ccaagacctc caggctgccc gcgccctcat ggtcatctcc 3 50 tgcctgctct cgggcatagc ctgcgcctgc gccgtcatcg ggatgaagtg 400 cacgcgctgc gccaagggca cacccgccaa gaccaccttt gccatcctcg 450 gcggcaccct cttcatcctg gccggcctcc tgtgcatggt ggccgtctcc 500 tggaccacca acgacgtggt gcagaacttc tacaacccgc tgctgcccag 550 cggcatgaag tttgagattg gccaggccct gtacctgggc ttcatctcct 600 cgtccctctc gctcattggt ggcaccctgc tttgcctgtc ctgccaggac 650 gaggcaccct acaggcccta ccaggccccg cccagggcca ccacgaccac 700 tgcaaacacc gcacctgcct accagccacc agctgcctac aaagacaatc 750 gggccccctc agtgacctcg gccacgcaca gcgggtacag gctgaacgac 800 tacgtgtgag tccccacagc ctgcttctcc cctgggctgc tgtgggctgg 850 <br><br> 413 <br><br> gtccccggcg ggactgtcaa tggaggcagg ggttccagca caaagtttac 900 <br><br> ttctgggcaa tttttgtatc caaggaaata atgtgaatgc gaggaaatgt 950 <br><br> ctttagagca cagggacaga gggggaaata agaggaggag aaagctctct 1000 <br><br> ataccaaaga ctgaaaaaaa aaatcctgtc tgtttttgta tttattatat 1050 <br><br> atatttatgt gggtgatttg ataacaagtt taatataaag tgacttggga 1100 <br><br> gtttggtcag tggggttggt ttgtgatcca ggaataaacc ttgcggatgt 1150 <br><br> ggctgtttat gaaaaaaaaa aaaa 1174 <br><br> &lt;210&gt; 324 &lt;211&gt; 239 &lt;212&gt; PRT &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 324 <br><br> Met Ala Ser Thr Ala Val Gin Leu Leu Gly Phe Leu Leu Ser Phe 15 10 15 <br><br> Leu Gly Met Val Gly Thr Leu Ile Thr Thr Ile Leu Pro His Trp 20 25 30 <br><br> Arg Arg Thr Ala His Val Gly Thr Asn Ile Leu Thr Ala Val Ser 35 40 45 <br><br> Tyr Leu Lys Gly Leu Trp Met Glu Cys Val Trp His Ser Thr Gly 50 55 60 <br><br> Ile Tyr Gin Cys Gin Ile Tyr Arg Ser Leu Leu Ala Leu Pro Gin 65 70 75 <br><br> Asp Leu Gin Ala Ala Arg Ala Leu Met Val Ile Ser Cys Leu Leu 80 85 90 <br><br> Ser Gly Ile Ala Cys Ala Cys Ala Val Ile Gly Met Lys Cys Thr 95 100 105 <br><br> Arg Cys Ala Lys Gly Thr Pro Ala Lys Thr Thr Phe Ala Ile Leu 110 115 120 <br><br> Gly Gly Thr Leu Phe Ile Leu Ala Gly Leu Leu Cys Met Val Ala 125 130 135 <br><br> Val Ser Trp Thr Thr Asn Asp Val Val Gin Asn Phe Tyr Asn Pro 140 145 150 <br><br> Leu Leu Pro Ser Gly Met Lys Phe Glu Ile Gly Gin Ala Leu Tyr 155 160 165 <br><br> Leu Gly Phe Ile Ser Ser Ser Leu Ser Leu Ile Gly Gly Thr Leu 170 175 180 <br><br> 414 <br><br> Leu Cys Leu Ser Cys Gin Asp Glu Ala Pro Tyr Arg Pro Tyr Gin 185 190 195 <br><br> Ala Pro Pro Arg Ala Thr Thr Thr Thr Ala Asn Thr Ala Pro Ala 200 205 210 <br><br> Tyr Gin Pro Pro Ala Ala Tyr Lys Asp Asn Arg Ala Pro Ser Val 215 220 225 <br><br> Thr Ser Ala Thr His Ser Gly Tyr Arg Leu Asn Asp Tyr Val 230 235 <br><br> &lt;210&gt; 325 &lt;211&gt; 2121 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 325 <br><br> gagctcccct caggagcgcg ttagcttcac accttcggca gcaggagggc 50 <br><br> ggcagcttct cgcaggcggc agggcgggcg gccaggatca tgtccaccac 100 <br><br> cacatgccaa gtggtggcgt tcctcctgtc catcctgggg ctggccggct 150 <br><br> gcatcgcggc caccgggatg gacatgtgga gcacccagga cctgtacgac 2 00 <br><br> aaccccgtca cctccgtgtt ccagtacgaa gggctctgga ggagctgcgt 250 <br><br> gaggcagagt tcaggcttca ccgaatgcag gccctatttc accatcctgg 300 <br><br> gacttccagc catgctgcag gcagtgcgag ccctgatgat cgtaggcatc 350 <br><br> gtcctgggtg ccattggcct cctggtatcc atctttgccc tgaaatgcat 400 <br><br> ccgcattggc agcatggagg actctgccaa agccaacatg acactgacct 450 <br><br> ccgggatcat gttcattgtc tcaggtcttt gtgcaattgc tggagtgtct 500 <br><br> gtgtttgcca acatgctggt gactaacttc tggatgtcca cagctaacat 550 <br><br> gtacaccggc atgggtggga tggtgcagac tgttcagacc aggtacacat 600 <br><br> ttggtgcggc tctgttcgtg ggctgggtcg ctggaggcct cacactaatt 650 <br><br> gggggtgtga tgatgtgcat cgcctgccgg ggcctggcac cagaagaaac 700 <br><br> caactacaaa gccgtttctt atcatgcctc aggccacagt gttgcctaca 750 <br><br> agcctggagg cttcaaggcc agcactggct ttgggtccaa caccaaaaac 800 <br><br> aagaagatat acgatggagg tgcccgcaca gaggacgagg tacaatctta 850 <br><br> tccttccaag cacgactatg tgtaatgctc taagacctct cagcacgggc 900 <br><br> ggaagaaact cccggagagc tcacccaaaa aacaaggaga tcccatctag 950 <br><br> 415 <br><br> atttcttctt gcttttgact cacagctgga agttagaaaa gcctcgattt 1000 <br><br> catctttgga gaggccaaat ggtcttagcc tcagtctctg tctctaaata 1050 <br><br> ttccaccata aaacagctga gttatttatg aattagaggc tatagctcac 1100 <br><br> attttcaatc ctctatttct ttttttaaat ataactttct actctgatga 1150 <br><br> gagaatgtgg ttttaatctc tctctcacat tttgatgatt tagacagact 12 00 <br><br> ccccctcttc ctcctagtca ataaacccat tgatgatcta tttcccagct 1250 <br><br> tatccccaag aaaacttttg aaaggaaaga gtagacccaa agatgttatt 1300 <br><br> ttctgctgtt tgaattttgt ctccccaccc ccaacttggc tagtaataaa 1350 <br><br> cacttactga agaagaagca ataagagaaa gatatttgta atctctccag 1400 <br><br> cccatgatct cggttttctt acactgtgat cttaaaagtt accaaaccaa 1450 <br><br> agtcattttc agtttgaggc aaccaaacct ttctactgct gttgacatct 1500 <br><br> tcttattaca gcaacaccat tctaggagtt tcctgagctc tccactggag 1550 <br><br> tcctctttct gtcgcgggtc agaaattgtc cctagatgaa tgagaaaatt 1600 <br><br> atttttttta atttaagtcc taaatatagt taaaataaat aatgttttag 1650 <br><br> taaaatgata cactatctct gtgaaatagc ctcaccccta catgtggata 1700 <br><br> gaaggaaatg aaaaaataat tgctttgaca ttgtctatat ggtactttgt 1750 <br><br> aaagtcatgc ttaagtacaa attccatgaa aagctcacac ctgtaatcct 1800 <br><br> agcactttgg gaggctgagg aggaaggatc acttgagccc agaagttcga 1850 <br><br> gactagcctg ggcaacatgg agaagccctg tctctacaaa atacagagag 1900 <br><br> aaaaaatcag ccagtcatgg tggcatacac ctgtagtccc agcattccgg 1950 <br><br> gaggctgagg tgggaggatc acttgagccc agggaggttg gggctgcagt 2 000 <br><br> gagccatgat cacaccactg cactccagcc aggtgacata gcgagatcct 2050 <br><br> gtctaaaaaa ataaaaaata aataatggaa cacagcaagt cctaggaagt 2100 <br><br> aggttaaaac taattcttta a 2121 <br><br> &lt;210&gt; 326 &lt;211&gt; 261 &lt;212&gt; PRT &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 326 <br><br> Met Ser Thr Thr Thr Cys Gin Val Val Ala Phe Leu Leu Ser Ile 15 10 15 <br><br> 416 <br><br> Leu Gly Leu Ala Gly Cys Ile Ala Ala Thr Gly Met Asp Met Trp 20 25 30 <br><br> Ser Thr Gin Asp Leu Tyr Asp Asn Pro Val Thr Ser Val Phe Gin 35 40 45 <br><br> Tyr Glu Gly Leu Trp Arg Ser Cys Val Arg Gin Ser Ser Gly Phe 50 55 60 <br><br> Thr Glu Cys Arg Pro Tyr Phe Thr Ile Leu Gly Leu Pro Ala Met 65 70 75 <br><br> Leu Gin Ala Val Arg Ala Leu Met Ile Val Gly Ile Val Leu Gly 80 85 90 <br><br> Ala Ile Gly Leu Leu Val Ser Ile Phe Ala Leu Lys Cys Ile Arg 95 100 105 <br><br> Ile Gly Ser Met Glu Asp Ser Ala Lys Ala Asn Met Thr Leu Thr 110 115 120 <br><br> Ser Gly Ile Met Phe Ile Val Ser Gly Leu Cys Ala Ile Ala Gly 125 130 135 <br><br> Val Ser Val Phe Ala Asn Met Leu Val Thr Asn Phe Trp Met Ser 140 145 150 <br><br> Thr Ala Asn Met Tyr Thr Gly Met Gly Gly Met Val Gin Thr Val 155 160 165 <br><br> Gin Thr Arg Tyr Thr Phe Gly Ala Ala Leu Phe Val Gly Trp Val 170 175 180 <br><br> Ala Gly Gly Leu Thr Leu Ile Gly Gly Val Met Met Cys Ile Ala 185 190 195 <br><br> Cys Arg Gly Leu Ala Pro Glu Glu Thr Asn Tyr Lys Ala Val Ser 200 205 210 <br><br> Tyr His Ala Ser Gly His Ser Val Ala Tyr Lys Pro Gly Gly Phe 215 220 225 <br><br> Lys Ala Ser Thr Gly Phe Gly Ser Asn Thr Lys Asn Lys Lys Ile 230 235 240 <br><br> Tyr Asp Gly Gly Ala Arg Thr Glu Asp Glu Val Gin Ser Tyr Pro 245 250 255 <br><br> Ser Lys His Asp Tyr Val 260 <br><br> &lt;210&gt; 327 <br><br> &lt;211&gt; 2010 <br><br> &lt;212&gt; DNA <br><br> 417 <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 327 <br><br> ggaaaaactg ttctcttctg tggcacagag aaccctgctt caaagcagaa 50 gtagcagttc cggagtccag ctggctaaaa ctcatcccag aggataatgg 100 caacccatgc cttagaaatc gctgggctgt ttcttggtgg tgttggaatg 150 gtgggcacag tggctgtcac tgtcatgcct cagtggagag tgtcggcctt 2 00 cattgaaaac aacatcgtgg tttttgaaaa cttctgggaa ggactgtgga 250 tgaattgcgt gaggcaggct aacatcagga tgcagtgcaa aatctatgat 300 tccctgctgg ctctttctcc ggacctacag gcagccagag gactgatgtg 350 tgctgcttcc gtgatgtcct tcttggcttt catgatggcc atccttggca 400 tgaaatgcac caggtgcacg ggggacaatg agaaggtgaa ggctcacatt 450 ctgctgacgg ctggaatcat cttcatcatc acgggcatgg tggtgctcat 500 ccctgtgagc tgggttgcca atgccatcat cagagatttc tataactcaa 550 tagtgaatgt tgcccaaaaa cgtgagcttg gagaagctct ctacttagga 600 tggaccacgg cactggtgct gattgttgga ggagctctgt tctgctgcgt 650 tttttgttgc aacgaaaaga gcagtagcta cagatactcg ataccttccc 700 atcgcacaac ccaaaaaagt tatcacaccg gaaagaagtc accgagcgtc 750 tactccagaa gtcagtatgt gtagttgtgt atgttttttt aactttacta 800 taaagccatg caaatgacaa aaatctatat tactttctca aaatggaccc 850 caaagaaact ttgatttact gttcttaact gcctaatctt aattacagga 900 actgtgcatc agctatttat gattctataa gctatttcag cagaatgaga 950 tattaaaccc aatgctttga ttgttctaga aagtatagta atttgttttc 1000 <br><br> taaggtggtt caagcatcta ctctttttat catttacttc aaaatgacat 1050 tgctaaagac tgcattattt tactactgta atttctccac gacatagcat 1100 tatgtacata gatgagtgta acatttatat ctcacataga gacatgctta 1150 tatggtttta tttaaaatga aatgccagtc cattacactg aataaataga 12 00 actcaactat tgcttttcag ggaaatcatg gatagggttg aagaaggtta 1250 ctattaattg tttaaaaaca gcttagggat taatgtcctc catttataat 13 00 <br><br> 418 <br><br> gaagattaaa atgaaggctt taatcagcat tgtaaaggaa attgaatggc 1350 <br><br> tttctgatat gctgtttttt agcctaggag ttagaaatcc taacttcttt 1400 <br><br> atcctcttct cccagaggct ttttttttct tgtgtattaa attaacattt 145 0 <br><br> ttaaaacgca gatattttgt caaggggctt tgcattcaaa ctgcttttcc 1500 <br><br> agggctatac tcagaagaaa gataaaagtg tgatctaaga aaaagtgatg 1550 <br><br> gttttaggaa agtgaaaata tttttgtttt tgtatttgaa gaagaatgat 1600 <br><br> gcattttgac aagaaatcat atatgtatgg atatatttta ataagtattt 1650 <br><br> gagtacagac tttgaggttt catcaatata aataaaagag cagaaaaata 1700 <br><br> tgtcttggtt ttcatttgct taccaaaaaa acaacaacaa aaaaagttgt 1750 <br><br> cctttgagaa cttcacctgc tcctatgtgg gtacctgagt caaaattgtc 1800 <br><br> atttttgttc tgtgaaaaat aaatttcctt cttgtaccat ttctgtttag 1850 <br><br> ttttactaaa atctgtaaat actgtatttt tctgtttatt ccaaatttga 1900 <br><br> tgaaactgac aatccaattt gaaagtttgt gtcgacgtct gtctagctta 1950 <br><br> aatgaatgtg ttctatttgc tttatacatt tatattaata aattgtacat 2000 <br><br> ttttctaatt 2010 <br><br> &lt;210&gt; 328 &lt;211&gt; 225 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 328 <br><br> Met Ala Thr His Ala Leu Glu Ile Ala Gly Leu Phe Leu Gly Gly 15 10 15 <br><br> Val Gly Met Val Gly Thr Val Ala Val Thr Val Met Pro Gin Trp 20 25 30 <br><br> Arg Val Ser Ala Phe Ile Glu Asn Asn Ile Val Val Phe Glu Asn 35 40 45 <br><br> Phe Trp Glu Gly Leu Trp Met Asn Cys Val Arg Gin Ala Asn Ile 50 55 60 <br><br> Arg Met Gin Cys Lys Ile Tyr Asp Ser Leu Leu Ala Leu Ser Pro 65 70 75 <br><br> Asp Leu Gin Ala Ala Arg Gly Leu Met Cys Ala Ala Ser Val Met 80 85 90 <br><br> Ser Phe Leu Ala Phe Met Met Ala Ile Leu Gly Met Lys Cys Thr <br><br> 419 <br><br> 95 100 105 <br><br> Arg Cys Thr Gly Asp Asn Glu Lys Val Lys Ala His Ile Leu Leu 110 115 120 <br><br> Thr Ala Gly Ile Ile Phe Ile Ile Thr Gly Met Val Val Leu Ile 125 130 135 <br><br> Pro Val Ser Trp Val Ala Asn Ala Ile Ile Arg Asp Phe Tyr Asn 140 145 150 <br><br> Ser Ile Val Asn Val Ala Gin Lys Arg Glu Leu Gly Glu Ala Leu 155 160 165 <br><br> Tyr Leu Gly Trp Thr Thr Ala Leu Val Leu Ile Val Gly Gly Ala 170 175 180 <br><br> Leu Phe Cys Cys Val Phe Cys Cys Asn Glu Lys Ser Ser Ser Tyr 185 190 195 <br><br> Arg Tyr Ser Ile Pro Ser His Arg Thr Thr Gin Lys Ser Tyr His 200 205 210 <br><br> Thr Gly Lys Lys Ser Pro Ser Val Tyr Ser Arg Ser Gin Tyr Val 215 220 225 <br><br> &lt;210&gt; 329 <br><br> &lt;211&gt; 1315 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 329 <br><br> tcgccatggc ctctgccgga atgcagatcc tgggagtcgt cctgacactg 50 ctgggctggg tgaatggcct ggtctcctgt gccctgccca tgtggaaggt 100 gaccgctttc atcggcaaca gcatcgtggt ggcccaggtg gtgtgggagg 150 gcctgtggat gtcctgcgtg gtgcagagca ccggccagat gcagtgcaag 2 00 gtgtacgact cactgctggc gctgccacag gacctgcagg ctgcacgtgc 250 cctctgtgtc atcgccctcc ttgtggccct gttcggcttg ctggtctacc 300 ttgctggggc caagtgtacc acctgtgtgg aggagaagga ttccaaggcc 350 cgcctggtgc tcacctctgg gattgtcttt gtcatctcag gggtcctgac 400 <br><br> gctaatcccc gtgtgctgga cggcgcatgc catcatccgg gacttctata 450 accccctggt ggctgaggcc caaaagcggg agctgggggc ctccctctac 500 ttgggctggg cggcctcagg ccttttgttg ctgggtgggg ggttgctgtg 550 <br><br> 420 <br><br> ctgcacttgc ccctcggggg ggtcccaggg ccccagccat tacatggccc <br><br> 600 <br><br> gctactcaac atctgcccct gccatctctc gggggccctc tgagtaccct <br><br> 650 <br><br> accaagaatt acgtctgacg tggaggggaa tgggggctcc gctggcgcta <br><br> 700 <br><br> gagccatcca gaagtggcag tgcccaacag ctttgggatg ggttcgtacc <br><br> 750 <br><br> ttttgtttct gcctcctgct atttttcttt tgactgagga tatttaaaat <br><br> 800 <br><br> tcatttgaaa actgagccaa ggtgttgact cagactctca cttaggctct <br><br> 850 <br><br> gctgtttctc acccttggat gatggagcca aagaggggat gctttgagat <br><br> 900 <br><br> tctggatctt gacatgccca tcttagaagc cagtcaagct atggaactaa <br><br> 950 <br><br> tgcggaggct gcttgctgtg ctggctttgc aacaagacag actgtcccca <br><br> 1000 <br><br> agagttcctg ctgctgctgg gggctgggct tccctagatg tcactggaca <br><br> 1050 <br><br> gctgcccccc atcctactca ggtctctgga gctcctctct tcacccctgg <br><br> 1100 <br><br> aaaaacaaat catctgttaa caaaggactg cccacctccg gaacttctga <br><br> 1150 <br><br> cctctgtttc ctccgtcctg ataagacgtc caccccccag ggccaggtcc <br><br> 1200 <br><br> cagctatgta gacccccgcc cccacctcca acactgcacc cttctgccct <br><br> 1250 <br><br> gcccccctcg tctcaccccc tttacactca catttttatc aaataaagca <br><br> 1300 <br><br> tgttttgtta gtgca 1315 <br><br> &lt;210&gt; 330 &lt;211&gt; 220 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 330 <br><br> Met Ala Ser Ala Gly Met Gin Ile Leu Gly Val Val Leu Thr Leu 15 10 15 <br><br> Leu Gly Trp Val Asn Gly Leu Val Ser Cys Ala Leu Pro Met Trp 20 25 30 <br><br> Lys Val Thr Ala Phe Ile Gly Asn Ser Ile Val Val Ala Gin Val 35 40 45 <br><br> Val Trp Glu Gly Leu Trp Met Ser Cys Val Val Gin Ser Thr Gly 50 55 60 <br><br> Gin Met Gin Cys Lys Val Tyr Asp Ser Leu Leu Ala Leu Pro Gin 65 70 75 <br><br> Asp Leu Gin Ala Ala Arg Ala Leu Cys Val Ile Ala Leu Leu Val 80 85 90 <br><br> 421 <br><br> Ala Leu Phe Gly Leu Leu Val Tyr Leu Ala Gly Ala Lys Cys Thr 95 100 105 <br><br> Thr Cys Val Glu Glu Lys Asp Ser Lys Ala Arg Leu Val Leu Thr 110 115 120 <br><br> Ser Gly Ile Val Phe Val Ile Ser Gly Val Leu Thr Leu Ile Pro 125 130 135 <br><br> Val Cys Trp Thr Ala His Ala Ile Ile Arg Asp Phe Tyr Asn Pro 140 145 150 <br><br> Leu Val Ala Glu Ala Gin Lys Arg Glu Leu Gly Ala Ser Leu Tyr <br><br> 155 160 165 <br><br> Leu Gly Trp Ala Ala Ser Gly Leu Leu Leu Leu Gly Gly Gly Leu 170 175 180 <br><br> Leu Cys Cys Thr Cys Pro Ser Gly Gly Ser Gin Gly Pro Ser His 185 190 195 <br><br> Tyr Met Ala Arg Tyr Ser Thr Ser Ala Pro Ala Ile Ser Arg Gly 200 205 210 <br><br> Pro Ser Glu Tyr Pro Thr Lys Asn Tyr Val 215 220 <br><br> &lt;210&gt; 331 &lt;211&gt; 1160 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 331 <br><br> gccaaggaga acatcatcaa agacttctct agactcaaaa ggcttccacg 50 ttctacatct tgagcatctt ctaccactcc gaattgaacc agtcttcaaa 100 gtaaaggcaa tggcatttta tcccttgcaa attgctgggc tggttcttgg 150 gttccttggc atggtgggga ctcttgccac aacccttctg cctcagtggt 2 00 ggagtatcag cttttgttgg cagcaacatt attgtctttg agaggctctg 250 ggaagggctc tggatgaatt gcatccgaca agccagggtc cggttgcaat 3 00 gcaagttcta tagctccttg ttggctctcc cgcctgccct ggaaacagcc 350 cgggccctca tgtgtgtggc tgttgctctc tccttgatcg ccctgcttat 400 tggcatctgt ggcatgaagc aggtccagtg cacaggctct aacgagaggg 450 ccaaagcata ccttctggga acttcaggag tcctcttcat cctgacgggt 500 atcttcgttc tgattccggt gagctggaca gccaatataa tcatcagaga 550 <br><br> 422 <br><br> tttctacaac ccagccatcc acataggtca gaaacgagag ctgggagcag 600 cacttttcct tggctgggca agcgctgctg tcctcttcat tggagggggt 650 ctgctttgtg gattttgctg ctgcaacaga aagaagcaag ggtacagata 7 00 tccagtgcct ggctaccgtg tgccacacac agataagcga agaaatacga 750 <br><br> caatgcttag taagacctcc accagttatg tctaatgcct ccttttggct 800 <br><br> ccaagtatgg actatggtca atgtttttta taaagtcctg ctagaaactg 850 <br><br> taagtatgtg aggcaggaga acttgcttta tgtctagatt tacattgata 900 <br><br> cgaaagtttc aatttgttac tggtggtagg aatgaaaatg acttacttgg 950 <br><br> acattctgac ttcaggtgta ttaaatgcat tgactattgt tggacccaat 1000 <br><br> cgctgctcca attttcatat tctaaattca agtataccca taatcattag 1050 <br><br> caagtgtaca atgatggact acttattact ttttgaccat catgtattat 1100 <br><br> ctgataagaa tctaaagttg aaattgatat tctataacaa taaaacatat 1150 <br><br> acctattcta 1160 <br><br> &lt;210&gt; 332 &lt;211&gt; 173 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 332 <br><br> Met Asn Cys Ile Arg Gin Ala Arg Val Arg Leu Gin Cys Lys Phe 15 10 15 <br><br> Tyr Ser Ser Leu Leu Ala Leu Pro Pro Ala Leu Glu Thr Ala Arg 20 25 30 <br><br> Ala Leu Met Cys Val Ala Val Ala Leu Ser Leu Ile Ala Leu Leu 35 40 45 <br><br> Ile Gly Ile Cys Gly Met Lys Gin Val Gin Cys Thr Gly Ser Asn 50 55 60 <br><br> Glu Arg Ala Lys Ala Tyr Leu Leu Gly Thr Ser Gly Val Leu Phe 65 70 75 <br><br> Ile Leu Thr Gly Ile Phe Val Leu Ile Pro Val Ser Trp Thr Ala 80 85 90 <br><br> Asn Ile Ile Ile Arg Asp Phe Tyr Asn Pro Ala Ile His Ile Gly 95 100 105 <br><br> Gin Lys Arg Glu Leu 110 <br><br> Gly Ala Ala Leu Phe Leu Gly Trp Ala Ser 115 120 <br><br> 423 <br><br> Ala Ala Val Leu Phe Ile Gly Gly Gly Leu Leu Cys Gly Phe Cys 125 130 135 <br><br> Cys Cys Asn Arg Lys Lys Gin Gly Tyr Arg Tyr Pro Val Pro Gly <br><br> 140 145 150 <br><br> Tyr Arg Val Pro His Thr Asp Lys Arg Arg Asn Thr Thr Met Leu 155 160 165 <br><br> Ser Lys Thr Ser Thr Ser Tyr Val 170 <br><br> &lt;210&gt; 333 &lt;211&gt; 535 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 333 <br><br> agtgacaatc tcagagcagc ttctacacca cagccatttc cagcatgaag 50 <br><br> atcactgggg gtctccttct gctctgtaca gtggtctatt tctgtagcag 100 <br><br> ctcagaagct gctagtctgt ctccaaaaaa agtggactgc agcatttaca 150 <br><br> agaagtatcc agtggtggcc atcccctgcc ccatcacata cctaccagtt 2 00 <br><br> tgtggttctg actacatcac ctatgggaat gaatgtcact tgtgtaccga 25 0 <br><br> gagcttgaaa agtaatggaa gagttcagtt tcttcacgat ggaagttgct 3 00 <br><br> aaattctcca tggacataga gagaaaggaa tgatattctc atcatcatct 350 <br><br> tcatcatccc aggctctgac tgagtttctt tcagttttac tgatgttctg 400 <br><br> ggtgggggac agagccagat tcagagtaat cttgactgaa tggagaaagt 450 <br><br> ttctgtgcta cccctacaaa cccatgcctc actgacagac cagcattttt 500 <br><br> tttttaacac gtcaataaaa aaataatctc ccaga 535 <br><br> &lt;210&gt; 334 &lt;211&gt; 85 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 334 <br><br> Met Lys Ile Thr Gly Gly Leu Leu Leu Leu Cys Thr Val Val Tyr 15 10 15 <br><br> Phe Cys Ser Ser Ser Glu Ala Ala Ser Leu Ser Pro Lys Lys Val 20 25 30 <br><br> Asp Cys Ser Ile Tyr Lys Lys Tyr Pro Val Val Ala Ile Pro Cys 35 40 45 <br><br> 424 <br><br> Pro Ile Thr Tyr Leu Pro Val Cys Gly Ser Asp Tyr Ile Thr Tyr 50 55 60 <br><br> Gly Asn Glu Cys His Leu Cys Thr Glu Ser Leu Lys Ser Asn Gly 65 70 75 <br><br> Arg Val Gin Phe Leu His Asp Gly Ser Cys 80 85 <br><br> &lt;210&gt; 335 &lt;211&gt; 742 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 335 <br><br> cccgcgcccg gttctccctc gcagcacctc gaagtgcgcc cctcgccctc 50 <br><br> ctgctcgcgc cccgccgcca tggctgcctc ccccgcgcgg cctgctgtcc 100 <br><br> tggccctgac cgggctggcg ctgctcctgc tcctgtgctg gggcccaggt 150 <br><br> ggcataagtg gaaataaact caagctgatg cttcaaaaac gagaagcacc 2 00 <br><br> tgttccaact aagactaaag tggccgttga tgagaataaa gccaaagaat 250 <br><br> tccttggcag cctgaagcgc cagaagcggc agctgtggga ccggactcgg 300 <br><br> cccgaggtgc agcagtggta ccagcagttt ctctacatgg gctttgatga 350 <br><br> agcgaaattt gaagatgaca tcacctattg gcttaacaga gatcgaaatg 400 <br><br> gacatgaata ctatggcgat tactaccaac gtcactatga tgaagactct 450 <br><br> gcaattggtc cccggagccc ctacggcttt aggcatggag ccagcgtcaa 500 <br><br> ctacgatgac tactaaccat gacttgccac acgctgtaca agaagcaaat 550 <br><br> agcgattctc ttcatgtatc tcctaatgcc ttacactact tggtttctga 600 <br><br> tttgctctat ttcagcagat cttttctacc tactttgtgt gatcaaaaaa 650 <br><br> gaagagttaa aacaacacat gtaaatgcct tttgatattt catgggaatg 7 00 <br><br> cctctcattt aaaaatagaa ataaagcatt ttgttaaaaa ga 742 <br><br> &lt;210&gt; 336 &lt;211&gt; 148 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 336 <br><br> Met Ala Ala Ser Pro Ala Arg Pro Ala Val Leu Ala Leu Thr Gly 15 10 15 <br><br> Leu Ala Leu Leu Leu Leu Leu Cys Trp Gly Pro Gly Gly Ile Ser <br><br> 425 <br><br> 20 25 30 <br><br> Gly Asn Lys Leu Lys Leu Met Leu Gin Lys Arg Glu Ala Pro Val 35 40 45 <br><br> Pro Thr Lys Thr Lys Val Ala Val Asp Glu Asn Lys Ala Lys Glu 50 55 60 <br><br> Phe Leu Gly Ser Leu Lys Arg Gin Lys Arg Gin Leu Trp Asp Arg 65 70 75 <br><br> Thr Arg Pro Glu Val Gin Gin Trp Tyr Gin Gin Phe Leu Tyr Met 80 85 90 <br><br> Gly Phe Asp Glu Ala Lys Phe Glu Asp Asp Ile Thr Tyr Trp Leu 95 100 105 <br><br> Asn Arg Asp Arg Asn Gly His Glu Tyr Tyr Gly Asp Tyr Tyr Gin 110 115 120 <br><br> Arg His Tyr Asp Glu Asp Ser Ala Ile Gly Pro Arg Ser Pro Tyr 125 130 135 <br><br> Gly Phe Arg His Gly Ala Ser Val Asn Tyr Asp Asp Tyr 140 145 <br><br> &lt;210&gt; 337 &lt;211&gt; 1310 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 337 <br><br> cggctcgagc ccgcccggaa gtgcccgagg ggccgcgatg gagctggggg 50 agccgggcgc tcggtagcgc ggcgggcaag gcaggcgcca tgaccctgat 100 tgaaggggtg ggtgatgagg tgaccgtcct tttctcggtg cttgcctgcc 150 ttctggtgct ggcccttgcc tgggtctcaa cgcacaccgc tgagggcggg 200 gacccactgc cccagccgtc agggacccca acgccatccc agcccagcgc 250 agccatggca gctaccgaca gcatgagagg ggaggcccca ggggcagaga 300 cccccagcct gagacacaga ggtcaagctg cacagccaga gcccagcacg 350 gggttcacag caacaccgcc agccccggac tccccgcagg agcccctcgt 400 gctacggctg aaattcctca atgattcaga gcaggtggcc agggcctggc 450 cccacgacac cattggctcc ttgaaaagga cccagtttcc cggccgggaa 500 cagcaggtgc gactcatcta ccaagggcag ctgctaggcg acgacaccca 550 gaccctgggc agccttcacc tccctcccaa ctgcgttctc cactgccacg 600 <br><br> 426 <br><br> tgtccacgag agtcggtccc ccaaatcccc cctgcccgcc ggggtccgag 650 <br><br> cccggcccct ccgggctgga aatcggcagc ctgctgctgc ccctgctgct 7 00 <br><br> cctgctgttg ctgctgctct ggtactgcca gatccagtac cggcccttct 750 <br><br> ttcccctgac cgccactctg ggcctggccg gcttcaccct gctcctcagt 800 <br><br> ctcctggcct ttgccatgta ccgcccgtag tgcctccgcg ggcgcttggc 850 <br><br> agcgtcgccg gcccctccgg accttgctcc ccgcgccgcg gcgggagctg 900 <br><br> ctgcctgccc aggcccgcct ctccggcctg cctcttcccg ctgccctgga 950 <br><br> gcccagccct gcgccgcaga ggactcccgg gactggcgga ggccccgccc 1000 <br><br> tgcgaccgcc ggggctcggg gccacctccc ggggctgctg aacctcagcc 1050 <br><br> cgcactggga gtgggctcct cggggtcggg catctgctgt cgctgcctcg 1100 <br><br> gccccgggca gagccgggcc gccccggggg cccgtcttag tgttctgccg 1150 <br><br> gaggacccag ccgcctccaa tccctgacag ctccttgggc tgagttgggg 12 00 <br><br> acgccaggtc ggtgggaggc tggtgaaggg gagcggggag gggcagagga 1250 <br><br> gttccccgga acccgtgcag attaaagtaa ctgtgaagtt ttaaaaaaaa 1300 <br><br> aaaaaaaaaa 1310 <br><br> &lt;210&gt; 338 &lt;211&gt; 246 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 338 <br><br> Met Thr Leu Ile Glu Gly Val Gly Asp Glu Val Thr Val Leu Phe 15 10 15 <br><br> Ser Val Leu Ala Cys Leu Leu Val Leu Ala Leu Ala Trp Val Ser 20 25 30 <br><br> Thr His Thr Ala Glu Gly Gly Asp Pro Leu Pro Gin Pro Ser Gly 35 40 45 <br><br> Thr Pro Thr Pro Ser Gin Pro Ser Ala Ala Met Ala Ala Thr Asp 50 55 60 <br><br> Ser Met Arg Gly Glu Ala Pro Gly Ala Glu Thr Pro Ser Leu Arg 65 70 75 <br><br> His Arg Gly Gin Ala Ala Gin Pro Glu Pro Ser Thr Gly Phe Thr 80 85 90 <br><br> Ala Thr Pro Pro Ala Pro Asp Ser Pro Gin Glu Pro Leu Val Leu <br><br> 427 <br><br> 95 100 105 <br><br> Arg Leu Lys Phe Leu Asn Asp Ser Glu Gin Val Ala Arg Ala Trp 110 115 120 <br><br> Pro His Asp Thr Ile Gly Ser Leu Lys Arg Thr Gin Phe Pro Gly 125 130 135 <br><br> Arg Glu Gin Gin Val Arg Leu Ile Tyr Gin Gly Gin Leu Leu Gly 140 145 150 <br><br> Asp Asp Thr Gin Thr Leu Gly Ser Leu His Leu Pro Pro Asn Cys 155 160 165 <br><br> Val Leu His Cys His Val Ser Thr Arg Val Gly Pro Pro Asn Pro 170 175 180 <br><br> Pro Cys Pro Pro Gly Ser Glu Pro Gly Pro Ser Gly Leu Glu Ile 185 190 195 <br><br> Gly Ser Leu Leu Leu Pro Leu Leu Leu Leu Leu Leu Leu Leu Leu 200 205 210 <br><br> Trp Tyr Cys Gin Ile Gin Tyr Arg Pro Phe Phe Pro Leu Thr Ala 215 220 225 <br><br> Thr Leu Gly Leu Ala Gly Phe Thr Leu Leu Leu Ser Leu Leu Ala 230 235 240 <br><br> Phe Ala Met Tyr Arg Pro 245 <br><br> &lt;210&gt; 339 &lt;211&gt; 849 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 339 <br><br> gagattggaa acagccaggt tggagcagtg agtgagtaag gaaacctggc 50 tgccctctcc agattcccca ggctctcaga gaagatcagc agaaagtctg 100 caagacccta agaaccatca gccctcagct gcacctcctc ccctccaagg 150 atgacaaagg cgctactcat ctatttggtc agcagctttc ttgccctaaa 2 00 tcaggccagc ctcatcagtc gctgtgactt ggcccaggtg ctgcagctgg 250 aggacttgga tgggtttgag ggttactccc tgagtgactg gctgtgcctg 3 00 gcttttgtgg aaagcaagtt caacatatca aagataaatg aaaatgcgga 350 tggaagcttt gactatggcc tcttccagat caacagccac tactggtgca 400 acgattataa gagttactcg gaaaaccttt gccacgtaga ctgtcaagat 450 <br><br> 428 <br><br> ctgctgaatc ccaaccttct tgcaggcatc cactgcgcaa aaaggattgt 500 <br><br> gtccggagca cgggggatga acaactgggt agaatggagg ttgcactgtt 550 <br><br> caggccggcc actctcctac tggctgacag gatgccgcct gagatgaaac 600 <br><br> agggtgcggg tgcaccgtgg agtcattcca agactcctgt cctcactcag 650 <br><br> ggattcttca tttcttcttc ctactgcctc cacttcatgt tattttcttc 700 <br><br> ccttcccatt tacaactaaa actgaccaga gccccaggaa taaatggttt 750 <br><br> tcttggcttc ctccttactc ccatctggac ccagtcccct ggttcctgtc 800 <br><br> tgttatttgt aaactgagga ccacaataaa gaaatcttta tatttatcg 849 <br><br> &lt;210&gt; 340 &lt;211&gt; 148 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 340 <br><br> Met Thr Lys Ala Leu Leu Ile Tyr Leu Val Ser Ser Phe Leu Ala 15 10 15 <br><br> Leu Asn Gin Ala Ser Leu Ile Ser Arg Cys Asp Leu Ala Gin Val 20 25 30 <br><br> Leu Gin Leu Glu Asp Leu Asp Gly Phe Glu Gly Tyr Ser Leu Ser 35 40 45 <br><br> Asp Trp Leu Cys Leu Ala Phe Val Glu Ser Lys Phe Asn Ile Ser 50 55 60 <br><br> Lys Ile Asn Glu Asn Ala Asp Gly Ser Phe Asp Tyr Gly Leu Phe 65 70 75 <br><br> Gin Ile Asn Ser His Tyr Trp Cys Asn Asp Tyr Lys Ser Tyr Ser 80 85 90 <br><br> Glu Asn Leu Cys His Val Asp Cys Gin Asp Leu Leu Asn Pro Asn 95 100 105 <br><br> Leu Leu Ala Gly Ile His Cys Ala Lys Arg Ile Val Ser Gly Ala 110 115 120 <br><br> Arg Gly Met Asn Asn Trp Val Glu Trp Arg Leu His Cys Ser Gly 125 130 135 <br><br> Arg Pro Leu Ser Tyr Trp Leu Thr Gly Cys Arg Leu Arg 140 145 <br><br> &lt;210&gt; 341 <br><br> &lt;211&gt; 23 <br><br> &lt;212&gt; DNA <br><br> 429 <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 341 ccctccaagg atgacaaagg cgc 23 <br><br> &lt;210&gt; 342 &lt;211&gt; 29 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 342 ggtcagcagc tttcttgccc taaatcagg 29 <br><br> &lt;210&gt; 343 &lt;211&gt; 24 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 343 atctcaggcg gcatcctgtc agcc 24 <br><br> &lt;210&gt; 344 &lt;211&gt; 24 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 344 gtggatgcct gcaagaaggt tggg 24 <br><br> &lt;210&gt; 345 &lt;211&gt; 45 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 345 <br><br> agctttcttg ccctaaatca ggccagcctc atcagtcgct gtgac 45 <br><br> &lt;210&gt; 346 <br><br> &lt;211&gt; 2575 <br><br> &lt;212&gt; DNA <br><br> 430 <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 346 <br><br> tctgacctga ctggaagcgt ccaaagaggg acggctgtca gccctgcttg 50 actgagaacc caccagctca tcccagacac ctcatagcaa cctatttata 100 caaaggggga aagaaacacc tgagcagaat ggaatcatta tttttttccc 150 aaggagaaaa ccggggtaaa gggagggaag caattcaatt tgaagtccct 2 00 gtgaatgggc tttcagaagg caattaaaga aatccactca gagaggactt 250 ggggtgaaac ttgggtcctg tggttttctg attgtaagtg gaagcaggtc 300 ttgcacacgc tgttggcaaa tgtcaggacc aggttaagtg actggcagaa 350 aaacttccag gtggaacaag caacccatgt tctgctgcaa gcttgaagga 400 gcctggagcg ggagaaagct aacttgaaca tgacctgttg catttggcaa 450 gttctagcaa catgctccta aggaagcgat acaggcacag accatgcaga 500 ctccagttcc tcctgctgct cctgatgctg ggatgcgtcc tgatgatggt 550 ggcgatgttg caccctcccc accacaccct gcaccagact gtcacagccc 600 aagccagcaa gcacagccct gaagccaggt accgcctgga ctttggggaa 650 tcccaggatt gggtactgga agctgaggat gagggtgaag agtacagccc 700 tctggagggc ctgccaccct ttatctcact gcgggaggat cagctgctgg 750 tggccgtggc cttaccccag gccagaagga accagagcca gggcaggaga 800 ggtgggagct accgcctcat caagcagcca aggaggcagg ataaggaagc 850 cccaaagagg gactgggggg ctgatgagga cggggaggtg tctgaagaag 900 aggagttgac cccgttcagc ctggacccac gtggcctcca ggaggcactc 950 agtgcccgca tccccctcca gagggctctg cccgaggtgc ggcacccact 1000 gtgtctgcag cagcaccctc aggacagcct gcccacagcc agcgtcatcc 1050 tctgtttcca tgatgaggcc tggtccactc tcctgcggac tgtacacagc 1100 atcctcgaca cagtgcccag ggccttcctg aaggagatca tcctcgtgga 1150 cgacctcagc cagcaaggac aactcaagtc tgctctcagc gaatatgtgg 12 00 ccaggctgga gggggtgaag ttactcagga gcaacaagag gctgggtgcc 1250 atcagggccc ggatgctggg ggccaccaga gccaccgggg atgtgctcgt 13 00 cttcatggat gcccactgcg agtgccaccc aggctggctg gagcccctcc 1350 <br><br> 431 <br><br> tcagcagaat agctggtgac gtgattgact ggaagacttt tggggtgttg gactggaagc atgtgaggaa ggccctccag gtgcccggag aggtggtggc agcgtatgac tctcttatgt ctttcaaggc ctggctctgt cgggtaggac acatctacca ggaggccacc ctgaggaaca cattcaaaga aaccttctac aaggctgaga agccagactg gggttgtcgg acattccact acccatctga acccaggccc cttgggctct gtgcagactg catggtgttg gctccttgca acaccagcag gaaggagatt gctgtcaggc aggagcaggt ggccatccac cagcagcact acattctttc tgggaaatgc gatttgtacc tgcgtccgtg tgaccagata aatgctgtgg aagagaattt tggccatcaa atatatttca tgaagctgat gagaaaaaag ctctatgaaa tatttcattg actgctggct <br><br> &lt;210&gt; 347 <br><br> &lt;211&gt; 639 <br><br> &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens aggagccgag tggtatctcc ggtgatagat 1400 ccagtattac ccctcaaagg acctgcagcg 1450 tggatttcca ctgggaacct ttgccagagc 1500 tcccccataa gccccatcag gagccctgtg 1550 catggacaga cattacttcc aaaacactgg 1600 cgctgcgagg tggtgaaaac ctcgaactgt 1650 ggtggctctg ttgaaatcct tccctgctct 1700 aaatcaggat tcccattccc ccctcgacca 1750 gggttcgcat tgctgagacc tggctggggt 1800 aagcatagcc cagaggcctt ctccttgagc 1850 catggaacgc ttgcagctgc aaaggagact 1900 ggtttctggc taatgtctac cctgagctgt 1950 agtttctctg gaaagctcca caacactgga 2000 ccaggcagaa ggggacatcc tgggctgtcc 2050 gtgacagccg gcagcaacag tacctgcagc 2100 cactttggca gcccacagca cctgtgcttt 2150 gattcttcag aactgcacgg aggaaggcct 2200 gggacttcca ggagaatggg atgattgtcc 2250 atggaagctg tggtgcaaga aaacaataaa 2300 tgatggaaaa gcccgccagc agtggcgatt 2350 atgaacgatg aatgtcaatg tcagaaggaa 2400 aatccagctc caagtgaacg taaagagctt 2450 ccttttgtgt gtgtgctcct tgtgttagga 2500 gaatatagga agtttctcct tttcacacct 2550 gctta 2575 <br><br> 432 <br><br> &lt;400&gt; 347 <br><br> Met Leu Leu Arg Lys Arg Tyr Arg His Arg Pro Cys Arg Leu Gin 15 10 15 <br><br> Phe Leu Leu Leu Leu Leu Met Leu Gly Cys Val Leu Met Met Val 20 25 30 <br><br> Ala Met Leu His Pro Pro His His Thr Leu His Gin Thr Val Thr 35 40 45 <br><br> Ala Gin Ala Ser Lys His Ser Pro Glu Ala Arg Tyr Arg Leu Asp 50 55 60 <br><br> Phe Gly Glu Ser Gin Asp Trp Val Leu Glu Ala Glu Asp Glu Gly 65 70 75 <br><br> Glu Glu Tyr Ser Pro Leu Glu Gly Leu Pro Pro Phe Ile Ser Leu 80 85 90 <br><br> Arg Glu Asp Gin Leu Leu Val Ala Val Ala Leu Pro Gin Ala Arg 95 100 105 <br><br> Arg Asn Gin Ser Gin Gly Arg Arg Gly Gly Ser Tyr Arg Leu Ile 110 115 120 <br><br> Lys Gin Pro Arg Arg Gin Asp Lys Glu Ala Pro Lys Arg Asp Trp 125 130 135 <br><br> Gly Ala Asp Glu Asp Gly Glu Val Ser Glu Glu Glu Glu Leu Thr 140 145 150 <br><br> Pro Phe Ser Leu Asp Pro Arg Gly Leu Gin Glu Ala Leu Ser Ala 155 160 165 <br><br> Arg Ile Pro Leu Gin Arg Ala Leu Pro Glu Val Arg His Pro Leu 170 175 180 <br><br> Cys Leu Gin Gin His Pro Gin Asp Ser Leu Pro Thr Ala Ser Val 185 190 195 <br><br> Ile Leu Cys Phe His Asp Glu Ala Trp Ser Thr Leu Leu Arg Thr 200 205 210 <br><br> Val His Ser Ile Leu Asp Thr Val Pro Arg Ala Phe Leu Lys Glu 215 220 225 <br><br> Ile Ile Leu Val Asp Asp Leu Ser Gin Gin Gly Gin Leu Lys Ser 230 235 240 <br><br> Ala Leu Ser Glu Tyr Val Ala Arg Leu Glu Gly Val Lys Leu Leu 245 250 255 <br><br> Arg Ser Asn Lys Arg Leu Gly Ala Ile Arg Ala Arg Met Leu Gly 260 265 270 <br><br> 433 <br><br> Ala Thr Arg Ala Thr Gly Asp Val Leu Val Phe Met Asp Ala His 275 280 285 <br><br> Cys Glu Cys His Pro Gly Trp Leu Glu Pro Leu Leu Ser Arg Ile 290 295 300 <br><br> Ala Gly Asp Arg Ser Arg Val Val Ser Pro Val Ile Asp Val Ile 305 310 315 <br><br> Asp Trp Lys Thr Phe Gin Tyr Tyr Pro Ser Lys Asp Leu Gin Arg 320 325 330 <br><br> Gly Val Leu Asp Trp Lys Leu Asp Phe His Trp Glu Pro Leu Pro 335 340 345 <br><br> Glu His Val Arg Lys Ala Leu Gin Ser Pro Ile Ser Pro Ile Arg 350 355 360 <br><br> Ser Pro Val Val Pro Gly Glu Val Val Ala Met Asp Arg His Tyr 365 370 375 <br><br> Phe Gin Asn Thr Gly Ala Tyr Asp Ser Leu Met Ser Leu Arg Gly 380 385 390 <br><br> Gly Glu Asn Leu Glu Leu Ser Phe Lys Ala Trp Leu Cys Gly Gly 395 400 405 <br><br> Ser Val Glu Ile Leu Pro Cys Ser Arg Val Gly His Ile Tyr Gin 410 415 420 <br><br> Asn Gin Asp Ser His Ser Pro Leu Asp Gin Glu Ala Thr Leu Arg 425 430 435 <br><br> Asn Arg Val Arg Ile Ala Glu Thr Trp Leu Gly Ser Phe Lys Glu 440 445 450 <br><br> Thr Phe Tyr Lys His Ser Pro Glu Ala Phe Ser Leu Ser Lys Ala 455 460 465 <br><br> Glu Lys Pro Asp Cys Met Glu Arg Leu Gin Leu Gin Arg Arg Leu 470 475 480 <br><br> Gly Cys Arg Thr Phe His Trp Phe Leu Ala Asn Val Tyr Pro Glu 485 490 495 <br><br> Leu Tyr Pro Ser Glu Pro Arg Pro Ser Phe Ser Gly Lys Leu His 500 505 510 <br><br> Asn Thr Gly Leu Gly Leu Cys Ala Asp Cys Gin Ala Glu Gly Asp 515 520 525 <br><br> Ile Leu Gly Cys Pro Met Val Leu Ala Pro Cys Ser Asp Ser Arg 530 535 540 <br><br> Gin Gin Gin Tyr Leu Gin His Thr Ser Arg Lys Glu Ile His Phe <br><br> 434 <br><br> 545 550 555 <br><br> Gly Ser Pro Gin His Leu Cys Phe Ala Val Arg Gin Glu Gin Val 560 565 570 <br><br> Ile Leu Gin Asn Cys Thr Glu Glu Gly Leu Ala Ile His Gin Gin 575 580 585 <br><br> His Trp Asp Phe Gin Glu Asn Gly Met Ile Val His Ile Leu Ser 590 595 600 <br><br> Gly Lys Cys Met Glu Ala Val Val Gin Glu Asn Asn Lys Asp Leu 605 610 615 <br><br> Tyr Leu Arg Pro Cys Asp Gly Lys Ala Arg Gin Gin Trp Arg Phe 620 625 630 <br><br> Asp Gin Ile Asn Ala Val Asp Glu Arg 635 <br><br> &lt;210&gt; 348 &lt;211&gt; 23 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 348 ggagaggtgg tggccatgga cag 23 <br><br> &lt;210&gt; 349 &lt;211&gt; 24 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 349 ctgtcactgc aaggagccaa cacc 24 <br><br> &lt;210&gt; 350 &lt;211&gt; 45 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 350 <br><br> tatgtcgctg cgaggtggtg aaaacctcga actgtctttc aaggc 45 <br><br> &lt;210&gt; 351 <br><br> &lt;211&gt; 2524 <br><br> &lt;212&gt; DNA <br><br> 435 <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 351 <br><br> cgccaagcat gcagtaaagg ctgaaaatct gggtcacagc tgaggaagac 50 ctcagacatg gagtccagga tgtggcctgc gctgctgctg tcccacctcc 100 tccctctctg gccactgctg ttgctgcccc tcccaccgcc tgctcagggc 150 tcttcatcct cccctcgaac cccaccagcc ccagcccgcc ccccgtgtgc 200 caggggaggc ccctcggccc cacgtcatgt gtgcgtgtgg gagcgagcac 250 ctccaccaag ccgatctcct cgggtcccaa gatcacgtcg gcaagtcctg 3 00 cctggcactg cacccccagc caccccatca ggctttgagg aggggccgcc 350 ctcatcccaa tacccctggg ctatcgtgtg gggtcccacc gtgtctcgag 400 aggatggagg ggaccccaac tctgccaatc ccggatttct ggactatggt 450 tttgcagccc ctcatgggct cgcaacccca caccccaact cagactccat 500 gcgaggtgat ggagatgggc ttatccttgg agaggcacct gccaccctgc 550 ggccattcct gttcgggggc cgtggggaag gtgtggaccc ccagctctat 600 <br><br> gtcacaatta ccatctccat catcattgtt ctcgtggcca ctggcatcat 650 cttcaagttc tgctgggacc gcagccagaa gcgacgcaga ccctcagggc 7 00 agcaaggtgc cctgaggcag gaggagagcc agcagccact gacagacctg 750 tccccggctg gagtcactgt gctgggggcc ttcggggact cacctacccc 800 cacccctgac catgaggagc cccgaggggg accccggcct gggatgcccc 850 accccaaggg ggctccagcc ttccagttga accggtgagg gcaggggcaa 900 tgggatggga gggcaaagag ggaaggcaac ttaggtcttc agagctgggg 950 tgggggtgcc ctctggatgg gtagtgagga ggcaggcgtg gcctcccaca 1000 gcccctggcc ctcccaaggg ggctggacca gctcctctct gggaggcacc 1050 cttccttctc ccagtctctc aggatctgtg tcctattctc tgctgcccat 1100 aactccaact ctgccctctt tggttttttc tcatgccacc ttgtctaaga 1150 caactctgcc ctcttaacct tgattccccc tctttgtctt gaacttcccc 1200 ttctattctg gcctacccct tggttcctga ctgtgccctt tccctcttcc 1250 <br><br> 436 <br><br> tctcaggatt cccctggtga atctgtgatg ccaagcagga ggccaagggg ccggcacagc ggcagctgtg gggagctggg gccacagggg cacaccaccc ggaacactcc ccagccccac cctcctgcag gtgggggcct cacatatctg cacccttgtg cactcacatg aaagccttgc aggccatttg cacacgctcc tgcaccctct tcagctgact ctcatgttct ctcgtctcac acattctgtg ctcagctcac tcagtggtca ctctcatgtg cgtttcccgg cctgatgttg actctctccc tcatgaacac ccacccacct gctgctccag aggtgggtgg gaggtgagct tcggtcatgg tctcgtccca ttccacacca tcctactcca aggatgccgg catcaccctg gggtagtgag gccccagact tcacccccag tctgacagat gggttttggg gagtcgcctg actcccattt gcccttccct ttctcctaca cctggctgtc tgtgtgtgtg ccattctctg cagtcctccc ttcccagcct ccctttgggc tgccagggac cggagtcagc tggttcaagg aagtctaccc ttcccttccc ggactccctc tccttccttc cactctcctt ccttttgctt caggttcttc cctccttctc actggttttt ttccctggct cctaggctgt gatatatatt ttcttgtggt gatcatcttg aattactgtg tcaaataaag cctttgcaag ataa 2524 <br><br> &lt;210&gt; 352 <br><br> &lt;211&gt; 243 <br><br> &lt;212&gt; PRT <br><br> cccccaatgt tggggtgcag 1300 ccccatccca ctgagggtgg 1350 ctcctggctc ctgccccttg 1400 gggcaatcct atctgctcgc 1450 tgacttcggg tccctgtccc 1500 <br><br> acactcacct ccaccttcac 1550 ccccgtccat accgctccgc 1600 atttgcactc tctccttccc 1650 gcgtttcctg cacactttac 1700 tggtggtgtg cggcgtgctc 1750 cgtttccgca gcccctgcgt 1800 gggggctcct tgggccctca 1850 tttgtttctc tgtctcccca 1900 agggctcccc cttgggaatg 1950 cccactgcta aaatctgttt 2000 ctgcactaca tgagaaaggg 2 050 gtcccttttg tcttgtctgt 2100 gacttcagag ccccctgagc 2150 ctccctaact ccacctaggc 2200 ccatcgggag ctctgcctcc 2250 ctgtcccctc ctttcctccc 2300 ccctgccctt tccccctcct 2350 ccaccttcct ccttcccttc 2400 tttgtattat ctctttcttc 2450 ggatgtaagt ttcaaaattt 2500 <br><br> 437 <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 352 <br><br> Met Arg Pro Gin Gly Pro Ala Ala Ser Pro Gin Arg Leu Arg Gly 15 10 15 <br><br> Leu Leu Leu Leu Leu Leu Leu Gin Leu Pro Ala Pro Ser Ser Ala 20 25 30 <br><br> Ser Glu Ile Pro Lys Gly Lys Gin Lys Ala Gin Leu Arg Gin Arg 35 40 45 <br><br> Glu Val Val Asp Leu Tyr Asn Gly Met Cys Leu Gin Gly Pro Ala 50 55 60 <br><br> Gly Val Pro Gly Arg Asp Gly Ser Pro Gly Ala Asn Val Ile Pro 65 70 75 <br><br> Gly Thr Pro Gly Ile Pro Gly Arg Asp Gly Phe Lys Gly Glu Lys 80 85 90 <br><br> Gly Glu Cys Leu Arg Glu Ser Phe Glu Glu Ser Trp Thr Pro Asn 95 100 105 <br><br> Tyr Lys Gin Cys Ser Trp Ser Ser Leu Asn Tyr Gly Ile Asp Leu 110 115 120 <br><br> Gly Lys Ile Ala Glu Cys Thr Phe Thr Lys Met Arg Ser Asn Ser 125 130 135 <br><br> Ala Leu Arg Val Leu Phe Ser Gly Ser Leu Arg Leu Lys Cys Arg 140 145 150 <br><br> Asn Ala Cys Cys Gin Arg Trp Tyr Phe Thr Phe Asn Gly Ala Glu 155 160 165 <br><br> Cys Ser Gly Pro Leu Pro Ile Glu Ala Ile Ile Tyr Leu Asp Gin 170 175 180 <br><br> Gly Ser Pro Glu Met Asn Ser Thr lie Asn Ile His Arg Thr Ser 185 190 195 <br><br> Ser Val Glu Gly Leu Cys Glu Gly Ile Gly Ala Gly Leu Val Asp 200 205 210 <br><br> Val Ala Ile Trp Val Gly Thr Cys Ser Asp Tyr Pro Lys Gly Asp 215 220 225 <br><br> Ala Ser Thr Gly Trp Asn Ser Val Ser Arg Ile Ile Ile Glu Glu 230 235 240 <br><br> Leu Pro Lys <br><br> &lt;210&gt; 353 <br><br> 438 <br><br> &lt;211&gt; 480 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 353 <br><br> gttaaccagc gcagtcctcc gtgcgtcccg cccgccgctg ccctcactcc 50 <br><br> cggccaggat ggcatcctgt ctggccctgc gcatggcgct gctgctggtc 100 <br><br> tccggggttc tggcccctgc ggtgctcaca gacgatgttc cacaggagcc 150 <br><br> cgtgcccacg ctgtggaacg agccggccga gctgccgtcg ggagaaggcc 200 <br><br> ccgtggagag caccagcccc ggccgggagc ccgtggacac cggtccccca 250 <br><br> gcccccaccg tcgcgccagg acccgaggac agcaccgcgc aggagcggct 300 <br><br> ggaccagggc ggcgggtcgc tggggcccgg cgctatcgcg gccatcgtga 3 50 <br><br> tcgccgccct gctggccacc tgcgtggtgc tggcgctcgt ggtcgtcgcg 400 <br><br> ctgagaaagt tttctgcctc ctgaagcgaa taaaggggcc gcgcccggcc 450 <br><br> gcggcgcgac tcggcaaaaa aaaaaaaaaa 480 <br><br> &lt;210&gt; 354 <br><br> &lt;211&gt; 121 &lt;212&gt; PRT &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 354 <br><br> Met Ala Ser Cys Leu Ala Leu Arg Met Ala Leu Leu Leu Val Ser 15 10 15 <br><br> Gly Val Leu Ala Pro Ala Val Leu Thr Asp Asp Val Pro Gin Glu 20 25 30 <br><br> Pro Val Pro Thr Leu Trp Asn Glu Pro Ala Glu Leu Pro Ser Gly 35 40 45 <br><br> Glu Gly Pro Val Glu Ser Thr Ser Pro Gly Arg Glu Pro Val Asp 50 55 60 <br><br> Thr Gly Pro Pro Ala Pro Thr Val Ala Pro Gly Pro Glu Asp Ser 65 70 75 <br><br> Thr Ala Gin Glu Arg Leu Asp Gin Gly Gly Gly Ser Leu Gly Pro 80 85 90 <br><br> Gly Ala Ile Ala Ala Ile Val Ile Ala Ala Leu Leu Ala Thr Cys 95 100 105 <br><br> Val Val Leu Ala Leu Val 110 <br><br> Val Val Ala Leu Arg Lys Phe Ser Ala 115 120 <br><br> 439 <br><br> Ser <br><br> &lt;210&gt; 355 <br><br> &lt;211&gt; 2134 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 355 ggccgttggt tggtgcgcgg ctgaagggtg gttggccggc ggcgggccgg gacgggcatg gtgcctgacg gcggcgctgg cccacggctg tctccaagaa gttctccttc taccgccacc tgggtgggcg acatccccgt gtcaggggcg cgacacgatg aaggagctgc acctggccat agaagctgga ccaagtggcg acagcagtgt taccagggga agatgtactt ccccgggtat catcttccgg gagcaggtgc acctcatcca acctggcacc aggcagctgg ggaggagggc agcctagcac ctgaaggatc aatgccatca agtagccccc agaggcgctg ggagtgttgc tgctccatct cacgctgggg gtcaacctgg atggacacac atacatgaaa accaggccgc tggcatcttc cagtacgaga ccatctcctg acgtcgcctg ctttggctat aactgcgagt acccgtgcca gggccctact gtccctgggg gggctccccg ccttccacct ggctgtcatc ttcaggggcg caccacttcc aagcctgtgt tggaagtcag ctgtccaggg cctcctgaac gtaagtcccc tcctcaaacc aacacaggca cgtgggtgag tatgtgtggg gcacaggctg ctagaggggc tcccgaggag gtggaacctc gcggctgcag tccttttctc cctcaaaggt tggcgcgagc agcgtcgttg 50 gccctgctgc tgtgcctggt 100 tctgcactgc cacagcaact 150 atgtgaactt caagtcctgg 2 00 ctgctcaccg actggagcga 250 ccccgccaag atcacccggg 3 00 accagatgat ggatcagctg 350 ttccccaacg agctgcgaaa 400 gaacgccatc atcgaaaggc 450 agctctccag ggagggaccc 500 ccccgcgggg acctccccta 550 caccgccctc ccctgaagtt 600 ggaccccttc cctccgggcc 650 atcgactgtc agcaccgctg 7 00 caacaactgc acagactcgc 750 agggctcagg catcacaccc 800 tcccaggctc tccttggagg 850 gggtagggcg gggccgtggg 900 cccacaggtc ctcggcgcag 950 tacataaata actggcacaa 1000 gtgtgtgtat gtgagcacct 1050 gctccctcag ctcccacgtc 1100 aacccagctc tgcgcaggag 1150 ctccgaccct cagctggagg 12 00 <br><br> 440 <br><br> cgggcatctt tcctaaaggg tccccatagg gtctggttcc accccatccc 1250 <br><br> aggtctgtgg tcagagcctg ggagggttcc ctacgatggt taggggtgcc 1300 <br><br> ccatggaggg gctgactgcc ccacattgcc tttcagacag gacacgagca 1350 <br><br> tgaggtaagg ccgccctgac ctggacttca gggggagggg gtaaagggag 1400 <br><br> agaggagggg ggctaggggg tcctctagat cagtgggggc actgcaggtg 1450 <br><br> gggctctccc tatacctggg acacctgctg gatgtcacct ctgcaaccac 1500 <br><br> acccatgtgg tggtttcatg aacagaccac gctcctctgc cttctcctgg 1550 <br><br> cctgggacac acagagccac cccggccttg tgagtgaccc agagaaggga 1600 <br><br> ggcctcggga gaaggggtgc tcgtaagcca acaccagcgt gccgcggcct 1650 <br><br> gcacaccctt cggacatccc aggcacgagg gtgtcgtgga tgtggccaca 1700 <br><br> cataggacca cacgtcccag ctgggaggag aggcctgggg cccccaggga 1750 <br><br> gggaggcagg gggtggggga catggagagc tgaggcagcc tcgtctcccc 1800 <br><br> gcagcctggt atcgccagcc ttaaggtgtc tggagccccc acacttggcc 1850 <br><br> aacctgacct tggaagatgc tgctgagtgt ctcaagcagc actgacagca 1900 <br><br> gctgggcctg ccccagggca acgtgggggc ggagactcag ctggacagcc 1950 <br><br> cctgcctgtc actctggagc tgggctgctg ctgcctcagg accccctctc 2 000 <br><br> cgaccccgga cagagctgag ctggccaggg ccaggagggc gggagggagg 2050 <br><br> gaatgggggt gggctgtgcg cagcatcagc gcctgggcag gtccgcagag 2100 <br><br> ctgcgggatg tgattaaagt ccctgatgtt tctc 2134 <br><br> &lt;210&gt; 356 &lt;211&gt; 157 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 356 <br><br> Met Ala Leu Leu Leu Cys Leu Val Cys Leu Thr Ala Ala Leu Ala 15 10 15 <br><br> His Gly Cys Leu His Cys His Ser Asn Phe Ser Lys Lys Phe Ser 20 25 30 <br><br> Phe Tyr Arg His His Val Asn Phe Lys Ser Trp Trp Val Gly Asp 35 40 45 <br><br> Ile Pro Val Ser Gly Ala Leu Leu Thr Asp Trp Ser Asp Asp Thr <br><br> 441 <br><br> 50 55 60 <br><br> Met Lys Glu Leu His Leu Ala Ile Pro Ala Lys Ile Thr Arg Glu 65 70 75 <br><br> Lys Leu Asp Gin Val Ala Thr Ala Val Tyr Gin Met Met Asp Gin 80 85 90 <br><br> Leu Tyr Gin Gly Lys Met Tyr Phe Pro Gly Tyr Phe Pro Asn Glu 95 100 105 <br><br> Leu Arg Asn Ile Phe Arg Glu Gin Val His Leu Ile Gin Asn Ala 110 115 120 <br><br> Ile Ile Glu Arg His Leu Ala Pro Gly Ser Trp Gly Gly Gly Gin 125 130 135 <br><br> Leu Ser Arg Glu Gly Pro Ser Leu Ala Pro Glu Gly Ser Met Pro 140 145 150 <br><br> Ser Pro Arg Gly Asp Leu Pro 155 <br><br> &lt;210&gt; 357 &lt;211&gt; 1536 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 357 <br><br> agcaggagca ggagagggac aatggaagct gccccgtcca ggttcatgtt 50 cctcttattt ctcctcacgt gtgagctggc tgcagaagtt gctgcagaag 100 ttgagaaatc ctcagatggt cctggtgctg cccaggaacc cacgtggctc 150 acagatgtcc cagctgccat ggaattcatt gctgccactg aggtggctgt 2 00 cataggcttc ttccaggatt tagaaatacc agcagtgccc atactccata 250 gcatggtgca aaaattccca ggcgtgtcat ttgggatcag cactgattct 300 gaggttctga cacactacaa catcactggg aacaccatct gcctctttcg 350 cctggtagac aatgaacaac tgaatttaga ggacgaagac attgaaagca 400 ttgatgccac caaattgagc cgtttcattg agatcaacag cctccacatg 450 gtgacagagt acaaccctgt gactgtgatt gggttattca acagcgtaat 500 tcagattcat ctcctcctga taatgaacaa ggcctcccca gagtatgaag 550 agaacatgca cagataccag aaggcagcca agctcttcca ggggaagatt 600 ctctttattc tggtggacag tggtatgaaa gaaaatggga aggtgatatc 650 atttttcaaa ctaaaggagt ctcaactgcc agctttggca atttaccaga 700 <br><br> 442 <br><br> ctctagatga cgagtgggat acactgccca cagcagaagt ttccgtagag 750 <br><br> catgtgcaaa acttttgtga tggattccta agtggaaaat tgttgaaaga 800 <br><br> aaatcgtgaa tcagaaggaa agactccaaa ggtggaactc tgacttctcc 850 <br><br> ttggaactac atatggccaa gtatctactt tatgcaaagt aaaaaggcac 900 <br><br> aactcaaatc tcagagacac taaacaacag gatcactagg cctgccaacc 950 <br><br> acacacacac gcacgtgcac acacgcacgc acgcgtgcac acacacacgc 1000 <br><br> gcacacacac acacacacag agcttcattt cctgtcttaa aatctcgttt 1050 <br><br> tctcttcttc cttcttttaa atttcatatc ctcactccct atccaatttc 1100 <br><br> cttcttatcg tgcattcata ctctgtaagc ccatctgtaa cacacctaga 1150 <br><br> tcaaggcttt aagagactca ctgtgatgcc tctatgaaag agaggcattc 1200 <br><br> ctagagaaag attgttccaa tttgtcattt aatatcaagt ttgtatactg 1250 <br><br> cacatgactt acacacaaca tagttcctgc tcttttaagg ttacctaagg 13 00 <br><br> gttgaaactc taccttcttt cataagcaca tgtccgtctc tgactcagga 1350 <br><br> tcaaaaacca aaggatggtt ttaaacacct ttgtgaaatt gtctttttgc 1400 <br><br> cagaagttaa aggctgtctc caagtccctg aactcagcag aaatagacca 1450 <br><br> tgtgaaaact ccatgcttgg ttagcatctc caactcccta tgtaaatcaa 1500 <br><br> caacctgcat aataaataaa aggcaatcat gttata 1536 <br><br> &lt;210&gt; 358 &lt;211&gt; 273 &lt;212&gt; PRT &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 358 <br><br> Met Glu Ala Ala Pro Ser Arg Phe Met Phe Leu Leu Phe Leu Leu 15 10 15 <br><br> Thr Cys Glu Leu Ala Ala Glu Val Ala Ala Glu Val Glu Lys Ser 20 25 30 <br><br> Ser Asp Gly Pro Gly Ala Ala Gin Glu Pro Thr Trp Leu Thr Asp 35 40 45 <br><br> Val Pro Ala Ala Met Glu Phe Ile Ala Ala Thr Glu Val Ala Val 50 55 60 <br><br> Ile Gly Phe Phe Gin Asp Leu Glu Ile Pro Ala Val Pro Ile Leu 65 70 75 <br><br> 443 <br><br> His Ser Met Val Gin Lys Phe Pro Gly Val Ser Phe Gly Ile Ser 80 85 90 <br><br> Thr Asp Ser Glu Val Leu Thr His Tyr Asn Ile Thr Gly Asn Thr 95 100 105 <br><br> Ile Cys Leu Phe Arg Leu Val Asp Asn Glu Gin Leu Asn Leu Glu 110 115 120 <br><br> Asp Glu Asp Ile Glu Ser Ile Asp Ala Thr Lys Leu Ser Arg Phe 125 130 135 <br><br> Ile Glu Ile Asn Ser Leu His Met Val Thr Glu Tyr Asn Pro Val 140 145 150 <br><br> Thr Val Ile Gly Leu Phe Asn Ser Val Ile Gin Ile His Leu Leu 155 160 165 <br><br> Leu Ile Met Asn Lys Ala Ser Pro Glu Tyr Glu Glu Asn Met His 170 175 180 <br><br> Arg Tyr Gin Lys Ala Ala Lys Leu Phe Gin Gly Lys Ile Leu Phe <br><br> 185 190 195 <br><br> Ile Leu Val Asp Ser Gly Met Lys Glu Asn Gly Lys Val Ile Ser <br><br> 200 205 210 <br><br> Phe Phe Lys Leu Lys Glu Ser Gin Leu Pro Ala Leu Ala lie Tyr <br><br> 215 220 225 <br><br> Gin Thr Leu Asp Asp Glu Trp Asp Thr Leu Pro Thr Ala Glu Val <br><br> 230 235 240 <br><br> Ser Val Glu His Val Gin Asn Phe Cys Asp Gly Phe Leu Ser Gly <br><br> 245 250 255 <br><br> Lys Leu Leu Lys Glu Asn Arg Glu Ser Glu Gly Lys Thr Pro Lys <br><br> 260 265 270 <br><br> Val Glu Leu <br><br> &lt;210&gt; 359 &lt;211&gt; 24 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 359 ccagcagtgc ccatactcca tagc 24 <br><br> &lt;210&gt; 360 &lt;211&gt; 20 <br><br> 444 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 360 tgacgagtgg gatacactgc 20 <br><br> &lt;210&gt; 361 &lt;211&gt; 24 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 361 gctctacgga aacttctgct gtgg 24 <br><br> &lt;210&gt; 362 &lt;211&gt; 50 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 362 <br><br> attcccaggc gtgtcatttg ggatcagcac tgattctgag gttctgacac 50 <br><br> &lt;210&gt; 363 <br><br> &lt;211&gt; 1777 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 363 <br><br> ggagagccgc ggctgggacc ggagtgggga gcgcggcgtg gaggtgccac <br><br> 50 <br><br> ccggcgcggg tggcggagag atcagaagcc tcttccccaa gccgagccaa <br><br> 100 <br><br> cctcagcggg gacccgggct cagggacgcg gcggcggcgg cggcgactgc <br><br> 150 <br><br> agtggctgga cgatggcagc gtccgccgga gccggggcgg tgattgcagc <br><br> 200 <br><br> cccagacagc cggcgctggc tgtggtcggt gctggcggcg gcgcttgggc <br><br> 250 <br><br> tcttgacagc tggagtatca gccttggaag tatatacgcc aaaagaaatc <br><br> 300 <br><br> ttcgtggcaa atggtacaca agggaagctg acctgcaagt tcaagtctac <br><br> 350 <br><br> tagtacgact ggcgggttga cctcagtctc ctggagcttc cagccagagg <br><br> 400 <br><br> gggccgacac tactgtgtcg tttttccact actcccaagg gcaagtgtac <br><br> 450 <br><br> 445 <br><br> cttgggaatt atccaccatt taaagacaga tgacaagaaa gatgcatcaa tcaacataga atggcaccta tatctgtgat gtcaaaaacc cctggacaca ttaggctcta tgtcgtagaa tccagtttgg gtagtggtgg gcatagttac ctctgctcat cagcatgatt ctggctgtcc aaacgggatt acactggctg cagtacatca gcaggctcct cggaagtccc cctccgacac tgccttctgg atctcaccag ggcccagtca tccggcggac atcacagtga caagattaac tgcggatatc cgaaagaatt aagagaatac gaaacaaaac caaactggac tctcgtgcag atgtagcctt ggagacccag gcaaggacaa ggagagaaag atgtgtacaa aggatatgta cctgatatga ggagccagtg ttgcatgatg atatgtaccc attgtcttgc tgtttttgta caattgggag atttcagaaa cattcctttc tgccttaatg gagacaatag cagatcctgt ccttttaatc taagggctta agactgatta tggaggatgg agatgctatg atggaagcat cagtatcagt accatttatt tgtctgccgc ctatgccact tgaaaacaat ttgagaagtt aaaatatggg gcaattgtta gccttacatg tttgcaccct tgaaatgtgt catatcaatt attagcaaag gataaatgcc gaaggtcact tcaatactga ttaagtagaa aatccaagct cgtggagagt aaaaagtatc ggtttta 11' &lt;210&gt; 364 <br><br> atcagctggg ctggagacct 500 aaatatgcag tttatacaca 550 ctcctgacat cgttgtccag 600 aaagagaatt tgcctgtgtt 650 tgctgtggtc ctaggtctca 700 tctatagaag gaaaaactct 750 gagagtttgt caccagttaa 800 tgagggtctt gtaaagagtc 850 tatatgcaca gttagaccac 900 aagtcagagt ctgtggtgta 950 ctagaacata tcctcagcaa 1000 aaaatgtagc ccattaccac 1050 gtacacgtgt actcacagag 1100 taaatattct atttagtcat 1150 aaaagatggt atgattctac 1200 ctttcttttc aggtcattta 1250 accatcattt agaaatggtt 13 00 agtatttcca gtagacatgg 1350 gtcttagcat ttactgtagt 1400 acccagggtg gcctttagca 1450 ttttaaaaaa tacccattgg 1500 tttttgaagt ttttctcact 1550 ttgtgtagac ttactttaag 1600 tctggattca taatagcaag 1650 tcattctgga cacagttgga 1700 ttgcttgaga acttttgtaa 1750 <br><br> 446 <br><br> &lt;211&gt; 269 &lt;212&gt; PRT &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 364 <br><br> Met Ala Ala Ser Ala Gly Ala Gly Ala Val Ile Ala Ala Pro Asp <br><br> 15 10 15 <br><br> Ser Arg Arg Trp Leu Trp Ser Val Leu Ala Ala Ala Leu Gly Leu <br><br> 20 25 30 <br><br> Leu Thr Ala Gly Val Ser Ala Leu Glu Val Tyr Thr Pro Lys Glu <br><br> 35 40 45 <br><br> Ile Phe Val Ala Asn Gly Thr Gin Gly Lys Leu Thr Cys Lys Phe <br><br> 50 55 60 <br><br> Lys Ser Thr Ser Thr Thr Gly Gly Leu Thr Ser Val Ser Trp Ser <br><br> 65 70 75 <br><br> Phe Gin Pro Glu Gly Ala Asp Thr Thr Val Ser Phe Phe His Tyr <br><br> 80 85 90 <br><br> Ser Gin Gly Gin Val Tyr Leu Gly Asn Tyr Pro Pro Phe Lys Asp <br><br> 95 100 105 <br><br> Arg Ile Ser Trp Ala Gly Asp Leu Asp Lys Lys Asp Ala Ser Ile <br><br> 110 115 120 <br><br> Asn Ile Glu Asn Met Gin Phe Ile His Asn Gly Thr Tyr Ile Cys <br><br> 125 130 135 <br><br> Asp Val Lys Asn Pro Pro Asp Ile Val Val Gin Pro Gly His Ile <br><br> 140 145 150 <br><br> Arg Leu Tyr Val Val Glu Lys Glu Asn Leu Pro Val Phe Pro Val <br><br> 155 160 165 <br><br> Trp Val Val Val Gly Ile Val Thr Ala Val Val Leu Gly Leu Thr <br><br> 170 175 180 <br><br> Leu Leu Ile Ser Met Ile Leu Ala Val Leu Tyr Arg Arg Lys Asn <br><br> 185 190 195 <br><br> Ser Lys Arg Asp Tyr Thr Gly Cys Ser Thr Ser Glu Ser Leu Ser <br><br> 200 205 210 <br><br> Pro Val Lys Gin Ala Pro Arg Lys Ser Pro Ser Asp Thr Glu Gly <br><br> 215 220 225 <br><br> Leu Val Lys Ser Leu Pro Ser Gly Ser His Gin Gly Pro Val Ile <br><br> 230 235 240 <br><br> Tyr Ala Gin Leu Asp His Ser Gly Gly His His Ser Asp Lys Ile 245 250 255 <br><br> 447 <br><br> Asn Lys Ser Glu Ser Val Val Tyr Ala Asp Ile Arg Lys Asn 260 265 <br><br> &lt;210&gt; 365 <br><br> &lt;211&gt; 1321 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 365 <br><br> gccggctgtg cagagacgcc atgtaccggc tcctgtcagc agtgactgcc 50 <br><br> cgggctgccg cccccggggg cttggcctca agctgcggac gacgcggggt 100 <br><br> ccatcagcgc gccgggctgc cgcctctcgg ccacggctgg gtcgggggcc 150 <br><br> tcgggctggg gctggggctg gcgctcgggg tgaagctggc aggtgggctg 200 <br><br> aggggcgcgg ccccggcgca gtcccccgcg gcccccgacc ctgaggcgtc 250 <br><br> gcctctggcc gagccgccac aggagcagtc cctcgccccg tggtctccgc 300 <br><br> agaccccggc gccgccctgc tccaggtgct tcgccagagc catcgagagc 350 <br><br> agccgcgacc tgctgcacag gatcaaggat gaggtgggcg caccgggcat 400 <br><br> agtggttgga gtttctgtag atggaaaaga agtctggtca gaaggtttag 450 <br><br> gttatgctga tgttgagaac cgtgtaccat gtaaaccaga gacagttatg 500 <br><br> cgaattgcta gcatcagcaa aagtctcacc atggttgctc ttgccaaatt 550 <br><br> gtgggaagca gggaaactgg atcttgatat tccagtacaa cattatgttc 600 <br><br> ccgaattccc agaaaaagaa tatgaaggtg aaaaggtttc tgtcacaaca 650 <br><br> agattactga tttcccattt aagtggaatt cgtcattatg aaaaggacat 7 00 <br><br> aaaaaaggtg aaagaagaga aagcttataa agccttgaag atgatgaaag 750 <br><br> agaatgttgc atttgagcaa gaaaaagaag gcaaaagtaa tgaaaagaat 800 <br><br> gattttacta aatttaaaac agagcaggag aatgaagcca aatgccggaa 850 <br><br> ttcaaaacct ggcaagaaaa agaatgattt tgaacaaggc gaattatatt 900 <br><br> tgagagaaaa gtttgaaaat tcaattgaat ccctaagatt atttaaaaat 950 <br><br> gatcctttgt tcttcaaacc tggtagtcag tttttgtatt caacttttgg 1000 <br><br> ctatacccta ctggcagcca tagtagagag agcttcagga tgtaaatatt 1050 <br><br> tggactatat gcagaaaata ttccatgact tggatatgct gacgactgtg 1100 <br><br> caggaagaaa acgagccagt gatttacaat agagcaaggt aaatgaatac 1150 <br><br> cttctgctgt gtctagctat atcgcatctt aacactattt tattaattaa 1200 <br><br> 448 <br><br> aagtcaaatt ttctttgttt ccattccaaa atcaacctgc cacattttgg 1250 <br><br> gagcttttct acatgtctgt tttctcatct gtaaagtgaa ggaagtaaaa 1300 <br><br> catgtttata aagtaaaaaa a 1321 <br><br> &lt;210&gt; 366 &lt;211&gt; 373 &lt;212&gt; PRT &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 366 <br><br> Met Tyr Arg Leu Leu Ser Ala Val Thr Ala Arg Ala Ala Ala Pro 15 10 15 <br><br> Gly Gly Leu Ala Ser Ser Cys Gly Arg Arg Gly Val His Gin Arg 20 25 30 <br><br> Ala Gly Leu Pro Pro Leu Gly His Gly Trp Val Gly Gly Leu Gly 35 40 45 <br><br> Leu Gly Leu Gly Leu Ala Leu Gly Val Lys Leu Ala Gly Gly Leu 50 55 60 <br><br> Arg Gly Ala Ala Pro Ala Gin Ser Pro Ala Ala Pro Asp Pro Glu 65 70 75 <br><br> Ala Ser Pro Leu Ala Glu Pro Pro Gin Glu Gin Ser Leu Ala Pro 80 85 90 <br><br> Trp Ser Pro Gin Thr Pro Ala Pro Pro Cys Ser Arg Cys Phe Ala 95 100 105 <br><br> Arg Ala Ile Glu Ser Ser Arg Asp Leu Leu His Arg Ile Lys Asp 110 115 120 <br><br> Glu Val Gly Ala Pro Gly Ile Val Val Gly Val Ser Val Asp Gly 125 130 135 <br><br> Lys Glu Val Trp Ser Glu Gly Leu Gly Tyr Ala Asp Val Glu Asn 140 145 150 <br><br> Arg Val Pro Cys Lys Pro Glu Thr Val Met Arg Ile Ala Ser Ile <br><br> 155 160 165 <br><br> Ser Lys Ser Leu Thr Met Val Ala Leu Ala Lys Leu Trp Glu Ala 170 175 180 <br><br> Gly Lys Leu Asp Leu Asp Ile Pro Val Gin His Tyr Val Pro Glu 185 190 195 <br><br> Phe Pro Glu Lys Glu Tyr Glu Gly Glu Lys Val Ser Val Thr Thr 200 205 210 <br><br> 449 <br><br> Arg Leu Leu Ile Ser His Leu Ser Gly Ile Arg His Tyr Glu Lys <br><br> 215 220 225 <br><br> Asp Ile Lys Lys Val Lys Glu Glu Lys Ala Tyr Lys Ala Leu Lys <br><br> 230 235 240 <br><br> Met Met Lys Glu Asn Val Ala Phe Glu Gin Glu Lys Glu Gly Lys <br><br> 245 250 255 <br><br> Ser Asn Glu Lys Asn Asp Phe Thr Lys Phe Lys Thr Glu Gin Glu <br><br> 260 265 270 <br><br> Asn Glu Ala Lys Cys Arg Asn Ser Lys Pro Gly Lys Lys Lys Asn <br><br> 275 280 285 <br><br> Asp Phe Glu Gin Gly Glu Leu Tyr Leu Arg Glu Lys Phe Glu Asn <br><br> 290 295 300 <br><br> Ser Ile Glu Ser Leu Arg Leu Phe Lys Asn Asp Pro Leu Phe Phe <br><br> 305 310 315 <br><br> Lys Pro Gly Ser Gin Phe Leu Tyr Ser Thr Phe Gly Tyr Thr Leu <br><br> 320 325 330 <br><br> Leu Ala Ala Ile Val Glu Arg Ala Ser Gly Cys Lys Tyr Leu Asp <br><br> 335 340 345 <br><br> Tyr Met Gin Lys Ile Phe His Asp Leu Asp Met Leu Thr Thr Val <br><br> 350 355 360 <br><br> Gin Glu Glu Asn Glu Pro Val Ile Tyr Asn Arg Ala Arg 365 370 <br><br> &lt;210&gt; 367 &lt;211&gt; 30 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 367 tggaaaagaa gtctggtcag aaggtttagg 3 0 <br><br> &lt;210&gt; 368 &lt;211&gt; 25 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 368 catttggctt cattctcctg ctctg 25 <br><br> 450 <br><br> &lt;210&gt; 369 &lt;211&gt; 28 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 369 aaaacctcag aacaactcat tttgcacc 28 <br><br> &lt;210&gt; 370 &lt;211&gt; 41 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 370 <br><br> gtctcaccat ggttgctctt gccaaattgt gggaagcagg g 41 <br><br> &lt;210&gt; 371 &lt;211&gt; 1150 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 371 <br><br> gtgacactat agaagagcta tgacgtcgca tgcacgcgta cgtaagctcg <br><br> 50 <br><br> gaattcggct cgaggctggt gggaagaagc cgagatggcg gcagccagcg <br><br> 100 <br><br> ctggggcaac ccggctgctc ctgctcttgc tgatggcggt agcagcgccc <br><br> 150 <br><br> agtcgagccc ggggcagcgg ctgccgggcc gggactggtg cgcgaggggc <br><br> 200 <br><br> tggggcggaa ggtcgagagg gcgaggcctg tggcacggtg gggctgctgc <br><br> 250 <br><br> tggagcactc atttgagatc gatgacagtg ccaacttccg gaagcggggc <br><br> 300 <br><br> tcactgctct ggaaccagca ggatggtacc ttgtccctgt cacagcggca <br><br> 350 <br><br> gctcagcgag gaggagcggg gccgactccg ggatgtggca gccctgaatg <br><br> 400 <br><br> gcctgtaccg ggtccggatc ccaaggcgac ccggggccct ggatggcctg <br><br> 450 <br><br> gaagctggtg gctatgtctc ctcctttgtc cctgcgtgct ccctggtgga <br><br> 500 <br><br> gtcgcacctg tcggaccagc tgaccctgca cgtggatgtg gccggcaacg <br><br> 550 <br><br> tggtgggcgt gtcggtggtg acgcaccccg ggggctgccg gggccatgag <br><br> 600 <br><br> gtggaggacg tggacctgga gctgttcaac acctcggtgc agctgcagcc <br><br> 650 <br><br> gcccaccaca gccccaggcc ctgagacggc ggccttcatt gagcgcctgg <br><br> 700 <br><br> 451 <br><br> agatggaaca ggcccagaag gccaagaacc cccaggagca gaagtccttc 750 ttcgccaaat actggatgta catcattccc gtcgtcctgt tcctcatgat 800 <br><br> gtcaggagcg ccagacaccg ggggccaggg tgggggtggg ggtgggggtg 850 <br><br> gtggtggggg tagtggcctt tgctgtgtgc caccctccct gtaagtctat 900 <br><br> ttaaaaacat cgacgataca ttgaaatgtg tgaacgtttt gaaaagctac 950 <br><br> agcttccagc agccaaaagc aactgttgtt ttggcaagac ggtcctgatg 1000 <br><br> tacaagcttg attgaaattc actgctcact tgatacgtta ttcagaaacc 1050 <br><br> caaggaatgg ctgtccccat cctcatgtgg ctgtgtggag ctcagctgtg 1100 <br><br> ttgtgtggca gtttattaaa ctgtccccca gatcgacacg caaaaaaaaa 1150 <br><br> &lt;210&gt; 372 &lt;211&gt; 269 &lt;212&gt; PRT &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 372 <br><br> Met Ala Ala Ala Ser Ala Gly Ala Thr Arg Leu Leu Leu Leu Leu 15 10 15 <br><br> Leu Met Ala Val Ala Ala Pro Ser Arg Ala Arg Gly Ser Gly Cys 20 25 30 <br><br> Arg Ala Gly Thr Gly Ala Arg Gly Ala Gly Ala Glu Gly Arg Glu 35 40 45 <br><br> Gly Glu Ala Cys Gly Thr Val Gly Leu Leu Leu Glu His Ser Phe 50 55 60 <br><br> Glu Ile Asp Asp Ser Ala Asn Phe Arg Lys Arg Gly Ser Leu Leu 65 70 75 <br><br> Trp Asn Gin Gin Asp Gly Thr Leu Ser Leu Ser Gin Arg Gin Leu 80 85 90 <br><br> Ser Glu Glu Glu Arg Gly Arg Leu Arg Asp Val Ala Ala Leu Asn 95 100 105 <br><br> Gly Leu Tyr Arg Val Arg Ile Pro Arg Arg Pro Gly Ala Leu Asp 110 115 120 <br><br> Gly Leu Glu Ala Gly Gly Tyr Val Ser Ser Phe Val Pro Ala Cys 125 130 135 <br><br> Ser Leu Val Glu Ser 140 <br><br> His Leu Ser Asp Gin Leu Thr Leu 145 <br><br> His Val 150 <br><br> 452 <br><br> Asp Val Ala Gly Asn Val Val Gly Val Ser Val Val Thr His Pro 155 160 165 <br><br> Gly Gly Cys Arg Gly His Glu Val Glu Asp Val Asp Leu Glu Leu 170 175 180 <br><br> Phe Asn Thr Ser Val Gin Leu Gin Pro Pro Thr Thr Ala Pro Gly 185 190 195 <br><br> Pro Glu Thr Ala Ala Phe Ile Glu Arg Leu Glu Met Glu Gin Ala 200 205 210 <br><br> Gin Lys Ala Lys Asn Pro Gin Glu Gin Lys Ser Phe Phe Ala Lys <br><br> 215 220 225 <br><br> Tyr Trp Met Tyr Ile Ile Pro Val Val Leu Phe Leu Met Met Ser 230 235 240 <br><br> Gly Ala Pro Asp Thr Gly Gly Gin Gly Gly Gly Gly Gly Gly Gly 245 250 255 <br><br> Gly Gly Gly Gly Ser Gly Leu Cys Cys Val Pro Pro Ser Leu 260 265 <br><br> &lt;210&gt; 373 &lt;211&gt; 1706 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 373 <br><br> ggagcgctgc tggaacccga gccggagccg gagccacagc ggggagggtg 50 gcctggcggc ctggagccgg acgtgtccgg ggcgtccccg cagaccgggg 100 cagcaggtcg tccgggggcc caccatgctg gtgactgcct accttgcttt 150 tgtaggcctc ctggcctcct gcctggggct ggaactgtca agatgccggg 200 ctaaaccccc tggaagggcc tgcagcaatc cctccttcct tcggtttcaa 250 ctggacttct atcaggtcta cttcctggcc ctggcagctg attggcttca 300 ggccccctac ctctataaac tctaccagca ttactacttc ctggaaggtc 350 aaattgccat cctctatgtc tgtggccttg cctctacagt cctctttggc 400 ctagtggcct cctcccttgt ggattggctg ggtcgcaaga attcttgtgt 450 cctcttctcc ctgacttact cactatgctg cttaaccaaa ctctctcaag 500 actactttgt gctgctagtg gggcgagcac ttggtgggct gtccacagcc 550 ctgctcttct cagccttcga ggcctggtat atccatgagc acgtggaacg 600 gcatgacttc cctgctgagt ggatcccagc tacctttgct cgagctgcct 650 <br><br> 453 <br><br> tctggaacca tgtgctggct gtagtggcag gtgtggcagc tgaggctgta <br><br> 700 <br><br> gccagctgga tagggctggg gcctgtagcg ccctttgtgg ctgccatccc <br><br> 750 <br><br> tctcctggct ctggcagggg ccttggccct tcgaaactgg ggggagaact <br><br> 800 <br><br> atgaccggca gcgtgccttc tcaaggacct gtgctggagg cctgcgctgc <br><br> 850 <br><br> ctcctgtcgg accgccgcgt gctgctgctg ggcaccatac aagctctatt <br><br> 900 <br><br> tgagagtgtc atcttcatct ttgtcttcct ctggacacct gtgctggacc <br><br> 950 <br><br> cacacggggc ccctctgggc attatcttct ccagcttcat ggcagccagc <br><br> 1000 <br><br> ctgcttggct cttccctgta ccgtatcgcc acctccaaga ggtaccacct <br><br> 1050 <br><br> tcagcccatg cacctgctgt cccttgctgt gctcatcgtc gtcttctctc <br><br> 1100 <br><br> tcttcatgtt gactttctct accagcccag gccaggagag tccggtggag <br><br> 1150 <br><br> tccttcatag cctttctact tattgagttg gcttgtggat tatactttcc <br><br> 1200 <br><br> cagcatgagc ttcctacgga gaaaggtgat ccctgagaca gagcaggctg <br><br> 1250 <br><br> gtgtactcaa ctggttccgg gtacctctgc actcactggc ttgcctaggg <br><br> 1300 <br><br> ctccttgtcc tccatgacag tgatcgaaaa acaggcactc ggaatatgtt <br><br> 1350 <br><br> cagcatttgc tctgctgtca tggtgatggc tctgctggca gtggtgggac <br><br> 1400 <br><br> tcttcaccgt ggtaaggcat gatgctgagc tgcgggtacc ttcacctact <br><br> 1450 <br><br> gaggagccct atgcccctga gctgtaaccc cactccagga caagatagct <br><br> 1500 <br><br> gggacagact cttgaattcc agctatccgg gattgtacag atctctctgt <br><br> 1550 <br><br> gactgacttt gtgactgtcc tgtggtttct cctgccattg ctttgtgttt <br><br> 1600 <br><br> gggaggacat gatgggggtg atggactgga aagaaggtgc caaaagttcc <br><br> 1650 <br><br> ctctgtgtta ctcccattta gaaaataaac acttttaaat gatcaaaaaa <br><br> 1700 <br><br> aaaaaa 1706 <br><br> &lt;210&gt; 374 &lt;211&gt; 450 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 374 <br><br> Met Leu Val Thr Ala Tyr Leu Ala Phe Val Gly Leu Leu Ala Ser 15 10 15 <br><br> Cys Leu Gly Leu Glu Leu Ser Arg Cys Arg Ala Lys Pro Pro Gly <br><br> 454 <br><br> 20 25 30 <br><br> Arg Ala Cys Ser Asn Pro Ser Phe Leu Arg, Phe Gin Leu Asp Phe 35 40 45 <br><br> Tyr Gin Val Tyr Phe Leu Ala Leu Ala Ala Asp Trp Leu Gin Ala 50 55 60 <br><br> Pro Tyr Leu Tyr Lys Leu Tyr Gin His Tyr Tyr Phe Leu Glu Gly 65 70 75 <br><br> Gin Ile Ala Ile Leu Tyr Val Cys Gly Leu Ala Ser Thr Val Leu 80 85 90 <br><br> Phe Gly Leu Val Ala Ser Ser Leu Val Asp Trp Leu Gly Arg Lys 95 100 105 <br><br> Asn Ser Cys Val Leu Phe Ser Leu Thr Tyr Ser Leu Cys Cys Leu 110 115 120 <br><br> Thr Lys Leu Ser Gin Asp Tyr Phe Val Leu Leu Val Gly Arg Ala 125 130 135 <br><br> Leu Gly Gly Leu Ser Thr Ala Leu Leu Phe Ser Ala Phe Glu Ala 140 145 150 <br><br> Trp Tyr Ile His Glu His Val Glu Arg His Asp Phe Pro Ala Glu 155 160 165 <br><br> Trp Ile Pro Ala Thr Phe Ala Arg Ala Ala Phe Trp Asn His Val <br><br> 170 175 180 <br><br> Leu Ala Val Val Ala Gly Val Ala Ala Glu Ala Val Ala Ser Trp <br><br> 185 190 195 <br><br> Ile Gly Leu Gly Pro Val Ala Pro Phe Val Ala Ala Ile Pro Leu <br><br> 200 205 210 <br><br> Leu Ala Leu Ala Gly Ala Leu Ala Leu Arg Asn Trp Gly Glu Asn <br><br> 215 220 225 <br><br> Tyr Asp Arg Gin Arg Ala Phe Ser Arg Thr Cys Ala Gly Gly Leu <br><br> 230 235 240 <br><br> Arg Cys Leu Leu Ser Asp Arg Arg Val Leu Leu Leu Gly Thr Ile <br><br> 245 250 255 <br><br> Gin Ala Leu Phe Glu Ser Val Ile Phe Ile Phe Val Phe Leu Trp <br><br> 260 265 270 <br><br> Thr Pro Val Leu Asp Pro His Gly Ala Pro Leu Gly Ile Ile Phe <br><br> 275 280 285 <br><br> Ser Ser Phe Met Ala Ala Ser Leu Leu Gly Ser Ser Leu Tyr Arg 290 295 300 <br><br> 455 <br><br> lie Ala Thr Ser Lys Arg Tyr His Leu Gin Pro Met His Leu Leu 305 310 315 <br><br> Ser Leu Ala Val Leu Ile Val Val Phe Ser Leu Phe Met Leu Thr 320 325 330 <br><br> Phe Ser Thr Ser Pro Gly Gin Glu Ser Pro Val Glu Ser Phe Ile 335 340 345 <br><br> Ala Phe Leu Leu Ile Glu Leu Ala Cys Gly Leu Tyr Phe Pro Ser 350 355 360 <br><br> Met Ser Phe Leu Arg Arg Lys Val Ile Pro Glu Thr Glu Gin Ala 365 370 375 <br><br> Gly Val Leu Asn Trp Phe Arg Val Pro Leu His Ser Leu Ala Cys 380 385 390 <br><br> Leu Gly Leu Leu Val Leu His Asp Ser Asp Arg Lys Thr Gly Thr 395 400 405 <br><br> Arg Asn Met Phe Ser Ile Cys Ser Ala Val Met Val Met Ala Leu 410 415 420 <br><br> Leu Ala Val Val Gly Leu Phe Thr Val Val Arg His Asp Ala Glu 425 430 435 <br><br> Leu Arg Val Pro Ser Pro Thr Glu Glu Pro Tyr Ala Pro Glu Leu 440 445 450 <br><br> &lt;210&gt; 375 &lt;211&gt; 1098 &lt;212&gt; DNA &lt;213&gt; Artificial <br><br> &lt;400&gt; 375 <br><br> gcgacgcgcg gcggggcggc gagaggaaac gcggcgccgg gccgggcccg 50 gccctggaga tggtccccgg cgccgcgggc tggtgttgtc tcgtgctctg 100 gctccccgcg tgcgtcgcgg cccacggctt ccgtatccat gattatttgt 150 actttcaagt gctgagtcct ggggacattc gatacatctt cacagccaca 200 cctgccaagg actttggtgg tatctttcac acaaggtatg agcagattca 250 ccttgtcccc gctgaacctc cagaggcctg cggggaactc agcaacggtt 3 00 tcttcatcca ggaccagatt gctctggtgg agaggggggg ctgctccttc 350 ctctccaaga ctcgggtggt ccaggagcac ggcgggcggg cggtgatcat 400 ctctgacaac gcagttgaca atgacagctt ctacgtggag atgatccagg 450 <br><br> 456 <br><br> acagtaccca gcgcacagct gacatccccg ccctcttcct gctcggccga 500 <br><br> gacggctaca tgatccgccg ctctctggaa cagcatgggc tgccatgggc 550 <br><br> catcatttcc atcccagtca atgtcaccag catccccacc tttgagctgc 600 <br><br> tgcaaccgcc ctggaccttc tggtagaaga gtttgtccca cattccagcc 650 <br><br> ataagtgact ctgagctggg aaggggaaac ccaggaattt tgctacttgg 700 <br><br> aatttggaga tagcatctgg ggacaagtgg agccaggtag aggaaaaggg 750 <br><br> tttgggcgtt gctaggctga aagggaagcc acaccactgg ccttcccttc 800 <br><br> cccagggccc ccaagggtgt ctcatgctac aagaagaggc aagagacagg 850 <br><br> ccccagggct tctggctaga acccgaaaca aaaggagctg aaggcaggtg 900 <br><br> gcctgagagc catctgtgac ctgtcacact cacctggctc cagcctcccc 950 <br><br> tacccagggt ctctgcacag tgaccttcac agcagttgtt ggagtggttt 1000 <br><br> aaagagctgg tgtttgggga ctcaataaac cctcactgac tttttagcaa 1050 <br><br> taaagcttct catcagggtt gcaaaaaaaa aaaaaaaaaa aaaaaaaa 1098 <br><br> &lt;210&gt; 376 &lt;211&gt; 188 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 376 <br><br> Met Val Pro Gly Ala Ala Gly Trp Cys Cys Leu Val Leu Trp Leu 15 10 15 <br><br> Pro Ala Cys Val Ala Ala His Gly Phe Arg Ile His Asp Tyr Leu 20 25 30 <br><br> Tyr Phe Gin Val Leu Ser Pro Gly Asp Ile Arg Tyr Ile Phe Thr 35 40 45 <br><br> Ala Thr Pro Ala Lys Asp Phe Gly Gly Ile Phe His Thr Arg Tyr 50 55 60 <br><br> Glu Gin Ile His Leu Val Pro Ala Glu Pro Pro Glu Ala Cys Gly <br><br> 65 70 75 <br><br> Glu Leu Ser Asn Gly Phe Phe Ile Gin Asp Gin Ile Ala Leu Val 80 85 90 <br><br> Glu Arg Gly Gly Cys Ser Phe Leu Ser Lys Thr Arg Val Val Gin 95 100 105 <br><br> Glu His Gly Gly Arg Ala Val Ile Ile Ser Asp Asn Ala Val Asp 110 115 120 <br><br> 457 <br><br> Asn Asp Ser Phe Tyr Val Glu Met Ile Gin Asp Ser Thr Gin Arg 125 130 135 <br><br> Thr Ala Asp Ile Pro Ala Leu Phe Leu Leu Gly Arg Asp Gly Tyr 140 145 150 <br><br> Met Ile Arg Arg Ser Leu Glu Gin His Gly Leu Pro Trp Ala Ile 155 160 165 <br><br> Ile Ser Ile Pro Val Asn Val Thr Ser Ile Pro Thr Phe Glu Leu 170 175 180 <br><br> Leu Gin Pro Pro Trp Thr Phe Trp 185 <br><br> &lt;210&gt; 377 &lt;211&gt; 496 &lt;212&gt; DNA &lt;213&gt; Artificial <br><br> &lt;220&gt; <br><br> &lt;221&gt; unsure &lt;222&gt; 396 <br><br> &lt;223&gt; unknown base &lt;400&gt; 377 <br><br> tctgcctcca ctgctctgtg ctgggatcat ggaacttgca ctgctgtgtg 50 <br><br> ggctggtggt gatggctggt gtgattccaa tccagggcgg gatcctgaac 100 <br><br> ctgaacaaga tggtcaagca agtgactggg aaaatgccca tcctctccta 150 <br><br> ctggccctac ggctgtcact gcggactagg tggcagaggc caacccaaag 2 00 <br><br> atgccacgga ctggtgctgc cagacccatg actgctgcta tgaccacctg 250 <br><br> aagacccagg ggtgcggcat ctacaaggac aacaacaaaa gcagcataca 3 00 <br><br> ttgtatggat ttatctcaac gctattgttt aatggctgtg tttaatgtga 350 <br><br> tctatctgga aaatgaggac tccgaataaa aagctattac tawttnaaaa 400 <br><br> aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 450 <br><br> aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaa 496 <br><br> &lt;210&gt; 378 &lt;211&gt; 116 &lt;212&gt; PRT &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 378 <br><br> Met Glu Leu Ala Leu Leu Cys Gly Leu Val Val Met Ala Gly Val 15 10 15 <br><br> 458 <br><br> lie Pro Ile Gin Gly 20 <br><br> Gin Val Thr Gly Lys 35 <br><br> Cys His Cys Gly Leu 50 <br><br> Asp Trp Cys Cys Gin 65 <br><br> Thr Gin Gly Cys Gly 80 <br><br> His Cys Met Asp Leu 95 <br><br> Asn Val Ile Tyr Leu 110 <br><br> &lt;210&gt; 379 &lt;211&gt; 24 &lt;212&gt; DNA &lt;213&gt; Artificial Sequence <br><br> &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 379 ctgcctccac tgctctgtgc tggg 24 <br><br> &lt;210&gt; 380 &lt;211&gt; 24 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 380 cagagcagtg gatgttcccc tggg 24 <br><br> &lt;210&gt; 381 &lt;211&gt; 45 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 381 <br><br> ctgaacaaga tggtcaagca agtgactggg aaaatgccca tcctc 45 &lt;210&gt; 382 <br><br> Gly Ile Leu Asn Leu Asn Lys Met Val Lys 25 30 <br><br> Met Pro Ile Leu Ser Tyr Trp Pro Tyr Gly 40 45 <br><br> Gly Gly Arg Gly Gin Pro Lys Asp Ala Thr 55 60 <br><br> Thr His Asp Cys Cys Tyr Asp His Leu Lys 70 75 <br><br> Ile Tyr Lys Asp Asn Asn Lys Ser Ser Ile 85 90 <br><br> Ser Gin Arg Tyr Cys Leu Met Ala Val Phe 100 105 <br><br> Glu Asn Glu Asp Ser Glu 115 <br><br> 459 <br><br> &lt;211&gt; 764 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 382 <br><br> ctcgcttctt ccttctggat gggggcccag ggggcccagg agagtataaa 50 <br><br> ggcgatgtgg agggtgcccg gcacaaccag acgcccagtc acaggcgaga 100 <br><br> gccctgggat gcaccggcca gaggccatgc tgctgctgct cacgcttgcc 150 <br><br> ctcctggggg gccccacctg ggcagggaag atgtatggcc ctggaggagg 2 00 <br><br> caagtatttc agcaccactg aagactacga ccatgaaatc acagggctgc 250 <br><br> gggtgtctgt aggtcttctc ctggtgaaaa gtgtccaggt gaaacttgga 300 <br><br> gactcctggg acgtgaaact gggagcctta ggtgggaata cccaggaagt 350 <br><br> caccctgcag ccaggcgaat acatcacaaa agtctttgtc gccttccaag 400 <br><br> ctttcctccg gggtatggtc atgtacacca gcaaggaccg ctatttctat 450 <br><br> tttgggaagc ttgatggcca gatctcctct gcctacccca gccaagaggg 500 <br><br> gcaggtgctg gtgggcatct atggccagta tcaactcctt ggcatcaaga 550 <br><br> gcattggctt tgaatggaat tatccactag aggagccgac cactgagcca 600 <br><br> ccagttaatc tcacatactc agcaaactca cccgtgggtc gctagggtgg 650 <br><br> ggtatggggc catccgagct gaggccatct gtgtggtggt ggctgatggt 7 00 <br><br> actggagtaa ctgagtcggg acgctgaatc tgaatccacc aataaataaa 750 <br><br> gcttctgcag aaaa 7 64 <br><br> &lt;210&gt; 383 &lt;211&gt; 178 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 383 <br><br> Met His Arg Pro Glu Ala Met Leu Leu Leu Leu Thr Leu Ala Leu 15 10 15 <br><br> Leu Gly Gly Pro Thr Trp Ala Gly Lys Met Tyr Gly Pro Gly Gly 20 25 30 <br><br> Gly Lys Tyr Phe Ser Thr Thr Glu Asp Tyr Asp His Glu Ile Thr 35 40 45 <br><br> Gly Leu Arg Val Ser Val Gly Leu Leu Leu Val Lys Ser Val Gin 50 55 60 <br><br> 460 <br><br> Val Lys Leu Gly Asn Thr Lys Val Phe Tyr Thr Ser Gin Ile Ser <br><br> Gly Ile Tyr <br><br> Phe Glu Trp <br><br> Val Asn Leu <br><br> &lt;210&gt; 384 &lt;211&gt; 2379 &lt;212&gt; DNA &lt;213&gt; Homo s; <br><br> &lt;400&gt; 384 <br><br> gctgagcgtg tgcgcggtac ggggctctcc tgccttctgg gctccaacgc 50 agctctgtgg ctgaactggg tgctcatcac gggaactgct gggctatgga 100 <br><br> atacagatgt ggcagctcag gtagccccaa attgcctgga agaatacatc 150 atgtttttcg ataagaagaa attgtaggat ccagtttttt ttttaaccgc 2 00 cccctcccca ccccccaaaa aaactgtaaa gatgcaaaaa cgtaatatcc 250 atgaagatcc tattacctag gaagattttg atgttttgct gcgaatgcgg 3 00 tgttgggatt tatttgttct tggagtgttc tgcgtggctg gcaaagaata 350 atgttccaaa atcggtccat ctcccaaggg gtccaatttt tcttcctggg 400 tgtcagcgag ccctgactca ctacagtgca gctgacaggg gctgtcatgc 450 aactggcccc taagccaaag caaaagacct aaggacgacc tttgaacaat 500 acaaaggatg ggtttcaatg taattaggct actgagcgga tcagctgtag 550 cactggttat agcccccact gtcttactga caatgctttc ttctgccgaa 600 <br><br> Gly Asp Ser Trp Asp Val Lys Leu Gly Ala Leu Gly 65 70 75 <br><br> Gin Glu Val Thr Leu Gin Pro Gly Glu Tyr Ile Thr 80 85 90 <br><br> Val Ala Phe Gin Ala Phe Leu Arg Gly Met Val Met 95 100 105 <br><br> Lys Asp Arg Tyr Phe Tyr Phe Gly Lys Leu Asp Gly 110 115 120 <br><br> Ser Ala Tyr Pro Ser Gin Glu Gly Gin Val Leu Val <br><br> 125 130 135 <br><br> Gly Gin Tyr Gin Leu Leu Gly Ile Lys Ser Ile Gly 140 145 150 <br><br> Asn Tyr Pro Leu Glu Glu Pro Thr Thr Glu Pro Pro 155 160 165 <br><br> Thr Tyr Ser Ala Asn Ser Pro Val Gly Arg 170 175 <br><br> apiens <br><br> 461 <br><br> cgaggatgcc ctaagggctg taggtgtgaa atctcagaaa ttacaggaga taccctcaag gtttgtccct tcgctataac agccttcaaa aaagggctca accagctcac ctggctatac caatattgac gaaaatgctt ttaatggaat ttcttagttc caatagaatc tcctattttc gtgacaaatt tacggaactt ggatctgtcc gggatctgaa cagtttcggg gcttgcggaa ggtctaactc cctgagaacc atccctgtgc aacctggaac ttttggacct gggatataac gaatgtcttt gctggcatga tcagactcaa atcaattttc caagctcaac ctggcccttt cagaaccttt acttgcagtg gaataaaatc gtcctggacc tggagctcct tacaaaggct tcgaagcttt cagtggaccc agtgttttcc cgcctcaacc tggattccaa caagctcaca ggattcttgg atatccctca atgacatcag aatgcagcag aaatatttgc tcccttgtaa ggtctaaggg agaatacaat tatctgtgcc agtaaatgtg atcgatgcag tgaagaacta ctacagagag gtttgatctg gccagggctc cccaagctcc ccaggccgaa gcatgagagc ggtgggagcc acagagcccg gcccagagac tctctttcca taaaatcatc gcgggcagcg ctcgtcatcc tgctggttat ctacgtgtca catgaagcag ctgcagcagc gctccctcat aaagacagtc cctaaagcaa atgactccca gattataaac ccaccaacac ggagaccagc ggcaaaatgg tatattgtga 650 tatatctgct ggttgcttag 700 aacttaagta taatcaattt 750 cttgaccata accatatcag 800 acgcagactc aaagagctga 850 ttaacaatac cttcagacct 900 tataatcagc tgcattctct 950 gctgctgagt ttacatttac 1000 gaatattcca agactgccgc 1050 cggatccgaa gtttagccag 1100 agaacttcac ctggagcaca 1150 <br><br> ttccaaggtt ggtcagcctt 12 00 agtgtcatag gacagaccat 1250 tgatttatca ggcaatgaga 13 00 agtgtgtccc gaatctgcag 1350 tttattggtc aagagatttt 1400 tcttgctggg aatatatggg 1450 actggctgaa aagttttaaa 1500 agtcccaaag agctgcaagg 1550 cagcatctgt ggcaaaagta 1600 tcccaaagcc gacgtttaag 1650 aaaccccctt tgcccccgac 1700 cgatgctgac gccgagcaca 1750 tggcgctttt cctgtccgtg 1800 tggaagcggt accctgcgag 1850 gcgaaggcac aggaaaaaga 1900 gcacccagga attttatgta 1950 gagatgctgc tgaatgggac 2 000 <br><br> 462 <br><br> gggaccctgc acctataaca aatcgggctc cagggagtgt gaggtatgaa 2050 <br><br> ccattgtgat aaaaagagct cttaaaagct gggaaataag tggtgcttta 2100 <br><br> ttgaactctg gtgactatca agggaacgcg atgccccccc tccccttccc 2150 <br><br> tctccctctc actttggtgg caagatcctt ccttgtccgt tttagtgcat 2200 <br><br> tcataatact ggtcattttc ctctcataca taatcaaccc attgaaattt 2250 <br><br> aaataccaca atcaatgtga agcttgaact ccggtttaat ataataccta 2300 <br><br> ttgtataaga ccctttactg attccattaa tgtcgcattt gttttaagat 2350 <br><br> aaaacttctt tcataggtaa aaaaaaaaa 2379 <br><br> &lt;210&gt; 385 &lt;211&gt; 513 &lt;212&gt; PRT &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 385 <br><br> Met Gly Phe Asn Val Ile Arg Leu Leu Ser Gly Ser Ala Val Ala 15 10 15 <br><br> Leu Val Ile Ala Pro Thr Val Leu Leu Thr Met Leu Ser Ser Ala 20 25 30 <br><br> Glu Arg Gly Cys Pro Lys Gly Cys Arg Cys Glu Gly Lys Met Val <br><br> 35 40 45 <br><br> Tyr Cys Glu Ser Gin Lys Leu Gin Glu Ile Pro Ser Ser Ile Ser 50 55 60 <br><br> Ala Gly Cys Leu Gly Leu Ser Leu Arg Tyr Asn Ser Leu Gin Lys 65 70 75 <br><br> Leu Lys Tyr Asn Gin Phe Lys Gly Leu Asn Gin Leu Thr Trp Leu 80 85 90 <br><br> Tyr Leu Asp His Asn His Ile Ser Asn Ile Asp Glu Asn Ala Phe 95 100 105 <br><br> Asn Gly Ile Arg Arg Leu Lys Glu Leu Ile Leu Ser Ser Asn Arg 110 115 120 <br><br> Ile Ser Tyr Phe Leu Asn Asn Thr Phe Arg Pro Val Thr Asn Leu 125 130 135 <br><br> Arg Asn Leu Asp Leu Ser Tyr Asn Gin Leu His Ser Leu Gly Ser 140 145 150 <br><br> Glu Gin Phe Arg Gly Leu Arg Lys Leu Leu Ser Leu His Leu Arg 155 160 165 <br><br> 463 <br><br> Ser Asn Ser Leu Arg Thr Ile Pro Val Arg Ile Phe Gin Asp Cys 170 175 180 <br><br> Arg Asn Leu Glu Leu Leu Asp Leu Gly Tyr Asn Arg Ile Arg Ser 185 190 195 <br><br> Leu Ala Arg Asn Val Phe Ala Gly Met Ile Arg Leu Lys Glu Leu 200 205 210 <br><br> His Leu Glu His Asn Gin Phe Ser Lys Leu Asn Leu Ala Leu Phe 215 220 225 <br><br> Pro Arg Leu Val Ser Leu Gin Asn Leu Tyr Leu Gin Trp Asn Lys 230 235 240 <br><br> Ile Ser Val Ile Gly Gin Thr Met Ser Trp Thr Trp Ser Ser Leu 245 250 255 <br><br> Gin Arg Leu Asp Leu Ser Gly Asn Glu Ile Glu Ala Phe Ser Gly 260 265 270 <br><br> Pro Ser Val Phe Gin Cys Val Pro Asn Leu Gin Arg Leu Asn Leu 275 280 285 <br><br> Asp Ser Asn Lys Leu Thr Phe Ile Gly Gin Glu Ile Leu Asp Ser 290 295 300 <br><br> Trp Ile Ser Leu Asn Asp Ile Ser Leu Ala Gly Asn Ile Trp Glu 305 310 315 <br><br> Cys Ser Arg Asn Ile Cys Ser Leu Val Asn Trp Leu Lys Ser Phe 320 325 330 <br><br> Lys Gly Leu Arg Glu Asn Thr Ile Ile Cys Ala Ser Pro Lys Glu 335 340 345 <br><br> Leu Gin Gly Val Asn Val Ile Asp Ala Val Lys Asn Tyr Ser Ile 350 355 360 <br><br> Cys Gly Lys Ser Thr Thr Glu Arg Phe Asp Leu Ala Arg Ala Leu 365 370 375 <br><br> Pro Lys Pro Thr Phe Lys Pro Lys Leu Pro Arg Pro Lys His Glu 380 385 390 <br><br> Ser Lys Pro Pro Leu Pro Pro Thr Val Gly Ala Thr Glu Pro Gly 395 400 405 <br><br> Pro Glu Thr Asp Ala Asp Ala Glu His Ile Ser Phe His Lys lie 410 415 420 <br><br> Ile Ala Gly Ser Val Ala Leu Phe Leu Ser Val Leu Val Ile Leu 425 430 435 <br><br> 464 <br><br> Leu Val Ile <br><br> Gin Leu Gin <br><br> Arg Gin Ser <br><br> Val Asp Tyr <br><br> Asn Gly Thr <br><br> Cys Glu Val <br><br> &lt;210&gt; 386 &lt;211&gt; 24 &lt;212&gt; DNA &lt;213&gt; Artificial Sequence <br><br> &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 386 ctgggatctg aacagtttcg gggc 24 <br><br> &lt;210&gt; 387 &lt;211&gt; 24 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 387 ggtccccagg acatggtctg tccc 24 <br><br> &lt;210&gt; 388 &lt;211&gt; 48 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 388 <br><br> gctgagttta catttacggt ctaactccct gagaaccatc cctgtgcg 48 <br><br> &lt;210&gt; 389 <br><br> &lt;211&gt; 1449 <br><br> &lt;212&gt; DNA <br><br> Tyr Val Ser Trp Lys Arg Tyr Pro Ala Ser Met Lys 440 445 450 <br><br> Gin Arg Ser Leu Met Arg Arg His Arg Lys Lys Lys 455 460 465 <br><br> Leu Lys Gin Met Thr Pro Ser Thr Gin Glu Phe Tyr 470 475 480 <br><br> Lys Pro Thr Asn Thr Glu Thr Ser Glu Met Leu Leu 485 490 495 <br><br> Gly Pro Cys Thr Tyr Asn Lys Ser Gly Ser Arg Glu 500 505 510 <br><br> 465 <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 389 <br><br> agttctgaga aagaaggaaa taaacacagg caccaaacca ctatcctaag 50 <br><br> ttgactgtcc tttaaatatg tcaagatcca gacttttcag tgtcacctca 100 <br><br> gcgatctcaa cgatagggat cttgtgtttg ccgctattcc agttggtgct 150 <br><br> ctcggaccta ccatgcgaag aagatgaaat gtgtgtaaat tataatgacc 200 <br><br> aacaccctaa tggctggtat atctggatcc tcctgctgct ggttttggtg 250 <br><br> gcagctcttc tctgtggagc tgtggtcctc tgcctccagt gctggctgag 300 <br><br> gagaccccga attgattctc acaggcgcac catggcagtt tttgctgttg 350 <br><br> gagacttgga ctctatttat gggacagaag cagctgtgag tccaactgtt 400 <br><br> ggaattcacc ttcaaactca aacccctgac ctatatcctg ttcctgctcc 450 <br><br> atgttttggc cctttaggct ccccacctcc atatgaagaa attgtaaaaa 500 <br><br> caacctgatt ttaggtgtgg attatcaatt taaagtatta acgacatctg 550 <br><br> taattccaaa acatcaaatt taggaatagt tatttcagtt gttggaaatg 600 <br><br> tccagagatc tattcatata gtctgaggaa ggacaattcg acaaaagaat 650 <br><br> ggatgttgga aaaaattttg gtcatggaga tgtttaaata gtaaagtagc 700 <br><br> aggcttttga tgtgtcactg ctgtatcata cttttatgct acacaaccaa 750 <br><br> attaatgctt ctccactagt atccaaacag gcaacaatta ggtgctggaa 800 <br><br> gtagtttcca tcacatttag gactccactg cagtatacag cacaccattt 850 <br><br> tctgctttaa actctttcct agcatggggt ccataaaaat tattataatt 900 <br><br> taacaatagc ccaagccgag aatccaacat gtccagaacc agaaccagaa 950 <br><br> agatagtatt tgaatgaagg tgaggggaga gagtaggaaa aagaaaagtt 1000 <br><br> tggagttgaa gggtaaagga taaatgaaga ggaaaaggaa aagattacaa 1050 <br><br> gtctcagcaa aaacaagagg ttttatgccc caacctgaag aggaagaaat 1100 <br><br> tgtagataga aggtgaagga gattgctgaa gatatagagc acatataatg 1150 <br><br> ccaacacggg gagaaaagaa aatttcccct tttacagtaa tgaatgtggc 12 00 <br><br> ctccatagtc catagtgttt ctctggagcc tcagggcttg gcatttattg 12 50 <br><br> cagcatcatg ctaagaacct tcggcatagg tatctgttcc catgaggact 13 00 <br><br> 466 <br><br> gcagaagtag caatgagaca tcttcaagtg gcattttggc agtggccatc 1350 <br><br> agcaggggga cagacaaaaa catccatcac agatgacata tgatcttcag 1400 <br><br> ctgacaaatt tgttgaacaa aacaataaac atcaatagat atctaaaaa 1449 <br><br> &lt;210&gt; 390 &lt;211&gt; 146 &lt;212&gt; PRT &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 390 <br><br> Met Ser Arg Ser Arg Leu Phe Ser Val Thr Ser Ala Ile Ser Thr 15 10 15 <br><br> Ile Gly Ile Leu Cys Leu Pro Leu Phe Gin Leu Val Leu Ser Asp 20 25 30 <br><br> Leu Pro Cys Glu Glu Asp Glu Met Cys Val Asn Tyr Asn Asp Gin 35 40 45 <br><br> His Pro Asn Gly Trp Tyr Ile Trp Ile Leu Leu Leu Leu Val Leu 50 55 60 <br><br> Val Ala Ala Leu Leu Cys Gly Ala Val Val Leu Cys Leu Gin Cys 65 70 75 <br><br> Trp Leu Arg Arg Pro Arg Ile Asp Ser His Arg Arg Thr Met Ala 80 85 90 <br><br> Val Phe Ala Val Gly Asp Leu Asp Ser Ile Tyr Gly Thr Glu Ala 95 100 105 <br><br> Ala Val Ser Pro Thr Val Gly Ile His Leu Gin Thr Gin Thr Pro 110 115 120 <br><br> Asp Leu Tyr Pro Val Pro Ala Pro Cys Phe Gly Pro Leu Gly Ser 125 130 135 <br><br> Pro Pro Pro Tyr Glu Glu Ile Val Lys Thr Thr 140 145 <br><br> &lt;210&gt; 391 &lt;211&gt; 26 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 391 cttttcagtg tcacctcagc gatctc 26 <br><br> &lt;210&gt; 392 &lt;211&gt; 23 <br><br> 467 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 392 ccaaaacatg gagcaggaac agg 23 <br><br> &lt;210&gt; 393 &lt;211&gt; 47 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 393 <br><br> ccagttggtg ctctcggacc taccatgcga agaagatgaa atgtgtg 47 <br><br> &lt;210&gt; 394 <br><br> &lt;211&gt; 2340 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 394 <br><br> gagcggagta aaatctccac aagctgggaa caaacctcgt cccaactccc 50 acccaccggc gtttctccag ctcgatctgg aggctgcttc gccagtgtgg 100 gacgcagctg acgcccgctt attagctctc gctgcgtcgc cccggctcag 150 aagctccgtg gcggcggcga ccgtgacgag aagcccacgg ccagctcagt 2 00 tctcttctac tttgggagag agagaaagtc agatgcccct tttaaactcc 2 50 ctcttcaaaa ctcatctcct gggtgactga gttaatagag tggatacaac 300 cttgctgaag atgaagaata tacaatattg aggatatttt tttctttttt 350 ttttcaagtc ttgatttgtg gcttacctca agttaccatt tttcagtcaa 400 gtctgtttgt ttgcttcttc agaaatgttt tttacaatct caagaaaaaa 450 tatgtcccag aaattgagtt tactgttgct tgtatttgga ctcatttggg 500 gattgatgtt actgcactat acttttcaac aaccaagaca tcaaagcagt 550 gtcaagttac gtgagcaaat actagactta agcaaaagat atgttaaagc 600 tctagcagag gaaaataaga acacagtgga tgtcgagaac ggtgcttcta 650 tggcaggata tgcggatctg aaaagaacaa ttgctgtcct tctggatgac 7 00 attttgcaac gattggtgaa gctggagaac aaagttgact atattgttgt 750 <br><br> 468 <br><br> gaatggctca gcagccaaca ccaccaatgg tactagtggg aatttggtgc 800 cagtaaccac aaataaaaga acgaatgtct cgggcagtat cagatagcag 850 ttgaaaatca ccttgtgctg ctccatccac tgtggattat atcctatggc 900 agaaaagctt tataattgct ggcttaggac agagcaatac tttacaataa 950 aagctctaca cattttcaag gagtatgctg gattcatgga actctaattc 1000 tgtacataaa aattttaaag ttatttgttt gctttcaggc aagtctgttc 1050 aatgctgtac tatgtcctta aagagaattt ggtaacttgg ttgatgtggt 1100 aagcagatag gtgagttttg tataaatctt ttgtgtttga gatcaagctg 1150 <br><br> aaatgaaaac actgaaaaac atggattcat ttctataaca catttattta 12 00 agtatataac acgttttttg gacaagtgaa gaatgtttaa tcattctgtc 1250 atttgttctc aatagatgta actgttagac tacggctatt tgaaaaaatg 1300 tgcttattgt actatatttt gttattccaa ttatgagcag agaaaggaaa 13 50 tataatgttg aaaataatgt tttgaaatca tgacccaaag aatgtattga 1400 tttgcactat ccttcagaat aactgaaggt taattattgt atatttttaa 1450 aaattacact tataagagta taatcttgaa atgggtagca gccactgtcc 1500 attacctatc gtaaacattg gggcaattta ataacagcat taaaatagtt 1550 gtaaactcta atcttatact tattgaagaa taaaagatat ttttatgatg 1600 agagtaacaa taaagtattc atgatttttc acatacatga atgttcattt 1650 aaaagtttaa tcctttgagt gtctatgcta tcaggaaagc acattatttc 17 00 catatttggg ttaattttgc ttttattata ttggtctagg aggaagggac 1750 tttggagaat ggaactcttg aggactttag ccaggtgtat ataataaagg 1800 tacttttgtg ctgcattaaa ttgcttggaa agtgttaaca ttatattata 1850 taagagtatc ctttatgaaa ttttgaattt gtataacaga tgcattagat 1900 attcatttta tataatggcc acttaaaata agaacattta aaatataaac 1950 tatgaagatt gactatcttt tcaggaaaaa agctgtatat agcacaggga 2000 accctaatct tgggtaattc tagtataaaa caaattatac ttttatttaa 2050 atttcccttg tagcaaatct aattgccaca tggtgcccta tatttcatag 2100 tatttattct ctatagtaac tgcttaagtg cagctagctt ctagatttag 2150 <br><br> 469 <br><br> actatataga atttagatat tgtattgttc gtcattataa tatgctacca 2200 <br><br> catgtagcaa taattacaat attttattaa aataaatatg tgaaatattg 2250 <br><br> tttcatgaaa gacagatttc caaatctctc ttctcttctc tgtactgtct 2300 <br><br> acctttatgt gaagaaatta attatatgcc attgccaggt 2340 <br><br> &lt;210&gt; 395 &lt;211&gt; 140 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 395 <br><br> Met Phe Phe Thr Ile Ser Arg Lys Asn Met Ser Gin Lys Leu Ser 15 10 15 <br><br> Leu Leu Leu Leu Val Phe Gly Leu Ile Trp Gly Leu Met Leu Leu 20 25 30 <br><br> His Tyr Thr Phe Gin Gin Pro Arg His Gin Ser Ser Val Lys Leu 35 40 45 <br><br> Arg Glu Gin Ile Leu Asp Leu Ser Lys Arg Tyr Val Lys Ala Leu 50 55 60 <br><br> Ala Glu Glu Asn Lys Asn Thr Val Asp Val Glu Asn Gly Ala Ser 65 70 75 <br><br> Met Ala Gly Tyr Ala Asp Leu Lys Arg Thr Ile Ala Val Leu Leu 80 85 90 <br><br> Asp Asp Ile Leu Gin Arg Leu Val Lys Leu Glu Asn Lys Val Asp 95 100 105 <br><br> Tyr Ile Val Val Asn Gly Ser Ala Ala Asn Thr Thr Asn Gly Thr 110 115 120 <br><br> Ser Gly Asn Leu Val Pro Val Thr Thr Asn Lys Arg Thr Asn Val 125 130 135 <br><br> Ser Gly Ser Ile Arg 140 <br><br> &lt;210&gt; 396 <br><br> &lt;211&gt; 2639 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 396 <br><br> cgcggccggg ccgccggggt gagcgtgccg aggcggctgt ggcgcaggct 50 tccagccccc accatgccgt ggcccctgct gctgctgctg gccgtgagtg 100 <br><br> 470 <br><br> gggcccagac aacccggcca tgcttccccg accttcggcc ttttcgacag cttcagcctg cctgggcccc cacatcatgc cggtgcccat tggacctgtc ctccaaccgg ctggagatgg gggccgggct acacgacgtt ggctggcctg caccagcatc tcacccactg ccttctcccg ttgacctcag ccacaatggc ctgacagccc agctcacccc tgagcgacgt gaaccttagc ctcagtgtct gccttcacga cgcacagtca acctctccca caacctcatt caccgcctcg ggcctgcctg cgcccaccat tcagagcctg ccatgccgtg cccaacctcc gagacttgcc atgggaaccc tctagctgtc attggtccgg ggccttacac acctgtctct ggccagcctg gcccagtggc ttccgtgagc taccgggcct gcaaccccaa gcttaactgg gcaggagctg tccctgcagg agctggacct ttcgggcacc ggcgctgctc ctccacctcc cggcactgca atgtgcggtg ccggcgcctg gtgcgggagg ggctccagcc ccaaggtgcc cctgcactgc tgccaggggc cccaccatct tgtgacaaat aacagactgc tgtcctgggc tgcctcaggt tgtgccaaca ccagtgggga gcccgcaggc aggagttgtg ggcctaggag aggctttgga gcaaagtctc acccctttgt ctacgttgct ggacttcgat gccaaaccag actcgggtcc cttatccccc aagtgccttc cctcatgcct gggcagaggg tgggtgggac cccctgctgc ggtgccaatg cgaggtggag 150 actcgggtgg attgtagcgg 200 ccctctggac acagcccact 250 tgaatgagtc ggtgttggcg 3 00 gatctcagcc acaacctgct 350 ccttcgctac ctggagtcgc 400 tgccagccga gagcttcacc 450 cacaaccagc tccgggaggt 500 gggccgggca ctacacgtgg 550 tgccccaccc cacgagggcc 600 aacctggcct ggaaccggct 650 cctgcgctac ctgagcctgg 700 gtgccttcgc ggggctggga 750 cagaggctcc ctgagctggc 800 gcaggtcctg gacctgtcgg 850 aggtgttttc aggcctgagc 900 <br><br> aacctggtgc ccctgcctga 950 gagcgtcagc gtgggccagg 1000 gcacctaccc ccggaggcct 1050 gtagacaccc gggaatctgc 1100 ggtgtggccc agggccacat 1150 cccgagtaac ttatgttcaa 12 00 ctatgtggca gcgtcaccac 1250 cctgggagcc acacctagga 13 00 tccccaaacc atgagcagag 1350 cctcctgctt cccttcccca 1400 gggccggcct gacccgcaat 1450 agggcagagt tcaggtccac 1500 <br><br> 471 <br><br> tgggctgagt gtccccttgg gcccatggcc tcttttctaa catagccctt tctttgccat atccttttct atttccctag aaccttaatg tcaagtccac ccttctcatg tgacagatgg ggaaaaaggc taatctaagt tcctgcgggc gcctcctgcc tcccagcccg gacccaatgc aagccccacc ctccccgcct gggctcccct cattagcaca ggagtagcag cagcaggaca gactctgggc ctctgaccag ctgtgcggca ttcggagcct ctggaagctt agggcacatt ctcaccctgg gttggggtcc cccagcatcc ttcccctgag catcctctag atgctgcccc gagcctcatc tggctgggat ctccaagggg ctggccctga gcacgacagc ccttcttacc ggagacaagg tctgcccgac ccatgtctat tctcagcttc cgaaccctgg gctgtttcct ttgttgcctt tttaacggag tgtcactttc gctggccggg gatggagaca tgtcatttgt tttgttcact tttgtaatat tgtcctgggc aagctgggca tcagtggcca catgggcatc ccccacaggg cagtgagctc tgtcttcccc tatctaaccg gtccttgatt taataaacac aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa <br><br> &lt;210&gt; 397 <br><br> &lt;211&gt; 353 <br><br> &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 397 Met Pro Trp Pro Leu Leu Leu Leu : 1 5 <br><br> cagtcactca ggggcgagtt 1550 gaggccatga ggcccgcttc 1600 gtagaaggaa ttgcaaagaa 1650 ggaaactgag gccttgagaa 1700 agtggcatga ctggagcaca 1750 actttcttgt ctcctctaat 1800 tgctgccctt gcctgttccc 1850 ggcaagagcc tcacaagtgg 1900 tgggctaagt cactctgccc 1950 ggttccagcc tagccagttt 2000 agactggaaa cctacccatt 2050 aaggagttgc tgcagttctg 2100 cctcctggat tcagtcccca 2150 ctcccaggaa tgccgtgaaa 22 00 gctctacccc cagggcagca 2250 tagtcttcat tttataaaag 2300 aaccggcctc ccctacccct 2350 aaaagcagaa aaaggttgca 2400 ctgtgttggg gtgttggggg 2450 aggggctggc cccacagaga 2500 cacctgccta gcccatcatc 2550 tataaaaggt ttaaaaaaaa 2600 aaaaaaaaa 2 639 <br><br> Ala Val Ser Gly Ala Gin 10 15 <br><br> 472 <br><br> Thr Thr Arg Pro Cys Phe Pro Gly Cys Gin Cys Glu Val Glu Thr .20 25 30 <br><br> Phe Gly Leu Phe Asp Ser Phe Ser Leu Thr Arg Val Asp Cys Ser 35 40 45 <br><br> Gly Leu Gly Pro His Ile Met Pro Val Pro Ile Pro Leu Asp Thr 50 55 60 <br><br> Ala His Leu Asp Leu Ser Ser Asn Arg Leu Glu Met Val Asn Glu 65 70 75 <br><br> Ser Val Leu Ala Gly Pro Gly Tyr Thr Thr Leu Ala Gly Leu Asp 80 85 90 <br><br> Leu Ser His Asn Leu Leu Thr Ser Ile Ser Pro Thr Ala Phe Ser 95 100 105 <br><br> Arg Leu Arg Tyr Leu Glu Ser Leu Asp Leu Ser His Asn Gly Leu 110 115 120 <br><br> Thr Ala Leu Pro Ala Glu Ser Phe Thr Ser Ser Pro Leu Ser Asp 125 130 135 <br><br> Val Asn Leu Ser His Asn Gin Leu Arg Glu Val Ser Val Ser Ala 140 145 150 <br><br> Phe Thr Thr His Ser Gin Gly Arg Ala Leu His Val Asp Leu Ser 155 160 165 <br><br> His Asn Leu Ile His Arg Leu Val Pro His Pro Thr Arg Ala Gly 170 175 180 <br><br> Leu Pro Ala Pro Thr Ile Gin Ser Leu Asn Leu Ala Trp Asn Arg 185 190 195 <br><br> Leu His Ala Val Pro Asn Leu Arg Asp Leu Pro Leu Arg Tyr Leu 200 205 210 <br><br> Ser Leu Asp Gly Asn Pro Leu Ala Val Ile Gly Pro Gly Ala Phe 215 220 225 <br><br> Ala Gly Leu Gly Gly Leu Thr His Leu Ser Leu Ala Ser Leu Gin 230 235 240 <br><br> Arg Leu Pro Glu Leu Ala Pro Ser Gly Phe Arg Glu Leu Pro Gly 245 250 255 <br><br> Leu Gin Val Leu Asp Leu Ser Gly Asn Pro Lys Leu Asn Trp Ala 260 265 270 <br><br> Gly Ala Glu Val Phe Ser Gly Leu Ser Ser Leu Gin Glu Leu Asp 275 280 285 <br><br> Leu Ser Gly Thr Asn Leu Val Pro Leu Pro Glu Ala Leu Leu Leu <br><br> 473 <br><br> 290 295 300 <br><br> His Leu Pro Ala Leu Gin Ser Val Ser Val Gly Gin Asp Val Arg 305 310 315 <br><br> Cys Arg Arg Leu Val Arg Glu Gly Thr Tyr Pro Arg Arg Pro Gly 320 325 330 <br><br> Ser Ser Pro Lys Val Pro Leu His Cys Val Asp Thr Arg Glu Ser 335 340 345 <br><br> Ala Ala Arg Gly Pro Thr Ile Leu 350 <br><br> &lt;210&gt; 398 &lt;211&gt; 23 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 398 ccctgccagc cgagagcttc acc 23 <br><br> &lt;210&gt; 399 &lt;211&gt; 23 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 399 ggttggtgcc cgaaaggtcc age 23 <br><br> &lt;210&gt; 400 &lt;211&gt; 44 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 400 <br><br> caaccccaag cttaactggg caggagctga ggtgttttca ggee 44 <br><br> &lt;210&gt; 401 <br><br> &lt;211&gt; 1571 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 401 <br><br> gatggcgcag ccacagcttc tgtgagattc gatttctccc cagttcccct 50 <br><br> gtgggtctga ggggaccaga agggtgagct acgttggctt tctggaaggg 100 <br><br> gaggctatat atgtcattct ctgctgggca cgacctgtgc ttctcttcac tttcaggcct ctgcgtttta ttgggaagct ttctgagata gaatcttaag tgctgcctcc aaactaccag ccaattcctt atgacatgcc gagtcacttt gggaactaga agtgatgctg acctgcagag cttgtgctgg tgattgtctt atttttgtaa tatttatttt ctttaaaaaa gtatttttat ctaggggggt gatgctctgt tgtggaataa ccatccccag <br><br> 474 <br><br> gcgtcaattc cccaaaacaa gttttgacat ttcccctgaa 150 ctatctattc actgcaagtg cctgctgttc caggccttac 2 00 ctaacggcgg agccaggatg gggacagaat aaaggagcca 250 caccaactcg cactcagact ctgaactcag acctgaaatc 3 00 gggaggcttg gcagtttttc ttactcctgt ggtctccaga 350 aagatgaaag cctctagtct tgccttcagc cttctctctg 400 tctcctatgg actccttcca ctggactgaa gacactcaat 450 gtgtgatcgc cacaaacctt caggaaatac gaaatggatt 500 cggggcagtg tgcaagccaa agatggaaac attgacatca 550 gaggactgag tctttgcaag acacaaagcc tgcgaatcga 600 tgcgccattt gctaagactc tatctggaca gggtatttaa 650 acccctgacc attatactct ccggaagatc agcagcctcg 700 tcttaccatc aagaaggacc tccggctctc tcatgcccac 750 attgtgggga ggaagcaatg aagaaataca gccagattct 800 gaaaagctgg aacctcaggc agcagttgtg aaggctttgg 850 cattcttctg caatggatgg aggagacaga ataggaggaa 900 ctgctaagaa tattcgaggt caagagctcc agtcttcaat 950 gaggcatgac cccaaaccac catctcttta ctgtactagt 1000 tcacagtgta tcttatttat gcattacttg cttccttgca 1050 tatgcatccc caatcttaat tgagaccata cttgtataag 1100 tatctttctg ctattggata tatttattag ttaatatatt 1150 ttgctattta atgtatttat ttttttactt ggacatgaaa 1200 attcacagat tatatttata acctgactag agcaggtgat 1250 acagtaaaaa aaaaaaacct tgtaaattct agaagagtgg 13 00 tattcatttg tattcaacta aggacatatt tactcatgct 1350 gagatatttg aaattgaacc aatgactact taggatgggt 1400 gttttgatgt ggaattgcac atctacctta caattactga 1450 tagactcccc agtcccataa ttgtgtatct tccagccagg 1500 <br><br> 475 <br><br> aatcctacac ggccagcatg tatttctaca aataaagttt tctttgcata 1550 <br><br> ccaaaaaaaa aaaaaaaaaa a 1571 <br><br> &lt;210&gt; 402 &lt;211&gt; 261 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 402 <br><br> Met Arg Gin Phe Pro Lys Thr Ser Phe Asp Ile Ser Pro Glu Met 15 10 15 <br><br> Ser Phe Ser Ile Tyr Ser Leu Gin Val Pro Ala Val Pro Gly Leu 20 25 30 <br><br> Thr Cys Trp Ala Leu Thr Ala Glu Pro Gly Trp Gly Gin Asn Lys 35 40 45 <br><br> Gly Ala Thr Thr Cys Ala Thr Asn Ser His Ser Asp Ser Glu Leu 50 55 60 <br><br> Arg Pro Glu Ile Phe Ser Ser Arg Glu Ala Trp Gin Phe Phe Leu 65 70 75 <br><br> Leu Leu Trp Ser Pro Asp Phe Arg Pro Lys Met Lys Ala Ser Ser 80 85 90 <br><br> Leu Ala Phe Ser Leu Leu Ser Ala Ala Phe Tyr Leu Leu Trp Thr 95 100 105 <br><br> Pro Ser Thr Gly Leu Lys Thr Leu Asn Leu Gly Ser Cys Val Ile 110 115 120 <br><br> Ala Thr Asn Leu Gin Glu Ile Arg Asn Gly Phe Ser Glu Ile Arg 125 130 135 <br><br> Gly Ser Val Gin Ala Lys Asp Gly Asn Ile Asp Ile Arg Ile Leu 140 145 150 <br><br> Arg Arg Thr Glu Ser Leu Gin Asp Thr Lys Pro Ala Asn Arg Cys 155 160 165 <br><br> Cys Leu Leu Arg His Leu Leu Arg Leu Tyr Leu Asp Arg Val Phe 170 175 180 <br><br> Lys Asn Tyr Gin Thr Pro Asp His Tyr Thr Leu Arg Lys Ile Ser 185 190 195 <br><br> Ser Leu Ala Asn Ser Phe Leu Thr Ile Lys Lys Asp Leu Arg Leu 200 205 210 <br><br> Ser His Ala His Met Thr Cys His Cys Gly Glu Glu Ala Met Lys 215 220 225 <br><br> 476 <br><br> Lys Tyr Ser Gin Ile Leu Ser His Phe Glu Lys Leu Glu Pro Gin 230 235 240 <br><br> Ala Ala Val Val Lys Ala Leu Gly Glu Leu Asp Ile Leu Leu Gin 245 250 255 <br><br> Trp Met Glu Glu Thr Glu 260 <br><br> &lt;210&gt; 403 &lt;211&gt; 28 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 403 ctcctgtggt ctccagattt caggccta 28 <br><br> &lt;210&gt; 404 &lt;211&gt; 26 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 404 agtcctcctt aagattctga tgtcaa 2 6 <br><br> &lt;210&gt; 405 &lt;211&gt; 998 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 405 <br><br> ccgttatcgt cttgcgctac tgctgaatgt ccgtcccgga ggaggaggag <br><br> 50 <br><br> aggcttttgc cgctgaccca gagatggccc cgagcgagca aattcctact <br><br> 100 <br><br> gtccggctgc gcggctaccg tggccgagct agcaaccttt cccctggatc <br><br> 150 <br><br> tcacaaaaac tcgactccaa atgcaaggag aagcagctct tgctcggttg <br><br> 200 <br><br> ggagacggtg caagagaatc tgccccctat aggggaatgg tgcgcacagc <br><br> 250 <br><br> cctagggatc attgaagagg aaggctttct aaagctttgg caaggagtga <br><br> 300 <br><br> cacccgccat ttacagacac gtagtgtatt ctggaggtcg aatggtcaca <br><br> 350 <br><br> tatgaacatc tccgagaggt tgtgtttggc aaaagtgaag atgagcatta <br><br> 400 <br><br> tcccctttgg aaatcagtca ttggagggat gatggctggt gttattggcc <br><br> 450 <br><br> 477 <br><br> agtttttagc caatccaact gacctagtga aggttcagat gcaaatggaa 500 <br><br> ggaaaaagga aactggaagg aaaaccattg cgatttcgtg gtgtacatca 550 <br><br> tgcatttgca aaaatcttag ctgaaggagg aatacgaggg ctttgggcag 600 <br><br> gctgggtacc caatatacaa agagcagcac tggtgaatat gggagattta 650 <br><br> accacttatg atacagtgaa acactacttg gtattgaata caccacttga 700 <br><br> ggacaatatc atgactcacg gtttatcaag tttatgttct ggactggtag 750 <br><br> cttctattct gggaacacca gccgatgtca tcaaaagcag aataatgaat 800 <br><br> caaccacgag ataaacaagg aaggggactt ttgtataaat catcgactga 850 <br><br> ctgcttgatt caggctgttc aaggtgaagg attcatgagt ctatataaag 900 <br><br> gctttttacc atcttggctg agaatgaccc cttggtcaat ggtgttctgg 950 <br><br> cttacttatg aaaaaatcag agagatgagt ggagtcagtc cattttaa 998 <br><br> &lt;210&gt; 406 <br><br> &lt;211&gt; 323 &lt;212&gt; PRT &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 406 <br><br> Met Ser Val Pro Glu Glu Glu Glu Arg Leu Leu Pro Leu Thr Gin 15 10 15 <br><br> Arg Trp Pro Arg Ala Ser Lys Phe Leu Leu Ser Gly Cys Ala Ala 20 25 30 <br><br> Thr Val Ala Glu Leu Ala Thr Phe Pro Leu Asp Leu Thr Lys Thr 35 40 45 <br><br> Arg Leu Gin Met Gin Gly Glu Ala Ala Leu Ala Arg Leu Gly Asp 50 55 60 <br><br> Gly Ala Arg Glu Ser Ala Pro Tyr Arg Gly Met Val Arg Thr Ala 65 70 75 <br><br> Leu Gly Ile Ile Glu Glu Glu Gly Phe Leu Lys Leu Trp Gin Gly 80 85 90 <br><br> Val Thr Pro Ala Ile Tyr Arg His Val Val Tyr Ser Gly Gly Arg 95 100 105 <br><br> Met Val Thr Tyr Glu His Leu Arg Glu Val Val Phe Gly Lys Ser 110 115 120 <br><br> Glu Asp Glu His <br><br> Tyr Pro Leu Trp Lys Ser Val Ile Gly 125 130 <br><br> Gly Met 135 <br><br> 478 <br><br> Met Ala Gly Val Ile Gly Gin Phe Leu Ala Asn Pro Thr Asp Leu <br><br> 140 145 150 <br><br> Val Lys Val Gin Met Gin Met Glu Gly Lys Arg Lys Leu Glu Gly <br><br> 155 160 165 <br><br> Lys Pro Leu Arg Phe Arg Gly Val His His Ala Phe Ala Lys Ile <br><br> 170 175 180 <br><br> Leu Ala Glu Gly Gly Ile Arg Gly Leu Trp Ala Gly Trp Val Pro <br><br> 185 190 195 <br><br> Asn Ile Gin Arg Ala Ala Leu Val Asn Met Gly Asp Leu Thr Thr <br><br> 200 205 210 <br><br> Tyr Asp Thr Val Lys His Tyr Leu Val Leu Asn Thr Pro Leu Glu <br><br> 215 220 225 <br><br> Asp Asn Ile Met Thr His Gly Leu Ser Ser Leu Cys Ser Gly Leu <br><br> 230 235 240 <br><br> Val Ala Ser Ile Leu Gly Thr Pro Ala Asp Val Ile Lys Ser Arg <br><br> 245 250 255 <br><br> Ile Met Asn Gin Pro Arg Asp Lys Gin Gly Arg Gly Leu Leu Tyr 260 265 270 <br><br> Lys Ser Ser Thr Asp 275 <br><br> Phe Met Ser Leu Tyr 290 <br><br> Cys Leu Ile Gin Ala 280 <br><br> Lys Gly Phe Leu Pro 295 <br><br> Val Gin Gly Glu Gly 285 <br><br> Ser Trp Leu Arg Met 300 <br><br> Thr Pro Trp Ser Met Val Phe Trp Leu Thr Tyr Glu Lys Ile Arg 305 310 315 <br><br> Glu Met Ser Gly Val Ser Pro Phe 320 <br><br> &lt;210&gt; 407 &lt;211&gt; 31 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 407 <br><br> cgcggatccc gttatcgtct tgcgctactg c 31 <br><br> &lt;210&gt; 408 &lt;211&gt; 34 <br><br> 479 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 408 <br><br> gcggaattct taaaatggac tgactccact catc 34 <br><br> &lt;210&gt; 409 &lt;211&gt; 1487 &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 409 <br><br> cggacgcgtg ggcgcgggac gccggcaggg ttgtggcgca gcagtctcct 50 tcctgcgcgc gcgcctgaag tcggcgtggg cgtttgagga agctgggata 100 cagcatttaa tgaaaaattt atgcttaaga agtaaaaatg gcaggcttcc 150 tagataattt tcgttggcca gaatgtgaat gtattgactg gagtgagaga 2 00 agaaatgctg tggcatctgt tgtcgcaggt atattgtttt ttacaggctg 250 gtggataatg attgatgcag ctgtggtgta tcctaagcca gaacagttga 3 00 accatgcctt tcacacatgt ggtgtatttt ccacattggc tttcttcatg 350 ataaatgctg tatccaatgc tcaggtgaga ggtgatagct atgaaagcgg 400 ctgtttagga agaacaggtg ctcgagtttg gcttttcatt ggtttcatgt 450 tgatgtttgg gtcacttatt gcttccatgt ggattctttt tggtgcatat 500 gttacccaaa atactgatgt ttatccggga ctagctgtgt tttttcaaaa 550 tgcacttata ttttttagca ctctgatcta caaatttgga agaaccgaag 600 agctatggac ctgagatcac ttcttaagtc acattttcct tttgttatat 650 tctgtttgta gataggtttt ttatctctca gtacacattg ccaaatggag 7 00 tagattgtac attaaatgtt ttgtttcttt acatttttat gttctgagtt 750 ttgaaatagt tttatgaaat ttctttattt ttcattgcat agactgttaa 800 tatgtatata atacaagact atatgaattg gataatgagt atcagttttt 850 tattcctgag atttagaact tgatctactc cctgagccag ggttacatca 900 tcttgtcatt ttagaagtaa ccactcttgt ctctctggct gggcacggtg 950 gctcatgcct gtaatcccag cactttggga ggccgaggcg ggccgattgc 1000 ttgaggtcaa gtgtttgaga ccagcctggc caacatggcg aaaccccatc 1050 <br><br> 480 <br><br> tactaaaaat acaaaaatta gccaggcatg gtggtgggtg cctgtaatcc 1100 <br><br> cagctacctg ggaggctgag gcaggagaat cgcttgaacc cggggggcag 1150 <br><br> aggttgcagt gagctgagtt tgcgccactg cactctagcc tgggggagaa 12 00 <br><br> agtgaaactc cctctcaaaa aaaagaccac tctcagtatc tctgatttct 1250 <br><br> gaagatgtac aaaaaaatat agcttcatat atctggaatg agcactgagc 1300 <br><br> cataaaaggt tttcagcaag ttgtaactta ttttggccta aaaatgaggt 1350 <br><br> ttttttggta aagaaaaaat atttgttctt atgtattgaa gaagtgtact 1400 <br><br> tttatataat gattttttaa atgcccaaag gactagtttg aaagcttctt 1450 <br><br> ttaaaaagaa ttcctctaat atgactttat gtgagaa 1487 <br><br> &lt;210&gt; 410 &lt;211&gt; 158 &lt;212&gt; PRT &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 410 <br><br> Met Ala Gly Phe Leu Asp Asn Phe Arg Trp Pro Glu Cys Glu Cys 15 10 15 <br><br> Ile Asp Trp Ser Glu Arg Arg Asn Ala Val Ala Ser Val Val Ala 20 25 30 <br><br> Gly Ile Leu Phe Phe Thr Gly Trp Trp Ile Met Ile Asp Ala Ala 35 40 45 <br><br> Val Val Tyr Pro Lys Pro Glu Gin Leu Asn His Ala Phe His Thr 50 55 60 <br><br> Cys Gly Val Phe Ser Thr Leu Ala Phe Phe Met Ile Asn Ala Val 65 70 75 <br><br> Ser Asn Ala Gin Val Arg Gly Asp Ser Tyr Glu Ser Gly Cys Leu 80 85 90 <br><br> Gly Arg Thr Gly Ala Arg Val Trp Leu Phe Ile Gly Phe Met Leu 95 100 105 <br><br> Met Phe Gly Ser Leu Ile Ala Ser Met Trp Ile Leu Phe Gly Ala 110 115 120 <br><br> Tyr Val Thr Gin Asn Thr Asp Val Tyr Pro Gly Leu Ala Val Phe <br><br> 125 130 135 <br><br> Phe Gin Asn Ala Leu Ile Phe Phe Ser Thr Leu Ile Tyr Lys Phe 140 145 150 <br><br> 481 <br><br> Gly Arg Thr Glu Glu Leu Trp Thr 155 <br><br> &lt;210&gt; 411 &lt;211&gt; 20 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;22 0&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 411 gtttgaggaa gctgggatac 20 <br><br> &lt;210&gt; 412 &lt;211&gt; 20 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 412 ccaaactcga gcacctgttc 2 0 <br><br> &lt;210&gt; 413 &lt;211&gt; 40 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 413 <br><br> atggcaggct tcctagataa ttttcgttgg ccagaatgtg 40 <br><br> &lt;210&gt; 414 <br><br> &lt;211&gt; 1337 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 414 <br><br> gttgatggca aacttcctca aaggaggggc agagcctgcg cagggcagga 50 gcagctggcc cactggcggc ccgcaacact ccgtctcacc ctctgggccc 100 actgcatcta gaggagggcc gtctgtgagg ccactacccc tccagcaact 150 gggaggtggg actgtcagaa gctggcccag ggtggtggtc agctgggtca 200 gggacctacg gcacctgctg gaccacctcg ccttctccat cgaagcaggg 250 aagtgggagc ctcgagccct cgggtggaag ctgaccccaa gccacccttc 3 00 acctggacag gatgagagtg tcaggtgtgc ttcgcctcct ggccctcatc 350 <br><br> 482 <br><br> tttgccatag tcacgacatg gatgtttatt cgaagctaca tgagcttcag 400 <br><br> catgaaaacc atccgtctgc cacgctggct ggcagcctcg cccaccaagg 450 <br><br> agatccaggt taaaaagtac aagtgtggcc tcatcaagcc ctgcccagcc 500 <br><br> aactactttg cgtttaaaat ctgcagtggg gccgccaacg tcgtgggccc 550 <br><br> tactatgtgc tttgaagacc gcatgatcat gagtcctgtg aaaaacaatg 600 <br><br> tgggcagagg cctaaacatc gccctggtga atggaaccac gggagctgtg 650 <br><br> ctgggacaga aggcatttga catgtactct ggagatgtta tgcacctagt 700 <br><br> gaaattcctt aaagaaattc cggggggtgc actggtgctg gtggcctcct 750 <br><br> acgacgatcc agggaccaaa atgaacgatg aaagcaggaa actcttctct 800 <br><br> gacttgggga gttcctacgc aaaacaactg ggcttccggg acagctgggt 850 <br><br> cttcatagga gccaaagacc tcaggggtaa aagccccttt gagcagttct 900 <br><br> taaagaacag cccagacaca aacaaatacg agggatggcc agagctgctg 950 <br><br> gagatggagg gctgcatgcc cccgaagcca ttttagggtg gctgtggctc 1000 <br><br> ttcctcagcc aggggcctga agaagctcct gcctgactta ggagtcagag 1050 <br><br> cccggcaggg gctgaggagg aggagcaggg ggtgctgcgt ggaaggtgct 1100 <br><br> gcaggtcctt gcacgctgtg tcgcgcctct cctcctcgga aacagaaccc 1150 <br><br> tcccacagca catcctaccc ggaagaccag cctcagaggg tccttctgga 12 00 <br><br> accagctgtc tgtggagaga atggggtgct ttcgtcaggg actgctgacg 1250 <br><br> gctggtcctg aggaaggaca aactgcccag acttgagccc aattaaattt 1300 <br><br> tatttttgct ggttttgaaa aaaaaaaaaa aaaaaaa 1337 <br><br> &lt;210&gt; 415 &lt;211&gt; 224 &lt;212&gt; PRT &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 415 <br><br> Met Arg Val Ser Gly Val Leu Arg Leu Leu Ala Leu Ile Phe Ala 1 5 10 15 <br><br> Ile Val Thr Thr Trp Met Phe Ile Arg Ser Tyr Met Ser Phe Ser 20 25 30 <br><br> Met Lys Thr lie Arg Leu Pro Arg Trp Leu Ala Ala Ser Pro Thr 35 40 45 <br><br> 483 <br><br> Lys Glu Ile Gin Val Lys Lys Tyr Lys Cys Gly Leu Ile Lys Pro 50 55 60 <br><br> Cys Pro Ala Asn Tyr Phe Ala Phe Lys Ile Cys Ser Gly Ala Ala 65 70 75 <br><br> Asn Val Val Gly Pro Thr Met Cys Phe Glu Asp Arg Met Ile Met 80 85 90 <br><br> Ser Pro Val Lys Asn Asn Val Gly Arg Gly Leu Asn Ile Ala Leu <br><br> 95 100 105 <br><br> Val Asn Gly Thr Thr Gly Ala Val Leu Gly Gin Lys Ala Phe Asp 110 115 120 <br><br> Met Tyr Ser Gly Asp Val Met His Leu Val Lys Phe Leu Lys Glu 125 130 135 <br><br> Ile Pro Gly Gly Ala Leu Val Leu Val Ala Ser Tyr Asp Asp Pro 140 145 150 <br><br> Gly Thr Lys Met Asn Asp Glu Ser Arg Lys Leu Phe Ser Asp Leu 155 160 165 <br><br> Gly Ser Ser Tyr Ala Lys Gin Leu Gly Phe Arg Asp Ser Trp Val 170 175 180 <br><br> Phe Ile Gly Ala Lys Asp Leu Arg Gly Lys Ser Pro Phe Glu Gin 185 190 195 <br><br> Phe Leu Lys Asn Ser Pro Asp Thr Asn Lys Tyr Glu Gly Trp Pro 200 205 210 <br><br> Glu Leu Leu Glu Met Glu Gly Cys Met Pro Pro Lys Pro Phe 215 220 <br><br> &lt;210&gt; 416 &lt;211&gt; 21 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 416 gccatagtca cgacatggat g 21 <br><br> &lt;210&gt; 417 &lt;211&gt; 18 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence <br><br> &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> 484 <br><br> &lt;400&gt; 417 ggatggccag agctgctg 18 <br><br> &lt;210&gt; 418 &lt;211&gt; 26 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 418 aaagtacaag tgtggcctca tcaagc 2 6 <br><br> &lt;210&gt; 419 &lt;211&gt; 24 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 419 tctgactcct aagtcaggca ggag 24 <br><br> &lt;210&gt; 420 &lt;211&gt; 24 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 420 attctctcca cagacagctg gttc 24 <br><br> &lt;210&gt; 421 &lt;211&gt; 46 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 421 <br><br> gtacaagtgt ggcctcatca agccctgccc agccaactac tttgcg 46 <br><br> &lt;210&gt; 422 &lt;211&gt; 1701 &lt;212&gt; DNA &lt;213&gt; Homo sapiens <br><br> &lt;220&gt; <br><br> &lt;221&gt; unsure &lt;222&gt; 1528 <br><br> 485 <br><br> &lt;223&gt; unknown base <br><br> &lt;400&gt; 422 gagactgcag agggagataa agagagaggg tgtcctgggg atccagaaac ccatgatacc tggaagccca cagagacaga gacagcaaga cacgccagga gctcgctcgc tctctctctc ctctctctct gcctgtccta gtcctctagt gcaccccttc ctgggacact atgttgttct atttggatcc tggctgcaga tgggggtcaa acatggtcag gaccattggc cagcctctta cccagtcgcc catcgatatt cagacagaca ttgcctgctc tgcagcccca cggatatgac ggacctgcac aacaatggcc acacagtgca tgtatctggg tggacttccc cgaaaatatg cactggggtc agaaaggatc cccagggggg tgaagccaca tttgcagagc tccacattgt atgacagctt gagtgaggct gctgagaggc ggcatcctaa ttgaggtggg tgagactaag tctgagtcac ttgcatgaag tcaggcataa ctcccttcaa cctaagagag ctgctcccca cgctacaatg gctcgctcac aactccccct gacagttttt tatagaaggt cccagatttc ttcaggggac attgttctcc acagaagagg cagaactacc gagcccttca gcctctcaat tttcatccaa gcaggatcct cgtataccac gtgtaggaat cttggttggc tgtctctgcc attgctagaa agattcggaa gaagaggctg cttcacctca gcacaagcca cgactgaggc caaagaggca gcaagagatt 50 ctactgaaca ccgaatcccc 100 gaagcagaga taaatacact 150 tctctctcac tcctccctcc 200 cctcaaattc ccagtcccct 250 ccgccctcct gctggaggtg 300 cactggacgt atgagggccc 350 ccctgagtgt ggaaacaatg 400 gtgtgacatt tgaccctgat 450 cagcctggca ccgagccttt 500 actctctctg ccctctaccc 550 tagctgccca gctccacctg 600 <br><br> tcagaacacc agatcaacag 650 acattatgac tctgattcct 700 ctcagggcct ggctgtcctg 750 aatatagctt atgaacacat 800 agatcagaag acctcagtgc 850 aacagctggg gcagtacttc 900 tgctaccaga gtgtgctctg 950 aatggaacag ctggaaaagc 1000 agccctctaa gcttctggta 1050 cagcgcatgg tctttgcttc 1100 aggtgaaatg ctgagtctag 1150 ttctcctggc tgtttatttc 1200 gaaaaccgaa agagtgtggt 1250 ataaattcct tctcagatac 13 00 <br><br> 486 <br><br> catggatgtg gatgacttcc cttcatgcct atcaggaagc ctctaaaatg 1350 <br><br> gggtgtagga tctggccaga aacactgtag gagtagtaag cagatgtcct 1400 <br><br> ccttcccctg gacatctctt agagaggaat ggacccaggc tgtcattcca 1450 <br><br> ggaagaactg cagagccttc agcctctcca aacatgtagg aggaaatgag 1500 <br><br> gaaatcgctg tgttgttaat gcagaganca aactctgttt agttgcaggg 1550 <br><br> gaagtttggg atatacccca aagtcctcta ccccctcact tttatggccc 1600 <br><br> tttccctaga tatactgcgg gatctctcct taggataaag agttgctgtt 1650 <br><br> gaagttgtat atttttgatc aatatatttg gaaattaaag tttctgactt 1700 <br><br> t 1701 <br><br> &lt;210&gt; 423 &lt;211&gt; 337 &lt;212&gt; PRT &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 423 <br><br> Met Leu Phe Ser Ala Leu Leu Leu Glu Val Ile Trp Ile Leu Ala 15 10 15 <br><br> Ala Asp Gly Gly Gin His Trp Thr Tyr Glu Gly Pro His Gly Gin 20 25 30 <br><br> Asp His Trp Pro Ala Ser Tyr Pro Glu Cys Gly Asn Asn Ala Gin 35 40 45 <br><br> Ser Pro Ile Asp Ile Gin Thr Asp Ser Val Thr Phe Asp Pro Asp 50 55 60 <br><br> Leu Pro Ala Leu Gin Pro His Gly Tyr Asp Gin Pro Gly Thr Glu 65 70 75 <br><br> Pro Leu Asp Leu His Asn Asn Gly His Thr Val Gin Leu Ser Leu 80 85 90 <br><br> Pro Ser Thr Leu Tyr Leu Gly Gly Leu Pro Arg Lys Tyr Val Ala 95 100 105 <br><br> Ala Gin Leu His Leu His Trp Gly Gin Lys Gly Ser Pro Gly Gly 110 115 120 <br><br> Ser Glu His Gin Ile Asn Ser Glu Ala Thr Phe Ala Glu Leu His 125 130 135 <br><br> Ile Val His Tyr Asp Ser Asp Ser Tyr Asp Ser Leu Ser Glu Ala 140 145 150 <br><br> Ala Glu Arg Pro Gin Gly Leu Ala Val Leu Gly Ile Leu Ile Glu 155 160 165 <br><br> 487 <br><br> Val Gly Glu Thr Lys Asn Ile Ala Tyr Glu His Ile Leu Ser His 170 175 180 <br><br> Leu His Glu Val Arg His Lys Asp Gin Lys Thr Ser Val Pro Pro 185 190 195 <br><br> Phe Asn Leu Arg Glu Leu Leu Pro Lys Gin Leu Gly Gin Tyr Phe 200 205 210 <br><br> Arg Tyr Asn Gly Ser Leu Thr Thr Pro Pro Cys Tyr Gin Ser Val 215 220 225 <br><br> Leu Trp Thr Val Phe Tyr Arg Arg Ser Gin Ile Ser Met Glu Gin 230 235 240 <br><br> Leu Glu Lys Leu Gin Gly Thr Leu Phe Ser Thr Glu Glu Glu Pro 245 250 255 <br><br> Ser Lys Leu Leu Val Gin Asn Tyr Arg Ala Leu Gin Pro Leu Asn 260 265 270 <br><br> Gin Arg Met Val Phe Ala Ser Phe Ile Gin Ala Gly Ser Ser Tyr 275 280 285 <br><br> Thr Thr Gly Glu Met Leu Ser Leu Gly Val Gly Ile Leu Val Gly 290 295 300 <br><br> Cys Leu Cys Leu Leu Leu Ala Val Tyr Phe Ile Ala Arg Lys Ile 305 310 315 <br><br> Arg Lys Lys Arg Leu Glu Asn Arg Lys Ser Val Val Phe Thr Ser 320 325 330 <br><br> Ala Gin Ala Thr Thr Glu Ala 335 <br><br> &lt;210&gt; 424 <br><br> &lt;211&gt; 18 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence <br><br> &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 424 <br><br> gtaaagtcgc tggccagc 18 <br><br> &lt;210&gt; 425 <br><br> &lt;211&gt; 18 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence <br><br> &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> 488 <br><br> &lt;400&gt; 425 cccgatctgc ctgctgta 18 <br><br> &lt;210&gt; 426 &lt;211&gt; 24 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 426 ctgcactgta tggccattat tgtg 24 <br><br> &lt;210&gt; 427 &lt;211&gt; 45 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 427 <br><br> cagaaaccca tgatacccta ctgaacaccg aatcccctgg aagcc 45 <br><br> &lt;210&gt; 428 <br><br> &lt;211&gt; 1073 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Homo sapiens <br><br> &lt;400&gt; 428 <br><br> aatttttcac cagagtaaac ttgagaaacc aactggacct tgagtattgt 50 acattttgcc tcgtggaccc aaaggtagca atctgaaaca tgaggagtac 100 gattctactg ttttgtcttc taggatcaac tcggtcatta ccacagctca 150 aacctgcttt gggactccct cccacaaaac tggctccgga tcagggaaca 2 00 ctaccaaacc aacagcagtc aaatcaggtc tttccttctt taagtctgat 250 accattaaca cagatgctca cactggggcc agatctgcat ctgttaaatc 300 ctgctgcagg aatgacacct ggtacccaga cccacccatt gaccctggga 350 gggttgaatg tacaacagca actgcaccca catgtgttac caatttttgt 400 cacacaactt ggagcccagg gcactatcct aagctcagag gaattgccac 450 aaatcttcac gagcctcatc atccattcct tgttcccggg aggcatcctg 500 cccaccagtc aggcaggggc taatccagat gtccaggatg gaagccttcc 550 agcaggagga gcaggtgtaa atcctgccac ccagggaacc ccagcaggcc 600 <br><br> 489 <br><br> gcctcccaac tcccagtggc acagatgacg actttgcagt gaccacccct 650 <br><br> gcaggcatcc aaaggagcac acatgccatc gaggaagcca ccacagaatc 700 <br><br> agcaaatgga attcagtaag ctgtttcaaa ttttttcaac taagctgcct 750 <br><br> cgaatttggt gatacatgtg aatctttatc attgattata ttatggaata 800 <br><br> gattgagaca cattggatag tcttagaaga aattaattct taatttacct 850 <br><br> gaaaatattc ttgaaatttc agaaaatatg ttctatgtag agaatcccaa 900 <br><br> cttttaaaaa caataattca atggataaat ctgtctttga aatataacat 950 <br><br> tatgctgcct ggatgatatg catattaaaa catatttgga aaactggaaa 1000 <br><br> aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1050 <br><br> aaaaaaaaaa aaaaaaaaaa aaa 1073 <br><br> &lt;210&gt; 429 &lt;211&gt; 209 &lt;212&gt; PRT <br><br> &lt;213&gt; Homo sapiens &lt;400&gt; 429 <br><br> Met Arg Ser Thr Ile Leu Leu Phe Cys Leu Leu Gly Ser Thr Arg 15 10 15 <br><br> Ser Leu Pro Gin Leu Lys Pro Ala Leu Gly Leu Pro Pro Thr Lys 20 25 30 <br><br> Leu Ala Pro Asp Gin Gly Thr Leu Pro Asn Gin Gin Gin Ser Asn 35 40 45 <br><br> Gin Val Phe Pro Ser Leu Ser Leu Ile Pro Leu Thr Gin Met Leu 50 55 60 <br><br> Thr Leu Gly Pro Asp Leu His Leu Leu Asn Pro Ala Ala Gly Met 65 70 75 <br><br> Thr Pro Gly Thr Gin Thr His Pro Leu Thr Leu Gly Gly Leu Asn 80 85 90 <br><br> Val Gin Gin Gin Leu His Pro His Val Leu Pro Ile Phe Val Thr 95 100 105 <br><br> Gin Leu Gly Ala Gin Gly Thr Ile Leu Ser Ser Glu Glu Leu Pro 110 115 120 <br><br> Gin Ile Phe Thr Ser Leu Ile Ile His Ser Leu Phe Pro Gly Gly 125 130 135 <br><br> Ile Leu Pro Thr Ser Gin Ala Gly Ala Asn Pro Asp Val Gin Asp 140 145 150 <br><br> 490 <br><br> Gly Ser Leu <br><br> Gly Thr Pro <br><br> Asp Phe Ala <br><br> Ala Ile Glu <br><br> &lt;210&gt; 430 &lt;211&gt; 22 &lt;212&gt; DNA &lt;213&gt; Artificial Sequence <br><br> &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe <br><br> &lt;400&gt; 430 tccaggtgga ccccacttca gg 22 <br><br> &lt;210&gt; 431 &lt;211&gt; 24 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide Probe <br><br> &lt;400&gt; 431 gggaggctta taggcccaat ctgg 24 <br><br> &lt;210&gt; 432 &lt;211&gt; 50 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic oligonucleotide probe &lt;400&gt; 432 <br><br> ggcttcagca gcaggtgtga agtcgaagtc gcagtcacag atatcaatga 50 <br><br> Pro Ala Gly Gly Ala Gly Val Asn Pro Ala Thr Gin 155 160 165 <br><br> Ala Gly Arg Leu Pro Thr Pro Ser Gly Thr Asp Asp 170 175 180 <br><br> Val Thr Thr Pro Ala Gly Ile Gin Arg Ser Thr His 185 190 195 <br><br> Glu Ala Thr Thr Glu Ser Ala Asn Gly Ile Gin 200 205 <br><br></p> </div>

Claims (44)

<div class="application article clearfix printTableText" id="claims"> <p lang="en"> / I.<br><br> 490<br><br> WHAT IS CLAIMED IS:<br><br>
1. An isolated nucleic acid having at least 80% sequence identity to a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence shown in Figure 2<br><br> 5 (SEQ ID NO:277).<br><br>
2. The nucleic acid of Claim 1, wherein said nucleotide sequence comprises the nucleotide sequence shown in Figure 1 (SEQ ID NO:276).<br><br> 10
3. The nucleic acid of Claim 1 or Claim 2, wherein said nucleotide sequence comprises the full-length coding sequence from within the sequence shown in Figure 1 (SEQ ID NO:276).<br><br>
4. The nucleic acid of Claim 1 which comprises the full-length coding sequence of the DNA deposited under accession number ATCC 203355.<br><br> 15<br><br>
5. Isolated nucleic acid having a nucleotide sequence that encodes a polypeptide comprising the amino acid sequence shown in Figure 2 (SEQ ID NO:277).<br><br>
6. The nucleic acid of Claim 5, wherein said nucleotide sequence comprises the 20 nucleotide sequence shown in Figure 1 (SEQ ID NO:276).<br><br>
7. The nucleic acid of Claim 5 or Claim 6, wherein said nucleotide sequence comprises the full-length coding sequence from within the sequence shown in Figure 1 (SEQ ID NO:276).<br><br> 25
8. The nucleic acid of Claim 5 which comprises the full length coding sequence of the DNA deposited under accession number ATCC 203355.<br><br>
9. A vector comprising the nucleic acid of any one of Claims 1 to 8.<br><br> 30
10. The vector of Claim 9 wherein said nucleic acid is operably linked to control sequences recognized by a host cell transformed with the vector.<br><br>
11. An isolated host cell comprising the vector of Claim 9 or Claim 10.<br><br> 35
12. An isolated host cell of Claim 11 wherein said cell is a CHO cell, an E. coli or a yeast cell.<br><br>
13. A process for producing a polypeptides comprising culturing the host cell of Claim 11 or Claim 12 under conditions suitable for expression of said polypeptide and recovering said polypeptide from the cell culture.<br><br> H:\GabrielaVKeep\SpecftP49662 Div No 3.doc 26/05/03<br><br> 491<br><br>
14. An isolated polypeptide comprising a sequence having at least 80% sequence identity to an amino acid sequence shown in Figure 2 (SEQ ID NO: 277).<br><br> 5
15. An isolated polypeptide comprising a sequence having at least 80% sequence identity to the amino acid sequence encoded by a nucleotide deposited under accession number ATCC 203355.<br><br>
16. An isolated polypeptide comprising a sequence having at least 80% sequence identity 10 to the amino acid sequence encoded by the extracellular domain of a PR01317 polypeptide of<br><br> SEQ ID NO: 277.<br><br>
17. An isolated polypeptide comprising a sequence having at least 80% sequence identity to the amino acid sequence encoded by the extracellular domain of a PR01317 polypeptide of<br><br> 15 SEQ ID NO: 277 lacking its associated signal peptide.<br><br>
18. An isolated polypeptide comprising a sequence having the amino acid sequence shown in Figure 2 (SEQ ID NO: 277).<br><br> 20
19. An isolated polypeptide comprising a sequence having the amino acid sequence encoded by the nucleotide deposited under accession number ATCC 203355.<br><br>
20. A chimeric molecule comprising a polypeptide according to any one of Claims 14 to<br><br>
19. fused to a heterologous amino acid sequence.<br><br> 25<br><br>
21. The chimeric molecule of Claim 20 wherein said heterologous amino acid sequence is an epitope tag sequence.<br><br>
22. The chimeric molecule of Claim 20 wherein said heterologous amino acid sequence is 30 a Fc region of an immunoglobulin.<br><br>
23. An antibody which specifically binds to a polypeptide according to any one of Claims 14 to 19.<br><br> 35
24. The antibody of Claim 23 wherein said antibody is a humanized antibody.<br><br>
25. The antibody of Claim 23 wherein said antibody is a monoclonal antibody.<br><br>
26. The antibody of Claim 25 wherein said antibody is a chimeric antibody.<br><br> H:\Gabriela\Keep\Speci\P49662 Div No 3.doc 26/05/03<br><br> 492<br><br>
27. A polypeptide according to any one of Claims 14 to 19 for use in a method of medical treatment.<br><br>
28. A polypeptide according to any one of Claims 14 to 19 for use in the treatment of a tumour.<br><br>
29. A pharmaceutical composition comprising a polypeptide of any one of Claims 14 to 19 and a pharmaceutically acceptable carrier, excipient, or stabilizer.<br><br>
30. A composition comprising an antibody according to any one of Claims 23 to 26 in admixture with a pharmaceutically acceptable carrier.<br><br>
31. An isolated nucleic acid molecule consisting of an at least 20 nucleotides fragment of the nucleic acid sequence of SEQ ID NO:276, or a complement thereof, that hybridizes under stringent conditions to:<br><br> (a) the nucleic acid sequence of SEQ ID N0.276 or a complement thereof;<br><br> (b) the full length coding sequence of the cDNA deposited under ATCC accession number 203355 or a complement thereof; and<br><br> (c) wherein, said stringent conditions use 50% formamide, 5 x SSC, 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5x Denhardt's solution, sonicated salmon sperm DNA (50 pg/ml), 0.1% SDS, and 10% dextran sulfate at 42°C, with washes at 42°C in 0.2 x SSC and 50% formamide at 55°C, followed by a wash comprising of 0.1 x SSC containing EDTA at 55°C.<br><br>
32. The isolated nucleic acid molecule of Claim 31 that is at least 50 nucleotides.<br><br>
33. The isolated nucleic acid molecule of Claim 31 that is at least 60 nucleotides.<br><br>
34. The isolated nucleic acid molecule of Claim 31 that is at least 70 nucleotides.<br><br>
35. The isolated nucleic acid molecule of Claim 31 that is at least 80 nucleotides.<br><br>
36. The isolated nucleic acid molecule of Claim 31 that is at least 90 nucleotides.<br><br>
37. The isolated nucleic acid molecule of Claim 31 that is at least 100 nucleotides.<br><br>
38. A vector as defined in Claim 9 substantially as herein described with reference to any example thereof with or without reference to the accompanying drawings.<br><br> 350350 l.DOC<br><br> INTELLECTUAL PROPERTY OFFICE OF N.Z.<br><br> - 1 APR 2005 received<br><br> 493<br><br>
39. An isolated host cell as defined in Claim 11 substantially as herein described with reference to any example thereof with or without reference to the accompanying drawings.<br><br>
40. A process as defined in Claim 13 for producing a polypeptide substantially as herein described with reference to any example thereof with or without reference to the accompanying drawings.<br><br>
41. A chimeric molecule as defined in Claim 20 substantially as herein described with reference to any example thereof with or without reference to the accompanying drawings.<br><br>
42. An antibody as defined in Claim 23 substantially as herein described with reference to any example thereof with or without reference to the accompanying drawings.<br><br>
43. A pharmaceutical composition as claimed in claim 29 substantially as herein described with reference to any example thereof with or without reference to the accompanying drawings.<br><br>
44. A composition as claimed in claim 30 substantially as herein described with reference to any example thereof with or without reference to the accompanying drawings.<br><br> INTELLECTUAL PROPERTY OFFICE OF N.Z.<br><br> - 1 APR 2005<br><br> RECEIVED<br><br> 350350_1.DOC<br><br> </p> </div>
NZ531664A 1998-09-01 1999-09-01 Pro1317 polypeptides and sequences thereof with homology to the semaphorin B glycoprotein family NZ531664A (en)

Applications Claiming Priority (101)

Application Number Priority Date Filing Date Title
US9871698P 1998-09-01 1998-09-01
US9875098P 1998-09-01 1998-09-01
US9874998P 1998-09-01 1998-09-01
US9880398P 1998-09-02 1998-09-02
US9882198P 1998-09-02 1998-09-02
US9884398P 1998-09-02 1998-09-02
US9953698P 1998-09-09 1998-09-09
US9960298P 1998-09-09 1998-09-09
US9959898P 1998-09-09 1998-09-09
US9959698P 1998-09-09 1998-09-09
US9964298P 1998-09-09 1998-09-09
US9975498P 1998-09-10 1998-09-10
US9981598P 1998-09-10 1998-09-10
US9976398P 1998-09-10 1998-09-10
US9981698P 1998-09-10 1998-09-10
US9974198P 1998-09-10 1998-09-10
US9981298P 1998-09-10 1998-09-10
US9980898P 1998-09-10 1998-09-10
US9979298P 1998-09-10 1998-09-10
US10038598P 1998-09-15 1998-09-15
US10038898P 1998-09-15 1998-09-15
US10039098P 1998-09-15 1998-09-15
US10066498P 1998-09-16 1998-09-16
US10058498P 1998-09-16 1998-09-16
US10066298P 1998-09-16 1998-09-16
US10062798P 1998-09-16 1998-09-16
US10066198P 1998-09-16 1998-09-16
US10091998P 1998-09-17 1998-09-17
US10071098P 1998-09-17 1998-09-17
US10071198P 1998-09-17 1998-09-17
US10068398P 1998-09-17 1998-09-17
US10068498P 1998-09-17 1998-09-17
US10093098P 1998-09-17 1998-09-17
US10101498P 1998-09-18 1998-09-18
US10107198P 1998-09-18 1998-09-18
US10106898P 1998-09-18 1998-09-18
US10084898P 1998-09-18 1998-09-18
US10084998P 1998-09-18 1998-09-18
US10127998P 1998-09-22 1998-09-22
US10147798P 1998-09-23 1998-09-23
US10147298P 1998-09-23 1998-09-23
US10147598P 1998-09-23 1998-09-23
US10147498P 1998-09-23 1998-09-23
US10147698P 1998-09-23 1998-09-23
US10147198P 1998-09-23 1998-09-23
US10147998P 1998-09-23 1998-09-23
US10174198P 1998-09-24 1998-09-24
US10191598P 1998-09-24 1998-09-24
US10174398P 1998-09-24 1998-09-24
US10173898P 1998-09-24 1998-09-24
US10191698P 1998-09-24 1998-09-24
US10233098P 1998-09-29 1998-09-29
US10224098P 1998-09-29 1998-09-29
US10220798P 1998-09-29 1998-09-29
US10233198P 1998-09-29 1998-09-29
US10230798P 1998-09-29 1998-09-29
US10248498P 1998-09-30 1998-09-30
US10257098P 1998-09-30 1998-09-30
US10257198P 1998-09-30 1998-09-30
US10248798P 1998-09-30 1998-09-30
US10268498P 1998-10-01 1998-10-01
US10268798P 1998-10-01 1998-10-01
US10296598P 1998-10-02 1998-10-02
US10325898P 1998-10-06 1998-10-06
US10344998P 1998-10-06 1998-10-06
US10339598P 1998-10-07 1998-10-07
US10331598P 1998-10-07 1998-10-07
US10331498P 1998-10-07 1998-10-07
US10339698P 1998-10-07 1998-10-07
US10332898P 1998-10-07 1998-10-07
US10340198P 1998-10-07 1998-10-07
US10371198P 1998-10-08 1998-10-08
US10363398P 1998-10-08 1998-10-08
US10367898P 1998-10-08 1998-10-08
US10367998P 1998-10-08 1998-10-08
US10425798P 1998-10-14 1998-10-14
US10500098P 1998-10-20 1998-10-20
US10500298P 1998-10-20 1998-10-20
US10498798P 1998-10-20 1998-10-20
US10510498P 1998-10-21 1998-10-21
US10526698P 1998-10-22 1998-10-22
US10516998P 1998-10-22 1998-10-22
US10569498P 1998-10-26 1998-10-26
US10569398P 1998-10-26 1998-10-26
US10580798P 1998-10-27 1998-10-27
US10588198P 1998-10-27 1998-10-27
US10606298P 1998-10-27 1998-10-27
US10588298P 1998-10-27 1998-10-27
US10603098P 1998-10-28 1998-10-28
US10603298P 1998-10-28 1998-10-28
US10602398P 1998-10-28 1998-10-28
US10603398P 1998-10-28 1998-10-28
US10617898P 1998-10-28 1998-10-28
US10602998P 1998-10-28 1998-10-28
US10624898P 1998-10-29 1998-10-29
US10638498P 1998-10-29 1998-10-29
US10850098P 1998-10-29 1998-10-29
US10646498P 1998-10-30 1998-10-30
US10685698P 1998-11-03 1998-11-03
US09/946,374 US20030073129A1 (en) 1998-09-01 2001-09-04 Secreted and transmembrane polypeptides and nucleic acids encoding the same
US10/015,480 US7074912B2 (en) 1998-09-01 2001-12-11 Secreted and transmembrane polypeptides and nucleic acids encoding the same

Publications (1)

Publication Number Publication Date
NZ531664A true NZ531664A (en) 2005-07-29

Family

ID=56289939

Family Applications (2)

Application Number Title Priority Date Filing Date
NZ531664A NZ531664A (en) 1998-09-01 1999-09-01 Pro1317 polypeptides and sequences thereof with homology to the semaphorin B glycoprotein family
NZ510464A NZ510464A (en) 1998-09-01 1999-09-01 Further pro polypeptides and sequences thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
NZ510464A NZ510464A (en) 1998-09-01 1999-09-01 Further pro polypeptides and sequences thereof

Country Status (3)

Country Link
CA (1) CA2339043A1 (en)
NZ (2) NZ531664A (en)
WO (1) WO2000012708A2 (en)

Families Citing this family (124)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020137890A1 (en) * 1997-03-31 2002-09-26 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
US7057017B2 (en) 1997-04-16 2006-06-06 Millennium Pharmaceuticals, Inc. Human dickkopf-related protein and nucleic acid molecules and uses therefor
US20050196832A1 (en) 1997-09-18 2005-09-08 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030073169A1 (en) 1997-09-18 2003-04-17 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20020192752A1 (en) 1998-09-09 2002-12-19 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
WO2000017353A1 (en) * 1998-09-22 2000-03-30 Genentech, Inc. Ucp4
US6573068B1 (en) 1997-11-13 2003-06-03 Genset, S. A. Claudin-50 protein
KR20010033385A (en) 1997-12-22 2001-04-25 오노 야꾸힝 고교 가부시키가이샤 Peptides, method for assaying human pepsinogen ⅱ 0r human pepsin ⅱ, and assaying kit
JPH11187882A (en) * 1997-12-26 1999-07-13 Ono Pharmaceut Co Ltd Novel polypeptide, its production, cdna coding for the same polypeptide, vector comprising the same cdna, host cell transformed by the same vector, antibody of the same polypeptide, and pharmaceutical composition containing the polypeptide of antibody
US7446181B2 (en) 1998-01-15 2008-11-04 Millennium Pharmaceuticals, Inc. Antibodies that bind human Dickkopf-1 proteins
US7045333B1 (en) 1998-01-16 2006-05-16 Incyte Corporation Human protease molecules
US6203979B1 (en) 1998-01-16 2001-03-20 Incyte Pharmaceuticals, Inc. Human protease molecules
CA2320625A1 (en) 1998-02-09 1999-08-12 Human Genome Sciences, Inc. 45 human secreted proteins
US6245550B1 (en) * 1998-03-20 2001-06-12 Smithkline Beecham Corporation Cytokine family member EF-7
US6365369B1 (en) 1998-04-01 2002-04-02 Human Genome Sciences, Inc. Prostate specific secreted protein
EP1077259A4 (en) * 1998-05-14 2005-04-20 Ono Pharmaceutical Co NOVEL POLYPEPTIDES, cDNAS ENCODING THE SAME AND UTILIZATION THEREOF
US6949339B1 (en) 1998-05-21 2005-09-27 Diadexus, Inc. Method of diagnosing, monitoring, and staging colon cancer
US6914130B2 (en) 1998-06-17 2005-07-05 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
US20030166132A1 (en) 1998-08-26 2003-09-04 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
AU5502199A (en) * 1998-08-31 2000-03-21 Long Yu A novel human lysozyme gene, its encoding polypeptide and the method for preparing them
US7026448B2 (en) * 1998-09-01 2006-04-11 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
DE69939874D1 (en) 1998-09-02 2008-12-18 Diadexus Inc METHOD OF DIAGNOSIS, EVALUATION AND IMAGE DISPLAY OF VARIOUS CANCER DISORDERS
US7244817B2 (en) * 1998-09-10 2007-07-17 Genentech, Inc. Pro1357 polypeptide
US7244428B2 (en) * 1998-09-10 2007-07-17 Genentech, Inc. PRO1357 antibodies
US6344541B1 (en) 1998-09-25 2002-02-05 Amgen Inc. DKR polypeptides
US7414112B2 (en) 1998-10-08 2008-08-19 Genentech, Inc. Antibodies to PRO1550 polypeptides
CA2350776C (en) 1998-11-10 2011-05-03 Emory University Novel mitogenic regulators
EP1137656A4 (en) * 1998-11-12 2003-08-06 Human Genome Sciences Inc 31 human secreted proteins
EP1143005A4 (en) * 1998-12-09 2002-11-06 Shionogi & Co Human secretory phospholipase a 2?
CA2358873A1 (en) * 1999-01-25 2000-07-27 Zymogenetics, Inc. Human polypeptide having multiple epidermal growth factor (egf) -like domains, zntr2
US7166427B1 (en) 1999-02-26 2007-01-23 The Ohio University Research Foundation Detecting the expression of the DESC1 gene in squamous cell carcinoma
AU3139900A (en) * 1999-03-11 2000-09-28 Mount Sinai Hospital Corporation Sialic acid-binding ig-like lectin (siglec) gene; ob-binding protein like (ob-bpl)
US8410248B2 (en) 1999-03-12 2013-04-02 Human Genome Sciences Inc. HWBAO62 polypeptides
EP1169445A2 (en) * 1999-04-09 2002-01-09 Curagen Corporation Human proteins and polynucleotides encoding them
EP1171597A2 (en) * 1999-04-12 2002-01-16 Agensys, Inc. Prostate-restricted gene 30p3c8 expressed in prostate cancer
WO2001002586A1 (en) * 1999-06-29 2001-01-11 Mcgill University Human alpha 1,2-mannosidase
US7011967B1 (en) 1999-07-12 2006-03-14 Merck Patent Gmbh Seripancrin
CA2378929A1 (en) * 1999-08-03 2001-02-08 Human Genome Sciences, Inc. Serine proteases
US7282562B2 (en) 1999-08-31 2007-10-16 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
CA2384055A1 (en) * 1999-08-31 2001-03-08 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
ATE463510T1 (en) * 1999-09-29 2010-04-15 Teijin Ltd POLYPEPTIDES AND GENES CODING THEM
WO2001027277A2 (en) * 1999-10-13 2001-04-19 Curagen Corporation Proteins and polynucleotides encoded thereby
JP2004500045A (en) * 1999-10-18 2004-01-08 レキシコン・ジェネティクス・インコーポレーテッド Novel human proteins and polynucleotides encoding them
CA2387136A1 (en) * 1999-10-29 2001-05-10 Human Genome Sciences, Inc. 26 human secreted proteins
EP1224201A4 (en) * 1999-10-29 2005-03-02 Human Genome Sciences Inc 32 human secreted proteins
AU1174501A (en) * 1999-11-10 2001-06-06 Compugen Ltd. Chordin-like homologs
WO2001036604A2 (en) * 1999-11-18 2001-05-25 Corvas International, Inc. Nucleic acids encoding endotheliases, endotheliases and uses thereof
JP2003514543A (en) * 1999-11-19 2003-04-22 ヒューマン ジノーム サイエンシーズ, インコーポレイテッド 23 human secretory proteins
AU1925601A (en) * 1999-11-23 2001-06-04 Zymogenetics Inc. Secreted protein, zalpha37
WO2001048203A1 (en) * 1999-12-27 2001-07-05 Takeda Chemical Industries, Ltd. Novel protein and dna thereof
AU3647701A (en) * 2000-01-19 2001-07-31 Amgen, Inc. Chondromodulin-i related peptide
AU784015B2 (en) 2000-01-19 2006-01-12 University Of Virginia Patent Foundation Sperm specific proteins
WO2001055390A1 (en) * 2000-01-28 2001-08-02 Human Genome Sciences, Inc. Human serpin polynucleotides, polypeptides, and antibodies
AU2001237958A1 (en) * 2000-01-31 2001-08-07 Human Genome Sciences, Inc. 22 human secreted proteins
EP1266000A1 (en) * 2000-03-02 2002-12-18 Amgen Inc. Chordin-like-2 molecules and uses thereof
AU2001255168A1 (en) * 2000-03-03 2001-09-17 Genentech Inc. Compositions and methods for the treatment of immune related diseases
US7301016B2 (en) 2000-03-07 2007-11-27 Millennium Pharmaceuticals, Inc. Human transferase family members and uses thereof
AU2001241080A1 (en) * 2000-03-10 2001-09-17 Toshio Kitamura Mouse adipocyte-origin genes
AU2001245746A1 (en) * 2000-03-15 2001-09-24 Fibrogen, Inc. Alpha(iii) subunit of prolyl 4-hydroxylase
US20020031801A1 (en) * 2000-03-24 2002-03-14 Millennium Pharmaceuticals, Inc. 18806, a novel trypsin serine protease-like molecule and uses thereof
US20030096952A1 (en) * 2000-03-30 2003-05-22 Kumud Majumder Novel proteins and nucleic acids encoding same
GB0009907D0 (en) * 2000-04-20 2000-06-07 Smithkline Beecham Biolog Novel compounds
WO2002000709A2 (en) * 2000-06-23 2002-01-03 Eli Lilly And Company Cerebellin homologous polypeptides and therapeutic uses thereof
US6750034B1 (en) 2000-06-30 2004-06-15 Ortho-Mcneil Pharmaceutical, Inc. DNA encoding human serine protease D-G
WO2002002774A2 (en) * 2000-06-30 2002-01-10 Millennium Pharmaceuticals, Inc. 32626, a human udp-glycosyltransferase and uses thereof
US20030215913A1 (en) * 2000-07-19 2003-11-20 Enrique Alvarez Nucleic acids, vectors, host cells, polypeptides, and uses thereof
AU2001278011A1 (en) * 2000-07-26 2002-02-05 Applied Genomics, Inc. Bstp-ecg1 protein and related reagents and methods of use thereof
JP5015404B2 (en) 2000-08-08 2012-08-29 ザイモジェネティクス, インコーポレイテッド Soluble ZCYTOR11 cytokine receptor
CA2420140A1 (en) * 2000-08-24 2002-02-28 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
KR20040014392A (en) * 2000-08-24 2004-02-14 제넨테크, 인크. Compositions and Methods for the Diagnosis and Treatment of Tumor
CA2420193A1 (en) * 2000-08-24 2002-02-28 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
DE60136281D1 (en) * 2000-08-24 2008-12-04 Genentech Inc METHOD FOR INHIBITING IL-22-INDUCED PAP1
US7855269B2 (en) 2000-09-15 2010-12-21 Zymogenetics, Inc. Method for treating inflammation
US7217548B2 (en) 2000-10-06 2007-05-15 National Institute Of Advanced Industrial Science And Technology N-acetylglucosaminlytransferase and polynucleotide encoding the same
HUP0600776A2 (en) 2000-11-14 2007-01-29 Bristol Myers Squibb Co A human serpin secreted from lymphoid cells lsi-01
US20020119138A1 (en) 2001-02-26 2002-08-29 Sylvaine Cases Diacylglycerol o-acyltransferase 2alpha (DGAT2alpha)
US7045326B2 (en) 2001-02-23 2006-05-16 The Regents Of The University Of California Mono- and diacylglycerol acyltransferases and methods of use thereof
US7101539B2 (en) 2001-02-28 2006-09-05 Eli Lilly And Company Use of LP82 to treat hematopoietic disorders
US20040086908A1 (en) 2002-03-07 2004-05-06 Chandrasekher Yasmin A. Soluble heterodimeric cytokine receptor
US7034134B2 (en) 2001-04-26 2006-04-25 Bristol-Myers Squibb Company Polynucleotide encoding a novel metalloprotease highly expressed in the testis, MMP-29
WO2002088363A2 (en) * 2001-05-02 2002-11-07 Bayer Healthcare Ag Regulation of novel human prolyl 4-hydroxylases
CA2633171C (en) * 2001-06-20 2012-11-20 Genentech, Inc. Antibodies against tumor-associated antigenic target (tat) polypeptides
JP4702819B2 (en) 2001-08-01 2011-06-15 生化学工業株式会社 Chondroitin synthase
NZ573831A (en) 2001-09-18 2010-07-30 Genentech Inc Compositions and methods for the diagnosis and treatment of tumor, particularly breast tumor - TAT193
US7771965B2 (en) * 2001-10-12 2010-08-10 Amgen Inc. Tumor endothelial marker 5α molecules and uses thereof
WO2003051384A1 (en) 2001-12-17 2003-06-26 Zymogenetics, Inc. Method for treating cervical cancer
KR20040101502A (en) * 2002-04-16 2004-12-02 제넨테크, 인크. Compositions and Methods for the Diagnosis and Treatment of Tumor
EP2305710A3 (en) 2002-06-03 2013-05-29 Genentech, Inc. Synthetic antibody phage libraries
AU2003251202A1 (en) * 2002-08-14 2004-03-03 Lg Life Sciences Ltd. Gene families associated with stomach cancer
EP2116616A3 (en) * 2002-09-11 2010-03-17 Genentech, Inc. Genes differentially expressed in activated T cells and uses thereof
GB0224436D0 (en) * 2002-10-21 2002-11-27 Univ Cambridge Tech Polypetides methods and means
DE10254601A1 (en) 2002-11-22 2004-06-03 Ganymed Pharmaceuticals Ag Gene products differentially expressed in tumors and their use
EP2314676A1 (en) * 2002-11-26 2011-04-27 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
CA2511522A1 (en) * 2002-12-26 2004-07-15 Takeda Pharmaceutical Company Limited Novel proteins and use thereof
US7452968B2 (en) * 2003-01-02 2008-11-18 University Of Southern California Secreted protein factor and cell membrane-bound splice variant
EA009026B1 (en) 2003-03-24 2007-10-26 Займоджинетикс, Инк. Anti-il-22ra antibodies and binding partners and methods of using in inflammation
EP1633850A4 (en) * 2003-05-16 2007-04-04 Diadexus Inc Ovr115 ANTIBODY COMPOSITION AND METHODS OF USE
CA2521331A1 (en) * 2003-05-27 2004-12-09 Applied Research Systems Ars Holding N.V. Novel il-8-like polypeptides
JP2007528721A (en) 2003-08-14 2007-10-18 ダイアックス コーポレイション Endotheliase-2 ligand
ATE447587T1 (en) 2003-11-21 2009-11-15 Zymogenetics Inc ANTI-IL-20 ANTIBODIES AND BINDING PARTNERS AND METHOD FOR USE IN INFLAMMATION
EP1712619A4 (en) * 2003-12-24 2008-01-02 Takeda Pharmaceutical Preventive/remedy for cancer
US20050186577A1 (en) 2004-02-20 2005-08-25 Yixin Wang Breast cancer prognostics
DE102004024617A1 (en) 2004-05-18 2005-12-29 Ganymed Pharmaceuticals Ag Differentially expressed in tumors gene products and their use
US20090087423A1 (en) 2004-06-03 2009-04-02 Takeda Pharmaceutical Company Limited Novel protein complex and use thereof
MX2007001221A (en) 2004-08-04 2007-03-23 Amgen Inc Antibodies to dkk-1.
MX2007004770A (en) 2004-10-22 2007-11-22 Zymogenetics Inc Anti-il-22ra antibodies and binding partners and methods of using in inflammation.
EP1790664A1 (en) 2005-11-24 2007-05-30 Ganymed Pharmaceuticals AG Monoclonal antibodies against claudin-18 for treatment of cancer
US7655778B2 (en) 2006-02-28 2010-02-02 Curonix Co., Ltd. SISP-1, a novel p53 target gene and use thereof
KR100781753B1 (en) 2006-05-24 2007-12-04 연세대학교 산학협력단 2 A method for inducing angiogenesis using DKK2
KR100954322B1 (en) * 2006-06-14 2010-04-21 주식회사 엘지생명과학 Gene familyLBFL313 associated with pancreatic cancer
WO2008014410A2 (en) * 2006-07-26 2008-01-31 Zymogenetics, Inc. Zimlig2 polynucleotides and polypeptides and methods of use
LT2398902T (en) 2009-02-20 2023-12-27 Astellas Pharma Inc. Methods and compositions for diagnosis and treatment of cancer
LT2499161T (en) 2009-11-11 2017-11-27 Ganymed Pharmaceuticals Gmbh Antibodies specific for claudin 6 (cldn6)
EP2404936A1 (en) 2010-07-06 2012-01-11 Ganymed Pharmaceuticals AG Cancer therapy using CLDN6 target-directed antibodies in vivo
LT3026064T (en) 2011-05-13 2019-01-25 Ganymed Pharmaceuticals Gmbh Antibodies for treatment of cancer expressing claudin 6
WO2013167153A1 (en) 2012-05-09 2013-11-14 Ganymed Pharmaceuticals Ag Antibodies useful in cancer diagnosis
WO2013174404A1 (en) 2012-05-23 2013-11-28 Ganymed Pharmaceuticals Ag Combination therapy involving antibodies against claudin 18.2 for treatment of cancer
MX369276B (en) 2012-11-13 2019-11-04 Biontech Ag Agents for treatment of claudin expressing cancer diseases.
WO2014127785A1 (en) 2013-02-20 2014-08-28 Ganymed Pharmaceuticals Ag Combination therapy involving antibodies against claudin 18.2 for treatment of cancer
WO2014146672A1 (en) 2013-03-18 2014-09-25 Ganymed Pharmaceuticals Ag Therapy involving antibodies against claudin 18.2 for treatment of cancer
US10024872B2 (en) 2013-07-12 2018-07-17 B.R.A.H.M.S Gmbh Augurin immunoassay
WO2015014376A1 (en) 2013-07-31 2015-02-05 Biontech Ag Diagnosis and therapy of cancer involving cancer stem cells
KR102630011B1 (en) 2017-01-11 2024-01-26 브리스톨-마이어스 스큅 컴퍼니 PSGL-1 antagonists and their uses
JP7211961B2 (en) 2017-03-14 2023-01-24 ファイヴ プライム セラピューティクス インク Antibody that binds to VISTA at acidic pH

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001509029A (en) * 1997-01-21 2001-07-10 ヒューマン ジノーム サイエンシーズ,インコーポレイテッド Human protein
EP1044220A1 (en) * 1998-01-08 2000-10-18 Genetics Institute, Inc. Secreted proteins and polynucleotides encoding them

Also Published As

Publication number Publication date
CA2339043A1 (en) 2000-03-09
NZ510464A (en) 2004-05-28
WO2000012708A2 (en) 2000-03-09
WO2000012708A3 (en) 2001-10-04

Similar Documents

Publication Publication Date Title
NZ531664A (en) Pro1317 polypeptides and sequences thereof with homology to the semaphorin B glycoprotein family
US20030191289A1 (en) Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20020119130A1 (en) Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030181707A1 (en) Secreted transmembrane polypeptides and nucleic acids encoding the same
NZ531663A (en) PRO1410 polypeptide isolated from a human brain meningioma tissue library polypeptides and sequences thereof
NZ531667A (en) Pro1755 polypeptides and sequences thereof with homology to transmembrane proteins
NZ531662A (en) Pro 1293 polypeptides and sequences thereof with homology to an immunoglobulin heavy chain variable region protein
NZ540169A (en) Pro1303 polypeptides and sequences thereof with homology to a lysozyme like protein
NZ531665A (en) PRO1558 polypeptides and sequences thereof with homology to methyltransferase enzymes
NZ531668A (en) Pro1788 polypeptides and sequences thereof with homology to leucine-rich repeat proteins
NZ531666A (en) PRO1555 polypeptides and sequences thereof with homology to transmembrane proteins
CA2481788A1 (en) Secreted and transmembrane polypeptides and nucleic acids encoding the same

Legal Events

Date Code Title Description
PSEA Patent sealed
RENW Renewal (renewal fees accepted)
RENW Renewal (renewal fees accepted)
RENW Renewal (renewal fees accepted)
LAPS Patent lapsed