NZ280819A - Flag detection for slot allocation in tdma system - Google Patents

Flag detection for slot allocation in tdma system

Info

Publication number
NZ280819A
NZ280819A NZ280819A NZ28081993A NZ280819A NZ 280819 A NZ280819 A NZ 280819A NZ 280819 A NZ280819 A NZ 280819A NZ 28081993 A NZ28081993 A NZ 28081993A NZ 280819 A NZ280819 A NZ 280819A
Authority
NZ
New Zealand
Prior art keywords
flag
station
message
word
time slot
Prior art date
Application number
NZ280819A
Inventor
Jan Erick Ake Steinar Dahlin
Walter Gerhard Alois Muller
Original Assignee
Ericsson Telefon Ab L M
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from SE9203127A external-priority patent/SE500565C2/en
Application filed by Ericsson Telefon Ab L M filed Critical Ericsson Telefon Ab L M
Publication of NZ280819A publication Critical patent/NZ280819A/en

Links

Description

Priority Date{s): Complete Specification Filed: Clasa: (?). ttC&Jfel pufcji cation Datt: ^ZJlJEEILSSSL.....
P.O. Journal No: fiU& Divided out of Specification No. 257411 filed on 12 October 1993 28 OR 19 \4ndw the provisions of Won 23 (1) the — Gk1^1^ atpecWcstkxi has been anto-dAtwl to •«» as Initiate NEW ZEALAND PATENTS ACT, 1953 No: Date: N.Z. PATENT OFFICE 1 2 JAN 1998 RECEIVED COMPLETE SPECIFICATION A METHOD OF EFFECTING RANDOM ACCESS IN A MOBILE RADIO SYSTEM We, TELEFONAKTIEBOLAGET LM ERICSSON, a Swedish company of S-126 25 Stockholm, Sweden, do hereby declare the invention for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement: (followed by page 1a) 280819 WO 94/10767 PCT/SE93/00830 la a method of effecting random access in a mobile radio system TECHNICAL FIELD The present invention relates to a method of effecting random access in a tine divided mobile radio system having a primary 5 station and a plurality of secondary stations belonging to the primary station. More specifically, the invention relates to a method of access to these secondary stations when they are in an idle mode, i.e. when the stations listen to messages from the primary station within a given geographical area (cell) and when 10 they wish to establish some form of communication with the primary station. The mobile radio system is a time divided system (TDMA or CDMA) or a combined frequency and time divided system (FDMA/TDMA) with so-called digital control channels, which are utilized by the inventive method.
BACKGROUND ART Random access in a mobile radio system, for instance a mobile -telephone system, is known both for analog and digital systems. Random access implies generally that a secondary station (mobile station) transmits to a primary station randomly in time an 20 initial message in accordance with a given protocol, requesting access to the primary station. The primary station then responds, by sending a flag to the secondary station for continued communication between the primary and the secondary stations. The access protocol used in TDMA-systems, so-called time divided or 25 slotted Aloha, is described, for instance, in EP-A-0,321,454.
An access method with time divided Aloha is described, for instance, in the U.S. patent 5,166,929 (Wing Lo). According to this known method, access is effected by a mobile station by sending to a base station reservation messages which denote which 30 -time slot and how many such time slots shall be reserved by the base station for the mobile station concerned, in order to enable -the mobile station to complete its access message, so called 2 280R19 "Reservation Aloa". This known method can be used particularly in a digital control channel and the access messages can be sent in those free spaces that are created in such a channel when certain control information (SACCH, DVCC) normally used in a traffic chan-5 nel is not used.
SUMMARY OF THE INVENTION The known access method according to the aforesaid U.S. patent deals with the problem of how a mobile station can communicate with a base station by requesting for certain time slots and a 10 certain number of time slots to be reserved for the continued access message. In this regard, the base station uses a flag marked "reservedH and "idle", respectively, where "reserved" thus marks in the base station those time slots of the continuously transmitted time slots that have been reserved for a certain 15 mobile or for several mobiles desiring access to the system. It is assumed that the continued communication is effected without undue hinder to or error in the messages transmitted to the base station.
The present method is also based on the known access method for 20 continued communication nfte'r having reserved time slots for a mobile station. According to one embodiment of the proposed method, a further flag is inserted in the base station, "received", "not received", abbreviated to R/N, which discloses whether or not the message word transmitted to the base station from the 25 mobile station within a given time slot has actually be received by the base station. If the message word has not been received, the base station asks the mobile to transmit solely the latest word. When the word concerned was one of the last words in the message, a significant simplification is achieved in comparison with the 30 case when it is necessary to transmit the whole message again, as is normal when errors in transmission occur.
According to a further embodiment of the invention, there is introduced a third flag which is additional to the aforesaid two 3 28ns 19 flags. This third flag, "reserved, free*, R/F, is sent from the base station, as with other flags, and discloses to the mobile the time slot in which the mobile shall transmit a response to the request transmitted from the base station and in which the 5 information concerning the reserved time slot was found. ;One object of the present invention is to provide a method of achieving random access in a time divided (TDMA) mobile radio system which will ensure that, even after the secondary station desiring access to the primary station has been allotted one or 10 more message time slots, a message will be completely transmitted to a base station without unnecessary repetition of message words that: have been correctly received. ;Another object of the present invention is to allocate, upon access to a mobile radio system, a free time slot to a mobile 15 station from a base station in conjunction with transmitting access messages which require simple confirmation from the mobile station in the form of a message word. ;A further object of the present invention is to establish three different flags in a base station which receives messages from 20 mobile stations for access to the base station, of which flags two are used to allocate more than one time slot for the message from the mobile station and to ensure that this message is received correctly in the base station, and one is used to reserve beforehand one time slot for an access message from a given mobile 25 station. ;One embodiment of the inventive method is described and claimed in our New Zealand Specification No. 257411 from which the present specification is divided. Other embodiments of the inventive method are characterized by the features set forth in ; the independent Claims 1, 3 and 4. ;WO 94/10767 ;4 ;BRIEF DESCRIPTION OF THE DRAWINGS ;The invention will now be described in more detail with reference to the accompanying drawings, in which ;Figure 1 illustrates schematically a primary station and three 5 secondary stations of a mobile radio system; ;Figure 2 illustrates a time slot format for an uplink digital control channel in a time divided (TDMA) mobile radio system; Figure 3 illustrates a time slot format for a downlink digital control channel in a time divided (TDMA) mobile radio system; 10 Figure 4 illustrates a message sent from a secondary station according to Figure 1 and divided into message words; ;Figure 5 is a diagram which illustrates the inventive method in respect of a message according to Figure 4; ;Figure 6 is a decoding diagram which illustrates flags used in 15 accordance with the inventive method; ;Figure 7 is a flow chart illustrating two examples of the inventive method; ;Figure 8 is a flow chart illustrating a third example of the inventive method; and 20 Figure 9 is a block diagram illustrating that part of a mobile station which evaluates the flags illustrated In Figure 6. ;BEST MODES OF CARRYING OUT THE INVENTION ;Figure l illustrates generally a primary station and a number of secondary stations in a mobile radio system, which may be an 25 analog or a digital system and possibly also a cellular system. The primary station is a base station BS and the secondary stations are mobile stations MSI, MS2, MS3. The inventive method is intended for application in a time divided mobile radio system, preferably a cellular system which includes so-called digital 30 control channels. In present-day North American systems, control channels are analog channels, i.e. check and control messages are transmitted over analog channels, even when the traffic channels are digital. In future systems, however, such messages, for ;28 ;PCT/SE93/00830 ;2808 19 ;WO 94/10767 PCT/SE93/00830 ;instance authentication checks, will also bo transmitted over digital control channels. ;In the simplified digital system with digital control channels shown in Figure 1, it is assumed that each of the mobiles MS1-MS3 5 is in its idle mode. The base station BS continuously transmits messages with so-called flags in the forward direction over a control channel DFOCC, although in given time slots, these flags indicating whether the time slot in which the message is sent is idle or busy. A mobile station MSI is able to receive such messages 10 in certain time slots and transmits back to the base station in another control channel DRECC in the reverse direction, so that the message can be received by the base station BS. This enables the mobile stations to obtain random access to the system. ;The time slot format shown in Figures 2 and 3 has been proposed, 15 with the intention of creating the two control channels DFOCC and DRECC in the forward and reverse direction respectively. Compared with the digital traffic channel as proposed in the North American Standard EIA/TIA IS-54B, April 1992 (page 9, 1,2 "Digital Traffic Channel Structure"), the reverse control channel DRECC has a 20 reserved space RES and the forward control channel DFOCC has a divided reserved space RES1, RES2. The spaces are used for the information bits which are included in those flags that are transmitted from the base station in respective control channels, as described in more detail below. Messages (without flags) are 25 transmitted from a mobile station in the data fields Data D. ;Figure 4 illustrates a message word M, for instance a message from a mobile station MSI to the base station BS concerning a reply to an authorization query from the base station BS. The message is divided into a number of words, in the present example five words 30 Wl, W2, ... W5, each of which is intended to be sent as a burst within a given time slot. The message need not be a "straight" message, in the meaning that the information is transmitted as a continuous message in time, but may be interleaved with several message words or with several messages. This procedure is known ;280 ;' WO 94/10767 PCT/SE93/00830 ;per se and has no decisive significance to the principle of the present invention. The division of a message according to Figure 4 is called segmentation and each message word W1-W5 is channel-coded in a known manner and formatted so as to enable it to be 5 transmitted as a burst in a time slot. ;Figure 5 is a diagram which illustrates transmission over the two channels DFOCC and DRECC in relation to the two time slots within each frame that the control channels have at their disposal. ;As is known, a TDMA-frame in the North American mobile radio 10 system is comprised of six time slots, of which the time slots 1 and 4 are reserved for the control channels and the remaining four time slots are reserved for the traffic channels. The time slots of the control channels are the time slots shown in Figure 5 and referenced 1 and 4. Not all of the time slots of all traffic 15 channels have been shown in Figure 5. The upper row of time slots are those which are at the disposal of flags and message words that shall be received by a mobile station MS1-MS3, while the bottom row of time slots are those in which a mobile station transmits message words to the base station. ;20 The base station initially transmits the messages continuously in the control channel time slots (1 and 4). A mobile station MSI which desires access to the system can seize a message word from the base station BS, which therewith informs that the mobile station can transmit back to the base station in a given free time 25 slot. In the "Aloha Reservation" method, the mobile station MSI responds by asking the base station to reserve a given number of time slots, so that the message from the mobile can be received by the base station. In response, the base station sends a flag B/I("busy/idle"), which indicates that the time slots requested 30 by a given mobile have now been reserved for said mobile MSI and are thus busy to other mobiles MS2, MS3. This applies in those instances when a message has several words and several time slots are therewith required to transmit the message. ;2808 1 ;WO 94/10767 PCT/SE93/00830 ;It is obvious that this method is not sufficiently reliable to ensure that a message can be transmitted to the base station with certainty. For instance, the base station must be able to establish that the message word has been transmitted correctly, and 5 if this is not the case to ask for the word to be retransmitted. Consequently, according to the present method, the number of flags sent by the base station BS is extended in accordance with the following: ;One flag R/N ("received/not received"), where "R" denotes that the 10 message word is considered to have been received correctly, for instance by carrying out a so-called CRC ("cyclic redundancy check") on the word received, and where "N" thus denotes that the base station does not consider the word to have been received correctly, and a flag R/F ("reserved/free"), where R denotes that 15 a time slot in DRECC, i.e. for transmission by the mobile to the base station is reserved by the base station for this particular mobile, so that the mobile can sent its reply to the base station. Normally, the message in DFOCC from the base sta-tion will include a request for the mobile to transmit, e.g., an acknowledgement, 20 and the message vill therefore contain information relating to the time slot, that has been reserved for this particular mobile. For instance, the DFOCC-messagef will contain information as to how many time slots the mobile can expect from a given reference time-point -to the reserved time slot. "F" indicates that no time slot 25 has been reserved for the mobile and that the time slot which, e.g., should have been reserved for the mobile MSI is instead now free for other mobiles MS2, MS3. ;The two additional flags need not be used simultaneously. The flags R/N and R/F are independent of one another and in some 30 instances it is sufficient to use only the flags B/I and R/N. ;All flags are set in the base station from the beginning, when no message exchange has yet taken place. ;B/I is set to I ("idling"); ;WO 94/10767 ;8 ;u u n i ;PCT/SE93/00830 ;R/N is set to N ("not received"); and R/F is set to F ("free"). ? ;The inventive method will now be illustrated with reference to three examples, see Figure 5. A common feature of the following 5 examples A and B is that the base station BS sends the flags I, N, F to all mobile stations MS1-MS3 and that these flags are received by the mobile stations MSI, MS2 in accordance with examples A and B respectively. ;Thus, it is assumed in the first example A that the mobile MSI has 10 captured the flags I, N, F and seeks access to the system through one single message word Wl, which shall be sent by MSI to the system via the base station BS, in the time slot 1, frame l, allotted by the base station. The mobile station MSI transmits (arrow 2A) and the base station BS detects the sync, word (SYNC, 15 Figure 2) in DRECC, decodes the message word and carries out a CRC-check. No flags in the time slots are changed if CRC found the received message word to be incorrect, i.e. the flags are maintained as I, N and F, as shown in Figure 5. If CRC found the received message word to be correct, which is the case according 20 to this example, the receiving flag is set to R. In this case, the message is comprised of only-one message word to the base station BS, which sends the flags I, R, F back to the mobile station MSI (arrow 3A) » This station receives the flags X, X, F and therewith observes that tbe message word Wl, i.e. -the whole of the message 25 in this particular case, has been received correctly by the system and that access has thus been successful. ;In the other example B, it is assumed that the mobile station MS2 seeks access to the system (the base station BS), the access message M consisting of two message words HI and W2 which are 30 received correctly by the base station BS. No particular time slot has yet been reserved for MS 2 and the base station BS sends the flags I, N, F to all mobile stations, although it is assumed that time slot 1 in frame 2 is picked-up by MS2 (arrow IB). ;2808 19 ;WO 94/10767 PCT/SE93/00830 ;9 ;When the mobile station MS2 sends its first message word Wl (arrow 2B) , it indicates to the base station BS at the same time that it intends to transmit two message words Wl, W2. Consequently, the base station BS indicates in its message (arrow 3B) that the time 5 slot 1 in frame 5 has been marked as busy "Bn. This word is received correctly by the base station BSf which sends the flags "B" and HRW over DFOCC, which are received by MS2 (arrow 3B). The mobile station MS2 now sends the other message word W2 over DRECC (arrow 4B), and this word is also received correctly by the base 10 station BS. Consequently, the base station BS transmits the flags "I" and "R" (arrow 5B), where HI" thus indicates that the next time slot (time slot 1, frame 8) which should have been busy "B" is now free to other mobile stations MSI, MS3, since no further message words are expected from the mobile station MS2. ;15 in the two examples A and B described above, the different mobiles compete between themselves to obtain a free time slot when the base station BS transmits its flags I, N, F (arrows 1A, IB), so as to be able to send the first message word to the base station BS. The first to do this is the winner. However, the system (the base 20 station) is able to allocate a reserved time slot to a given mobile MS3 prior to transmitting the flags, so that this mobile does not need to compete with the other mobiles MSI, MS2. In this regard, the base station transmits the flags I, N, R, where NRn thus denotes that a time slot in a given frame has been reserved and is 25 therefore unaccessible to other mobile stations, in this example the mobile stations MSI, MS2. ;It is assumed in the third example C that the mobile MS3 begins to transmit a message M in a time slot that has already been reserved, this message consisting of two message words Wl and W2. It is 30 assumed that one of these message words is received wrongly by the base station, due to the word being distorted (because of fading, for instance) during transmission. It is also assumed that the system has earlier reserved a time slot for the mobile station MS3. This time slot may have been reserved in conjunction with an 35 earlier access to the mobile station MS3, according to example a ;280 R 19 ;WO 94/10767 PCT/SE93/00830 ;10 ;above. The last message from the base station BS (arrow 3A) contained information relating to the position of the reserved time slot, calculated in number (22) of half-frames, each of 20 ms from, for instance, the time-point of the first message (arrow 2A) 5 from the mobile MS3. ;The base station will transmit its response with the flags Ir N, R (arrow 1C) in accordance with the aforegoing, and the mobile MS3 will transmit its first message word Wl (arrow 2C) upon receiving the flags. The base station BS receives and checks whether or not 0 more message words are to be transmitted. Since this is the case, the flags B, N, F are sent to the mobile MS3. However, the base station 3S has not detected the message word Wl correctly, and hence the base station sends "B" and "N", where "N" denotes that the message word last received has not been received correctly and 5 should therefore be sent again. The base station therefore sends (arrow 3C) the aforesaid flags NBn and "N" and also asks MS3 to transmit the latest message word Wl again. The mobile MS3 receives this message and notes that the word Wl shall be transmitted again, and complies with this request, arrow 4C. It is assumed 0 that retransmission of the word is successful and that BS receives the word Wl correctly. ;The different procedures undertaken in a mobile station in conjunction with the aforedescribed exchange of messages will be described in more detail with reference to the flow charts 5 illustrated in Figures 7 and 8. However, the Camaugh diagram shown in these Figures will be explained in more detail first, see Figure 6. ;In the Carnaugh diagram of Figure 6, all flag combinations from the first, second and third rows have been combined in four 0 columns, so that the first column states the case IN "idle" and Hnot received"; the second column states the case IR "idle" and "received"; the third column states the case BR "busy" and "received" ; and the fourth column states the case BN "busy" and "not ;280 ;WO 94/10767 PCT/SE93/00830 ;11 ;received" for the two possibilities F "free" and R "reserved" of the third flag. ;The Caraaugh diagram shown in Figure 6 discloses how a state given by the burst in a given time slot 1 or 4 according to Figure 5 5 shall be interpreted by a mobile station MS1-MS3 when this station receives the burst in the time slot from the base station in the forward control channel DFOCC. ;Four possible outcomes are found in the Camaugh diagram, illustrated by the references 1-4. For one of these outcomes, 10 certain conditions shall be fulfilled as indicated by the rectangular blocks in the diagram. ;The outcome 1 applies to the two flags: That the received word denotes that the time slot is idle and that the word from a mobile station has not been received correctly and that the time slot is 15 either free or reserved. ;The outcome 2 applies to four cases: That the time slot is idle at the same time as words have been received for the two possibilities free or reserved time slot, or the time slot is occupied for the same two possibilities. ;20 The outcome 3 applies to only one case: That the time slot is busy and the message word has not been received correctly at the same time as the time slot is reserved. ;The outcome 4 also applies to only one case, similar to outcome 3, although in this case the time slot is free. ;25 There is included a Carnaugh diagram in each of the flow charts shown in Figures 7 and 8, so that the various steps carried out in a mobile station can be explained. Each Carnaugh diagram shows the state and those outcomes that are obtained on a given occasion ( instant), depending on which flag has been received from the base ;28 ;H ;WO 94/10767 ;PCT/SE93/00830 ;12 ;station and corresponding to the various arrows 1A, 2A, ...; IB, 2B, .. ., according to Figure 5. ;Figure 7 is a mobile station flow chart which is intended to illustrate the two aforesaid examples A and B. ;5 The decoding diagram 1 in Figures 7 and 8 gives a certain outcome which will depend on the flags of the first message from the base station BS, while the diagrams 5 and 6 will give certain outcomes which will depend on the flags of the second and subsequent messages. ;0 According to example Ar mobile station riSl wishes to send a simple message to the base station BS. The incoming first message including the flags I, N, F is decoded in accordance with diagram 1 and gives the outcome 1 (Figure 7). The mobile station therefore brings forward the first message word Wl (in this case, the only 5 word to be sent) according to block 2 (Figure 7), and transmits this word, block 3. Subsequent to having transmitted the word Wl, a query is raised, block 4, as to whether more them one word shall be transmitted, since this is not the case, the answer "No" is obtained from block 4. The base station BS has sent the message o including the flags I, R, F to MSI and has received the first word Wl (arrow 3A, Figure 5), whereby the diagram 5 for the second message sends the outcome to block 9, disclosing that the transmission was "successful". ;In the case of the other example B, the message is comprised of two 5 words Wl, W2 from the mobile station MS2, it being assumed that these two words have been received correctly by the base station BS. ;The mobile station MS2 receives the flags I, N, F from the base station BS (arrow IB, Figure 5), similar to example a, and brings 0 forward the first message word Wl in accordance with block 2, pointed out by the outcome from diagram 1. A check is then made to ascertain whether or not more words shall be transmitted, block 3 ;180 R 1 9 ;WO 94/10767 PCT/SE93/00830 ;13 ;and 4. Since this is the case, the answer nYesM is obtained, which means that the diagram 6 shall apply to the flags in the next message incoming from the base station BS. Since the message includes the flags B, R, F (arrow 3B), an outcome indicating block 5 7 is obtained, this block stating that the next word can be brought forward in the mobile station MS2. According to the loop, the next step is a return to block 3 and the second word W2 is transmitted to the base station BS (arrow 4B, Figure 5). Since no more words are to be transmitted according to question block A, the next 10 message from the base station BS (arrow 5B) is decoded in accordance with diacras 3. This message includes the flags I, R, F and the transmission is therefore considered to be "successful", block 9. ;Figure 8 is a flow chart for the example C, i.e. in which a time 15 slot has been reserved in advance for the mobile station MS3 and the base station shall thus send the flags I, N, R (arrow 1C, Figure 5). If the correct flags I, N, R are sent, an outcome is obtained indicating block 2 and the mobile station will bring forward the first message word Wl. If the continued communication 20 shows that the base station receives correctly, the steps are executed in the same way as that described with reference to examples A and B. On the other hand, if the base station BS has not understood or correctly received the transmitted word Hi (arrow 2C), the base station will send the flags B, N, F (arrow 3C), where 25 "N" denotes incorrect reception, as described above. On this occasion, it is the diagram 5 that determines which outcome shall be given, and this outcome points to block 8 which means that the same word, i.e. HI, shall bt* fed back to block 3, i.e. the word HI shall be retransmitted. On the next occasion, when a message from 30 the base station arrives (arrow 5C), it is the diagram 6 which determines what outcome is given. If, as in the present case, a further word H2 is to be sent and the flags I, R, F arrive, the diagram 6 indicates an outcome to block 7 to be given and that the further word H2 is transmitted. If this word is received correctly 35 by the base station, the flags I, R, F are sent, since the word H2 was the last word. If the word W2 had not been the last word and a 28 OB 19 WO 94/10767 PCT/SE93/00830 14 further word W3 should have been sent from the mobile station MS3, -the base station would have sent B, R, F and the steps according to ex?«3ple B would have been carried out.
The different flags are transmitted as binary values in a known 5 manner from the base station to respective mobile stations in the forward control channel DFOCC according to Figure 3, and in the spaces RES1, RES2 and possibly also in the space RES. The microprocessor of the mobile station includes a register for storing and evaluating the incoming binary values of each of the flags. 10 These registers are illustrated schematically in Figure 9 and are designated REG1, REG2, REG3 for the respective three flags R/N, R/F and B/I. Thus, in the present example, each of the three flags is represented by a three-bit word and the binary value of this word decides how the flag is interpreted.
Evaluation units VI, V2, V3 are each connected to a respective register and evaluate the incoming binary value of respective flags in an appropriate manner (see below), i.e. determine which of the two values in a flag is applicable. Conveniently, there is found a set of registers REG1-REG3 and associated evaluation units 20 VI—V3 for each of the decoding diagrams 1, 5 and 6 according to Figures 7 and 8.
In its simplest form, each of the evaluation units V1-V3 is a simple comparator and deals with respective flags, by prescribing that the first four binary values 000, 001, 010, 011 constitute 25 the HRM, "R" and "B" flags respectively, while the four remaining binary values 100, 101, 110, 111 constitute the "N", "F" and "I" flags. The flag B/I is particularly sensitive to a wrong interpretation, i.e. if the flag is interpreted as "I" when "B" is meant to be sent, or vice versa. It is therefore convenient, in accor-30 dance with the following, to allow the first seven binary values 000, ..., no to represent NBM and solely one binary value 111 to represent "lH. Naturally, it is possible to insert a similar distribution of the binary values in the registers for the flags 280819 WO 94/10767 PCT/SE93/00830 R/N and R/F. Thus, variable thresholds can be introduced when evaluating the different flags.
In the case of the decoding diagram 1 shown in Figures 7 and 8, which applies to the flags of the first message from the base station BS, the register REG3 for the B/I flag is constructed so that MBM will be given priority, since the wrong interpretation "In instead of "B" would mean that the mobile station in the process of a message transmission (access) would be interrupted by an access attempt from another mobile station. From the aspect of hardware, this means that the first seven values 000, ..., 110 should be allowed to represent MBN and the value 111 should be allowed to represent "I", in accordance with the aforegoing.
In the case of diagrams 5 and 6, which apply to the steady-state progress, the B/I flag need not be afforded any particular priority. This means that the threshold is placed in the centra, i.e. as many binary values are reserved for NBM as those reserved for "I".
With regard to diagram 1, the same priority applies to flag R/F as that which applies to the flag B/I. No special priority is required for the flag R/N in the diagram 1.
The flags r/f and r/n need no special priority in respect of the diagrams 5 and 6. 28 0 B 19 16

Claims (5)

WHAT WE CLAIM IS:
1 . A method of detecting a flag in conjunction with random access in a time divided (TDMA) mobile radio system, in which control channels and traffic channels are formed by time slots within a frame and which comprises at least one primary station (BS) and a plurality of secondary stations (MS1, MS2, MS3), each of which intends to transmit access messages in the form of short message words (W1, W2, ... ) each during a time slot allocated by the primary station (BS) by continuously transmitting said flag (B/I) which indicates whether a time slot during which a secondary station shall transmit a message word to the primary station (BS) is idle (I) or busy (B), so that one (MS1) of the secondary stations is able to transmit in response to the state transmitted by the primary station, a first (W1) of said message words in the time slot indicated by the flag as idle (I), and can also transmit a second word (W2), a third word (W3), and so on, in those time slots that are indicated as busy (B) by said flag, characterized in that when detecting the flag in the secondary station (MS1), a first set of binary combinations (000, ... 110) is assigned to one state (B) of a flag (B/I) and a second set of binary combinations (111) is assigned to another state (I) of said flag, wherein the number of binary combinations in the first set is greater than the number of binary combinations in the second set when the one state (B) shall be given priority over the other state (I).
2. A method according to claim 1, characterized in that said priority is given in conjunction with detecting the flag (B/I) of the first message (arrow 1A, Figure 5) from said primary station (BS) to a given secondary station (MS1) which after having sent one message word (W1) intends to send a further message word (W2).
3, A method of detecting a flag in conjunction witfpVrandom r „ 6 otc $96 J 280819 17 access in a time divided (TDMA) mobile radio system, in which control channels and traffic channels are formed by time slots within a frsime and which includes at least one primary station (BS) and a plurality of secondary stations (MS1, MS2, MS3), each of which intends to send access messages in the form of short message words (W1 , W2, ... ), each within a time slot that is allocated by the primary station (BS) by said station continuously transmitting said flag (R/N), which denotes whether a message word (W1) transmitted in a given time slot from a secondary station has been received (R) or has not been received (N) by the primary station (BS), so that the secondary station can continue or terminate transmission of message words, characterized in that upon detection of the flag in the secondary station (MS1), there is allocated a first set of binary combinations (000, ... 011) to one state (R) of the flag (R/N) and a second set of binary combinations (100, ... 111) is allocated to another state (N) of the flag, wherein the number of binary combinations in the first set is equal to the number of binary combinations in the second set.
4. A method of detecting a flag in conjunction with random access in a time divided (TDMA) mobile radio system, in which control channels and traffic channels are formed by time slots within a frame, and which includes at least one primary station (BS) and a plurality of secondary stations (MS1 , MS2, MS3) of which each intends to transmit access messages in the form of short message words (W1, W2, ...) , each within a time slot which is allocated by the primary station (BS) by said primary station continuously transmitting said flag (R/F) which denotes whether a time slot during which a secondary station shall transmit a message word to the primary station (BS) has earlier been reserved (R) or is free (F), so that one (MS3) of the secondary stations in response to the state transmitted from the primary 18 20 0 3 1 9 station can send said message word in the time slot that the primary station has previously given as reserved (R) , characterized in that upon detection of the flag in the secondary station (MS1), there is allocated a first set of binary combinations (000, ... 110) to one state (R) of the flag (R/F) and a second set of binary combinations (111) is allocated to another state (F) of the flag, wherein the number of binary combinations in the first set is greater than the number of binary combinations in the second set when one state (R) of the flag shall be given priority over the second state (F) of said flag.
5. A method of detecting a flag in conjunction with random access in a time divided mobile radio system substantially as hereinbefore described with reference to the accompanying drawings. \x ■7 V- , !t O DATED THIS ^ DAT OP OtCJU*\ ^ !W ^ A. J. PARK & SON PER AGENTS FOR THE APPUfANTS
NZ280819A 1992-10-26 1993-10-12 Flag detection for slot allocation in tdma system NZ280819A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE9203127A SE500565C2 (en) 1992-10-26 1992-10-26 Method of providing random access in a mobile radio system
NZ257411A NZ257411A (en) 1992-10-26 1993-10-12 Time divided mobile radio: random access to required slots

Publications (1)

Publication Number Publication Date
NZ280819A true NZ280819A (en) 1997-02-24

Family

ID=26651307

Family Applications (1)

Application Number Title Priority Date Filing Date
NZ280819A NZ280819A (en) 1992-10-26 1993-10-12 Flag detection for slot allocation in tdma system

Country Status (1)

Country Link
NZ (1) NZ280819A (en)

Similar Documents

Publication Publication Date Title
US5420864A (en) Method of effecting random access in a mobile radio system
CA2254142C (en) Allocation of control channel in packet radio network
US7848281B2 (en) Method for selection of an available transmission channel by sending a negative decision value and an additional positive decision value and corresponding base station, mobile terminal and mobile radio network
EP0935904B1 (en) Resource allocation mechanism in packet radio network
AU705334B2 (en) Method and arrangement in a radio communication system
CA2279521C (en) Packet control channel feedback support for contention and reservation based access
JP4495892B2 (en) Wireless communication system
JP4083585B2 (en) A network with a common transmission channel
US5689503A (en) Random access system of a mobile communication system
EP1615385B1 (en) Method for carrying out communications among plural stations
US6633558B1 (en) Device and method for controlling channel access by access slot reserving in a mobile communication system
NZ280819A (en) Flag detection for slot allocation in tdma system
JP2907555B2 (en) Random access method for mobile communication
KR100212190B1 (en) Method of dividing transmitted frame

Legal Events

Date Code Title Description
RENW Renewal (renewal fees accepted)
RENW Renewal (renewal fees accepted)
EXPY Patent expired