KR840000974B1 - Oil return device - Google Patents

Oil return device Download PDF

Info

Publication number
KR840000974B1
KR840000974B1 KR1019800001837A KR800001837A KR840000974B1 KR 840000974 B1 KR840000974 B1 KR 840000974B1 KR 1019800001837 A KR1019800001837 A KR 1019800001837A KR 800001837 A KR800001837 A KR 800001837A KR 840000974 B1 KR840000974 B1 KR 840000974B1
Authority
KR
South Korea
Prior art keywords
valve
compressor
refrigerant
pressure
lubricating oil
Prior art date
Application number
KR1019800001837A
Other languages
Korean (ko)
Other versions
KR830003064A (en
Inventor
이 · 영 유젠
Original Assignee
캐리어 코퍼레이션
페이지 엘 · 파라스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 캐리어 코퍼레이션, 페이지 엘 · 파라스코 filed Critical 캐리어 코퍼레이션
Publication of KR830003064A publication Critical patent/KR830003064A/en
Application granted granted Critical
Publication of KR840000974B1 publication Critical patent/KR840000974B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0207Lubrication with lubrication control systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/128Crankcases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Compressor (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

The arrangement is intended to return oil from the pressure side(48) of a refrigerant compressor to the inlet side(50). The outlet duct of the compressor is connected to the inlet duct(48,50) via a normally closed valve(28). The valve closure member(62) is perated by a pressure-sensitive unit(56) which responds to pressure in the inlet duct so as to open the valve when that pressure drops below a predetermined level. The inlet duct may be connected to the oil sump. This connection may be via a normally closed valve which opens when the amount of oil in the inlet duct exceeds a predetermined amount.

Description

윤활유 반환장치Lubricant Return Device

제1도는 본 발명을 사용한 냉동장치의 개략도이며 냉매압축기의 부분 단면도.1 is a schematic view of a refrigerating device using the present invention and a partial cross-sectional view of a refrigerant compressor.

제2도는 제1도의 냉매압죽기에 사용되는 밸브의 부분 단면도.2 is a partial cross-sectional view of the valve used in the refrigerant press of FIG.

본 발명은 냉동장치, 특히 냉동장치에 있어서 상기 냉동장치에 걸리는 부하에 관계엇이 연속적으로 구동되는 냉매압축기용 윤활유 반환장치에 관한 것이다.The present invention relates to a lubricating oil return device for a refrigerant compressor in which a refrigeration device, in particular a refrigerating device, is continuously driven in relation to the load applied to the freezing device.

냉동장치에 설치된 압축기가 냉동장치에 걸리는 부하에 관계없이 연속적으로 구동되는 냉동장치는 많이 있다. 예를 들면, 버스나 승용차에 사용되는 차량용 냉동장치에 있어서는, 압축기가 직접 차량의 기관에 연결되어 있으며, 이 기관이 운전되고 있는 한 상기 압축기는 연속적으로 작동한다.There are many refrigeration apparatuses which are continuously driven regardless of the load placed on the refrigeration apparatus by the compressor installed in the freezing apparatus. For example, in a vehicle refrigeration apparatus used for a bus or a passenger car, the compressor is directly connected to the engine of the vehicle, and the compressor operates continuously as long as the engine is operated.

연속 작동 냉동장치에 있어서는 변동하는 부하조건에 대응하는 냉동장치의 냉동부하 처리능력을 변화하시키는데 사용되는 용량 제어 장치가 있다.BACKGROUND OF THE INVENTION In a continuously operated refrigeration apparatus, there is a capacity control apparatus used to change the refrigeration load processing capacity of a refrigeration apparatus corresponding to varying load conditions.

이런 용량 제저장치중 하나에 있어서 압축기로 흐르는 냉매가스의 흐름을 제어하기 위해 냉매압축기 상류측의 냉매흡입도관내에 밸브를 설치한 것이 있다. 이 흡입가스 제어밸브는 냉동장치에 걸리는 부하의 크기에 대응하여 냉매의 유량을 변화시키는 것이며, 부하가 비교적 높은 경우에는 개방되어 압축기로 흐르는 냉매의 유량을 증대시키며, 부하가 비교적 낮은 조건에서는 패쇄되어 압축기로 향한 가스 흐름을 감소시킨다.In one of these capacity storage devices, a valve is provided in the refrigerant suction conduit upstream of the refrigerant compressor to control the flow of refrigerant gas flowing to the compressor. The intake gas control valve changes the flow rate of the refrigerant in response to the magnitude of the load on the refrigerating device. The inlet gas control valve opens when the load is relatively high, increases the flow rate of the refrigerant flowing to the compressor, and closes it under a relatively low load. Reduce gas flow to the compressor.

압축기 동작중에, 비교적 소량의 윤활유가 피스톤 실린더를 경유하여, 예를 들면 압축기 실린더 헤드에 형성되어 있는 토출가스실 같은 매니포울드내로 배출된다. 정산적인 작동조건으로 귀환되면, 압축기의 실린더로부터 배출된 윤활류는 비교적 고속도, 고질량 유량의 냉매가스와 함께 냉동장치를 통하여 인출되어 압축기의 윤활유 저장조로 귀환된다. 그러나 냉도부하가 비교적 낮은 경우와 같이 냉매의 질량 유량이 비교적 적을때는 비교적 비중이 큰 윤활유를 연행하는데 충분한 만큼의 냉매가스가 존재하지 않는다. 따라서, 실리더로부터 토출가스실내로 유입하는 윤홀유가 상기 토출가스실내에 축적한다. 예를 들면, 냉동부하가 낮은 조건일때와 같이 냉매의 질량유량이 비교적 낮은 조건하에서 오랜시간동안 압축기가 계속 작동되며 윤활유가 거의 모든 토출가스실내에 축적하고 따라서 압축기는 윤활유 고갈상태에 이르게 된다. 압축기의 윤활유 고갈은 윤활을 필요로 하는 압축기의 베어링이나 기타 운동부붐을 손상시키는 결과를 초래한다. 또 냉동장치를 정지시키면 압축기의 토출실내에 축적된 윤활유가 압축기으 ㅣ실린더내로 유출된다. 이 상태에서 냉동장치를 재시동시키면 실린더내의 비압축성 윤활유 덩어리가 압축기의 밸브, 피스톤, 로드 또는 가스켓을 손상시킬 염려가 있다. 따라서, 냉매가스의 질량 유량이 비교적 낮을때 윤활유가 반환장치를 구비한 냉매흡입압력에서 작동하는 압축기의 제2부분(흡입실)으로 반환하기 위한 윤활유 반환 장치를 구비한 냉매 압축기를 갖는 냉동장치를 제공하는 것이다. 압축기의 제1부분에 축적된 윤활유를 제2부분으로 공급하기 위해서 제1부분과 제2부분을 도관으로 연결한다. 이 도관을 통과하는 윤활유의 흐름을 제어하기 위해 상기 도관내에 평상시에는 폐쇄되어 있는 밸브를 설치한다. 이 밸브는 압축기로 흐르는 냉매가스의 유량을 표시하는 냉동장치의 감지된 작동변수에 대응하여 개방되도록 한다.During compressor operation, a relatively small amount of lubricant is discharged via a piston cylinder into a manifold, such as a discharge gas chamber formed in the compressor cylinder head, for example. When returning to the normal operating conditions, the lubricating oil discharged from the cylinder of the compressor is taken out through the refrigerating device together with the refrigerant gas of a relatively high speed and high mass flow rate and returned to the lubricating oil storage tank of the compressor. However, when the mass flow rate of the refrigerant is relatively low, such as when the cold load is relatively low, there is not enough refrigerant gas to entrain the lubricant having a relatively high specific gravity. Therefore, the lubricating oil flowing from the cylinder into the discharge gas chamber accumulates in the discharge gas chamber. For example, the compressor continues to operate for a long time under a condition where the refrigerant mass flow rate is relatively low, such as when the refrigeration load is low, and the lubricant accumulates in almost all discharge gas chambers, thereby causing the compressor to run out of lubricant. Depletion of the lubricant in the compressor results in damage to the bearings or other moving booms of the compressor requiring lubrication. When the refrigeration unit is stopped, the lubricant oil accumulated in the discharge chamber of the compressor flows into the cylinder. Restarting the refrigeration unit in this state may cause the incompressible lubricating oil in the cylinder to damage the valve, piston, rod or gasket of the compressor. Therefore, when the mass flow rate of the refrigerant gas is relatively low, a refrigeration apparatus having a refrigerant compressor having a lubricating oil return device for returning the lubricating oil to the second part (suction chamber) of the compressor operating at the refrigerant suction pressure having the return device is provided. To provide. The first part and the second part are connected by conduits to supply the lubricating oil accumulated in the first part of the compressor to the second part. In order to control the flow of lubricating oil through the conduit, a normally closed valve is provided in the conduit. The valve allows the valve to open in response to the sensed operating parameters of the refrigeration unit indicating the flow rate of refrigerant gas to the compressor.

이하, 첨부도면을 참조하여 본 발명의 실시예를 설명한다.Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

첨부도면을 참조하면, 본 발명을 사용한 냉동장치(10)가 도시되어 있다. 냉동장치(10)는 배출관(14)에 의해 응축기(16)에 접속된 냉매압축기(12)를 구비하고 있다. 냉매압축기(12)로부터 토출된 공ㅂ냉매가스는 응축기(16)내에서 예를들면 공기와 같은 저온 매체와 열교환관계를 이루어 통과시킴으로써 고압 액체냉매로 변환된다. 이 고압액체냉미는 응축기(16)로부터 도관(18), 팽창장치(20)를 통하여 냉매증발기(22)로 보내진다. 팽창장치(20)는 공지의 형식인 열팽창밸브로서 도시되어 있지만 이 밸브 대신에 예를들면 모세관과 같은 적당한 팽창장치를 사용해도 좋다. 액체냉매의 압력은 팽창장치(20)를 통과할때 저하되며 비교적 저압의 액체 냉매와 증기냉매의 혼합물이 생간다. 이 혼합물은 냉매중발기(22)로 통과되어 증발기내에서 예를 들면 공기등의 냉각해야할 매체로부터 열을 흡수함으로써 완전히 증발된다. 이 저압증기 냉미는 도관(24), 교축밸브(26)를 통하여 냉매 압축기(12)의 매니포울드(41)내로 돌아간다. 교축밸브 (26)는 냉동장치(10)에 걸리는 냉동부하에 대응하여 압축기의 흡입측으로 향한 냉매의 흐름을 조절한다. 즉 교측밸브(26)는 냉동장치(10)의 부하가 감소되면 냉매의 유량을 감소시키고 냉동장치의 부하가 증대되면 냉매의 유량을 증대시키는 역할을 한다. 교축밸브(26)를 통하여 냉동장치(10)에 걸리는 냉동부하의 변화에 응답하여 적당한 냉동부하에 대응하는 냉동장치를 통과하는 냉매의 질량유량을 제어하기 위한 적당한 대체장치로 치환할 수 있다. 이상 서술한 냉동장치는 공지의 관용적 기계식 냉동장치이다.Referring to the accompanying drawings, a refrigeration apparatus 10 using the present invention is shown. The refrigerating device 10 includes a refrigerant compressor 12 connected to the condenser 16 by a discharge pipe 14. The air-cooled refrigerant gas discharged from the refrigerant compressor 12 is converted into a high pressure liquid refrigerant by passing through a heat exchange relationship with a low temperature medium such as, for example, air in the condenser 16. The high pressure liquid chiller is sent from the condenser 16 to the refrigerant evaporator 22 through the conduit 18 and the expansion device 20. The expansion device 20 is shown as a thermal expansion valve of known type, but a suitable expansion device such as a capillary tube may be used instead of this valve. The pressure of the liquid refrigerant decreases as it passes through the expansion device 20, resulting in a mixture of liquid refrigerant and vapor refrigerant of relatively low pressure. This mixture is passed through the refrigerant decanter 22 and completely evaporated in the evaporator by absorbing heat from a medium to be cooled, such as air. The low pressure steam cold rice returns to the manifold 41 of the refrigerant compressor 12 through the conduit 24 and the throttling valve 26. The throttling valve 26 adjusts the flow of the refrigerant toward the suction side of the compressor in response to the refrigeration load on the refrigerating device 10. That is, the throttle valve 26 reduces the flow rate of the refrigerant when the load of the refrigerating device 10 is reduced, and increases the flow rate of the refrigerant when the load of the refrigerating device is increased. In response to a change in the refrigeration load on the refrigerating device 10 through the throttling valve 26, a replacement device suitable for controlling the mass flow rate of the refrigerant passing through the refrigerating device corresponding to the appropriate refrigeration load may be substituted. The above-mentioned freezer is a well-known conventional mechanical freezer.

냉매압축기(12)는 일반적으로, 연결로드(39)에 의해 크랭크축(38)의 편심부분에 연결된 피스톤(37)을 가진 1개 또는 복수개의 실린더(36)를 구비하고 있다. 크랭크축(38)의 회전에 의해서 피스톤(37)을 실린더(36)내에서 왕복시킨다. 냉매압축기 (12)의 각 실린더는 실린더 브럭(30)에 의해 고정되어 있다. 실린더 블럭(30)에는 한개 또는 복수의 실린더 헤드(32)가 설치되어 있다. 각 실린더 헤드(32)가 설치되어 있다. 각 실린더 헤드(32)는 흡입실(44)과 토출실(46)을 형성한다. 각 흡입실(44)은 흡입매니포울드(41)와 연결되어 있으며, 각 토출실(46)은 토출매니포울드(43)와 연결되어 있다. 실린더 헤드(32)와 실린더(36) 사이에는 밸브판(42)이 설치되어 있다.The refrigerant compressor 12 generally includes one or a plurality of cylinders 36 having a piston 37 connected to an eccentric portion of the crankshaft 38 by a connecting rod 39. The piston 37 is reciprocated in the cylinder 36 by the rotation of the crankshaft 38. Each cylinder of the refrigerant compressor 12 is fixed by a cylinder block 30. The cylinder block 30 is provided with one or a plurality of cylinder heads 32. Each cylinder head 32 is provided. Each cylinder head 32 forms a suction chamber 44 and a discharge chamber 46. Each suction chamber 44 is connected to a suction manifold 41, and each discharge chamber 46 is connected to a discharge manifold 43. The valve plate 42 is provided between the cylinder head 32 and the cylinder 36.

밸브판(42)은 흡입실(44)로부터 실린더로 흐르는 냉매 가스의 흐름을 제오하기 위한 적당한 흡입밸브(도시안됨)와, 실린더에서 토출실(46)로 흐르는 실린더내에서 압축된 냉매가스의 유랴을 제어하기 위한 토출밸브(도시안됨)를 구비하고 있다. 흡입실 (44)에 연결되는 제1도관(50)과 토출실(46)에 연결되는 제2도관밸브(48)을 갖는 1개 또는 복수개의 밸브(28)를 설치한다. 이 밸브에 대해서는 나중에 상술한다.The valve plate 42 has a suitable suction valve (not shown) for controlling the flow of refrigerant gas flowing from the suction chamber 44 to the cylinder, and the flow of refrigerant gas compressed in the cylinder flowing from the cylinder to the discharge chamber 46. A discharge valve (not shown) for controlling the charge is provided. One or more valves 28 having a first conduit 50 connected to the suction chamber 44 and a second conduit valve 48 connected to the discharge chamber 46 are provided. This valve will be described later.

실린더 불럭(30)은 윤활유(40)를 저장하는 저장조(49)를 형성하고 있다. 이 윤활유는 냉매압축기(12)의 윤활하기 위해 사용된다. 흡입매니포울드(41)와 저장조 (49) 사이에는 역지밸브(52)가 설치되어 있다.The cylinder block 30 forms the reservoir 49 which stores the lubricating oil 40. This lubricant is used to lubricate the refrigerant compressor 12. A check valve 52 is provided between the suction manifold 41 and the reservoir 49.

제2도는 참조하면, 제2도는 밸브(28)의 상세도인데, 상기 밸브(28)는 밸브본체 (51)와 그 내부에 설치된 벨로우즈(51)와 그 내부에 설치된 벨로우즈(56)와 벨로우즈 한쪽면에 힘을 작용시키는 스프링(58)과, 이 스프링에 의한 힘을 제어하는 적당한 조절나사(54)와 벨로우즈(56)에 따라 함께 이동하도록 설치된 U 자형 브래키트 부재(60)와 상기 브래키트 부재의 U자의 한쪽 다리부분에 설치된 니이들 밸브(62)로 구성된다. 이러하여 벨로우즈(56)는제2도관(48)을 통하여 밸브실(61)내로 유입하고 계속해서 제1도관(50)내로 흐른다. 윤활유의 흐름은 토출실(46) 흡입실(44) 사이의 압력차에 의해 발생한다.2 is a detailed view of the valve 28. The valve 28 has a valve body 51 and a bellows 51 installed therein, and a bellows 56 and a bellows installed therein. A spring 58 for exerting a force on the surface, an appropriate adjustment screw 54 for controlling the force by the spring, and a U-shaped bracket member 60 and the bracket member installed to move together according to the bellows 56; It consists of a needle valve 62 is installed on one leg of the U-shaped. Thus, the bellows 56 flows into the valve chamber 61 through the second conduit 48 and continues to flow into the first conduit 50. The flow of lubricating oil is generated by the pressure difference between the discharge chamber 46 and the suction chamber 44.

제1도관(50)에 의한 흡입압력으로 냉매가스가 밸브실(61)에 공급되어 스프링 (58)에 의한 힘에 대항하는 함을 벨로우즈(56)에 미치게 된다.At the suction pressure by the first conduit 50, the refrigerant gas is supplied to the valve chamber 61 to impart to the bellows 56 against the force of the spring 58.

먼저 설명한 바와 같이, 냉매압축기 작동시에 교축밸브(26)는 냉동장치(10)에 걸리는 냉동부하에 대응하여 냉매흐름을 조정한다. 교축밸브(26)는 특히 냉동장치에 걸리는 냉동부하의 크기에 관계없이 압축기가 정상으로 작동하도록 되어 있는 냉동장치에 사용된다. 냉매압축기작동중에 비교적 소량의 윤활유가 피스톤링 주변을 경유하여(빠져 나와서)실린더로부터 토출실(46)내로 토출되는 냉매가스와 함게 토출실(46)내로 토출되는 고질량유량, 고속도의 냉매가 빠져나온 윤활유를 각 토출실(46)내로 토출되는 고질량유량, 고속도의 냉매가 빠져나온 윤활유를 냉동장치내를 통하여 끌어내고 압축기의 흡입측을 반환시킨다. 윤활유는 냉매로부터 분리되어 저장조로 반환된다. 그러나 예를들면 냉매부하가 낮은 조건인 경우처럼 냉매의 질량유량이 작을 때는 그 저유량의 냉매가스로는 빠져나온 윤활유를 냉동장치내를 통하여 끌어낼 수가 엇다. 따라서 윤활유는 각 토출실(46)내에 축적한다. 물론 토출실내의 윤활유 축적이 아주 오랜 시간 지속되면, 압축기가 윤활유 고갈현상을 일으키게 된다. 또, 윤활유 고갈상태에서 압축기가 정지되면 토출실(46)내에 추적된 윤활유는 실린더(36)으로 흘러 내린다. 이때 압축기가 재시동되면, 실린더내에 생긴 비압축성 윤활유 덩어리가 압축기의 밸브, 피스톤 및 그 구성부품에 손상을 입힐 염려가 있다. 이런 관점에서 본때 토출실내의 윤활유 축적을 피할 필요가 있다.As described above, the throttling valve 26 adjusts the refrigerant flow in response to the refrigeration load applied to the refrigerating device 10 during the operation of the refrigerant compressor. The throttling valve 26 is particularly used in a refrigeration apparatus in which the compressor is operated normally regardless of the size of the refrigeration load on the refrigeration apparatus. During operation of the refrigerant compressor, a relatively small amount of lubricating oil is discharged into the discharge chamber 46 together with the refrigerant gas discharged from the cylinder into the discharge chamber 46 via the piston ring. The lubricating oil from which the high mass flow rate and the high speed refrigerant discharged from the discharged lubricating oil is discharged into each discharge chamber 46 is drawn out through the refrigerating device and the suction side of the compressor is returned. The lubricant is separated from the refrigerant and returned to the reservoir. However, for example, when the mass flow rate of the refrigerant is small, such as in a case where the refrigerant load is low, the lubricating oil that has escaped to the low flow refrigerant gas can be drawn out through the freezing device. Therefore, lubricating oil accumulates in each discharge chamber 46. Of course, if the accumulation of lubricating oil in the discharge chamber lasts for a very long time, the compressor will cause lubricating oil depletion. In addition, when the compressor is stopped while the lubricant is depleted, the lubricant tracked in the discharge chamber 46 flows down to the cylinder 36. If the compressor is restarted at this time, the incompressible lubricating oil generated in the cylinder may damage the valve, the piston, and its components of the compressor. In view of this, it is necessary to avoid the accumulation of lubricating oil in the discharge chamber.

이런 목적을 달성하기 위해 밸브(28)가 사용된다. 흡입압력의 냉미가스는 흡입실(44)로부터 도관을 통하여 밸브(28)의 밸브실(61)내로 공급된다. 냉동장치(10)에 걸리는 냉동부하가 감소되어 냉매의 압력 및 유량이 감소하면, 이에 대응하는 밸브실 (61)내지 발생하는 힘보다 커지게 되며 U자형 브래키드(60)를 제2도에서 보다 우측으로 이동시킨다. 브래키트가 이렇게 이등함으로써 나이들 밸브(62)는 밸브시이트(64)로부터 이탈되어 밸브시이트를 개방하여 2도관(48)을 통하여 유체가 흐를 수 있게 한다.Valve 28 is used to achieve this purpose. Cooling gas of suction pressure is supplied from the suction chamber 44 into the valve chamber 61 of the valve 28 through a conduit. When the refrigeration load on the refrigerating device 10 is reduced and the pressure and flow rate of the refrigerant are reduced, it becomes larger than the corresponding force generated from the valve chamber 61 corresponding thereto, and the U-shaped bracket 60 is shown in FIG. Move to the right. By this bracketing, the age valve 62 is disengaged from the valve seat 64 to open the valve seat, allowing fluid to flow through the two conduits 48.

제2도관(48)은 토출실(46)에 연결되어 있으므로 토출실(46)내에 퇴적한 윤활유가 개방된 제2도관(48)을 통하여 밸브실(61)내에 유입한다. 밸브실(61)내로 유입된 윤활유는 흡입압력의 냉매가스보다 높은 압력을 가조 있으므로 제1도관(50)을 통하여 흡입실(44)내로 흘러내리고, 출입구(66)를 통하여 흡입 매니폴울드(41)내로 유입한다. 윤활유는 그 압력을 가지고 평상시 폐쇄되어 있는 역지맬브(52)를 개방하기까지 흡입 매니폴울드(41)내에 축적하며 역지밸브(52)가 개방된후 흡입매니포울드(41)로부터 저장조(49)내로 유입한다. 이렇하여 질량유량이 낮은 조건일 때 때는 평상시 폐쇄되어 있는 니이들밸브(62)는 저질량 유량조건을 표시하는 냉동자치내의 변수를 감지함으로써 개방된다. 냉동장치에 걸리는 냉동부하가 커지면 밸브(28)가 개방된 상태에서 매니포울드(41)를 따라서 흡입실(44)내로 돌아오는 냉매가스의 압력이 증대한다. 계속해서 밸브(28)의 밸브실(61)내의 압력이 커지면 U자형 브래키트부재(60)를 제2도에서 보아 좌측으로 이송시키여 니이들벨브(62)를 밸브시이트(64)에 안착시켜 제2도관 (48)을 통하여 흐르는 윤활유의 흐름을 저지한다. 이러 이후에 토출실(46)내에 축적하는 윤활유는 질량유량이 높고 고속인 냉매가스에 의해 냉동장치(10)내를 통하여 끌려나온다.Since the second conduit 48 is connected to the discharge chamber 46, the lubricating oil deposited in the discharge chamber 46 flows into the valve chamber 61 through the open second conduit 48. Since the lubricating oil introduced into the valve chamber 61 has a higher pressure than the refrigerant gas at the suction pressure, the lubricant oil flows into the suction chamber 44 through the first conduit 50, and the suction manifold 41 through the entrance 66. Flows into). The lubricating oil accumulates in the suction manifold 41 until the opening of the check valve 52, which is normally closed with the pressure, is stored in the storage tank 49 from the suction manifold 41 after the check valve 52 is opened. Flows into. In this way, when the mass flow rate is low, the needle valve 62, which is normally closed, is opened by sensing a variable in the freezing autonomous indicating the low mass flow rate condition. As the refrigeration load on the refrigerating device increases, the pressure of the refrigerant gas returning into the suction chamber 44 along the manifold 41 in the state in which the valve 28 is opened increases. Subsequently, when the pressure in the valve chamber 61 of the valve 28 increases, the U-shaped bracket member 60 is transferred to the left side as seen in FIG. 2, and the needle valve 62 is seated on the valve seat 64. Restricts the flow of lubricant flowing through the second conduit 48. After this, the lubricating oil accumulated in the discharge chamber 46 is drawn out through the refrigerating device 10 by the refrigerant gas having a high mass flow rate and high speed.

상기한 본 발명의 구성은 흡입압력이 낮고 질량유량이 낮은 조건에서 작동하고 있는 냉매압축기의 윤활유 고갈을 방지하는 장치를 제공한다. 이 구성은 종래에 문제점이 되어 왔던 냉매의 저질량 유량상태를 직접 감지하는 작동이다.The configuration of the present invention described above provides an apparatus for preventing the exhaustion of lubricant of the refrigerant compressor operating under conditions of low suction pressure and low mass flow rate. This configuration is an operation of directly detecting a low mass flow rate condition of a refrigerant which has been a problem in the past.

이상, 본 발명의 바람직한 실시예를 설명하였은 본 발명은 이에 한정되는 것은 아니며, 본 발명의 범위에서 여러가지로 변형할 수 있다.As mentioned above, the present invention which has described the preferred embodiments of the present invention is not limited thereto, and various modifications can be made within the scope of the present invention.

Claims (1)

냉매토출압력에서 작동하는 냉매압축기(12)의 제1부분내에 퇴적된 윤활유를 효과적으로 냉매흡입압력에서 작동하는 상기 압축기의 제2부분으로 반환하기 위한 윤활유 반환장치에 있어서, 상기 압축기의 제1부분내에 퇴적된 윤활유를 제2부분으로 보내기 위해 상기 제1부분을 제2부분으로 접속하는 제1, 제2도관(50,48)과, 상기 도관을 통과하는 윤활유의 흐름을 제거하기 위해서 상기 도관 사이에 설치된 밸브(28)로 구성되며, 상기 밸브는 압축기의 제2부분내의 압력의 크기를 감지하기 위한 감지장치(56)와 상기 감지압력이 예정수준보다 저하했을때 상기 밸브를 개방하고 윤활유를 상기 제1, 제2도관(50,48)을 통하여 상기 제1분에서 제2부분으로 흐를 수 있도록 하기 위해 상기 감지 장치에 연결된 U자형 브래키트부재(60)를 갖는 것을 특징으로 하는 윤활유 반환장치.A lubricating oil return device for effectively returning lubricating oil deposited in a first portion of a refrigerant compressor (12) operating at a refrigerant discharge pressure to a second portion of the compressor operating at a refrigerant suction pressure, wherein: Between the first and second conduits 50 and 48 connecting the first part to the second part to direct the deposited lubricant to the second part and between the conduits to remove the flow of lubricant passing through the conduit. It is composed of a valve 28 is installed, the valve 56 for detecting the magnitude of the pressure in the second portion of the compressor and when the detected pressure is lower than the predetermined level to open the valve and the lubricant 1, Lubricant half, characterized in that it has a U-shaped bracket member 60 connected to the sensing device to flow from the first minute through the second conduit (50, 48) to the second part Ventilation system.
KR1019800001837A 1979-05-10 1980-05-09 Oil return device KR840000974B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US3803279A 1979-05-10 1979-05-10
US038032 1979-05-10
US38032 1979-05-10

Publications (2)

Publication Number Publication Date
KR830003064A KR830003064A (en) 1983-05-31
KR840000974B1 true KR840000974B1 (en) 1984-07-02

Family

ID=21897726

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019800001837A KR840000974B1 (en) 1979-05-10 1980-05-09 Oil return device

Country Status (9)

Country Link
JP (1) JPS6039880B2 (en)
KR (1) KR840000974B1 (en)
AR (1) AR221643A1 (en)
BR (1) BR8002834A (en)
CA (1) CA1100319A (en)
DE (1) DE3016206A1 (en)
FR (1) FR2456233A1 (en)
GB (1) GB2058233B (en)
MX (1) MX153321A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2004282479B2 (en) * 2003-10-16 2008-07-24 Lg Electronics, Inc. A microwave oven and an upper duct structure thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2504607B1 (en) * 1981-04-22 1986-03-07 Quiri Cie Sa Usines DEVICE FOR BALANCING THE PRESSURE OF THE CRANKCASE ON A COMPRESSOR AND FOR RETURNING THE CRANKCASE OIL
DE3721698A1 (en) * 1987-07-01 1989-01-19 Hauhinco Maschf RADIAL PISTON PUMP FOR CONVEYING WATER
JPH09324758A (en) * 1996-06-06 1997-12-16 Toyota Autom Loom Works Ltd Cam plate compressor
JPH10253177A (en) * 1997-03-12 1998-09-25 Zexel Corp Compressor for transition critical refrigerating cycle
DE19912926A1 (en) * 1999-03-22 2000-09-28 Bock Gmbh & Co Kaeltemaschinen Piston compressor for refrigerants
TWI451817B (en) 2011-05-26 2014-09-01 豐田自動織機股份有限公司 Wiring board and method of manufacturing the wiring board
NO2891800T3 (en) * 2012-10-01 2018-04-21

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2338486A (en) * 1941-10-09 1944-01-04 Gen Electric Compressor unloader
US3261541A (en) * 1963-11-29 1966-07-19 Vilter Manufacturing Corp Compressor unloading means
US3587406A (en) * 1968-07-26 1971-06-28 Copeland Refrigeration Corp Compressor
US4057979A (en) * 1976-11-04 1977-11-15 Carrier Corporation Refrigerant compressor unit
DD131288A1 (en) * 1977-02-28 1978-06-14 Harald Felgentraeger CONTROL UNIT FOR OIL RECEPTION ON A MULTI-STAGE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2004282479B2 (en) * 2003-10-16 2008-07-24 Lg Electronics, Inc. A microwave oven and an upper duct structure thereof

Also Published As

Publication number Publication date
CA1100319A (en) 1981-05-05
JPS6039880B2 (en) 1985-09-07
DE3016206A1 (en) 1980-11-20
AR221643A1 (en) 1981-02-27
KR830003064A (en) 1983-05-31
MX153321A (en) 1986-09-12
FR2456233B1 (en) 1983-08-05
BR8002834A (en) 1980-12-16
FR2456233A1 (en) 1980-12-05
JPS55148986A (en) 1980-11-19
GB2058233B (en) 1983-07-06
GB2058233A (en) 1981-04-08

Similar Documents

Publication Publication Date Title
US3411313A (en) Compressor protective control
US2749723A (en) Oil separator for refrigeration system
US3998570A (en) Air conditioning compressor
KR840000974B1 (en) Oil return device
JP3238973B2 (en) Refrigeration equipment
US2741424A (en) Refrigeration
US2145354A (en) Refrigerating apparatus
US2048025A (en) Refrigerating apparatus
US3250460A (en) Compressor with liquid refrigerant injection means
US2738652A (en) Refrigerating apparatus
US3041847A (en) Compressor capacity controllers
JPH01169278A (en) Bypass for liquid and gas
US2353347A (en) Refrigerating apparatus
US4303090A (en) Crankcase oil return valve
US4249389A (en) Crankcase oil return for a transport refrigeration system providing both heating and cooling
JPS62280549A (en) Refrigerator adjusting capacity
US1983550A (en) Refrigerating apparatus
US2738651A (en) Refrigerating apparatus
US2818210A (en) Refrigerating apparatus
US2048026A (en) Refrigerating apparatus
US1415399A (en) Refrigerating system
US2038176A (en) Compressor unit
JP2000205664A (en) Refrigerating cycle system
US2603954A (en) Variable output refrigeration system
US2918210A (en) Compressor with crankcase oil surge tank