NO310388B1 - High voltage cable and undersea cable installation - Google Patents

High voltage cable and undersea cable installation Download PDF

Info

Publication number
NO310388B1
NO310388B1 NO19980691A NO980691A NO310388B1 NO 310388 B1 NO310388 B1 NO 310388B1 NO 19980691 A NO19980691 A NO 19980691A NO 980691 A NO980691 A NO 980691A NO 310388 B1 NO310388 B1 NO 310388B1
Authority
NO
Norway
Prior art keywords
cable
conductor
layer
metal sheath
return current
Prior art date
Application number
NO19980691A
Other languages
Norwegian (no)
Other versions
NO980691L (en
NO980691D0 (en
Inventor
Georg Endre Balog
Original Assignee
Cit Alcatel
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cit Alcatel filed Critical Cit Alcatel
Priority to NO19980691A priority Critical patent/NO310388B1/en
Publication of NO980691D0 publication Critical patent/NO980691D0/en
Priority to EP99400308A priority patent/EP0938102B1/en
Priority to DK99400308T priority patent/DK0938102T3/en
Priority to JP03753199A priority patent/JP4801236B2/en
Priority to AU17407/99A priority patent/AU755659B2/en
Publication of NO980691L publication Critical patent/NO980691L/en
Publication of NO310388B1 publication Critical patent/NO310388B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/02Power cables with screens or conductive layers, e.g. for avoiding large potential gradients
    • H01B9/028Power cables with screens or conductive layers, e.g. for avoiding large potential gradients with screen grounding means, e.g. drain wires

Landscapes

  • Insulated Conductors (AREA)

Abstract

Høyspenningskabel (HVDC) for like-strøm og undersjøisk installasjon for en slik kabel. Kabelen er bygget opp med en sentral leder (1) som danner en kj erne og et hovedisolasjonslag (2) utenpå. Dette lag (2) er omsluttet av en metallkappe (3) f .eks. av bly, såvel som en ytre armering (8) og et eller flere ytre lag (9) for korrosjonsbeskyttelse. Kabelen har en konsentrisk returstrømleder (6) utformet som en indre kopperarmering mellom metallkappen (3) og de ytre beskyttelseslag (9).High-voltage cable (HVDC) for direct current and subsea installation for such a cable. The cable is built up with a central conductor (1) which forms a core and a main insulation layer (2) on the outside. This layer (2) is enclosed by a metal sheath (3) e.g. of lead, as well as an outer reinforcement (8) and one or more outer layers (9) for corrosion protection. The cable has a concentric return current conductor (6) designed as an inner copper reinforcement between the metal sheath (3) and the outer protective layers (9).

Description

Denne oppfinnelse gjelder høyspenningskabler for likestrøm (HVDC) og undersjøisk installasjon av slike kabler. Slike kabler og installasjoner av dem er beskrevet i patentskriftet WO 97/04466. This invention relates to high voltage cables for direct current (HVDC) and the submarine installation of such cables. Such cables and their installations are described in patent document WO 97/04466.

Videre beskrives i GB 2 295 506 et HVDC-system for energi-overføring mellom to omformerstasjoner, dvs. likespenningsfor-bindelse mellom to vekselspenningssystemer, og hvor en inverter-ingskrets' slukkevinkel brukes for å styre omformerstasjonenes likeretteres ledevinkel i en lukket sløyfe for å holde denne slukkevinkel ved eller over gitte verdier. Hver omformerstasjon har en styreenhet som arbeider i lukket sløyfe og er innrettet for å styre ledevinkelen i avhengighet av parametrene likestrøm, likespenning, egen slukkevinkel og egen ledevinkel. Returlederen i likespenningsoverføringen er jordet midtveis mellom omformer-stasjonene. Furthermore, GB 2 295 506 describes an HVDC system for energy transfer between two converter stations, i.e. direct voltage connection between two alternating voltage systems, and where an inverter circuit's switch-off angle is used to control the lead angle of the converter stations' rectifiers in a closed loop to keep this extinction angle at or above given values. Each converter station has a control unit that works in a closed loop and is designed to control the lead angle depending on the parameters direct current, direct voltage, own extinguishing angle and own lead angle. The return conductor in the direct voltage transmission is grounded halfway between the converter stations.

DE 1 262 425 gjelder en innretning for "spenningsmessig avlastning" av kabler i HVDC-installasjoner hvor begge kabelender er koplet til et vekselspenningsnett via "glattespoler" og like-rettere - og hvor vekselspenningsnettet for energioverføring til og fra såvel som den tilkoplede likeretter er slik at antallet faser på de to vekselspenningssider ikke har de samme primtall. DE 1 262 425 concerns a device for "voltage-related relief" of cables in HVDC installations where both cable ends are connected to an alternating voltage network via "smoothing coils" and rectifiers - and where the alternating voltage network for energy transfer to and from as well as the connected rectifier is such that the number of phases on the two alternating voltage sides do not have the same prime numbers.

Patentskriftet beskriver imidlertid ikke kablene nærmere. However, the patent does not describe the cables in more detail.

En normal måte å overføre energi på fra et sted til et annet og via en vannmasse så som Nordsjøen mellom Norge og Danmark - er å bruke en HVDC-kabel med en sentral isolert leder og i tillegg bruke sjøvannet for returstrømmen. En slik kabel blir installert mellom vekselspenningskretser som har samme antall faser. Et alternativ er å installere en separat HVDC-kabel for returstrømmen, parallelt med den første kabel, men dette er en kostbar løsning. A normal way to transfer energy from one place to another and via a body of water such as the North Sea between Norway and Denmark - is to use an HVDC cable with a central insulated conductor and additionally use seawater for the return current. Such a cable is installed between AC circuits that have the same number of phases. An alternative is to install a separate HVDC cable for the return current, parallel to the first cable, but this is an expensive solution.

Målet med oppfinnelsen er å tilveiebringe en ny kabel-og installasjonsteknikk for å kunne tilfredsstille kundebehov for pålitelig f jernoverføring av store energimengder mellom to steder som er på hver side av en større vannmasse - og ved rimelige kostnader. The aim of the invention is to provide a new cable and installation technique to be able to satisfy customer needs for reliable f iron transmission of large amounts of energy between two places which are on either side of a large body of water - and at reasonable costs.

Oppfinnelsens hovedtrekk er satt opp i patentkravene. Med de løsninger som dermed foreligger har man oppnådd å tilfredsstille disse kundebehov, og kabelen kan arbeide i monopolar modus uten eksternt magnetfelt. Installasjonen eliminerer sjøelektroder som ellers kunne forårsake store kostnader og betydelige omgiv-elsesproblemer. The main features of the invention are set out in the patent claims. With the solutions thus available, it has been possible to satisfy these customer needs, and the cable can work in monopolar mode without an external magnetic field. The installation eliminates sea electrodes that could otherwise cause large costs and significant environmental problems.

De trekk som er nevnt ovenfor og andre vil fremgå av detalj beskrivelsen nedenfor, idet denne er av typiske utførelser av oppfinnelsen. Beskrivelsen støtter seg til tegningene, hvor fig. 1 skjematisk viser et tverrsnitt gjennom en HVDC-kabel, mens fig. 2 og 3 illustrerer to alternative kabelinstallasjoner. The features mentioned above and others will be apparent from the detailed description below, as this is of typical embodiments of the invention. The description is based on the drawings, where fig. 1 schematically shows a cross-section through an HVDC cable, while fig. 2 and 3 illustrate two alternative cable installations.

På fig. 1 viser kabeltverrsnittet en sentral kabelleder 1 med et hovedisolasjonslag 2 utenpå, på sin side innesluttet i en metallkappe 3. Indre og ytre halvledende lag utenpå kabellederen og innenfor metallkappen (av bly) er her ikke vist. Over blykappen 3 er det lagvis anordnet et isolerende mellomlag 4, forsterkninger 5, en indre armering 6, et ytre isolasjonslag 7, en ytre armering In fig. 1, the cable cross-section shows a central cable conductor 1 with a main insulating layer 2 on the outside, in turn enclosed in a metal sheath 3. Inner and outer semi-conductive layers on the outside of the cable conductor and inside the metal sheath (of lead) are not shown here. Above the lead jacket 3, an insulating intermediate layer 4, reinforcements 5, an inner reinforcement 6, an outer insulation layer 7, an outer reinforcement are arranged in layers

8 og ytre beskyttelseslag 9. 8 and outer protective layer 9.

Kabellederen 1 kan være en flerleder av kopper. Hovediso-lasjonslaget 2 kan være oppdelt i flere lag og av omviklet eller ekstrudert type. Metallkappen 3 kan være en kappe av bly eller blylegering på konvensjonell måte. Det isolerende mellomlag 4 er det første lag utenpå metallkappen 3 og kan være av et polymer så som polyetylen (PE). Dette mellomlag kan også være halvledende for å unngå eller redusere potensialforskjeller. Tverrgående forsterkninger 5 av f .eks. bånd av rustfritt stål er lagt utenpå mellomlaget 4. Utenpå forsterkningene ligger en tolags indre armering 6 som kan være av hardtrukne og profilerte koppertråder. Deretter følger et ytre isolasjonslag 7 som kan være av polyetylen, en ytre armering 8 av f.eks. galvaniserte ståltråder, og ytterst flere ytre beskyttelseslag 9 av polypropylengarn og asfalt. The cable conductor 1 can be a multi-conductor made of copper. The main insulation layer 2 can be divided into several layers and of the wrapped or extruded type. The metal sheath 3 can be a sheath of lead or lead alloy in a conventional manner. The insulating intermediate layer 4 is the first layer outside the metal sheath 3 and can be of a polymer such as polyethylene (PE). This intermediate layer can also be semi-conductive to avoid or reduce potential differences. Transverse reinforcements 5 of e.g. bands of stainless steel are laid on the outside of the intermediate layer 4. On the outside of the reinforcements is a two-layer inner reinforcement 6 which can be made of hard-drawn and profiled copper wires. Then follows an outer insulation layer 7 which can be made of polyethylene, an outer reinforcement 8 of e.g. galvanized steel wires, and at the very end several outer protective layers 9 of polypropylene yarn and asphalt.

Med en kabel som kan overføre 800 MW ved 500 kV langs en undersjøisk kraftlinje på mer enn 500 km bør innerlederen, nemlig den sentrale kabelleder 1 ha et tverrsnitt på 1600 mm<2>, og returlederen i en slik konvensjonell kabel bør 1900 mm<2>. Kabelen bør fortrinnsvis være gravet ned i sjøbunnen, helst ned til en dybde på 2,5 m. With a cable that can transmit 800 MW at 500 kV along a submarine power line of more than 500 km, the inner conductor, namely the central cable conductor 1 should have a cross-section of 1600 mm<2>, and the return conductor in such a conventional cable should be 1900 mm<2 >. The cable should preferably be buried in the seabed, preferably down to a depth of 2.5 m.

Fig. 2 illustrerer skjematisk hoveddelene (kabellederen 1, den viste returleder 6, idet den i dette tilfelle dannes av den indre armering og den ytre armering 8) mellom to endestasjoner A og B. Endestasjonene omfatter omformere (ikke vist) for tilkop-ling til sine respektive vekselspenningsnett (ikke vist). Lederen 1 overfører kabelstrømmen fra A til B, og den ytre armering 8 er kontinuerlig jordet over hele overføringsstrekningen. Den kon-sentriske indre armering 6 som tjener som returleder er koplet til jordpotensial via overspenningsbeskyttere (utladningsrør) 10 og 11 i begge kabelender, og returlederen er dessuten jordet midt mellom A og B. Denne jording kan være utført med halvledende materiale. Fig. 2 schematically illustrates the main parts (the cable conductor 1, the shown return conductor 6, as in this case it is formed by the inner reinforcement and the outer reinforcement 8) between two end stations A and B. The end stations comprise converters (not shown) for connection to their respective AC voltage grids (not shown). The conductor 1 transfers the cable current from A to B, and the outer armature 8 is continuously grounded over the entire transmission section. The concentric inner armature 6 which serves as a return conductor is connected to ground potential via surge protectors (discharge tubes) 10 and 11 at both cable ends, and the return conductor is also grounded midway between A and B. This grounding can be done with semi-conducting material.

Jordingen av returlederen må utføres slik at det ikke dannes noen sirkulerende strømmer, og samtidig må omformerne arbeide mot sann jord. De sirkulerende strømmer deles i forhold til motstandene i sine respektive strømsløyfer, og siden sjøvannet kan betraktes å være en meget stor (god) leder vil sløyfemot-standene stort sett bestå av motstanden i ledningene til elek-trodene, selve elektrodemotstanden og eventuell motstand i jorden. The earthing of the return conductor must be carried out so that no circulating currents are formed, and at the same time the converters must work towards true earth. The circulating currents are divided in relation to the resistances in their respective current loops, and since seawater can be considered to be a very large (good) conductor, the loop resistances will mostly consist of the resistance in the wires to the electrodes, the electrode resistance itself and any resistance in the earth .

Den installasjon som er vist på fig. 3 tilsvarer den som er vist på fig. 2, men i stedet er returlederen selv jordet i den ene ende (endestasjonen A) og er koplet til jord via en overspenningsavleder (i rørform) 12 i motsatt ende (endestasjon B). The installation shown in fig. 3 corresponds to that shown in fig. 2, but instead the return conductor itself is earthed at one end (end station A) and is connected to earth via a surge arrester (in tube form) 12 at the opposite end (end station B).

En kabel med returleder av metall vil ved 800 MW belast-ning få omkring 10 kV likespenningsøkning over en overførings-strekning på 540 km. Det er mulig å bruke motstander for å begrense jordstrømmen, men det er uønsket å ha jords trøm i det hele tatt. En annen tilnærmelse er å hindre den sirkulerende strøm ved enkel-punktsbinding. Dersom direkte jording av en av utladningsrørene er nødvendig kan dette være mulig, men den andre rørgruppe i motsatt ende av overføringsstrekningen vil da ha spenningen 10 kV mot jord. A cable with a metal return conductor will, at a load of 800 MW, have a direct voltage increase of around 10 kV over a transmission distance of 540 km. It is possible to use resistors to limit the ground current, but it is undesirable to have any ground current at all. Another approach is to prevent the circulating current by single-point bonding. If direct earthing of one of the discharge pipes is necessary, this may be possible, but the other pipe group at the opposite end of the transmission line will then have a voltage of 10 kV to earth.

Hvis kabelsystemet er jordet på midten (fig. 2) får hver rørgruppe for utladning tilnærmet 5kV likespenning mot jord, og i dette tilfelle kan man bruke dioder så som Zenerdioder i begge ender for å beskytte ytterisolasjonen mot overspenninger. If the cable system is earthed in the middle (fig. 2), each pipe group for discharge receives approximately 5kV direct voltage to earth, and in this case diodes such as Zener diodes can be used at both ends to protect the outer insulation against overvoltages.

Detalj beskrivelsen ovenfor av utførelsesformer av oppfinnelsen gjelder eksempler bare og skal ikke betraktes å være begrensende for beskyttelsesomfanget. The above detailed description of embodiments of the invention applies to examples only and should not be considered as limiting the scope of protection.

Claims (6)

1. Høyspenningskabel for likestrøm, med en sentral kabelleder (1), et hovedisolasjonslag (2) som er omsluttet av en metallkappe (3), særlig av bly, og en ytre armering (8) med uten-påliggende ytre beskyttelseslag (9) mot korrosjon, KARAKTERISERT VED at en konsentrisk returstrømleder (6) er anordnet mellom metallkappen (3) og de ytre beskyttelseslag (9).1. High-voltage cable for direct current, with a central cable conductor (1), a main insulating layer (2) which is enclosed by a metal sheath (3), in particular of lead, and an outer armature (8) with an external protective layer (9) against corrosion, CHARACTERIZED BY the fact that a concentric return current conductor (6) is arranged between the metal sheath (3) and the outer protective layers (9). 2. Kabel ifølge krav 1, KARAKTERISERT VED at det utenpå metallkappen (3) er anordnet et isolerende (eller halvledende) mellomlag (4), særlig av et polymermateriale, forsterkninger (5) av stålbånd, og minst ett ytre isolasjonslag (7), innenfor den ytre armering (8) og de ytre beskyttelseslag (9 ), og at returstrøm-lederen (6) danner en indre armering av kopper mellom mellomlaget (4) og det ene eller innerste isolasjonslag (7).2. Cable according to claim 1, CHARACTERIZED BY the fact that an insulating (or semi-conductive) intermediate layer (4), in particular of a polymer material, reinforcements (5) of steel bands, and at least one outer insulating layer (7) is arranged on the outside of the metal sheath (3). within the outer reinforcement (8) and the outer protective layers (9), and that the return current conductor (6) forms an inner reinforcement of copper between the intermediate layer (4) and the one or innermost insulation layer (7). 3. Kabel ifølge krav 2, KARAKTERISERT VED at mellomlaget (4) og det minst ene ytre isolasjonslag (7) er av polyetylen.3. Cable according to claim 2, CHARACTERIZED IN THAT the intermediate layer (4) and the at least one outer insulation layer (7) are made of polyethylene. 4. Undersjøisk kabel installasjon for en høyspenningskabel (1) i henhold til krav 1-3, KARAKTERISERT VED at den ytre armering (8) er kontinuerlig jordet langs kabelens (1) utstrekning mellom dens ender (A, B).4. Subsea cable installation for a high-voltage cable (1) according to claims 1-3, CHARACTERIZED IN THAT the outer armature (8) is continuously grounded along the cable's (1) extension between its ends (A, B). 5. Installasjon ifølge krav 4, KARAKTERISERT VED at returstrømlederen (6) er direkte jordet på midten og jordet via overspenningsavledere (10, 11) i begge ender (A, B).5. Installation according to claim 4, CHARACTERIZED IN THAT the return current conductor (6) is directly grounded in the middle and grounded via surge arresters (10, 11) at both ends (A, B). 6. Installasjon ifølge krav 4, KARAKTERISERT VED at returstrømlederen (6) er direkte jordet i den ene ende (A) og jordet via en overspenningsavleder (12) i den andre ende (B).6. Installation according to claim 4, CHARACTERIZED IN THAT the return current conductor (6) is directly grounded at one end (A) and grounded via a surge arrester (12) at the other end (B).
NO19980691A 1998-02-19 1998-02-19 High voltage cable and undersea cable installation NO310388B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
NO19980691A NO310388B1 (en) 1998-02-19 1998-02-19 High voltage cable and undersea cable installation
EP99400308A EP0938102B1 (en) 1998-02-19 1999-02-10 High voltage DC power cable
DK99400308T DK0938102T3 (en) 1998-02-19 1999-02-10 Höjspændings-DC power cable Ström
JP03753199A JP4801236B2 (en) 1998-02-19 1999-02-16 High voltage DC power cable and its submarine cable laying method
AU17407/99A AU755659B2 (en) 1998-02-19 1999-02-19 High voltage direct current (HVDC) cables and subsea installation of same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO19980691A NO310388B1 (en) 1998-02-19 1998-02-19 High voltage cable and undersea cable installation

Publications (3)

Publication Number Publication Date
NO980691D0 NO980691D0 (en) 1998-02-19
NO980691L NO980691L (en) 1999-08-20
NO310388B1 true NO310388B1 (en) 2001-06-25

Family

ID=19901689

Family Applications (1)

Application Number Title Priority Date Filing Date
NO19980691A NO310388B1 (en) 1998-02-19 1998-02-19 High voltage cable and undersea cable installation

Country Status (5)

Country Link
EP (1) EP0938102B1 (en)
JP (1) JP4801236B2 (en)
AU (1) AU755659B2 (en)
DK (1) DK0938102T3 (en)
NO (1) NO310388B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105405497A (en) * 2015-12-16 2016-03-16 中天科技海缆有限公司 Positive and negative electrodes syncretic optical fiber composite flexible DC medium voltage cable for urban distribution network system

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003046592A1 (en) * 2001-11-27 2003-06-05 Pirelli & C. S.P.A. Method for testing an electrical cable, modified electrical cable and process for producing it
EP1933333A1 (en) * 2006-12-15 2008-06-18 ABB Technology Ltd An electric power cable, an off-shore installation provided therewith, and use thereof
CN101211680B (en) * 2006-12-26 2010-10-06 上海电缆厂有限公司 Optical fibre composite electric power seabed oil-filled cable
EP2294684B1 (en) * 2008-06-09 2013-09-04 ABB Technology AG A plant for transmiitting electric power
JP5354259B2 (en) * 2008-11-11 2013-11-27 住友電気工業株式会社 Solid cable
EP2197080A1 (en) 2008-12-09 2010-06-16 ABB Research Ltd. Flexible joint with resistive field grading material for HVDC cables and method for connecting same to HVDC cables
JP5864228B2 (en) * 2011-11-21 2016-02-17 矢崎総業株式会社 High voltage conductive path and wire harness
JP5986812B2 (en) * 2011-11-21 2016-09-06 矢崎総業株式会社 Wire harness
JP5984440B2 (en) 2012-03-14 2016-09-06 矢崎総業株式会社 Coaxial wire manufacturing method
WO2016191508A1 (en) * 2015-05-28 2016-12-01 Schlumberger Technology Corporation Lead alloy tape barrier
DE102016002881A1 (en) 2016-03-09 2017-09-14 nkt cables GmbH & Co.KG DC cable system with metallic return conductor
CA3019710A1 (en) 2017-10-03 2019-04-03 Schlumberger Canada Limited Lead alloy barrier tape splice for downhole power cable
US10535448B2 (en) * 2017-12-21 2020-01-14 Nexans Stainless steel screen and non-insulating jacket arrangement for power cables
CN110060806A (en) * 2018-01-17 2019-07-26 南方电网科学研究院有限责任公司 A kind of horizontal water conservancy diversion cable and deep-well type vertical grounding electrode
CN110828052A (en) * 2019-11-15 2020-02-21 中天科技海缆有限公司 Direct current submarine cable
CN111326288B (en) * 2020-04-01 2021-03-30 杭州智海人工智能有限公司 Wind power generation high-voltage direct-current submarine cable

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO449373L (en) * 1973-11-26 1975-06-23 Standard Tel Kabelfab As
JPS5556302A (en) * 1978-10-04 1980-04-25 Showa Electric Wire & Cable Co Power cable line
US4256921A (en) * 1979-01-22 1981-03-17 George Bahder Moisture resistant cable
JPS5637409U (en) * 1979-08-31 1981-04-09
JPS5924083Y2 (en) * 1979-08-31 1984-07-17 住友電気工業株式会社 Single core lead submerged bottom cable for power use
JPS5943616Y2 (en) * 1979-09-01 1984-12-25 住友電気工業株式会社 Single core lead submerged bottom cable for power use
JPS58201515A (en) * 1982-05-17 1983-11-24 住友電気工業株式会社 Method of preventing insulator from deteriorating due to water tree of cable
JPH0641290Y2 (en) * 1985-04-23 1994-10-26 住友電気工業株式会社 Submarine cable for single-core AC power
JPH0579814U (en) * 1992-03-27 1993-10-29 日立電線株式会社 Cross-linked polyethylene insulated lead sheathed cable
JPH05300057A (en) * 1992-04-21 1993-11-12 Fujitsu Ltd Power feeding circuit for submarine branch device
JP3417590B2 (en) * 1993-01-18 2003-06-16 住友電気工業株式会社 DC submarine power cable line
JP3822331B2 (en) * 1997-10-09 2006-09-20 株式会社フジクラ Neutral wire composite DC power cable and DC power cable line

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105405497A (en) * 2015-12-16 2016-03-16 中天科技海缆有限公司 Positive and negative electrodes syncretic optical fiber composite flexible DC medium voltage cable for urban distribution network system

Also Published As

Publication number Publication date
JPH11273466A (en) 1999-10-08
NO980691L (en) 1999-08-20
AU1740799A (en) 1999-09-02
AU755659B2 (en) 2002-12-19
NO980691D0 (en) 1998-02-19
EP0938102A2 (en) 1999-08-25
EP0938102B1 (en) 2005-09-14
EP0938102A3 (en) 2000-10-18
JP4801236B2 (en) 2011-10-26
DK0938102T3 (en) 2006-01-30

Similar Documents

Publication Publication Date Title
NO310388B1 (en) High voltage cable and undersea cable installation
CN102598153B (en) Integrated high power umbilical
FI72619B (en) FOERBAETTRINGAR I ELEKTRISKA KABLAR OCH ELEKTRISKA KABELINSTALLATIONER.
NO324463B1 (en) Power cable for direct electric heating system
NO174488B (en) Cable for transmitting power and signals
JP2019046561A (en) Power cable
US20220275898A1 (en) Pipeline electric heating system
CN111968780A (en) Medium-low voltage submarine cable
JP4668003B2 (en) Coaxial cable for bipolar DC power transmission
CN206685191U (en) A kind of armoured power cable with prefabricated branch structure
CN105429034A (en) Grounding device of transformer substation containing inlet and outlet cables and mounting method thereof
JP3107302B2 (en) DC solid power cable, DC solid power cable line, and method for monitoring DC solid power cable line
EP3564970A1 (en) Single-core submarine cable
CN209357479U (en) A kind of XLPE insulating layer and its cable
US1603875A (en) Power system
Kehl et al. Cross-bonding for MV cable systems: advantages and impact on accessories design
Candela et al. A comparison of special bonding techniques for transmission and distribution cables
JP3417590B2 (en) DC submarine power cable line
US20230178268A1 (en) HVAC-cable with composite conductor
CN208781611U (en) A kind of fire-retardant middle pressure mineral fireproof power cable that blocks water with protective metal shell
KR0116313Y1 (en) Cable pack for high voltage
US5147983A (en) Six phase distribution powerline
Kulman Grounding and cathodic protection of pipes for pipe-type feeders
CN205428581U (en) Ageing resistance crosslinking polyethylene -insulated power cable
FI71032B (en) FITTING CABLE ELLER

Legal Events

Date Code Title Description
MK1K Patent expired