KR20220083097A - Photocurable oligomer composition for 3D printing and Photo curable material composition for 3D printing including the same - Google Patents

Photocurable oligomer composition for 3D printing and Photo curable material composition for 3D printing including the same Download PDF

Info

Publication number
KR20220083097A
KR20220083097A KR1020200172976A KR20200172976A KR20220083097A KR 20220083097 A KR20220083097 A KR 20220083097A KR 1020200172976 A KR1020200172976 A KR 1020200172976A KR 20200172976 A KR20200172976 A KR 20200172976A KR 20220083097 A KR20220083097 A KR 20220083097A
Authority
KR
South Korea
Prior art keywords
photocurable
printing
hea
oligomer
ipdi
Prior art date
Application number
KR1020200172976A
Other languages
Korean (ko)
Inventor
윤덕우
윤나경
김경복
조신후
김진아
오정현
Original Assignee
현대자동차주식회사
기아 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사, 기아 주식회사 filed Critical 현대자동차주식회사
Priority to KR1020200172976A priority Critical patent/KR20220083097A/en
Publication of KR20220083097A publication Critical patent/KR20220083097A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/067Polyurethanes; Polyureas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)

Abstract

본 발명은 우수한 신율과 강성을 동시에 확보할 수 있는 3D 프린팅용 광경화형 올리고머 조성물 및 이를 포함하는 3D 프린팅용 광경화형 소재에 관한 것이다.
본 발명의 실시형태에 따른 3D 프린팅용 광경화형 올리고머 조성물은 3D 프린터에 사용되는 광경화형 소재를 형성하는 올리고머로서, 하기의 [화학식 2]로 표시되는 것을 특징으로 한다.
[화학식 2] HEA-IPDI-(HTPB-HMDI)m-(HTPDMS-HMDI)n-(Fluorene)1IPDI-HEA
여기서, m = 0 초과 2이하이고, n = 4임.
The present invention relates to a photocurable oligomer composition for 3D printing capable of securing excellent elongation and rigidity at the same time, and a photocurable material for 3D printing including the same.
The photocurable oligomer composition for 3D printing according to an embodiment of the present invention is an oligomer that forms a photocurable material used in a 3D printer, and is characterized by being represented by the following [Formula 2].
[Formula 2] HEA-IPDI-(HTPB-HMDI)m-(HTPDMS-HMDI)n-(Fluorene) 1 IPDI-HEA
where m = more than 0 and less than or equal to 2, and n = 4.

Description

3D 프린팅용 광경화형 올리고머 조성물 및 이를 포함하는 3D 프린팅용 광경화형 소재{Photocurable oligomer composition for 3D printing and Photo curable material composition for 3D printing including the same}Photocurable oligomer composition for 3D printing, and photocurable material for 3D printing comprising the same

본 발명은 3D 프린팅용 광경화형 올리고머 조성물 및 이를 포함하는 3D 프린팅용 광경화형 소재에 관한 것으로서, 더욱 상세하게는 우수한 신율과 강성을 동시에 확보할 수 있는 3D 프린팅용 광경화형 올리고머 조성물 및 이를 포함하는 3D 프린팅용 광경화형 소재에 관한 것이다.The present invention relates to a photocurable oligomer composition for 3D printing and a photocurable material for 3D printing comprising the same, and more particularly, to a photocurable oligomer composition for 3D printing capable of securing excellent elongation and rigidity at the same time and 3D including the same It relates to a photocurable material for printing.

3D 프린팅은 3차원 구조 제품을 성형하는 기술로 3차원 구조물을 신속하게 만들 뿐만 아니라 조립/해체가 불가능한 형상도 제작할 수 있는 장점이 있다. 이러한 3D 프린팅은 본격적인 연구가 시작된 지 오래되었고, 종래에는 3D 프린팅이 가능한 소재에 한계가 있고, 장비가 고가여서 항공 우주 관련 부품제작이나 자동차 등의 시제작품 제작 등 제한적인 분야에만 활용되는 등 널리 보급되지는 않았었으나, 최근 여러 가지 분야에 널리 사용이 시도되고 되어 그 활용 영역이 넓어지고 있다.3D printing is a technology for forming 3D structural products, and has the advantage of not only rapidly creating 3D structures, but also making shapes that cannot be assembled/disassembled. Such 3D printing has long since started full-scale research, and in the past, there are limits to materials that can be 3D printed, and the equipment is expensive, so it is used only in limited fields such as aerospace-related parts production or prototype production of automobiles. However, it has been widely used in various fields recently, and its application area is expanding.

3D 프린팅 기술은 크게 분류하여, 고체형 재료를 사용하는 FDM(Fused Deposition Modeling) 방식, 액체형 재료를 사용하는 SLA(Stereo Lithography Apparatus) 방식 및 DLP(Digital Lighting Processing) 방식, 파우더형 재료를 사용하는 SLS(Selective Laser Sintering) 방식으로 나눌 수 있다.3D printing technology is broadly classified into FDM (Fused Deposition Modeling) method using solid material, SLA (Stereo Lithography Apparatus) method using liquid material, DLP (Digital Lighting Processing) method, and SLS using powder material It can be divided into (Selective Laser Sintering) method.

이중 SLA 방식 및 DLP 방식은 빛을 받으면 고체로 변하는 광경화성 소재(액체 플라스틱)가 들어있는 수조에 레이저 빔을 쏘아서 필요한 부분만 고체화시키는 방식으로 정교한 출력물의 구현이 가능하고, 출력 속도가 빠르다는 장점이 있다.The double SLA method and the DLP method are a method of solidifying only the necessary parts by shooting a laser beam into a tank containing a photocurable material (liquid plastic) that turns into a solid when it receives light. There is this.

하지만, SLA 방식 및 DLP 방식에 사용되는 광경화성 소재는 3D 프린팅 공정이 가능하도록 저점도 액상이어야 하고, 경화가 빠르게 진행되어야 한다.However, the photocurable material used in the SLA method and the DLP method must be a low-viscosity liquid to enable the 3D printing process, and must be cured quickly.

하지만, 3D 프린팅용 광경화형 소재는 프린팅성을 위한 낮은 점도, 저에너지 경화, 빠른 경화속도 등과 같은 특수성을 만족하기 위하여 신율과 강도를 동시에 만족시키는 것이 매우 어려웠다.However, it is very difficult to simultaneously satisfy the elongation and strength of the photocurable material for 3D printing in order to satisfy specific properties such as low viscosity, low energy curing, and fast curing speed for printability.

그래서, 현재의 소재로는 출력물을 다른 부품과 체결하기 위한 최소한의 강도 및 탄성을 확보하기가 어렵고, 나사체결과 같은 외력에 매우 취약하여 적용 가능한 부품에 한계가 있었다.Therefore, with the current material, it is difficult to secure the minimum strength and elasticity for fastening the output to other parts, and it is very vulnerable to external forces such as screw fastening, so there is a limit to the applicable parts.

상기의 배경기술로서 설명된 내용은 본 발명에 대한 배경을 이해하기 위한 것일 뿐, 이 기술분야에서 통상의 지식을 가진 자에게 이미 알려진 종래기술에 해당함을 인정하는 것으로 받아들여져서는 안 될 것이다.The content described as the background art above is only for understanding the background of the present invention, and should not be taken as an acknowledgment that it corresponds to the prior art known to those of ordinary skill in the art.

등록특허공보 제10-1937561호 (2019.01.04)Registered Patent Publication No. 10-1937561 (2019.01.04) 등록특허공보 제10-2067533호 (2020.01.13)Registered Patent Publication No. 10-2067533 (2020.01.13)

본 발명은 고강도를 갖는 하드세그먼트와 고신율의 소프트세그먼트를 동시에 가져서 우수한 신율과 강성을 동시에 확보할 수 있는 3D 프린팅용 광경화형 올리고머 조성물 및 이를 포함하는 3D 프린팅용 광경화형 소재를 제공한다.The present invention provides a photocurable oligomer composition for 3D printing that has both a hard segment having high strength and a soft segment having high elongation at the same time to secure excellent elongation and rigidity at the same time, and a photocurable material for 3D printing including the same.

본 발명의 일 실시형태에 따른 3D 프린팅용 광경화형 올리고머 조성물은 3D 프린터에 사용되는 광경화형 소재를 형성하는 올리고머로서, 하기의 [화학식 1]로 표시되는 것을 특징으로 한다.The photocurable oligomer composition for 3D printing according to an embodiment of the present invention is an oligomer that forms a photocurable material used in a 3D printer, and is characterized by being represented by the following [Formula 1].

[화학식 1] HEA-IPDI-(HTPDMS-HMDI)n-(Fluorene)1IPDI-HEA[Formula 1] HEA-IPDI-(HTPDMS-HMDI)n-(Fluorene) 1 IPDI-HEA

여기서, n = 4임.where n = 4.

그리고, 본 발명의 다른 실시형태에 따른 3D 프린팅용 광경화형 올리고머 조성물은 3D 프린터에 사용되는 광경화형 소재를 형성하는 올리고머로서, 하기의 [화학식 2]로 표시되는 것을 특징으로 한다.And, the photocurable oligomer composition for 3D printing according to another embodiment of the present invention is an oligomer that forms a photocurable material used in a 3D printer, and is characterized by being represented by the following [Formula 2].

[화학식 2] HEA-IPDI-(HTPB-HMDI)m-(HTPDMS-HMDI)n-(Fluorene)1IPDI-HEA[Formula 2] HEA-IPDI-(HTPB-HMDI)m-(HTPDMS-HMDI)n-(Fluorene) 1 IPDI-HEA

여기서, m = 0 초과 2이하이고, n = 4임.where m = greater than 0 and less than or equal to 2, and n = 4.

이때 상기 광경화형 올리고머 조성물은 점도가 5000cPs 이상인 것이 바람직하다.In this case, the photocurable oligomer composition preferably has a viscosity of 5000 cPs or more.

한편, 본 발명의 일 실시형태에 따른 3D 프린팅용 광경화형 소재는 3D 프린터에 사용되는 광경화형 소재로서, 하기의 [화학식 1]로 표시되는 올리고머를 포함한다.On the other hand, the photocurable material for 3D printing according to an embodiment of the present invention is a photocurable material used in a 3D printer, and includes an oligomer represented by the following [Formula 1].

[화학식 1] HEA-IPDI-(HTPDMS-HMDI)n-(Fluorene)1IPDI-HEA[Formula 1] HEA-IPDI-(HTPDMS-HMDI)n-(Fluorene) 1 IPDI-HEA

여기서, n = 4임.where n = 4.

그리고, 본 발명의 다른 실시형태에 따른 3D 프린팅용 광경화형 소재는 3D 프린터에 사용되는 광경화형 소재로서, 하기의 [화학식 2]로 표시되는 올리고머를 포함한다.In addition, the photocurable material for 3D printing according to another embodiment of the present invention is a photocurable material used in a 3D printer, and includes an oligomer represented by the following [Formula 2].

[화학식 2] HEA-IPDI-(HTPB-HMDI)m-(HTPDMS-HMDI)n-(Fluorene)1IPDI-HEA[Formula 2] HEA-IPDI-(HTPB-HMDI)m-(HTPDMS-HMDI)n-(Fluorene) 1 IPDI-HEA

여기서, m = 0 초과 2이하이고, n = 4임.where m = greater than 0 and less than or equal to 2, and n = 4.

이때 상기 광경화형 소재는 광경화성 모노머와 광라디칼 중합 개시제를 더 포함한다.In this case, the photocurable material further includes a photocurable monomer and a photoradical polymerization initiator.

상기 광경화형 소재는 인장 탄성계수가 350MPa 이상인 것을 특징으로 한다.The photo-curable material is characterized in that the tensile modulus of elasticity is 350 MPa or more.

상기 광경화형 소재는 인장강도가 28MPa 이상인 것을 특징으로 한다.The photo-curable material is characterized in that the tensile strength is 28 MPa or more.

상기 광경화형 소재는 인장 신율이 140% 이상인 것을 특징으로 한다.The photocurable material is characterized in that the tensile elongation is 140% or more.

상기 광경화형 소재는 충격강도가 40 J/m 이상인 것을 특징으로 한다.The photocurable material is characterized in that the impact strength is 40 J / m or more.

본 발명의 실시예에 따르면, 고강도를 갖는 하드세그먼트와 고신율의 소프트세그먼트를 동시에 갖는 우레탄 분자구조를 이용한 올리고머를 구현함으로써, 기존 소재 대비 높은 신율 및 강성을 갖는 광경화형 3D프린팅 소재를 구현할 수 있다.According to an embodiment of the present invention, by implementing an oligomer using a urethane molecular structure having a hard segment having high strength and a soft segment having high elongation at the same time, a photocurable 3D printing material having high elongation and rigidity compared to existing materials can be implemented. .

이에 따라 부품 체결을 위한 기본 물성을 확보할 수 있어 자동차용 소재로도 사용할 수 있는 효과를 기대할 수 있다.Accordingly, it is possible to secure basic physical properties for fastening parts, so that it can be expected to be used as a material for automobiles.

이는 기존 3D프린팅을 이용한 소재 공정 대비 대형부품을 빠르게 출력하여 경제성을 높이면서 적용 가능한 부품수가 매우 확대되어 자동차 개발과정에서 많은 비용을 절감할 수 있다. Compared to the existing material process using 3D printing, large-sized parts can be printed quickly, increasing economic feasibility, and the number of applicable parts can be greatly expanded, thereby reducing a lot of costs in the car development process.

도 1은 우레탄 올리고머의 소프트 세그먼트와 하드 세그먼트의 상 분리(Phase Separation)를 보여주는 도면이다.1 is a view showing phase separation of a soft segment and a hard segment of a urethane oligomer.

이하, 첨부된 도면을 참조하여 본 발명의 실시예를 더욱 상세히 설명하기로 한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.Hereinafter, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in a variety of different forms, only these embodiments allow the disclosure of the present invention to be complete, and the scope of the invention to those of ordinary skill in the art completely It is provided to inform you.

도 1은 우레탄 올리고머의 소프트 세그먼트와 하드 세그먼트의 상 분리(Phase Separation)를 보여주는 도면이다.1 is a view showing phase separation of a soft segment and a hard segment of a urethane oligomer.

본 발명의 일 실시예에 따른 3D 프린팅용 광경화형 올리고머 조성물은 3D 프린터에 사용되는 광경화형 소재를 형성하는 우레탄 올리고머로서, Hydroxy and Isocyanate Urethane 반응을 통해 고분자량 및 신율(Elongation)이 높은 2관능기 올리고머(Aliphatic Urethane Acrylate)이다.The photocurable oligomer composition for 3D printing according to an embodiment of the present invention is a urethane oligomer that forms a photocurable material used in a 3D printer, and a bifunctional oligomer having a high molecular weight and high elongation through a Hydroxy and Isocyanate Urethane reaction. (Aliphatic Urethane Acrylate).

우레탄 올리고머는 3D프린터의 광원(Light Source)에서 투과되는 빛에 의해 광경화(Cross-linked)가 되어 액체 상태에서 높은 신율과 강성을 가진 고체 상태의 재료가 된다.The urethane oligomer is cross-linked by the light transmitted from the light source of the 3D printer and becomes a solid material with high elongation and rigidity in the liquid state.

이렇게 광경화된 우레탄 올리고머는 도 1과 같이 소프트 세그먼트(Soft Segment)와 하드 세그먼트(Hard Segment)의 마이크로 컴파짓 형태를 갖게 된다.The photocured urethane oligomer has a microcomposite form of a soft segment and a hard segment as shown in FIG. 1 .

이때 소프트 세그먼트(Soft Segment)는 선형(Linear) 구조의 높은 분자량 폴리올에 의해 형성이 되며, 하드 세그먼트(Hard Segment)는 우레탄 Linkage와 짧지만 Bulky한 구조를 가지는 폴리올에 의해 형성이 되는 구조이다.At this time, the soft segment is formed by a high molecular weight polyol having a linear structure, and the hard segment is a structure formed by a urethane linkage and a polyol having a short but bulky structure.

그리고, 소프트 세그먼트(Soft Segment)는 높은 분자량에 고파단신율을 구현할 수 있고, 하드 세그먼트(Hard Segment)는 우레탄기의 수소결합에 의해 높은 인장강도를 구현할 수 있다.And, the soft segment can implement high molecular weight and high elongation at break, and the hard segment can implement high tensile strength by hydrogen bonding of urethane groups.

그래서, 소프트 세그먼트(Soft Segment)로는 HTPB와 HTPDMS를 포함하고, 하드 세그먼트(Hard Segment)로는 Fluorene를 포함함으로써, 저점도의 우레탄 아크릴올리고머를 구현하였다.So, the soft segment contains HTPB and HTPDMS, and the hard segment contains fluorene, thereby implementing a low-viscosity urethane acryl oligomer.

이와 같이 소프트 세그먼트(Soft Segment)와 하드 세그먼트(Hard Segment)를 동시에 갖는 우레탄을 이용한 올리고머를 도입함으로써 높은 인장강도와 긴 파단인장을 동시에 확보할 수 있다.As described above, by introducing an oligomer using urethane having both a soft segment and a hard segment at the same time, high tensile strength and long tensile strength at break can be secured at the same time.

예를 들어 본 발명의 실시예에 따른 올리고머 조성물은 하기의 [화학식 1]로 표시될 수 있다.For example, the oligomer composition according to an embodiment of the present invention may be represented by the following [Formula 1].

[화학식 1] HEA-IPDI-(HTPDMS-HMDI)n-(Fluorene)1IPDI-HEA[Formula 1] HEA-IPDI-(HTPDMS-HMDI)n-(Fluorene) 1 IPDI-HEA

여기서, n = 4이다.Here, n = 4.

또한, 올리고머 조성물은 신율을 향상시키고 점도를 낮추기 위하여 HTPB 및 HMDI를 더 포함할 수 있다.In addition, the oligomer composition may further include HTPB and HMDI to improve elongation and lower viscosity.

예를 들어 본 발명의 다른 실시예에 따른 3D 프린팅용 광경화형 올리고머 조성물은 하기의 [화학식 2]로 표시될 수 있다.For example, the photocurable oligomer composition for 3D printing according to another embodiment of the present invention may be represented by the following [Formula 2].

[화학식 2] HEA-IPDI-(HTPB-HMDI)m-(HTPDMS-HMDI)n-(Fluorene)1IPDI-HEA[Formula 2] HEA-IPDI-(HTPB-HMDI)m-(HTPDMS-HMDI)n-(Fluorene) 1 IPDI-HEA

여기서, m = 0 초과 2이하이고, n = 4이다.Here, m = greater than 0 and less than or equal to 2, and n = 4.

이렇게 얻어진 올리고머는 분자량 Mw 7,360 ~ 10,032g/mole이고, 점도는 상온에서 5000 cPs 이상이며, 왁스 상의 형태를 갖는다.The oligomer thus obtained has a molecular weight Mw of 7,360 to 10,032 g/mole, a viscosity of 5000 cPs or more at room temperature, and has a waxy form.

이때 올리고머 조성물을 형성하는 각각의 요소는 다음과 같은 역할을 한다.At this time, each element forming the oligomer composition serves as follows.

HEA(2 Hydroxyethyl Acrylate): 2관능기 올리고머 생성HEA (2 Hydroxyethyl Acrylate): Bifunctional oligomer production

HEA는 UV경화가 가능하도록 아크릴기를 포함한다. 3D프린터의 광원(light source)에서 나오는 광에너지는 광개시제에 의해 화학에너지로 변환이 되어 라디칼이 형성이 되며, 이렇게 형성된 라디칼은 본 발명에 포함되어 있는 HEA의 아크릴기와 3D프린터 레진에 포함되어 있는 모노머의 아크릴기와 연쇄 반응(Chain Reaction)을 통해 경화가 된다. HEA contains an acrylic group to enable UV curing. The light energy from the light source of the 3D printer is converted into chemical energy by the photoinitiator to form radicals, and the radicals formed in this way are the acrylic group of HEA contained in the present invention and the monomer contained in the 3D printer resin. It is hardened through a chain reaction with the acrylic group of

Figure pat00001
Figure pat00001

< HEA 구조 >< HEA structure >

IPDI(Isophorone diisocyanate) : 우레탄결합 생성IPDI (Isophorone diisocyanate): Creates urethane bond

우레탄 결합을 위해서는 폴리올의 Hydroxy (-OH) 반응기와 이소시아네이트(-NCO) 반응기가 필요하다.For urethane bonding, a hydroxyl (-OH) reactive group and an isocyanate (-NCO) reactive group of the polyol are required.

Figure pat00002
Figure pat00002

<우레탄 반응 구조><Urethane Reaction Structure>

IPDI는 이러한 NCO반응기를 두개를 가지고 있어, 성질이 다른 폴리올을 연결하거나, HEA와 같이 아크릴 반응기를 우레탄 올리고머에 연결하는데 사용이 된다. IPDI has two NCO reactive groups, so it is used to connect polyols with different properties, or to connect acrylic reactive groups to urethane oligomers like HEA.

Figure pat00003
Figure pat00003

<IPDI 화학구조><IPDI Chemical Structure>

특히 IPDI의 두개의 NCO 반응기는 서로 다른 반응속도를 가지고 있어, 우레탄 올리고머의 구조를 조정하는 것이 유리하다. 하지만 IPDI에 포함되어 있는 Cyclohexane Ring 구조에 의해, IPDI로 연결된 우레탄 올리고머는 Linear한 구조를 가진 HMDI(Hexamethylene Diisocyanate)에 의해 연결된 우레탄 올리고머 대비 높은 점도를 가지게 된다.In particular, since the two NCO reactors of IPDI have different reaction rates, it is advantageous to adjust the structure of the urethane oligomer. However, due to the Cyclohexane Ring structure included in IPDI, the urethane oligomer linked to IPDI has a higher viscosity than the urethane oligomer linked by HMDI (Hexamethylene Diisocyanate) having a linear structure.

HTPB(Hydroxyl-terminated polybutadiene) : soft segment, elongation 향상HTPB (Hydroxyl-terminated polybutadiene): Soft segment, improved elongation

HTPB에 포함된 폴리부타디엔은 고무의 주성분으로서, 낮은 유리전이온도와 높은 내마모성으로 주로 타이어나 ABS레진과 같이 소프트(Soft) 하지만, 신율(elongation)과 인성(Toughness)이 필요한 레진에 첨가제로 사용이 된다. 본 발명에서는 이러한 폴리부타디엔 성질을 3D프린팅용 레진에 부여하기 위해, 우레탄 반응이 가능하도록 -OH 반응기를 각 폴리머의 끝에 하나씩 가진 Diol 구조 HTPB를 사용하였다. HTPB는 우레탄 반응을 통해 3D프린팅용 광경화형 올리고머에 포함되었다. Polybutadiene contained in HTPB is the main component of rubber. It is mainly soft like tires or ABS resin due to its low glass transition temperature and high abrasion resistance, but it can be used as an additive in resins that require elongation and toughness. do. In the present invention, in order to impart these polybutadiene properties to the resin for 3D printing, a Diol structure HTPB having one -OH reactive group at the end of each polymer was used to enable urethane reaction. HTPB was included in the photocurable oligomer for 3D printing through urethane reaction.

Figure pat00004
Figure pat00004

< HTPB 구조 >< HTPB structure >

HMDI(Hexamethylene Diisocyanate) : 우레탄 결합 생성, 점도 낮춤 HMDI (Hexamethylene Diisocyanate): Creates urethane bond, lowers viscosity

우레탄 결합을 위해서는 폴리올의 Hydroxy (-OH) 반응기와 이소시아네이트 (-NCO) 반응기가 필요하다.For urethane bonding, a hydroxyl (-OH) reactive group and an isocyanate (-NCO) reactive group of the polyol are required.

Figure pat00005
Figure pat00005

< HMDI 구조 >< HMDI structure >

HMDI는 이러한 NCO반응기를 두개를 가지고 있어, 성질이 다른 폴리올을 연결하거나, HEA와 같이 아크릴 반응기를 우레탄 올리고머에 연결하는데 사용이 된다. Hexamethylene의 Linear 구조는 우레탄 올리고머의 낮은 점도를 유지하는데 유리하며, 점도는 같으나 높은 분자량의 올리고머를 합성하는 것에 효과적이다. Since HMDI has two NCO reactive groups, it is used to connect polyols with different properties or to connect acrylic reactive groups to urethane oligomers like HEA. Hexamethylene's linear structure is advantageous for maintaining the low viscosity of urethane oligomers, and it is effective in synthesizing oligomers with the same viscosity but high molecular weight.

HTPDMS(hydroxyl terminated polydimethylsiloxane) : soft segment, elongation 향상, 점도 낮춤HTPDMS (hydroxyl terminated polydimethylsiloxane): soft segment, improved elongation, lowered viscosity

PDMS에 포함되어 있는 Si-O-Si 연결구조는 가장 안정된 화학연결 구조이며, Ether 구조의 Rotation freedom에 의해 어떠한 다른 화학 연결구조 대비 낮은 -110도의 유리전이 온도를 가진다. 따라서 PDMS의 경우 존재하는 폴리머 중 가장 낮은 점도를 가지고 있으며, 높은 Toughness 와 낮은 점도가 필요한, 본발명과 같이 높은 분자량과 낮은 점도를 필요로 하는 고분자에 사용이 된다.The Si-O-Si linkage included in PDMS is the most stable chemical linkage structure, and has a glass transition temperature of -110°C, which is lower than any other chemical linkage structure due to the rotation freedom of the Ether structure. Therefore, in the case of PDMS, it has the lowest viscosity among existing polymers and is used for polymers requiring high molecular weight and low viscosity as in the present invention, which requires high toughness and low viscosity.

Figure pat00006
Figure pat00006

< HTPDMS 화학구조 >< HTPDMS chemical structure >

본 발명에서는 이러한 PDMS 성질을 3D프린팅용 레진에 부여하기 위해, 우레탄 반응이 가능하도록 -OH를 반응기를 각 PDMS의 끝에 하나씩 가진 구조의 Diol 구조 HTPDMS를 사용하였다. HTPDMS는 우레탄 반응을 통해 3D프린팅용 광경화형 올리고머에 포함되었다.In the present invention, in order to impart these PDMS properties to the resin for 3D printing, a Diol structure HTPDMS having a -OH reactive group at each end of each PDMS was used to enable urethane reaction. HTPDMS was included in the photocurable oligomer for 3D printing through urethane reaction.

Fluorene : hard segment 강성 향상 Fluorene: Improves hard segment rigidity

Fluorene의 구조는 여러 개의 벤젠링과 사이크로펜틴(cyclopentadene)를 포함하고 있으며, 높은 유리전이 온도와 Bulky한 구조에 의해 우레탄 올리고머에서 Hard Segment를 형상하는 것에 사용하게 된다. Fluorene's structure includes several benzene rings and cyclopentadene, and it is used to form hard segments in urethane oligomers due to its high glass transition temperature and bulky structure.

Figure pat00007
Figure pat00007

< Fluorene Diol 구조 >< Structure of Fluorene Diol >

본 발명에서는 이러한 Fluorene 성질을 3D프린팅용 레진에 부여하기 위해, 우레탄 반응이 가능하도록 -OH를 반응기를 각 Fluorene 구조 양끝에 하나씩 가진 구조의 Fluorene Diol를 사용하였다. Fluorene Diol는 우레탄 반응을 통해 3D프린팅용 광경화형 올리고머에 포함되었다.In the present invention, in order to impart these fluorene properties to the resin for 3D printing, a fluorene diol having a structure having -OH reactive groups at each end of each fluorene structure was used to enable urethane reaction. Fluorene Diol was included in the photocurable oligomer for 3D printing through urethane reaction.

한편, 본 발명의 일 실시예에 따른 3D 프린팅용 광경화형 소재는 상기 [화학식 1] 및 [화학식 2]로 표시되는 올리고머 조성물에 광경화성 모노머와 광라디칼 중합 개시제를 혼합하여 형성한다.On the other hand, the photocurable material for 3D printing according to an embodiment of the present invention is formed by mixing a photocurable monomer and a photoradical polymerization initiator in the oligomer composition represented by the above [Formula 1] and [Formula 2].

이때 사용되는 광경화성 모노머로는 종래 공지된 광경화성 모노머를 적용할 수 있다. 예를 들어 광경화성 모노머로는 트리스(2-하이드록시에틸)아이소시아누레이트 트라이아크릴레이트(SR368NS, Sartomer), 트리시클로데칸 디메탄올 디(메타)아크릴레이트(Miramer M262, Miwon), NK에스테르(A-BPEF, Shin-Nakamura Chemical], 2-히드록시에틸 아크릴레이트(2-Hydroxyethyl acrylate, HEA)를 적용할 수 있다.As the photocurable monomer used at this time, a conventionally known photocurable monomer may be applied. For example, as a photocurable monomer, tris (2-hydroxyethyl) isocyanurate triacrylate (SR368NS, Sartomer), tricyclodecane dimethanol di (meth) acrylate (Miramer M262, Miwon), NK ester ( A-BPEF, Shin-Nakamura Chemical], 2-hydroxyethyl acrylate (HEA) can be applied.

그리고, 광라디칼 중합 개시제로는, 종래 공지된 광라디칼 중합 개시제를 적용할 수 있다. 예를 들어 광라디칼 중합 개시제는 2,4,6-트리메틸벤조일-디페닐포스핀옥사이드(DarocureTPO, BASF 재팬)를 적용할 수 있다.In addition, as a photo-radical polymerization initiator, a conventionally well-known photo-radical polymerization initiator can be applied. For example, as the photo-radical polymerization initiator, 2,4,6-trimethylbenzoyl-diphenylphosphine oxide (DarocureTPO, BASF Japan) can be applied.

한편, 3D 프린팅용 광경화형 소재는 상기 올리고머 조성물의 양(wt%)과 광경화성 모노머 및 광라디칼 중합 개시제의 함량(wt%) 합이 4:6의 비율로 혼합되는 것이 바람직하다.On the other hand, in the photocurable material for 3D printing, the sum of the amount (wt%) of the oligomer composition and the content (wt%) of the photocurable monomer and the photoradical polymerization initiator is preferably mixed in a ratio of 4:6.

예를 들어 올리고머 조성물: 35 ~ 45wt%, 광경화성 모노머: 53 ~ 68wt% 및 광라디칼 중합 개시제: 1 ~ 3wt%를 교반하여 형성할 수 있다. 바람직하게는 3D 프린팅용 광경화형 소재는 올리고머 조성물: 40wt%, 광경화성 모노머: 58wt% 및 광라디칼 중합 개시제: 2wt%를 교반하여 형성할 수 있다.For example, an oligomer composition: 35 to 45 wt%, a photocurable monomer: 53 to 68 wt%, and a photoradical polymerization initiator: 1 to 3 wt% may be stirred to form. Preferably, the photocurable material for 3D printing may be formed by stirring an oligomer composition: 40wt%, a photocurable monomer: 58wt%, and a photoradical polymerization initiator: 2wt%.

이렇게 올리고머 조성물과 광경화성 모노머 및 광라디칼 중합 개시제가 교반되어 형성되는 3D 프린팅용 광경화형 소재는 인장 탄성계수가 350MPa 이상이고, 인장강도가 28MPa 이상이며, 인장 신율이 140% 이상이고, 충격강도가 40 J/m 이상인 특징이 구현된다.The photocurable material for 3D printing, which is formed by stirring the oligomer composition, the photocurable monomer and the photoradical polymerization initiator, has a tensile modulus of 350 MPa or more, a tensile strength of 28 MPa or more, a tensile elongation of 140% or more, and an impact strength. Characteristics of 40 J/m or more are realized.

다음으로, 실시예와 비교예를 통하여 본 발명을 설명한다.Next, the present invention will be described with reference to Examples and Comparative Examples.

<광경화성 올리고머 중합><Photocurable oligomer polymerization>

광경화성 올리고머를 중합시키기 위하여 먼저, HTPB, PDMS, Fluorene을 유리 반응기에 투입하고, 온도를 승온시킨다. 그리고, 고상의 Fluorene이 모두 녹은 것을 확인하고 진공펌프를 이용하여 수분 및 저분자량의 불순물을 제거한다In order to polymerize the photocurable oligomer, first, HTPB, PDMS, and Fluorene are put into a glass reactor, and the temperature is raised. Then, confirm that all solid fluorene is melted and remove moisture and low molecular weight impurities using a vacuum pump.

이어서, HDMI을 투입하고 DBTL촉매를 투입한다.Then, HDMI is put in and the DBTL catalyst is put in.

FT-IR 통해 NCO가 모두 소멸된 것을 확인한 후 IPDI를 투입하고, 승온시켜서 반응을 진행한다.After confirming that all of the NCO has disappeared through FT-IR, IPDI is added and the temperature is increased to proceed with the reaction.

모든 OH- 가 소멸한 것을 확인한 후 HEA를 투입하고 반응을 진행하여 광경화성 올리고머를 합성시킨다.After confirming that all OH- has disappeared, HEA is added and the reaction proceeds to synthesize a photocurable oligomer.

이때 하기의 표 1과 같이 각 성분의 함량을 변경하기 위하여 첨가되는 성분의 함량을 조정하여 표 1과 같은 화학성분을 갖는 실시예와 비교예를 준비하였다.At this time, as shown in Table 1 below, Examples and Comparative Examples having the same chemical composition as in Table 1 were prepared by adjusting the content of the added component to change the content of each component.

예를 들어 실시예 1은 HTPB(2*1000=2,000)g, PDMS(4*1500=3000)g, Fluorene(1*350=350)g을 유리 반응기에 투입하고, 온도를 70℃로 승온하였다. 그리고, 고상의 Fluorene이 모두 녹은 것을 확인한 다음, 진공펌프를 이용하여 20분간 진공을 걸어 수분 및 저분자량의 불순물을 제거하였다.For example, in Example 1, HTPB (2*1000=2,000)g, PDMS (4*1500=3000)g, and Fluorene (1*350=350)g were put into a glass reactor, and the temperature was raised to 70°C. . Then, after confirming that all of the solid fluorene was dissolved, a vacuum was applied for 20 minutes using a vacuum pump to remove moisture and impurities of low molecular weight.

이어서, HDMI((2+4)*168=1,008)g을 투입하고, DBTL촉매를 3방울 투입하였다.Then, HDMI ((2+4)*168=1,008)g was added, and 3 drops of DBTL catalyst were added.

그리고, FT-IR 통해 NCO가 모두 소멸된 것을 확인한 다음, IPDI(2*222=444)g을 투입하고, 85℃에서 2시간 동안 반응을 진행하였다.Then, after confirming that all of the NCO has disappeared through FT-IR, IPDI (2 * 222 = 444) g was added, and the reaction was carried out at 85 ° C. for 2 hours.

모든 OH- 가 소멸한 것을 확인한 후 HEA(2*116=232)g을 투입하고 80℃ 이하에서 모든 NCO가 소멸하는 동안 반응을 진행하여 올리고머 합성을 완료하였다.After confirming that all OH- had disappeared, HEA (2*116=232)g was added, and the reaction was carried out at 80° C. or less while all NCO disappeared to complete the oligomer synthesis.

구분division 화학성분 (mol)Chemical composition (mol) 올리고머Mw(g/mol)Oligomer Mw (g/mol) HEA-IPDIHEA-IPDI FluoreneFluorene HTPB-HMDIHTPB-HMDI HTPDMS-HMDIHTPDMS-HMDI 실시예1Example 1 22 1One 22 44 1003210032 실시예2Example 2 22 1One 00 44 76987698 비교예1Comparative Example 1 22 1One 0.50.5 22 49464946 비교예2Comparative Example 2 22 1One 22 1One 50305030 비교예3Comparative Example 3 22 1One 00 1One 26942694 비교예4Comparative Example 4 22 1One 33 22 78667866 비교예5Comparative Example 5 22 1One 55 22 1020210202 비교예6Comparative Example 6 22 1One 0.50.5 00 16101610 비교예7Comparative Example 7 22 1One 0.50.5 55 99509950 비교예8Comparative Example 8 22 1One 0.50.5 88 1495414954 비교예9Comparative Example 9 22 00 0.50.5 22 45964596 비교예10Comparative Example 10 22 22 0.50.5 22 52965296 비교예11Comparative Example 11 22 44 0.50.5 22 59965996 비교예12Comparative Example 12 00 1One 0.50.5 22 42704270 비교예13Comparative Example 13 44 1One 0.50.5 22 56225622

<광경화형 소재 배합><Light-curable material formulation>

상기와 같이 중합된 올리고머 400g에 광경화성 모노머와 광라디칼 중합 개시제를 혼합한 다음 상온에서 mechanical mixer로 교반하여 광경화형 소재를 완성한다.A photocurable monomer and a photoradical polymerization initiator are mixed with 400 g of the polymerized oligomer as described above, and then stirred at room temperature with a mechanical mixer to complete a photocurable material.

이때 광경화성 모노머로 SR368NS: 50g, A-BPEF: 230g 및 HEA: 300g을 혼합하고, 광라디칼 중합 개시제로 DarocureTPO: 20g을 혼합하였다.At this time, SR368NS: 50 g, A-BPEF: 230 g and HEA: 300 g were mixed as a photocurable monomer, and DarocureTPO: 20 g was mixed as a photo-radical polymerization initiator.

<3D 프린팅 출력><3D printing output>

상기와 같이 제조된 광경화형 소재를 이용하여 Anycubic사 Photon 장비를 이용하여 아래의 조건으로 시험 시편을 출력하여서 물성을 평가하였고, 그 결과를 표 2에 나타내었다.Using the photo-curable material prepared as described above, using Anycubic's Photon equipment, test specimens were printed under the following conditions to evaluate their physical properties, and the results are shown in Table 2.

1) Anycubic사 Photon 장비 세팅1) Anycubic's Photon equipment setting

- Layer Thickness: 50um,- Layer Thickness: 50um,

- Normal Exposure time: 10s- Normal Exposure time: 10s

- Off time:1s- Off time:1s

- Bottom Exposure time: 60s- Bottom Exposure time: 60s

- Bottom layer: 5- Bottom layer: 5

2) 평가방법2) Evaluation method

- 인장강도: ISO 527 type A- Tensile strength: ISO 527 type A

- 충격강도: ISO180 type A- Impact strength: ISO180 type A

- 인장신율: ISO178- Tensile elongation: ISO178

구분division 인장 탄성계수tensile modulus of elasticity 인장강도 The tensile strength 인장신율tensile elongation 충격강도impact strength 비고 note (MPa)(MPa) (MPa)(MPa) (%)(%) (IZOD_j/m)(IZOD_j/m) 실시예1Example 1 350350 3030 180180 4040 최적물성optimum physical properties 합격pass 실시예2Example 2 360360 2828 140140 4444 경계조건내within boundary conditions 합격pass 비교예1Comparative Example 1 21002100 3838 2323 2525 HTPDMS부족HTPDMS deficiency 불합격fail 비교예2Comparative Example 2 24302430 4040 2020 2020 HTPDMS부족HTPDMS deficiency 불합격fail 비교예3Comparative Example 3 22002200 3838 2222 1515 HTPDMS부족HTPDMS deficiency 불합격fail 비교예4Comparative Example 4 점도가 높아 인쇄가 안됨Unable to print due to high viscosity HTPB과다HTPB excess 불합격fail 비교예5Comparative Example 5 HTPB과량으로 모노머 상용이 안됨Monomer not commercially available due to excessive HTPB HTPB과다HTPB excess 불합격fail 비교예6Comparative Example 6 28002800 4444 33 88 HTPDMS부족HTPDMS deficiency 불합격fail 비교예7Comparative Example 7 사용성이 나오지 않음No usability HTPDMS과다HTPDMS excess 불합격fail 비교예8Comparative Example 8 점도가 높아 인쇄 불가Unable to print due to high viscosity HTPDMS과다HTPDMS excess 불합격fail 비교예9Comparative Example 9 16501650 2828 55 1212 Fluorene 부족Fluorene deficiency 불합격fail 비교예10Comparative Example 10 28002800 4444 <2<2 1818 Fluorene 과다Fluorene excess 불합격fail 비교예11Comparative Example 11 80도에서 고상으로 모노머 사용이 안됨Monomer not used as a solid at 80°C Fluorene 과다Fluorene excess 불합격fail 비교예12Comparative Example 12 UV 경화가 안됨No UV curing HEA 부족lack of HEA 불합격fail 비교예13Comparative Example 13 18501850 3535 2222 1818 HEA 과다HEA overdose 불합격fail

표 2에서 확인할 수 있듯이, 본 발명에서 제시한 함량 범위를 만족하는 실시예 1 내지 3의 경우에는 3D 프린팅이 가능하면서, 그 출력물의 물리적 특성이 인장 탄성계수: 350MPa 이상, 인장강도: 285MPa 이상, 인장 신율: 140% 이상, 충격강도: 40 J/m 이상을 만족하였다. 특히, [화학식 2]에서 m=2이고, n=4인 실시예 1의 경우에는 인장신율 및 충격강도 측면에서 가장 좋은 결과를 나타내었다.As can be seen in Table 2, in the case of Examples 1 to 3 satisfying the content range presented in the present invention, 3D printing is possible, and the physical properties of the output are tensile elastic modulus: 350 MPa or more, tensile strength: 285 MPa or more, Tensile elongation: 140% or more, impact strength: 40 J/m or more were satisfied. In particular, in the case of Example 1 in which m = 2 and n = 4 in [Formula 2], the best results were shown in terms of tensile elongation and impact strength.

반면에, HTPB, HTPDMS, 또는 Fluorene가 본 발명에서 제시한 함량 범위보다 많거나 HEA가 본 발명에서 제시한 함량 범위보다 적은 비교예 4, 5, 7, 8, 11 및 12의 경우에는 출력이 불가능한 상태였다.On the other hand, in the case of Comparative Examples 4, 5, 7, 8, 11 and 12, in which HTPB, HTPDMS, or Fluorene is greater than the content range presented in the present invention or HEA is less than the content range presented in the present invention, output is impossible state was

그리고, HTPDMS가 본 발명에서 제시한 함량 범위보다 적은 비교예 1, 2, 3 및 6의 경우에는 인장 탄성계수와 인장강도는 우수하였지만, 인장신율과 충격강도의 조건을 만족하지 못하였다.In Comparative Examples 1, 2, 3 and 6, in which HTPDMS was less than the content range presented in the present invention, the tensile modulus and tensile strength were excellent, but the conditions of tensile elongation and impact strength were not satisfied.

또한, Fluorene가 본 발명에서 제시한 함량 범위보다 적거나 많은 비교예 9 및 10의 경우에도 인장 탄성계수와 인장강도는 우수하였지만, 인장신율과 충격강도의 조건을 만족하지 못하였다.Also, in Comparative Examples 9 and 10, in which fluorene was less or more than the content range suggested in the present invention, the tensile modulus and tensile strength were excellent, but the conditions of tensile elongation and impact strength were not satisfied.

그리고, HEA가 본 발명에서 제시한 함량 범위보다 많은 비교예 13의 경우에도 인장 탄성계수와 인장강도는 우수하였지만, 인장신율과 충격강도의 조건을 만족하지 못하였다.Also, in Comparative Example 13, in which HEA was higher than the content range suggested in the present invention, the tensile modulus and tensile strength were excellent, but the conditions of tensile elongation and impact strength were not satisfied.

따라서, 본 발명에서 제시하는 함량 범위인 [화학식 1]에서 n = 4인 조건을 만족하거나, [화학식 2]에서 m = 0 초과 2이하이고, n = 4인 조건을 만족하는 경우에 본 발명에서 제시하는 인장 탄성계수, 인장강도, 인장신율 및 충격강도 조건을 모두 만족하는 것을 확인할 수 있었다. 특히, [화학식 2]에서 m = 2이고, n = 4인 경우에 본 발명에서 제시하는 인장 탄성계수, 인장강도, 인장신율 및 충격강도 조건이 고르게 우수한 것을 확인할 수 있었다.Therefore, in the present invention, when the condition of n = 4 in [Formula 1], which is the content range presented in the present invention, is satisfied, or in [Formula 2], m = more than 0 and less than or equal to 2, and n = 4 in the present invention It was confirmed that all of the suggested tensile modulus, tensile strength, tensile elongation and impact strength conditions were satisfied. In particular, when m = 2 and n = 4 in [Formula 2], it was confirmed that the tensile modulus, tensile strength, tensile elongation, and impact strength conditions suggested in the present invention were uniformly excellent.

본 발명을 첨부 도면과 전술된 바람직한 실시예를 참조하여 설명하였으나, 본 발명은 그에 한정되지 않으며, 후술되는 특허청구범위에 의해 한정된다. 따라서, 본 기술분야의 통상의 지식을 가진 자라면 후술되는 특허청구범위의 기술적 사상에서 벗어나지 않는 범위 내에서 본 발명을 다양하게 변형 및 수정할 수 있다.Although the present invention has been described with reference to the accompanying drawings and the above-described preferred embodiments, the present invention is not limited thereto, and is defined by the claims described below. Accordingly, those of ordinary skill in the art can variously change and modify the present invention within the scope without departing from the spirit of the claims to be described later.

Claims (10)

3D 프린터에 사용되는 광경화형 소재를 형성하는 올리고머로서,
하기의 [분자식 1]로 표시되는 것을 특징으로 하는 3D 프린터용 광경화형 올리고머 조성물.
[분자식 1] HEA-IPDI-(HTPDMS-HMDI)n-(Fluorene)1IPDI-HEA
여기서, n = 4임.
As an oligomer forming a photocurable material used in 3D printers,
A photocurable oligomer composition for a 3D printer, characterized in that it is represented by the following [molecular formula 1].
[Molecular formula 1] HEA-IPDI-(HTPDMS-HMDI)n-(Fluorene) 1 IPDI-HEA
where n = 4.
3D 프린터에 사용되는 광경화형 소재를 형성하는 올리고머로서,
하기의 [분자식 2]로 표시되는 것을 특징으로 하는 3D 프린터용 광경화형 올리고머 조성물.
[분자식 2] HEA-IPDI-(HTPB-HMDI)m-(HTPDMS-HMDI)n-(Fluorene)1IPDI-HEA
여기서, m = 0 초과 2 이하이고, n = 4임.
As an oligomer forming a photocurable material used in 3D printers,
A photocurable oligomer composition for a 3D printer, characterized in that it is represented by the following [molecular formula 2].
[Molecular formula 2] HEA-IPDI-(HTPB-HMDI)m-(HTPDMS-HMDI)n-(Fluorene) 1 IPDI-HEA
where m = greater than 0 and less than or equal to 2, and n = 4.
청구항 1 또는 청구항 2에 있어서,
상기 광경화형 올리고머 조성물은 점도가 5000cPs 이상인 것을 특징으로 하는 3D 프린팅용 광경화형 올리고머 조성물.
The method according to claim 1 or 2,
The photocurable oligomer composition is a photocurable oligomer composition for 3D printing, characterized in that the viscosity is 5000cPs or more.
3D 프린터에 사용되는 광경화형 소재로서,
하기의 [분자식 1]로 표시되는 올리고머를 포함하는 3D 프린터용 광경화형 소재.
[분자식 1] HEA-IPDI-(HTPDMS-HMDI)n-(Fluorene)1IPDI-HEA
여기서, n = 4임.
As a photocurable material used in 3D printers,
A photocurable material for a 3D printer comprising an oligomer represented by the following [molecular formula 1].
[Molecular formula 1] HEA-IPDI-(HTPDMS-HMDI)n-(Fluorene) 1 IPDI-HEA
where n = 4.
3D 프린터에 사용되는 광경화형 소재로서,
하기의 [분자식 2]로 표시되는 올리고머를 포함하는 3D 프린터용 광경화형 소재.
[분자식 2] HEA-IPDI-(HTPB-HMDI)m-(HTPDMS-HMDI)n-(Fluorene)1IPDI-HEA
여기서, m = 0 초과 2 이하이고, n = 4임.
As a photocurable material used in 3D printers,
A photocurable material for a 3D printer comprising an oligomer represented by the following [molecular formula 2].
[Molecular formula 2] HEA-IPDI-(HTPB-HMDI)m-(HTPDMS-HMDI)n-(Fluorene) 1 IPDI-HEA
where m = greater than 0 and less than or equal to 2, and n = 4.
청구항 4 또는 청구항 5에 있어서,
상기 광경화형 소재는 광경화성 모노머와 개시제를 더 포함하는 3D 프린터용 광경화형 소재.
6. The method according to claim 4 or 5,
The photocurable material is a photocurable material for a 3D printer further comprising a photocurable monomer and an initiator.
청구항 6에 있어서,
상기 광경화형 소재는 인장 탄성계수가 3500MPa 이상인 것을 특징으로 하는 3D 프린터용 광경화형 소재.
7. The method of claim 6,
The photo-curable material is a photo-curable material for a 3D printer, characterized in that the tensile modulus of elasticity is 3500 MPa or more.
청구항 6에 있어서,
상기 광경화형 소재는 인장강도가 28MPa 이상인 것을 특징으로 하는 3D 프린터용 광경화형 소재.
7. The method of claim 6,
The photo-curable material is a photo-curable material for a 3D printer, characterized in that the tensile strength is 28 MPa or more.
청구항 6에 있어서,
상기 광경화형 소재는 인장 신율이 140% 이상인 것을 특징으로 하는 3D 프린터용 광경화형 소재.
7. The method of claim 6,
The photocurable material is a photocurable material for a 3D printer, characterized in that the tensile elongation is 140% or more.
청구항 6에 있어서,
상기 광경화형 소재는 충격강도가 40 J/m 이상인 것을 특징으로 하는 3D 프린터용 광경화형 소재.
7. The method of claim 6,
The photocurable material is a photocurable material for a 3D printer, characterized in that the impact strength is 40 J / m or more.
KR1020200172976A 2020-12-11 2020-12-11 Photocurable oligomer composition for 3D printing and Photo curable material composition for 3D printing including the same KR20220083097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200172976A KR20220083097A (en) 2020-12-11 2020-12-11 Photocurable oligomer composition for 3D printing and Photo curable material composition for 3D printing including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200172976A KR20220083097A (en) 2020-12-11 2020-12-11 Photocurable oligomer composition for 3D printing and Photo curable material composition for 3D printing including the same

Publications (1)

Publication Number Publication Date
KR20220083097A true KR20220083097A (en) 2022-06-20

Family

ID=82257868

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200172976A KR20220083097A (en) 2020-12-11 2020-12-11 Photocurable oligomer composition for 3D printing and Photo curable material composition for 3D printing including the same

Country Status (1)

Country Link
KR (1) KR20220083097A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101937561B1 (en) 2017-04-28 2019-01-11 전자부품연구원 Functional materials for 3-dimensional printing
KR102067533B1 (en) 2018-08-24 2020-02-11 주식회사 그래피 Photo curable polymer composition for 3d printing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101937561B1 (en) 2017-04-28 2019-01-11 전자부품연구원 Functional materials for 3-dimensional printing
KR102067533B1 (en) 2018-08-24 2020-02-11 주식회사 그래피 Photo curable polymer composition for 3d printing

Similar Documents

Publication Publication Date Title
US11226559B2 (en) Blocking groups for light polymerizable resins useful in additive manufacturing
EP3274155B1 (en) Photocurable compositions for three-dimensional printing
US11208521B2 (en) Thiol-ene printable resins for inkjet 3D printing
CN110128773A (en) A kind of method and products thereof of optical and thermal dual cure 3D printing
CN1816606A (en) Adhesive epoxy composition and process for applying it
KR102252348B1 (en) Polydimethylsiloxane-based photo curable polymers for 3D printing and manufacturing method of polymers
CN110938175A (en) Light-heat dual-curing 3D printing method utilizing ring-opening metathesis polymerization and product thereof
US11820072B2 (en) Dual cure resins for additive manufacturing
US11135766B2 (en) Products containing nylon 6 produced by stereolithography and methods of making the same
CN110862511A (en) Polyurethane-based photosensitive resin, preparation method and application thereof in 3D printing
JPH08301952A (en) Active-energy-ray-curable resin composition, its production, and cured molded article of active-energy-ray-curable resin
KR20220083097A (en) Photocurable oligomer composition for 3D printing and Photo curable material composition for 3D printing including the same
CN117624491A (en) Self-repairing dual-curing photosensitive resin material and preparation method thereof
KR20220083098A (en) Photocurable oligomer composition for 3D printing and Photo curable material composition for 3D printing including the same
KR20200058360A (en) Thermoplastic polyurethane film and manufacturing method for the same
CN113929869B (en) Two-component polyurea material for 3D printing and method for 3D printing of polyurea product
KR102470021B1 (en) Photo curable resin composition for 3D printing comprising amino sulfonic acid modified 1,6-hexamethylenediisocyanate-isocyanurate acrylate with enhanced water-solubility and easy cleaning of unreacted matter
KR102668477B1 (en) Urethane acrylate compound comprising carbodiimide modified methylene diphenyl diisocyanate, toluene diisocyanate and trimethylolpropane terpolymer structure and the photo curable composition with high strength, high thermal resistance and high elongation for 3D printing using thereof
KR102510805B1 (en) Photo curable resin composition for 3D printing comprising biomass-derived 1,5-pentamethylenediisocyanate-isocyanurate acrylate
CN114292365B (en) Low viscosity, high elongation at break, high strength elastomeric photosensitive resin compositions
KR102569223B1 (en) Urethane acrylate compound comprising 1,6-hexamethylene diisocyanate and 2,4-toluene diisocyanate isocyanurate type trimer structure and the photo curable composition with high strength and high thermal resistance for 3D printing using thereof
KR20220161768A (en) Urethane acrylate compound comprising carbodiimide modified methylene diphenyl diisocyanate, toluene diisocyanate and trimethylolpropane terpolymer structure and the photo curable composition with high strength, high thermal resistance and high elongation for 3D printing using thereof
EP4251425A1 (en) Radiation curable resin
JP2956351B2 (en) Polyol composition
CN117715998A (en) 2 liquid curable adhesive composition