NZ525983A - Programmable pyrotechnical firing installation having each detonator capable of responding to the central programming and firing control unit - Google Patents

Programmable pyrotechnical firing installation having each detonator capable of responding to the central programming and firing control unit

Info

Publication number
NZ525983A
NZ525983A NZ52598303A NZ52598303A NZ525983A NZ 525983 A NZ525983 A NZ 525983A NZ 52598303 A NZ52598303 A NZ 52598303A NZ 52598303 A NZ52598303 A NZ 52598303A NZ 525983 A NZ525983 A NZ 525983A
Authority
NZ
New Zealand
Prior art keywords
firing
programming
wire line
coded signals
detonator
Prior art date
Application number
NZ52598303A
Inventor
Thierry Bernard
Original Assignee
Chemical Holdings Int
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemical Holdings Int filed Critical Chemical Holdings Int
Priority to NZ52598303A priority Critical patent/NZ525983A/en
Publication of NZ525983A publication Critical patent/NZ525983A/en

Links

Abstract

A programmable pyrotechnical firing installation comprising a programming and firing control unit (8) comprises: two conductor wires (6a, 6b) and a plurality of electronic detonators (4) mounted in parallel on this two-wire line. The programming unit (8) comprises means (9,10) for establishing a continuous voltage between the two wires (6a,6b), means (9,10) for producing pulses of this voltage so as to form coded signals and means (11,9) for reading the current variations existing on the two-wire line and in that every detonator comprises an electronic module (12) that has means (14, 17) suitable for producing, in response to certain of the coded signals of the programming unit (8), current pulses in the two-wire line (6a, 6b) for forming coded signals.

Description

525983 Intellectual Property Office of NZ 2? MAY 2003 PATENTS FORM NO. 5 Fee No. 4: $250.00 PATENTS ACT 1953 COMPLETE SPECIFICATION PROGRAMMABLE PYROTECHNICAL FIRING INSTALLATION I/WE Chemical Holdings Int. Ltd, a Mauritian company of 4th Floor, Discovery House, St Jean Road, Quatre Bornes, Mauritius hereby declare the invention, for which I/We pray that a patent may be granted to me/us, and the method by which it is to be performed to be particularly described in and by the following statement: 1 To be followed by Page 1A James & Wells Ref: 122134/0 RJ 1 Programmable pyrotechnical firing installation In mines and quarries the breaking of rocks is typically carried out by means of explosives.
A firing program consists of making a plurality of drill-holes in the rock, which are filled with explosives with, for every drill-hole, a detonator that permits the firing. Some of these detonators are electronically controlled, which makes it possible to program the setting off of the explosions according to a predetermined firing plan.
The execution of a firing plan consists, therefore, after having arranged all the detonators in the drill-holes that have been made and connecting them to a control unit, of identifying every detonator by a serial number and applying to it a delay time which will determine the ignition of the charge in relation to a general firing signal.
The present invention relates to such a programmable pyrotechnical firing installation, in which all the detonators are connected to the control unit by wires.
Conventionally, an electronic detonator comprises a pyrotechnical percussion cap, an energy reserve, an electronic pilot and two electrical conductors that connect the electronic pilot to a firing line which runs over the ground from a central programming and control unit. The electronic pilot comprises an on-board microprocessor by means of which communication can be established between the detonator and the central unit. The microprocessor is programmed or programmable so as to be able to receive requests issued in the firing line by the central unit and to respond to these requests either in the direction of the central unit or in the direction of the energy reserve, which it will release with a specific time delay Intellectual Property Office of N.Z. 1 1 AUG 200* RECEIVED when the firing order has been received from the central unit. The programming of the on-board microprocessor in the electronic pilot of the detonator can be carried out a priori before its positioning in the firing field or, as is the case for the invention, a posteriori after it has been put into position. The firing line on the ground also serves to provide the electrical energy required for filling the energy reserve, which takes place just before the firing in order to comply with the safety requirements that demand that the detonators must be inactive up to the last moment.
It must be borne in mind that a firing line may have a length of about a kilometre. For this reason, with the current installations it is relatively simple to transmit from the control unit signals to the address of every detonator, however far this may be removed from the control unit, since the required energy to be provided for these signals so that they will reach their target is controlled totally from the control unit. On the other hand, a detonator has very little on-board energy and if one wants it to be able to respond to the central unit, it will be noted that the limited power of the signals which it emits suffers a strong attenuation that may make them inaudible by the central unit if the detonator-emitter is far away from same on the firing line.
The present invention provides a solution to this bi-directional communication problem between a central unit and each one of the detonators of a firing line, a simple and economical solution.
To this end, the invention relates to a programmable pyrotechnical firing installation comprising a programming and control unit for the firing, a programming and control line comprising two conductor wires and a plurality of electronic detonators mounted in parallel on this two-wire line, wherein the programming unit comprises means for establishing a continuous voltage between Intellectual Property Office of N.Z. 1 1 AUG 20IW RECEIVED the two wires, means for producing pulses of this voltage so as to form coded signals and means for reading the current variations existing on the two-wire line and wherein every detonator comprises an electronic module that, in response to certain of the coded signals of the programming unit corresponding to requests from same, can produce current pulses in the two-wire line for forming coded signals.
In other words, when a detonator, whatever its position on the firing line, must respond to a request of the central unit, it will produce in the filar firing line excess current peaks, for example by closing the line on a calibrated resistor within a given time and this in dependence on a pulses program corresponding to a code generated by the on-board microprocessor, which excess current peaks are immediately detectable by the central unit, which by means of a resistor will convert them into a modulated voltage that can be interpreted by its microprocessor, this forming the response of the detonator in question to the request of this central unit.
Other characteristics and advantages of the invention will be noted from the description given below by way of non-limitative example, of an exemplified embodiment.
Reference will be made to the attached drawings, wherein: Figure 1 is a diagram illustrating a pyrotechnical firing installation, Figure 2 illustrates diagrammatically a central programming and control unit of the installation, Figure 3 is a functional diagram of that part of the electronic pilot of every detonator involved in the dialogue with the central programming and control 4 To carry out a firing program, holes 1 are drilled in a rock 2 from, for example, the ground 3. In each of these drill-holes 1, detonators 4 and explosive charges 5 are placed, every detonator 4 being connected to firing line 6 on the ground by conductors 7. A central programming and control unit is shown at 8, connected to the firing line 6.
This unit 8, see figure 2, comprises a microprocessor 9 which acts on a device 10 for the supply of a continuous voltage between the two wires 6a, 6b of the line 6 and which permits inserting into this continuous voltage drop sequences so as to form slots corresponding to any type of binary code of a signal. Furthermore, the central unit 8 is provided with a device 11 for converting into voltage the current circulating on the line 6a, 6b in order to produce variations of this current that can be understood by the microprocessor 9.
The electronic pilot or module 12 of the detonator illustrated diagrammatically and partially in figure 3, comprises a voltage regulator 13, the input of which is connected to the line 6a, and the output to an on-board microprocessor 14, in order to form a power supply of this microprocessor 14 increased by a capacitor 15 that permits smotting the drops in voltage in the line 6. This pilot 12 also comprises a circuit 16 for detecting codes carried by the line 6, the input of which is also connected to the line 6a and the output of which is directed towards the microprocessor 14. Between the lines 6a and 6b the electronic pilot 12 has a voltage-drawing circuit 17, for example a transistor and a resistor, controlled by the microprocessor 14. Finally, the microprocessor 14 controls a switch 18 of the line 6a, in a manner as will be explained below.
Intellectual Property Office of N.z. t t AUG 2001 RECEIVED Each one of the detonators 4 is connected to the two-wire line 6a, 6b parallel to same at point A, B (figure 3). In reality, four wires 19, 20, 21, 22 come from this electronic pilot 12, which form the conductors 7 of figure 1. The wires 19 and 20 permit connecting the pilot to the wires 6a and 6b of the firing line. The line 6a has a section 23 inside the pilot 12, which comprises the switch 18 and which comes out of the pilot by way of the line 21 which becomes 6a at the level of the ground. In the same manner the line 6b has a section 24 inside the pilot, which by way of the conductor 22 comes out of the drill-hole to form the wire 6b of the firing line at the level of the ground. At the time when the detonators are positioned in the drill-holes, the switch is open. The electronic pilots are connected the one following the other. Understood under this mounting method is that the first detonator connected to the unit 18 is mounted in series on the line 6a. 6b when the switch 18 is open. When the switch 18 is closed, this detonator is mounted in parallel with the next one on the line 6a, 6b.
When the firing line has been realised, the central unit 8 establishes a voltage of, for example, 24 or 48 volt at the terminals of the conductors 6a, 6b. This voltage, regulated by the device 13, constitutes the power supply of the processor 14 as well as the charge of the capacitor 15. By cutting this voltage by means of the device 10, the microprocessor 9 of the central unit 8 transmits to the pilot 12 a serial number recorded by the microprocessor 14, and a certain delay time. The operating sequence of the microprocessor 9 may then comprise a request (a binary signal on the voltage of the line 6) to which the microprocessor 14 will respond by acting on the current-drawing circuit 17 to create excess voltage peaks which, converted by the device 11, will be assimilated as a response to the request by the microprocessor 9. The last order transmitted by the microprocessor 9 to the on board microprocessor 14 will be to close the switch 18. At this moment, the pilot Intellectual Property 1 Office 61 N.Z, 1 1 AUG 2004 RECEIVED of the next detonator is in the same state with regard to the central unit 8 as the preceding pilot and the programming sequence can recommence.
When all the detonators have been programmed in this manner, the firing installation is ready to operate. The microprocessor 9 may comprise in its program other stages and other requests concerning the detonators. It will then transmit a general order to all the detonators to proceed with the charging of the energy reserve, not illustrated in the figures, possibly followed by a verification of the state of this reserve, and will finally transmit to all the detonators a firing signal. * * * 7

Claims (2)

1. A programmable pyrotechnical firing installation comprising a programming and firing control unit (8), a programming and control line comprising two conductor wires (6a, 6b) and a plurality of electronic detonators (4) mounted in parallel on this two-wire line, characterised in that the programming unit (8) comprises means (9,10) for establishing a continuous voltage between the two wires (6a,6b), means (9,10) for producing pulses of this voltage so as to form coded signals and means (11,9) for reading the current variations existing on the two-wire line and in that every detonator comprises an electronic module (12) that has means (14, 17) suitable for producing, in response to certain of the coded signals of the programming unit (8), current pulses in the two-wire line (6a, 6b) for forming coded signals.
2. A firing installation according to claim 1, characterised in that every electronic detonator module (12) comprises a switch (18) of the two-wire line (6a, 6b), which normally is open and is closed in response to a signal emitted by the programming unit (8). Office of Nj,2. U AUG 2004 EEC_EIVED 8 ABSTRACT Programmable pyrotechnical firing installation comprising a programming and firing control unit (8), a programming and control line comprising two conductor wires (6a, 6b) and a plurality of electronic detonators (4) mounted in parallel on this to-wire line, characterised in that the programming unit (8) comprises means (9, 10) for establishing a continuous voltage between the two wires (6a, 6b), means (9, 10) for producing pulses of this voltage so as to form coded signals, and means (11, 9) for reading the current variations existing on the two-wire line, wherein every detonator comprises an electronic module (12) that has means (14, 17) suitable for producing, in response to certain of the coded signals of the programming units (8), current pulses in the two-wire line (6a, 6b) for forming coded signals. FIGURES 2 and 3
NZ52598303A 2003-05-16 2003-05-16 Programmable pyrotechnical firing installation having each detonator capable of responding to the central programming and firing control unit NZ525983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NZ52598303A NZ525983A (en) 2003-05-16 2003-05-16 Programmable pyrotechnical firing installation having each detonator capable of responding to the central programming and firing control unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NZ52598303A NZ525983A (en) 2003-05-16 2003-05-16 Programmable pyrotechnical firing installation having each detonator capable of responding to the central programming and firing control unit

Publications (1)

Publication Number Publication Date
NZ525983A true NZ525983A (en) 2004-10-29

Family

ID=33297576

Family Applications (1)

Application Number Title Priority Date Filing Date
NZ52598303A NZ525983A (en) 2003-05-16 2003-05-16 Programmable pyrotechnical firing installation having each detonator capable of responding to the central programming and firing control unit

Country Status (1)

Country Link
NZ (1) NZ525983A (en)

Similar Documents

Publication Publication Date Title
EP1644692B1 (en) Method of identifying an unknown or unmarked slave device such as in an electronic blasting system
US7347278B2 (en) Secure activation of a downhole device
EP0879393B2 (en) Electronic explosives initiating device
US5520114A (en) Method of controlling detonators fitted with integrated delay electronic ignition modules, encoded firing control and encoded ignition module assembly for implementation purposes
EP1644693B1 (en) Firing-readiness diagnostics of a pyrotechnic device such as an electronic detonator
EP0429229B1 (en) Igniting apparatus for explosive substances
WO2001059401A1 (en) Remote wireless detonator system
US7946227B2 (en) Detonator system
US20110100244A1 (en) Blasting system and method
GB2179123A (en) Actuator for a blasting detonator; control device therefor
US4777880A (en) Blasting method with above and below surface delays
US6785116B1 (en) Triggering unit controlled by a microprocessor for initiating pyrotechnical elements
EP1644687B1 (en) Constant-current, rail-voltage regulated charging electronic detonator
US7086334B2 (en) Staggered charging of slave devices such as in an electronic blasting system
CA2467808C (en) Installation for programmable pyrotechnic shot firing
JP2003194498A (en) Ignition controller address-assigned by frequency
NZ525983A (en) Programmable pyrotechnical firing installation having each detonator capable of responding to the central programming and firing control unit
CA2393565A1 (en) Method for programming and triggering electronic detonators
EP2082184B1 (en) Blasting system and method
OA12485A (en) Programmable pyrotechnical firing installation.
TW202344803A (en) Single-capacitor electronic detonator and firing system for such single-capacitor electronic detonators
Mukherjee Management of Blast through Electronic Detonator
AU739142B2 (en) Electronic explosives initiating device
EP0241151A1 (en) Blasting apparatus
Choudhary ADVANCES IN INITIATING SYSTEMS

Legal Events

Date Code Title Description
PSEA Patent sealed
RENW Renewal (renewal fees accepted)
RENW Renewal (renewal fees accepted)
RENW Renewal (renewal fees accepted)

Free format text: PATENT RENEWED FOR 3 YEARS UNTIL 16 MAY 2016 BY CPA GLOBAL

Effective date: 20130405

RENW Renewal (renewal fees accepted)

Free format text: PATENT RENEWED FOR 1 YEAR UNTIL 16 MAY 2017 BY JAMES + WELLS

Effective date: 20160506

RENW Renewal (renewal fees accepted)

Free format text: PATENT RENEWED FOR 1 YEAR UNTIL 16 MAY 2018 BY JAMES + WELLS

Effective date: 20170508

RENW Renewal (renewal fees accepted)

Free format text: PATENT RENEWED FOR 1 YEAR UNTIL 16 MAY 2019 BY JAMES + WELLS

Effective date: 20180412

LAPS Patent lapsed