NL2027553B1 - A data acquisition system for acquiring maintenance data, an insulating plate portion, a method and a computer program product - Google Patents

A data acquisition system for acquiring maintenance data, an insulating plate portion, a method and a computer program product Download PDF

Info

Publication number
NL2027553B1
NL2027553B1 NL2027553A NL2027553A NL2027553B1 NL 2027553 B1 NL2027553 B1 NL 2027553B1 NL 2027553 A NL2027553 A NL 2027553A NL 2027553 A NL2027553 A NL 2027553A NL 2027553 B1 NL2027553 B1 NL 2027553B1
Authority
NL
Netherlands
Prior art keywords
data
sensor
acquisition system
insulating plate
data acquisition
Prior art date
Application number
NL2027553A
Other languages
Dutch (nl)
Other versions
NL2027553A (en
Inventor
Van De Laar Jeroen
Knoors Ernest
Original Assignee
Asset Telemetry B V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asset Telemetry B V filed Critical Asset Telemetry B V
Priority to NL2027553A priority Critical patent/NL2027553B1/en
Priority to PCT/NL2022/050074 priority patent/WO2022173304A1/en
Application granted granted Critical
Publication of NL2027553B1 publication Critical patent/NL2027553B1/en
Publication of NL2027553A publication Critical patent/NL2027553A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D13/00Special arrangements or devices in connection with roof coverings; Protection against birds; Roof drainage; Sky-lights
    • E04D13/006Provisions for detecting water leakage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • G01D11/30Supports specially adapted for an instrument; Supports specially adapted for a set of instruments
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D13/00Special arrangements or devices in connection with roof coverings; Protection against birds; Roof drainage; Sky-lights
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/33Services specially adapted for particular environments, situations or purposes for indoor environments, e.g. buildings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/38Services specially adapted for particular environments, situations or purposes for collecting sensor information

Abstract

Title: A data acquisition system for acquiring maintenance data, an insulating plate portion, a method and a computer program product Abstract The invention relates to a data acquisition system for acquiring maintenance data of building structures in an area. The system comprises a plurality of sensors located on the exterior of respective building structures. The sensors are arranged for sensing maintenance data associated With the respective building structure. Further, the sensors are connectable to a publicly accessible data network provided in the area. Figure 1

Description

P129438NL00 Title: A data acquisition system for acquiring maintenance data, an insulating plate portion, a method and a computer program product The invention relates to a data acquisition system for acquiring maintenance data.
Traditionally, maintenance, quality monitoring and inspection of building structures such as real estate assets or civil assets such as bridges and roads is performed by technically skilled inspectors on location. Relevant maintenance aspects of building structures may be difficult to inspect or monitor as structural elements may be inaccessible or hard to test on site. For the purpose of managing maintenance activities computational models have been developed for estimating a physical state of building structures and sample elements may be destructively tested.
As an example, protective coatings on wooden components of outside walls are mainly monitored by visual inspection. Apart from destructive techniques, such as cutting a groove or drilling a hole, ultrasonic equipment is available for periodically and manually measuring a local thickness of the coatings, however measuring results are inaccurate, unreliable and expensive to obtain. Similarly, in practice, it may be difficult or impossible to obtain moisture and/or thermal insulation data of roof structures in a cost effective way.
In summary, acquiring maintenance data of building structures is alabour intensive, inaccurate, non-reproducible and expensive process.
It is an object of the invention to provide a data acquisition system for acquiring maintenance data wherein at least one of the above disadvantages is counteracted. It is a further objection of the invention to provide a data acquisition system for acquiring maintenance data in an accurate though cost effective manner. Thereto, the invention provides a data acquisition system for acquiring maintenance data of building structures in an area, comprising a plurality of sensors located on the exterior of respective building structures, wherein the sensors are arranged for sensing maintenance data associated with the respective building structure and wherein the sensors are connectable to a publicly accessible data network provided in the area.
By providing a plurality of sensors on the exterior of building structures connectable to a publicly accessible data network maintenance data can be easily obtained and collected, e.g. for servicing purposes.
The invention is at least partially based on the insight that maintenance aspects of building structures mainly relate to attributes of the exterior of said building structures, including roof structures and outside walls, and that sensors can be located on said exterior for providing accurate measurement data.
The invention is also at least partially based on the insight that, presently, publicly accessible data networks such as LoRa networks, are available in a majority of areas where building structures are located. By connecting the sensors to a publicly accessible data network the maintenance data can be obtained in a cost effective manner.
By application of the data acquisition system, maintenance data may be remotely acquired via external sensing for storing, processing and forwarding the maintenance data, e.g. for servicing these building structures.
Further, the innovative application of sensors and data network reduces inspection time considerably while providing accurate and reproducible data that may be collected at desired time instants, e.g. periodically and/or real time.
As publicly accessible data networks are typically located outside building structures, the maintenance data can be collected without using any interior network of the building structures. Moreover, there is no need to enter the facilities of the building structure when installing the sensors simplifying and enhancing an installation management process, especially if a relatively large number of building structures are involved. Further, installation of the sensors on the exterior of the building structures may maintain desired characteristics of the building structures, such as isolation characteristics.
It is noted that within the context of the present application, the term exterior is to be understood as a part of the building structure that is not the interior of the building structure, said interior being surrounded by an outer shell including e.g. a roof structure and/or an outside wall.
Advantageously, sensors may include a transmitter for wireless transmission of the sensed maintenance data to the publicly accessible data network, thereby making any wired network connection to the network superfluous and improving flexibility in application of the sensors, both during construction and renovation projects of building structures.
Alternatively, sensors may be connected using a wired connection, e.g. for further improving reliable operation of the system over an extended lifetime.
Preferably, a sensor includes a sensor element for measuring a physical maintenance parameter, such as temperature, a degree of moisture and/or a degree or intensity of UV radiation, and a local power supply unit for feeding the sensor element and/or the transmitter, thereby enabling autonomous operation of the sensor. Then, the acquisition system does not interfere with any other feeding or data system inside the building structure having advantages in terms of privacy, reliability of operation etc.
The local power supply unit may be implemented as a battery or a solar cell. If the sensor element is arranged for converting incoming signals such as UV radiation into energy, the sensor element may also serve as a local power supply unit rendering the application of a separate local power supply unit such as a battery superfluous.
The sensing element may include a photovoltaic cell for measuring UV radiation, e.g. for application of monitoring a coating layer on wooden structures. Further, the sensor may include a first sensing element for measuring temperature and a second sensing element for measuring electrical conductivity, rendering the sensor applicable for monitoring maintenance aspects of roof structures.
The sensors are preferably embedded in or covered by an outer layer of the shell, or located on a front side of the outer layer, the front side facing away from the interior of the building structure. As an example, a first sensor is located on a back side of a coating layer or thermal insulating layer of the building structure outside layer and a second sensor is located on a front side of the coating layer or thermal insulating layer serving as a reference sensor. Here, the back side of the outer layer faces towards the interior of the building structure, while the front side of the outer layer faces away from the interior of the building structure.
Generally, the outer layer of the building structure may include a multiple number of thermal insulating plates arranged next to each other, e.g. in the roof structure. Then, at least one of the thermal insulating plates may be provided with a sensor opening for receiving a roof sensor unit having an insulating plate portion placed in the sensor opening of the thermal insulating plate, the insulating plate portion having a geometry and dimensions matching a corresponding geometry and dimensions of the insulting plate opening so as to form, together with the thermal insulating plates, a substantially continuous insulating layer, and wherein the insulating plate portion is provided, on a back side thereof, with a first sensor, and, on a front side thereof, with a second sensor. Again, the back side of the insulating plate portion faces towards the interior of the building, while the front side of the insulating plate portion faces away from the interior of the building structure. The roof sensor unit is flexibly applicable in roof structures, as a separate unit, maintaining insulating performance of the roof structure while providing accurate and reliable maintenance data.
The concept of applying a separate sensor unit placeable in a sensor opening of thermal insulating plate can not only be applied in roof structures but also in other outer layer portions of the building structure, e.g. in an outside 5 wall.
In addition, the invention relates to an insulating plate portion.
Also, the invention relates to a method for servicing maintenance of building structures in an area.
The invention further relates to a computer program product.
A computer program product may comprise a set of computer executable instructions stored on a data carrier, such as a flash memory, a CD or a DVD.
The set of computer executable instructions, which allow a programmable computer to carry out the method as defined above, may also be available for downloading from a remote server, for example via the Internet, e.g. as an app.
Further advantageous embodiments according to the invention are described in the following claims.
It should be noted that the technical features described above or below may each on its own be embodied in a system and/or in a method, i.e. isolated from the context in which it is described, separate from other features, or in combination with only a number of the other features described in the context in which it is disclosed.
Each of these features may further be combined with any other feature disclosed, in any combination.
The invention will be further elucidated on the basis of exemplary embodiments which are represented in the drawings.
The exemplary embodiments are given by way of non-limitative illustration of the invention.
In the drawings: Fig. 1 shows a schematic view of a data acquisition system according to the invention;
Fig. 2 shows a system view of the data acquisition system shown in Fig. 1; Fig. 3 shows a schematic cross sectional view of an UV sensor included in the data acquisition system shown in Fig. 1; Fig. 4 shows a perspective view of a roof sensor unit included in the data acquisition system shown in Fig. 1; Fig. 5 shows a schematic cross sectional view of the roof sensor unit shown in Fig. 4, and Fig. 6 shows a flow diagram of a method according to the invention.
In the figures identical or corresponding parts are represented with the same reference numerals. The drawings are only schematic representations of embodiments of the invention, which are given by manner of non-limited examples.
Figure 1 shows a schematic view of a data acquisition system 1 according to the invention. The system 1 is arranged for acquiring maintenance data of building structures, including two houses 2 shown in Fig.1, in an area 3 such as a street, city, region, state etc.
The building structures 2 each have an interior 52 and an exterior 51 that is not part of the building structure 2. The interior 52 is surrounded by an outer shell 53 including an outside wall 14, a roof structure 15 and/or a front door. Generally, the shell 53 includes an outer layer.
The system 1 includes a plurality of sensors 4 located on the exterior 51 of respective building structures 2. Preferably, the sensors 4 are embedded in or covered by an outer layer of the shell 53, or located on a front side of the outer layer, said front side facing away from the interior 52 of the building structure 2.
In the shown embodiment, two sensors 4 are provided per house 2, viz, a sensor on the outside wall 14 and a sensor on the roof structure 15. However, more than two sensors may be provided per building structure 2, e.g. three, four or ten sensors per building structure 2. On the other hand, a single sensor per building structure 2 may also be possible, e.g. on the roof structure 15.
The plurality of sensors 4 are arranged for sensing maintenance data such as a associated with the building structure 2 where said sensors 4 are located. As an example, maintenance data may include data reflecting a state of the outside wall 14 or the roof structure 15 of the building structure
2. The sensors 4 are further connectable to a publicly accessible data network 8 provided in the area 3.
The publicly available data network 8 may be implemented as a wide area network WAN such as a long range wide area network LoRa that is typically used for data transmission have a low data rate, e.g. suitable for Internet of Things applications. Then, only a limited amount of energy may be sufficient to realize data transmission having relatively low bandwidth as data packets may be relatively compact and time intervals between data transmission may be relatively large. The publicly available data network 8 may be located near other infrastructural elements, such as electrical lines, water pipes etc., typically along road structures, outside the building structures 2. The network 8 includes a number of gateways or receivers 9 receiving the maintenance data sensed by the sensors 4. Further, a server 10 1s connected to the network 8 receiving the maintenance data received by the gateways 9, for storing and/or processing said data. The network 8 may be public or private, and may be accessible free of charge or may be commercial. The network 8 may be included 1n the data acquisition system
1.
The sensors 4 are arranged for autonomous operation or are stand- alone. In the shown embodiment, the sensors 4 each include a transmitter 5 for wireless transmission of the sensed maintenance data, as a wireless signal W, to the publicly accessible data network located outside the building structures 2, a sensor element 6 for measuring a physical maintenance parameter, and a local power supply unit 7 for feeding the sensor element 6 and/or the transmitter 5. If the sensor element 6 is arranged for converting incoming signals into energy, the sensor element 6 may also serve as a local power supply unit rendering the application of a separate local power supply unit such as a battery superfluous.
The physical maintenance parameter that is measured by the sensor element 6 may be a temperature parameter, a degree of moisture parameter and/or a degree of UV radiation parameter. However, other physical maintenance parameters may be measured such as a location parameter, a nitrogen oxide parameter, an atmospheric pressure parameter, a motion parameter etc. Further, multiple physical maintenance parameters may be measured by a sensor element 6 or by a sensor 4. Physical maintenance parameters measured by sensor elements form maintenance data sensed by the sensors.
Figure 2 shows a system view of the data acquisition system 1 shown in Fig. 1. Here, a multiple number of sensors 4 transmit sensed maintenance data wirelessly to the gateways 9 of the LoRa network 8. It is noted that, alternatively, the sensors 4 have a wired connection with the network 8 for wired transmission. The server 10, also referred to as application server, may be connected to the LoRa network 8 directly or via another network, e.g. a high speed data network such as a LTE based network or a 4G telecom network. The sensed maintenance data may be stored and/or processed by the application server 10. Then, processed data may be forwarded to user devices, such as a client working station 11, a client mobile communication device 12 and/or a client server 13, e.g. for generating a maintenance overview of the building structures 2 or an automated maintenance service proposal for the building structures 2. Data may be processed at least partially by the application server 10 and/or by the above-mentioned user devices 11, 12, 13.
Figure 3 shows a schematic cross sectional view of an UV sensor included in the data acquisition system shown in Fig. 1. The left hand side of Fig. 3 shows a single sensor embodiment, while the right hand side of Fig. 3 shows a dual sensor embodiment. In the single sensor embodiment, at the left hand side of Fig. 3, the sensor element 6 includes a photovoltaic cell 22 for measuring UV radiation IR incident thereon. The building structure outer shell includes a base layer such as a wooden layer 20 and an outside coating layer 21 covering the base layer 20. The photovoltaic cell 22 of the sensor 4 is located on a back side of a coating layer 21, i.e. sandwiched between the base layer 20 and the coating layer 21, the back side of the coating layer 21 facing towards the interior 52 of the building structure.
Generally, the incident UV radiation IR propagates through the coating layer 21 thereby decaying before reaching the photovoltaic cell 22. After some time, the coating layer 21 may degrade, e.g. due to degradation and/or decomposition of macromolecules in a binding agent of the coating layer 21. As a result, the decaying effect of the coating layer 21 will reduce. By regularly measuring the intensity of UV radiation incident on the photovoltaic cell 22 a degradation rate of the coating layer 21 can be measured. In the dual sensor embodiment, at the right hand of Fig. 3, a similar photovoltaic cell 23 is located on the back side of the coating layer 21, while another, reference sensor 24 is located on the front side of the coating layer 21, for performing an UV radiation reference measurement, for comparison with the UV radiation measurement performed with the photovoltaic cell 23 at the back side of the coating layer 21. Here, the front side of the coating layer 21 faces away from the interior 52 of the building structure. Such a sensor construction may be applied in coated portions of the outer shell 53 of the building structures, e.g. a coated front panel.
Generally, sensors, especially the respective sensor elements thereof, may be embedded in or covered by an outer layer of the shell of the respective building structures, or may be located on a front side of the outer layer, the front side of the outer layer facing away from the interior of the building structure.
Figure 4 shows a perspective view of a roof sensor unit included in the data acquisition system shown in Fig. 1. Further, Fig. 5 shows a schematic cross sectional view of the roof sensor unit shown in Fig. 4. The roof sensor unit 30 is formed as an insulating plate portion for insertion in a sensor opening 41 provided in a thermal insulating plate 40 of a roof structure 15 of a building structure 2. The insulating plate portion 30 has a geometry and dimensions, including a width W, a length L and a height H, matching a corresponding geometry and dimensions of the insulting plate opening 41 so as to form, together with the thermal insulating plate 40 and further thermal insulating plates 42, 43, 44 arranged next to each other, a substantially continuous insulating layer.
In the shown embodiment, the insulating plate portion 30 has a box-shaped geometry that is filled with thermal insulating material such as polystyrene, expanded polystyrene EPS, polyisocyanurate PIR or polyurethaan PUR material forming a thermal insulating layer 36. The insulating plate portion 30 1s provided, on a back side 34 thereof, with a first sensor 31, and, on a front side 35 thereof, with a second sensor 32. Here, the back side 34, also referred to as bottom side of the insulating plate portion faces towards the interior 52 of the building structure, then typically facing towards a mortar or concrete layer of the roof structure 15, while the front side 35, also referred to as top side of the insulating plate portion faces away from the interior 52 of the building structure, then typically facing towards a bitumen roofing covering such as a roofing felt layer of the roof structure 15. Both the first and the second sensor 31, 32 include a first sensing element for measuring temperature and a second sensing element for measuring electrical conductivity being a measure of moisture, the measured parameters serving as maintenance data to be transmitted, via the data network 8, to the application server 10. Generally, by monitoring temperature values on the bottom side 34 and the top side 350f the thermal insulating layer 36, a thermal insulation value can be derived, especially by determining a difference between a temperature at the top side 35 and a temperature at the bottom side of the thermal insulating layer 36. Further, by monitoring electrical conductivity or a degree of moisture, a maintenance state of a roof structure 15 at different levels of the insulating layer 36 may be evaluated. Also, any leakage can be identified.
In the shown embodiment, an optional third sensor 33 is applied in a central portion of the insulating layer 36, for measuring a degree of moisture inside the insulating layer 36 so as to provide information about a degree of moisture in the material of the insulating layer 36. In another embodiment, e.g. depending on a thickness of the insulating layer 36 and/or whether or not a stack of insulating layers are applied, on top of each other, a single sensor may be applied, or more than three sensors, e.g. four sensors or ten sensors. It is further noted that multiple roof sensor units 30 may be applied, at different locations, on a roof structure 15 of the building structure, e.g. if the roof structure has a relatively large surface area.
It 1s noted that the insulating plate portion 30 described above can not only be applied, as a roof sensor unit, in a roof structure 15, but also in other parts of the building structure shell such as an outside wall. In this respect it is noted that the insulating plate portion 30 can further not only be applied during construction of new building structures, but also in renovation projects or generally in existing building structures.
According to an aspect of the invention, a method is provided for servicing maintenance of building structures in an area, comprising remotely acquiring maintenance data via external sensing.
Figure 6 shows a flow chart of a method 100 of servicing maintenance of building structures in an area according to the invention. Here, remotely acquiring maintenance data includes a step of sensing 110 maintenance data via a plurality of sensors located on the exterior of respective building structures, and a step of transmitting the sensed maintenance data from the plurality of sensors, via a publicly accessible data network provided in the area, towards a server for storing and/or processing said data.
The method of servicing maintenance of building structures can be facilitated using dedicated hardware structures, such as FPGA and/or ASIC components. Otherwise, the method can also at least partially be performed using a computer program product comprising instructions for causing a processor of a computer system or server to perform a step of transmitting maintenance data sensed via a plurality of sensors located on the exterior of respective building structures, via a publicly accessible data network provided in the area, towards a server for storing and/or processing said data. The step can in principle be performed on a single processor or server. However, it is noted that at least a sub-step can be performed on a separate processor, e.g. a sub-step of receiving, at a gateway of the data network, data transmitted from a sensor. A processor can be loaded with a specific software module. Dedicated software modules can be provided, e.g. from the Internet.
It will be clear to the skilled person that the invention is not limited to the exemplary embodiment represented here. Many variations are possible. As an example, it is noted that the building structures may include a commercial or industrial building such as a house or factory or another real estate or civil asset such as an infrastructural structure, e.g. road structures.
It is noted that a sensor including a photovoltaic cell for measuring UV radiation and a sensor including a first sensing element for measuring temperature and a second sensing element for measuring electrical conductivity, in particular when implemented in an insulating plate portion as described above, can not only be applied in combination with a data acquisition system as defined in claim 1, but more generally, in a data acquisition system for acquiring maintenance data of a building structure,
wherein the sensors are arranged for forwarding sensed maintenance to a receiving device for storage and/or further processing.
Such variations shall be clear to the skilled person and are considered to fall within the scope of the invention as defined in the appended claims.

Claims (18)

ConclusiesConclusions 1. Gegevens-acquisitiesysteem voor het verkrijgen van onderhoudsgegevens van bouwconstructies in een gebied, omvattende een meervoudig aantal sensoren geplaatst aan de buitenkant van respectievelijke bouwconstructies, waarbij de sensoren zijn ingericht voor het waarnemen van onderhoudsgegevens die zijn geassocieerd met de respectievelijke bouwconstructie en waarbij de sensoren verbindbaar zijn met een openbaar toegankelijk gegevensnetwerk dat in het gebied 1s voorzien.A data acquisition system for obtaining maintenance data of building structures in an area, comprising a plurality of sensors placed on the exterior of respective building structures, the sensors being arranged to sense maintenance data associated with the respective building structure, and the sensors be connectable to a publicly accessible data network provided in the area 1s. 2. Gegevens-acquisitiesysteem volgens conclusie 1, waarbij tenminste een reeks van het meervoudig aantal sensoren is ingericht voor autonome werking.The data acquisition system of claim 1, wherein at least one array of the plurality of sensors is configured for autonomous operation. 3. Gegevens-acquisitiesysteem volgens conclusie 1 of 2, waarbij een sensor van het meervoudig aantal sensoren een zender omvat voor draadloze verzenden van de waargenomen onderhoudsgegevens naar het openbaar toegankelijke gegevensnetwerk.The data acquisition system of claim 1 or 2, wherein a sensor of the plurality of sensors comprises a transmitter for wirelessly transmitting the sensed maintenance data to the publicly accessible data network. 4. Gegevens-acquisitiesysteem volgens conclusie 1, 2 of 3, waarbij een sensor van het meervoudig aantal sensoren een sensor-element omvat voor het meten van een fysieke onderhoudsparameter en een lokale voedingseenheid voor het voeden van het sensor-element en/of de zender.A data acquisition system according to claim 1, 2 or 3, wherein a sensor of the plurality of sensors comprises a sensor element for measuring a physical maintenance parameter and a local power supply for powering the sensor element and/or the transmitter . 5. Gegevens-acquisitiesysteem volgens een van de voorgaande conclusies, waarbij de fysieke onderhoudsparameter een temperatuurparameter, een vochtigheidsgraad parameter en/of een UV- stralingsgraad parameter is.A data acquisition system according to any one of the preceding claims, wherein the physical maintenance parameter is a temperature parameter, a humidity level parameter and/or a UV radiation level parameter. 6. Gegevens-acquisitiesysteem volgens een van de voorgaande conclusies, waarbij een waarnemings-element een fotovoltaïsche cel voor het meten van UV-straling omvat.A data acquisition system according to any one of the preceding claims, wherein a sensing element comprises a photovoltaic cell for measuring UV radiation. 7. Gegevens-acquisitiesysteem volgens een van de voorgaande conclusies, waarbij een sensor een eerste waarnemings-element omvat voor het meten van temperatuur en een tweede waarnemings-element voor het meten van elektrische geleiding.A data acquisition system according to any one of the preceding claims, wherein a sensor comprises a first sensing element for measuring temperature and a second sensing element for measuring electrical conductivity. 8. Gegevens-acquisitiesysteem volgens een van de voorgaande conclusies, waarbij de sensoren zijn ingebed of bedekt door een buitenlaag van de respectievelijke bouwconstructie, of geplaatst op een voorzijde van de buitenlaag, waarbij genoemde voorzijde van een binnenkant van de bouwconstructie is afgekeerd.A data acquisition system according to any one of the preceding claims, wherein the sensors are embedded or covered by an outer layer of the respective building structure, or placed on a front side of the outer layer, said front facing away from an interior of the building structure. 9. Gegevens-acquisitiesysteem volgens een van de voorgaande conclusies, waarbij een buitenschil van de respectievelijke bouwconstructies een buitenwand en/of een dakconstructie omvat.A data acquisition system according to any one of the preceding claims, wherein an outer shell of the respective building structures comprises an outer wall and/or a roof structure. 10. Gegevens-acquisitiesysteem volgens een van de voorgaande conclusies, waarbij een sensor is geplaatst op een achterzijde van een afdeklaag of warmte-isolerende laag van de buitenlaag van de bouwconstructie, waarbij de achterzijde naar een binnenkant van de bouwconstructie 1s toegekeerd.A data acquisition system according to any one of the preceding claims, wherein a sensor is placed on a back side of a covering layer or heat insulating layer of the outer layer of the building structure, the back side facing an inside of the building structure. 11. Gegevens-acquisitiesysteem volgens conclusie 10, waarbij een referentie-sensor is geplaatst op een voorzijde van de deklaag of warmte- isolerende laag, waarbij de voorzijde van de binnenkant van de bouwconstructie is afgekeerd.A data acquisition system according to claim 10, wherein a reference sensor is placed on a front side of the cover layer or heat insulating layer, the front side facing away from the inside of the building structure. 12. Gegevens-acquisitiesysteem volgens een van de voorgaande conclusies, waarbij de buitenlaag van de bouwconstructie een meervoudig aantal warmte-isolerende platen die naast elkaar zijn opgesteld omvat, waarbij tenminste een van de warmte-isolerende platen is voorzien van een sensor-opening, en waarbij het systeem verder een isolerend plaatgedeelte omvat geplaatst in de sensor-opening van de warmte-isolerende plaat, waarbij het isolerend plaatgedeelte een geometrie en afmetingen heeft die passen bij een corresponderende geometrie en afmetingen van de isolerende plaatopening om zo, samen met de warmte-isolerende platen, een in hoofdzaak doorlopende isolerende laag te vormen, en waarbij het isolerende plaatgedeelte is voorzien, op een achterzijde daarvan, van een eerste sensor, en, op een voorzijde daarvan, van een tweede sensor, waarbij de achterzijde van het isolerende plaatgedeelte naar een binnenkant van de bouwconstructie is toegekeerd en de voorzijde van het isolerende plaatgedeelte van de binnenkant van de bouwconstructie is afgekeerd.A data acquisition system according to any one of the preceding claims, wherein the outer layer of the building structure comprises a plurality of heat-insulating plates arranged side by side, at least one of the heat-insulating plates being provided with a sensor opening, and the system further comprising an insulating plate portion disposed in the sensor opening of the heat insulating plate, the insulating plate portion having a geometry and dimensions that match a corresponding geometry and dimensions of the insulating plate opening so as to, together with the thermal insulation insulating plates, to form a substantially continuous insulating layer, and wherein the insulating plate portion is provided, on a rear side thereof, with a first sensor, and, on a front side thereof, with a second sensor, the rear side of the insulating plate portion facing an inside of the building structure faces and the front of the insulating plate part facing away from the inside of the building structure. 13. Gegevens-acquisitiesysteem volgens een van de voorgaande conclusies, waarbij het openbaar toegankelijke gegevensnetwerk een uitgestrekt gebied netwerk (wide area network) is zoals een groot bereik uitgestrekt gebied netwerk (long range wide area network).A data acquisition system according to any one of the preceding claims, wherein the publicly accessible data network is a wide area network such as a long range wide area network. 14. Gegevens-acquisitiesysteem volgens een van de voorgaande conclusies, waarbij de bouwconstructies een commercieel of industrieel gebouw of ander vastgoed omvat.A data acquisition system according to any one of the preceding claims, wherein the building structure comprises a commercial or industrial building or other real estate. 15. Isolerend plaatgedeelte voor plaatsing in een sensor-opening voorzien in een warmte-isolerende plaat van een buitenlaag van een bouwconstructie, waarbij het isolerende plaatgedeelte een geometrie en afmetingen heeft die passen bij een corresponderende geometrie en afmetingen van de isolerende plaatopening om zo, samen met de warmte- isolerende plaat en verdere naast elkaar opgestelde warmte-isolerende platen, een in hoofdzaak doorlopende isolerende laag te vormen, en waarbij het isolerende plaatgedeelte 1s voorzien, op een achterzijde daarvan, van een eerste sensor, en, op een voorzijde daarvan, van een tweede sensor, waarbij de achterzijde van het isolerende plaatgedeelte naar een binnenkant van de bouwconstructie is toegekeerd en de voorzijde van het isolerende plaatgedeelte van de binnenkant van de bouwconstructie is afgekeerd.15. Insulating plate portion for placement in a sensor opening provided in a heat insulating plate of an outer layer of a building structure, the insulating plate portion having a geometry and dimensions that match a corresponding geometry and dimensions of the insulating plate opening so as to, together forming a substantially continuous insulating layer with the heat-insulating plate and further heat-insulating plates arranged next to each other, and wherein the insulating plate portion 1 is provided, on a rear side thereof, with a first sensor, and, on a front side thereof, of a second sensor, the rear side of the insulating plate portion facing an interior of the building structure and the front side of the insulating slab portion facing away from the interior of the building structure. 16. Werkwijze om onderhoud van bouwconstructies in een gebied te faciliteren, omvattende het op afstand verkrijgen van onderhoudsgegevens via externe waarneming.16. A method of facilitating maintenance of building structures in an area, comprising remotely obtaining maintenance data via remote observation. 17. Werkwijze volgens conclusie 16, waarbij het op afstand verkrijgen van onderhoudsgegevens de stappen omvat van: - het waarnemen van onderhoudsgegevens via een meervoudig aantal sensoren geplaatst aan de buitkant van respectievelijke bouwconstructies, en - het verzenden van de waargenomen onderhoudsgegevens van het meervoudig aantal sensoren, via een openbaar toegankelijk gegevensnetwerk dat in het gebied 1s voorzien, naar een server voor het opslaan en/of verwerken van genoemde gegevens.A method according to claim 16, wherein the remote acquisition of maintenance data comprises the steps of: - sensing maintenance data via a plurality of sensors placed outside of respective building structures, and - transmitting the sensed maintenance data from the plurality of sensors , via a publicly accessible data network provided in the area 1s, to a server for storing and/or processing said data. 18. Computerprogramma product om onderhoud van bouwconstructies in een gebied te faciliteren, waarbij het computerprogramma product computer-leesbare code omvat voor om een processor tot het uitvoeren van de stappen te laten uitvoeren van: - het verzenden van onderhoudsgegevens waargenomen via een meervoudig aantal sensoren geplaatst aan de buitenkant van respectievelijke bouwconstructies, via een openbaar toegankelijk gegevensnetwerk dat in het gebied is voorzien, naar een server voor het opslaan en/of verwerken van genoemde gegevens.18. Computer program product to facilitate maintenance of building structures in an area, the computer program product comprising computer readable code for enabling a processor to perform the steps of: transmitting maintenance data sensed through a plurality of sensors placed on the outside of respective building structures, through a publicly accessible data network provided in the area, to a server for storing and/or processing said data.
NL2027553A 2021-02-12 2021-02-12 A data acquisition system for acquiring maintenance data, an insulating plate portion, a method and a computer program product NL2027553B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NL2027553A NL2027553B1 (en) 2021-02-12 2021-02-12 A data acquisition system for acquiring maintenance data, an insulating plate portion, a method and a computer program product
PCT/NL2022/050074 WO2022173304A1 (en) 2021-02-12 2022-02-14 A data acquisition system for acquiring maintenance data, an insulating plate portion, a method and a computer program product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2027553A NL2027553B1 (en) 2021-02-12 2021-02-12 A data acquisition system for acquiring maintenance data, an insulating plate portion, a method and a computer program product

Publications (2)

Publication Number Publication Date
NL2027553B1 true NL2027553B1 (en) 2022-09-13
NL2027553A NL2027553A (en) 2022-09-13

Family

ID=77227076

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2027553A NL2027553B1 (en) 2021-02-12 2021-02-12 A data acquisition system for acquiring maintenance data, an insulating plate portion, a method and a computer program product

Country Status (2)

Country Link
NL (1) NL2027553B1 (en)
WO (1) WO2022173304A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10042341B1 (en) * 2015-02-19 2018-08-07 State Farm Mutual Automobile Insurance Company Systems and methods for monitoring building health
CN108494885A (en) * 2018-05-15 2018-09-04 北京建工四建工程建设有限公司 A kind of construction of super highrise building process monitoring method and system based on LoRa
US10402652B2 (en) * 2017-06-02 2019-09-03 International Business Machines Corporation Building black box
US20190294136A1 (en) * 2016-11-11 2019-09-26 Pillar Technologies, Inc. Systems and methods for providing monitoring and response measures in connection with remote sites

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10042341B1 (en) * 2015-02-19 2018-08-07 State Farm Mutual Automobile Insurance Company Systems and methods for monitoring building health
US20190294136A1 (en) * 2016-11-11 2019-09-26 Pillar Technologies, Inc. Systems and methods for providing monitoring and response measures in connection with remote sites
US10402652B2 (en) * 2017-06-02 2019-09-03 International Business Machines Corporation Building black box
CN108494885A (en) * 2018-05-15 2018-09-04 北京建工四建工程建设有限公司 A kind of construction of super highrise building process monitoring method and system based on LoRa

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TAK BHERA RAM ET AL: "Photovoltaic and flexible deep ultraviolet wavelength detector based on novel [beta]-Ga2O3/muscovite heteroepitaxy", SCIENTIFIC REPORTS, 30 September 2020 (2020-09-30), London, pages 16098 - 16098, XP055871087, Retrieved from the Internet <URL:https://www.nature.com/articles/s41598-020-73112-1.pdf> [retrieved on 20211209], DOI: 10.1038/s41598-020-73112-1 *
YANG XUN ET AL: "Transparent ultraviolet photovoltaic cells", OPTICS LETTERS, vol. 41, no. 4, 5 February 2016 (2016-02-05), US, pages 685, XP055871054, ISSN: 0146-9592, DOI: 10.1364/OL.41.000685 *

Also Published As

Publication number Publication date
WO2022173304A1 (en) 2022-08-18
NL2027553A (en) 2022-09-13

Similar Documents

Publication Publication Date Title
US11946877B2 (en) Construction material assessment method and systems
US11454606B2 (en) Method and systems relating to construction material assessment
Taylor et al. Energy efficiency is more than skin deep: Improving construction quality control in new-build housing using thermography
US8923882B2 (en) Determining a deployment of a wireless network
Wall et al. Development and testing of a prototype straw bale house
Kurata et al. Long-term assessment of an autonomous wireless structural health monitoring system at the new Carquinez Suspension Bridge
JP5292036B2 (en) Fatigue damage monitoring device
CN104390666A (en) Device and system for monitoring cable conduit
US20210333242A1 (en) Asset integrity monitoring using cellular networks
US10505831B2 (en) Sensor network system and operational method of the same
KR20200014751A (en) Microwave Horn Antenna-Based Transducer System for CUI Inspection Without Insulation Removal
US20220034847A1 (en) Utility pole monitoring system and device
US10929934B1 (en) Roof inspection systems and methods
NL2027553B1 (en) A data acquisition system for acquiring maintenance data, an insulating plate portion, a method and a computer program product
Thiyagarajan Robust sensor technologies combined with smart predictive analytics for hostile sewer infrastructures
Larbi Youcef et al. Quantitative diagnosis of insulated building walls of restored old constructions using active infrared thermography
US20070180918A1 (en) Sensor nodes and self-organising sensor network formed therefrom
Sakuradani et al. Development of a slope disaster monitoring system for expressway operation and maintenance control
Scarpa et al. New measurement procedure for U-value assessment via heat flow meter
Brilakis Long-distance wireless networking for site office data communications
Rasmussen et al. Assessment of the performance of organic and mineral-based insulation products used in exterior walls and attics in dwellings
Parmar et al. Development of end-to-end low-cost IoT system for densely deployed PM monitoring network: an Indian case study
Grint et al. Moisture in walls before and after internal wall insulation: A long-term in-situ dataset
Matias et al. Cool Façades-Thermal Performance Assessment Using Infrared Thermography
JP2013003079A (en) Radiation dose measurement system