NO127962B - - Google Patents

Download PDF

Info

Publication number
NO127962B
NO127962B NO02274/70A NO227470A NO127962B NO 127962 B NO127962 B NO 127962B NO 02274/70 A NO02274/70 A NO 02274/70A NO 227470 A NO227470 A NO 227470A NO 127962 B NO127962 B NO 127962B
Authority
NO
Norway
Prior art keywords
propeller
nozzle
profile
axial
propeller nozzle
Prior art date
Application number
NO02274/70A
Other languages
Norwegian (no)
Inventor
G Jacobsen
A Mollevik
Original Assignee
Strommen Staal As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Strommen Staal As filed Critical Strommen Staal As
Priority to NO02274/70A priority Critical patent/NO127962B/no
Priority to US00149740A priority patent/US3738307A/en
Priority to ES1971198440U priority patent/ES198440Y/en
Priority to SE7107466A priority patent/SE378576B/xx
Priority to FR7120831A priority patent/FR2096098A5/fr
Priority to FI711636A priority patent/FI52052C/en
Priority to GB1984271*[A priority patent/GB1310803A/en
Priority to DE19712129068 priority patent/DE2129068A1/en
Priority to NL7108071A priority patent/NL7108071A/xx
Publication of NO127962B publication Critical patent/NO127962B/no

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/16Arrangements on vessels of propulsion elements directly acting on water of propellers characterised by being mounted in recesses; with stationary water-guiding elements; Means to prevent fouling of the propeller, e.g. guards, cages or screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/14Arrangements on vessels of propulsion elements directly acting on water of propellers characterised by being mounted in non-rotating ducts or rings, e.g. adjustable for steering purpose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/001Shrouded propellers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Nozzles (AREA)
  • Toys (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Glass Compositions (AREA)

Description

Propelldyse. Propeller nozzle.

Fremdriftsanordninger for skip med propeller under anvendel-se av dyser som omslutter propellene er kjent. Det er også kjent å utforme og anordne propelldysen slik i forhold til propellen at propellen vil komme til å arbeide på det sted hvor propelldysen har sitt minste gjennomstrømningstverrsnitt, og hår en ganske liten klaring med propellbladsirkelen. Dessuten er propelldysen utformet slik at gjen-nomstrømningstverrsnittet bak propellen forandrer ség ganske lite el-ler slett ikke, mens gjennomstrømningstverrsnittét foran propellen øker i retning forover.. Det er også kjent å utforme propelldyseinn-løpsåpningens inngangskant avrundet med stor radius. Hensikten med bruk av propelldyser er å bedre propulsjonsvirkningsgraden. I regelen har propelldyser vært rotasjonssymmetriske og har vært beregnet etter middelverdier for medstrømmen. Medstrømmen i propellsonen er imidlertid, særlig ved skip med større fyldighets-grad, som tilfellet er med de f leste. større tank/bulkskip., .ikke rota-sjons symmetrisk. Propulsion devices for ships with propellers using nozzles that surround the propellers are known. It is also known to design and arrange the propeller nozzle in such a way in relation to the propeller that the propeller will come to work at the place where the propeller nozzle has its smallest flow cross-section, and hair a fairly small clearance with the propeller blade circle. Furthermore, the propeller nozzle is designed so that the flow-through cross-section behind the propeller changes quite little or not at all, while the flow-through cross-section in front of the propeller increases in the forward direction. It is also known to design the entrance edge of the propeller nozzle inlet opening rounded with a large radius. The purpose of using propeller nozzles is to improve propulsion efficiency. As a rule, propeller nozzles have been rotationally symmetrical and have been calculated according to mean values for the co-flow. The co-flow in the propeller zone is, however, especially with ships with a greater degree of fullness, as is the case with most of them. larger tank/bulk ship., .not rotationally symmetrical.

Oppfinnelsen tar utgangspunkt i denne erkjennelse og ifølge oppfinnelsen foreslås det en propelldy.se. hvor dyseprofilens geometri varierer. Med en slik propelldyse kan man forandre medstrømmen.i propellsonen til et felt av mer rotasjonssymmetrisk natur, slik at hvert propellbladsnitt "ser" et mer ensartet medstrømsbilde under propellens rotasjon. The invention is based on this realization and according to the invention a propeller nozzle is proposed. where the geometry of the nozzle profile varies. With such a propeller nozzle, one can change the co-flow in the propeller zone to a field of a more rotationally symmetrical nature, so that each propeller blade section "sees" a more uniform co-flow picture during the propeller's rotation.

Ifølge oppfinnelsen er det derfor tilveiebragt en propelldyse med de radiale og aksiale snitt varierende arealer av de i aksiale snitt strømlinjeformede snittflater igjennom dysens<x>vegg, og det som kjennetegner propelldysen er at snittflatenes arealer er endret trinnvis i aksiale trinn rundt dysens utvendige overflate ved at veggens radiale tykkelser er forskjellige fra trinn til trinn, og-at de enkelte trinns aksiale lengde er forskjellig, idet dysens forkant er gitt en avtrappet form.. According to the invention, a propeller nozzle is therefore provided with the radial and axial section varying areas of the axial section streamlined cut surfaces through the nozzle<x>wall, and what characterizes the propeller nozzle is that the areas of the cut surfaces are changed step by step in axial steps around the outer surface of the nozzle by that the radial wall thicknesses are different from step to step, and that the axial length of the individual steps is different, as the front edge of the nozzle is given a stepped shape..

Propelldysens geometri forøvrig avhenger av de prpfiltyper man vil anvende. Det er således mulig å gjøre en vesentlig del av propelldysen rotasjonssymmetrisk mens variasjonene i profilet blir å finne i forkant av propelldysen. Propelldysen vil kunne utføres slik at propelldysens innside aktenfor propellsonen gjøres felles for samtlige profiler. The geometry of the propeller nozzle also depends on the types of propellers you want to use. It is thus possible to make a significant part of the propeller nozzle rotationally symmetrical, while the variations in the profile will be found in front of the propeller nozzle. The propeller nozzle can be made so that the inside of the propeller nozzle aft of the propeller zone is made common to all profiles.

Profilene kan tenkes å variere både i størrelse, form og type. Por ytterligere å bedre propulsjonsvirkningsgraden kan ifølge oppfinnelsen propelldysen være forsynt med såkalte high-liftspalter foran propellsonen. High-lif tspalter. skal her " inkludere' enhver åpning gjennom profilet. Ved å anvende high-liftprofiler for propelldysen vil man kunne oppnå mere ensartet dysevirkning•rundt propelldysen. Bruk av high-liftprofiler vil-kunne gi redusert propelldyselengde med samme dyseskyvkraft. Dette profils nominelle åpningsvinkel kan' også anslagsvis økes 20 - 30% over de verdier som gjelder for vanlige profiler. The profiles can be thought of as varying in size, shape and type. In order to further improve the propulsion efficiency, according to the invention, the propeller nozzle can be provided with so-called high-lift slits in front of the propeller zone. High-life columns. shall here "include" any opening through the profile. By using high-lift profiles for the propeller nozzle, it will be possible to achieve a more uniform nozzle effect•around the propeller nozzle. The use of high-lift profiles will result in a reduced propeller nozzle length with the same nozzle thrust. This profile's nominal opening angle can' also an estimated 20 - 30% increase over the values that apply to normal profiles.

En vesentlig fordel, ved bruk av high-liftprofilet er at de gir mulighet for. en økning av grensesjikttykkelsen på propelldysens innside i propellbladtuppens bane. Det reduserer kravet til små pro- A significant advantage of using the high-lift profile is that they allow for an increase in the boundary layer thickness on the inside of the propeller nozzle in the path of the propeller blade tip. It reduces the requirement for small pro-

pellbladtuppklaringer. pell blade tip clearances.

Oppfinnelsen skal forklares nærmere under henvisning til tegningene hvor The invention shall be explained in more detail with reference to the drawings where

Fig. 1 viser en propelldyse ifølge oppfinnelsen. Fig. 1 shows a propeller nozzle according to the invention.

Fig. 2 viser propelldysen sett fra siden. Fig. 2 shows the propeller nozzle seen from the side.

Fig. 3 viser en annen propelldyse ifølge oppfinnelsen. Fig. 3 shows another propeller nozzle according to the invention.

Fig. 4 viser endel av propelldysen i Fig. 3 i utfoldet tilstand. Fig. 5 viser et delsnitt gjennom en propelldyse ifølge oppfinnelsen, med en high-liftprofil. Fig. 4 shows part of the propeller nozzle in Fig. 3 in the unfolded state. Fig. 5 shows a section through a propeller nozzle according to the invention, with a high-lift profile.

I Fig. 1 og 2 er det vist en propelldyse med en øvre dysesektor 1, i hvilken sektor det forefinnes den samme profil over hele sektoren, en nedre dysesektor 2, som også over hele sin sektor har samme profil, og en sidesektor 3 med en speilbildelig anordnet sidesektor 4. Også i disse to sidesektorer har man over hele sektoren samme profil. Profilene i de enkelte dysesektorer 1 - 4 er imidlertid innbyrdes ulike, med unntagelse av de to sidesektorer 3, 4, slik det går frem av Fig. 2. In Fig. 1 and 2, a propeller nozzle is shown with an upper nozzle sector 1, in which sector there is the same profile over the entire sector, a lower nozzle sector 2, which also has the same profile over its entire sector, and a side sector 3 with a mirror-image arranged side sector 4. Also in these two side sectors, the entire sector has the same profile. However, the profiles in the individual nozzle sectors 1 - 4 are mutually different, with the exception of the two side sectors 3, 4, as can be seen from Fig. 2.

I Fig. 2 er det dessuten med stiplede linjer 5, 6 inntegnet en indikering av profilets avrunding. In Fig. 2, an indication of the rounding of the profile is also drawn with dashed lines 5, 6.

Fig. 3 og 4 viser en annen propelldyse ifølge oppfinnelsen. I Fig. 3 er det bare vist den ene halvpart av propelldysen, idet den andre halvpart er speilbildelig symmetrisk. Som det går frem av Fig. 3, har dysen flere dysesektorer 7, 8, 9 og 10 med innbyrdes ulike profiler, slik det går frem ved et nærmere studium av Fig. 4, hvor propelldysen i Fig. 3 er vist utforldet. Fra Fig. 4 går det klart frem at dysesektoren 7 har et bestemt profil 11, mens dysesektoren 9 har et annet profil 12 og dysesektoren 10 har et tredje profil 13. Propellsonen er indikert med den stiplede linjen 16. Bak propellsonen er propelldysens innside 19 felles for samtlige profiler. Fig. 3 and 4 show another propeller nozzle according to the invention. In Fig. 3, only one half of the propeller nozzle is shown, the other half being mirror-image symmetrical. As can be seen from Fig. 3, the nozzle has several nozzle sectors 7, 8, 9 and 10 with mutually different profiles, as can be seen from a closer study of Fig. 4, where the propeller nozzle in Fig. 3 is shown unfolded. From Fig. 4 it is clear that the nozzle sector 7 has a specific profile 11, while the nozzle sector 9 has another profile 12 and the nozzle sector 10 has a third profile 13. The propeller zone is indicated by the dashed line 16. Behind the propeller zone, the inside of the propeller nozzle 19 is common for all profiles.

Med de viste propelldysetyper kan man oppnå en endring av medstrømmen i propellsonen til et felt av mer rotasjonssymmetrisk natur, med øket propulsjonsvirkningsgrad som følge av denne endring. With the propeller nozzle types shown, a change of the co-flow in the propeller zone to a field of a more rotationally symmetrical nature can be achieved, with increased propulsion efficiency as a result of this change.

Fig. 5 viser et delsnitt gjennom et profil, som kan være et profil i en av de i Fig. 1-4 viste propelldyser. Profilet 21 er forsynt med high-liftspalter 18. Profilets fremre del er forbundet med profilets bakre del ved hjelp av de antydede steg 19. High-lift-spaltene 18 er, slik det går frem av Fig. 5 anordnet foran propell- Fig. 5 shows a partial section through a profile, which can be a profile in one of the propeller nozzles shown in Figs. 1-4. The profile 21 is provided with high-lift slits 18. The front part of the profile is connected to the rear part of the profile by means of the indicated steps 19. The high-lift slits 18 are, as can be seen from Fig. 5, arranged in front of the propeller

sonen. I Fig. 5 er et propellblad betegnet med 20. the zone. In Fig. 5, a propeller blade is denoted by 20.

I Fig. 1 og 2 er det inntegnet to stiplede linjer ved profilet 4. Disse stiplede linjer indikerer eksempler på to andre utførelsesformer av profilet. I det hele tatt kan profilene varieres etter behov, slik at man får den gunstigste utførelse. In Fig. 1 and 2, two dotted lines are drawn at the profile 4. These dotted lines indicate examples of two other embodiments of the profile. In general, the profiles can be varied as needed, so that you get the most favorable design.

Claims (2)

1. Propelldyse med i radiale og aksiale snitt varierende1. Propeller nozzle with varying radial and axial sections arealer av de i aksiale snitt strømlinjeformede snittflater gjennom dysens vegg, karakterisert ved at snittflatenes arealer er endret trinnvis i aksiale trinn rundt dysens utvendige overflate ved at veggens radiale tykkelser ér forskjellige fra trinn til trinn, og at de enkelte trinns aksiale lengde er forskjellig, idet dysens forkant er gitt en' avtrappet form.areas of the cut surfaces that are streamlined in axial section through the wall of the nozzle, characterized in that the areas of the cut surfaces are changed step by step in axial steps around the outer surface of the nozzle by the fact that the radial thicknesses of the wall are different from step to step, and that the axial length of the individual steps is different, as the leading edge of the nozzle is given a stepped shape. 2. Propelldyse ifølge krav 1, karakterisert2. Propeller nozzle according to claim 1, characterized ved at propelldysens innside aktenfor propellsonen er felles for samtlige trinn.in that the inside of the propeller nozzle aft of the propeller zone is common to all stages.
NO02274/70A 1970-06-11 1970-06-11 NO127962B (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
NO02274/70A NO127962B (en) 1970-06-11 1970-06-11
US00149740A US3738307A (en) 1970-06-11 1971-06-03 Propeller nozzle
ES1971198440U ES198440Y (en) 1970-06-11 1971-06-09 A PROPELLER NOZZLE ARRANGEMENT.
SE7107466A SE378576B (en) 1970-06-11 1971-06-09
FR7120831A FR2096098A5 (en) 1970-06-11 1971-06-09
FI711636A FI52052C (en) 1970-06-11 1971-06-10 Propeller nozzle.
GB1984271*[A GB1310803A (en) 1970-06-11 1971-06-10 Propeller nozzle
DE19712129068 DE2129068A1 (en) 1970-06-11 1971-06-11 Propeller nozzle, in particular for ships
NL7108071A NL7108071A (en) 1970-06-11 1971-06-11

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO02274/70A NO127962B (en) 1970-06-11 1970-06-11

Publications (1)

Publication Number Publication Date
NO127962B true NO127962B (en) 1973-09-10

Family

ID=19878743

Family Applications (1)

Application Number Title Priority Date Filing Date
NO02274/70A NO127962B (en) 1970-06-11 1970-06-11

Country Status (9)

Country Link
US (1) US3738307A (en)
DE (1) DE2129068A1 (en)
ES (1) ES198440Y (en)
FI (1) FI52052C (en)
FR (1) FR2096098A5 (en)
GB (1) GB1310803A (en)
NL (1) NL7108071A (en)
NO (1) NO127962B (en)
SE (1) SE378576B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1270700A (en) * 1986-03-27 1990-06-26 Hans Bjorkestam Shrouded propeller
US5292088A (en) * 1989-10-10 1994-03-08 Lemont Harold E Propulsive thrust ring system
US5474419A (en) * 1992-12-30 1995-12-12 Reluzco; George Flowpath assembly for a turbine diaphragm and methods of manufacture
US5393197A (en) * 1993-11-09 1995-02-28 Lemont Aircraft Corporation Propulsive thrust ring system
US5586864A (en) * 1994-07-27 1996-12-24 General Electric Company Turbine nozzle diaphragm and method of assembly
US6595753B1 (en) * 1999-05-21 2003-07-22 A. Vortex Holding Company Vortex attractor
DE202007016163U1 (en) * 2007-11-16 2008-01-24 Becker Marine Systems Gmbh & Co. Kg Kort nozzle
ES2317799B1 (en) * 2008-08-01 2010-03-17 Juan Jose Romero Vazquez PROPULSION SYSTEM WITH HELICE AND FIXED TOWER REGARDING HELICE.

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3455268A (en) * 1966-10-13 1969-07-15 Samuel J Gordon Nonsymmetric shroud-propeller combination for directional control

Also Published As

Publication number Publication date
DE2129068A1 (en) 1972-01-13
GB1310803A (en) 1973-03-21
FI52052C (en) 1977-06-10
ES198440U (en) 1975-06-16
FR2096098A5 (en) 1972-02-11
ES198440Y (en) 1975-10-16
SE378576B (en) 1975-09-08
NL7108071A (en) 1971-12-14
US3738307A (en) 1973-06-12
FI52052B (en) 1977-02-28

Similar Documents

Publication Publication Date Title
US1062258A (en) Propeller.
US1455591A (en) Marine propeller
US930095A (en) Nozzle.
US1864803A (en) Marine and aeroplane propeller
US3499412A (en) Kort nozzle
NO127962B (en)
NO116045B (en)
US2390879A (en) Propeller fan
US514527A (en) Ippaeatus foe moving and steeeing steamships
US2667936A (en) Boat propeller
US2974628A (en) Twisted strut construction for marine bearing with forwardly mounted propeller
US1961114A (en) Ship&#39;s propeller
US2463864A (en) Airfoil
US1438012A (en) Propeller
US1831729A (en) Blade of fans or ventilators
US1954309A (en) Propeller
US1793339A (en) Propeller
US1667506A (en) Propeller
US955721A (en) Screw-propeller.
DE400532C (en) In front of the propeller arranged guide device for the propeller water
US1553083A (en) Elastic-fluid turbine
US1526814A (en) Elastic-fluid turbine
US1546049A (en) Reentrant turbine
US1107101A (en) Propeller.
US197437A (en) Improvement in screw-propellers