NO20200904A1 - Gas detector system - Google Patents

Gas detector system Download PDF

Info

Publication number
NO20200904A1
NO20200904A1 NO20200904A NO20200904A NO20200904A1 NO 20200904 A1 NO20200904 A1 NO 20200904A1 NO 20200904 A NO20200904 A NO 20200904A NO 20200904 A NO20200904 A NO 20200904A NO 20200904 A1 NO20200904 A1 NO 20200904A1
Authority
NO
Norway
Prior art keywords
module
optical interface
gas
cavity
reflector
Prior art date
Application number
NO20200904A
Inventor
Lasse Irvam
Preben Storås
Original Assignee
Optronics Tech As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optronics Tech As filed Critical Optronics Tech As
Priority to NO20200904A priority Critical patent/NO20200904A1/en
Priority to PCT/EP2021/072420 priority patent/WO2022034152A1/en
Publication of NO20200904A1 publication Critical patent/NO20200904A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/031Multipass arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/031Multipass arrangements
    • G01N2021/0314Double pass, autocollimated path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/15Preventing contamination of the components of the optical system or obstruction of the light path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/022Casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/024Modular construction

Description

GAS DETECTOR SYSTEM
The present invention relates to a modular measuring system, especially related to optical gas measurements.
Gas detectors of different types have been well known for a long time, for example as described in US6337741 or US9678010, involving a light source transmitting a light beam through a gas and a receiver means measuring and analyzing the received light in order to detect the presence of a gas. The spectrum analysis may be performed by changing the wavelength of the source, e.g. using tunable lasers, or by analyzing the received light from a known source after having passed through the gas volume.
Two types of Optical Gas detectors dominate: Point Gas Detectors and Open Path Detectors. Point Detectors measures the gas that reaches the detection point of the detector and must therefore be close to the leak point, and positioned correct relative to the wind direction. Open Path Detectors consists of one unit that is emitting light and another unit that measures the light, and these two units can be placed far from each other. These two units can detect gases passing between them. This way, large areas can be "fenced" in with a few Open Path detectors effectively monitoring for gas. Using Point Detectors to monitor such an area would in many situations demand too many detectors, but may have other advantages such as being less sensitive to other materials and disturbances entering the measured area, e.g. as is discussed in international application No. PCT/EP2020/072644.
The gas measuring system according to the present invention is primarily a point detector, but may with some modifications be used as an open path detector depending on the use. It may be used in a number of environments such as hydrocarbon production, mining, or in ships, with necessary adaptations to the gas to be detected, to facilitate testing and calibration or to the general situation at the site, e.g. protecting against rain, mosquitos, particles etc. The existing solutions are, however, not very flexible, making these adaptations. Thus it is an object of the present invention to provide a practical solution making it possible to use the same sensor unit in different environments or situations. This is obtained with a system as specified in the accompanying claims.
This way the present invention provides a modular system for providing a convenient and inexpensive solution for improving the flexibility of the optical gas detector.
The present invention will be described below with reference to the accompanying drawings illustrating the invention by way of examples.
Fig. 1a,b illustrates the preferred embodiment of the system according to the invention.
Fig. 2a-2c illustrates different modules to be used in the present invention.
Fig. 3 illustrates the cross section of a preferred embodiment of the invention.
Figure 1a shows a schematic illustration of the system according to the invention including a sensor unit 4, including light source, light receiver and necessary supporting circuitry for analyzing, power supply and possibly wired and/or wireless communication with external computers and network. The sensor unit 4 is per se known in the art and will not be discussed in detail here.
The sensor unit 4 includes a housing part 5 with a cavity or recess 1 for releasable containing a module A,B,C,D. In the drawing the sensor unit 4 includes an optical interface 2 on one side of the cavity 1 for directing light from the light source into the cavity and also for receiving light from the cavity 1, the optical interface 2 may include one or more suitable windows, lenses etc. for controlling the light beam, from the light source and back into the sensor or just a defined opening.
In the preferred embodiment cavity 1 in the housing part 5 also includes a mirror or reflector 3a, preferably a retroreflector, at the opposite end 3 of the cavity 1 thus defining a volume in which the measurements may be performed, the cavity 1 having a defined length from the optical interface 2 to the opposite end 3 preferably containing the reflector 3a. The modules according to the preferred embodiment having a length corresponding to the cavity length and at least enclosing a volume defined by the light beam between the optical interface 2 and the cavity end 3.
In some cases the reflector may be positioned inside the module or, if used as an open path detector, at a different position. The advantage of having the reflector integrated in the housing is that it maintains a consistence in the measurements which removes one variable in e.g. calibrations, which could be caused by using different reflectors in different modules.
The housing part 5 may be of any shape providing mechanical protection, allowing gas in the environment pass unhindered and preferably also have sealing surfaces on or preferably around the optical interface 2 and reflector 3a or cavity end 3 so as to be able to allow a module to contain a gas between the interface and reflector without adding additional elements in the optical beam path. The shape of the cavity 1 may correspond directly to the shape of at least one of the modules or be larger to make sure future module types may be used. The important feature being that the light is allowed to pass unhindered through the optical interface 2 to or from the source and sensor and the reflector 3a.
Referring to figure 1b the preferred embodiment of the invention therefor has the opening in the housing for introducing the module B into the side of the housing part 5 so that the module is entered into the cavity between the optical interface on one end and the reflector on the other end.
The sensor unit 4 and housing 5 with reflector 3 will be capable of measuring a chosen gas in the cavity without a module mounted therein. The inventive design will, however, provide the benefits of the present invention by introducing a chosen module in the cavity, e.g. for protection, calibration or testing purposes, or for connecting the cavity to a chamber of conduit leading a gas flow through the module.
Possible modules may come from the following list as illustrated in figures 2a,2b,2c where the modules include end sections 8,9 for positioning over the optical interface and reflector, respectively:
• Gas sampling module 6 in fig.2a. In this case the module may be constituted by a pipe with a gas input and output 7 capable of being positioned in the cavity and is provided with sealing rings or similar at the ends 8,9 toward the optical interface 2 and reflector 3a. Preferably the module is telescopically extendable 10 so as to apply a force toward the cavity ends to push and seal the chamber toward sealing surfaces around the optical interface and the opposite end, possibly including the reflector. This force may be provided by a threaded connection 10 or a spring force sealing against the cavity ends 8,9.
A known gas can be led through the chamber and the gas sensor may be tested. As the gas sampling module has a relatively small volume changes in the gas composition will be detected quickly.
As an alternative a closed gas sample container may be fitted into the cavity, thus not requiring any sealing or input and output, but on the other hand the characteristics of the container must be known so as not to affect the measurements.
• Gas filter module 11 in fig.2b. This module may be fitted into the cavity and contains an optical filter 12 to be installed in the module, the filter having known spectral properties, for example corresponding to at least part of the absorption spectrum of a gas to be measured or chosen to test or calibrate the spectral resolution and accuracy of the sensor. The filter 12 may be exchangeable and be introduced through a slot 16 in the module into the light path so that different tests may be performed depending in the situation. In this case the module should be sufficiently closed to avoid gas from the surroundings or external light entering the module and disturbing the measurements. The filter may be of any type suitable for obtaining the relevant attenuation in the light beam within the required wavelengths.
• Environment shield 13 in fig.2c. This module includes means for protecting the cavity from water, for example rain or spray from irrigation systems, fire extinguishers etc. It may also constitute mosquito nets or filters for stopping bugs or particles from entering the cavity or be a hydrophobic filter for humid environments.
The shield will preferably enclose a space sufficient 14 for allowing a test gas container or conductor inside the shield 13 between the optical interface 2 and the reflector 3a.
Figure 3 illustrates the cross section of the module housing 5 with a cavity 1 with a module receiver 15 adapted to receive and hold the module with a corresponding shape. As stated above the module housing is adapted to receive and also mechanically protect the modules and cavity and thus may have openings for allowing gas flowing freely though both the housing circumference and the module receiver.
As mentioned above the shape and size of the modules may vary with the implementation and in the case of the case of the gas sampling module the part of the cavity holding the module in place may be the sealing surfaces around the optical interface 2 and reflector 3a, so that the volume in the module is small, only containing the volume directly between the optical interface and reflector, and thus minimizing the response time for detecting a change in the gas composition in the module.
In other cases, like with the environmental protecting modules 13, the modules may simply fit into the cavity and be held in place with suitable locking devices, but should fit sufficiently against the cavity ends to protect the optical interface and reflector. Similar may apply to the shape of the gas filter module 11, which also should be sufficiently closed against the end surfaces 2,3 to avoid gas entering which could interfere with the calibrations and adjustments.
To summarize the present invention relates to an optical measuring system including a sensor unit with a light source directing a light beam in a predetermined wavelength range through an optical interface along a predetermined light path, and a light receiver with a directional sensitivity field directed through said optical interface along said light path for receiving optical signals within the predetermined wavelength range. The system also including a reflector at a predetermined distance from the optical interface reflecting the light beam from the source back to the receiver.
The sensor unit includes a housing part 5 defining a cavity 1 extending along the light path from the optical interface 2 to said reflector 3a, the cavity having shape adapted to receive and contain a module in said in said light path so that the light is emitted into the module and the light receiver receives light from the cavity, the cavity for containing said module extending from said optical interface.
The reflector 3a is preferably positioned in the housing at the end 3 of the cavity opposite from the optical interface 2, but may be positioned in said module.
The optical interface 2 may include one or more lenses for focusing the emitted or received light beam.
The cavity defined by the housing part may include sealing means between the module and the sensor unit enclosing said optical interface 2 as well as the cavity end preferably enclosing the reflector 3a.
The system according to the invention may include different measurements modules including a module having an optical filter to be positioned in the defined light path, where the filter is adapted to have the same absorption spectrum as a chosen gas, thus being adapted to test the response of the sensor unit. The filter may be exchangeable and be positioned in a suitable slot in the module.
The system may also include a measuring .module including an enclosed sample gas corresponding to the gas to be detected, thus being adapted to test the response of the sensor unit.
The system may also include a measuring module which includes a gas chamber with input and output channels for leading the gas through the chamber, the input including fluid interface for receiving the gas, where the module preferably is open in the direction of the optical interface as well as, if applicable, to the reflector at the opposite cavity end, and including an axially extendable module housing adapted to provide a sealing between the opening and around the optical interface.
The system may also include a measuring module includes openings for allowing gas flow, the openings being dimension to stop water, insects and/or particles to enter into the module.

Claims (12)

Claims
1. Optical measuring system including a sensor unit with a light source directing a light beam in a predetermined wavelength range through an optical interface along a predetermined light path, and a light receiver with a directional sensitivity field directed through said optical interface along said light path for receiving optical signals within the predetermined wavelength range, the system also including a reflector at a predetermined distance from the optical interface reflecting the light beam from the source back to the receiver, and
wherein the sensor unit includes a housing part defining a cavity extending along the light path from the optical interface to said reflector, the cavity having shape adapted to receive and contain a module in said in said light path so that the light is emitted into the module and the light receiver receives light from the cavity, the cavity for containing said module extending from said optical interface.
2. Measuring system according to claim 1, wherein said reflector is positioned in the housing at the end of the cavity opposite from the optical interface.
3. Measuring system according to claim 1, wherein said reflector is positioned in said module.
4. Measuring system according to claim 1, wherein said optical interface includes one or more lenses for focusing the emitted or received light beam.
5. Measuring system according to claim 1, including sealing means between the module and the sensor unit enclosing said optical interface.
6. Measuring module for use in a system according to claim 1, wherein the module includes an optical filter to be positioned in said light path and wherein said filter is adapted to have the same absorption spectrum as a chosen gas, thus being adapted to test the response of the sensor unit.
7. Measuring module according to claim 6 wherein the optical filter is exchangeable.
8. Measuring module for use in a system according to claim 1, wherein the module includes a sample gas corresponding to the gas to be detected, thus being adapted to test the response of the sensor unit.
9. Measuring module for use in a system according to claim 1, wherein the model includes a gas chamber and input and output channels for leading the gas through the chamber, the input including fluid interface for receiving the gas.
10. Measuring module according to claim 9, wherein the module is open in the direction of the optical interface and including an axially extendable module housing adapted to provide a sealing between the opening and around the optical interface.
11. Measuring module according to claim 10, wherein the module is open in the direction of the cavity end, the end including a reflector, and adapted to provide a sealing between the opening and around the reflector.
12. Module for use in a system according to claim 1, wherein the module includes openings for allowing gas flow, the openings being dimension to stop water, insects and/or particles to enter into the module.
NO20200904A 2020-08-14 2020-08-14 Gas detector system NO20200904A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NO20200904A NO20200904A1 (en) 2020-08-14 2020-08-14 Gas detector system
PCT/EP2021/072420 WO2022034152A1 (en) 2020-08-14 2021-08-11 Gas detector system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO20200904A NO20200904A1 (en) 2020-08-14 2020-08-14 Gas detector system

Publications (1)

Publication Number Publication Date
NO20200904A1 true NO20200904A1 (en) 2022-02-15

Family

ID=77543491

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20200904A NO20200904A1 (en) 2020-08-14 2020-08-14 Gas detector system

Country Status (2)

Country Link
NO (1) NO20200904A1 (en)
WO (1) WO2022034152A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020050567A1 (en) * 2000-05-30 2002-05-02 Thierry Boudet Method and apparatus for detecting gases
CN101285769B (en) * 2008-05-21 2012-03-21 聚光科技(杭州)股份有限公司 Gas measuring method and device thereof
US20130044323A1 (en) * 2011-08-17 2013-02-21 General Electric Company Method and system for detecting moisture in natural gas
EP3198261A1 (en) * 2014-09-26 2017-08-02 Rosemount Analytical Inc. Optical gas sensing apparatus with explosion-proof enclosure

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5616923A (en) * 1990-05-23 1997-04-01 Novametrix Medical Systems Inc. Gas analyzer cuvettes
US5340986A (en) * 1991-11-18 1994-08-23 Gaztech International Corporation Diffusion-type gas sample chamber
US5475222A (en) * 1994-12-05 1995-12-12 Detector Electronics Corporation Ruggedized gas detector
NO310746B1 (en) 1998-02-26 2001-08-20 Simrad Optronics As Sensor system for measuring light absorption
US8785857B2 (en) 2011-09-23 2014-07-22 Msa Technology, Llc Infrared sensor with multiple sources for gas measurement
WO2014089115A1 (en) * 2012-12-03 2014-06-12 Battelle Memorial Institute Immersible methane sensors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020050567A1 (en) * 2000-05-30 2002-05-02 Thierry Boudet Method and apparatus for detecting gases
CN101285769B (en) * 2008-05-21 2012-03-21 聚光科技(杭州)股份有限公司 Gas measuring method and device thereof
US20130044323A1 (en) * 2011-08-17 2013-02-21 General Electric Company Method and system for detecting moisture in natural gas
EP3198261A1 (en) * 2014-09-26 2017-08-02 Rosemount Analytical Inc. Optical gas sensing apparatus with explosion-proof enclosure

Also Published As

Publication number Publication date
WO2022034152A1 (en) 2022-02-17

Similar Documents

Publication Publication Date Title
US5241368A (en) Fiber-optic probe for absorbance and turbidity measurement
US6741348B2 (en) Ultrasensitive spectrophotometer
US5923035A (en) Infrared absorption measuring device
US9188534B2 (en) Device with a measurement arrangement for optical measurement of gases and gas mixtures, with compensation of environmental effects
US11237089B2 (en) Method and system for particle characterization and identification
CN105372178A (en) Alignment device and transmitter/receiver system with two angular degrees of freedom
CN103499545B (en) Adopt the semiconductor laser gas detecting system of gas reference chamber feedback compensation
KR101884474B1 (en) Apparatus for measurement of reflected light and method of calibrating such device
EP2494334B1 (en) Device for radiation absorption measurements and method for calibration thereof
US7224454B2 (en) Apparatus and process for analyzing a stream of fluid
EA039512B1 (en) Gas detection system and method using hollow core optical fibers optically coupled to solid core optical fibers
US10436709B2 (en) Calibration unit for optical detector
CN109297685A (en) A kind of spectral transmittance test device and method for heavy caliber parallel light tube
US20060192968A1 (en) Optical assembly
US8077316B2 (en) Chlorine dioxide sensor
NO20200904A1 (en) Gas detector system
CN109342348A (en) A kind of binary channels infrared gas sensor
US8445850B2 (en) Optical remote sensing of fugitive releases
IT9019721A1 (en) EQUIPMENT FOR THE DETECTION OF INFRARED LASER GAS AND OPTICAL FIBERS
JP6820731B2 (en) Gas detector
US4647210A (en) Chlorine analysis using fiber optics
EP3485255B1 (en) Apparatus and method for monitoring particle flow in a stack
CN203732440U (en) Probe device for measuring laser gas concentration
CN209182234U (en) A kind of binary channels infrared gas sensor
WO2016167383A1 (en) System for monitoring multiple harmful substances

Legal Events

Date Code Title Description
FC2A Withdrawal, rejection or dismissal of laid open patent application