NL2023673B1 - Energy distribution network - Google Patents

Energy distribution network Download PDF

Info

Publication number
NL2023673B1
NL2023673B1 NL2023673A NL2023673A NL2023673B1 NL 2023673 B1 NL2023673 B1 NL 2023673B1 NL 2023673 A NL2023673 A NL 2023673A NL 2023673 A NL2023673 A NL 2023673A NL 2023673 B1 NL2023673 B1 NL 2023673B1
Authority
NL
Netherlands
Prior art keywords
gas
data
pressure sensing
gas pressure
meter
Prior art date
Application number
NL2023673A
Other languages
Dutch (nl)
Inventor
Frans Willem Vermeltfoort Bernard
Willem Johan Laurens Mans Pieter
Original Assignee
Alliander N V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alliander N V filed Critical Alliander N V
Priority to NL2023673A priority Critical patent/NL2023673B1/en
Priority to PCT/NL2020/050518 priority patent/WO2021034195A1/en
Application granted granted Critical
Publication of NL2023673B1 publication Critical patent/NL2023673B1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/30Arrangements in telecontrol or telemetry systems using a wired architecture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/40Arrangements in telecontrol or telemetry systems using a wireless architecture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/40Arrangements in telecontrol or telemetry systems using a wireless architecture
    • H04Q2209/43Arrangements in telecontrol or telemetry systems using a wireless architecture using wireless personal area networks [WPAN], e.g. 802.15, 802.15.1, 802.15.4, Bluetooth or ZigBee
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/60Arrangements in telecontrol or telemetry systems for transmitting utility meters data, i.e. transmission of data from the reader of the utility meter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/80Arrangements in the sub-station, i.e. sensing device
    • H04Q2209/82Arrangements in the sub-station, i.e. sensing device where the sensing device takes the initiative of sending data
    • H04Q2209/823Arrangements in the sub-station, i.e. sensing device where the sensing device takes the initiative of sending data where the data is sent when the measured values exceed a threshold, e.g. sending an alarm

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Measuring Volume Flow (AREA)

Abstract

Energy distribution network, including: a gas distribution structure for transporting gas to end users, wherein the end users are provided with respective gas meters configured to measure respective user gas consumption, wherein a regulator, for example a safety valve or another type of regulator, is arranged between each gas meter and the gas distribution structure, the regulator being configured to automatically regulate and/or block a gas flow through a respective gas duct; an electricity distribution network configured for transporting electricity to the end users, wherein a plurality of the end users are provided with respective electronic electricity meters configured to measure respective end user electricity consumption, wherein each electronic electricity meter is configured to transmit data concerning measured energy consumption, including measured electricity consumption, to a remote data receiver, the electronic electricity meter further including a receiver configured to receive metering data from another metering device, e.g. from a water consumption meter and/or a gas meter; and at least one gas pressure sensor located upstream of a said regulator, configured for sensing a gas pressure, in particular a gas pressure relative to atmospheric pressure, upstream of a said regulator, wherein the gas pressure sensor is configured to transmit respective pressure sensing data to a receiver.

Description

P123870NL00 Title: Energy distribution network The invention relates to the management of gas pressures in gas distribution structures, in particular using gas pressure sensors.
In general, it is known that the distribution of gas, e.g. natural gas, through gas distribution structures can benefit, e.g. in terms of reliability and/or serviceability, from using up-to-date information on the status of the distribution structure. Such status information may include gas pressure information, for example related to gas pressures at end users. At present, this information is often not available. Solutions proposed thus far have one or more disadvantages, for example disruption of end users, high costs and/or large effort.
For example, US2002/0143478 discloses a data management system for a gas transportation system comprising: a central computer adapted for creating a database; and a plurality of reporting regulators, each reporting regulator including: a throttling element for controlling a gas pressure within the gas transportation system; and a processor adapted to receive data from at least one gas transportation system sensor, for marking the received data with a unique identification number and for transmitting the data responsive to an instruction set; wherein the central computer is adapted to create a database utilizing the marks on the sensor data.
The present invention aims to address at least one of the above mentioned problems, in particular by providing a solution for obtaining up- to-date information on gas pressures at end users, in particular gas pressures in gas distribution structures near end users, which solution causes less disruption of end users, is less expensive and/or requires less effort.
Therefore, there is provided an energy distribution network characterized by the features of claim 1. The energy distribution network includes a gas distribution structure for transporting gas to end users,
wherein the end users are provided with respective gas meters configured to measure respective user gas consumption, wherein a regulator, for example a safety valve or another type of regulator, is arranged between each gas meter and the gas distribution structure, the regulator being configured to automatically regulate and/or block a gas flow through a respective gas duct.
The energy distribution network further includes an electricity distribution network configured for transporting electricity to the end users, wherein a plurality of the end users are provided with respective electronic electricity meters configured to measure respective end user electricity consumption. Each electronic electricity meter is configured to transmit data concerning measured energy consumption, including measured electricity consumption, to a remote central data receiver. The electronic electricity meter further includes a receiver configured to receive metering data from another metering device, e.g. from a water consumption meter and/or a gas meter.
At least one gas pressure sensor is included in the energy distribution network, which gas pressure sensor is located upstream of a said regulator, configured for sensing a gas pressure, in particular a gas pressure relative to atmospheric pressure, upstream of a said regulator, wherein the gas pressure sensor is configured to transmit respective pressure sensing data to a receiver.
In one aspect, the gas pressure sensor is configured to transmit respective pressure sensing data using at least one of LoRa, GPRS and LTE- M, in particular to a respective LoRa, GPRS and/or LTE-M receiver. LoRa (Long Range) is a spread spectrum modulation technique derived from chirp spread spectrum (CSS) technology, developed by Cycleo of Grenoble, France (see e.g. hitps://en wikipedia org/wikyLoRa). LTE-M is a type of low power wide area network radio technology standard developed by 3GPP (see e.g.
htpsfion wikipedia org/wik/LTE-M). In this way, gas sensor data can be transmitted e.g. via a cellular network to said remote central data receiver.
In a preferred aspect, the gas pressure sensor is configured to transmit respective pressure sensing data to the receiver of the (preferably nearby, respective) electronic electricity meter.
Thus, by exploiting an electronic electricity meter which is configured to receive metering data, (which electricity meter may already be in use at the same end user,) gas pressure data can be obtained with low disruption and low cost and effort: the functionality of an existing infrastructure including a remote data receiver can advantageously be expanded by the addition of a gas pressure sensor.
In a preferred embodiment, the gas pressure sensor is configured to transmit the pressure sensing data in the form of metering data, preferably in the form of water consumption metering data.
In that case, the electronic electricity meter can be easily configured to receive data in such a form, so that elaborate modification of the electricity meter is thus not needed, saving effort and cost and reducing disruption.
In a preferred embodiment, the pressure sensor is configured to encode the pressure sensing data, in particular to a metering data format, preferably a water consumption metering data format, for example according to the Meter-Bus (M-Bus) standard.
Such encoding can enable improved receivability of the data by the electronic electricity meter and/or the remote receiver. Also, such encoding can enable smooth processing (e.g. storage, transmission) of the data in other existing infrastructure, further reducing the need for modification of existing infrastructure.
Preferably, the pressure sensor is configured to shield at least one electronic component, for example a control unit and/or a battery unit, of the pressure sensor, from the gas (i.e. the gas that is supplied from c.q. flows through the gas distribution structure), wherein the at least one electronic component is preferably arranged in a section of the pressure sensor which, during use, is not exposed to the flow of gas.
Such a configuration can enable safe use of the pressure sensor in the network, wherein in particular a risk of ignition, e.g. by electricity, of the natural gas at the pressure sensor is reduced. In particular this can enable compliance with relevant safety regulations such as the European ATEX directives.
The pressure sensor may be configured to acquire a plurality of, for example between 1 and 10, for example 4, pressure sensing values, each at a different respective time, for example at 1-minute intervals, for example within a time period of between 1 and 10 minutes, for example 4 minutes, and to calculate an aggregate value, for example an average value, a maximum value, a minimum value and/or a difference value, of the pressure sensing values, wherein the pressure sensing data includes the aggregate value.
By thus aggregating pressure sensing values, privacy risks associated with transmission of the pressure sensing data can be reduced. In particular, the aggregation can at least partially remove privacy-sensitive gas consumption information from the pressure sensing data, substantially without compromising the above mentioned advantages.
Alternatively or additionally, such privacy risks can be reduced in other ways. As one example, pressure sensing data (and/or data derived therefrom) may be encrypted at one or more of various stages of processing, wherein such data is preferably decrypted for example at the remote central receiver. As another example, an aggregate value may be calculated from pressure sensing values originating (e.g. each) from different end users, in particular from nearby end users. To this end, for example nearby pressure sensors and/or nearby electricity meters may exchange pressure sensing values so that a representative aggregate value can be calculated substantially locally before transmission to the remote central receiver. The locally representative value can provide sufficiently reliable means for managing the gas distribution, while reducing privacy risks using local aggregation, which can essentially obscure sensitive individual (personal) 5 end user data.
The pressure sensor is preferably configured to detect a change, in particular a drop, in gas pressure, for example based on a calculated difference value, wherein the pressure sensing data includes an indication of the detected change, wherein the pressure sensing data preferably further includes an indication of a gas pressure value, for example a low value and/or a high value, associated with the change.
A change, in particular a drop, in gas pressure can be indicative of a fault, e.g. a leak, in the gas distribution network. Detecting and communicating such a fault quickly, so that for example corrective actions can be taken in a timely manner, can greatly benefit the safety of the network and/or of the end user. Also, when the pressure sensing data is for example substantially limited to such indications of change, privacy risks associated with transmission of pressure sensing data can be (further) reduced.
According to an embodiment, the energy distribution network further includes the remote central data receiver, wherein the remote central data receiver is configured to receive pressure sensing data from the at least one gas pressure sensor, preferably encoded in a metering data format, preferably in a water consumption metering data format, from each electronic electricity meter.
In this way, the pressure sensing data can be accessed via the remote data receiver, so that e.g. the gas distribution structure (in particular gas pressures therein) can be monitored remotely using the pressure sensing data.
The remote central data receiver is preferably be configured to decode the received pressure sensing data.
Such decoding can be particularly beneficial when the pressure sensing data is received in an encoded form.
The remote central data receiver is preferably configured to process, store and/or display the decoded pressure sensing data.
Such a configuration can facilitate the quality and efficiency of monitoring gas pressures in the gas distribution structure.
The present disclosure further provides a gas pressure sensor configured to operate as part of an energy distribution network, wherein the gas pressure sensor is preferably configured to be mounted or arranged upstream of a regulator and for sensing a gas pressure, in particular a gas pressure relative to atmospheric pressure, upstream of the regulator and to transmit respective pressure sensing data to a receiver of an electronic electricity meter, in particular a meter associated with the regulator, for example in proximity of the regulator.
Such a gas pressure sensor can provide above mentioned advantages.
The gas pressure sensor is preferably substantially powered by a battery unit of the gas pressure sensor.
Such a configuration can make the pressure sensor substantially self sufficient in terms of power supply, thus facilitating installation and maintenance and benefitting reliable operation of the sensor.
The present disclosure further provides a method for acquiring gas pressure sensing data related to a gas distribution structure, the method including: providing an energy distribution network, including a gas distribution structure; sensing a gas pressure upstream of a regulator to obtain gas pressure sensing data; and transmitting the gas pressure sensing data to a data receiver of an electronic electricity meter, in particular a meter associated with the regulator, for example in proximity of the regulator.
Such a method can provide above mentioned advantages.
The method preferably includes encoding the pressure sensing data, in particular to a metering data format, preferably a water consumption metering data format.
The pressure sensing data may e.g. be encoded to a Meter-Bus (M- Bus) format, wherein the pressure sensing data is transmitted according to the Meter-Bus (M-Bus) standard.
The method preferably includes transmitting the pressure sensing data to a remote central data receiver; and receiving, and preferably decoding, the pressure sensing data at the remote central data receiver.
The method preferably includes acquiring a plurality of pressure sensing values; and calculating at least one aggregate value, for example an average value, a maximum value, a minimum value and/or a difference value, of the pressure sensing values, wherein the pressure sensing data includes the aggregate value.
The method preferably includes detecting a change, in particular a drop, in gas pressure upstream of the regulator , for example based on a calculated difference value, to produce an indication of the detected change, wherein the pressure sensing data includes the indication of the detected change.
The present disclosure further provides use of an electronic electricity meter for acquiring gas pressure sensing data, for example as part of an above described method, and for transmitting the gas pressure sensing data to a remote receiver.
Such use provides above mentioned advantages. The invention will be explained further using exemplary embodiments and drawings. In the drawings:
Fig. 1 shows an energy distribution network according to an embodiment; Fig. 2 schematically shows a gas pressure sensor and an electronic electricity meter according to an embodiment; Fig. 3 shows a gas pressure sensor according to a further embodiment; Fig. 4 shows a flow chart associated with an exemplary method.
The drawings are schematic.
Similar or corresponding elements have been provided with similar or corresponding reference signs.
Fig. 1 shows an energy distribution network, including a gas distribution structure G for transporting gas to a plurality of end users U, U’, U” (only three being shown). The gas distribution network G is known per se, and can include various gas distribution lines, gas sources Sg (one being shown), gas transfer stations and the-like as will be appreciated by the skilled person (see also e.g.
US2002/0143478) . The end users U, U’, U” can each include one or more local gas lines 7 to feed gas to respective end user appliances (e.g. for locally heating tap water, central heating and/or cooking). Each end user U, UI’, U” is provided with a respective gas meter 1 configured to measure respective user gas consumption.
A local end user regulator 3 is arranged between each gas meter 1 and the gas distribution structure G, the regulator 3 bemg configured to automatically regulate and/or block a gas flow f through a respective gas duct 2. Normally, the gas meter 1 and respective regulator 3 are located in a closed cabinet, chamber or meter closet that is located at/in the end users location.
Various types of regulators 3 can be installed, e.g. a regulator 3 that is configured for reducing gas pressure to a predetermined end user pressure (such as about 30 mbar), and/or a safety regulator 3 (for example an under pressure shut off (UPSO) device, NL.: “gasgebrekklep”) performing automatic gas flow shut-off in case of a pressure drop upstream of the regulator.
In a further embodiment, the functions of reducing gas pressure to a predetermined end user pressure and automatic shut-off in case of a pressure drop upstream of the regulator can be combined in a single regulator 3.
Gas flow directions are indicated by arrows f, the gas flow being directed towards respective gas meters 1 of the end users U, U, U” (preferably extending through and beyond the gas meters 1 during end user gas consumption). The gas source Sg may be configured to supply gas to the end users U, U’, U” through the gas distribution structure G; the gas source Gs may include e.g. a gas production facility, a gas reservoir, pumping means, gas treatment means, gas quality inspection means etc., as will be appreciated by the skilled person.
Fig. 1 further shows the energy distribution network as including an electricity distribution network N configured for transporting electricity to local electricity lines 8 of the end users U, U’, U”. The end users U are provided with respective electronic electricity meters 12 (known per se) configured to measure respective end user electricity consumption. Each electronic electricity meter 12 is configured to transmit data concerning measured energy consumption, including measured electricity consumption, to a central remote data receiver C. The central remote data receiver can include e.g. a computer or computer system, network server, and/or data processing unit, e.g. configured for receiving, processing and storing data.
In the present example, the electronic electricity meter 12 further includes a receiver 13 (see Fig. 2) configured to receive metering data from another metering device, e.g. from a water consumption meter and/or a gas meter 1.
The electricity distribution network N usually includes numerous electricity sources Se (one being shown), e.g. power stations, configured to supply electricity to the end users U, U’, U” through the electricity distribution network N, the network including a electricity transmission line network. The network N usually includes high voltage sections,
medium voltage sections and low voltage sections, transformation stations, and-the like, wherein the electricity is fed to the end users at low voltage (e.g. a voltage lower than 1000 V, in particular about 110 V or about 230 V). The respective end user electronic electricity meter 12 can be located e.g.
near a said end user gas meter 1 associated with the same end user, for example in the same part, cabinet or chamber, but that 1s not required.
Arrows n show a transmission of data from respective electronic electricity meters 12 to a remote data receiver C. Such a transmission 1s preferably a substantially wireless transmission, e.g. using a cellular phone wireless infrastructure, Wi-Fi, Bluetooth, or the-like. Alternatively, the transmission may be a substantially wired transmission, for example via data transmission over the electricity distribution network N or over a electronic communication network such as an ADSL network, coaxial cable network or glass fiber network.
Fig. 1 further shows the energy distribution network as including at least one gas pressure sensor 30 located upstream of a said regulator 3, configured for sensing a gas pressure, in particular a gas pressure relative to atmospheric pressure, upstream of a said regulator 3. In this example, the gas pressure sensor 30 is configured to transmit respective pressure sensing data to the receiver 13 of a said electronic electricity meter 12.
Arrows m show a transmission of pressure sensing data from the gas pressure sensor 30 to a respective electronic electricity meter 12, in particular to a receiver 13 (see Fig. 2) of said electronic electricity meter 12.
Thus, by exploiting an electronic electricity meter 12 which is configured to receive metering data, (which electricity meter 12 may already be in use at the end user U, U’, U”) gas pressure data can be obtained with low disruption and low cost and effort: the functionality of an existing infrastructure including a central remote data receiver C can advantageously be expanded by the addition of a gas pressure sensor 30.
In an alternative embodiment (not depicted), the gas pressure sensor 30 can be configured to transmit the data via a different route, e.g. in case the sensor is configured to transmit respective pressure sensing data using LoRa, in particular to a LoRa receiver that is associated with (or part of) the central remote receiver C.
The gas pressure sensor 30 may be installed at the end user using known methods of assembly of gas distribution structures.
In particular, the gas pressure sensor 30 may be configured to form a connection, e.g. matingly, with a connector, e.g. a standard connector, of a gas distribution structure at the end user U.
The sensor 30 and connector may be provided with respective threading to enable the formation of a secure, in particular a substantially gas tight, connection between the sensor 30 and the connector.
As will be appreciated by the skilled person, a gas tight tape can be arranged between sensor 30 and connector for providing a substantially gas tight connection.
Alternatively, for example, the sensor 30 and/or the connector may be provided with one or more (e.g. respective) clamping and/or sealing elements (e.g. including gaskets and/or rings). Such configurations for gastight connections can be made in various ways and are as such known in the art.
Preferably, in order to limit or prevent e.g.
Venturi effects from adversely affecting the gas pressure sensing, the gas distribution structure G (in particular at the end user) and the gas pressure sensor 30 are configured such that the gas pressure sensor is substantially spaced away from a main gas flow f, while maintaining a gas pressure connection with said main gas flow.
For example, the gas pressure sensor 30 can be gas- connected to (in gas communication with) the main gas flow f via a T-piece connection.
It will be appreciated that such adverse effects, e.g.
Venturi effects, can be limited or prevented in various ways.
Arrow k in Fig. 1 shows that, optionally, a control signal may be transmitted from the remote data receiver C to the gas source Sg.
For example, in response to receiving a detection of a change in gas pressure at end users U, such a control signal k may cause a change in the gas source Sg so as to counteract the detected change in gas pressure. It will be appreciated by the skilled person that various systems and methods can be used to manage, e.g. control, gas pressures and/or flows in a distribution structure in response to received information on gas pressures. Alternatively or additionally to changes at the gas source Sg, changes at the gas distribution structure G and/or at end users U, U’, U” may be employed, either automatically or manually, to manage gas pressures and/or flows.
In an embodiment, the gas pressure sensor 30 is configured to transmit the pressure sensing data in the form of a particular type of data, in particular in the form of metering data, preferably in the form of water consumption metering data.
In particular during an installation of the gas pressure sensor 30 at an end user, the installed electronic electricity meter 12 is preferably already configured to receive data in such a form (else, the installed meter can be modified or replaced with a meter that is suitable to receive the data), saving effort and cost and reducing disruption.
In an embodiment, the pressure sensor 30 is further configured to encode the pressure sensing data, in particular to a metering data format, preferably a water consumption metering data format, for example according to the Meter-Bus M-Bus standard (see https://en wikipedia.org/wiki/Meter-Bus, EN 13757-2 physical and link layer, EN 13757-3 application layer). Such encoding can enable improved receivability of the data by the electronic electricity meter 12 and/or the remote receiver C. Also, such encoding can enable smooth processing (e.g. storage, transmission) of the data in other existing infrastructure, further reducing the need for modification of existing infrastructure.
The encoding may be realized, for example, through a look-up table which provides a corresponding code for every possible pressure sensing data value. The code may have a metering data format. Preferably the look- up table is configured such that exactly one unique code is provided for each possible unique pressure sensing data value. Alternatively, a conversion algorithm or formula can be used to map the possible pressure sensing data values to corresponding codes using a mathematical operation, wherein the mapping is preferably reversible, in particular for decoding purposes.
In an embodiment, with reference to Fig. 3, the pressure sensor 30 is further configured to substantially shield or block a flow of flammable material, in particular gas from the gas distribution structure, to at least one electronic component 31, for example a control unit and/or a battery unit, of the pressure sensor, wherein the at least one electronic component 31 is preferably arranged in a section of the pressure sensor 30 which, during use, is not exposed to the flow f of gas.
Such a configuration can enable safe use of the pressure sensor 30 in the network, wherein in particular a risk of ignition, e.g. by electricity, of the natural gas at the pressure sensor 30 is reduced.
In an embodiment, the pressure sensor 30 is configured to acquire a plurality of, for example between 1 and 10, for example 4, pressure sensing values, each at a different respective time, for example at 1-minute intervals, for example within a time period of between 1 and 10 minutes, for example 4 minutes, and to calculate an aggregate value, for example an average value, a maximum value, a minimum value and/or a difference value, of the pressure sensing values, wherein the pressure sensing data includes the aggregate value.
By thus aggregating pressure sensing values, privacy risks associated with transmission of the pressure sensing data can be reduced.
In particular, the aggregation can at least partially remove privacy-sensitive gas consumption information from the pressure sensing data, substantially without compromising the above mentioned advantages.
In an embodiment, the pressure sensor 30 is configured to detect a change, in particular a drop, in gas pressure, for example based on a calculated difference value, wherein the pressure sensing data includes an indication of the detected change, wherein the pressure sensing data preferably further includes an indication of a gas pressure value, for example a low value and/or a high value, associated with the change.
A change, in particular a drop, in gas pressure can be indicative of a fault, e.g. a leak, in the gas distribution network G. Detecting and communicating such a fault quickly, so that for example corrective actions can be taken in a timely manner, can greatly benefit the safety of the gas distribution structure G and/or of the end user U, U’, U”.
In an embodiment, with further reference to Fig. 1, the energy distribution network further includes the remote data receiver C, wherein the remote data receiver C is configured to receive pressure sensing data from the at least one gas pressure sensor 30, preferably encoded in a metering data format, preferably in a water consumption metering data format, from each electronic electricity meter 12.
In this way, the pressure sensing data can be accessed via the remote data receiver C, so that e.g. the gas distribution structure G (in particular gas pressures therein) can be monitored remotely using the pressure sensing data.
In an embodiment, the remote data receiver C is configured to decode the received pressure sensing data.
Such decoding can be particularly beneficial when the pressure sensing data is received in an encoded form.
The decoding can be realized through various means as will be appreciated, depending on the nature of the respective encoding operation. For example, a reverse look-up table and/or a reverse mapping algorithm can be used.
In an embodiment, the remote data receiver C is configured to process, store and/or display the decoded pressure sensing data. Such a configuration can facilitate the quality and efficiency of monitoring gas pressures in the gas distribution structure.
The gas pressure sensor 30 preferably includes a battery unit 31 for powering the sensor. Such a configuration can make the pressure sensor substantially self sufficient in terms of power supply, thus facilitating installation and maintenance and benefitting reliable operation of the Sensor.
Fig. 4 shows a flow chart associated with an exemplary method for acquiring gas pressure sensing data related to a gas distribution structure G. The method includes the steps: providing 50 an energy distribution network including a gas distribution structure G; sensing 51 a gas pressure upstream of a regulator 3 to obtain gas pressure sensing data; and transmitting m the gas pressure sensing data to a receiver 13 of an electronic electricity meter 12, in particular a meter 12 associated with the regulator 3, for example located in proximity of the regulator 3.
Such a method can provide above mentioned advantages. In an embodiment, the method includes encoding 55 the pressure sensing data, in particular to a metering data format, preferably a water consumption metering data format.
In an embodiment, the pressure sensing data is encoded to a Meter-Bus M-Bus format, wherein the pressure sensing data is transmitted according to the Meter-Bus M-Bus standard.
In an embodiment, the method includes: transmitting n the pressure sensing data to a remote data receiver C; and receiving 58, and preferably decoding 59, the pressure sensing data at the remote data receiver C.
In an embodiment, the method includes: acquiring 52 a plurality of pressure sensing values; and calculating 53 an aggregate value, for example an average value, a maximum value, a minimum value and/or a difference value, of the pressure sensing values, wherein the pressure sensing data includes the aggregate value.
Acquiring 52 a plurality of pressure sensing values preferably includes repeatedly sensing 51 a gas pressure.
In an embodiment, the method includes detecting 54 a change, in particular a drop, in gas pressure upstream of the regulator 3, for example based on a calculated difference value, to produce an indication of the detected change, wherein the pressure sensing data includes the indication of the detected change.
Thus, an efficient and reliable system and method can be obtained for monitoring a status of the gas distribution network.
While the invention has been explained using exemplary embodiments and drawings, it will be appreciated that variations and combinations of these may be advantageously carried out.
For example, the energy distribution network may be configured to maintain a gas pressure at end users at various normative pressures, e.g. 30 mbar or 100 mbar. The regulator may or may not be configured to block a gas flow and may or may not be configured to regulate a gas flow. While Fig.
1 shows three end users U, the energy distribution network may include any number of end users. In some embodiments, the electronic electricity meter may be especially adapted, e.g. modified or configured, to receive the pressure sensing data. The electronic electricity meter may be configured to receive water consumption data and/or data from a water consumption meter in addition to, possibly in substantially at the same time as, receiving the pressure sensing data.
Instead of water metering data, the gas pressure data may be transmitted and/or encoded in the form of gas metering data, heat metering data, internet connection metering data, telephone metering data and/or electricity metering data, for example. Metering data may directly or indirectly relate to consumption of such utilities at an end user and/or to other potentially time-varying aspects of providing the utilities at the end user, for example data related to quality and/or safety. The electronic electricity meter may be configured to receive data in such a form and/or from such a type of meter.
Also, for example, the gas pressure sensor (30) and regulator (3) can be separate devices, having e.g. separate housings. Alternatively, the pressure sensor (30) can be integrated in or with a regulator (3), for example in a ‘combined’ sensor-regulator housing. In the latter case, the sensor is still arranged such that it senses gas pressure upstream of a gas regulation point or section in a gas flow path wherein the respective regulator regulates gas flow (e.g. via a valve or the-like).
Such variations and combinations are included in the scope of the invention, which scope is provided by the claims.

Claims (17)

ConclusiesConclusions 1. Energiedistributienetwerk omvattende: - een gasdistributiestructuur (G) voor het transporteren van gas naar eindgebruikers (U), waarbij de eindgebruikers zijn voorzien van respectieve gasmeters (1) die zijn ingericht om respectief gebruikersgasverbruik te meten, waarbij een regelaar (3), bijvoorbeeld een veiligheidsklep of een ander type regelaar, is opgesteld tussen elke gasmeter (1) en de gasdistributiestructuur (G), waarbij de regelaar (3) is ingericht om automatisch een gasstroom door een respectieve gasleiding (2) te regelen en/of te blokkeren; - een elektriciteitsdistributienetwerk (N) ingericht voor het transporteren van elektriciteit naar de eindgebruikers (U), waarbij een meervoudig aantal van de eindgebruikers (U) 1s voorzien van respectieve elektronische elektriciteitsmeters (12) die zijn ingericht om respectief eindgebruikerselektriciteitsverbruik te meten, waarbij elke elektronische elektriciteitsmeter (12) is ingericht om gegevens betreffende gemeten energieverbruik, waaronder gemeten elektriciteitsverbruik, te zenden naar een zich op afstand bevindende gegevensontvanger (C), waarbij de elektronische elektriciteitsmeter (12) verder een ontvanger (13) omvat die 1s ingericht om meetgegevens te ontvangen van een andere meetinrichting, b.v. van een waterverbruikmeter en/of een gasmeter (1); en - ten minste één gasdruksensor (30) stroomopwaarts van een genoemde regelaar (3) gelegen, ingericht voor het voelen van een gasdruk, in het bijzonder een gasdruk ten opzichte van atmosferische druk, stroomopwaarts van een genoemde regelaar (3), waarbij de gasdruksensor (30) is ingericht om respectieve drukvoelgegevens naar een ontvanger te zenden.An energy distribution network comprising: - a gas distribution structure (G) for transporting gas to end users (U), the end users being provided with respective gas meters (1) arranged to measure respective user gas consumption, wherein a controller (3), for example a safety valve, or other type of regulator, is arranged between each gas meter (1) and the gas distribution structure (G), the regulator (3) being arranged to automatically regulate and / or block a gas flow through a respective gas line (2); - an electricity distribution network (N) arranged for transporting electricity to the end users (U), wherein a plurality of the end users (U) 1s provide respective electronic electricity meters (12) arranged to measure respective end user electricity consumption, each electronic electricity meter (12) is arranged to transmit measured energy consumption data, including measured electricity consumption, to a remote data receiver (C), the electronic electricity meter (12) further comprising a receiver (13) arranged to receive measurement data from another metering device, e.g. of a water consumption meter and / or a gas meter (1); and - at least one gas pressure sensor (30) located upstream of said regulator (3), adapted to sense a gas pressure, in particular a gas pressure relative to atmospheric pressure, upstream of said regulator (3), the gas pressure sensor (30) is arranged to send respective pressure sensing data to a receiver. 2. Energiedistributienetwerk volgens conclusie 1, waarbij de gasdruksensor (30) is ingericht om respectieve drukvoelgegevens te zenden met gebruik van ten minste één van LoRa, GPRS en LTE-M, in het bijzonder naar een respectieve LoRa-, GPRS- en/of LTE-M-ontvanger.Energy distribution network according to claim 1, wherein the gas pressure sensor (30) is arranged to send respective pressure sensing data using at least one of LoRa, GPRS and LTE-M, in particular to a respective LoRa, GPRS and / or LTE -M receiver. 3. Energiedistributienetwerk volgens één van de voorgaande conclusies, waarbij de gasdruksensor (30) is ingericht om respectieve drukvoelgegevens naar de ontvanger (13) van een genoemde elektronische elektriciteitsmeter te zenden.Energy distribution network according to any of the preceding claims, wherein the gas pressure sensor (30) is arranged to send respective pressure sensing data to the receiver (13) of said electronic electricity meter. 4. Energiedistributienetwerk volgens conclusie 3, waarbij de gasdruksensor (30) is ingericht om de drukvoelgegevens in de vorm van meetgegevens te zenden, bij voorkeur in de vorm van waterverbruikmeetgegevens.Energy distribution network according to claim 3, wherein the gas pressure sensor (30) is arranged to transmit the pressure sensing data in the form of measurement data, preferably in the form of water consumption measurement data. 5. Energiedistributienetwerk volgens één van de voorgaande conclusies, waarbij de druksensor (30) verder is ingericht om de drukvoelgegevens te coderen, in het bijzonder naar een meetgegevensformaat, bij voorkeur een waterverbruikmeetgegevensformaat, bijvoorbeeld volgens de Meter-Bus (M- Bus) standaard.Energy distribution network according to one of the preceding claims, wherein the pressure sensor (30) is further arranged to code the pressure sensing data, in particular to a measurement data format, preferably a water consumption measurement data format, for example according to the Meter-Bus (M-Bus) standard. 6. Energiedistributienetwerk volgens één van de voorgaande conclusies, waarbij de druksensor (30) verder is ingericht om ten minste één elektronisch onderdeel (31), bijvoorbeeld een besturingseenheid en/of een batterij-eenheid, van de druksensor, in hoofdzaak af te schermen tegen het gas van de gasdistributiestructuur, waarbij het ten minste ene elektronische onderdeel bij voorkeur is opgesteld in een gedeelte van de druksensor dat tijdens gebruik niet is blootgesteld aan de stroom van gas.Energy distribution network according to one of the preceding claims, wherein the pressure sensor (30) is further arranged to substantially shield at least one electronic part (31), for example a control unit and / or a battery unit, from the pressure sensor. the gas of the gas distribution structure, wherein the at least one electronic part is preferably disposed in a portion of the pressure sensor that is not exposed to the flow of gas during use. 7. Energiedistributienetwerk volgens één van de voorgaande conclusies, waarbij de druksensor (30) is ingericht om een meervoudig aantal, bijvoorbeeld tussen 1 en 10, bijvoorbeeld 4, drukvoelwaardes te verwerven, elk op een andere respectieve tijd, bijvoorbeeld op 1- minuutsintervallen, bijvoorbeeld binnen een tijdsperiode van tussen 1 en 10 minuten, bijvoorbeeld 4 minuten, en om een verzamelwaarde, bijvoorbeeld een gemiddelde waarde, een maximumwaarde, een minimum waarde en/of een verschilwaarde, van de drukvoelwaardes te berekenen, waarbij de drukvoelgegevens de verzamelwaarde omvatten.Energy distribution network according to any one of the preceding claims, wherein the pressure sensor (30) is arranged to acquire a plurality of, for example between 1 and 10, for example 4, pressure sensing values, each at a different respective time, for example at 1 minute intervals, for example within a time period of between 1 and 10 minutes, for example 4 minutes, and to calculate a collection value, for example an average value, a maximum value, a minimum value and / or a difference value, of the pressure sense values, the pressure sense data comprising the collection value. 8. Energiedistributienetwerk volgens één van de voorgaande conclusies, waarbij de druksensor (30) is mgericht om een verandering, in het bijzonder een daling, in gasdruk te detecteren, bijvoorbeeld op basis van een berekende verschilwaarde, waarbij de drukvoelgegevens een aanwijzing van de gedetecteerde verandering omvatten, waarbij de drukvoelgegevens bij voorkeur verder een aanwijzing van een gasdrukwaarde, bijvoorbeeld een lage waarde en/of een hoge waarde, omvatten die verband houdt met de verandering.Energy distribution network according to any one of the preceding claims, wherein the pressure sensor (30) is adapted to detect a change, in particular a drop, in gas pressure, for example on the basis of a calculated difference value, the pressure sensing data being an indication of the detected change. wherein the pressure sensing data preferably further includes an indication of a gas pressure value, e.g., a low value and / or a high value, associated with the change. 9. Energiedistributienetwerk volgens één van de voorgaande conclusies, waarbij het netwerk verder omvat: - de zich op afstand bevindende gegevensontvanger (C), waarbij de zich op afstand bevindende gegevensontvanger (C) is ingericht om drukvoelgegevens van de ten minste ene gasdruksensor (30), bijvoorbeeld gecodeerd in een meetgegevensformaat, bij voorkeur in een waterverbruikmeetgegevensformaat, te ontvangen van elke elektronische elektriciteitsmeter (12), waarbij de zich op afstand bevindende gegevensontvanger (C) bij voorkeur is ingericht om de ontvangen drukvoelgegevens te decoderen, waarbij de zich op afstand bevindende gegevensontvanger (C) bij voorkeur is ingericht om de gedecodeerde drukvoelgegevens te verwerken, op te slaan en/of weer te geven.The energy distribution network according to any of the preceding claims, wherein the network further comprises: - the remote data receiver (C), the remote data receiver (C) being arranged to transmit pressure sensing data from the at least one gas pressure sensor (30). encoded in a measurement data format, preferably in a water consumption measurement data format, to be received from any electronic electricity meter (12), the remote data receiver (C) preferably being arranged to decode the received pressure sensing data, the remote data receiver (C) is preferably arranged to process, store and / or display the decoded pressure sensing data. 10. Gasdruksensor (30) ingericht om te werken als deel van een energiedistributienetwerk volgens één van de voorgaande conclusies, waarbij de gasdruksensor (30) bij voorkeur is ingericht om stroomopwaarts van een regelaar (3) te worden bevestigd of opgesteld en om een gasdruk, in het bijzonder een gasdruk ten opzichte van atmosferische druk, stroomopwaarts van de regelaar (3) te voelen en om respectieve drukvoelgegevens te zenden naar een ontvanger (13), b.v. van een elektronische elektriciteitsmeter (12), 1n het bijzonder een meter (12) die is geassocieerd met de regelaar (3), bijvoorbeeld een nabij de regelaar (3) gelegen meter (12), waarbij de gasdruksensor (30) bij voorkeur in hoofdzaak wordt gevoed door een batterijeenheid (31) van de gasdruksensor (30).Gas pressure sensor (30) arranged to operate as part of an energy distribution network according to any one of the preceding claims, wherein the gas pressure sensor (30) is preferably arranged to be mounted or arranged upstream of a regulator (3) and to detect a gas pressure, in particular to sense a gas pressure against atmospheric pressure upstream of the regulator (3) and to send respective pressure sense data to a receiver (13), e.g. of an electronic electricity meter (12), in particular a meter (12) associated with the regulator (3), for example a meter (12) located near the regulator (3), the gas pressure sensor (30) preferably being substantially is powered by a battery unit (31) from the gas pressure sensor (30). 11. Werkwijze voor het verwerven van gasdrukvoelgegevens gerelateerd aan een gasdistributiestructuur (G), de werkwijze omvattende: - het verschaffen (50) van een energiedistributienetwerk, bijvoorbeeld volgens één van de conclusies 1-9, omvattende een gasdistributiestructuur (G); - het voelen (51) van een gasdruk stroomopwaarts van een regelaar (3) om gasdrukvoelgegevens te verkrijgen; en - het zenden (m) van de gasdrukvoelgegevens naar een ontvanger (13), bijvoorbeeld naar een ontvanger van een elektronische elektriciteitsmeter (12), in het bijzonder een meter (12) die is geassocieerd met de regelaar (3), bijvoorbeeld een nabij de regelaar (3) gelegen meter, en/of naar ten minste één van een LoRa-, GPRS- en/of LTE-M-ontvanger.Method for acquiring gas pressure sensing data related to a gas distribution structure (G), the method comprising: - providing (50) an energy distribution network, for example according to any one of claims 1-9, comprising a gas distribution structure (G); - sensing (51) a gas pressure upstream of a regulator (3) to obtain gas pressure sensing data; and - transmitting (m) the gas pressure sensing data to a receiver (13), for example to a receiver of an electronic electricity meter (12), in particular a meter (12) associated with the controller (3), for example a nearby meter located at the controller (3), and / or to at least one of a LoRa, GPRS and / or LTE-M receiver. 12. Werkwijze voor het verwerven van gasdrukvoelgegevens volgens conclusie 11, de werkwijze verder omvattende: - het coderen (55) van de drukvoelgegevens, in het bijzonder naar een meetgegevensformaat, bij voorkeur een waterverbruikmeetgegevensformaat.Method for acquiring gas pressure sensing data according to claim 11, the method further comprising: - coding (55) the pressure sensing data, in particular into a measurement data format, preferably a water consumption measurement data format. 13. Werkwijze voor het verwerven van gasdrukvoelgegevens volgens conclusie 12, waarbij de drukvoelgegevens worden gecodeerd naar een Meter-Bus (M-Bus) formaat, waarbij de drukvoelgegevens worden gezonden volgens de Meter-Bus (M-Bus) standaard.The method of acquiring gas pressure sense data according to claim 12, wherein the pressure sense data is coded to a Meter-Bus (M-Bus) format, the pressure sense data being sent according to the Meter-Bus (M-Bus) standard. 14. Werkwijze voor het verwerven van gasdrukvoelgegevens volgens één van de conclusies 11-13, de werkwijze verder omvattende: - het zenden (n) van de drukvoelgegevens naar een zich op afstand bevindende gegevensontvanger (C); en - het ontvangen (58), en bij voorkeur decoderen (59), van de drukvoelgegevens bij de zich op afstand bevindende gegevensontvanger (C).A method for acquiring gas pressure sensing data according to any one of claims 11-13, the method further comprising: - sending (n) the pressure sensing data to a remote data receiver (C); and - receiving (58), and preferably decoding (59), the pressure sensing data at the remote data receiver (C). 15. Werkwijze voor het verwerven van gasdrukvoelgegevens volgens één van de conclusies 11-14, waarbij de werkwijze verder omvat: - het verwerven (52) van een meervoudig aantal drukvoelwaardes; enThe method of acquiring gas pressure sensing data according to any of claims 11-14, the method further comprising: - acquiring (52) a plurality of pressure sensing values; and - het berekenen (53) van een verzamelwaarde, bijvoorbeeld een gemiddelde waarde, een maximumwaarde, een minimumwaarde en/of een verschilwaarde, van de drukvoelwaardes, waarbij de drukvoelgegevens de verzamelwaarde omvatten.- calculating (53) a collection value, for example an average value, a maximum value, a minimum value and / or a difference value, of the pressure sense values, the pressure sense data comprising the collection value. 16. Werkwijze voor het verwerven van gasdrukvoelgegevens volgens één van de conclusies 11-15, waarbij de werkwijze verder omvat: - het detecteren (54) van een verandering, in het bijzonder een daling, in gasdruk stroomopwaarts van de regelaar (3), bijvoorbeeld op basis van een berekende verschilwaarde, om een indicatie van de gedetecteerde verandering te produceren, waarbij de drukvoelgegevens de indicatie van de gedetecteerde verandering omvatten.A method for acquiring gas pressure sensing data according to any one of claims 11-15, the method further comprising: - detecting (54) a change, in particular a drop, in gas pressure upstream of the regulator (3), for example based on a calculated difference value, to produce an indication of the detected change, the pressure sensing data including the indication of the detected change. 17. Gebruik van een elektronische elektriciteitsmeter (12) voor het verwerven van gasdrukvoelgegevens, bijvoorbeeld als deel van een werkwijze volgens één van de conclusies 11-16, en voor het zenden van gasdrukvoelgegevens naar een zich op afstand bevindende gegevensontvanger (C).Use of an electronic electricity meter (12) for acquiring gas pressure sensing data, for example as part of a method according to any one of claims 11-16, and for sending gas pressure sensing data to a remote data receiver (C).
NL2023673A 2019-08-20 2019-08-20 Energy distribution network NL2023673B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NL2023673A NL2023673B1 (en) 2019-08-20 2019-08-20 Energy distribution network
PCT/NL2020/050518 WO2021034195A1 (en) 2019-08-20 2020-08-20 Energy distribution network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2023673A NL2023673B1 (en) 2019-08-20 2019-08-20 Energy distribution network

Publications (1)

Publication Number Publication Date
NL2023673B1 true NL2023673B1 (en) 2021-04-21

Family

ID=69173349

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2023673A NL2023673B1 (en) 2019-08-20 2019-08-20 Energy distribution network

Country Status (2)

Country Link
NL (1) NL2023673B1 (en)
WO (1) WO2021034195A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020143478A1 (en) 2001-02-02 2002-10-03 Vanderah Richard Joseph Reporting regulator for managing a gas transportation system
US20110308638A1 (en) * 2010-06-16 2011-12-22 Mueller International, Llc Infrastructure monitoring devices, systems, and methods
US20150006096A1 (en) * 2013-06-27 2015-01-01 Infineon Technologies Ag System and Method for Estimating a Periodic Signal
US20170241822A1 (en) * 2016-02-24 2017-08-24 Wai Tung Ivan Wong Utility mass flow gas meter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020143478A1 (en) 2001-02-02 2002-10-03 Vanderah Richard Joseph Reporting regulator for managing a gas transportation system
US20110308638A1 (en) * 2010-06-16 2011-12-22 Mueller International, Llc Infrastructure monitoring devices, systems, and methods
US20150006096A1 (en) * 2013-06-27 2015-01-01 Infineon Technologies Ag System and Method for Estimating a Periodic Signal
US20170241822A1 (en) * 2016-02-24 2017-08-24 Wai Tung Ivan Wong Utility mass flow gas meter

Also Published As

Publication number Publication date
WO2021034195A1 (en) 2021-02-25

Similar Documents

Publication Publication Date Title
CN115796408B (en) Gas conveying loss prediction method for intelligent gas and Internet of things system
US11408616B2 (en) Water heaters with real-time hot water supply determination
KR101081486B1 (en) Display device and method for monitoring of energy usage and carbon emissions
MXPA03006910A (en) Reporting regulator for managing a gas transportation system.
US10895387B2 (en) Hybrid heat pump water heaters
AU2012241115A1 (en) Remote water quality monitoring
US20110125432A1 (en) Remote monitoring of device operation by tracking its power consumption
US20150338238A1 (en) Electrical device installation improvement
CA2715934A1 (en) Utility meter with flow rate sensitivity shut off
CN112119266B (en) Water heater, controller for water heater and non-transitory computer readable medium
KR20190026305A (en) Home automation automatic meter reading wall-pad and home automation automatic meter reading and advabced metering infrastructure system including the same
KR100495537B1 (en) System for monitoring the gas pipe in remote
NL2023673B1 (en) Energy distribution network
KR101708762B1 (en) Power monitoring system and power monitoring device
KR101068369B1 (en) Gas-pressure detecting system and the method
KR101839305B1 (en) Measuring system for odor having real-time reference value
CN212433929U (en) Gas leakage alarm system
JP2014112989A (en) Power metering information relay device, method for determining relay device installation location, and method for power metering information communication
CN112071029A (en) Gas leakage alarm system and method
KR100548511B1 (en) System for telemetering wireless having water leakage cutoff and method same
US11092335B2 (en) Ignition control systems for fuel-fired devices
JP2002108987A (en) Gas supply information managing system, operating method for gas supply system and gas supply system
CN112032566A (en) Gas use monitoring system and method
KR101728438B1 (en) Communication system for a temperature-pressure compensation device
KR101884097B1 (en) Heating and cooling system using geothermal

Legal Events

Date Code Title Description
MM Lapsed because of non-payment of the annual fee

Effective date: 20220901