NO890236L - ELECTRICAL CONTROL SYSTEM. - Google Patents

ELECTRICAL CONTROL SYSTEM.

Info

Publication number
NO890236L
NO890236L NO89890236A NO890236A NO890236L NO 890236 L NO890236 L NO 890236L NO 89890236 A NO89890236 A NO 89890236A NO 890236 A NO890236 A NO 890236A NO 890236 L NO890236 L NO 890236L
Authority
NO
Norway
Prior art keywords
central unit
power outlets
sensors
accordance
power
Prior art date
Application number
NO89890236A
Other languages
Norwegian (no)
Other versions
NO890236D0 (en
Inventor
Ola Loekberg
Original Assignee
Sinvent As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinvent As filed Critical Sinvent As
Priority to NO89890236A priority Critical patent/NO890236L/en
Publication of NO890236D0 publication Critical patent/NO890236D0/en
Priority to AU48388/90A priority patent/AU4838890A/en
Priority to PCT/NO1990/000011 priority patent/WO1990008418A1/en
Publication of NO890236L publication Critical patent/NO890236L/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2803Home automation networks
    • H04L12/2816Controlling appliance services of a home automation network by calling their functionalities
    • H04L12/282Controlling appliance services of a home automation network by calling their functionalities based on user interaction within the home
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0423Input/output
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B19/00Alarms responsive to two or more different undesired or abnormal conditions, e.g. burglary and fire, abnormal temperature and abnormal rate of flow
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/06Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using power transmission lines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00004Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by the power network being locally controlled
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00007Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using the power network as support for the transmission
    • H02J13/00009Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using the power network as support for the transmission using pulsed signals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • H02J13/00036Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving switches, relays or circuit breakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2803Home automation networks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/22Pc multi processor system
    • G05B2219/2234Each slave can function in stand alone if master fails
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/25Pc structure of the system
    • G05B2219/25118Matrix to connect sensor to corresponding actuator
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/25Pc structure of the system
    • G05B2219/25188Superposition high frequency data signal on power lines, current carrier
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/25Pc structure of the system
    • G05B2219/25208Control message, address and command portion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2300/00Orthogonal indexing scheme relating to electric switches, relays, selectors or emergency protective devices covered by H01H
    • H01H2300/03Application domotique, e.g. for house automation, bus connected switches, sensors, loads or intelligent wiring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/12The local stationary network supplying a household or a building
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2803Home automation networks
    • H04L2012/284Home automation networks characterised by the type of medium used
    • H04L2012/2843Mains power line
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/50Address allocation
    • H04L61/5038Address allocation for local use, e.g. in LAN or USB networks, or in a controller area network [CAN]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/14Protecting elements, switches, relays or circuit breakers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/121Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using the power network as support for the transmission

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Emergency Management (AREA)
  • Business, Economics & Management (AREA)
  • Human Computer Interaction (AREA)
  • Selective Calling Equipment (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Description

Oppfinnelsen gjelder en framgangsmåte for et styringssystem for elektriske anordninger, som beskrevet i patentkrav 1. The invention relates to a method for a control system for electrical devices, as described in patent claim 1.

Bakgrunn for oppfinnelsenBackground for the invention

Det finnes på markedet forskjellige systemer for styring av lys, varme og alarmer. Disse systemene er realisert på ulike måter. Noen benytter svakstrøms signalering over egne signalkabler, andre signalerer over kraftforsyningsnettet. Effektbryterne er ofte plassert sentralt i sikringsskapet, en både kostbar og lite fleksibel løsning da dette fører til et stort antall effekt-kurser samt at nye kraftforsyningskabler må trekkes ved eventuelle senere endringer. De systemer som finnes er i praksis dedikerte styrings-systemer for enten lys, varme eller alarm. There are various systems on the market for controlling light, heating and alarms. These systems are realized in different ways. Some use low-current signaling over their own signal cables, others signal over the power supply network. The circuit breakers are often placed centrally in the fuse box, a solution that is both expensive and inflexible as this leads to a large number of power courses and that new power supply cables must be pulled in the event of any subsequent changes. The systems that exist are in practice dedicated control systems for either light, heat or alarm.

Fra US patentskrift 4 429 299 er kjent et alarm/overvåkningssystem med givere og mottakere som nytter kraftforsyningsnettet til signalering. Dette baserer seg på et rom som en enhet, og har ikke individuell adressering av givere/mottakere. I nevnte kjente system skjer all signalering over kraftforsyningsnettet, også for enheter som ikke har behov for 110/230V kraftforsyning. Videre skjer kommunikasjonen gjennom sentral spørring ("polling"), noe som gir en relativt lav båndbredde og dårlig responstid. Systemet vil derfor være uegnet til f.eks. styring av lys. From US patent 4 429 299 an alarm/monitoring system is known with transmitters and receivers that use the power supply network for signaling. This is based on a room as a unit, and does not have individual addressing of donors/recipients. In the aforementioned known system, all signaling takes place over the power supply network, also for units that do not need 110/230V power supply. Furthermore, communication takes place through central polling, which results in a relatively low bandwidth and poor response time. The system will therefore be unsuitable for e.g. control of light.

Formål med oppfinnelsenPurpose of the invention

Hovedformålet med oppfinnelsen er å komme fram til et styringssystem for elektriske anordninger der det gis muligheter for å behandle opplysninger fra individuelle givere i den hensikt å kunne styre individuelle effektuttak. The main purpose of the invention is to come up with a control system for electrical devices where it is possible to process information from individual donors with the aim of being able to control individual power outlets.

Et videre formål med oppfinnelsen er å tilfredsstille de krav som stilles til både sikkerhet og hastighet ved styring av såvel lys, varme, som alarm, slik at alle disse tre funksjoner kan integreres i ett og samme system. A further purpose of the invention is to satisfy the requirements for both safety and speed when controlling both light, heat and alarm, so that all three functions can be integrated in one and the same system.

Et annet formål med oppfinnelsen er å være mest mulig fleksibel med hensyn til medium for signalering, slik at det gis anledning til å anvende oppfinnelsen på den beste måten både for nye og gamle bygninger og anlegg. Another purpose of the invention is to be as flexible as possible with regard to the medium for signalling, so that it is possible to use the invention in the best way for both new and old buildings and facilities.

Ytterligere et formål med oppfinnelsen er å framskaffe et konsept som er økonomisk i såvel installasjon som drift, samt ved senere endringer og vedlikehold. A further purpose of the invention is to provide a concept that is economical in both installation and operation, as well as in subsequent changes and maintenance.

De overnevnte formål oppnås gjennom en framgangsmåte i samsvar med foreliggende oppfinnelse, beskrevet i de karakteriserende deler av vedlagte patentkrav. The above-mentioned purposes are achieved through a method in accordance with the present invention, described in the characterizing parts of the attached patent claims.

Beskrivelse av tegningerDescription of drawings

I det følgende skal eksempler på utførelse av oppfinnelsen beskrives under henvisning til vedlagte tegninger, der In the following, examples of implementation of the invention will be described with reference to the attached drawings, where

figur 1 viser et eksempel på kabelføring i en installasjon i samsvar med oppfinnelsen. figure 1 shows an example of cable routing in an installation in accordance with the invention.

figur 2 viser en matrise for logisk kopling mellom givere og effektuttak i samsvar med oppfinnelsen. figure 2 shows a matrix for logical connection between sensors and power outlets in accordance with the invention.

figur 3 viser en utførelse i samsvar med oppfinnelsen der givernett og uttaksnett er koplet sammen gjennom ei koplingsbru i sentralenheten. figure 3 shows an embodiment in accordance with the invention where the donor network and outlet network are connected together through a connection bridge in the central unit.

Beskrivelse av utføringsformerDescription of embodiments

I en foretrukket utførelse av oppfinnelsen inngår tre hovedkomponenter: Effektuttak, givere og en eller flere sentralenheter som knytter et antall av de to førstnevnte komponenter sammen. In a preferred embodiment of the invention, three main components are included: Power take-off, transmitters and one or more central units which link a number of the two first-mentioned components together.

Med effektuttak menes alle punkter i en installasjon, utenfor sikringsskapet, hvor man kan ta ut effekt for et eller annet formål. Eksempler på effektuttak vil i en bolig være stikk-kontakter, lysarmaturer, tilkoplingsbokser for Power take-off means all points in an installation, outside the fuse box, where power can be taken out for one purpose or another. Examples of power outlets in a home would be plug sockets, light fittings, connection boxes for

varmekabler/varmefolier, klima-anlegg etc).heating cables/heating foils, air conditioning systems etc).

Hvert effektuttak gis sin unike adresse i systemet. Tilordningen av adresse kan for eksempel gjøres ved mikro-brytere ("dip-switcher"), eller ved hjelp av annen kjent teknikk på en måte som i seg selv er kjent, og ikke utgjør en del av foreliggende oppfinnelse. Dersom en nå utstyrer hvert effektuttak med elektronikk for å kunne kjenne igjen sin egen adresse samt enkle kommandoer (AV, PÅ etc), vil effektuttakene kunne fjernstyres. Denne fjernstyringen skjer fortrinnsvis ved signalering over kraftforsyningsnettet (230V), en unngår på den måten å trekke en egen signalkabel. Det er imidlertid innenfor oppfinnelsens rekkevidde å anvende annen form for signalering til effektuttakene, f.eks. ved hjelp av et separat nett. Effektuttakenes signaleringsnett vil heretter bli kalt "uttaksnett". Navnet beskriver kun funksjon og tar ikke standpunkt til hvordan og ved hjelp av hvilket medium nettet er realisert. Each power outlet is given its unique address in the system. The assignment of address can be done, for example, by means of micro-switches ("dip-switches"), or by means of other known techniques in a manner that is known in itself, and does not form part of the present invention. If one now equips each power outlet with electronics to be able to recognize its own address as well as simple commands (OFF, ON etc), the power outlets will be able to be controlled remotely. This remote control is preferably done by signaling over the power supply network (230V), thus avoiding pulling a separate signal cable. However, it is within the scope of the invention to use other forms of signaling for the power outlets, e.g. using a separate network. The power outlets' signaling network will hereafter be called "outlet network". The name only describes function and does not take a stand on how and by means of which medium the network is realized.

Effektbryterne er innebygget lokalt i de enkelte effektuttak. Med betegnelsen "brytere" er en ikke begrenset til av/på-innretninger, men også koplingselementer med muligheter for regulering innenfor et intervall. Slik regulering kan skje i trinn, i glidende overganger, eller på andre måter som er vel kjent. Da effektbryterne ikke er sentralt plassert i sikringsskapet, men distribuert rundt om i installasjonen innebygget i de enkelte effektuttakene, vil en hensiktsmessig oppdeling av totalsystemet i effektkurser utelukkende bestemmes ut ifra hvilken belastning de enkelte effektuttak representerer samt hvor de forskjellige uttak fysisk er plassert i forhold til hverandre. Hvordan de enkelte effektuttak skal styres og hvilke uttak som eventuelt skal styres sammen, er helt uten betydning for kursoppdelingen. The circuit breakers are built-in locally in the individual power outlets. The term "switches" is not limited to on/off devices, but also switching elements with options for regulation within an interval. Such regulation can take place in steps, in sliding transitions, or in other ways that are well known. As the circuit breakers are not centrally located in the fuse box, but distributed around the installation built into the individual power outlets, an appropriate division of the overall system into power courses will be exclusively determined based on the load the individual power outlets represent and where the various outlets are physically located in relation to each other. How the individual power outlets are to be managed and which outlets are to be managed together is completely irrelevant to the course breakdown.

Fjernstyringen av de enkelte effektuttak over uttaks-nettet skjer på basis av meldinger gitt av ulike givere distribuert rundt om i installasjonen. Med givere menes i denne forbindelse enheter som på et eller annet vis skal kunne påvirke eller gi opplysninger om systemets tilstand, definert som tilstanden til det totale sett av styrbare effektuttak koplet med parametre som temperatur ute og i de enkelte rom, tid på døgnet, hverdag eller helg etc. Aktivisering av en giver (med derpå følgende sending av melding til sentralenheten) kan enten utløses manuelt (trykk på lysbryter), eller automatisk (røykdetektor, termostat etc). Eksempler på slike givere vil være brytere og regulatorer for lys og varme, temperaturtølere, ulike detektorer for alarm og overvåking etc. Ved å inkludere en eller flere infrarøde mottakere kan også installasjonen, helt eller delvis, fjernstyres ved hjelp av fjernkontroll av samme type som en for eksempel bruker mot TV. Dette er fra før kjent f.eks. fra tysk patent DE 3 035 965. The remote control of the individual power outlets over the outlet network takes place on the basis of messages given by various sensors distributed around the installation. In this context, transmitters are understood as devices which in one way or another should be able to influence or provide information about the state of the system, defined as the state of the total set of controllable power outlets coupled with parameters such as temperature outside and in the individual rooms, time of day, weekday or weekend etc. Activation of a transmitter (with the subsequent sending of a message to the central unit) can either be triggered manually (press the light switch) or automatically (smoke detector, thermostat etc). Examples of such sensors would be switches and regulators for light and heat, temperature sensors, various detectors for alarm and monitoring, etc. By including one or more infrared receivers, the installation can also be controlled remotely, in whole or in part, using a remote control of the same type as a for example user against TV. This is already known, e.g. from German patent DE 3 035 965.

Giverne er koplet sammen i en eller et antall sløyfer, heretter kalt "givernettet". For nybygg vil det sannsynligvis være mest økonomisk å knytte giverne sammen ved en egen, svakstrøm sløyfe. Dette kan realiseres på forskjellige måter. Ett eksempel fins i patentskriftet GB 2 123 589 som beskriver en feiltolerant tre-tråds forbindelse, to andre er Phillips' I 2 C og D 2B serielle busser. For enkelt å kunne installere systemet i eksisterende anlegg, bør imidlertid sentralenheten også kunne benytte kraft-for syningsnettet som givernett. Dette vil også være hensiktsmessig i de tilfeller hvor en giver ligger langt fra de andre (eks. lysbryter i garasje), en slipper da å dra en egen signaleringssløyfe lange omveier bare for denne giverens skyld. The sensors are connected together in one or a number of loops, hereafter called "the sensor network". For new buildings, it will probably be most economical to connect the sensors together by a separate, low-current loop. This can be realized in different ways. One example is in patent document GB 2 123 589 which describes a fault tolerant three-wire connection, two others are Phillips' I 2 C and D 2B serial buses. In order to be able to easily install the system in existing facilities, however, the central unit should also be able to use the power supply network as a donor network. This will also be appropriate in cases where a transmitter is located far from the others (e.g. light switch in a garage), then you don't have to make a separate signaling loop long detours just for the sake of this transmitter.

Selv om giverog uttaksnett er realisert ved forskjellige kabelsystemer, benytter begge nett den samme signaleringsprotokollen. Det er da mulig for en giver å sende melding til et effektuttak direkte, uten å gå om sentralenheten. Om de to nett er implementert på hvert sitt kabelsystem, vil grensesnittet mellom dem foreta nødvendig signalkonvertering. Ved å utnytte denne muligheten for direkteforbindelse giver - effektuttak, kan systemet dermed gjøres tolerant overfor feil i sentralenheten. Although feeder and outlet networks are realized by different cable systems, both networks use the same signaling protocol. It is then possible for a donor to send a message to a power outlet directly, without bypassing the central unit. If the two networks are implemented on separate cable systems, the interface between them will carry out the necessary signal conversion. By making use of this possibility of direct connection generator - power outlet, the system can thus be made tolerant to faults in the central unit.

Som senere vil bli beskrevet, er den logiske koplingen mellom givere og effektuttak definert gjennom en koplingsmatrise i sentralenheten. I tillegg har imidlertid hver giver tilordnet sitt (sine) standard effektuttak. Dette ligger definert i givernes elektronikk ved hjelp av mikro-brytere, programparametre, eller ved hjelp av annen kjent teknikk. En giver av type lysbryter kan for eksempel som standard være koplet mot et bestemt lampepunkt med en gitt adresse, en giver av type termostat kan være koplet mot et eller flere effektuttak for panelovner med andre adresser, osv. As will be described later, the logical connection between sensors and power outlets is defined through a connection matrix in the central unit. In addition, however, each donor has assigned its standard power outlet(s). This is defined in the donors' electronics using micro-switches, program parameters, or using other known techniques. A sensor of the light switch type can, for example, by default be connected to a specific lamp point with a given address, a sensor of the thermostat type can be connected to one or more power outlets for panel ovens with other addresses, etc.

Hver gang en giver aktiveres, sendes alltid minst to meldinger, heretter nummerert l-n, ut på givernettet: Melding nr. 1 er adressert til sentralenheten, meldinger 2-n direkte til de tilordnete standard effektuttak. Grensesnittet mellom giverog uttaks-nett inneholder ei koplingsbru. Denne koplingsbrua fungerer som et meldingsfilter, styrt av en vakthund-mekanisme i sentralenheten: Så lenge sentralenheten fungerer, vil koplingsbrua rute melding nr. 1, adressert til sentralenheten, til denne. Sentralenheten mottar meldingen, dekoder den ved hjelp av koplingsmatrisen for deretter å sende en (eller flere) kommandoer ut til det (de) berørte effektuttak over uttaks-nettet. Meldinger 2-n, adressert direkte til de tilordnete standard effektuttak blir fjernet av koplingsbrua og når aldri fram til de adresserte effektuttak. Every time a sensor is activated, at least two messages, hereafter numbered l-n, are always sent out on the sensor network: Message no. 1 is addressed to the central unit, messages 2-n directly to the assigned standard power outlets. The interface between the donor and outlet network contains a connection bridge. This link bridge acts as a message filter, controlled by a watchdog mechanism in the central unit: As long as the central unit is functioning, the link bridge will route message No. 1, addressed to the central unit, to it. The central unit receives the message, decodes it using the connection matrix and then sends one (or more) commands out to the affected power outlet(s) over the outlet network. Messages 2-n, addressed directly to the assigned standard power outlets are removed by the connection bridge and never reach the addressed power outlets.

Dersom sentralenheten av en eller annen grunn går ned, vil dette detekteres av koplingsbrua ved at If the central unit goes down for some reason, this will be detected by the connection bridge by

vakthund-signalet uteblir. Koblingsbrua kopler da ut sentralenheten (melding nr. 1 adressert til sentralenheten fjernes) og etablerer direkteforbindelsen giver - standard effektuttak. Meldinger 2-n (adressert til de tilordnete standard effektuttak) sendes da videre, etter eventuell signalkonvertering, ut på uttaksnettet til de adresserte effektuttak. Giveren signaliserer nå i prinsippet mot sitt (sine) standard effektuttak direkte. Dette er illustrert i figur 3. the watchdog signal does not appear. The connecting bridge then disconnects the central unit (message no. 1 addressed until the central unit is removed) and establishes the direct connection donor - standard power outlet. Messages 2-n (addressed to the assigned standard power outlets) are then sent on, after any signal conversion, on the outlet network to the addressed power outlets. In principle, the transmitter now signals directly to its (its) standard power outlet. This is illustrated in Figure 3.

På samme måte som effektuttakene vil alle giverne ha sin egen, unike adresse. Når en giver aktiveres (manuelt eller automatisk), vil den sende to eller flere meldinger ut på givernettet, den første meldingen er adressert til sentralenheten, de etterfølgende er adressert til giverens standard effektuttak. Meldingen til sentralenheten inneholder giverens adresse samt aktiviseringsårsaken (trykk på lysbryter, røyk detektert etc). Meldingen(e) til standard effektuttak inneholder kommandoer til disse (AV, PÅ etc). For å underlette og sikre kommunikasjonen (muligheter for feils jekk, sjekksum), kan meldingene også inkludere data for dette formål. In the same way as the power outlets, all the donors will have their own, unique address. When a transmitter is activated (manually or automatically), it will send two or more messages out on the transmitter network, the first message is addressed to the central unit, the subsequent ones are addressed to the transmitter's standard power outlet. The message to the central unit contains the donor's address as well as the reason for activation (press the light switch, smoke detected, etc.). The message(s) for standard power outlets contain commands for these (OFF, ON etc). In order to facilitate and secure communication (possibilities for error check, checksum), the messages may also include data for this purpose.

Når sentralenheten mottar en melding fra en giver, vil sentralenheten ta aksjon. Sammenhengen mellom melding (påvirkning) og aksjon (respons), kan illustreres ved hjelp av en "koplingsmatrise". Eksempel på en modell av en slik matrise er vist i fig. 2. Koblingsmatrisen inneholder en fullstendig beskrivelse av koplingen mellom de enkelte givere og effektuttak. Denne koplingen kan enten være gitt av den mottatte meldingen alene (inneholdende giverens adresse, aktiveringsårsak, etc), eller den kan i tillegg være en funksjon av (deler av) systemets totale tilstand i øyeblikket, eventuelt også forhistorien til nåtilstanden. Systemets tilstand omfatter parametre som hvilke effektuttak som er innkoplet, temperatur ute og i de forskjellige rom, tid på døgnet, hverdag eller helg, osv. På grunnlag av dette blir det så truffet en avgjørelse om hvilken aksjon den mottatte meldingen skal medføre. Det kan også være en mulighet at det ikke skal skje noe som respons til enkelte meldinger, men at meldingene skal lagres og senere gi respons f.eks. sammen med andre meldinger gjennom en logisk OG-funksjon eller liknende. Alle tilstandsparametre er selvfølgelig ikke relevante for alle giverog effektuttaks-kombinasjoner (hvordan lysbryterne virker vil for eksempel neppe være en funksjon av temperaturen). Oppfinnelsen i seg selv legger imidlertid ingen begrensning på sammenhengen mellom givere, effektuttak og tilstands parametre, denne bestemmes ene og alene av hvordan man ønsker at systemet skal fungere. When the central unit receives a message from a donor, the central unit will take action. The connection between message (influence) and action (response) can be illustrated using a "connection matrix". An example of a model of such a matrix is shown in fig. 2. The connection matrix contains a complete description of the connection between the individual sensors and power outlets. This connection can either be provided by the received message alone (containing the donor's address, activation reason, etc), or it can also be a function of (parts of) the system's total state at the moment, possibly also the history of the current state. The state of the system includes parameters such as which power outlets are switched on, temperature outside and in the various rooms, time of day, weekday or weekend, etc. On this basis, a decision is then made as to which action the received message should entail. There may also be a possibility that nothing should happen as a response to certain messages, but that the messages should be saved and a response later e.g. together with other messages through a logical AND function or similar. Of course, all state parameters are not relevant for all generator and power outlet combinations (how the light switches work, for example, is unlikely to be a function of the temperature). However, the invention itself places no limitation on the connection between sensors, power outlets and state parameters, this is determined solely by how you want the system to function.

Merk at fig. 2 er ment å gi et eksempel på hvordan en slik koplingsmatrise prinsippielt vil kunne bygges opp, den sier ingenting om hvordan den er realisert i praksis. Note that fig. 2 is intended to give an example of how such a connection matrix could in principle be built up, it says nothing about how it is realized in practice.

Med aksjon/respons forstås i denne forbindelse inn/ut-kopling eller regulering av ett eller flere effektuttak. I motsetning til dagens installasjons-systemer hvor giverne (eks. lysbryterne) er fysisk koplet til ett eller flere effektuttak (lyspunkter), vil man ifølge oppfinnelsen ha en ren logisk kopling mellom giver og effektuttak via programmet i sentralenheten. In this context, action/response means switching on/off or regulation of one or more power outlets. In contrast to today's installation systems where the sensors (e.g. light switches) are physically connected to one or more power outlets (light points), according to the invention, one will have a purely logical connection between the sensor and the power outlet via the program in the central unit.

Oppfinnelsen gir, sammenliknet med dagens installasjonssystemer, en rekke fordeler for såvel produsent og installatør som for byggherre: -Økonomi. Konseptet er modulært, sammen med integrasjonsgevinsten og betydelig reduksjon av nødvendig kabeltrekking gir dette et system som vil være kostnads-effektivt i såvel boliger som kontorer, institusjoner og næringsbygg. -Nye/gamle anlegg. Systemet kan installeres både i nye og eksisterende anlegg. -Fleksibelt. Giverne plasseres der hvor de ut fra betjeningshensyn/komfort bør stå, uten hensyn til hvor effektuttakene er plassert. Endring av kopling giver/effektuttak (eks. lysbryter/lyspunkt) gjøres enkelt i sentralen. -Nye funksjoner. Mulighetene er mange, for eksempel: gruppelys - sammenhørende lyspunkter, eks. pyntelys, styres av samme bryter. Compared to today's installation systems, the invention offers a number of advantages for both the manufacturer and installer as well as for the client: - Economy. The concept is modular, together with the benefits of integration and a significant reduction in the necessary cabling, this results in a system that will be cost-effective in homes as well as offices, institutions and commercial buildings. -New/old facilities. The system can be installed in both new and existing facilities. -Flexible. The transmitters are placed where they should be for operating reasons/comfort, regardless of where the power outlets are located. Changing the sensor/power outlet connection (e.g. light switch/light point) is easily done in the control panel. -New features. The possibilities are many, for example: group lighting - cohesive light points, e.g. decorative lights, controlled by the same switch.

nattlys - ved hjelp av en lysbryter ved senga slukkes alle lys som skal slukkes og tennes alle lys som skal tennes når en går til ro for natten. night light - with the help of a light switch by the bed, all lights that are to be extinguished are turned off and all lights that are to be lit are turned on when you go to bed for the night.

bortreist - automatikk sørger for at lys naturlig slukkes og tennes når man er bortreist. away - automation ensures that lights are naturally turned off and on when you are away.

-Fjernstyring. Anlegget kan enkelt fjernstyres, f.eks. ved hjelp av en TV-liknende infrarød fjernkontroll, ved å -Remote control. The system can be easily controlled remotely, e.g. using a TV-like infrared remote control, by

inkludere en mottaker for infrarød signalering i givernettet. -Energistyring. Ved å kople alle elektriske varmekilder via adresserbare effektuttak kan disse tids(dagog nattsenking) og temperaturstyres fra sentralenheten. Temperaturen avleses fra temperaturgivere tilknyttet givernettet, alternativt kan også temperaturstyr ing skje ved hjelp av en lokal termostat plassert ved den enkelte varme-kilde. Mulighet for lokal overstyring av systemet (med automatisk tilbakestilling etter en viss tid) kan meget enkelt legges inn. -Stor grad av integrasjon åpner for nye muligheter. Eksempler på dette: de samme temperaturtølerne benyttes både av alarm-funksjoner og varmestyringen. include a receiver for infrared signaling in the transmitter network. -Energy management. By connecting all electric heat sources via addressable power outlets, these time (day and night lowering) and temperature can be controlled from the central unit. The temperature is read from temperature sensors connected to the sensor network, alternatively temperature control can also take place using a local thermostat located at the individual heat source. The possibility of local overriding of the system (with automatic reset after a certain time) can be entered very easily. - A large degree of integration opens up new opportunities. Examples of this: the same temperature sensors are used by both alarm functions and the heating control.

dersom ingen brytere er rørt på f.eks. 24 timer, kan dette brukes som indikasjon på at noe er galt (trygghets-alarm for eldre). if no switches are touched, e.g. 24 hours, this can be used as an indication that something is wrong (security alarm for the elderly).

Claims (8)

1. Framgangsmåte for styring av elektriske anordninger som omfatter et antall distribuerte effektuttak som er i stand til å utføre forskjellige aksjoner, så som innog utkopling av lys, regulering av varme, utløsing av brannslokkingsanlegg osv., et antall distribuerte givere og en sentralenhet, karakterisert ved at effektuttakene gis sin unike adresse, giverne gis sin unike adresse, og at det i sentralenheten gis en beskrivelse av en logisk kopling mellom giverne og effektuttakene, slik at aktivisering av en giver og/eller respons fra en giver på et spørsmål fra sentralenheten, gir et signal til sentralenheten, som i sin tur behandler signalet, og på grunnlag av den logiske kobling gir beskjed videre til de berørte effektuttakene om å iverksette de nødvendige aksjoner, og at styring av en eller flere av objektgruppene lys, varme, alarmer osv. kan skje innenfor ett og samme system.1. Method for controlling electrical devices comprising a number of distributed power outlets capable of performing various actions, such as switching off lights, regulating heat, triggering fire extinguishing systems, etc., a number of distributed sensors and a central unit, characterized in that the power outlets are given their unique address, the sensors are given their unique address, and that the central unit provides a description of a logical connection between the sensors and the power outlets, so that activation of a sensor and/or response from a sensor to a question from the central unit, gives a signal to the central unit, which in turn processes the signal, and, on the basis of the logical connection, sends a message to the affected power outlets to take the necessary actions, and that control of one or more of the object groups light, heat, alarms, etc. can occur within one and the same system. 2. Framgangsmåte i samsvar med krav 1, karakterisert ved at det for overføring av signaler fra giverne brukes samme fysiske kabelsystem som effektuttakene.2. Procedure in accordance with claim 1, characterized by the fact that the same physical cable system as the power outlets is used for the transmission of signals from the sensors. 3. Framgangsmåte i samsvar med krav 1, karakterisert ved at det for overføring av signaler fra giverne brukes annet fysisk kabelsystem enn effektuttakene.3. Procedure in accordance with claim 1, characterized by the fact that a different physical cable system than the power outlets is used for the transmission of signals from the sensors. 4. Framgangsmåte i samsvar med krav 1-2, karakterisert ved at sentralenheten kan kombinere opplysningene fra giverne med opplysninger om systemets tilstand forøvrig (tidspunkt o.l.) for igang-setting av aksjoner.4. Procedure in accordance with requirements 1-2, characterized by the fact that the central unit can combine the information from the donors with information about the state of the system otherwise (time, etc.) for the initiation of actions. 5. Framgangsmåte i samsvar med ett eller flere av de foregående krav karakterisert ved at effektuttakene kan styres som av/på-brytere, og/eller regulatorer der spenningen kan endres jevnt og/eller i trinn innenfor intervallet helt av og helt på.5. Method in accordance with one or more of the preceding requirements, characterized in that the power outlets can be controlled as on/off switches, and/or regulators where the voltage can be changed evenly and/or in steps within the interval fully off and fully on. 6. Framgangsmåte i samsvar med ett eller flere av de foregående krav karakterisert ved at giverne selv kan iverksette aksjoner hos sine definerte standard effektuttak dersom sentralenheten skulle falle ut.6. Procedure in accordance with one or more of the preceding requirements, characterized by the fact that the donors themselves can initiate actions at their defined standard power outlets should the central unit fail. 7. Framgangsmåte i samsvar med ett eller flere av de foregående krav karakterisert ved at flere systemer kontrollert av hver sin sentralenhet kan samkjøres, ved direkte kommunikasjon seg imellom og/eller via en over-ordnet styringsenhet.7. Procedure in accordance with one or more of the preceding requirements, characterized in that several systems controlled by each central unit can be synchronized, by direct communication between them and/or via a superior control unit. 8. Anordning ved elektrisk system, særlig for boliger, kontor og liknende for gjennomføring av framgangsmåten i samsvar med krav 1-7, hvor det fins et ledningsnett til minst ett effektuttak, og hvor det dessuten fins en eller flere signalgivere for brytertilstand osv., og/eller en eller flere signalgivere for å avgi signal om temperatur eller liknende i rommet, til en sentralenhet, karakterisert ved at alle giveruttak og effektuttak er individuelt adresserbare, og at sentralenheten omfatter kretser både for interruptdrevet og pollet signalering mot giverne, og at denne signaleringen går på felles signalkanal, videre fins i sentralenheten kretser som gjør at signalering til sentralenheten fra givere og fra sentralenheten til effektuttak kan foregå over eget signalnett og/eller over kraftforsyningsnettet.8. Device for an electrical system, especially for homes, offices and the like for carrying out the procedure in accordance with requirements 1-7, where there is a wiring network for at least one power outlet, and where there are also one or more signal transmitters for switch status, etc., and/or one or more signal transmitters to transmit a signal about temperature or similar in the room, to a central unit, characterized in that all sensor outlets and power outlets are individually addressable, and that the central unit includes circuits for both interrupt-driven and polled signaling to the sensors, and that this the signaling goes on a common signal channel, furthermore there are circuits in the central unit which enable signaling to the central unit from sensors and from the central unit to the power outlet to take place over its own signaling network and/or over the power supply network.
NO89890236A 1989-01-19 1989-01-19 ELECTRICAL CONTROL SYSTEM. NO890236L (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
NO89890236A NO890236L (en) 1989-01-19 1989-01-19 ELECTRICAL CONTROL SYSTEM.
AU48388/90A AU4838890A (en) 1989-01-19 1990-01-16 Method and arrangement for controlling electrical devices
PCT/NO1990/000011 WO1990008418A1 (en) 1989-01-19 1990-01-16 Method and arrangement for controlling electrical devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO89890236A NO890236L (en) 1989-01-19 1989-01-19 ELECTRICAL CONTROL SYSTEM.

Publications (2)

Publication Number Publication Date
NO890236D0 NO890236D0 (en) 1989-01-19
NO890236L true NO890236L (en) 1990-07-20

Family

ID=19891641

Family Applications (1)

Application Number Title Priority Date Filing Date
NO89890236A NO890236L (en) 1989-01-19 1989-01-19 ELECTRICAL CONTROL SYSTEM.

Country Status (3)

Country Link
AU (1) AU4838890A (en)
NO (1) NO890236L (en)
WO (1) WO1990008418A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6208905B1 (en) * 1991-12-20 2001-03-27 Honeywell International Inc. System and method for controlling conditions in a space
FR2704319B1 (en) * 1993-04-21 1995-06-30 Euro Cp Sarl Energy metering method within a power network, system implementing this method, electrical apparatus and associated energy management devices.
DE4447559C2 (en) * 1994-09-14 2000-11-30 Zangenstein Elektro Method and device for operating a charging control device for a storage heater system
IT1277163B1 (en) * 1995-03-17 1997-11-05 Bticino Spa SYSTEM FOR RECEIVING AND MANAGING SECURITY CODES, IN PARTICULAR FOR ALARM AND ACCESS CONTROL DEVICES
FI953416A0 (en) * 1995-07-12 1995-07-12 Pk Cables Oy Installation system and installation The installation system and function analysis of the installation system
US5905442A (en) * 1996-02-07 1999-05-18 Lutron Electronics Co., Inc. Method and apparatus for controlling and determining the status of electrical devices from remote locations
FR2751501B1 (en) * 1996-07-16 1999-04-30 Schneider Electric Sa ELECTRICAL APPARATUS COMPRISING A COMMUNICATION DEVICE

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3039666A1 (en) * 1979-10-30 1981-05-14 General Electric Co., Schenectady, N.Y. METHOD AND DEVICE FOR CONTROLLING DISTRIBUTED ELECTRICAL LOADS
US4418333A (en) * 1981-06-08 1983-11-29 Pittway Corporation Appliance control system
GB8511691D0 (en) * 1985-05-09 1985-06-19 British Telecomm Control system
DE3711244A1 (en) * 1987-04-03 1988-10-20 Siemens Ag Electrical installation system
EP0364466A4 (en) * 1987-06-12 1991-09-25 Starec Nominees Pty. Ltd. Electrical control apparatus

Also Published As

Publication number Publication date
AU4838890A (en) 1990-08-13
WO1990008418A1 (en) 1990-07-26
NO890236D0 (en) 1989-01-19

Similar Documents

Publication Publication Date Title
US5352957A (en) Appliance control system with programmable receivers
US5471190A (en) Method and apparatus for resource allocation in a communication network system
US20170070090A1 (en) Smart electrical outlet
US6138241A (en) Apparatus for and method of inhibiting and overriding an electrical control device
US6574234B1 (en) Method and apparatus for controlling network devices
BR112019018346A2 (en) intelligent modular quick-connect device for electrical installations
US20050001563A1 (en) Lamp control system
US9374239B2 (en) Alarm system network operation
US9030102B2 (en) LED lighting devices having a control system operative in multiple modes
NO890236L (en) ELECTRICAL CONTROL SYSTEM.
US20120283891A1 (en) System for Power Distribution and Communication
US20070241928A1 (en) Wireless Remote Control
US20170325322A1 (en) Building equipment-based communication system
EP3411759B1 (en) System for controlling a plurality of power-consuming devices
JP2017188018A (en) Fire disaster notification system
JP2006340009A (en) Lighting control system using power line carrier communication
EP2654382A1 (en) Device for controlling an electric power supply
JP6855728B2 (en) Distribution board
JP5988126B2 (en) Equipment control system
JP2021507603A (en) Standard orbit smart home system
JPS58108893A (en) Remote monitoring controller
CN111295008B (en) Security protection lighting control system
SE1150586A1 (en) A control procedure in a network
GB2369471A (en) Intelligent building management system
US20160007427A1 (en) Method and system for actuating loads connected to a bus system