KR20240011890A - 블록체인에서 생성된 데이터를 인증하는 방법 및 시스템 - Google Patents

블록체인에서 생성된 데이터를 인증하는 방법 및 시스템 Download PDF

Info

Publication number
KR20240011890A
KR20240011890A KR1020247001901A KR20247001901A KR20240011890A KR 20240011890 A KR20240011890 A KR 20240011890A KR 1020247001901 A KR1020247001901 A KR 1020247001901A KR 20247001901 A KR20247001901 A KR 20247001901A KR 20240011890 A KR20240011890 A KR 20240011890A
Authority
KR
South Korea
Prior art keywords
chain
leaf
data
blockchain network
contract
Prior art date
Application number
KR1020247001901A
Other languages
English (en)
Inventor
소홍섭
Original Assignee
라인플러스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 라인플러스 주식회사 filed Critical 라인플러스 주식회사
Publication of KR20240011890A publication Critical patent/KR20240011890A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3247Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving digital signatures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/38Payment protocols; Details thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0819Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s)
    • H04L9/0825Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s) using asymmetric-key encryption or public key infrastructure [PKI], e.g. key signature or public key certificates
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3263Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving certificates, e.g. public key certificate [PKC] or attribute certificate [AC]; Public key infrastructure [PKI] arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3263Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving certificates, e.g. public key certificate [PKC] or attribute certificate [AC]; Public key infrastructure [PKI] arrangements
    • H04L9/3268Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving certificates, e.g. public key certificate [PKC] or attribute certificate [AC]; Public key infrastructure [PKI] arrangements using certificate validation, registration, distribution or revocation, e.g. certificate revocation list [CRL]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/50Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols using hash chains, e.g. blockchains or hash trees

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Strategic Management (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)
  • Computing Systems (AREA)

Abstract

블록체인에서 생성된 데이터를 인증하는 방법 및 시스템을 제공한다. 본 발명의 실시예들에 있어서, 블록체인 네트워크에 참여하는 컴퓨터 장치로 구현되는 노드의 데이터 인증 방법은 상기 블록체인 네트워크의 체인을 대표하는 프라이빗 키(private key)를 상기 블록체인 네트워크에 참여하는 적어도 하나의 다른 노드와 공유하는 단계, 상기 프라이빗 키를 이용하여 상기 블록체인 네트워크의 퍼블릭 주소를 생성하는 단계, 상기 블록체인 네트워크에서 다른 블록체인 네트워크로 전달하고자 하는 데이터를 상기 블록체인 네트워크에 설치된 컨트랙트를 통해 상기 프라이빗 키로 서명하는 단계 및 상기 서명된 데이터를 상기 컨트랙트를 통해 다른 블록체인 네트워크로 전달하는 단계를 포함할 수 있다. 이때, 상기 서명된 데이터와 상기 퍼블릭 주소간의 비교를 통해 상기 서명된 데이터가 상기 블록체인 네트워크를 통해 발송된 것임이 검증될 수 있다.

Description

블록체인에서 생성된 데이터를 인증하는 방법 및 시스템{METHOD AND SYSTEM FOR AUTHENTICATING DATA GANERATED IN BLOCK CHAIN}
아래의 설명은 블록체인에서 생성된 데이터를 인증하는 방법 및 시스템에 관한 것이다.
블록체인(block-chain)은 전자 대장(electronic ledger)으로서, 트랜잭션들을 위한 블록들로 구성된 컴퓨터 기반의 분산형, P2P(peer-to-peer)의 시스템으로 구현된다. 각 트랜잭션(Transaction, Tx)은 블록체인 시스템 내의 참가자들 간에 디지털 자산의 제어 전송을 인코딩하는 데이터 구조이며, 적어도 하나의 입력과 적어도 하나의 출력을 포함한다. 각 블록은 이전 블록의 해시를 포함하여 해당 블록이 함께 연결되어 처음부터 블록체인에 기록된 모든 트랜잭션의 영구적인, 바꿀 수 없는(unalterable) 기록을 생성한다. 예를 들어, 한국공개특허 제10-2018-0113143호는 블록체인 기반의 사용자 정의 화폐 거래 시스템 및 그 동작 방법을 개시하고 있다. 이러한 블록체인 자체는 스케일 아웃(scale out)이 되지 않는다. 예를 들어, 블록체인 네트워크에서 블록을 생성하기 위한 노드를 추가하더라도 블록 생성을 위한 합의의 비용이 증가할 뿐, 트랜잭션에 대한 블록 생성 속도가 증가하지는 않는다.
루트 체인(Root Chain)을 기반으로 리프 체인(Leaf Chain)을 추가하는 방식으로 스케일 아웃이 가능한 블록체인에서 생성되는 데이터를 인증하는 데이터 인증 방법 및 시스템을 제공한다.
블록체인 네트워크에 참여하는 컴퓨터 장치로 구현되는 노드의 데이터 인증 방법에 있어서, 상기 컴퓨터 장치가 포함하는 적어도 하나의 프로세서에 의해, 상기 블록체인 네트워크의 체인을 대표하는 프라이빗 키(private key)를 상기 블록체인 네트워크에 참여하는 적어도 하나의 다른 노드와 공유하는 단계; 상기 적어도 하나의 프로세서에 의해, 상기 프라이빗 키를 이용하여 상기 블록체인 네트워크의 퍼블릭 주소를 생성하는 단계; 상기 적어도 하나의 프로세서에 의해, 상기 블록체인 네트워크에서 다른 블록체인 네트워크로 전달하고자 하는 데이터를 상기 블록체인 네트워크에 설치된 컨트랙트를 통해 상기 프라이빗 키로 서명하는 단계; 및 상기 적어도 하나의 프로세서에 의해, 상기 서명된 데이터를 상기 컨트랙트를 통해 다른 블록체인 네트워크로 전달하는 단계를 포함하고, 상기 서명된 데이터와 상기 퍼블릭 주소간의 비교를 통해 상기 서명된 데이터가 상기 블록체인 네트워크를 통해 발송된 것임이 검증되는 것을 특징으로 하는 데이터 인증 방법을 제공한다.
일측에 따르면, 상기 블록체인 네트워크는 복수의 리프 체인들간의 데이터 전송을 관리하는 루트 체인을 포함하고, 상기 데이터 인증 방법은, 상기 적어도 하나의 프로세서에 의해, 상기 생성된 퍼블릭 주소를 상기 복수의 리프 체인들 각각의 제네시스(genesis) 블록에 기록하는 단계를 더 포함하는 것을 특징으로 할 수 있다.
다른 측면에 따르면, 상기 서명된 데이터를 전송받은 리프 체인에서 상기 서명된 데이터와 상기 리프 체인의 제네시스 블록에 기록된 퍼블릭 주소를 비교하여 상기 서명된 데이터가 상기 루트 체인에서 발송된 것임을 검증하는 것을 특징으로 할 수 있다.
또 다른 측면에 따르면, 상기 블록체인 네트워크는 루트 체인에 의해 데이터 전송이 관리되는 복수의 리프 체인들 중 제1 리프 체인을 포함하고, 상기 데이터 인증 방법은, 상기 적어도 하나의 프로세서에 의해, 상기 생성된 퍼블릭 주소를, 상기 루트 체인에 상기 제1 리프 체인과 연관하여 설치된 리프 체인 컨트랙트에 등록하는 단계를 더 포함하는 것을 특징으로 할 수 있다.
또 다른 측면에 따르면, 상기 루트 체인에서 상기 서명된 데이터와 상기 리프 체인 컨트랙트에 등록된 퍼블릭 주소를 비교하여 상기 서명된 데이터가 상기 제1 리프 체인에서 발송된 것임을 검증하는 것을 특징으로 할 수 있다.
또 다른 측면에 따르면, 상기 노드는 상기 블록체인 네트워크에서의 합의(consensus)를 이루도록 기설정된 복수의 노드들 중 하나인 것을 특징으로 할 수 있다.
또 다른 측면에 따르면, 상기 서명된 데이터가 기록된 블록이 상기 블록체인 네트워크의 체인에 추가되는 것을 특징으로 할 수 있다.
블록체인 네트워크에 참여하는 컴퓨터 장치로 구현되는 노드의 데이터 인증 방법에 있어서, 상기 컴퓨터 장치가 포함하는 적어도 하나의 프로세서에 의해, 상기 노드의 프라이빗 키를 이용하여 상기 노드의 퍼블릭 주소를 생성하는 단계; 상기 적어도 하나의 프로세서에 의해, 상기 블록체인 네트워크에서 다른 블록체인 네트워크로 전달하고자 하는 데이터를 상기 노드의 프라이빗 키를 이용하여 서명하는 단계; 및 상기 적어도 하나의 프로세서에 의해, 상기 서명된 데이터를 상기 다른 블록체인 네트워크로 전달하는 단계를 포함하고, 상기 퍼블릭 주소를 이용하여 상기 서명된 데이터가 상기 블록체인 네트워크를 통해 발송된 것임이 검증되는 것을 특징으로 하는 데이터 인증 방법을 제공한다.
컴퓨터 장치와 결합되어 상기 방법을 컴퓨터 장치에 실행시키기 위해 컴퓨터 판독 가능한 기록매체에 저장된 컴퓨터 프로그램을 제공한다.
상기 방법을 컴퓨터 장치에 실행시키기 위한 컴퓨터 프로그램이 기록되어 있는 것을 특징으로 하는 컴퓨터 판독 가능한 기록매체를 제공한다.
블록체인 네트워크의 노드를 구현하는 컴퓨터 장치에 있어서, 상기 컴퓨터 장치에서 판독 가능한 명령을 실행하도록 구현되는 적어도 하나의 프로세서를 포함하고, 상기 적어도 하나의 프로세서에 의해, 상기 블록체인 네트워크의 체인을 대표하는 프라이빗 키(private key)를 상기 블록체인 네트워크에 참여하는 적어도 하나의 다른 노드와 공유하고, 상기 프라이빗 키를 이용하여 상기 블록체인 네트워크의 퍼블릭 주소를 생성하고, 상기 블록체인 네트워크에서 다른 블록체인 네트워크로 전달하고자 하는 데이터를 상기 블록체인 네트워크에 설치된 컨트랙트를 통해 상기 프라이빗 키로 서명하고, 상기 서명된 데이터를 상기 컨트랙트를 통해 다른 블록체인 네트워크로 전달하고, 상기 서명된 데이터와 상기 퍼블릭 주소간의 비교를 통해 상기 서명된 데이터가 상기 블록체인 네트워크를 통해 발송된 것임이 검증되는 것을 특징으로 하는 컴퓨터 장치를 제공한다.
블록체인 네트워크의 노드를 구현하는 컴퓨터 장치에 있어서, 상기 컴퓨터 장치에서 판독 가능한 명령을 실행하도록 구현되는 적어도 하나의 프로세서를 포함하고, 상기 적어도 하나의 프로세서에 의해, 상기 노드의 프라이빗 키를 이용하여 상기 노드의 퍼블릭 주소를 생성하고, 상기 블록체인 네트워크에서 다른 블록체인 네트워크로 전달하고자 하는 데이터를 상기 노드의 프라이빗 키를 이용하여 서명하고, 상기 서명된 데이터를 상기 다른 블록체인 네트워크로 전달하고, 상기 퍼블릭 주소를 이용하여 상기 서명된 데이터가 상기 블록체인 네트워크를 통해 발송된 것임이 검증되는 것을 특징으로 하는 컴퓨터 장치를 제공한다.
루트 체인(Root Chain)을 기반으로 리프 체인(Leaf Chain)을 추가하는 방식으로 스케일 아웃이 가능한 블록체인에서 생성되는 데이터를 인증하는 데이터 인증 방법 및 시스템을 제공할 수 있다.
도 1은 본 발명의 일실시예에 따른 네트워크 환경의 예를 도시한 도면이다.
도 2는 본 발명의 일실시예에 따른 컴퓨터 장치의 예를 도시한 블록도이다.
도 3은 본 발명의 일실시예에 있어서, 확장을 가능한 블록체인 네트워크의 개괄적인 구성의 예를 도시한 도면이다.
도 4는 본 발명의 일실시예에 따른 트랜잭션 처리 시스템의 세부 구성의 예를 도시한 도면이다.
도 5는 본 발명의 일실시예에 있어서, 새로운 리프 체인을 추가하는 과정의 예를 도시한 흐름도이다.
도 6은 본 발명의 일실시예에 있어서, 새로운 서비스를 추가하는 과정의 예를 도시한 흐름도이다.
도 7은 본 발명의 일실시예에 있어서, 서비스에 코인을 발행하는 과정의 예를 도시한 흐름도이다.
도 8은 본 발명의 일실시예에 있어서, 코인 교환 과정의 예를 도시한 흐름도이다.
도 9는 본 발명의 일실시예에 있어서, 각 체인간 스마트 컨트랙트를 통한 코인 교환 데이터의 흐름을 도시한 도면이다.
도 10은 본 발명의 일실시예에 있어서, 서명 가능 컨트랙트의 설치 과정의 예를 도시한 도면이다.
도 11은 본 발명의 일실시예에 있어서, 데이터를 서명하는 과정의 예를 도시한 도면이다.
도 12는 본 발명의 일실시예에 있어서, 서명 가능 컨트랙트의 설치 과정의 다른 예를 도시한 도면이다.
도 13은 본 발명의 일실시예에 있어서, 데이터를 서명하는 과정의 다른 예를 도시한 도면이다.
도 14는 본 발명의 일실시예에 있어서, 코인 교환 과정의 다른 예를 도시한 도면이다.
도 15는 본 발명의 일실시예에 있어서, 데이터 인증 방법의 제1 예를 도시한 흐름도이다.
도 16은 본 발명의 일실시예에 있어서, 데이터 인증 방법의 제2 예를 도시한 흐름도이다.
도 17은 본 발명의 일실시예에 있어서, 데이터 인증 방법의 제3 예를 도시한 흐름도이다.
도 18은 본 발명의 일실시예에 있어서, 데이터 인증 방법의 제4 예를 도시한 흐름도이다.
이하, 실시예를 첨부한 도면을 참조하여 상세히 설명한다.
본 발명의 실시예들에 따른 데이터 인증 시스템은 적어도 하나의 컴퓨터 장치에 의해 구현될 수 있다. 컴퓨터 장치에는 본 발명의 일실시예에 따른 컴퓨터 프로그램이 설치 및 구동될 수 있고, 컴퓨터 장치는 구동된 컴퓨터 프로그램의 제어에 따라 본 발명의 일실시예에 따른 데이터 인증 방법을 수행할 수 있다. 상술한 컴퓨터 프로그램은 컴퓨터 장치와 결합되어 데이터 인증 방법을 컴퓨터 장치에 실행시키기 위해 컴퓨터 판독 가능한 기록매체에 저장될 수 있다. 여기서 설명한 컴퓨터 프로그램은 독립된 하나의 프로그램 패키지의 형태를 가질 수도 있고, 독립된 하나의 프로그램 패키지의 형태가 컴퓨터 장치에 기 설치되어 운영체제나 다른 프로그램 패키지들과 연계되는 형태를 가질 수도 있다.
도 1은 본 발명의 일실시예에 따른 네트워크 환경의 예를 도시한 도면이다. 도 1의 네트워크 환경은 복수의 전자 기기들(110, 120, 130, 140), 복수의 서버들(150, 160) 및 네트워크(170)를 포함하는 예를 나타내고 있다. 이러한 도 1은 발명의 설명을 위한 일례로 전자 기기의 수나 서버의 수가 도 1과 같이 한정되는 것은 아니다. 또한, 도 1의 네트워크 환경은 본 실시예들에 적용 가능한 환경들 중 하나의 예를 설명하는 것일 뿐, 본 실시예들에 적용 가능한 환경이 도 1의 네트워크 환경으로 한정되는 것은 아니다.
복수의 전자 기기들(110, 120, 130, 140)은 컴퓨터 장치로 구현되는 고정형 단말이거나 이동형 단말일 수 있다. 복수의 전자 기기들(110, 120, 130, 140)의 예를 들면, 스마트폰(smart phone), 휴대폰, 네비게이션, 컴퓨터, 노트북, 디지털방송용 단말, PDA(Personal Digital Assistants), PMP(Portable Multimedia Player), 태블릿 PC 등이 있다. 일례로 도 1에서는 전자 기기 1(110)의 예로 스마트폰의 형상을 나타내고 있으나, 본 발명의 실시예들에서 전자 기기 1(110)은 실질적으로 무선 또는 유선 통신 방식을 이용하여 네트워크(170)를 통해 다른 전자 기기들(120, 130, 140) 및/또는 서버(150, 160)와 통신할 수 있는 다양한 물리적인 컴퓨터 장치들 중 하나를 의미할 수 있다.
통신 방식은 제한되지 않으며, 네트워크(170)가 포함할 수 있는 통신망(일례로, 이동통신망, 유선 인터넷, 무선 인터넷, 방송망)을 활용하는 통신 방식뿐만 아니라 기기들간의 근거리 무선 통신 역시 포함될 수 있다. 예를 들어, 네트워크(170)는, PAN(personal area network), LAN(local area network), CAN(campus area network), MAN(metropolitan area network), WAN(wide area network), BBN(broadband network), 인터넷 등의 네트워크 중 하나 이상의 임의의 네트워크를 포함할 수 있다. 또한, 네트워크(170)는 버스 네트워크, 스타 네트워크, 링 네트워크, 메쉬 네트워크, 스타-버스 네트워크, 트리 또는 계층적(hierarchical) 네트워크 등을 포함하는 네트워크 토폴로지 중 임의의 하나 이상을 포함할 수 있으나, 이에 제한되지 않는다.
서버(150, 160) 각각은 복수의 전자 기기들(110, 120, 130, 140)과 네트워크(170)를 통해 통신하여 명령, 코드, 파일, 컨텐츠, 서비스 등을 제공하는 컴퓨터 장치 또는 복수의 컴퓨터 장치들로 구현될 수 있다. 예를 들어, 서버(150)는 네트워크(170)를 통해 접속한 복수의 전자 기기들(110, 120, 130, 140)로 서비스(일례로, 영상통화 서비스, 금융 서비스, 결제 서비스, 소셜 네트워크 서비스, 메시징 서비스, 검색 서비스, 메일 서비스, 컨텐츠 제공 서비스 및/또는 질문 및 답변 서비스 등)를 제공하는 시스템일 수 있다.
도 2는 본 발명의 일실시예에 따른 컴퓨터 장치의 예를 도시한 블록도이다. 앞서 설명한 복수의 전자 기기들(110, 120, 130, 140) 각각이나 서버들(150, 160) 각각은 도 2를 통해 도시된 컴퓨터 장치(200)에 의해 구현될 수 있으며, 본 발명의 실시예들에 따른 방법은 이러한 컴퓨터 장치(200)에 의해 수행될 수 있다.
이때, 도 2에 도시된 바와 같이 컴퓨터 장치(200)는, 메모리(210), 프로세서(220), 통신 인터페이스(230) 그리고 입출력 인터페이스(240)를 포함할 수 있다. 메모리(210)는 컴퓨터에서 판독 가능한 기록매체로서, RAM(random access memory), ROM(read only memory) 및 디스크 드라이브와 같은 비소멸성 대용량 기록장치(permanent mass storage device)를 포함할 수 있다. 여기서 ROM과 디스크 드라이브와 같은 비소멸성 대용량 기록장치는 메모리(210)와는 구분되는 별도의 영구 저장 장치로서 컴퓨터 장치(200)에 포함될 수도 있다. 또한, 메모리(210)에는 운영체제와 적어도 하나의 프로그램 코드가 저장될 수 있다. 이러한 소프트웨어 구성요소들은 메모리(210)와는 별도의 컴퓨터에서 판독 가능한 기록매체로부터 메모리(210)로 로딩될 수 있다. 이러한 별도의 컴퓨터에서 판독 가능한 기록매체는 플로피 드라이브, 디스크, 테이프, DVD/CD-ROM 드라이브, 메모리 카드 등의 컴퓨터에서 판독 가능한 기록매체를 포함할 수 있다. 다른 실시예에서 소프트웨어 구성요소들은 컴퓨터에서 판독 가능한 기록매체가 아닌 통신 인터페이스(230)를 통해 메모리(210)에 로딩될 수도 있다. 예를 들어, 소프트웨어 구성요소들은 네트워크(170)를 통해 수신되는 파일들에 의해 설치되는 컴퓨터 프로그램에 기반하여 컴퓨터 장치(200)의 메모리(210)에 로딩될 수 있다.
프로세서(220)는 기본적인 산술, 로직 및 입출력 연산을 수행함으로써, 컴퓨터 프로그램의 명령을 처리하도록 구성될 수 있다. 명령은 메모리(210) 또는 통신 인터페이스(230)에 의해 프로세서(220)로 제공될 수 있다. 예를 들어 프로세서(220)는 메모리(210)와 같은 기록 장치에 저장된 프로그램 코드에 따라 수신되는 명령을 실행하도록 구성될 수 있다.
통신 인터페이스(230)은 네트워크(170)를 통해 컴퓨터 장치(200)가 다른 장치(일례로, 앞서 설명한 저장 장치들)와 서로 통신하기 위한 기능을 제공할 수 있다. 일례로, 컴퓨터 장치(200)의 프로세서(220)가 메모리(210)와 같은 기록 장치에 저장된 프로그램 코드에 따라 생성한 요청이나 명령, 데이터, 파일 등이 통신 인터페이스(230)의 제어에 따라 네트워크(170)를 통해 다른 장치들로 전달될 수 있다. 역으로, 다른 장치로부터의 신호나 명령, 데이터, 파일 등이 네트워크(170)를 거쳐 컴퓨터 장치(200)의 통신 인터페이스(230)를 통해 컴퓨터 장치(200)로 수신될 수 있다. 통신 인터페이스(230)를 통해 수신된 신호나 명령, 데이터 등은 프로세서(220)나 메모리(210)로 전달될 수 있고, 파일 등은 컴퓨터 장치(200)가 더 포함할 수 있는 저장 매체(상술한 영구 저장 장치)로 저장될 수 있다.
입출력 인터페이스(240)는 입출력 장치(250)와의 인터페이스를 위한 수단일 수 있다. 예를 들어, 입력 장치는 마이크, 키보드, 카메라 또는 마우스 등의 장치를, 그리고 출력 장치는 디스플레이, 스피커와 같은 장치를 포함할 수 있다. 다른 예로 입출력 인터페이스(240)는 터치스크린과 같이 입력과 출력을 위한 기능이 하나로 통합된 장치와의 인터페이스를 위한 수단일 수도 있다. 입출력 장치(250)는 컴퓨터 장치(200)와 하나의 장치로 구성될 수도 있다.
또한, 다른 실시예들에서 컴퓨터 장치(200)는 도 2의 구성요소들보다 더 적은 혹은 더 많은 구성요소들을 포함할 수도 있다. 그러나, 대부분의 종래기술적 구성요소들을 명확하게 도시할 필요성은 없다. 예를 들어, 컴퓨터 장치(200)는 상술한 입출력 장치(250) 중 적어도 일부를 포함하도록 구현되거나 또는 트랜시버(transceiver), 데이터베이스 등과 같은 다른 구성요소들을 더 포함할 수도 있다.
도 3은 본 발명의 일실시예에 있어서, 확장을 가능한 블록체인 네트워크의 개괄적인 구성의 예를 도시한 도면이다. 도 3은 루트 체인(Root Chain, 310), 리프 체인 A(Leaf Chain A, 320), 리프 체인 B(Leaf Chain B, 330) 및 릴레이어(Relayer, 340)를 포함하는 블록체인 네트워크(300)의 예를 나타내고 있다. 루트 체인(310)과 리프 체인들(320 및 330)은 복수의 컴퓨터 장치들이 연결된 네트워크를 형성할 수 있으며, 릴레이어(340)는 적어도 하나의 컴퓨터 장치에 의해 구현될 수 있다.
블록체인 네트워크(300)에서 루트 체인(310)은 절대 신뢰 시스템으로 간주될 수 있으며, 리프 체인들(320 및 330) 각각은 루트 체인(310)에 자신이 신뢰 시스템이라는 것을 증명해야 한다. 이때, 리프 체인들(320 및 330) 각각은 개별 서비스와 연계될 수 있으며, 새로운 서비스의 추가 시 새로운 리프 체인이 추가될 수도 있다. 다시 말해, 도 3의 실시예에서는 두 개의 리프 체인들(320 및 330)을 도시하고 있으나, 셋 이상의 리프 체인들을 포함할 수도 있으며, 이는 블록체인의 확장이 가능함을 의미할 수 있다. 여기서, "서비스"는 동일 또는 서로 다른 주체가 네트워크를 통해 자신의 사용자들에게 제공하는 온라인 서비스를 포함할 수 있다. 일례로, 서로 다른 복수의 은행들이 제공하는 인터넷 뱅킹 서비스들 각각에 대응하는 복수의 리프 체인들이 구성될 수 있다. 또는 서로 다른 복수의 소셜 네트워크 서비스들 각각에 대응하는 복수의 리프 체인들이 구성될 수도 있다. 리프 체인들(320 및 330) 각각은 루트 체인(310)에 블록의 해시를 기록함으로써 신뢰를 인정받아야 한다. 일례로, 머클 트리 루트 해시(merkle tree root hash)가 활용될 수 있다.
루트 체인(310)에서는 사용자들간의 코인 교환을 하지 않으며, 코인 교환은 리프 체인들(320 및 330) 각각의 내부에서 및/또는 리프 체인들(320 및 330)간에 이루어질 수 있다. 이때, 리프 체인들(320 및 330)간의 코인 교환은 릴레이어(340)를 통해 루트 체인(310)이 중재 및 관리할 수 있다. 리프 체인들(320 및 330) 각각에는 적어도 하나의 디앱(Decentralized Application, DApp)이 포함될 수 있다. 여기서, 디앱(Decentralized Application, DApp)은 백엔드 코드가 탈중앙화된 피어-투-피어 네트워크 상에서 돌아가고 (혹은 데이터 호출 및 등록을 블록체인 데이터베이스에 하고) 이를 프론트엔드에서 인터페이스로 제공해주는 어플리케이션을 말한다. 이때, 리프 체인들(320 및 330) 각각에서는 디앱의 필요에 따라 체인, 그리고 코인 교환과 상관없는 스마트 컨트랙트(smart contract)를 설치할 수 있으며, 이를 루트 체인(310)에서는 관여하지 않을 수 있다. 리프 체인들(320 및 330) 각각에서 체인들간의 코인 교환을 위한 프로토콜을 갖는 스마트 컨트랙트를 설치하고자 하는 경우에는 루트 체인(310)을 통해서 스마트 컨트랙트의 설치를 위한 허가를 받아야 한다. 루트 체인(310)의 허가를 받지 않은 스마트 컨트랙트를 이용한 체인간 코인 교환은 이루어지지 않도록 제한될 수 있다.
리프 체인들(320 및 330) 각각의 내부에서의 코인 교환은 루트 체인(310)을 거칠 필요 없이 리프 체인들(320 및 330) 각각에서 처리될 수 있으며, 처리된 내용이 포함된 모든 블록의 요약 정보(일례로, 상술한 머클 트리 루트 해시)를 루트 체인(310)에 기록할 수 있다. 반면, 리프 체인들(320 및 330)간의 코인 교환은 루트 체인(310)을 통해서 이뤄져야 하며, 리프 체인들(320 및 330) 각각의 블록과 루트 체인(310)의 블록에 코인 교환의 처리에 대한 내용이 기록되어야 한다. 이때, 리프 체인들(320 및 330)간의 코인 교환은 릴레이어(340)를 통해 이루어질 수 있다.
도 4는 본 발명의 일실시예에 따른 블록체인 네트워크의 세부 구성의 예를 도시한 도면이다. 블록체인 네트워크(300)는 도 4에 도시된 바와 같이 하나의 루트 체인(310)과 여러 리프 체인들(320 및 330) 그리고 릴레이어(340)로 구성될 수 있다.
루트 체인(310)은 루트 체인(310)을 위한 스마트 컨트랙트인 루트 체인 매니저 컨트랙트(RootChainManager Contract, 411)를 포함할 수 있으며, 블록체인 네트워크(300)가 포함하는 여러 리프 체인들(320 및 330) 각각을 위한 스마트 컨트랙트를 포함할 수 있다. 도 4의 실시예에서는 루트 체인(310)이 리프 체인 A(Leaf Chain A, 320)를 위한 스마트 컨트랙트인 리프 체인 A 컨트랙트(LeafChain A Contract, 412)와 리프 체인 B(Leaf Chain B, 330)를 위한 스마트 컨트랙트인 리프 체인 B 컨트랙트(LeafChain B Contract, 413)를 포함하는 예를 나타내고 있다.
또한, 리프 체인들(320 및 330) 각각은 디앱을 위한 스마트 컨트랙트를 포함할 수 있다. 도 4의 실시예에서는 리프 체인 A(320)가 디앱 컨트랙트(dApp Contract, 421)를, 리프 체인 B(330)가 디앱 컨트랙트(431)를 포함하는 예를 나타내고 있다. 또한, 리프 체인 A(320)는 리프 체인 A(320)를 위한 스마트 컨트랙트인 리프 체인 매니저 컨트랙트(LeafChainManager Contract, 422)를, 리프 체인 A(330)는 리프 체인 B(330)를 위한 스마트 컨트랙트인 리프 체인 매니저 컨트랙트(432)를 더 포함할 수 있다.
릴레이어(340)는 루트 체인(310)과 리프 체인들(320 및 330)의 블록 생성을 관찰하면서 루트 체인(310)과 리프 체인들(320 및 330)에 기록 및/또는 전달이 요구되는 정보를 인보크(invoke)할 수 있다. 릴레이어(340)는 프로듀서(Producer, 441), 카프카(Kafka, 442), 인터체인 컨슈머(InterChain Consumer, 443), 인터체인 페일오버(InterChain Failover, 444), 데이터베이스(Database, 445)를 포함할 수 있다.
프로듀서(441)는 루트 체인(310)을 포함하는 모든 체인의 새로 생성된 블록의 정보를 수집해서 카프카(442)에 입력할 수 있다. 카프카(442)는 일종의 큐 서버로서 수집된 정보를 큐에 저장하여 순차적으로 제공할 수 있다. 이때, 인터체인 컨슈머(443)는 각 체인별로 인보크가 요구되는 이벤트를 필터링할 수 있다. 이벤트에 따라 여러 개의 필터링이 요구될 수도 있다. 인터체인 컨슈머(443)는 각 체인에 인보크를 할 때, 시그니피케이션(signification)을 위해서 체인별로 별도의 유저를 생성하고, 유저의 권한을 스마트 컨트랙트에 기록할 수 있다.
인터체인 컨슈머(443)는 다음 (1) 내지 (7)과 같은 이벤트들을 감지할 수 있다.
(1) 리프 체인에서의 송금 요청 이벤트
(1-1) 인터체인 컨슈머(443)는 리프 체인에서의 송금 요청 이벤트를 감지하여 루트 체인으로 송금 요청 내용을 전달할 수 있다.
(2) 루트 체인에서의 송금 요청 이벤트
(2-1) 인터체인 컨슈머(443)는 루트 체인에서의 송금 요청 이벤트를 감지하여 송금 요청을 수신할 리프 체인으로 송금 요청 내용을 전달할 수 있다.
(2-2) 인터체인 컨슈머(443)는 수신하는 리프체인으로 전달 실패 시, 송금 요청을 수신할 리프 체인의 식별 정보를 포함하는 송금 실패 정보를 루트 체인으로 전달할 수 있다.
(3) 루트 체인에서의 송금 요청 실패 이벤트
(3-1) 인터체인 컨슈머(443)는 송금을 요청한 리프 체인으로 송금 실패 내용을 전달할 수 있다.
(4) 리프 체인에서의 송금 완료 이벤트
(4-1) 인터체인 컨슈머(443)는 루트 체인으로 송금 완료 내용을 전달할 수 있다.
(5) 루트 체인에서의 송금 완료 이벤트
(5-1) 인터체인 컨슈머(443)는 송금을 요청한 리프 체인으로 송금 완료 내용을 전달할 수 있다.
(6) 루트 체인에서 코인 발행 이벤트
(6-1) 인터체인 컨슈머(443)는 코인이 발행되는 리프 체인에 발행 내용을 전달할 수 있다.
(7) 리프 체인에서 블록 생성 이벤트
(7-1) 인터체인 컨슈머(443)는 루트 체인에 블록의 머클 트리 루트 해시를 전달할 수 있다.
인터체인 페일오버(444)는 (3-1), (4-1), (5-1), (6-1) 및 (7-1)이 정상적으로 전달될 수 있도록 장애극복 기능을 제공할 수 있으며, 데이터베이스(Database, 445)는 인터체인 컨슈머(443) 및 인터체인 페일오버(444)에서 수신 및/또는 전송(전달)하는 정보들을 저장하기 위해 활용될 수 있다.
도 5는 본 발명의 일실시예에 있어서, 새로운 리프 체인을 추가하는 과정의 예를 도시한 흐름도이다.
단계(510)에서 블록체인 네트워크(300)는 리프 체인을 구축할 수 있다. 예를 들어, 새로운 리프 체인은 이후 설명될 새로운 서비스를 추가하기 위해 구축될 수 있다.
단계(520)에서 블록체인 네트워크(300)는 리프 체인에 체인간 또는 컨트랙트간 코인 송금을 담당할 리프 체인 매니저 컨트랙트를 설치할 수 있다.
단계(530)에서 블록체인 네트워크(300)는 루트 체인에 해당 리프 체인을 처리할 수 있는 컨트랙트(이하 리프 체인 컨트랙트)를 설치할 수 있다.
단계(540)에서 블록체인 네트워크(300)는 설치된 루트 체인의 리프 체인 컨트랙트 주소를 루트 체인 매니저 컨트랙트에 등록할 수 있다. 이후 설명될 실시예들에 따라, 리프 체인의 서명 가능 컨트랙트(Signing Enable Contract)의 주소가 루트 체인 매니저 컨트랙트에 더 등록될 수도 있다. 또 다른 실시예에서는 리프 체인을 대표하는 퍼블릭 주소가 루트 체인 매니저 컨트랙트에 등록될 수도 있다.
단계(550)에서 블록체인 네트워크(300)는 루트 체인의 리프체인 컨트랙트에 접근 가능한 릴레이어 유저를 추가할 수 있다.
단계(560)에서 블록체인 네트워크(300)는 리프 체인의 리프 체인 매니저 컨트랙트에 접근 가능한 릴레이어 유저를 추가할 수 있다.
이때, 단계(550) 및 단계(560)의 릴레이어 유저는 동일한 유저일 수도 있고, 서로 다른 유저일 수도 있다. 리프 체인별로, 그리고 루트 체인과도 서로 다른 별도의 릴레이어 유저를 설정하여 활용하는 것이 보안상에서 유리할 수 있다. 여기서 릴레이어 유저는 블록체인 네트워크(300)가 제공하는 서비스의 계정에 대응할 수 있다.
도 6은 본 발명의 일실시예에 있어서, 새로운 서비스를 추가하는 과정의 예를 도시한 흐름도이다.
단계(610)에서 블록체인 네트워크(300)는 리프 체인에 해당 서비스의 컨트랙트를 설치할 수 있다. 설치한 컨트랙트의 주소는 해당 서비스를 구분하는 값으로 사용될 수 있다. 해당 서비스는 체인간 코인 교환 프로토콜을 갖춘 컨트랙트일 수 있다.
단계(620)에서 블록체인 네트워크(300)는 리프 체인의 리프 체인 매니저 컨트랙트에 해당 서비스에 대해 설치된 컨트랙트의 주소를 등록할 수 있다. 예를 들어, 도 5의 단계(520)에서는 리프 체인에 체인간 또는 컨트랙트간 코인 송금을 담당할 리프 체인 매니저 컨트랙트를 설치할 수 있음을 설명한 바 있다. 이러한 리프 체인 매니저 컨트랙트에 서비스를 위한 컨트랙트의 주소가 등록될 수 있다.
단계(630)에서 블록체인 네트워크(300)는 설치된 컨트랙트의 주소를 루트 체인의 루트 체인 매니저 컨트랙트에 등록할 수 있다. 이때, 설치된 컨트랙트의 주소는 루트 체인 매니저 컨트랙트의 관리자 권한을 통해 등록될 수 있다. 루트 체인 매니저 컨트랙트에 리프 체인의 서비스에 대해 설치된 컨트랙트의 주소를 루트 체인에 설치된 해당 리프 체인의 리프 체인 컨트랙트와 함께 등록하면, 루트 체인의 리프 체인 컨트랙트에도 리프 체인의 서비스에 대해 설치된 컨트랙트의 주소가 해당 리프 체인의 서비스로서 등록될 수 있다.
도 7은 본 발명의 일실시예에 있어서, 서비스에 코인을 발행하는 과정의 예를 도시한 흐름도이다.
단계(710)에서 루트 체인의 루트 체인 매니저 컨트랙트는 루트 체인에 설치된 리프 체인 컨트랙트에 등록된 서비스에 대한 컨트랙트의 주소에 대해 코인 발행을 요청할 수 있다. 예를 들어, 루트 체인의 루트 체인 매니저 컨트랙트는 루트 체인에 설치된 리프 체인 컨트랙트를 통해 코인을 발행하기 위한 서비스에 대한 컨트랙트의 주소를 통해 해당 서비스를 식별할 수 있으며, 식별된 서비스에 대해 코인 발행 이벤트를 발생시킬 수 있다.
단계(720)에서 인터체인 컨슈머는 해당 서비스에 대한 코인 발행 이벤트를 감지하여 해당 리프 체인의 리프 체인 매니저 컨트랙트에 서비스의 코인 발행을 요청할 수 있다.
단계(730)에서 리프 체인 매니저 컨트랙트는 해당 서비스를 찾아 코인을 발행할 수 있다. 이때, 코인은 해당 서비스의 컨트랙트를 설치할 때 입력한 서비스 오퍼레이터(일례로, 도 5의 단계(560)에서 추가된 릴레이어 유저)에게 발급될 수 있다.
도 8은 본 발명의 일실시예에 있어서, 코인 교환 과정의 예를 도시한 흐름도이다. 동일한 체인의 동일한 서비스에서의 코인 교환은 해당 리프 체인의 코인 교환을 위한 스마트 컨트랙트를 통해서 이루어질 수 있다. 또한, 동일한 체인의 다른 서비스들간의 코인 교환은 해당 리프 체인의 리프 체인 매니저 컨트랙트를 통해서 이루어질 수 있다. 예를 들어, 동일한 체인의 제1 서비스에서 제2 서비스로의 송금은 리프 체인 매니저 컨트랙트가 제1 서비스의 송금 요청에 따라 제2 서비스의 컨트랙트의 주소를 호출함에 의해 이루어질 수 있다. 이때, 동일한 리프 체인의 다른 서비스들간의 코인 교환 시, 코인 교환 결과가 루트 체인으로 전달될 수 있다. 이는 루트 체인이 리프 체인들의 각 서비스들이 보유한 코인의 양의 변경내용을 파악할 수 있도록 하기 위함이다. 반면, 다른 체인간의 코인 교환은 아래 단계들(810 내지 890)을 통해 이루어질 수 있다. 도 8의 단계들(810 내지 890)은 도 4를 통해 설명한 리프 체인 A(320)와 리프 체인 B(330)간의 코인 교환의 예를 설명한다.
단계(810)에서 리프 체인 A(320)는 유저 a의 리프 체인 B(330)의 유저 b에 대한 코인 교환 요청(송금 요청)을 수신할 수 있다. 이때, 리프 체인 A(320)는 유저 a의 잔고 등을 파악하여 코인 교환 요청이 정상적인 요청인 경우 리프 체인 A(320)의 블록에 기록할 수 있다. 교환 요청된 코인(송금 요청된 코인)은 리프 체인 A(320)가 포함하는 리프 체인 매니저 컨트랙트에 의해 유저 a의 잔고에서 차감될 수 있으며, 사용되지 않도록 잠금(lock)될 수 있다. 예를 들어, 리프 체인 A(320)의 리프 체인 매니저 컨트랙트는 송금 요청된 금액만큼 유저 a의 잔고와 송금 요청하는 서비스의 잔고를 확인한 후에 리프 체인 A(320)의 통화량에서 차감되는 금액이 사용되지 않도록 잠금을 설정할 수 있다. 차감된 유저 a의 금액에 대한 정보는 에스크로 컨트랙트에 기록될 수 있다. 이러한 송금의 성공에 대한 기록은 프로듀서(441)에 의해 카프카(442)에 기록될 수 있다. 송금 요청이 정상적이지 않은 경우, 리프 체인 A(320)는 송금 요청의 실패 내용을 블록에 기록할 수 있다. 또한, 리프 체인 A(320)는 송금 요청의 실패 시 이벤트를 기록하지 않음으로써 송금이 발생하지 않도록 할 수 있다.
단계(820)에서 인터체인 컨슈머(443)는 리프 체인 A(320)에서 리프 체인 B(330)로의 송금 요청 이벤트를 감지하고, 루트 체인(310)에 해당 송금 요청을 전달할 수 있다. 송금 요청 이벤트의 감지는 프로듀서(441)의 거래 수집에 의해 감지될 수 있으며, 인터체인 컨슈머(443)는 감지된 송금 요청 이벤트의 감지에 응답하여 루트 체인(310)에 해당 송금 요청을 전달할 수 있다.
단계(830)에서 루트 체인(310)은 리프 체인 A(320)에서 발급한 총 코인량을 송금 요청 정보들을 이용하여 분석함으로써 해당 송금 요청이 정상적인 요청인지 여부를 확인하고, 해당 송금 요청이 정상적인 요청인 경우 리프 체인 A(320)에서 리프 체인 B(330)로의 코인 교환 요청을 블록에 기록할 수 있다. 교환 요청은 송금하는 코인량만큼 사용되지 않도록 잠금(lock)될 수 있다. 또한, 루트 체인(310)은 해당 송금 요청이 정상적인 요청이 아닌 경우 실패 내용을 블록에 기록할 수 있다. 실패로 기록된 송금 요청은 다시 인터체인 컨슈머(443)에서 송금 실패 이벤트로 감지되어 리프 체인 A(320)로 전달될 수 있으며, 송금 실패 이벤트를 수신한 리프 체인 A(320)는 잠금된 코인을 풀어서 다시 유저 a에게 돌려줄 수 있다.
단계(840)에서 인터체인 컨슈머(443)는 루트 체인(310)에서 리프 체인 B(330)로의 송금 요청 이벤트를 감지하고, 리프 체인 B(330)로 해당 송금 요청을 전달할 수 있다. 만약, 리프 체인 B(330)가 정상 동작하지 않아서 인보크가 실패할 경우, 다시 루트 체인(310)으로 리프 체인 B(330)의 시스템 이상에 따른 전달 실패 내용을 전송할 수 있다. 실패로 기록된 요청은 다시 인터체인 컨슈머(443)에서 송금 실패 이벤트로 감지되어 리프 체인 A(320)로 전달될 수 있으며, 송금 실패 이벤트를 수신한 리프 체인 A(320)는 잠금된 코인을 풀어서 다시 유저 a에게 반환할 수 있다.
단계(850)에서 리프 체인 B(330)는 해당 송금 요청이 정상적인 요청인 경우, 유저 b에게 코인을 송금하고 리프 체인 B(330)의 전체 통화량을 송금된 코인량만큼 증가시킬 수 있다. 송금 요청이 실패하는 경우에는 실패 내용을 블록에 기록할 수 있다.
단계(860)에서 인터체인 컨슈머(443)는 리프 체인 B의 송금 완료 결과를 이벤트로 감지해서 해시와 성공 여부를 루트 체인(310)에 전달할 수 있다.
단계(870)에서 루트 체인(310)은 송금 결과를 수신하여 송금 실패와 송금 성공에 따라 처리할 수 있으며, 그 결과를 해시와 함께 블록에 기록할 수 있다. 송금이 성공한 경우, 루트 체인(310)은 잠금된 코인 송금 요청을 풀어서, 리프 체인 A(320)에서 리프 체인 B(330)로의 송금을 진행하고 각각의 통화량을 변경할 수 있다. 송금이 실패한 경우, 루트 체인(310)은 잠금된 코인 송금 요청을 풀어서 다시 리프 체인 A(320)로 돌려줄 수 있다.
단계(880)에서 인터체인 컨슈머(443)는 루트 체인(310)에서 처리한 송금 결과 이벤트를 감지해서 리프 체인 A(320)에 그 결과를 전달할 수 있다.
단계(890)에서 리프 체인 A(320)는 송금 결과를 수신하여 성공일 경우 잠금된 코인을 풀어서 리프 체인 A(320)의 전체 통화량을 조절(전체 통화량에서 송금액만큼 차감)할 수 있다. 송금이 실패한 경우, 리프 체인 A(320)는 잠금된 코인을 풀어서 다시 유저 a에게 돌려줄 수 있다. 리프 체인 A(320)는 이러한 송금 결과를 루트 체인(310)에 기록된 해시와 함께 블록에 기록할 수 있다.
도 9는 본 발명의 일실시예에 있어서, 각 체인간 스마트 컨트랙트를 통한 코인 교환 데이터의 흐름을 도시한 도면이다.
(1) 유저 a의 코인 교환 요청을 리프 체인 A(320)의 디앱 1(dApp 1, 920)이 수신하면, 디앱 1(920)은 리프 체인 매니저 컨트랙트 A(910)에 교환 요청을 할 수 있다. 리프 체인 매니저 컨트랙트 A(910)는 교환 거래 해시(eTxHash)를 생성하고, 교환 거래 해시, 송금하려는 유저 a(의 식별자)와 서비스 a(의 식별자), 송금받는 서비스 b(의 식별자)와 유저 b(의 식별자), 금액 정보(송금 금액) 및/또는 요청 시간을 기록(송금 요청 기록(에스크로(escrow) 정보)를 생성)할 수 있다. 이때 리프 체인 매니저 컨트랙트 A(910)는 디앱 1(920)의 컨트랙트의 전체 통화량과 유저 a의 보유 금액을 차감할 수 있다.
(2) 프로듀서(441)는 (1) 에서 생성된 거래를 수집할 수 있고, 인터체인 컨슈머(443)는 루트 체인(310)의 리프 체인 A 컨트랙트(412)에 송금을 요청할 수 있다.
(3) 리프 체인 A 컨트랙트(412)는 루트 체인 매니저 컨트랙트(411)를 통해서 송금 요청 정보를 루트 체인(310)에 대해 별도로 기록할 수 있다. 이때, 리프 체인 매니저 A 컨트랙트(412)가 관리하는 디앱 1(920)의 전체 통화량을 송금 금액만큼 차감할 수 있다.
(4) 프로듀서(441)는 (3)에서 생성된 거래를 수집할 수 있고, 인터체인 컨슈머(443)는 송금을 받는 서비스가 있는 리프 체인 B(330)의 리프 체인 매니저 컨트랙트 B(940)에 송금을 요청할 수 있다.
(5) 리프 체인 B(330)의 리프 체인 매니저 컨트랙트 B(940)는 송금하려는 서비스인 디앱 3(950)을 호출해서 디앱 3(950)의 컨트랙트에서 유저 b에게 송금이 이뤄지도록 할 수 있다. 이때, 디앱 3(950)의 컨트랙트는 리프 체인 B(330)의 전체 통화량도 증가시킬 수 있다.
(6) 프로듀서(441)는 (5)에서 생성된 거래를 수집할 수 있고, 인터체인 컨슈머(443)는 루트 체인(310)의 리프 체인 B 컨트랙트(413)에 송금 완료를 요청할 수 있다.
(7) 루트 체인(310)의 리프 체인 B 컨트랙트(413)는 루트 체인 매니저 컨트랙트(411)에 해당 송금 요청의 에스크로(escrow, 송금 요청 기록) 정보를 가져와서 송금 완료를 처리할 수 있다. 송금이 성공한 경우, 리프 체인 B 컨트랙트(413)가 관리하는 디앱 3(950)에서 송금 금액만큼의 리프 체인 B(330)의 전체 통화량이 증가될 수 있고, 루트 체인(310)의 루트 체인 매니저 컨트랙트(411)에서 해당 송금 요청 기록이 삭제될 수 있다. 송금이 실패한 경우, 리프 체인 A 컨트랙트(412)에 등록된 송금 요청한 서비스인 디앱 1(920)에 송금 금액만큼 리프 체인 A(320)의 전체 통화량이 다시 증가될 수 있고, 그 후에 루트 체인(310)의 루트 체인 매니저 컨트랙트(411)에서 해당 송금 요청 기록이 삭제될 수 있다.
(8) 프로듀서(441)는 (7)에서 생성된 거래를 수집할 수 있고, 인터체인 컨슈머(443)는 송금한 리프 체인 A(320)의 리프 체인 매니저 컨트랙트 A(910)에 송금 완료를 요청할 수 있다.
(9) 리프 체인 A(320)의 리프 체인 매니저 컨트랙트 A(910)는 송금 완료 정보를 수신하고 해당 교환 거래 해시가 완료됨을 기록하고 송금 요청 기록(escrow)에 있는 해당 요청을 삭제할 수 있다. 송금이 실패한 경우, 리프 체인 매니저 컨트랙트 A(910)는 송금 요청 기록(escrow)에 있는 금액을 유저 a에게 다시 반환할 수 있으며, 디앱 1(920)의 전체 통화량도 송금 금액만큼 다시 증가시킨 후에 송금 요청 기록(escrow)에서 해당 요청을 삭제할 수 있다.
실시예에 따라 릴레이어는 체인마다 존재할 수도 있다. 예를 들어, 도 4를 통해 설명한 바와 같이 하나의 루트 체인(310)과 두 개의 리프 체인들(320 및 330)이 존재하는 경우, 총 세 개의 체인들을 위한 세 개의 릴레이어들이 구성될 수도 있다. 이 경우, 루트 체인(310)의 릴레이어는 두 개의 리프 체인들(320 및 330)과의 요청, 데이터 및/또는 이벤트의 전달을 처리할 수 있으며, 두 개의 리프 체인들(320 및 330) 각각의 릴레이어는 루트 체인(310)과의 요청, 데이터 및/또는 이벤트의 전달을 처리할 수 있다. 이때, 리프 체인들을 위한 릴레이어들의 담합을 방지하기 위해, 릴레이어들 각각과 연결되는 체인은 기설정된 시간 주기(일례로, 블록 시간 주기)마다 동적으로 변경될 수 있다. 이러한 실시예에서 해시는 해시 시간 잠금 컨트랙트(Hashed timelock contract)를 통해 체인 간 이동시에 릴레이어에 의해 교환 거래가 중간에 강탈되거나 변조되지 않도록 할 수 있다. 이러한 해시 시간 잠금은 유저들이 교환 거래의 결과를 직접 확인할 수 있는 시간을 제공하기 위해 이용될 수 있다. 또한, 릴레이어의 의도치 않은 이중지불을 방지하기 위한 유니크한 식별자로서 별도의 교환 거래 식별자가 활용될 수 있다. 이러한 교환 거래 식별자는 리프 체인들간의 가치 이동이 있을 경우, 교환 거래를 유일하게 식별하여 트래킹하기 위해 활용될 수 있다.
이러한 블록체인 네트워크(300)에서 체인간에 데이터를 전달할 때, 전달하는 시스템에서 전달할 데이터를 변조할 가능성이 존재한다. 일례로, 리프 체인 A(320)에서 루트 체인(310)으로 데이터를 전달할 때, 리프 체인 A(320)에서 데이터를 변조할 가능성이 존재한다. 특히, 리프 체인들을 퍼블릭 블록체인의 형태로 확장할 수 있도록 하기 위해 리프 체인들마다 릴레이어가 구현되는 경우, 이러한 릴레이어에 대한 의존도를 줄이고 프로토콜 단에서 데이터 인증의 문제를 해결할 필요성이 있다. 이를 위해, 블록체인 네트워크(300)는 아래와 같은 다섯 가지 요구사항을 갖는다.
1. 베이스 코인(Base Coin)의 체인들간 송금이 가능해야 한다. 여기서 베이스 코인은 블록체인 네트워크(300)의 고유한 코인체계에서 사용되는 코인을 의미할 수 있다.
2. 루트 체인이 모든 체인의 베이스 코인을 관리할 수 있어야 한다. 이때, 베이스 코인의 관리는 체인들간의 베이스 코인의 송금을 포함할 수 있다.
3. 릴레이어가 데이터를 변조해서 전달하지 못하도록 해야 한다.
4. 리프 체인에서 송금 수신을 받아서 유저에게 송금은 성공했지만, 실패 메시지를 전달함에 의해 이중 지불이 발생하지 않도록 해야 한다.
5. 송금에서 베이스 코인을 수신하는 사용자의 확인 없이 빠르게 체인간 송금이 이루어져야 한다.
이러한 요구사항을 위해, 루트 체인에서는 권한을 가진 사용자를 통해 베이스 코인의 발행(mint)과 소각(burn)이 발생하도록 할 수 있다. 또는 권한이 있는 사용자들이 멀티시그-월렛(multisig-wallet)으로 확인을 받아서 베이스 코인을 발행 또는 소각시킬 수 있도록 할 수 있다. 이때, 리프 체인에서는 루트 체인에서 코인 발행 요청을 받는 경우에 발행을 실행할 수 있다. 또한, 리프 체인에서 다른 리프 체인으로 송금을 할 경우, 두 리프 체인에서는 루트 체인의 인증된 정보가 전달된 것을 확인한 후, 발행과 소각이 실행될 수 있다. 예를 들어, 베이스 코인을 송금하는 리프 체인에서는 해당 베이스 코인에 대한 소각을 실행할 수 있으며, 베이스 코인을 수신하는 리프 체인에서는 해당 베이스 코인에 대한 발행을 실행할 수 있다.
한편, 릴레이어의 데이터 변조를 막기 위해서는 전달하려는 데이터가 변조될 수 없도록 해야 한다. 이하에서는 데이터의 변조를 차단하기 위한 방법들을 설명한다.
첫 번째 방법에서는, 전달하려는 원본 데이터를 서명(signing)할 수 있다. 만약, 데이터를 전송하는 주체(from user)가 데이터를 수신하려는 체인에서 이미 알고 있는 사용자인 경우, 서명된 원본 데이터를 통해 원본 데이터의 변조 여부를 확인할 수 있다. 이를 위해, 컨트랙트는 컨트랙트 자신의 프라이빗 키(private key)를 가진 상태로 생성될 수 있으며, 프라이빗 키에 대응하는 퍼블릭 키(public key)를 공개할 수 있다. 이때, 컨트랙트에서 다른 체인에 전달이 필요한 정보들을 서명하여 이벤트로 기록할 수 있으며, 따라서 원본 데이터가 해당 컨트랙트로부터 처리되었다는 것을 증명할 수 있다. 예를 들어, 컨트랙트는 원본 데이터와 자신의 컨트랙트 주소를 컨트랙트의 프라이빗 키로 서명할 수 있다. 이 경우, 임의의 사용자는 컨트랙트의 프라이빗 키에 대응하는 퍼블릭 키(public key)를 이용하여 서명된 원본 데이터를 검증할 수 있으며, 모든 체인에서 유일하게 생성되는 해당 컨트랙트의 컨트랙트 주소를 통해 해당 컨트랙트에 의해 데이터가 전달되었음이 증명될 수 있다. 그러나, 첫 번째 방법에서 컨트랙트의 프라이빗 키는 컨트랙트의 데이터베이스에 저장되어야 하며, 블록체인 네트워크에서 데이터베이스는 공유 및 오픈되기 때문에 체인의 모든 노드들에게 프라이빗 키가 공유되며, 따라서 더 이상 프라이빗 키가 아니게 된다.
두 번째 방법에서는, 프라이빗 키를 컨트랙트에 저장하는 것이 아니라, 하나의 체인을 대표하는 프라이빗 키를 같은 체인내에서 합의(consensus)를 이루는 노드들인 C-노드들과 공유하여 체인 인증이 요구될 때 사용하게 할 수 있다. 일례로, 각 체인들은 합의를 위한 n(일례로, n은 4 내지 8) 개의 C-노드들이 프라이빗 키를 공유하여 유지할 수 있다. 사용자나 다른 컨트랙트는 해당 체인을 위한 시스템(일례로, 해당 체인에 설치된 시스템 컨트랙트)에 데이터의 서명을 요구할 수 있으며, 시스템은 요구된 데이터에 서명을 하여 서명된 데이터를 제공할 수 있다. 이때, 해당 체인의 컨트랙트는 데이터의 서명과 전달에 대한 이벤트를 기록할 수 있으며, 릴레이어를 통해 다른 체인으로 서명된 데이터를 전달할 수 있다. 예를 들어, 루트 체인에서 루트 체인의 프라이빗 키와 쌍을 이루는 퍼블릭 키를 통해 만들어지는 식별값인 퍼블릭 주소는 리프 체인의 제네시스(genesis) 블록에 기록됨에 따라 리프 체인에서 변조할 수 없게 된다. 루트 체인을 통해 프라이빗 키로 서명된 데이터는 리프 체인에서 제네시스 블록에 기록된 퍼블릭 주소와 비교함으로써 서명된 데이터가 루프 체인에서 발송된 것임을 검증할 수 있다. 이와 유사하게 리프 체인 역시 리프 체인의 프라이빗 키로 만들어지는 퍼블릭 주소를 루트 체인에 해당 리프 체인과 연관하여 설치된 리프 체인 컨트랙트에 등록할 수 있다. 이 경우, 루트 체인은 리프 체인을 통해 리프 체인의 프라이빗 키로 서명된 데이터를 해당 리프 체인 컨트랙트에 등록된 퍼블릭 주소와 비교함으로써, 서명된 데이터가 해당 리프 체인에서 발송된 것임을 검증할 수 있다. 다만, 두 번째 방법은 합의를 위한 C-node들에서 프라이빗 키를 공유할 수 있는 프라이빗 블록체인에서는 사용 가능하지만, 외부 서비스의 제공을 위해 공개되는 퍼블릭 블록체인(퍼블릭 리프 체인)에서는 사용이 불가능하다.
세 번째 방법은, 루트 체인의 모든 C-노드들 각각이 합의를 위해서 갖고 있는 고유의 프라이빗 키를 활용하는 방법이다. 일례로, 루트 체인이 8 개의 C-노드를 포함하는 경우, 8 개의 프라이빗 키들이 존재할 수 있다. 이 경우, 해당 프라이빗 키들에 의해 생성되는 루트 체인의 모든 C-노드들 각각의 퍼블릭 주소들이 모든 리프 체인들 각각에 저장될 수 있다. 이때, 루트 체인에서 생성된 것임을 확인할 필요가 있는 데이터는 루트 체인의 리더 노드가 자신의 프라이빗 키로 서명하여 블록에 기록할 수 있으며, 해당 데이터가 리프 체인으로 전달되도록 할 수 있다. 여기서, 리더 노드는 C-노드들 중 임의로 선정된 노드일 수 있으며, 필요 시 다른 C-노드들 중 하나로 변경될 수 있다. 이 경우, 리프 체인은 서명된 데이터를 리프 체인에 저장된 퍼블릭 주소와 비교함으로써 서명된 데이터가 루프 체인에서 발송된 것임을 검증할 수 있다. 앞서 설명한 바와 같이, 리프 체인은 루트 체인의 모든 C-노드들의 퍼블릭 주소를 알고 있기 때문에, 서명된 데이터를 검증할 때 얻어지는 퍼블릭 주소가 이미 알고 있는 루트 체인의 C-노드들의 퍼블릭 주소들 중 하나인지 여부를 검증함으로써, 서명된 데이터를 검증할 수 있다. 다만, 루프 체인이 포함하는 C-노드의 수가 공개되며, C-노드를 루트 체인에 추가 또는 삭제하는 등의 변경이 발생하는 경우, 모든 리프 체인 각각에 기록된 정보를 갱신해야 한다. 특히, 외부 서비스를 위해 할당된 퍼블릭 블록체인(퍼블릭 리프 체인)에 기록된 정보는 직접 갱신할 수 없기 때문에 해당 퍼블릭 블록체인에서 기록된 정보를 갱신하도록 정보를 제공(퍼블릭 주소의 갱신이 가능하도록 하기 위한 정보를 공지)해야 한다. 이와 유사하게 리프 체인의 C-노드들 역시 합의를 위해 고유의 프라이빗 키를 가질 수 있으며, 이러한 프라이빗 키가 활용될 수 있다. 이 경우, C-노드들 각각의 퍼블릭 주소들은 루트 체인에 해당 리프 체인과 연관하여 설치된 리프 체인 컨트랙트에 등록될 수 있으며, 루트 체인은 서명된 데이터를 해당 리프 체인 컨트랙트에 등록된 퍼블릭 주소와 비교함으로써, 서명된 데이터가 해당 리프 체인에서 발송된 것임을 검증할 수 있다.
네 번째 방법은, 루트 체인의 모든 C-노드에서 생성되는 퍼블릭 주소의 조합으로 만들어지는 대표 퍼블릭 주소(Common Public Address)를 모둔 리프 체인들 각각에 공유하는 방법이다. 이 경우에도 루프 체인에 C-노드를 추가 또는 삭제하는 등의 변경이 발생하는 경우, 모든 리프 체인 각각에 기록된 정보를 갱신해야 하나 리프 체인들 각각에서 공유해야 할 퍼블릭 주소를 대표 퍼블릭 주소 하나로 줄일 수 있으며, 루프 체인이 포함하는 C-노드의 수는 공개되지 않는다는 장점이 있다. 다만, 대표 퍼블릭 주소가 변경되기 때문에 변경 시에 보안을 주의해야 한다. 네 번째 방법에서는 루트 체인의 모든 C-노드의 퍼블릭 주소 각각을 모든 C-노드들 각각이 다 알고 있어야 한다. 또한, 네 번째 방법에서는 프라이빗 키가 여러 개가 있다 하더라도 하나의 퍼블릭 주소(대표 퍼블릭 주소)를 만들 수 있으며, 프라이빗 키가 하나 이상의 컨펌을 통해 암호를 풀 수 있도록 서명을 위한 알고리즘과 이를 검증하는 알고리즘을 수정한 모듈이 요구된다.
다섯 번째 방법에서는 첫 번째 방법을 활용 가능하도록 하기 위해 블록체인에 다음과 같은 기능을 추가할 수 있다. 다섯 번째 방법에서는 컨트랙트가 퍼블릭 키로 컨트랙트 주소를 생성하고, 프라이빗 키를 암호화해서 컨트랙트가 저장하도록 할 수 있다. 프라이빗 키를 알고 있으며, 프라이빗 키를 통해서 퍼블릭 키를 얻을 수 있으며, 퍼블릭 키를 통해 컨트랙트 주소를 생성할 수 있다. 이때, 서명을 위한 컨트랙트(이하, 서명 가능 컨트랙트(Signing Enable Contract))는 하나의 체인에 하나만 존재해도 무방하다. 예를 들어, 서명 가능 컨트랙트의 설치(deploy) 시 암호화된 프라이빗 키와 프라이빗 키로 생성되는 퍼블릭 키가 파라미터로서 서명 가능 컨트랙트로 전달될 수 있다. 서명 가능 컨트랙트는 수신한 퍼블릭 키로 컨트랙트 주소를 생성할 수 있다. 이때, 동일한 컨트랙트 주소가 있다면, 컨트랙트 주소의 생성은 실패할 수 있다. 암호화된 프라이빗 키는 이후 설명될 패스워드를 통해 복호화될 수 있으며, 서명 가능 컨트랙트에 의해 데이터베이스에 저장될 수 있다. 이때, 임의의 컨트랙트가 데이터를 서명하고자 하는 경우, 서명하고자 하는 데이터와 서명 가능 컨트랙트에 저장된 암호화된 프라이빗 키를 복호화할 수 있는 패스워드를 파라미터로서 서명 가능 컨트랙트에 전달할 수 있다. 이때, 블록체인에서 모든 요청(일례로, HTTPS(Hypertext Transfer Protocol Secure)를 이용한 요청)에 따른 정보들은 블록이나 로그에 기록되는 반면, 패스워드는 어디에도 저장/기록되지 말아야 한다. 따라서, 다섯 번째 방법에서는 패스워드 파라미터를 블록이나 로그 등 어디에도 저장/기록되지 않는 타입(이하 '시큐어 타입')으로 정의될 수 있다. 이러한 패스워드 파라미터는 해당 블록체인에서 지원될 수 있다. 이 경우, 서명 가능 컨트랙트는 패스워드를 통해 암호화된 프라이빗 키를 복원한 후, 복원된 프라이빗 키를 이용하여 입력된 데이터를 서명할 수 있으며, 서명한 결과(서명된 데이터)를 서명을 요청한 컨트랙트로 반환할 수 있다. 서명 가능 컨트랙트의 컨트랙트 주소는 각 리프 체인의 제네시스 블록에 기록될 수 있다. 다만, 다섯 번째 방법에서는 시스템상에서 시큐어 타입을 별도로 정의하여 활용해야 하며, 암호화된 프라이빗 키와 퍼블릭 키가 시스템 외부에서 생성되어 제공되어야 하며, 프라이빗 키가 암호화되어 전달되기 때문에 프라이빗 키를 정상적으로 생성되어 전달되는지 여부를 확인할 수 없다. 루트 체인에서 전송되는 데이터임을 리프 체인이 입증하기 위해, 리프 체인에서는 해당 데이터를 서명한 서명 가능 컨트랙트가 루트 체인에 설치된 컨트랙트인지 루트 체인에 조회하여 바로 파악할 수 있으며, 해당 서명 컨트랙트가 루트 체인에 컨트랙트에 존재하는 컨트랙트라는 것이 입증되면, 서명된 데이터가 루트 체인에서 생성 또는 처리된 데이터라는 것이 입증될 수 있다.
도 10은 본 발명의 일실시예에 있어서, 서명 가능 컨트랙트의 설치 과정의 예를 도시한 도면이다. 도 10은 서명 가능 컨트랙트(1010)가 암호화된 프라이빗 키(1020)와 퍼블릭 키(1030)를 파라미터로서 수신하고, 수신된 퍼블릭 키(1030)를 이용하여 퍼블릭 주소를 생성하여 데이터베이스(1040)에 저장하는 예를 나타내고 있다. 다시 말해, 데이터베이스(1040)에는 암호화된 프라이빗 키(1020)와 퍼블릭 키(1030), 그리고 퍼블릭 키(1030)를 이용하여 생성된 퍼블릭 주소가 저장될 수 있다.
도 11은 본 발명의 일실시예에 있어서, 데이터를 서명하는 과정의 예를 도시한 도면이다. 도 11은 서명 가능 컨트랙트(1010)가 사용자나 다른 컨트랙트(1110)로부터의 서명 요청을 수신하는 예를 나타내고 있다. 이때, 서명 요청은 서명하기 위한 데이터와 도 10에서 설명한 암호화된 프라이빗 키(1020)를 복호화하기 위한 패스워드를 포함할 수 있다. 이 경우, 서명 가능 컨트랙트(1010)는 패스워드를 이용하여 암호화된 프라이빗 키(1020)를 복호화하여 프라이빗 키를 얻을 수 있으며, 복호화된 프라이빗 키를 이용하여 파라미터로서 전달된 데이터를 서명할 수 있다. 이후, 서명 가능 컨트랙트(1010)는 서명된 데이터를 결과로서 사용자나 다른 컨트랙트(1110)로 반환할 수 있다. 여기서 사용자는 해당 블록체인의 노드에 대응할 수 있다.
여섯 번째 방법에서는 다섯 번째 방법의 서명 가능 컨트랙트가 블록체인의 시스템 컨트랙트로 자동 설치될 수 있도록 할 수 있다. 다시 말해, 블록체인의 시스템 컨트랙트가 설치될 때 서명 가능 컨트랙트도 같이 설치되도록 할 수 있다. 예를 들어, 리더 노드와 같이 시스템 컨트랙트를 최초 생성하는 노드가 프라이빗 키를 생성하여 서명 가능 컨트랙트를 설치할 수 있다. 생성된 프라이빗 키는 서명 가능 컨트랙트를 통해 암호화되어 데이터베이스에 저장될 수 있으며, 암호화된 프라이빗 키를 복호화하기 위한 패스워드는 해당 노드의 퍼블릭 키로 암호화하여 해당 노드의 로컬에 저장될 수 있다. 다른 노드는 트랜잭션을 복제하고 최신 패스워드를 아는 노드를 검색할 수 있다. 이때, 다른 노드는 검색되는 노드에 자신의 퍼블릭 키를 전달해서 퍼블릭 키로 암호화된 패스워드를 수신하여 해당 다른 노드의 로컬에 저장할 수 있다. 각 노드들은 서명을 요청할 때, 자신의 퍼블릭 키로 자신의 로컬에 저장된 암호화된 패스워드를 복호화하여 패스워드를 얻을 수 있으며, 얻어진 패스워드를 서명 요청 함수의 파라미터로서 서명 가능 컨트랙트로 전달할 수 있다. 요청은 블록체인에서 제공하는 서명 API 또는 함수를 이용하여 처리될 수 있다. 서명 가능 컨트랙트의 퍼블릭 주소는 각 리프 체인의 제네시스 블록에 기록될 수 있다. 루트 체인에서 전송되는 데이터임을 입증하기 위해서는 서명 가능 컨트랙트를 활용할 수 있다.
도 12는 본 발명의 일실시예에 있어서, 서명 가능 컨트랙트의 설치 과정의 다른 예를 도시한 도면이다. 도 12는 노드가 생성한 프라이빗 키를 서명 가능 컨트랙트(1210)가 노드의 퍼블릭 키(1220)로 암호화하여 데이터베이스(1230)에 저장하는 예를 나타내고 있다. 이때, 서명 가능 컨트랙트(1210)는 암호화된 프라이빗 키를 복호화하기 위한 패스워드를 노드의 퍼블릭 키로 암호화되어 해당 노드로 반환할 수 있다. 반환된 암호화된 패스워드는 노드의 로컬에 저장될 수 있다.
도 13은 본 발명의 일실시예에 있어서, 데이터를 서명하는 과정의 다른 예를 도시한 도면이다. 도 13은 노드(1310)가 암호화된 패스워드를 노드(1310)의 프라이빗 키로 복호화하여 패스워드를 획득한 후, 획득한 패스워드를 파라미터로 시스템(1320)에 전달하여 데이터의 서명을 요청하는 예를 나타내고 있다. 여기서 시스템(1320)은 블록체인 시스템에 대응할 수 있다. 이때, 서명하고자 하는 데이터 역시 파라미터로 함께 시스템(1320)에 전달될 수 있다. 이 경우, 시스템(1320)은 패스워드를 이용하여 서명 가능 컨트랙트(1210)로 데이터의 서명을 요청할 수 있다. 이 경우, 서명 가능 컨트랙트(1210)는 패스워드를 통해 암호화된 프라이빗 키를 복호화할 수 있으며, 복호화된 프라이빗 키를 이용하여 데이터를 서명한 후, 서명된 데이터를 반환할 수 있다. 시스템(1320)은 반환된 서명된 데이터를 노드(1310)로 전달할 수 있다.
한편, 리프 체인에서 내부에서 처리한 내용과 전달하는 내용이 다르지 않도록 해야 한다. 이를 위해, 송금을 처리한 트랜잭션의 머클 트리의 증명 해시 목록을 처리 결과와 같이 이벤트를 통해서 전달할 수 있도록 해야 한다. 만약, 감시자가 존재한다면, 머클 트리의 증명 정보까지 전달해야 할지 여부를 결정할 필요가 있다. 전달할 이벤트 정보를 컨트랙트의 프라이빗 키로 서명해서 이벤트에 기록할 수 있으며, 이 경우 해당 트랜잭션이 처리되었다는 것은 알 수 있지만, 처리 내용을 변조했는지 여부는 파악할 수 없기 때문에 감시자가 필요할 수도 있다. 이때, 감시자는 해당 블록이 존재하는지의 여부와 해당 트랜잭션이 이벤트로 전달한 데이터와 같이 송금이 성공인지, 실패인지 여부를 확인할 수 있다. 감시자에 의해서 부정이 발견되면 해당 리프 체인에는 불이익이 제공될 수 있다. 여기서 감시자는 위 기능을 실행하는 노드의 형태로 구현될 수 있다.
도 14는 본 발명의 일실시예에 있어서, 코인 교환 방법의 다른 예를 도시한 도면이다. 동일한 체인의 동일한 서비스에서의 코인 교환이나 동일한 체인의 다른 서비스들간의 코인 교환에 대해서는 도 8의 실시예를 통해서도 설명한 바 있다. 도 14는 도8의 실시예와는 다른 실시예로서, 루트 체인(1410), 리프 체인 1(1420) 및 리프 체인 2(1430)를 나타내고 있으며, 리프 체인 1(1420)의 사용자 1이 리프 체인 2(1430)의 사용자 2에게 송금을 요청한 경우를 가정한다.
과정 1은 리프 체인 1(1420)에서 송금 요청이 정상적인 요청인지 여부를 확인한 후, 문제가 없는 경우에 송금 요청에 대한 정보를 루트 체인(1410)으로 전달하는 과정의 예일 수 있다.
과정 2는 루트 체인(1410)에서 송금 요청이 정상적인 요청인지 여부를 확인한 후, 문제가 없는 경우에 리프 체인 2(1430)로 송금이 가능한지 여부에 대한 확인 요청을 보내는 과정의 예일 수 있다.
과정 3은 리프 체인 2(1430)에서 송금 요청이 수신 가능한 요청인지 확인한 후, 문제가 없는 경우에 루트 체인(1410)으로 수신가능 응답을 전송하는 과정의 예일 수 있다.
과정 4는 루트 체인(1410)이 리프 체인 1(1420) 및 리프 체인 2(1430)에 각각 송금 금액을 차감 또는 증액하는 영수증을 발행하는 과정의 예일 수 있다. 과정 4.1은 루트 체인(1410)이 리프 체인 1(1420)로 송금 금액 차감을 위한 영수증을 발행하는 과정의 예일 수 있으며, 과정 4.2는 루트 체인(1410)이 리프 체인 2(1430)로 송금 금액 증액을 위한 영수증을 발행하는 과정의 예일 수 있다. 각 체인에서는 중복 차감이나 중복 증액이 발생하지 않도록 하기 위한 관리가 이루어질 수 있다.
이하에서는 스마트 컨트랙트의 구성에 대해 설명한다.
스마트 컨트랙트는 루트 체인의 경우에는 앞서 도 4를 통해 설명한 바와 같이 루트 체인 매니저 컨트랙트를 포함할 수 있으며, 각 리프 체인들 각각을 위한 컨트랙트를 포함할 수 있다. 한편, 리프 체인은 서비스 디앱이 존재하는 경우에는 리프 체인 매니저 컨트랙트와 디앱 컨트랙트를 포함할 수 있으며, 서비스 디앱이 존재하지 않는 경우에는 리프 체인 매니저 컨트랙트를 포함할 수 있다. 루트 체인 매니저 컨트랙트와 리프 체인 매니저 컨트랙트는 시스템 컨트랙트로서 블록체인이 설치될 때 자동으로 설치될 수 있다. 릴레이어는 이벤트 로그(eventLogs)를 필터링해서 각각의 체인에 전달할 수 있다. 각 체인은 릴레이어가 데이터를 변조할 수 없도록 관리할 수 있다. 이미 설명한 바와 같이, 루트 체인은 각 리프 체인의 프라이빗 키로 만들어진 퍼블릭 주소를 저장할 수 있으며, 리프 체인은 루트 체인의 고유한 프라이빗 키로 만들어지는 퍼블릭 주소를 제네시스 블록을 생성할 때 기록할 수 있다. 릴레이어가 전달할 정보를 모두 루트 체인의 고유한 프라이빗 키로 서명한 정보도 함께 전달될 수 있도록 할 수 있다.
또한, 리프 체인에 서비스 디앱이 존재하는 경우, 사용자는 디앱의 "exchange"를 정의한 함수를 호출할 수 있다. 이때, 디앱에서는 icx에 정의된 "exchange"를 호출할 수 있으며, 이에 icx 클래스에서 'exchange 기능이 구현될 필요가 있다.
한편, 체인간 송금을 위해서 필요한 정보들은 아래와 같다.
· from user : 송금을 하는 사용자
· origin : 송금 요청한 서비스 또는 리프 체인
· to user : 송금을 받는 사용자
· destination : 송금을 받는 서비스 또는 리프 체인
· value : 송금 금액(베이스 코인)
· eTxHash : 송금 트랜잭션 해시(transaction hash)
· message : 송금 메시지
· eSignature : 데이터를 전달을 요청한 리프 체인의 서명
여기서, 리프 체인의 서명은 from user, origin, to user, destination, value, eTxHash, message를 조합해서 서명한 값을 포함할 수 있다.
도 15는 본 발명의 일실시예에 있어서, 데이터 인증 방법의 제1 예를 도시한 흐름도이다. 본 실시예에 따른 데이터 인증 방법은 블록체인 네트워크의 노드를 구현하는 컴퓨터 장치(200)에 의해 수행될 수 있다. 예를 들어, 컴퓨터 장치(200)의 프로세서(220)는 메모리(210)가 포함하는 운영체제의 코드나 적어도 하나의 프로그램의 코드에 따른 제어 명령(instruction)을 실행하도록 구현될 수 있다. 여기서, 프로세서(220)는 컴퓨터 장치(200)에 저장된 코드가 제공하는 제어 명령에 따라 컴퓨터 장치(200)가 도 15의 방법이 포함하는 단계들(1510 내지 1540)을 수행하도록 컴퓨터 장치(200)를 제어할 수 있다.
단계(1510)에서 컴퓨터 장치(200)는 블록체인 네트워크의 체인을 대표하는 프라이빗 키를 블록체인 네트워크에서 합의(consensus)에 참여하는 적어도 하나의 다른 노드와 공유할 수 있다. 이때, 노드는 블록체인 네트워크에서의 합의를 이루도록 기설정된 복수의 노드들 중 하나일 수 있으며, 적어도 하나의 다른 노드 역시 블록체인 네트워크에서의 합의를 이루도록 기설정된 복수의 노드들에 포함될 수 있다.
본 실시예에 따른 데이터 인증 방법은 앞서 설명한 두 번째 방법에서 체인을 대표하는 하나의 프라이빗 키를 해당 체인의 C-노드들이 공유하고, 이를 체인 인증에 활용하는 과정을 설명한다. 다시 말해, 하나의 노드를 구현하는 컴퓨터 장치(200)는 컴퓨터 장치(200)에 의해 구현되는 노드가 참여하는 블록체인 네트워크의 체인을 대표하는 프라이빗 키를 적어도 하나의 다른 노드와 공유할 수 있다.
단계(1520)에서 컴퓨터 장치(200)는 프라이빗 키를 이용하여 생성되는 퍼블릭 키를 이용하여 블록체인 네트워크의 퍼블릭 주소를 생성할 수 있다. 이미 설명한 바와 같이, 퍼블릭 주소는 프라이빗 키를 통해 서명된 데이터가 해당 블록체인 네트워크로부터 발송된 것임을 검증하기 위해 제공될 수 있다.
일실시예로, 블록체인 네트워크는 복수의 리프 체인들간의 데이터 전송을 관리하는 루트 체인을 포함할 수 있다. 이 경우, 컴퓨터 장치(200)는 생성된 퍼블릭 주소를 복수의 리프 체인들 각각의 제네시스(genesis) 블록에 기록할 수 있다. 이때, 서명된 데이터를 전송받은 리프 체인에서 서명된 데이터와 리프 체인의 제네시스 블록에 기록된 퍼블릭 주소를 비교하여 서명된 데이터가 루트 체인에서 발송된 것임을 검증할 수 있다.
다른 실시예로, 블록체인 네트워크는 루트 체인에 의해 데이터 전송이 관리되는 복수의 리프 체인들 중 제1 리프 체인을 포함할 수 있다. 이 경우, 컴퓨터 장치(200)는 생성된 퍼블릭 주소를, 루트 체인에 제1 리프 체인과 연관하여 설치된 리프 체인 컨트랙트에 등록할 수 있다. 이때, 루트 체인에서 서명된 데이터와 해당 리프 체인 컨트랙트에 등록된 퍼블릭 주소를 비교하여 서명된 데이터가 제1 리프 체인에서 발송된 것임을 검증할 수 있다.
단계(1530)에서 컴퓨터 장치(200)는 블록체인 네트워크에서 다른 블록체인 네트워크로 전달하고자 하는 데이터를 블록체인 네트워크에 설치된 컨트랙트를 통해 프라이빗 키로 서명할 수 있다. 이때, 서명된 데이터가 기록된 블록이 블록체인 네트워크의 체인에 추가될 수 있다.
단계(1540)에서 컴퓨터 장치(200)는 서명된 데이터를 컨트랙트를 통해 다른 블록체인 네트워크로 전달할 수 있다. 이때, 서명된 데이터와 퍼블릭 주소간의 비교를 통해 서명된 데이터가 블록체인 네트워크를 통해 발송된 것임이 검증될 수 있다.
도 16은 본 발명의 일실시예에 있어서, 데이터 인증 방법의 제2 예를 도시한 흐름도이다. 본 실시예에 따른 데이터 인증 방법은 블록체인 네트워크의 노드를 구현하는 컴퓨터 장치(200)에 의해 수행될 수 있다. 예를 들어, 컴퓨터 장치(200)의 프로세서(220)는 메모리(210)가 포함하는 운영체제의 코드나 적어도 하나의 프로그램의 코드에 따른 제어 명령(instruction)을 실행하도록 구현될 수 있다. 여기서, 프로세서(220)는 컴퓨터 장치(200)에 저장된 코드가 제공하는 제어 명령에 따라 컴퓨터 장치(200)가 도 16의 방법이 포함하는 단계들(1610 내지 1630)을 수행하도록 컴퓨터 장치(200)를 제어할 수 있다.
단계(1610)에서 컴퓨터 장치(200)는 노드의 프라이빗 키를 이용하여 노드의 퍼블릭 주소를 생성할 수 있다. 노드의 프라이빗 키는 노드가 블록체인 네트워크에서 합의를 위해 갖고 있는 고유의 프라이빗 키일 수 있다.
단계(1620)에서 컴퓨터 장치(200)는 블록체인 네트워크에서 다른 블록체인 네트워크로 전달하고자 하는 데이터를 노드의 프라이빗 키를 이용하여 서명할 수 있다. 이때, 서명된 데이터가 기록된 블록이 블록체인 네트워크의 체인에 추가될 수 있다.
단계(1630)에서 컴퓨터 장치(200)는 서명된 데이터를 다른 블록체인 네트워크로 전달할 수 있다. 이때, 상기 퍼블릭 주소를 이용하여 상기 서명된 데이터가 상기 블록체인 네트워크를 통해 발송된 것임이 검증될 수 있다.
일실시예에서, 블록체인 네트워크는 복수의 리프 체인들간의 데이터 전송을 관리하는 루트 체인을 포함할 수 있다. 이때, 블록체인 네트워크에서 합의(consensus)를 이루도록 기설정된 복수의 노드들(본 실시예에 컴퓨터 장치(200)가 구현하는 노드를 포함하는 복수의 노드들) 각각에서 생성된 퍼블릭 주소가 복수의 리프 체인들 각각에 저장될 수 있다. 이 경우, 서명된 데이터를 전송받은 제1 리프 체인에서 서명된 데이터와 제1 리프 체인에 저장된 복수의 노드들 각각의 퍼블릭 주소를 비교하여 서명된 데이터가 루트 체인에서 발송된 것임을 검증할 수 있다.
다른 실시예에서, 블록체인 네트워크는 루트 체인에 의해 데이터 전송이 관리되는 복수의 리프 체인들 중 제1 리프 체인을 포함할 수 있다. 이때, 블록체인 네트워크에서 합의를 이루도록 기설정된 복수의 노드들(본 실시예에 컴퓨터 장치(200)가 구현하는 노드를 포함하는 복수의 노드들) 각각에서 생성된 퍼블릭 주소가, 루트 체인에 제1 리프 체인과 연관하여 설치된 리프 체인 컨트랙트에 등록될 수 있다. 이 경우, 루트 체인에서 서명된 데이터와 리프 체인 컨트랙트에 등록된 퍼블릭 주소를 비교하여 서명된 데이터가 제1 리프 체인에서 발송된 것임을 검증할 수 있다.
또 다른 실시예에서, 블록체인 네트워크는 복수의 리프 체인들간의 데이터 전송을 관리하는 루트 체인을 포함할 수 있다. 이때, 블록체인 네트워크에서 합의를 이루도록 기설정된 복수의 노드들(본 실시예에 컴퓨터 장치(200)가 구현하는 노드를 포함하는 복수의 노드들) 각각에서 생성된 퍼블릭 주소들의 조합으로 생성되는 대표 퍼블릭 주소가, 복수의 리프 체인들 각각에 저장될 수 있다. 이 경우, 서명된 데이터를 전송받은 제1 리프 체인에서 서명된 데이터와 제1 리프 체인에 저장된 대표 퍼블릭 주소를 비교하여 서명된 데이터가 루트 체인에서 발송된 것임을 검증할 수 있다.
또 다른 실시예에서, 블록체인 네트워크는 루트 체인에 의해 데이터 전송이 관리되는 복수의 리프 체인들 중 제1 리프 체인을 포함할 수 있다. 이때, 블록체인 네트워크에서 합의를 이루도록 기설정된 복수의 노드들(본 실시예에 컴퓨터 장치(200)가 구현하는 노드를 포함하는 복수의 노드들) 각각에서 생성된 퍼블릭 주소의 조합으로 생성되는 대표 퍼블릭 주소가, 루트 체인에 제1 리프 체인과 연관하여 설치된 리프 체인 컨트랙트에 등록될 수 있다. 이 경우, 루트 체인에서 서명된 데이터와 리프 체인 컨트랙트에 등록된 대표 퍼블릭 주소를 비교하여 서명된 데이터가 제1 리프 체인에서 발송된 것임을 검증할 수 있다.
도 17은 본 발명의 일실시예에 있어서, 데이터 인증 방법의 제3 예를 도시한 흐름도이다. 본 실시예에 따른 데이터 인증 방법은 블록체인 네트워크의 컨트랙트를 통해 동작하는 컴퓨터 장치(200)에 의해 수행될 수 있다. 예를 들어, 컴퓨터 장치(200)의 프로세서(220)는 메모리(210)가 포함하는 운영체제의 코드나 적어도 하나의 프로그램의 코드에 따른 제어 명령(instruction)을 실행하도록 구현될 수 있다. 여기서, 프로세서(220)는 컴퓨터 장치(200)에 저장된 코드가 제공하는 제어 명령에 따라 컴퓨터 장치(200)가 도 17의 방법이 포함하는 단계들(1710 내지 1760)을 수행하도록 컴퓨터 장치(200)를 제어할 수 있다. 여기서, 적어도 하나의 프로그램 코드는 적어도 블록체인 네트워크의 컨트랙트에 따른 코드를 포함할 수 있다.
단계(1710)에서 컴퓨터 장치(200)는 암호화된 프라이빗 키와 프라이빗 키로 생성되는 퍼블릭 키를 파라미터로 수신할 수 있다.
단계(1720)에서 컴퓨터 장치(200)는 수신한 퍼블릭 키로 컨트랙트 주소를 생성할 수 있다.
단계(1730)에서 컴퓨터 장치(200)는 암호화된 프라이빗 키와 컨트랙트 주소를 데이터베이스에 저장할 수 있다.
단계(1740)에서 컴퓨터 장치(200)는 서명할 데이터와 암호화된 프라이빗 키를 복호화하기 위한 패스워드를 파라미터로 포함하는 서명 요청을 수신할 수 있다. 여기서 패스워드는 블록체인 네트워크의 블록이나 로그 중 어디에도 저장되지 않는 시큐어 타입으로 정의될 수 있다.
단계(1750)에서 컴퓨터 장치(200)는 서명 요청에 응답하여 패스워드를 통해 암호화된 프라이빗 키를 복호화하고, 복호화된 프라이빗 키로 데이터를 서명하여 서명된 데이터를 생성할 수 있다. 이때, 서명된 데이터가 기록된 블록이 상기 블록체인 네트워크의 체인에 추가될 수 있다.
단계(1760)에서 컴퓨터 장치(200)는 생성된 서명된 데이터를 반환할 수 있다. 이때, 서명된 데이터는 데이터의 서명을 요청한 노드로 반환될 수 있다.
일실시예에서 블록체인 네트워크는 복수의 리프 체인들간의 데이터 전송을 관리하는 루트 체인을 포함할 수 있다. 이때, 컴퓨터 장치(200)는 컨트랙트 주소를 복수의 리프 체인들 각각의 제네시스 블록에 기록할 수 있다. 이 경우, 서명된 데이터를 수신하는 제1 리프 체인에서 서명된 데이터와 제1 리프 체인의 제네시스 블록에 기록된 컨트랙트 주소를 비교하여 서명된 데이터가 루트 체인에서 발송된 것임을 검증할 수 있다.
다른 실시예에서 블록체인 네트워크는 루트 체인에 의해 데이터 전송이 관리되는 복수의 리프 체인들 중 제1 리프 체인을 포함할 수 있다. 이때, 컴퓨터 장치(200)는 컨트랙트 주소가 루트 체인의 데이터베이스에 저장되도록 컨트랙트 주소를 루트 체인으로 제공할 수 있다. 이 경우, 루트 체인에서 서명된 데이터와 루트 체인의 데이터베이스에 저장된 컨트랙트 주소를 비교하여 서명된 데이터가 제1 리프 체인에서 발송된 것임을 검증할 수 있다.
도 18은 본 발명의 일실시예에 있어서, 데이터 인증 방법의 제4 예를 도시한 흐름도이다. 본 실시예에 따른 데이터 인증 방법은 블록체인 네트워크의 노드를 구현하는 컴퓨터 장치(200)에 의해 수행될 수 있다. 예를 들어, 컴퓨터 장치(200)의 프로세서(220)는 메모리(210)가 포함하는 운영체제의 코드나 적어도 하나의 프로그램의 코드에 따른 제어 명령(instruction)을 실행하도록 구현될 수 있다. 여기서, 프로세서(220)는 컴퓨터 장치(200)에 저장된 코드가 제공하는 제어 명령에 따라 컴퓨터 장치(200)가 도 18의 방법이 포함하는 단계들(1810 내지 1860)을 수행하도록 컴퓨터 장치(200)를 제어할 수 있다.
단계(1810)에서 컴퓨터 장치(200)는 블록체인 네트워크의 노드의 프라이빗 키를 암호화하여 저장할 수 있다. 여기서, 노드는 블록체인 네트워크에서 최초 생성되는 노드일 수 있으며, 이러한 노드에서 블록체인 네트워크의 시스템 컨트랙트를 설치하는 과정에서 서명 가능 컨트랙트를 자동 설치할 수 있다. 이 과정에 노드의 프라이빗 키가 서명 가능 컨트랙트로 전달될 수 있다. 이때, 서명 가능 컨트랙트는 설치 과정에서 전달되는 노드의 프라이빗 키를 암호화하여 저장할 수 있다.
단계(1820)에서 컴퓨터 장치(200)는 암호화된 프라이빗 키를 복호화하기 위한 패스워드를 노드의 퍼블릭 키로 암호화하여 저장할 수 있다. 패스워드는 컴퓨터 장치(200)가 프라이빗 키를 암호화하는 과정에서 암호화된 프라이빗 키를 복호화할 수 있도록 생성될 수 있다. 일례로, 대칭키로 프라이빗 키를 암호화한 경우, 대칭키나 대칭키를 얻기 위한 값이 패스워드로 생성될 수 있다.
단계(1830)에서 컴퓨터 장치(200)는 노드의 퍼블릭 키로 암호화된 패스워드를 노드로 반환할 수 있다. 이 경우, 노드는 암호화된 패스워드를 얻을 수 있다. 이때, 암호화된 패스워드는 노드의 퍼블릭 키로 암호화되었기 때문에 노드의 프라이빗 키로 암호화된 패스워드를 복호화하여 패스워드를 얻을 수 있게 된다. 한편, 블록체인 네트워크의 다른 노드는 암호화된 패스워드를 반환받은 노드를 찾아 해당 노드로 다른 노드의 퍼블릭 키를 전송하고, 해당 노드로부터 다른 노드의 퍼블릭 키로 암호화된 패스워드를 수신하여 다른 노드에 저장할 수 있다. 이러한 과정을 통해 블록체인 네트워크의 다른 노드들도 암호화된 프라이빗 키를 복호화하기 위한 패스워드를 얻을 수 있게 된다. 반면, 프라이빗 키 자체는 암호화된 상태로 저장되기 때문에 노출되지 않을 수 있다. 한편, 패스워드는 블록체인 네트워크의 블록이나 로그 중 어디에도 저장되지 않는 시큐어 타입으로 정의될 수 있다.
단계(1840)에서 컴퓨터 장치(200)는 블록체인 네트워크의 임의의 노드로부터 패스워드 및 프라이빗 키로 서명하기 위한 데이터를 파라미터로서 포함하는 서명 요청을 수신할 수 있다. 임의의 노드는 컴퓨터 장치(200)로부터 암호화된 패스워드를 반환받은 노드이거나 또는 해당 노드로부터 패스워드를 전달받은 다른 노드일 수 있다.
단계(1850)에서 컴퓨터 장치(200)는 서명 요청에 응답하여, 패스워드를 통해 암호화된 프라이빗 키를 복호화하고, 복호화된 프라이빗 키로 데이터를 서명하여 서명된 데이터를 생성할 수 있다.
단계(1860)에서 컴퓨터 장치(200)는 서명된 데이터를 반환할 수 있다. 이때, 서명된 데이터는 데이터의 서명을 요청한 노드로 반환될 수 있다.
일실시예에서, 블록체인 네트워크는 복수의 리프 체인들간의 데이터 전송을 관리하는 루트 체인을 포함할 수 있다. 이때, 컴퓨터 장치(200)는 컨트랙트 주소를 복수의 리프 체인들 각각의 제네시스 블록에 기록할 수 있다. 이 경우, 서명된 데이터를 수신하는 제1 리프 체인에서 서명된 데이터와 제1 리프 체인의 제네시스 블록에 기록된 컨트랙트 주소를 비교하여 서명된 데이터가 루트 체인에서 발송된 것임을 검증할 수 있다.
다른 실시예에서, 블록체인 네트워크는 루트 체인에 의해 데이터 전송이 관리되는 복수의 리프 체인들 중 제1 리프 체인을 포함할 수 있다. 이때, 컴퓨터 장치(200)는 컨트랙트 주소가 루트 체인의 데이터베이스에 저장되도록 컨트랙트 주소를 루트 체인으로 제공할 수 있다. 이 경우, 루트 체인에서 서명된 데이터와 루트 체인의 데이터베이스에 저장된 컨트랙트 주소를 비교하여 서명된 데이터가 제1 리프 체인에서 발송된 것임을 검증할 수 있다. 루트 체인은 이미 설명한 바와 같이 절대 신뢰 시스템으로 간주될 수 있다.
이상에서와 같이, 본 발명의 실시예들에 따르면, 루트 체인을 기반으로 리프 체인을 추가하는 방식으로 스케일 아웃이 가능한 블록체인에서 생성되는 데이터를 인증하는 데이터 인증 방법 및 시스템을 제공할 수 있다.
이상에서 설명된 시스템 또는 장치는 하드웨어 구성요소, 소프트웨어 구성요소 또는 하드웨어 구성요소 및 소프트웨어 구성요소의 조합으로 구현될 수 있다. 예를 들어, 실시예들에서 설명된 장치 및 구성요소는, 예를 들어, 프로세서, 콘트롤러, ALU(arithmetic logic unit), 디지털 신호 프로세서(digital signal processor), 마이크로컴퓨터, FPGA(field programmable gate array), PLU(programmable logic unit), 마이크로프로세서, 또는 명령(instruction)을 실행하고 응답할 수 있는 다른 어떠한 장치와 같이, 하나 이상의 범용 컴퓨터 또는 특수 목적 컴퓨터를 이용하여 구현될 수 있다. 처리 장치는 운영 체제(OS) 및 상기 운영 체제 상에서 수행되는 하나 이상의 소프트웨어 어플리케이션을 수행할 수 있다. 또한, 처리 장치는 소프트웨어의 실행에 응답하여, 데이터를 접근, 저장, 조작, 처리 및 생성할 수도 있다. 이해의 편의를 위하여, 처리 장치는 하나가 사용되는 것으로 설명된 경우도 있지만, 해당 기술분야에서 통상의 지식을 가진 자는, 처리 장치가 복수 개의 처리 요소(processing element) 및/또는 복수 유형의 처리 요소를 포함할 수 있음을 알 수 있다. 예를 들어, 처리 장치는 복수 개의 프로세서 또는 하나의 프로세서 및 하나의 콘트롤러를 포함할 수 있다. 또한, 병렬 프로세서(parallel processor)와 같은, 다른 처리 구성(processing configuration)도 가능하다.
소프트웨어는 컴퓨터 프로그램(computer program), 코드(code), 명령(instruction), 또는 이들 중 하나 이상의 조합을 포함할 수 있으며, 원하는 대로 동작하도록 처리 장치를 구성하거나 독립적으로 또는 결합적으로(collectively) 처리 장치를 명령할 수 있다. 소프트웨어 및/또는 데이터는, 처리 장치에 의하여 해석되거나 처리 장치에 명령 또는 데이터를 제공하기 위하여, 어떤 유형의 기계, 구성요소(component), 물리적 장치, 가상 장치(virtual equipment), 컴퓨터 저장 매체 또는 장치에 구체화(embody)될 수 있다. 소프트웨어는 네트워크로 연결된 컴퓨터 시스템 상에 분산되어서, 분산된 방법으로 저장되거나 실행될 수도 있다. 소프트웨어 및 데이터는 하나 이상의 컴퓨터 판독 가능 기록매체에 저장될 수 있다.
실시예에 따른 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 실시예를 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 통상의 기술자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 이러한 기록매체는 단일 또는 수개 하드웨어가 결합된 형태의 다양한 기록수단 또는 저장수단일 수 있으며, 어떤 컴퓨터 시스템에 직접 접속되는 매체에 한정되지 않고, 네트워크 상에 분산 존재하는 것일 수도 있다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다.
이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 청구범위와 균등한 것들도 후술하는 청구범위의 범위에 속한다.

Claims (13)

  1. 블록체인 네트워크에 참여하는 컴퓨터 장치로 구현되는 노드의 데이터 인증 방법에 있어서,
    상기 컴퓨터 장치가 포함하는 적어도 하나의 프로세서에 의해, 상기 노드의 프라이빗 키를 이용하여 상기 노드의 퍼블릭 주소를 생성하는 단계;
    상기 적어도 하나의 프로세서에 의해, 상기 블록체인 네트워크에서 다른 블록체인 네트워크로 전달하고자 하는 데이터를 상기 노드의 프라이빗 키를 이용하여 서명하는 단계; 및
    상기 적어도 하나의 프로세서에 의해, 상기 서명된 데이터를 상기 다른 블록체인 네트워크로 전달하는 단계
    를 포함하고,
    상기 퍼블릭 주소를 이용하여 상기 서명된 데이터가 상기 블록체인 네트워크를 통해 발송된 것임이 검증되는 것을 특징으로 하는 데이터 인증 방법.
  2. 제1항에 있어서,
    상기 블록체인 네트워크는 복수의 리프 체인들간의 데이터 전송을 관리하는 루트 체인을 포함하고,
    상기 블록체인 네트워크에서의 상기 노드를 포함하여 합의(consensus)를 이루도록 기설정된 복수의 노드들 각각에서 생성된 퍼블릭 주소가 상기 복수의 리프 체인들 각각에 저장되는 것을 특징으로 하는 데이터 인증 방법.
  3. 제2항에 있어서,
    상기 서명된 데이터를 전송받은 제1 리프 체인에서 상기 서명된 데이터와 상기 제1 리프 체인에 저장된 상기 복수의 노드들 각각의 퍼블릭 주소를 비교하여 상기 서명된 데이터가 상기 루트 체인에서 발송된 것임을 검증하는 것을 특징으로 하는 데이터 인증 방법.
  4. 제1항에 있어서,
    상기 블록체인 네트워크는 루트 체인에 의해 데이터 전송이 관리되는 복수의 리프 체인들 중 제1 리프 체인을 포함하고,
    상기 블록체인 네트워크에서의 상기 노드를 포함하여 합의(consensus)를 이루도록 기설정된 복수의 노드들 각각에서 생성된 퍼블릭 주소가, 상기 루트 체인에 상기 제1 리프 체인과 연관하여 설치된 리프 체인 컨트랙트에 등록되는 것을 특징으로 하는 데이터 인증 방법.
  5. 제4항에 있어서,
    상기 루트 체인에서 상기 서명된 데이터와 상기 리프 체인 컨트랙트에 등록된 퍼블릭 주소를 비교하여 상기 서명된 데이터가 상기 제1 리프 체인에서 발송된 것임을 검증하는 것을 특징으로 하는 데이터 인증 방법.
  6. 제1항에 있어서,
    상기 블록체인 네트워크는 복수의 리프 체인들간의 데이터 전송을 관리하는 루트 체인을 포함하고,
    상기 블록체인 네트워크에서의 상기 노드를 포함하여 합의(consensus)를 이루도록 기설정된 복수의 노드들 각각에서 생성된 퍼블릭 주소들의 조합으로 생성되는 대표 퍼블릭 주소(Common Public Address)가, 상기 복수의 리프 체인들 각각에 저장되는 것을 특징으로 하는 데이터 인증 방법.
  7. 제6항에 있어서,
    상기 서명된 데이터를 전송받은 제1 리프 체인에서 상기 서명된 데이터와 상기 제1 리프 체인에 저장된 상기 대표 퍼블릭 주소를 비교하여 상기 서명된 데이터가 상기 루트 체인에서 발송된 것임을 검증하는 것을 특징으로 하는 데이터 인증 방법.
  8. 제1항에 있어서,
    상기 블록체인 네트워크는 루트 체인에 의해 데이터 전송이 관리되는 복수의 리프 체인들 중 제1 리프 체인을 포함하고,
    상기 블록체인 네트워크에서의 상기 노드를 포함하여 합의(consensus)를 이루도록 기설정된 복수의 노드들 각각에서 생성된 퍼블릭 주소의 조합으로 생성되는 대표 퍼블릭 주소(Common Public Address)가, 상기 루트 체인에 상기 제1 리프 체인과 연관하여 설치된 리프 체인 컨트랙트에 등록되는 것을 특징으로 하는 데이터 인증 방법.
  9. 제8항에 있어서,
    상기 루트 체인에서 상기 서명된 데이터와 상기 리프 체인 컨트랙트에 등록된 상기 대표 퍼블릭 주소를 비교하여 상기 서명된 데이터가 상기 제1 리프 체인에서 발송된 것임을 검증하는 것을 특징으로 하는 데이터 인증 방법.
  10. 제1항에 있어서,
    상기 서명된 데이터가 기록된 블록이 상기 블록체인 네트워크의 체인에 추가되는 것을 특징으로 하는 데이터 인증 방법.
  11. 컴퓨터 장치와 결합되어 제1항 내지 제10항 중 어느 한 항의 방법을 컴퓨터 장치에 실행시키기 위해 컴퓨터 판독 가능한 기록매체에 저장된 컴퓨터 프로그램.
  12. 제1항 내지 제10항 중 어느 한 항의 방법을 컴퓨터 장치에 실행시키기 위한 컴퓨터 프로그램이 기록되어 있는 것을 특징으로 하는 컴퓨터 판독 가능한 기록매체.
  13. 블록체인 네트워크의 노드를 구현하는 컴퓨터 장치에 있어서,
    상기 컴퓨터 장치에서 판독 가능한 명령을 실행하도록 구현되는 적어도 하나의 프로세서
    를 포함하고,
    상기 적어도 하나의 프로세서에 의해,
    상기 노드의 프라이빗 키를 이용하여 상기 노드의 퍼블릭 주소를 생성하고,
    상기 블록체인 네트워크에서 다른 블록체인 네트워크로 전달하고자 하는 데이터를 상기 노드의 프라이빗 키를 이용하여 서명하는 단계; 및
    상기 서명된 데이터를 상기 다른 블록체인 네트워크로 전달하는 단계
    를 포함하고,
    상기 퍼블릭 주소를 이용하여 상기 서명된 데이터가 상기 블록체인 네트워크를 통해 발송된 것임이 검증되는 것
    을 특징으로 하는 컴퓨터 장치.
KR1020247001901A 2019-03-15 2019-03-15 블록체인에서 생성된 데이터를 인증하는 방법 및 시스템 KR20240011890A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020217022073A KR102627868B1 (ko) 2019-03-15 2019-03-15 블록체인에서 생성된 데이터를 인증하는 방법 및 시스템
PCT/KR2019/003001 WO2020189800A1 (ko) 2019-03-15 2019-03-15 블록체인에서 생성된 데이터를 인증하는 방법 및 시스템

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020217022073A Division KR102627868B1 (ko) 2019-03-15 2019-03-15 블록체인에서 생성된 데이터를 인증하는 방법 및 시스템

Publications (1)

Publication Number Publication Date
KR20240011890A true KR20240011890A (ko) 2024-01-26

Family

ID=72521014

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020217022073A KR102627868B1 (ko) 2019-03-15 2019-03-15 블록체인에서 생성된 데이터를 인증하는 방법 및 시스템
KR1020247001901A KR20240011890A (ko) 2019-03-15 2019-03-15 블록체인에서 생성된 데이터를 인증하는 방법 및 시스템

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020217022073A KR102627868B1 (ko) 2019-03-15 2019-03-15 블록체인에서 생성된 데이터를 인증하는 방법 및 시스템

Country Status (3)

Country Link
JP (1) JP7304963B2 (ko)
KR (2) KR102627868B1 (ko)
WO (1) WO2020189800A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112865962B (zh) * 2021-01-07 2022-12-02 杭州链城数字科技有限公司 一种基于区块链的分布式标识认证方法和装置、电子设备
WO2022193068A1 (zh) * 2021-03-15 2022-09-22 深圳市艾比森光电股份有限公司 一种内容发布方法和led显示屏
CN115118435B (zh) * 2022-06-29 2024-03-22 河北工业大学 基于双层链的隐私数据保护和授权框架
KR102532162B1 (ko) * 2022-10-27 2023-05-12 주식회사 풀스택 서명 기능 없는 블록체인 지갑의 소유권 인증 방법 및 이를 이용한 시스템

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000124887A (ja) 1998-10-14 2000-04-28 Fuji Xerox Co Ltd グループ単位の暗号化・復号方法および署名方法ならびに装置
AU6620000A (en) * 1999-08-06 2001-03-05 Frank W Sudia Blocked tree authorization and status systems
WO2011109772A2 (en) * 2010-03-05 2011-09-09 Interdigital Patent Holdings, Inc. Method and apparatus for providing security to devices
WO2017004527A1 (en) 2015-07-02 2017-01-05 Nasdaq, Inc. Systems and methods of secure provenance for distributed transaction databases
KR101712119B1 (ko) * 2015-07-09 2017-03-03 국민대학교산학협력단 비트코인의 거래 알림 장치 및 거래 알림 방법
US10447478B2 (en) 2016-06-06 2019-10-15 Microsoft Technology Licensing, Llc Cryptographic applications for a blockchain system
TWI765019B (zh) 2017-04-11 2022-05-21 安地卡及巴布達商區塊鏈控股有限公司 區塊鏈上之快速分散式共識
KR101989450B1 (ko) * 2017-06-23 2019-09-30 홍석현 블록체인 기반의 공개 분산 데이터베이스에서 데이터에 대한 보안을 유지하는 방법 및 이를 이용한 블록체인 관리 서버
EP3656084A1 (en) 2017-08-31 2020-05-27 Siemens Aktiengesellschaft Blockchain-based real-time control network, real-time control system and real-time control method
CN108712257B (zh) 2018-04-03 2020-04-17 阿里巴巴集团控股有限公司 跨区块链的认证方法及装置、电子设备

Also Published As

Publication number Publication date
KR20210096288A (ko) 2021-08-04
WO2020189800A1 (ko) 2020-09-24
KR102627868B1 (ko) 2024-01-23
JP2022533301A (ja) 2022-07-22
JP7304963B2 (ja) 2023-07-07

Similar Documents

Publication Publication Date Title
TWI740423B (zh) 在基於區塊鏈的私有交易中提供隱私和安全保護的系統和方法
US11477032B2 (en) System and method for decentralized-identifier creation
US11533164B2 (en) System and method for blockchain-based cross-entity authentication
US11025435B2 (en) System and method for blockchain-based cross-entity authentication
JP6370016B2 (ja) 階層型ネットワークシステム、これに用いられるノード及びプログラム
KR102627868B1 (ko) 블록체인에서 생성된 데이터를 인증하는 방법 및 시스템
US11580240B2 (en) Protecting sensitive data
US20180287790A1 (en) Authentication of a transferable value or rights token
CN112513914A (zh) 基于区块链的隐私交易中提供隐私和安全保护的系统和方法
CN115605868A (zh) 跨网身份提供
CN113302610A (zh) 基于区块链的可信平台
KR102572834B1 (ko) 서명 가능 컨트랙트를 이용하여 블록체인에서 생성된 데이터를 인증하는 방법 및 시스템
JP2023530594A (ja) 分散型データベースにおける許可されたイベント処理
TW202139127A (zh) 用於與區塊鏈相關聯之服務平台之運算服務
JP7460348B2 (ja) ブロックチェーンの拡張を可能にするトランザクション処理システムおよび方法
CN113597608A (zh) 基于区块链的可信平台
TW202135504A (zh) 平台服務驗證技術
CN115280346A (zh) 区块链事务双重花费证明
CN113491090A (zh) 基于区块链的可信平台
US20230281585A1 (en) Systems and Methods for Managing Network-Agnostic Smart Contracts
JP7262328B2 (ja) 資産のバックアップ処理方法およびプログラム
JP2021077366A (ja) 情報処理装置及びプログラム
KR20230008322A (ko) 보안 거래를 위한 방법 및 시스템

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal