KR940021686A - A method of forming a coating using a composition comprising a hydrogen silsesquioxane resin and a filler - Google Patents

A method of forming a coating using a composition comprising a hydrogen silsesquioxane resin and a filler Download PDF

Info

Publication number
KR940021686A
KR940021686A KR1019940004426A KR19940004426A KR940021686A KR 940021686 A KR940021686 A KR 940021686A KR 1019940004426 A KR1019940004426 A KR 1019940004426A KR 19940004426 A KR19940004426 A KR 19940004426A KR 940021686 A KR940021686 A KR 940021686A
Authority
KR
South Korea
Prior art keywords
coating
filler
coating composition
substrate
hydrogen silsesquioxane
Prior art date
Application number
KR1019940004426A
Other languages
Korean (ko)
Other versions
KR100313383B1 (en
Inventor
앤드류 할루스카 로렌
윈톤 마이클 케이트
Original Assignee
노만 에드워드 루이스
다우 코닝 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 노만 에드워드 루이스, 다우 코닝 코포레이션 filed Critical 노만 에드워드 루이스
Publication of KR940021686A publication Critical patent/KR940021686A/en
Application granted granted Critical
Publication of KR100313383B1 publication Critical patent/KR100313383B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/008Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character comprising a mixture of materials covered by two or more of the groups C03C17/02, C03C17/06, C03C17/22 and C03C17/28
    • C03C17/009Mixtures of organic and inorganic materials, e.g. ormosils and ormocers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3435Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a nitride, oxynitride, boronitride or carbonitride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3441Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising carbon, a carbide or oxycarbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5035Silica
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C14SKINS; HIDES; PELTS; LEATHER
    • C14CCHEMICAL TREATMENT OF HIDES, SKINS OR LEATHER, e.g. TANNING, IMPREGNATING, FINISHING; APPARATUS THEREFOR; COMPOSITIONS FOR TANNING
    • C14C11/00Surface finishing of leather
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1212Zeolites, glasses
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/122Inorganic polymers, e.g. silanes, polysilazanes, polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1262Process of deposition of the inorganic material involving particles, e.g. carbon nanotubes [CNT], flakes
    • C23C18/127Preformed particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1279Process of deposition of the inorganic material performed under reactive atmosphere, e.g. oxidising or reducing atmospheres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/57Protection from inspection, reverse engineering or tampering
    • H01L23/573Protection from inspection, reverse engineering or tampering using passive means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/44Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the composition of the continuous phase
    • C03C2217/45Inorganic continuous phases
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/465Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase having a specific shape
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/479Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/80Optical properties, e.g. transparency or reflexibility
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/90Electrical properties
    • C04B2111/94Electrically conducting materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

본 발명은 피복물을 기재 위에 형성하는 방법 및 이에 의해 피복된 기재에 관한 것이다. 당해 방법은 하이드로겐 실세스퀴옥산 수지와 충전제를 포함하는 피복물을 기재에 적용시키고 하이드로겐 실세스퀴옥산 수지를 세라믹 피복물로 전환시키기에 충분한 온도에서 피복된 기재를 가열함을 포함한다. 당해 방법은 전자장치에 피복물을 형성시키는데 있어서 특히 유용하다.The present invention relates to a method of forming a coating on a substrate and to a substrate coated thereby. The method includes applying a coating comprising a hydrogen silsesquioxane resin and a filler to the substrate and heating the coated substrate at a temperature sufficient to convert the hydrogen silsesquioxane resin to a ceramic coating. The method is particularly useful for forming coatings in electronic devices.

Description

하이드로겐 실세스퀴옥산 수지와 충전제를 포함하는 조성물을 사용하여 피복물을 형성시키는 방법A method of forming a coating using a composition comprising a hydrogen silsesquioxane resin and a filler

본 내용은 요부공개 건이므로 전문내용을 수록하지 않았음Since this is an open matter, no full text was included.

Claims (18)

하이드로겐 실세스퀴옥산 수지와 충전제를 포함하는 피복 조성물을 기재에 적용시키고, 피복된 기재를 50 내지 1000℃의 온도에서 3시간 미만 동안 가열하여 피복 조성물을 세라믹 피복물로 전환시킴을 포함하여, 기재 위에 피복물을 형성하는 방법.A substrate comprising applying a coating composition comprising a hydrogen silsesquioxane resin and a filler to the substrate and heating the coated substrate at a temperature of 50 to 1000 ° C. for less than 3 hours to convert the coating composition to a ceramic coating. How to form a coating on top. 제1항에 있어서, 피복 조성물이, 기재를 용매, 하이드로겐 실세스퀴옥산 수지 및 충전제를 포함하는 액체 혼합물로 피복시키고, 이어서 용매를 증발시킴을 포함하는 공정에 의해 기재에 적용되는 방법.The method of claim 1, wherein the coating composition is applied to the substrate by a process comprising coating the substrate with a liquid mixture comprising a solvent, a hydrogen silsesquioxane resin and a filler, and then evaporating the solvent. 제2항에 있어서, 액체 혼합물이 분무 피복, 침지 피복, 유동 피복 또는 방사 피복에 의해 기재에 피복되는 방법.The method of claim 2 wherein the liquid mixture is coated to the substrate by spray coating, immersion coating, flow coating or spinning coating. 제2항에 있어서, 피복된 기재가 공기, O2, 산소 플라즈마, 불활성 기체, 암모니아, 아민, 수분 및 N2O로부터 선택된 환경 속에서 가열되는 방법.The method of claim 2, wherein the coated substrate is heated in an environment selected from air, O 2 , oxygen plasma, inert gas, ammonia, amines, moisture, and N 2 O. 제1항에 있어서, 하이드로겐 실세스퀴옥산 수지가, 중합체성 화학종의 75% 이상의 중량 평균 분자량이 1200 내지 100,000으로 되도록 분별화되는 방법.The process of claim 1 wherein the hydrogen silsesquioxane resin is fractionated such that at least 75% of the weight species molecular weight of the polymeric species is between 1200 and 100,000. 제1항에 있어서, 피복 조성물이, 티타늄, 지르코늄, 알루미늄, 탄탈륨, 바나듐, 니오븀, 붕소 및 인으로부터 선택된 원소와 알콕시 및 아실옥시로부터 선택된 하나 이상의 가수분해성 치환체를 함유하며 피복물이 개질 세라믹 산화물을 0.1 내지 30중량% 함유하도록 하는 양으로 존재하는 화합물을 포함하는 개질세라믹 산화물 전구체를 추가로 함유하는 방법.The coating composition of claim 1, wherein the coating composition contains an element selected from titanium, zirconium, aluminum, tantalum, vanadium, niobium, boron and phosphorus, and at least one hydrolyzable substituent selected from alkoxy and acyloxy and the coating comprises 0.1 modified ceramic oxide. And further comprising a modified ceramic oxide precursor comprising the compound present in an amount such that from 30 wt% to 30 wt%. 제1항에 있어서, 피복 조성물이 백금, 로듐 또는 구리 촉매를 하이드로겐 실세스퀴옥산 수지의 중량을 기준으로 하여 5 내지 1000ppm의 백금, 로듐 또는 구리의 양으로 추가로 함유하는 방법.The method of claim 1 wherein the coating composition further comprises a platinum, rhodium or copper catalyst in an amount of from 5 to 1000 ppm platinum, rhodium or copper, based on the weight of the hydrogen silsesquioxane resin. 제1항에 있어서, 피복 조성물이 충전제 표면을 개질시키는 물질을 추가로 함유하는 방법.The method of claim 1 wherein the coating composition further contains a substance that modifies the filler surface. 제1항에 있어서, 피복 조성물이 현탁제를 추가로 함유하는 방법.The method of claim 1 wherein the coating composition further contains a suspending agent. 제1항에 있어서, 충전제가 분말, 입자, 플레이크 및 미소밸룬(microballoon)으로부터 선택된 형태로 존재하는 방법.The method of claim 1 wherein the filler is in a form selected from powders, particles, flakes and microballoons. 제1항에 있어서, 충전제가 산화물, 탄화물, 질화물, 붕화물, 티탄산염, 니오브산염, 규산염, 금속, 인, 규회석, 운모, 고령토, 점토, 활석, 셀룰로즈, 폴리아미드 및 페놀 수지로부터 선택되는 방법.The process of claim 1 wherein the filler is selected from oxides, carbides, nitrides, borides, titanates, niobates, silicates, metals, phosphorus, wollastonite, mica, kaolin, clay, talc, cellulose, polyamides and phenolic resins. . 제1항에 있어서, 충전제의 입자 크기 범위가 500㎛ 미만인 방법.The method of claim 1 wherein the particle size range of the filler is less than 500 μm. 제1항에 있어서, 충전제가 피복 조성물에 90중량% 미만의 양으로 존재하는 방법.The method of claim 1 wherein the filler is present in the coating composition in an amount of less than 90% by weight. 제1항에 있어서, 세라믹 피복물의 유전상수가 낮은 방법.The method of claim 1 wherein the dielectric constant of the ceramic coating is low. 제1항에 있어서, 세라믹 피복물의 유전상수가 높은 방법.The method of claim 1 wherein the dielectric constant of the ceramic coating is high. 제1항에 있어서, 세라믹 피복물이 전도성인 방법.The method of claim 1 wherein the ceramic coating is conductive. 용매 속에 희석된 하이드로겐 실세스퀴옥산 수지와 충전제를 포함함을 특징으로 하는 피복 조성물.A coating composition comprising a hydrogen silsesquioxane resin and a filler diluted in a solvent. 제17항에 있어서, 하이드로겐 실세스퀴옥산 수지와 충전제이, 고체 함량이 0.5 내지 80중량%로 되도록 희석된 피복 조성물.18. The coating composition of claim 17, wherein the hydrogen silsesquioxane resin and filler are diluted to a solids content of 0.5 to 80 weight percent. ※ 참고사항 : 최초출원 내용에 의하여 공개하는 것임.※ Note: The disclosure is based on the initial application.
KR1019940004426A 1993-03-08 1994-03-08 Paint composition containing hydrogen silsesquioxane resin and filler and method for forming film using same KR100313383B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US2806393A 1993-03-08 1993-03-08
US08/028,063 1993-03-08

Publications (2)

Publication Number Publication Date
KR940021686A true KR940021686A (en) 1994-10-19
KR100313383B1 KR100313383B1 (en) 2001-12-28

Family

ID=21841366

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940004426A KR100313383B1 (en) 1993-03-08 1994-03-08 Paint composition containing hydrogen silsesquioxane resin and filler and method for forming film using same

Country Status (5)

Country Link
US (6) US5387480A (en)
EP (1) EP0615000B1 (en)
JP (1) JPH06345417A (en)
KR (1) KR100313383B1 (en)
DE (1) DE69426998T2 (en)

Families Citing this family (118)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5492958A (en) * 1993-03-08 1996-02-20 Dow Corning Corporation Metal containing ceramic coatings
US5387480A (en) * 1993-03-08 1995-02-07 Dow Corning Corporation High dielectric constant coatings
JP3418458B2 (en) * 1993-08-31 2003-06-23 富士通株式会社 Method for manufacturing semiconductor device
US5448111A (en) * 1993-09-20 1995-09-05 Fujitsu Limited Semiconductor device and method for fabricating the same
US5441765A (en) * 1993-09-22 1995-08-15 Dow Corning Corporation Method of forming Si-O containing coatings
EP0662491B1 (en) * 1993-12-28 1999-03-24 Nikkiso Co., Ltd. Prepreg, process for preparation of prepreg, and products derived therefrom
US5399441A (en) * 1994-04-12 1995-03-21 Dow Corning Corporation Method of applying opaque coatings
JP3462562B2 (en) * 1994-04-14 2003-11-05 日本原子力研究所 Method and apparatus for producing gel particles
KR950034495A (en) * 1994-04-20 1995-12-28 윌리엄 이.힐러 High Yield Photocuring Process for Semiconductor Device Manufacturing
US5530293A (en) 1994-11-28 1996-06-25 International Business Machines Corporation Carbon-free hydrogen silsesquioxane with dielectric constant less than 3.2 annealed in hydrogen for integrated circuits
US5516596A (en) * 1994-12-19 1996-05-14 Dow Corning Corporation Method of forming a composite, article and composition
US5501875A (en) 1994-12-27 1996-03-26 Dow Corning Corporation Metal coated silica precursor powders
US5656555A (en) * 1995-02-17 1997-08-12 Texas Instruments Incorporated Modified hydrogen silsesquioxane spin-on glass
US5516867A (en) * 1995-05-12 1996-05-14 Dow Corning Corporation Modified hydrogen silsesquioxane resin
US5635240A (en) * 1995-06-19 1997-06-03 Dow Corning Corporation Electronic coating materials using mixed polymers
US5616202A (en) * 1995-06-26 1997-04-01 Dow Corning Corporation Enhanced adhesion of H-resin derived silica to gold
JP3070450B2 (en) * 1995-07-14 2000-07-31 ヤマハ株式会社 Multilayer wiring formation method
US5661092A (en) * 1995-09-01 1997-08-26 The University Of Connecticut Ultra thin silicon oxide and metal oxide films and a method for the preparation thereof
US5693701A (en) * 1995-10-26 1997-12-02 Dow Corning Corporation Tamper-proof electronic coatings
US5877093A (en) * 1995-10-27 1999-03-02 Honeywell Inc. Process for coating an integrated circuit device with a molten spray
US6287985B1 (en) * 1995-10-27 2001-09-11 Honeywell International Inc. Process for applying a molten droplet coating for integrated circuits
US5789325A (en) * 1996-04-29 1998-08-04 Dow Corning Corporation Coating electronic substrates with silica derived from polycarbosilane
US5837603A (en) * 1996-05-08 1998-11-17 Harris Corporation Planarization method by use of particle dispersion and subsequent thermal flow
AU6003696A (en) * 1996-05-30 1998-01-05 Pierre Badehi I.c. device with concealed conductor lines
US5780163A (en) * 1996-06-05 1998-07-14 Dow Corning Corporation Multilayer coating for microelectronic devices
US5807611A (en) * 1996-10-04 1998-09-15 Dow Corning Corporation Electronic coatings
US5776235A (en) * 1996-10-04 1998-07-07 Dow Corning Corporation Thick opaque ceramic coatings
US5730792A (en) * 1996-10-04 1998-03-24 Dow Corning Corporation Opaque ceramic coatings
US5711987A (en) * 1996-10-04 1998-01-27 Dow Corning Corporation Electronic coatings
JP3123449B2 (en) * 1996-11-01 2001-01-09 ヤマハ株式会社 Multilayer wiring formation method
JP3082688B2 (en) * 1996-11-05 2000-08-28 ヤマハ株式会社 Wiring formation method
TW367273B (en) * 1996-12-20 1999-08-21 Dow Corning Method of producing low dielectric ceramic-like materials
JP3225872B2 (en) 1996-12-24 2001-11-05 ヤマハ株式会社 Silicon oxide film formation method
JPH10247686A (en) * 1996-12-30 1998-09-14 Yamaha Corp Formation of multilayer interconnection
DE69806824T2 (en) * 1997-02-07 2003-02-27 Dow Corning Process for the production of coatings on electronic parts
US6015457A (en) * 1997-04-21 2000-01-18 Alliedsignal Inc. Stable inorganic polymers
US6143855A (en) * 1997-04-21 2000-11-07 Alliedsignal Inc. Organohydridosiloxane resins with high organic content
US6743856B1 (en) 1997-04-21 2004-06-01 Honeywell International Inc. Synthesis of siloxane resins
US6218497B1 (en) 1997-04-21 2001-04-17 Alliedsignal Inc. Organohydridosiloxane resins with low organic content
TW392288B (en) 1997-06-06 2000-06-01 Dow Corning Thermally stable dielectric coatings
US5866197A (en) * 1997-06-06 1999-02-02 Dow Corning Corporation Method for producing thick crack-free coating from hydrogen silsequioxane resin
JPH11103079A (en) * 1997-09-26 1999-04-13 Sanyo Electric Co Ltd Manufacture of laminated photovoltaic device
US6018002A (en) * 1998-02-06 2000-01-25 Dow Corning Corporation Photoluminescent material from hydrogen silsesquioxane resin
US6177199B1 (en) 1999-01-07 2001-01-23 Alliedsignal Inc. Dielectric films from organohydridosiloxane resins with low organic content
US6218020B1 (en) 1999-01-07 2001-04-17 Alliedsignal Inc. Dielectric films from organohydridosiloxane resins with high organic content
US5935638A (en) * 1998-08-06 1999-08-10 Dow Corning Corporation Silicon dioxide containing coating
DE19910816A1 (en) 1999-03-11 2000-10-05 Merck Patent Gmbh Doping pastes for producing p, p + and n, n + regions in semiconductors
DE19946125C1 (en) * 1999-09-20 2001-01-04 Plasma Photonics Gmbh Phosphor film, especially for low pressure discharge lamp useful e.g. for therapeutic and/or cosmetic treatment, consists of silicone elastomer with embedded phosphor particles
US6440550B1 (en) 1999-10-18 2002-08-27 Honeywell International Inc. Deposition of fluorosilsesquioxane films
US6472076B1 (en) 1999-10-18 2002-10-29 Honeywell International Inc. Deposition of organosilsesquioxane films
TW502286B (en) * 1999-12-09 2002-09-11 Koninkl Philips Electronics Nv Semiconductor device comprising a security coating and smartcard provided with such a device
US6402985B1 (en) * 2000-03-17 2002-06-11 The United States Of America As Represented By The Secretary Of The Navy Method for preparing efficient low voltage phosphors and products produced thereby
WO2001089827A1 (en) * 2000-05-18 2001-11-29 Georgia Tech Research Corporation High dielectric constant nano-structure polymer-ceramic composite
US6517958B1 (en) * 2000-07-14 2003-02-11 Canon Kabushiki Kaisha Organic-inorganic hybrid light emitting devices (HLED)
EP1179912A1 (en) * 2000-08-09 2002-02-13 STMicroelectronics S.r.l. Chaotic encryption
US6451646B1 (en) * 2000-08-30 2002-09-17 Micron Technology, Inc. High-k dielectric materials and processes for manufacturing them
DE10043955A1 (en) * 2000-09-06 2002-04-04 Infineon Technologies Ag Semiconductor chip with a protective cover and associated manufacturing process
DE10055082A1 (en) * 2000-11-07 2002-05-16 Bosch Gmbh Robert Ceramic composite
US7378719B2 (en) * 2000-12-20 2008-05-27 Micron Technology, Inc. Low leakage MIM capacitor
US6653718B2 (en) * 2001-01-11 2003-11-25 Honeywell International, Inc. Dielectric films for narrow gap-fill applications
DE10131014C1 (en) * 2001-06-27 2002-09-05 Infineon Technologies Ag Semiconductor element used in a chip card in the pay-per-view television sector comprises a chip, and a device for deactivating the chip consisting of a hollow chamber containing an activator
JP2005298529A (en) * 2001-12-28 2005-10-27 Doppel:Kk Highly photoluminescent material and method for producing the same
US6731051B2 (en) * 2002-04-22 2004-05-04 Osram Sylvania Inc. Blue incandescent appliance lamp
CA2499559A1 (en) * 2002-10-03 2004-04-15 Alberta Research Council Inc. Protective ceramic coating
US7029738B2 (en) * 2003-04-11 2006-04-18 Dinformatica del Noroeste S.A. de C.V. System for discouraging the removal of identification labels adhered to a surface
CN101186793A (en) * 2003-04-15 2008-05-28 皇家飞利浦电子股份有限公司 Thermally resistant adhesive
US20050123760A1 (en) * 2003-10-15 2005-06-09 Cammack J. K. Light-emitting nanoparticle compositions
JP2005310756A (en) * 2004-03-26 2005-11-04 Koito Mfg Co Ltd Light source module and vehicular headlight
FR2872610B1 (en) * 2004-07-02 2007-06-08 Commissariat Energie Atomique DEVICE FOR SECURING COMPONENTS
US8901268B2 (en) * 2004-08-03 2014-12-02 Ahila Krishnamoorthy Compositions, layers and films for optoelectronic devices, methods of production and uses thereof
US20070262693A1 (en) * 2004-10-29 2007-11-15 Satoshi Seo Composite Material, Light-Emitting Element, Light-Emitting Device and Manufacturing Method Thereof
DE102005018246A1 (en) * 2005-04-19 2006-10-26 Schott Ag Glass or glass ceramic articles with decorative coating
US20070099005A1 (en) * 2005-10-31 2007-05-03 Honeywell International Inc. Thick crack-free silica film by colloidal silica incorporation
US8076185B1 (en) * 2006-08-23 2011-12-13 Rockwell Collins, Inc. Integrated circuit protection and ruggedization coatings and methods
US8174830B2 (en) * 2008-05-06 2012-05-08 Rockwell Collins, Inc. System and method for a substrate with internal pumped liquid metal for thermal spreading and cooling
US7915527B1 (en) 2006-08-23 2011-03-29 Rockwell Collins, Inc. Hermetic seal and hermetic connector reinforcement and repair with low temperature glass coatings
US8084855B2 (en) * 2006-08-23 2011-12-27 Rockwell Collins, Inc. Integrated circuit tampering protection and reverse engineering prevention coatings and methods
US8581108B1 (en) * 2006-08-23 2013-11-12 Rockwell Collins, Inc. Method for providing near-hermetically coated integrated circuit assemblies
US8166645B2 (en) * 2006-08-23 2012-05-01 Rockwell Collins, Inc. Method for providing near-hermetically coated, thermally protected integrated circuit assemblies
US8637980B1 (en) 2007-12-18 2014-01-28 Rockwell Collins, Inc. Adhesive applications using alkali silicate glass for electronics
US8617913B2 (en) 2006-08-23 2013-12-31 Rockwell Collins, Inc. Alkali silicate glass based coating and method for applying
US20080118730A1 (en) * 2006-11-22 2008-05-22 Ta-Hua Yu Biaxially oriented film, laminates made therefrom, and method
JP5149512B2 (en) * 2007-02-02 2013-02-20 東レ・ダウコーニング株式会社 Liquid curable composition, coating method, inorganic substrate, and semiconductor device
US7857905B2 (en) * 2007-03-05 2010-12-28 Momentive Performance Materials Inc. Flexible thermal cure silicone hardcoats
WO2009006550A1 (en) * 2007-07-05 2009-01-08 Nitto Denko Corporation Light emitting devices and compositions
JP5481385B2 (en) 2007-11-15 2014-04-23 日東電工株式会社 Light emitting device and light emitting composition
US8363189B2 (en) * 2007-12-18 2013-01-29 Rockwell Collins, Inc. Alkali silicate glass for displays
JP5226336B2 (en) * 2008-02-15 2013-07-03 株式会社神戸製鋼所 Method for manufacturing silicon oxide film
US8616266B2 (en) * 2008-09-12 2013-12-31 Rockwell Collins, Inc. Mechanically compliant thermal spreader with an embedded cooling loop for containing and circulating electrically-conductive liquid
US8650886B2 (en) * 2008-09-12 2014-02-18 Rockwell Collins, Inc. Thermal spreader assembly with flexible liquid cooling loop having rigid tubing sections and flexible tubing sections
US8205337B2 (en) * 2008-09-12 2012-06-26 Rockwell Collins, Inc. Fabrication process for a flexible, thin thermal spreader
WO2010009757A1 (en) 2008-07-22 2010-01-28 Agc Flat Glass Europe Sa Glass article with identification means and method for identifying a glass article
US8119040B2 (en) 2008-09-29 2012-02-21 Rockwell Collins, Inc. Glass thick film embedded passive material
JP2012505298A (en) 2008-10-13 2012-03-01 日東電工株式会社 Printable luminescent composition
US8557877B2 (en) 2009-06-10 2013-10-15 Honeywell International Inc. Anti-reflective coatings for optically transparent substrates
US8864898B2 (en) 2011-05-31 2014-10-21 Honeywell International Inc. Coating formulations for optical elements
CN103732391B (en) * 2011-08-09 2015-10-21 三菱树脂株式会社 transparent laminated film
US9435915B1 (en) 2012-09-28 2016-09-06 Rockwell Collins, Inc. Antiglare treatment for glass
JP2013241335A (en) * 2013-08-02 2013-12-05 Agc Glass Europe Glass article having discrimination means and method for discriminating glass article
JP6545679B2 (en) 2013-08-05 2019-07-17 コーニング インコーポレイテッド Luminescent coatings and devices
CN103943610B (en) 2014-04-16 2016-12-07 华为技术有限公司 A kind of electronic element packaging structure and electronic equipment
WO2016105937A1 (en) 2014-12-22 2016-06-30 Bridgestone Americas Tire Operations, Llc Rubber compositions for radio devices in tires
EP3194502A4 (en) 2015-04-13 2018-05-16 Honeywell International Inc. Polysiloxane formulations and coatings for optoelectronic applications
US10175064B2 (en) 2015-09-25 2019-01-08 International Business Machines Corporation Circuit boards and electronic packages with embedded tamper-respondent sensor
US9911012B2 (en) 2015-09-25 2018-03-06 International Business Machines Corporation Overlapping, discrete tamper-respondent sensors
JP6681468B2 (en) 2015-11-09 2020-04-15 ブリヂストン アメリカズ タイヤ オペレーションズ、 エルエルシー Rubber coating for electronic communication module, electronic module including same, and related method
US9916744B2 (en) 2016-02-25 2018-03-13 International Business Machines Corporation Multi-layer stack with embedded tamper-detect protection
US20190084282A1 (en) * 2016-03-07 2019-03-21 Vitriflex, Inc. Novel multilayer stacks including a stress relief layer, methods and compositions relating thereto
KR20170112381A (en) * 2016-03-31 2017-10-12 삼성전기주식회사 Ceramic Composition and Multilayered Capacitor Having the Same
US9913370B2 (en) * 2016-05-13 2018-03-06 International Business Machines Corporation Tamper-proof electronic packages formed with stressed glass
US9881880B2 (en) 2016-05-13 2018-01-30 International Business Machines Corporation Tamper-proof electronic packages with stressed glass component substrate(s)
US10299372B2 (en) 2016-09-26 2019-05-21 International Business Machines Corporation Vented tamper-respondent assemblies
US10306753B1 (en) 2018-02-22 2019-05-28 International Business Machines Corporation Enclosure-to-board interface with tamper-detect circuit(s)
CN109439059A (en) * 2018-11-09 2019-03-08 刘景典 A kind of high tenacity ceramic coating and preparation method thereof
CN109956742B (en) * 2019-04-29 2021-06-18 东北大学 Method for preparing high-purity cerium aluminate by high-temperature carbon-embedding method
US20210095138A1 (en) * 2019-09-27 2021-04-01 B&B Blending, Llc Use of a fluorescent optical brightener or phosphorescent indicator within ceramic coatings for visual detection and identification
CN112812361B (en) * 2020-12-31 2024-01-09 浙江三时纪新材科技有限公司 Preparation method of silicon dioxide powder filler, powder filler obtained by preparation method and application of powder filler
CN116947576A (en) * 2022-04-20 2023-10-27 北京理工大学 Simple preparation method of polyhedral oligomeric silsesquioxane coated dinitramide ammonium

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH492948A (en) 1968-09-13 1970-06-30 Rador S A Band for obtaining a barbed element
US3615272A (en) 1968-11-04 1971-10-26 Dow Corning Condensed soluble hydrogensilsesquioxane resin
US3725671A (en) * 1970-11-02 1973-04-03 Us Navy Pyrotechnic eradication of microcircuits
US3882323A (en) * 1973-12-17 1975-05-06 Us Navy Method and apparatus for protecting sensitive information contained in thin-film microelectonic circuitry
US3882324A (en) * 1973-12-17 1975-05-06 Us Navy Method and apparatus for combustibly destroying microelectronic circuit board interconnections
US3986997A (en) * 1974-06-25 1976-10-19 Dow Corning Corporation Pigment-free coating compositions
US5042386A (en) * 1974-09-27 1991-08-27 The United States Of America As Represented By The Secretary Of The Navy Destructive device for metal oxide-semiconductors
JPS59178749A (en) 1983-03-30 1984-10-11 Fujitsu Ltd Wiring structure
JPS6086017A (en) 1983-10-17 1985-05-15 Fujitsu Ltd Production of polyhydrogen silsesquioxane
JPS63120773A (en) * 1986-11-10 1988-05-25 Toray Silicone Co Ltd Waterproof material composition composed of aqueous silicone emulsion
JPS63107122A (en) 1986-10-24 1988-05-12 Fujitsu Ltd Flattening method for irregular substrate
US4898907A (en) * 1986-12-03 1990-02-06 Dow Corning Corporation Compositions of platinum and rhodium catalyst in combination with hydrogen silsesquioxane resin
US4756977A (en) * 1986-12-03 1988-07-12 Dow Corning Corporation Multilayer ceramics from hydrogen silsesquioxane
US5008320A (en) * 1986-12-04 1991-04-16 Dow Corning Corporation Platinum or rhodium catalyzed multilayer ceramic coatings from hydrogen silsesquioxane resin and metal oxides
US4753855A (en) * 1986-12-04 1988-06-28 Dow Corning Corporation Multilayer ceramic coatings from metal oxides for protection of electronic devices
US4749631B1 (en) * 1986-12-04 1993-03-23 Multilayer ceramics from silicate esters
US4808653A (en) * 1986-12-04 1989-02-28 Dow Corning Corporation Coating composition containing hydrogen silsesquioxane resin and other metal oxide precursors
US4997698A (en) * 1987-05-04 1991-03-05 Allied-Signal, Inc. Ceramic coated metal substrates for electronic applications
CA2010335A1 (en) * 1989-03-09 1990-09-09 Ronald H. Baney Method for protective coating superconductors
US5011706A (en) 1989-04-12 1991-04-30 Dow Corning Corporation Method of forming coatings containing amorphous silicon carbide
FR2647798B1 (en) * 1989-05-31 1991-09-13 Rhone Poulenc Chimie AQUEOUS DISPERSION BASED ON FUNCTIONALIZED SILICON OILS WHICH CAN CROSSLINK TO AN ELASTOMER BY REMOVING WATER
US5045592A (en) * 1989-07-28 1991-09-03 Dow Corning Corporation Metastable silane hydrolyzates
US4999397A (en) * 1989-07-28 1991-03-12 Dow Corning Corporation Metastable silane hydrolyzates and process for their preparation
US5085893A (en) * 1989-07-28 1992-02-04 Dow Corning Corporation Process for forming a coating on a substrate using a silsesquioxane resin
US5010159A (en) 1989-09-01 1991-04-23 Dow Corning Corporation Process for the synthesis of soluble, condensed hydridosilicon resins containing low levels of silanol
US4973526A (en) * 1990-02-15 1990-11-27 Dow Corning Corporation Method of forming ceramic coatings and resulting articles
JPH0410339A (en) * 1990-04-27 1992-01-14 Asahi Glass Co Ltd Coloring coating liquid for cathode-ray tube panel and cathode-ray tube coated therewith
US5059448A (en) * 1990-06-18 1991-10-22 Dow Corning Corporation Rapid thermal process for obtaining silica coatings
US5100503A (en) * 1990-09-14 1992-03-31 Ncr Corporation Silica-based anti-reflective planarizing layer
US5063267A (en) * 1990-11-28 1991-11-05 Dow Corning Corporation Hydrogen silsesquioxane resin fractions and their use as coating materials
US5380553A (en) * 1990-12-24 1995-01-10 Dow Corning Corporation Reverse direction pyrolysis processing
US5258334A (en) * 1993-01-15 1993-11-02 The U.S. Government As Represented By The Director, National Security Agency Process of preventing visual access to a semiconductor device by applying an opaque ceramic coating to integrated circuit devices
US5387480A (en) * 1993-03-08 1995-02-07 Dow Corning Corporation High dielectric constant coatings

Also Published As

Publication number Publication date
US5541248A (en) 1996-07-30
EP0615000B1 (en) 2001-04-04
DE69426998T2 (en) 2001-10-31
US5635249A (en) 1997-06-03
US5710203A (en) 1998-01-20
US5916944A (en) 1999-06-29
KR100313383B1 (en) 2001-12-28
DE69426998D1 (en) 2001-05-10
US5387480A (en) 1995-02-07
JPH06345417A (en) 1994-12-20
EP0615000A1 (en) 1994-09-14
US5458912A (en) 1995-10-17

Similar Documents

Publication Publication Date Title
KR940021686A (en) A method of forming a coating using a composition comprising a hydrogen silsesquioxane resin and a filler
KR950008432A (en) Formation method of Si-O containing film
US5436084A (en) Electronic coatings using filled borosilazanes
US5436083A (en) Protective electronic coatings using filled polysilazanes
KR950008433A (en) How to Form a Si-O-Containing Coating
KR880008439A (en) Multilayer Ceramics from Silicate Ester
KR890016627A (en) How to Form a Ceramic Coating on a Substrate
KR100249750B1 (en) Method of making moisture resistant aluminum nitride powder and powder produced thereby
CA2034908A1 (en) Coatings for microelectronic devices and substrates
KR970052882A (en) Hardening method of hydrogen silsesquioxane resin by electron beam
EP0986438B1 (en) Method for coating a surface
US5935638A (en) Silicon dioxide containing coating
KR950032543A (en) Method of forming Si-O containing film
KR890011070A (en) How to Form a Ceramic Coating on a Support
JPH0922903A (en) Coating method to substrate for electronics and coating composition
KR880008438A (en) Multilayer Ceramics from Hydrogen Silsesquioxane
JP2005508420A5 (en)
EP1003210A3 (en) A method of forming coatings
KR920009891A (en) Hydrogen Silsesquioxane Resin Fraction and Its Use as Coating Material
US5789325A (en) Coating electronic substrates with silica derived from polycarbosilane
US5492958A (en) Metal containing ceramic coatings
US20100249306A1 (en) Hydrophobic surface coating for electronic and electro-technical components and uses thereof
US20020037369A1 (en) Coating composition for producing electrically conductive coatings
CA1040942A (en) Method of coating oxidized inorganic substrates with polymide
JPH0196265A (en) Coating agent

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee