NL2009996C2 - Method for producing tuneable narrow-bandwidth light pulses from a source of short light pulses. - Google Patents

Method for producing tuneable narrow-bandwidth light pulses from a source of short light pulses. Download PDF

Info

Publication number
NL2009996C2
NL2009996C2 NL2009996A NL2009996A NL2009996C2 NL 2009996 C2 NL2009996 C2 NL 2009996C2 NL 2009996 A NL2009996 A NL 2009996A NL 2009996 A NL2009996 A NL 2009996A NL 2009996 C2 NL2009996 C2 NL 2009996C2
Authority
NL
Netherlands
Prior art keywords
light pulses
mirror
diffraction grating
supercontinuous
bundle
Prior art date
Application number
NL2009996A
Other languages
Dutch (nl)
Polish (pl)
Other versions
NL2009996A (en
Inventor
Michal Nejbauer
Yuriy Stepanenko
Czeslaw Radzewicz
Pawel Wnuk
Piotr Skibinski
Bartlomiej Bialkowski
Original Assignee
Inst Chemii Fizycznej Polskiej Akademii Nauk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inst Chemii Fizycznej Polskiej Akademii Nauk filed Critical Inst Chemii Fizycznej Polskiej Akademii Nauk
Publication of NL2009996A publication Critical patent/NL2009996A/en
Application granted granted Critical
Publication of NL2009996C2 publication Critical patent/NL2009996C2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0057Temporal shaping, e.g. pulse compression, frequency chirping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0092Nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3542Multipass arrangements, i.e. arrangements to make light pass multiple times through the same element, e.g. using an enhancement cavity
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves
    • G02F1/392Parametric amplification

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)

Abstract

Przedmiotem wynalazku jest sposób uzyskiwania strojonych waskopasmowych impulsów swiatla ze zródla krótkich impulsów swiatla, w którym impuls uzyskany ze wspomnianego zródla krótkich impulsów swiatla dzieli sie na dwie czesci, jedna z tych czesci przepuszcza sie przez uklad (a) generujacy wiazke pompujaca, zas druga z tych czesci przepuszcza sie przez uklad (b) generujacy wiazke supercontinuum, charakteryzujacy sie tym, ze wiazke otrzymana we wspomnianym ukladzie (b) generujacym wiazke supercontinuum przepuszcza sie przez uklad (c) do rozciagania impulsów w czasie, a nastepnie - w optycznym wzmacniaczu parametrycznym (d) - dokonuje sie optycznego wzmocnienia parametrycznego impulsów swiatla bialego uzyskanych w ukladzie (c) za pomoca wiazki pompujacej uzyskanej w ukladzie (a).The subject of the invention is a method of obtaining tuned narrowband light pulses from a source of short pulses of light, in which the pulse obtained from said source of short pulses of light is divided into two parts, one of these parts is passed through a pumping beam generating system (a), and the other of these the parts are passed through a system (b) generating a supercontinuum beam, characterized in that the beam obtained in said system (b) generating a supercontinuum beam is passed through the system (c) to stretch the pulses over time, and then - in the optical parametric amplifier (d ) - the optical parametric amplification of the white light pulses obtained in the system (c) is carried out by means of the pumping beam obtained in the system (a).

Description

Title: Method for producing tuneable narrow-bandwidth light pulses from a source of short light pulses.
DESCRIPTION
The invention relates to a method for producing tuneable narrow-bandwidth light pulses from a source of short light pulses, preferably from a femtosecond laser.
Femtosecond lasers are more and more frequently used in the industry. The use of short light pulses in many femtosecond laser-based spectroscopic techniques leads to reduced spectral resolution, as the spectrum of such a pulse is broad due to fundamental Fourier limit. There are a number of spectroscopic methods where short broadband laser pulses are employed simultaneously with narrow-bandwidth laser pulses. The methods known at present include: time-resolved stimulated Raman spectroscopy, sum frequency generation surface spectroscopy, and coherent anti-Stokes Raman scattering. Generation of narrow-bandwidth pluses from the broadband ones, and not, on the contrary, seems to be less expensive and recently there has been growing need for invention of a method that would efficiently lead to spectral compression, and additionally would allow for reaching an arbitrary compression ratio and arbitrarily tuneable pulses.
There are several methods for spectral compression of broadband laser pulses. The simplest one is to use optical narrow-bandwidth filters or to employ more advanced 4f optical systems, where undesired frequencies are physically eliminated from the spectrum by placing a slit in the system’s Fourier plane. Such a method of light conversion results in big losses of pulse energy, as only a fraction of the spectrum is being used. [S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, Appl. Phys. B 85(4), 557-564 (2006)].
The more narrow-bandwidth pulses are desired, the greater are losses in spectral conversion. These methods do not allow for generating broadly tuneable light pulses, as they offer only those frequencies that are present in the initial spectrum.
To increase the light conversion efficiency and to allow for tuneability, optical parametric light conversion processes in nonlinear crystals are employed. Such a process is divided into 3 steps. In the first step, an intense narrow-bandwidth pulse of fixed frequency is generated, in the second step a spectrally broad white light pulse is generated, and in the third step a selected fraction of white light is parametrically amplified with a narrow-bandwidth pulse in a nonlinear crystal. A problem here is to select a narrow bandwidth of frequencies contained in white light. Due to the fact that the white light pulse is short, and the pump pulse is long, many frequencies are being simultaneously amplified in the optical parametric amplification process in a nonlinear crystal. The process yields broadband pulses.
Generation of narrow-bandwidth light pulses requires a good selection of frequencies contained in the white light. This is typically achieved with sophisticated 4f systems, which yield, however, limited spectral compression. Two independent works [D. T. Co, J. V. Lockard, D. W. McCamant, and M. R. Wasielewski, Appl. Opt. 49, 1880 (2010) or S. A. Kovalenko, A. L. Dobryakov, and N. P. Ernsting, Rev. Sci. Instrum. 82, 063102 (2011)] reported spectral bandwidths of produced pulses as narrow as 25-30 cm'1. In line with higher spectral compression desired, the 4f system becomes bigger and impractical. A fundamental limit for improved selection of the light frequency fraction in the 4f systems is also the finite beam size.
It turned out unexpectedly that a fraction of frequencies contained in the white light can be selected by stretching out the pulse in time. In the optical parametric amplification process only those frequencies are amplified, which overlap temporally with the pump pulse. A white light stretcher may be any dispersion medium (glass, optical fibre) or optical system employing dispersion element or elements (diffraction grating, prism).
According to the invention, the method for generating tuneable narrow-bandwidth light pulses from a source of short light pulses, wherein a pulse obtained from the said source of short light pulses is divided into two parts, one of them is passed through an optical system generating the pump beam, whereas the other part is passed through an optical system generating the supercontinuum beam, is characterized in that the beam generated in the said optical system generating the supercontinuum beam is passed through a pulse stretcher, and subsequently - in an optical parametric amplifier -the white light pulses generated in the system are subject to optical parametric amplification using the pump beam generated in the system.
Preferably, the pass of the supercontinuum beam through the pulse stretcher unit comprises, in turn: directing the supercontinuum beam by a mirror to a diffraction grating, and subsequently to a retroreflector, then again to the diffraction grating, reflection of the beam from the mirror, back to the diffraction grating, to the retroreflector, again to the diffraction grating, and subsequently to the mirror, interception of the beam by the mirror and guiding the beam to the optical parametric amplifier unit.
In such a case, the supercontinuum beam is preferably directed from the diffraction grating to the retroreflector of from the retroreflector to the diffraction grating by reflecting it from one or more mirrors.
In a preferred embodiment of the invention, the said retroreflector is a prism retroreflector. The retroreflector is also called corner reflector or corner cube. In the embodiment of the invention presented below, a specific variant of the retroreflector - the prism retroreflector is preferably used, but any retroreflector (corner reflector) can be used, not necessarily the prism one.
Preferably, the said source of short light pulses is a femtosecond laser.
Preferably, the optical parametric amplification of white light pulses in the optical parametric amplifier comprises the pass of the pump and the white light beams through a nonlinear crystal and reflection of these beams back to that crystal by a mirror placed directly behind the crystal. The said mirror is placed just behind the crystal, and turning the beams back allows for compensation for the walk-off of the pump beam. The pump beam moves through the BBO crystal (birefringent crystal) as the extraordinary ray, so after passing the crystal it is macroscopically laterally displaced yielding a parallel displaced beam. On the other hand, the white light moves as the ordinary ray and is not displaced. In the case of a single pass through the crystal, the pump beam does not overlap spatially the white light beam in the crystal any longer and the optical parametric amplification process stops to occur. When the beams are reflected back, they both pass the same paths in the crystal, but in the opposite direction. An equally effective amplification occurs. To allow for separation of the incoming beams from the outgoing ones, the said flat mirror reflects the beams slightly downwards (alternatively one can also reflect upwards), which allows for interception of the beams by a second mirror, placed at a different height.
Preferably, the said nonlinear crystal is a p-BaB204 crystal.
Preferred embodiment of the invention
The present invention is now explained more in detail in a preferred example of embodiment, with reference to the accompanying figures, wherein:
Fig. 1 shows schematic diagram for generating narrow-bandwidth laser pulses from a pulse broadband laser using a pulse stretcher as a spectral filter for white light; wherein: 100 - source of short light pulses, (a) - white light generation, (c) - pulse stretcher unit, (b) - narrow-bandwidth pump pulses, (d) - optical parametric amplifier, 105 - tuned narrow-bandwidth laser pulses,
Fig. 2 shows an example of embodiment of the invention, with a femtosecond laser as a pulse source (1 - mirror, 2 - mirror, 3 - diffraction grating, 4 - mirror, 5 -retroreflector, 6 - mirror, 7 - mirror, 8 - mirror, 21 - beam splitter plate, 22 - half-wave plate, 23 - Porro prism, 24 - diffraction grating, 25 - diaphragm, 26 - sapphire plate, 27 -p-BaB204 nonlinear crystal, 28 - lens, 29 - achromatic half-wave plate, 30 - dichroic mirror, 31 - cylindrical telescope, 32 - telescope; the lines indicate the paths of laser beams: continuous line - 1030 nm beam path, dashed line - 515 nm narrow-bandwidth pump path, dotted line - supercontinuum path and further the path of the amplified beam of narrow-bandwidth tuneable pulses; the arrows indicate that a precise movement of an optical element is possible; two slashes in the beam path indicate optical delay line), and
Fig. 3 shows typical pulse spectra obtained with the invention. An average spectral width for pulses shown in Fig. 3 is 10 cm'1.
Fig. 2 shows an example of embodiment of the invention. The pulse source 100 is a Pharos (Light Conversion) femtosecond laser, providing pulses with pulse duration 180 fs, pulse energy 200 pj and the central wavelength 1030 nm. The laser beam is divided in a beam splitter plate (beam splitting means) 21a with 97:3 splitting ratio. The lower energy fraction of the pulse is directed to the section (b) generating the supercontinuum beam: the beam passes through a 2 mm aperture 25 and a positive lens 28a with 50 mm focal length. A 3 mm thick sapphire plate 26 is placed at the focus to generate white light in a nonlinear process. The white light beam is collimated by a concave mirror with a curvature radius -150 mm and directed to a pulse stretching unit (c). The pulse stretcher unit (c) is composed of a diffraction grating 3 with 2000 grooves/mm, a prism retroreflector 5 that turns back the beam while changing its height, and three flat mirrors 2, 4, 6.
The beam moves in the unit (c) as follows. The supercontinuum beam is directed by the mirror 2 at small angle upwards (in a plane perpendicular to the plane of the drawing), and passes under the mirror 6, and subsequently by the following elements, consecutively, 3—>4—>5—>4—>3—>6. The mirror 6 reflects the beam back, guiding it slightly downwards - the beam passes consecutively through the elements 3—>4—>5—>4—>3—>2—>1. Placed at an appropriate height, the mirror 1 intercepts the beam and guides it to the section (d) - the optical parametric amplifier. The desired range of frequencies contained in the white light spectrum is selected by rotating the grating around the beam’s point of incidence. In this section, the white light beam is stretched out in time - it is chirped with a group delay dispersion > 1.0x106 fs2.
A narrow-bandwidth pulse to be used as a pump in the optical parametric generator is generated from the remaining fraction of the femtosecond pulse in section (a) that is used for sum frequency mixing of two copies of pulses with opposite chirps. First, the high energy femtosecond pulse is divided in a beam splitter 21b in a 50:50 ratio. One pulse copy is directed to a pulse stretcher composed of a transmission diffraction grating 24a with 900 grooves/mm and two Porro prisms 23b-23c.
Appropriate distances in the system ensure that the pulse is stretched out up to duration of about 5 ps (FWHM). Such a unit gives the laser pulse a negative group delay dispersion. The other pulse copy is directed to the pulse stretcher 24b consisting of a diffraction grating with 900 groves/mm, a positive lens 28b of focal length 200 mm, a Porro prism 23a and a flat back mirror. This unit gives a positive group delay dispersion, and the distances are adjusted so that the stretching is identical as in the previous unit. So prepared beams are focused by positive lenses with focal lengths 500 mm and crossed in a 1.5 mm thick β-Β3Β204 (BBO) nonlinear crystal. A parametric sum frequency generation taking place in the crystal, results in a narrow-bandwidth pulse with a spectral width 5 cm'1, 58 pJ energy, and 515 nm central wavelength.
The narrow-bandwidth laser pulse beam is subsequently collimated with a +300 mm lens and divided by a beam splitter in a 80:20 ratio. The lower energy fraction of the pulse is focused with a +500 mm lens in a 4 mm thick BBO crystal. The white light beam prepared earlier is focused using a +400 mm lens, and after reflection from the dichroic mirror, collinearly overlapped with the pump beam (a beam of narrow-bandwidth laser pulses centered at 515 nm). It is also necessary to make sure that the pulses from both beams overlap temporally in the crystal, which is accomplished by inserting an optical delay line in the pump beam path. In the crystals of the first and the second stage, the white light frequencies which overlap with the pump pulse, are parametrically amplified.
The amplification takes place at the expense of the pump pulse energy as a result of a nonlinear optical parametric mixing of 3 waves (type I difference frequency generation). On passing the I stage crystal, both beams are turned back by the flat mirror 7, placed directly behind the crystal, which allows increasing the gain. Reflection of both beams at a small angle allows for interception of the amplified beam by the mirror 8, placed at different height and for directing it to the II amplification stage that is accomplished in a 6 mm thick BBO crystal. Before entering the crystal, the size and the spatial shape of the beam being amplified are adjusted by 2 telescopes so as to obtain a high efficiency of the amplification process and, at the same time, a good beam quality factor.
Likewise, the remaining fraction of the pump beam is telescoped to an appropriate size, assuring an optimal overlap with the beam being amplified. Both beams overlap spatially with each other at a small angle in the crystal (the angle is used for easier separation of the two beams). Finally, tuneable narrow-bandwidth (~ 10 cm'1) laser pulses are obtained and smoothly tuned in the tuning range 610 - 985 nm with energies > 3 pj. The pulses can be tuned by rotating the grating in the white light stretcher unit. Typical spectra of generated pulses are shown in Fig. 3.

Claims (14)

1. Werkwijze voor het genereren van instelbare nauwe bandbreedte-lichtpulsen vanuit een bron van korte lichtpulsen, waarbij een vanuit de lichtbron van korte lichtpulsen verkregen puls verdeeld is in twee delen, waarvan één van deze doorgelaten wordt door een optisch systeem (a) welke de pompbundel genereert, terwijl het andere deel door een optisch systeem (b) wordt geleid voor het genereren van de supercontinuümbundel, met het kenmerk, dat de bundel gegenereerd in het optische systeem (b) dat de supercontinuümbundel genereert doorgelaten wordt door een pulsverbreedeenheid (c) en vervolgens - in een optische parameterversterker (d) - worden de in het systeem (c) gegenereerde witte lichtpulsen onderworpen aan optische parameterversterking met gebruikmaking van de in het systeem (a) gegenereerde pompbundel.A method for generating adjustable narrow bandwidth light pulses from a source of short light pulses, wherein a pulse obtained from the light source of short light pulses is divided into two parts, one of which is transmitted by an optical system (a) which generates a pump bundle, while the other part is guided through an optical system (b) for generating the supercontinuous bundle, characterized in that the bundle generated in the optical system (b) that generates the supercontinuous bundle is passed through a pulse widening unit (c) and then - in an optical parameter amplifier (d) - the white light pulses generated in the system (c) are subjected to optical parameter amplification using the pump bundle generated in the system (a). 2. Werkwijze volgens conclusie 1, met het kenmerk, dat het doorlaten van de supercontinuümbundel door de pulsverbreedeenheid (c) het richten omvat: van de supercontinuümbundel door een spiegel (2) naar een diffractierooster (3) en vervolgens naar een retroreflector (5), vervolgens naar het diffractierooster (3), reflectie van de bundel vanuit de spiegel (6) terug naar het diffractierooster (3) naar de retroreflector (5), wederom naar het diffractierooster (3) en vervolgens naar de spiegel (2), alsmede onderschepping van de bundel door de spiegel (1) en het geleiden van de bundel naar de optische parameterversterkereenheid (d).Method according to claim 1, characterized in that the passage of the supercontinuous beam through the pulse widening unit (c) comprises directing: from the supercontinuous beam through a mirror (2) to a diffraction grating (3) and then to a retro-reflector (5) , then to the diffraction grating (3), reflection of the beam from the mirror (6) back to the diffraction grating (3) to the retro-reflector (5), again to the diffraction grating (3) and then to the mirror (2), as well as interception of the beam by the mirror (1) and guiding the beam to the optical parameter amplifier unit (d). 3. Werkwijze volgens conclusie 2, met het kenmerk, dat de supercontinuümbundel gericht wordt vanuit het diffractierooster (3) naar de retroreflector (5) of vanuit de retroreflector (5) naar het diffractierooster (3) door reflectie via een of meer spiegels (4).Method according to claim 2, characterized in that the supercontinuous beam is directed from the diffraction grating (3) to the retroreflector (5) or from the retroreflector (5) to the diffraction grating (3) by reflection via one or more mirrors (4) ). 4. Werkwijze volgens conclusie 2 of 3, met het kenmerk, dat de retroreflector (5) een prismaretroreflector (5) is.Method according to claim 2 or 3, characterized in that the retro-reflector (5) is a prism retro-reflector (5). 5. Werkwijze volgens een van de voorgaande conclusies, met het kenmerk, dat de bron van korte lichtpulsen een femtosecondelaser is.Method according to one of the preceding claims, characterized in that the source of short light pulses is a femtosecond laser. 6. Werkwijze volgens een van de voorgaande conclusies, met het kenmerk, dat de optische parameterversterking van witte lichtpulsen in de optische parameterversterker (d) het doorlaten omvat van de pomp en de witte lichtbundels door een niet-lineair kristal en reflectie van deze bundels terug naar dat kristal door een spiegel (7) dat direct achter het kristal is geplaatst.Method according to one of the preceding claims, characterized in that the optical parameter amplification of white light pulses in the optical parameter amplifier (d) comprises the passage of the pump and the white light beams through a non-linear crystal and reflection of these beams back to that crystal through a mirror (7) placed directly behind the crystal. 7. Werkwijze volgens conclusie 6, met het kenmerk, dat het niet-lineaire kristal een p-BaB204-kristal is.Method according to claim 6, characterized in that the non-linear crystal is a p-BaB 2 O 4 crystal. 8. Systeem voor het genereren van instelbare nauwe bandbreedte-lichtpulsen vanuit een bron van korte lichtpulsen, welk systeem omvat: Een bundel splitselement voor het - tijdens gebruik - in twee delen splitsen van een van de bron van korte lichtpulsen verkregen gepulste bundel, een optisch systeem (a) dat een van de twee bundeldelen ontvangt voor het genereren van een pompbundel, een optisch systeem (b) dat de andere van de twee bundeldelen ontvangt voor het genereren van een supercontinuümbundel, met het kenmerk, dat het system verder omvat een pulsverbreedeenheid (c) voor het ontvangen van de in het optische systeem (b) gegenereerde supercontinuümbundel voor het genereren van een bundel van witte lichtpulsen, als mede een optische parameterversterker (d) voor het ontvangen van de in het systeem (c) gegenereerde witte lichtpulsen en het onderwerpen van de bundel van witte lichtpulsen aan een optische parameterversterking met gebruikmaking van de in het systeem (a) gegenereerde pompbundel.A system for generating adjustable narrow bandwidth light pulses from a source of short light pulses, which system comprises: A beam splitting element for - during use - splitting a pulsed beam obtained from the source of short light pulses into two parts, an optical system (a) that receives one of the two bundle parts for generating a pump bundle, an optical system (b) that receives the other of the two bundle parts for generating a supercontinuous bundle, characterized in that the system further comprises a pulse widening unit (c) for receiving the supercontinuous beam generated in the optical system (b) for generating a beam of white light pulses, as well as an optical parameter amplifier (d) for receiving the white light pulses generated in the system (c) and subjecting the beam of white light pulses to an optical parameter gain using the pump generated in the system (a) bundle. 9. Systeem volgens conclusie 8, met het kenmerk, dat het doorlaten van de supercontinuümbundel door de pulsverbreedeenheid (c) het richten omvat: van de supercontinuümbundel door een spiegel (2) naar een diffractierooster (3) en vervolgens naar een retroreflector (5), vervolgens naar het diffractierooster (3), reflectie van de bundel vanuit de spiegel (6) terug naar het diffractierooster (3) naar de retroreflector (5), wederom naar het diffractierooster (3) en vervolgens naar de spiegel (2), alsmede onderschepping van de bundel door de spiegel (1) en het geleiden van de bundel naar de optische parameterversterkereenheid (d).A system according to claim 8, characterized in that the passage of the supercontinuous beam through the pulse widening unit (c) comprises directing: from the supercontinuous beam through a mirror (2) to a diffraction grating (3) and then to a retro-reflector (5) , then to the diffraction grating (3), reflection of the beam from the mirror (6) back to the diffraction grating (3) to the retro-reflector (5), again to the diffraction grating (3) and then to the mirror (2), as well as interception of the beam by the mirror (1) and guiding the beam to the optical parameter amplifier unit (d). 10. Systeem volgens conclusie 9, met het kenmerk, dat de supercontinuümbundel gericht wordt vanuit het diffractierooster (3) naar de retroreflector (5) of vanuit de retroreflector (5) naar het diffractierooster (3) door reflectie via een of meer spiegels (4).System according to claim 9, characterized in that the supercontinuous beam is directed from the diffraction grating (3) to the retroreflector (5) or from the retroreflector (5) to the diffraction grating (3) by reflection through one or more mirrors (4) ). 11. Systeem volgens conclusie 9 of 10, met het kenmerk, dat de retroreflector (5) een prismaretroreflector (5) is.A system according to claim 9 or 10, characterized in that the retro-reflector (5) is a prism retro-reflector (5). 12. Systeem volgens een van de conclusies 8-11, met het kenmerk, dat de bron van korte lichtpulsen een femtosecondelaser is.The system according to any of claims 8 to 11, characterized in that the source of short light pulses is a femtosecond laser. 13. Systeem volgens een van de conclusies 8-12, met het kenmerk, dat de optische parameterversterking van witte lichtpulsen in de optische parameterversterker (d) het doorlaten omvat van de pomp en de witte lichtbundels door een niet-lineair kristal en reflectie van deze bundels terug naar dat kristal door een spiegel (7) dat direct achter het kristal is geplaatst.The system according to any of claims 8 to 12, characterized in that the optical parameter gain of white light pulses in the optical parameter amplifier (d) comprises the passage of the pump and the white light beams through a non-linear crystal and reflection of these bundles back to that crystal through a mirror (7) placed directly behind the crystal. 14. Systeem volgens conclusie 13, met het kenmerk, dat het niet-lineaire kristal een β-Β3Β204-^ί3ΐ3ΐ is.A system according to claim 13, characterized in that the non-linear crystal is a β-Β3Β204- ^ ί3ΐ3ΐ.
NL2009996A 2012-01-04 2012-12-17 Method for producing tuneable narrow-bandwidth light pulses from a source of short light pulses. NL2009996C2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PL39770412 2012-01-04
PL397704A PL219206B1 (en) 2012-01-04 2012-01-04 Method for obtaining narrow band tunable light pulses from a source of short light pulses

Publications (2)

Publication Number Publication Date
NL2009996A NL2009996A (en) 2013-07-09
NL2009996C2 true NL2009996C2 (en) 2014-12-09

Family

ID=47603998

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2009996A NL2009996C2 (en) 2012-01-04 2012-12-17 Method for producing tuneable narrow-bandwidth light pulses from a source of short light pulses.

Country Status (2)

Country Link
NL (1) NL2009996C2 (en)
PL (1) PL219206B1 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8023538B2 (en) * 2008-03-27 2011-09-20 Imra America, Inc. Ultra-high power parametric amplifier system at high repetition rates

Also Published As

Publication number Publication date
NL2009996A (en) 2013-07-09
PL219206B1 (en) 2015-03-31
PL397704A1 (en) 2013-07-08

Similar Documents

Publication Publication Date Title
Iyer et al. Compensation of spatial and temporal dispersion for acousto-optic multiphoton laser-scanning microscopy
US8630322B2 (en) Laser system for output manipulation
EP2211430A2 (en) Laser autocorrelation system
US8422125B2 (en) Self-collimator concave spectral shaping device for chirped-pulse-amplification
US8520297B2 (en) Spectra shaping scheme for chirped pulse amplification
US6359914B1 (en) Tunable pulsed narrow bandwidth light source
US8698082B2 (en) High-fidelity device for single-shot pulse contrast measurement based on quasi-phase-matching (QPM)
JPH1068889A (en) Device for coupling short pulse laser beam in optical path of microscope and method therefor
CN100595536C (en) Super-short light impulse measuring apparatus based on SPIDER technology
US20130128343A1 (en) Spectra shaping device for chirped pulse amplification
US10576580B2 (en) Light irradiating device and light irradiating method
Tzankov et al. Broadband optical parametric amplification in the near UV–VIS
EP2766963A1 (en) Method and device for the simultaneous compression and characterization of ultrashort laser pulses
CN102255225B (en) Independent chirp parameter regulating system for realizing two-tone laser field
US5648866A (en) Optimized achromatic phase-matching system and method
CN104112976A (en) White light generation based multi-color femtosecond laser generation device
NL2009996C2 (en) Method for producing tuneable narrow-bandwidth light pulses from a source of short light pulses.
US20220404543A1 (en) Devices, systems, and methods for temporal compression or stretching of optical pulses
US10422739B1 (en) Reflectometer, spectrophotometer, ellipsometer and polarimeter systems with a super continuum laser source of a beam of electromagnetism, and improved detector system
US10132684B1 (en) Reflectometer, spectrophometer, ellipsometer and polarimeter system with a super continuum laser-source of a beam of electromagnetism and improved detector system
US11675208B1 (en) Reflectometer, spectrophotometer, ellipsometer and polarimeter system with a super continuum laser source of a beam of electromagnetism, and improved detector system
GB2506014A (en) method for spectral compression of short broad-bandwidth laser light pulses and optical system for the same
US20200388977A1 (en) Device and method to adjust tunable laser pulses
US11035729B1 (en) Reflectometer, spectrophotometer, ellipsometer and polarimeter system with a super continuum laser source of a beam of electromagnetism, and improved detector system
Zhang Temporal Characterization and Intensity Contrast Improvement of Few-cycle Laser Pulses

Legal Events

Date Code Title Description
MM Lapsed because of non-payment of the annual fee

Effective date: 20160101