KR930005143B1 - Process for the preparation of polyester - Google Patents

Process for the preparation of polyester Download PDF

Info

Publication number
KR930005143B1
KR930005143B1 KR1019900008062A KR900008062A KR930005143B1 KR 930005143 B1 KR930005143 B1 KR 930005143B1 KR 1019900008062 A KR1019900008062 A KR 1019900008062A KR 900008062 A KR900008062 A KR 900008062A KR 930005143 B1 KR930005143 B1 KR 930005143B1
Authority
KR
South Korea
Prior art keywords
carbon atoms
compound
polyester
iii
flame
Prior art date
Application number
KR1019900008062A
Other languages
Korean (ko)
Other versions
KR910020063A (en
Inventor
김광태
손영호
이재철
김기원
Original Assignee
제일합섬 주식회사
이수환
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일합섬 주식회사, 이수환 filed Critical 제일합섬 주식회사
Priority to KR1019900008062A priority Critical patent/KR930005143B1/en
Publication of KR910020063A publication Critical patent/KR910020063A/en
Application granted granted Critical
Publication of KR930005143B1 publication Critical patent/KR930005143B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

The fire-retardant polyester is produced by (a) reacting a dimethyl terephthalate, an ethylene glycol, a cpd. of formula (I) as a fire retarding agent, an antimony trioxide, calcium acetate and cobalt acetate in the ester-exchange reactor, (b) reacting the reactant with cpds. of (II) and (III), (c) liquid-polymerizing the reactant with a phosphorous acid to obtain a polymer pellet having 0.4-0.45 intrinsic viscosity, (d) drying, heating the polymer pellet, and (e) solid-polymerizing it. In the formulas, Y=C1-10 hydrocarbon or sulfonyl; X=halogen; k=l=m=n=1-4; R1=R2=C1-5 alkene; R3=R4=C1-4 hydrocarbon; q=1-5; R5=C or C1-5 alkene; R6=R7=C1-6 alkyl. The polyester has a good thermal stability.

Description

열안정성이 우수한 난연성 폴리에스터의 제조방법Manufacturing method of flame retardant polyester with excellent thermal stability

본 발명은 열안정성이 우수한 난연성 폴리에스터의 제조방법에 관한 것이다. 일반적으로, 폴리에스터는 기계적 성질, 열적 성질, 성형성, 화학약품에 대한 저항성이 우수하여 섬유나 필름 또는 플라스틱 제품으로 많이 이용되고 있다. 그러나 폴리에스터는 탄소, 수소, 산소의 3원소로만 이루어져 있기 때문에 연소하기가 용이하며, 특히 섬유로 사용하였을때 화재에 의한 위험성이 크다. 최근 건물의 대형화, 밀집화 현상으로 인한 대형화재 사고를 예방하기 위하여 난연성 폴리에스터를 절실하게 요구하고 있으며 이에 따라 합성섬유 제품에 대한 소방법적 규제가 강화되고 있다.The present invention relates to a method for producing a flame retardant polyester having excellent thermal stability. In general, polyester is excellent in mechanical properties, thermal properties, moldability, chemical resistance and is widely used as a fiber, film or plastic products. However, since polyester is composed of only three elements of carbon, hydrogen, and oxygen, it is easy to burn, and especially when used as a fiber, there is a high risk of fire. Recently, in order to prevent large fire accidents due to the large-scale building and compaction of buildings, flame-retardant polyesters are urgently required, and accordingly, fire-fighting regulations on synthetic fiber products are being tightened.

주요합성섬유인 폴리에틸렌 테레프탈레이트 섬유의 경우 난연성을 부여하는 기법으로는 방사이후 과정에서 섬유표면에 난연제를 코팅하거나 함침시키는 표면처리법등이 사용되어 오다가 그 후 중합 후 방사 이전 단계에서 비반응성 난연제를 첨가하여 혼합방사하는 법 등이 이용되어 왔으나, 상기와 같은 중합 후 후처리 방법은 경제적인 이점이 있는 반면, 반복 사용시 내구성 저하등의 문제로 사용하기가 곤란했다. 그 후 연구되어온 방향은 폴리머 제조시 방염성 물질을 중합공정 중에 투입하여 공중합 내지 브렌드(blend)시켜 원사 자체에 고유한 난연성을 부여하는 기법이 연구되어 오고 있다.In the case of polyethylene terephthalate fiber, which is a main synthetic fiber, as a technique for imparting flame retardancy, a surface treatment method such as coating or impregnating a flame retardant on the surface of the fiber is used in the post-spinning process. Although the method of adding and mixing spinning and the like has been used, the post-polymerization post-treatment method as described above has economic advantages, but it is difficult to use due to problems such as deterioration in durability when repeated use. The direction that has been studied since then has been studied a technique of imparting flame retardancy to the yarn itself by copolymerizing or blending flame retardant materials during the polymerization process during polymerization.

이와같이 중합공정 자체의 변형으로서 난연 폴리에스터를 개발하는 방법은 내구성과 난연성능이 우수하고 물성저하가 후처리 방법에 비해 적어 난연성 폴리에스터의 개발방향은 주로 이러한 전처리 방법에 의존하고 있다. 이러한 방법중에서 폴리에스터의 경우 폴리머쇄중에 난연성 공단량체를 공중합시키는 방법이 가장 우수하다고 보고되고 있다.As described above, the method of developing flame retardant polyester as a modification of the polymerization process itself is excellent in durability and flame retardant performance, and the physical property deterioration is less than that of the post-treatment method. Therefore, the development direction of the flame retardant polyester is mainly dependent on the pretreatment method. Among these methods, polyester has been reported to have the best method of copolymerizing flame retardant comonomer in the polymer chain.

폴리에스터 섬유의 난연화 방법의 구체적인 예로서는,As a specific example of the flame retardant method of the polyester fiber,

Figure kpo00001
Figure kpo00001

등과 같은 할로겐 함유난연제를 중합 또는 방사공정에 첨가하여 폴리머에 난연성을 부여하는 방법 등이 있으나 이는 높은 온도에서 할로겐화합물이 열분해되기 쉽기 때문에 섬유 물성에 많은 영향을 끼치며 할로겐 화합물을 단독으로 사용하기 때문에 효과적인 난연성을 얻으려면 난연제를 다량 첨가하여야 하므로 섬유의 열화를 쉽게 가져온다.There is a method of adding flame retardant to the polymer by adding a halogen-containing flame retardant such as to the polymerization or spinning process, but since it is easy to thermally decompose the halogen compound at a high temperature, it has a great effect on the fiber properties and is effective because the halogen compound is used alone. In order to obtain flame retardancy, a large amount of flame retardant must be added, thereby easily causing fiber deterioration.

또한 이를 개선하기 위해 인화합물을 단독으로 사용하거나 할로겐화합물과 안티몬화합물 등을 혼합하여 폴리머에 난연성을 부여하는 방법이 연구되었으며 그 방법으로서는,In addition, to improve this problem, a method of imparting flame retardancy to a polymer by using a phosphorus compound alone or by mixing a halogen compound and an antimony compound has been studied.

Figure kpo00002
Figure kpo00002

등의 난연제를 중합공정에 투입하여 폴리에스터 주쇄중에 랜덤하게 공중합시키거나 또는 방사공정에 첨가하여 폴리에스터 섬유에 분산시키는 방법이 있는데 이는 난연성에 있어서는 우수한 결과를 가져오나 폴리에스터 섬유와의 상용성 부족, 높은 처리온도에 의한 폴리머의 점도저하, 착색, 작업성저하 등 여러 문제점이 있고, 방사 후 함침하는 방법은 내구성이 저하되는 문제점이 있다.Flame retardants such as these are added to the polymerization process and randomly copolymerized in the polyester main chain or added to the spinning process to disperse them in polyester fibers. This results in excellent flame retardancy, but lacks compatibility with polyester fibers. In addition, there are various problems such as a decrease in viscosity, coloring, and workability of the polymer due to high treatment temperature, and the method of impregnation after spinning has a problem of deterioration in durability.

따라서 본 발명자들은 상술한 종래의 방법들의 제반 문제점을 해결 내지 개량하기 위하여 연구를 거듭한 결과 난연성 화합물과 폴리에스터 체인과의 결합에 의한 공중합체를 형성시키므로서 난연성, 열안정성 및 제반 물성이 향상된 폴리에스터 섬유의 제조방법을 완성하게 되었다.Therefore, the inventors of the present invention have repeatedly studied to solve or improve the problems of the conventional methods described above, thereby forming a copolymer by combining a flame retardant compound with a polyester chain, thereby improving the flame retardancy, thermal stability, and physical properties. The manufacturing method of the ester fiber was completed.

이하 본 발명을 구체적으로 상술하면 다음과 같다.Hereinafter, the present invention will be described in detail.

본 발명은 디올과 디카르본산 및 디카르본산의 에스테르 형성성 유동체로 생성되는 일반적인 폴리에스터의 제조시 하기식(Ⅰ), (Ⅱ)의 화합물과 하기식(Ⅲ) 또는 (Ⅳ)중에서 선택한 화합물을 보통의 폴리에스터 제조공정중의 에스테르 교환반응 또는 중합 반응중에 투입하여 280℃이하의 온도에서 중축합시켜 어느정도 중합도에 이를때까지 액상중합을 진행한 후 이를 다시 고상중합으로써 난연성 폴리에스터 섬유를 제조함을 특징으로 한 것이다.The present invention is a compound selected from formulas (I) and (II) and compounds selected from formulas (III) and (IV) below in the preparation of general polyesters produced from ester-forming fluids of diols with dicarboxylic acids and dicarboxylic acids. Was added during the transesterification or polymerization reaction in the normal polyester manufacturing process, and polycondensed at a temperature of 280 ° C or lower, followed by liquid phase polymerization until reaching a degree of polymerization, followed by solid phase polymerization to prepare a flame retardant polyester fiber. It is characterized by.

Figure kpo00003
Figure kpo00003

(여기서, Y는 탄소수 1-10의 2가의 탄화수소기 또는 설포닐기, X는 할로겐 원소, k, l, m, n은 각각 1-4의 정수, R1과 R2는 각각 탄소수 1-5개의 straight 또는 branched alkene group)(Wherein Y is a divalent hydrocarbon or sulfonyl group having 1-10 carbon atoms, X is a halogen element, k, l, m, n are each an integer of 1-4, R 1 and R 2 are each 1-5 carbon atoms) straight or branched alkene group)

Figure kpo00004
Figure kpo00004

(여기서, R3와 R4는 탄소수 1-4의 2가의 탄화수소기, q는 1-5의 정수, R5는 C 또는 탄소수 1-5의 Alkene기)(Wherein R 3 and R 4 are divalent hydrocarbon groups of 1-4 carbon atoms, q is an integer of 1-5, R 5 is C or an Alkene group having 1-5 carbon atoms)

Figure kpo00005
Figure kpo00005

(여기서, R6, R7은 탄소수 1-6의 알킬기)(Wherein R 6 , R 7 is an alkyl group having 1-6 carbon atoms)

Figure kpo00006
Figure kpo00006

(여기서, R8과 R9은 각각 탄소수 1-6의 알킬기)(Wherein R 8 and R 9 are each an alkyl group having 1-6 carbon atoms)

상기 일반식(Ⅰ)은 본 발명 난연재의 주성분이 되고 일반식(Ⅱ), (Ⅲ), (Ⅳ)는 보조성분으로서, 일반식(Ⅱ)의 화합물은 폴리머의 에이징(ageing) 현상을 지연시켜 폴리머의 변색(특히 황변화)을 방지하는 역할을 하며 일반식(Ⅲ) 또는 (Ⅳ)중에서 선택한 화합물과 혼용하여 사용하면 여러가지 시험결과 상승효과에 의해 난연성물질에 의한 코폴리에스터의 열안정성 저하 및 착색의 방지가 가능하다. 또한 중축합 과정중의 폴리머 및 난연제의 열분해를 최소로 하기 위하여 일정 중합도까지는 액상 중합을 한 후 난연제의 분해 개시온도 이하의 온도에서 다시 원하는 중합도까지 고상중합을 행하여 열안정성, 방사성 및 난연성 등을 향상시켜 고상중합하지 않는 경우에 발생하는 코폴리머 내의 난연제 분해물등에 의한 사절현상을 방지할 수 있으며, 동시에 코폴리머의 열분해를 동반하지 않은 상태로 점도 조절이 용이하다.The general formula (I) is the main component of the flame retardant of the present invention, and the general formulas (II), (III) and (IV) are auxiliary components, and the compound of the general formula (II) delays the aging of the polymer. It serves to prevent discoloration (especially sulfur change) of the polymer and when used in combination with a compound selected from general formula (III) or (IV), the thermal stability of the copolyester due to the flame retardant material is lowered and Coloring can be prevented. In order to minimize thermal decomposition of polymers and flame retardants during the polycondensation process, liquid phase polymerization is carried out up to a certain degree of polymerization, and then solid phase polymerization is performed at a temperature below the decomposition start temperature of the flame retardant to a desired degree of polymerization, thereby improving thermal stability, radioactivity and flame retardancy. It is possible to prevent the trimming phenomenon due to the flame retardant decomposition products in the copolymer generated when the solid phase polymerization does not occur, and at the same time easy to adjust the viscosity without accompanying thermal decomposition of the copolymer.

상기 (Ⅰ), (Ⅱ)의 화합물을 각각 폴리머에 대하여 1-20중량%, 0.05-1중량% 더욱 좋기로는 7-13중량%, 0.1-0.3중량%를 에스테르교환반응중에 투입하고 상기(Ⅲ) 또는 (Ⅳ)중에서 선택한 화합물을 상기식(Ⅱ)와의 비율이 1 : 0.1-1 : 1 더욱 좋기는 1 : 0.2-1 : 0.5의 비율로 에스테르 교환반응 후에 첨가하면 상승효과에 의한 코폴리에스터의 열안정성을 향상시킬 수 있으며, 또한 일반식(Ⅰ)의 공중합율을 높이기 위한 본 발명에서의 디올의 투입방법은 에스테르 교환반응 초기에 최소한의 양을 투입하는 것이 바람직한데 이것은 일반식(Ⅰ)의 화합물과 디카르본산 및 그의 에스테르 형성성 유도체와의 반응기회를 최대한 부여할 수 있다. 상기 화합물들의 투입시기는 일반식(Ⅰ)의 경우 에스테르 교환반응 초기, 일반식(Ⅱ)는 에스테르 반응중기 더욱 정확히 기술하자면 메탄올 유출량이 전체유출량의 15-20%에 도달했을때 첨가하고, 일반식(Ⅲ), (Ⅳ)는 에틸렌 글리콜 회수공정 직후 중축합반응 전에 첨가하는 것이 바람직하다.1-20% by weight, 0.05-1% by weight, more preferably 7-13% by weight, 0.1-0.3% by weight of the compounds of (I) and (II), respectively, were added to the polymer during the transesterification reaction. Copoly by the synergistic effect when the compound selected from III) or (IV) is added after the transesterification reaction at a ratio of 1: 0.2-1: 0.5, which is more preferably 1: 0.1-1: 1 In order to improve the thermal stability of the ester, and to increase the copolymerization ratio of the general formula (I), it is preferable to add a minimum amount at the beginning of the transesterification reaction. The reaction time of the compound of) with dicarboxylic acid and its ester-forming derivative can be best provided. When the compound is added, the initial stage of the transesterification reaction in the general formula (I) and the general formula (II) are added when the methanol outflow reaches 15-20% of the total flow rate. (III) and (IV) are preferably added immediately after the polycondensation reaction immediately after the ethylene glycol recovery step.

상기와 같은 방법으로 초기반응 온도 140-235℃, 후기반응 온도 240-280℃, 진공도 0.1-0.2mmHg에서 액상중합을 진행하여 원하는 최종 고유점도의 60-80%에 도달하였을때 즉 액상중합체의 고유점도가 0.4-0.5에 도달했을때 이를 펠레트로 만들어 건조하여 180-220℃에서 0.5-1.5시간 예비결정화를 시키고 170-190℃정도에서 1차 가열하여 수분율이 0.02중량%이하로 만든 후, 210-235℃에서 2차 가열하여 고상중합 온도에 도달시킨 후 200-230℃에서 고상중합을 행한 후 상온에서 질소개스로 냉각하였다.Liquid polymerization at the initial reaction temperature 140-235 ℃, late reaction temperature 240-280 ℃, vacuum 0.1-0.2mmHg in the same manner as described above when the 60-80% of the final final intrinsic viscosity of the desired liquid polymer When the viscosity reaches 0.4-0.5, it is made of pellets and dried, precrystallized at 180-220 ° C for 0.5-1.5 hours, and first heated at 170-190 ° C to make the moisture content less than 0.02% by weight. After heating at 235 ° C. for 2 hours to reach a solid phase polymerization temperature, the solid phase polymerization was performed at 200-230 ° C., followed by cooling with nitrogen gas at room temperature.

제조된 난연성 폴리에스터 중합체의 고유점도는 30℃에서 오르토 클로로 페놀용액 중에서 측정되었으며 융점 및 유리전이온도 등은 미국 듀퐁사의 모델 990시차주사열분석계를 이용하여 구했다. 공중합체의 착색정도는 자동식 측색 색차계(ND-101 D형)를 이용하여 L값(명도) 및 b값(황도)을 측정하였고, 열적 안정성을 평가하기 위해 제조된 중합체를 회전식 전기건조기(240±5℃)로 열처리하여 색상을 표준색 비교, 판정하여 내열성을 결정하였다. 상기 폴리에스터 중합체는 방사후 연신하여 편물로 제조후에 난연성이 평가되었는데 한계산소지수(L.O.I)값은 ASTM D-2863-70에 의거한 산소계수가연성 게이지로 측정되었고, 접염횟수 등은 JIS L-1092 D법에 의거 마이크로 버너에 의한 45°코일법으로 각각 평가하였다. 또한 방사성은 방사시 사절정도를 시간당 사절수로 표시하였다.The intrinsic viscosity of the prepared flame retardant polyester polymer was measured in an ortho chloro phenol solution at 30 ° C., and the melting point and glass transition temperature were determined using a model 990 differential scanning thermal analyzer of DuPont, USA. The coloration degree of the copolymer was measured by using an automatic colorimetric colorimeter (ND-101 D type) and the L value (brightness) and b value (yellowness), and the polymer prepared for evaluating thermal stability was subjected to a rotary electric dryer (240). Heat treatment was performed to determine the heat resistance. The polyester polymer was stretched after spinning and evaluated for flame retardancy after being manufactured into a knitted fabric. The limit oxygen index (LOI) value was measured by a ductility gauge based on an oxygen coefficient based on ASTM D-2863-70, and the number of contact salts was JIS L-1092. Based on the D method, it evaluated by the 45 degree coil method by the micro burner, respectively. Radioactivity also indicated the number of rounds in the rounds per hour.

이하 본 발명을 실시예에 의거 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail with reference to Examples.

[실시예 1]Example 1

디메틸 텔레프탈레이트 6068부, 에틸렌 글리콜 1547부, 난연제(Ⅰ) 690부, 삼산화 안티몬 3.5부, 초산칼슘 4부, 코발트아세테이트 0.3부 등을 에스테르 교환반응기에 넣고 가열 교반을 실시하고 메탄올 유출량이 약 400㎖(반응기 내부온도 : 약 190-200℃)에 도달했을때 화합물(Ⅱ) 7부와 에틸렌 글리콜 2405부를 투입한 후 반응기 온도를 230-235℃까지 서서히 가열하면서 메탄올을 완전히 제거한 뒤 화합물(Ⅲ)을 화합물(Ⅱ)와의 비율이 1 : 0.25의 중량비로 적당량의 에틸렌 글리콜에 슬러리화하여 반응기 내부에 투입시킨 후 반응을 완료시켰다. 생성물을 중합반응조로 이행하여 아인산 3.4부를 투입시킨 뒤 0.1-0.2mmHg하의 감압하에 반응기 내부온도가 280℃를 넘지 않도록 하여 액상 중합반응을 완료하여 고유점도 0.4-0.45의 폴리머를 얻었다. 생성된 폴리머펠레트를 건조한 후 180℃정도에서 질소분위기하에서 예비결정화를 시키면서 가열하여 수분율이 0.02% 이하로 되었을때 2차 가열을 실시하여 200-230℃의 온도에서 고상중합을 하여 생성된 폴리머를 상온에서 질소개스로 냉각하여 최종 폴리머를 제조한 후 방사 및 연신하여 상기 여러 시험을 행하였다. 그 세부 결과는 표 1과 같다.6068 parts of dimethyl telephthalate, 1547 parts of ethylene glycol, 690 parts of flame retardant (I), 3.5 parts of antimony trioxide, 4 parts of calcium acetate, 0.3 parts of cobalt acetate were added to a transesterification reactor, and the mixture was heated and stirred. When (reactor internal temperature: about 190-200 ° C.), 7 parts of compound (II) and 2405 parts of ethylene glycol were added, and methanol was completely removed while gradually heating the reactor temperature to 230-235 ° C., and then compound (III) was removed. Compound (II) was slurried in an appropriate amount of ethylene glycol at a weight ratio of 1: 0.25 and charged into the reactor to complete the reaction. The product was transferred to a polymerization vessel, 3.4 parts of phosphorous acid was added thereto, and the liquid phase polymerization was completed under a reduced pressure of 0.1-0.2 mmHg so as not to exceed 280 ° C. to obtain a polymer having an intrinsic viscosity of 0.4-0.45. After drying the polymer pellets, they were pre-crystallized under nitrogen atmosphere at about 180 ° C, and heated under secondary heating when the moisture content was less than 0.02%. The polymer was formed by solid-phase polymerization at a temperature of 200-230 ° C. After the final polymer was prepared by cooling with nitrogen gas at room temperature, various tests were performed by spinning and stretching. The detailed results are shown in Table 1.

[실시예 2]Example 2

화합물(Ⅲ)을 화합물(Ⅱ)와의 비율이 1 : 0.5의 중량비로 한것 이외에는 실시예 1과 동일하게 실시한 후 상기 여러 시험을 행하였다. 그 결과는 표 1과 같다.The above various tests were carried out in the same manner as in Example 1 except that the ratio of Compound (III) to Compound (II) was 1: 0.5. The results are shown in Table 1.

[실시예 3]Example 3

화합물(Ⅲ) 대신에 화합물(Ⅳ)를 화합물(Ⅱ)와의 비율이 1 : 0.25의 중량비로 한 것 이외에는 실시예 1과 동일하게 실시한 후 상기 여러 시험을 행하였다. 그 결과는 표 1과 같다.The above various tests were carried out in the same manner as in Example 1 except that Compound (IV) was replaced with Compound (II) in a weight ratio of 1: 0.2 in place of Compound (III). The results are shown in Table 1.

[실시예 4]Example 4

화합물 (Ⅲ) 대신에 화합물(Ⅳ)를 화합물(Ⅱ)와의 비율이 1 : 0.5의 중량비로 한 것 이외에는 실시예 1과 동일하게 실시한 후 상기 여러 시험을 행하였다. 그 결과는 표 1과 같다.The above various tests were carried out in the same manner as in Example 1 except that Compound (IV) was replaced with Compound (II) in a weight ratio of 1: 0.5 in place of Compound (III). The results are shown in Table 1.

[비교실시예 1]Comparative Example 1

화합물 (Ⅲ), (Ⅳ)를 전혀 투입하지 않은 것 이외에는 실시예 1과 동일하게 실시한 후 상기 여러 시험을 행하였다. 그 결과는 표 1과 같다.The above various tests were carried out in the same manner as in Example 1 except that Compounds (III) and (IV) were not added at all. The results are shown in Table 1.

[비교실시예 2]Comparative Example 2

화합물 (Ⅲ)를 전혀 투입하지 않고 화합물(Ⅲ)만을 2부 투입한 것 이외에는 실시예 1과 동일하게 실시한 후 상기 여러 시험을 행하였다. 그 결과는 표 1과 같다.The above various tests were carried out in the same manner as in Example 1 except that 2 parts of Compound (III) was not added without any compound (III). The results are shown in Table 1.

[비교실시예 3]Comparative Example 3

화합물 (Ⅱ)를 전혀 투입하지 않고 화합물(Ⅳ)만을 2부 투입한 것 이외에는 실시예 1과 동일하게 실시한 후 상기 여러 시험을 행하였다. 그 결과는 표 1과 같다.The above various tests were carried out in the same manner as in Example 1 except that 2 parts of Compound (IV) were not added without any compound (II). The results are shown in Table 1.

[비교실시예 4]Comparative Example 4

화합물 (Ⅱ), (Ⅲ), (Ⅳ)를 전혀 투입하지 않은 것 이외에는 실시예 1과 동일하게 실시한 후 상기 여러 시험을 행하였다. 그 결과는 표 1과 같다.The above various tests were carried out in the same manner as in Example 1 except that Compounds (II), (III), and (IV) were not added at all. The results are shown in Table 1.

[비교실시예 5]Comparative Example 5

고상중합을 하지 않고 액상중합으로 반응을 완결시킨 것 이외에는 실시예 1과 동일하게 실시한 후 상기 여러 시험을 행하였다. 그 결과는 표 1과 같다.The various tests were carried out in the same manner as in Example 1 except that the reaction was completed by liquid phase polymerization without performing solid phase polymerization. The results are shown in Table 1.

[비교실시예 6]Comparative Example 6

에틸렌 글리콜 3740부를 에스테르 교환반응 초기에 넣고 화합물 (Ⅰ), (Ⅱ), (Ⅲ), (Ⅳ)와 코발트 아세테이트를 전혀 첨가하지 않으며 고상중합하지 않는 정규 PET제조방법으로 행한 것 이외에는 실시예 1과 동일하게 실시한 후 상기 여러 시험을 행하였다. 그 결과는 표 1과 같다.3740 parts of ethylene glycol was added at the beginning of the transesterification reaction, except that the compounds (I), (II), (III), (IV) and cobalt acetate were not added at all, and were subjected to a regular PET production method without solid phase polymerization. After the same, the above various tests were performed. The results are shown in Table 1.

표 1에서 알 수 있듯이 실시예의 경우는 정규 PET제조 방법인 비교실시예 6과 비교할 경우 고유점도 저하등의 결점이 가장 적고 방사성, 색조열적 안정성 및 난연성 등이 가장 우수한 경향을 보이고 있다.As can be seen from Table 1, in the case of Examples, the defects such as intrinsic viscosity decrease are the least, and the radioactivity, color thermal stability, and flame retardancy are most excellent in comparison with Comparative Example 6, which is a normal PET manufacturing method.

[표 1]TABLE 1

Figure kpo00007
Figure kpo00007

Claims (3)

디올과 디카르본산 또는 그의 에스테르의 반응으로 생성되는 폴리에스터의 제조시 하기 일반식(Ⅰ)의 화합물을 공중합시켜서 난연성 폴리에스터를 제조하는 경우 하기 일반식 (Ⅱ), (Ⅲ), (Ⅳ)로 표시되는 화합물을 투입하고 최종 고유점도의 60-80%를 초기 고유점도로 하여 고상 중합하는 것을 특징으로 하는 열안정성이 우수한 난연성 폴리에스터의 제조방법.When preparing a polyester produced by the reaction of diol with dicarboxylic acid or ester thereof, when preparing a flame retardant polyester by copolymerizing a compound of the following general formula (I), the following general formulas (II), (III) and (IV) A method for producing a flame-retardant polyester having excellent thermal stability, characterized in that the solid-phase polymerization of the compound represented by the formula and 60-80% of the final intrinsic viscosity as the initial intrinsic viscosity.
Figure kpo00008
Figure kpo00008
(여기서, Y는 탄소수 1-10의 2가의 탄화수소기 또는 설포닐기, X는 할로겐 원소, k, l, m, n은 각각 1-4의 정수, R1과 R2는 각각 탄소수 1-5개의 straight 또는 branched alkene group).(Wherein Y is a divalent hydrocarbon or sulfonyl group having 1-10 carbon atoms, X is a halogen element, k, l, m, n are each an integer of 1-4, R 1 and R 2 are each 1-5 carbon atoms) straight or branched alkene group).
Figure kpo00009
Figure kpo00009
(여기서, R3와 R4는 탄소수 1-4의 2가의 탄화수소기, q는 1-5의 정수, R5는 C 또는 탄소수 1-5의 Alkene기)(Wherein R 3 and R 4 are divalent hydrocarbon groups of 1-4 carbon atoms, q is an integer of 1-5, R 5 is C or an Alkene group having 1-5 carbon atoms)
Figure kpo00010
Figure kpo00010
(여기서, R6, R7은 탄소수 1-6의 알킬기)(Wherein R 6 , R 7 is an alkyl group having 1-6 carbon atoms)
Figure kpo00011
Figure kpo00011
(여기서, R8과 R9은 각각 탄소수 1-6의 알킬기)(Wherein R 8 and R 9 are each an alkyl group having 1-6 carbon atoms)
제1항에 있어서, 일반식(Ⅰ), (Ⅱ)의 화합물을 에스테르 교환반응중에 최종 폴리머에 대하여 각각 1-20중량%, 0.05-1중량% 투입함을 특징으로 하는 열안정성이 우수한 난연성 폴리에스터의 제조방법.The flame-retardant poly with excellent thermal stability according to claim 1, wherein the compounds of general formulas (I) and (II) are added in an amount of 1-20% by weight and 0.05-1% by weight with respect to the final polymer during the transesterification reaction. Process for preparing esters. 제1항에 있어서, 일반식(Ⅲ) 또는 (Ⅵ)의 화합물을 일반식(Ⅱ) 화합물과의 중량비율이 1 : 0.1-1 : 1로 하여 에틸렌 글리콜 회수 공정 직후 투입하는 것을 특징으로 하는 열안정성이 우수한 난연성 폴리에스터의 제조방법.2. The heat according to claim 1, wherein the compound of formula (III) or (VI) is added immediately after the ethylene glycol recovery process with a weight ratio of 1: 0.1-1: 1. Method for producing a flame retardant polyester with excellent stability.
KR1019900008062A 1990-05-31 1990-05-31 Process for the preparation of polyester KR930005143B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019900008062A KR930005143B1 (en) 1990-05-31 1990-05-31 Process for the preparation of polyester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019900008062A KR930005143B1 (en) 1990-05-31 1990-05-31 Process for the preparation of polyester

Publications (2)

Publication Number Publication Date
KR910020063A KR910020063A (en) 1991-12-19
KR930005143B1 true KR930005143B1 (en) 1993-06-16

Family

ID=19299686

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019900008062A KR930005143B1 (en) 1990-05-31 1990-05-31 Process for the preparation of polyester

Country Status (1)

Country Link
KR (1) KR930005143B1 (en)

Also Published As

Publication number Publication date
KR910020063A (en) 1991-12-19

Similar Documents

Publication Publication Date Title
SU850010A3 (en) Method of preparing linear polyesters
US4035343A (en) Flame resistant synthetic linear polyesters and shaped structures made thereof
US3962194A (en) Polyesters containing structural units derived from phosphonic acids or estere
KR100404666B1 (en) Flame Retardant Polyester Copolymer
US4101528A (en) Copolyesters of ethylene 2,6-naphthalene dicarboxylate and halogenated comonomers
JPH05230345A (en) Flame-resistant polyester
US4059546A (en) Textile fiber blend comprising cellulosic fibers and ethylene 2,6-naphthalene dicarboxylate-halogenated comonomers copolyester fibers
CA2183359A1 (en) Flame-retardant recycled polyester copolymers
KR100737977B1 (en) Flame retardant polyester fabric and manufacturing method thereof
KR100449383B1 (en) Manufacturing method of fire retardant polyester fiber having excellent mechanical properties
KR930005143B1 (en) Process for the preparation of polyester
US3874157A (en) Flame-retardant fiber blend
US4045513A (en) Ethylene 2,6-naphthalene dicarboxylated-alkylene-2,5 dibromoterephthalate flame-retardant copolyesters
US4043981A (en) Copolyesters derived from ethoxylated 3,5-dibromo-4-hydroxybenzoic acid
US3887523A (en) Fiber-forming copolyester compositions from brominated ethoxylated hydroquinone
KR0175691B1 (en) Process for preparing flame retardant polyester
US4104259A (en) Fireproof polyesters from brominated dihydroxy alkoxy-diphenyl sulfones
US4028308A (en) Poly(cyclohexanedimethylene dibromoterephthalate)
US3966682A (en) Poly(tetramethylene dibro moterephthalate)
KR100308541B1 (en) Manufacturing of Nonflammable Polyester Fiber
KR930011322B1 (en) Process for preparation of fire retardant polyester fiber
CA1059676A (en) Flame retardant polyester compositions
KR910003564B1 (en) Preparation of polyester
US4025491A (en) Poly(tetramethylene dibromoterephthalate) yarns
JPS62172017A (en) Production of fire-resistant polyester

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20050408

Year of fee payment: 13

LAPS Lapse due to unpaid annual fee