KR20210041429A - Method and apparatus for transmission and reception of control information in wirelss communication system - Google Patents

Method and apparatus for transmission and reception of control information in wirelss communication system Download PDF

Info

Publication number
KR20210041429A
KR20210041429A KR1020190124155A KR20190124155A KR20210041429A KR 20210041429 A KR20210041429 A KR 20210041429A KR 1020190124155 A KR1020190124155 A KR 1020190124155A KR 20190124155 A KR20190124155 A KR 20190124155A KR 20210041429 A KR20210041429 A KR 20210041429A
Authority
KR
South Korea
Prior art keywords
terminal
control information
data
transmission
information
Prior art date
Application number
KR1020190124155A
Other languages
Korean (ko)
Inventor
여정호
김태형
류현석
신철규
오진영
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020190124155A priority Critical patent/KR20210041429A/en
Priority to PCT/KR2020/013568 priority patent/WO2021071199A1/en
Publication of KR20210041429A publication Critical patent/KR20210041429A/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1835Buffer management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1628List acknowledgements, i.e. the acknowledgement message consisting of a list of identifiers, e.g. of sequence numbers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

According to an embodiment of the present invention, a method of decoding a PSSCH in a receiving terminal of a mobile communication system comprises the following steps of: decoding first control information; determining whether to decode second control information according to a decoding result of the first control information; checking a PSSCH transmission resource based on a decoding result of the first control information and a decoding result of the second control information; and decoding the PSSCH based on the PSSCH transmission resource. Therefore, the method enables communication between terminals.

Description

무선 통신 시스템에서 제어정보 송수신 방법 및 장치 {METHOD AND APPARATUS FOR TRANSMISSION AND RECEPTION OF CONTROL INFORMATION IN WIRELSS COMMUNICATION SYSTEM}Method and device for transmitting and receiving control information in wireless communication system {METHOD AND APPARATUS FOR TRANSMISSION AND RECEPTION OF CONTROL INFORMATION IN WIRELSS COMMUNICATION SYSTEM}

본 개시(disclosure)는 일반적으로 무선 통신 시스템에 관한 것으로, 보다 구체적으로 무선 통신 시스템에서 단말의 제어정보 송수신을 위한 장치 및 방법에 관한 것이다.The present disclosure generally relates to a wireless communication system, and more particularly, to an apparatus and method for transmitting and receiving control information of a terminal in a wireless communication system.

4G(4th generation) 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 개선된 5G(5th generation) 통신 시스템 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 5G 통신 시스템 또는 pre-5G 통신 시스템은 4G 네트워크 이후(Beyond 4G Network) 통신 시스템 또는 LTE(Long Term Evolution) 시스템 이후(Post LTE) 시스템이라 불리어지고 있다.Efforts are being made to develop an improved 5G (5th generation) communication system or a pre-5G communication system in order to meet the increasing demand for wireless data traffic after the commercialization of 4G (4th generation) communication systems. For this reason, the 5G communication system or the pre-5G communication system is called a Beyond 4G Network communication system or a Long Term Evolution (LTE) system (Post LTE) system.

높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파(mmWave) 대역(예를 들어, 60기가(60GHz) 대역과 같은)에서의 구현이 고려되고 있다. 초고주파 대역에서의 전파의 경로손실 완화 및 전파의 전달 거리를 증가시키기 위해, 5G 통신 시스템에서는 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO), 전차원 다중입출력(Full Dimensional MIMO, FD-MIMO), 어레이 안테나(array antenna), 아날로그 빔형성(analog beam-forming), 및 대규모 안테나(large scale antenna) 기술들이 논의되고 있다.In order to achieve a high data rate, 5G communication systems are being considered for implementation in an ultra-high frequency (mmWave) band (eg, such as a 60 gigabyte (60 GHz) band). In order to mitigate the path loss of radio waves in the ultra-high frequency band and increase the propagation distance of radio waves, in 5G communication systems, beamforming, massive MIMO, and Full Dimensional MIMO (FD-MIMO) ), array antenna, analog beam-forming, and large scale antenna technologies are being discussed.

또한 시스템의 네트워크 개선을 위해, 5G 통신 시스템에서는 진화된 소형 셀, 개선된 소형 셀(advanced small cell), 클라우드 무선 액세스 네트워크(cloud radio access network, cloud RAN), 초고밀도 네트워크(ultra-dense network), 기기 간 통신(Device to Device communication, D2D), 무선 백홀(wireless backhaul), 이동 네트워크(moving network), 협력 통신(cooperative communication), CoMP(Coordinated Multi-Points), 및 수신 간섭제거(interference cancellation) 등의 기술 개발이 이루어지고 있다. In addition, in order to improve the network of the system, in 5G communication system, advanced small cell, advanced small cell, cloud radio access network (cloud RAN), ultra-dense network , Device to Device communication (D2D), wireless backhaul, moving network, cooperative communication, CoMP (Coordinated Multi-Points), and interference cancellation And other technologies are being developed.

이 밖에도, 5G 시스템에서는 진보된 코딩 변조(Advanced Coding Modulation, ACM) 방식인 FQAM(Hybrid Frequency Shift Keying and Quadrature Amplitude Modulation) 및 SWSC(Sliding Window Superposition Coding)과, 진보된 접속 기술인 FBMC(Filter Bank Multi Carrier), NOMA(Non Orthogonal Multiple Access), 및 SCMA(Sparse Code Multiple Access) 등이 개발되고 있다.In addition, in the 5G system, the advanced coding modulation (Advanced Coding Modulation, ACM) method of FQAM (Hybrid Frequency Shift Keying and Quadrature Amplitude Modulation) and SWSC (Sliding Window Superposition Coding), and advanced access technology, FBMC (Filter Bank Multi Carrier). ), NOMA (Non Orthogonal Multiple Access), and SCMA (Sparse Code Multiple Access) are being developed.

5G 시스템과 같이 무선 통신 시스템이 발전함에 따라, 다양한 서비스를 제공할 수 있게 될 것이 예상된다. 따라서, 이러한 서비스들을 원활하게 제공하기 위한 방안이 필요하다.As wireless communication systems such as 5G systems develop, it is expected to be able to provide various services. Therefore, there is a need for a plan to provide these services smoothly.

본 개시(disclosure)는, 무선 통신 시스템에서 제어정보를 송수신하는 방법 및 장치를 제공한다. The present disclosure (disclosure) provides a method and apparatus for transmitting and receiving control information in a wireless communication system.

본 개시는 사이드링크에서 제어정보를 두 단계로 나누어 전송하는 방법을 적용함에 있어서 단말이 제1 제어정보를 디코딩하고, 이를 기반으로 제2 제어정보를 디코딩하는 방법 및 장치를 제공한다.The present disclosure provides a method and apparatus for a terminal to decode first control information and decode second control information based on the method for transmitting control information in two stages in a sidelink.

또한, 본 개시는, 제어정보에서 자원할당 정보를 매핑하는 비트필드의 크기를 계산하고 비트필드를 해석하는 방법 및 장치를 제공한다.In addition, the present disclosure provides a method and apparatus for calculating the size of a bitfield for mapping resource allocation information in control information and analyzing the bitfield.

본 개시의 일 실시예에 따른 이동통신 시스템의 수신 단말에서 PSSCH를 디코딩하는 방법은, 제1 제어정보를 디코딩 하는 단계, 상기 제1 제어정보의 디코딩 결과에 따라, 제2 제어정보의 디코딩 여부를 결정하는 단계, 상기 제1 제어정보의 디코딩 결과와 상기 제2 제어정보의 디코딩 결과에 기초하여, PSSCH 전송 자원을 확인하는 단계 및 상기 PSSCH 전송 자원을 기초로, 상기 PSSCH를 디코딩하는 단계를 포함할 수 있다.A method of decoding a PSSCH in a receiving terminal of a mobile communication system according to an embodiment of the present disclosure includes: decoding the first control information, determining whether to decode the second control information according to the decoding result of the first control information. Determining, based on a decoding result of the first control information and a decoding result of the second control information, checking a PSSCH transmission resource, and decoding the PSSCH based on the PSSCH transmission resource. I can.

본 개시의 다양한 실시 예들에 따르면, 단말간 통신을 수행할 때 단말의 소프트버퍼를 효율적으로 관리하고, 송수신 단말이 서로 공통된 이해를 갖게 함으로써 단말간 통신이 가능하게 한다. According to various embodiments of the present disclosure, when performing communication between terminals, a soft buffer of a terminal is efficiently managed, and communication between terminals is enabled by allowing the transmitting and receiving terminals to have a common understanding with each other.

본 개시에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The effects obtainable in the present disclosure are not limited to the effects mentioned above, and other effects not mentioned may be clearly understood by those of ordinary skill in the technical field to which the present disclosure belongs from the following description. will be.

도 1은 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템을 도시한다.
도 2는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 기지국의 구성을 도시한다.
도 3은 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 단말의 구성을 도시한다.
도 4는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 통신부의 구성을 도시한다.
도 5은 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 시간-주파수 영역의 자원 구조를 도시한다.
도 6a는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 주파수-시간 자원에 서비스 별 데이터들의 할당 예를 도시한다.
도 6b은 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 주파수-시간 자원에 서비스 별 데이터들의 다른 할당 예를 도시한다.
도 7는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 데이터의 부호화 방식을 도시한다.
도 8은 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 동기 신호 및 방송 채널의 맵핑을 도시한다.
도 9는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 SSB(synchronization signal/physical broadcast channel block)의 배치의 예를 도시한다.
도 10a 및 도 10b는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 부반송파 간격에 따른 SSB의 송신 가능 심볼 위치들을 도시한다.
도 11은 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 패리티 비트들의 생성 및 송신의 예를 도시한다.
도 12a는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 그룹캐스팅(groupcasting) 전송의 예를 도시한다.
도 12b는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 그룹캐스팅에 따른 HARQ(hybrid automatic repeat request) 피드백 전송의 예를 도시한다.
도 13는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 유니캐스팅(unicasting) 전송의 예를 도시한다.
도 14a는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 기지국의 스케줄링에 따른 사이드링크 데이터 전송의 예를 도시한다.
도 14b는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 기지국의 스케줄링 없는 사이드링크 데이터 전송의 예를 도시한다.
도 15는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 사이드링크 통신을 위해 사용되는 슬롯의 채널 구조의 예를 도시한다.
도 16a는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 피드백 채널의 분포에 대한 제1 예를 도시한다.
도 16b는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 피드백 채널의 분포에 대한 제2 예를 도시한다.
도 17은 송신 단말이 제1제어정보와 제2제어정보의 비트필드의 값들을 결정하는 방법을 도시한 순서도이다.
도 18은 수신 단말이 제1 제어정보와 제2 제어정보를 순차적으로 디코딩하고, 이를 기반으로 PSSCH를 디코딩하는 방법을 도시한 순서도이다.
도 19는 주어진 리소스 풀에서 서브채널 단위로 주파수영역이 나뉘어지고, 서브채널 단위로 데이터 전송을 위한 자원 할당이 된 일례를 도시한 도면이다.
1 illustrates a wireless communication system according to various embodiments of the present disclosure.
2 illustrates a configuration of a base station in a wireless communication system according to various embodiments of the present disclosure.
3 illustrates a configuration of a terminal in a wireless communication system according to various embodiments of the present disclosure.
4 is a diagram illustrating a configuration of a communication unit in a wireless communication system according to various embodiments of the present disclosure.
5 illustrates a resource structure in a time-frequency domain in a wireless communication system according to various embodiments of the present disclosure.
6A illustrates an example of allocation of service-specific data to frequency-time resources in a wireless communication system according to various embodiments of the present disclosure.
6B illustrates another example of allocation of service-specific data to frequency-time resources in a wireless communication system according to various embodiments of the present disclosure.
7 illustrates a data encoding method in a wireless communication system according to various embodiments of the present disclosure.
8 illustrates mapping of a synchronization signal and a broadcast channel in a wireless communication system according to various embodiments of the present disclosure.
9 illustrates an example of an arrangement of a synchronization signal/physical broadcast channel block (SSB) in a wireless communication system according to various embodiments of the present disclosure.
10A and 10B illustrate transmission possible symbol positions of an SSB according to subcarrier spacing in a wireless communication system according to various embodiments of the present disclosure.
11 illustrates an example of generation and transmission of parity bits in a wireless communication system according to various embodiments of the present disclosure.
12A illustrates an example of groupcasting transmission in a wireless communication system according to various embodiments of the present disclosure.
12B illustrates an example of hybrid automatic repeat request (HARQ) feedback transmission according to groupcasting in a wireless communication system according to various embodiments of the present disclosure.
13 illustrates an example of unicasting transmission in a wireless communication system according to various embodiments of the present disclosure.
14A illustrates an example of sidelink data transmission according to scheduling of a base station in a wireless communication system according to various embodiments of the present disclosure.
14B illustrates an example of sidelink data transmission without scheduling by a base station in a wireless communication system according to various embodiments of the present disclosure.
15 illustrates an example of a channel structure of a slot used for sidelink communication in a wireless communication system according to various embodiments of the present disclosure.
16A illustrates a first example of a distribution of a feedback channel in a wireless communication system according to various embodiments of the present disclosure.
16B illustrates a second example of a distribution of a feedback channel in a wireless communication system according to various embodiments of the present disclosure.
17 is a flowchart illustrating a method for a transmitting terminal to determine bitfield values of first control information and second control information.
18 is a flowchart illustrating a method of sequentially decoding first control information and second control information by a receiving terminal and decoding a PSSCH based on the decoding of the first control information and the second control information.
FIG. 19 is a diagram illustrating an example in which a frequency domain is divided in units of subchannels in a given resource pool, and resources for data transmission are allocated in units of subchannels.

이하 본 개시의 실시예를 첨부된 도면을 참조하여 상세하게 설명한다. 실시예를 설명함에 있어서 본 개시가 속하는 기술 분야에 익히 알려져 있고 본 개시와 직접적으로 관련이 없는 기술 내용에 대해서는 설명을 생략한다. 이는 불필요한 설명을 생략함으로써 본 개시의 요지를 흐리지 않고 더욱 명확히 전달하기 위함이다.Hereinafter, embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In describing the embodiments, descriptions of technical contents that are well known in the technical field to which the present disclosure pertains and are not directly related to the present disclosure will be omitted. This is to more clearly convey the gist of the present disclosure by omitting unnecessary description.

마찬가지 이유로 첨부된 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시되었다. 또한, 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니다. 각 도면에서 동일한 또는 대응하는 구성 요소에는 동일한 참조 번호를 부여하였다.For the same reason, some components in the accompanying drawings are exaggerated, omitted, or schematically illustrated. In addition, the size of each component does not fully reflect the actual size. The same reference numerals are assigned to the same or corresponding components in each drawing.

본 개시의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 개시는 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 개시의 개시가 완전하도록 하고, 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 개시는 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.Advantages and features of the present disclosure, and a method of achieving them will be apparent with reference to the embodiments described below in detail together with the accompanying drawings. However, the present disclosure is not limited to the embodiments disclosed below, but may be implemented in a variety of different forms, and only the present embodiments make the disclosure of the present disclosure complete, and common knowledge in the technical field to which the present disclosure pertains. It is provided to completely inform the scope of the invention to those who have, and the present disclosure is only defined by the scope of the claims. The same reference numerals refer to the same elements throughout the specification.

이때, 처리 흐름도 도면들의 각 블록과 흐름도 도면들의 조합들은 컴퓨터 프로그램 인스트럭션들에 의해 수행될 수 있음을 이해할 수 있을 것이다. 이들 컴퓨터 프로그램 인스트럭션들은 범용 컴퓨터, 특수용 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서에 탑재될 수 있으므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서를 통해 수행되는 그 인스트럭션들이 흐름도 블록(들)에서 설명된 기능들을 수행하는 수단을 생성하게 된다. 이들 컴퓨터 프로그램 인스트럭션들은 특정 방식으로 기능을 구현하기 위해 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 지향할 수 있는 컴퓨터 이용 가능 또는 컴퓨터 판독 가능 메모리에 저장되는 것도 가능하므로, 그 컴퓨터 이용가능 또는 컴퓨터 판독 가능 메모리에 저장된 인스트럭션들은 흐름도 블록(들)에서 설명된 기능을 수행하는 인스트럭션 수단을 내포하는 제조 품목을 생산하는 것도 가능하다. 컴퓨터 프로그램 인스트럭션들은 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에 탑재되는 것도 가능하므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에서 일련의 동작 단계들이 수행되어 컴퓨터로 실행되는 프로세스를 생성해서 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 수행하는 인스트럭션들은 흐름도 블록(들)에서 설명된 기능들을 실행하기 위한 단계들을 제공하는 것도 가능하다.At this time, it will be appreciated that each block of the flowchart diagrams and combinations of the flowchart diagrams may be executed by computer program instructions. Since these computer program instructions can be mounted on the processor of a general purpose computer, special purpose computer or other programmable data processing equipment, the instructions executed by the processor of the computer or other programmable data processing equipment are described in the flowchart block(s). It creates a means to perform functions. These computer program instructions can also be stored in computer-usable or computer-readable memory that can be directed to a computer or other programmable data processing equipment to implement a function in a particular way, so that the computer-usable or computer-readable memory It is also possible for the instructions stored in the flow chart to produce an article of manufacture containing instruction means for performing the functions described in the flowchart block(s). Since computer program instructions can also be mounted on a computer or other programmable data processing equipment, a series of operating steps are performed on a computer or other programmable data processing equipment to create a computer-executable process to create a computer or other programmable data processing equipment. It is also possible for instructions to perform processing equipment to provide steps for executing the functions described in the flowchart block(s).

또한, 각 블록은 특정된 논리적 기능(들)을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실행 예들에서는 블록들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능함을 주목해야 한다. 예컨대, 잇달아 도시되어 있는 두 개의 블록들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 블록들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능하다.In addition, each block may represent a module, segment, or part of code that contains one or more executable instructions for executing the specified logical function(s). In addition, it should be noted that in some alternative execution examples, the functions mentioned in the blocks may occur out of order. For example, two blocks shown in succession may in fact be executed substantially simultaneously, or the blocks may sometimes be executed in the reverse order depending on the corresponding function.

이때, 본 실시예에서 사용되는 '~부'라는 용어는 소프트웨어 또는 FPGA(Field Programmable Gate Array) 또는 ASIC(Application Specific Integrated Circuit)과 같은 하드웨어 구성요소를 의미하며, '~부'는 어떤 역할들을 수행한다. 그렇지만 '~부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '~부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 '~부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들, 및 변수들을 포함한다. 구성요소들과 '~부'들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 '~부'들로 결합되거나 추가적인 구성요소들과 '~부'들로 더 분리될 수 있다. 뿐만 아니라, 구성요소들 및 '~부'들은 디바이스 또는 보안 멀티미디어카드 내의 하나 또는 그 이상의 CPU들을 재생시키도록 구현될 수도 있다. 또한 실시예에서 '~부'는 하나 이상의 프로세서를 포함할 수 있다.In this case, the term'~ unit' used in this embodiment refers to software or hardware components such as field programmable gate array (FPGA) or application specific integrated circuit (ASIC), and'~ unit' performs certain roles. do. However,'~ part' is not limited to software or hardware. The'~ unit' may be configured to be in an addressable storage medium, or may be configured to reproduce one or more processors. Thus, as an example,'~ unit' refers to components such as software components, object-oriented software components, class components, and task components, processes, functions, properties, and procedures. , Subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, database, data structures, tables, arrays, and variables. Components and functions provided in the'~ units' may be combined into a smaller number of elements and'~ units', or may be further separated into additional elements and'~ units'. In addition, components and'~ units' may be implemented to play one or more CPUs in a device or a security multimedia card. In addition, in an embodiment, the'~ unit' may include one or more processors.

이하 설명에서 사용되는 신호를 지칭하는 용어, 채널을 지칭하는 용어, 제어 정보를 지칭하는 용어, 네트워크 객체(network entity)들을 지칭하는 용어, 장치의 구성 요소를 지칭하는 용어, 접속 노드(node)를 식별하기 위한 용어, 메시지들을 지칭하는 용어, 망 객체들 간 인터페이스를 지칭하는 용어, 다양한 식별 정보들을 지칭하는 용어 등은 설명의 편의를 위해 예시된 것이다. 따라서, 본 개시가 후술되는 용어들에 한정되는 것은 아니며, 동등한 기술적 의미를 가지는 대상을 지칭하는 다른 용어가 사용될 수 있다.In the following description, a term referring to a signal, a term referring to a channel, a term referring to control information, a term referring to network entities, a term referring to a component of a device, a connection node (node). A term for identification, a term for messages, a term for an interface between network objects, a term for various identification information, and the like are exemplified for convenience of description. Accordingly, the present disclosure is not limited to terms to be described later, and other terms referring to objects having an equivalent technical meaning may be used.

이하 본 개시에서, 물리 채널(physical channel)과 신호(signal)는 데이터 혹은 제어 신호와 혼용하여 사용될 수 있다. 예를 들어, PDSCH(physical downlink shared channel)는 데이터가 전송되는 물리 채널을 지칭하는 용어이지만, PDSCH는 데이터를 지칭하기 위해서도 사용될 수 있다. 즉, 본 개시에서, '물리 채널을 송신한다'는 표현은 '물리 채널을 통해 데이터 또는 신호를 송신한다'는 표현과 동등하게 해석될 수 있다.Hereinafter, in the present disclosure, a physical channel and a signal may be used in combination with data or control signals. For example, a physical downlink shared channel (PDSCH) is a term referring to a physical channel through which data is transmitted, but PDSCH may also be used to refer to data. That is, in the present disclosure, the expression'transmitting a physical channel' may be interpreted equivalently to the expression'transmitting data or signals through a physical channel'.

이하 본 개시에서, 상위 시그널링은 기지국에서 물리 계층의 하향링크 데이터 채널을 이용하여 단말로, 또는 단말에서 물리 계층의 상향링크 데이터 채널을 이용하여 기지국으로 전달되는 신호 전달 방법을 뜻한다. 상위 시그널링은 RRC(radio resource control) 시그널링 또는 MAC 제어 요소(control element, 이하 'CE')로 이해될 수 있다.Hereinafter, in the present disclosure, higher signaling refers to a signal transmission method transmitted from a base station to a terminal using a downlink data channel of a physical layer or from a terminal to a base station using an uplink data channel of a physical layer. Higher level signaling may be understood as radio resource control (RRC) signaling or a MAC control element (hereinafter referred to as'CE').

또한, 본 개시에서, 특정 조건의 만족(satisfied), 충족(fulfilled) 여부를 판단하기 위해, 초과 또는 미만의 표현이 사용되었으나, 이는 일 예를 표현하기 위한 기재일 뿐 이상 또는 이하의 기재를 배제하는 것이 아니다. '이상'으로 기재된 조건은 '초과', '이하'로 기재된 조건은 '미만', '이상 및 미만'으로 기재된 조건은 '초과 및 이하'로 대체될 수 있다.In addition, in the present disclosure, in order to determine whether a specific condition is satisfied or satisfied, an expression exceeding or less than is used, but this is only a description for expressing an example, and more or less descriptions are excluded. It is not to do. Conditions described as'above' may be replaced with'greater than', conditions described as'less than', conditions described as'less than', and conditions described as'above and below' may be replaced by'more and less'.

이하 설명의 편의를 위하여, 본 개시는 3GPP LTE(3rd Generation Partnership Project Long Term Evolution) 규격에서 정의하고 있는 용어 및 명칭들, 혹은 이를 기반으로 변형한 용어 및 명칭들을 사용한다. 하지만, 본 개시가 상술된 용어 및 명칭들에 의해 한정되는 것은 아니며, 다른 규격에 따르는 시스템에도 동일하게 적용될 수 있다. 특히 본 개시는 3GPP NR (5세대 이동통신 표준)에 적용할 수 있다. 또한 본 개시는 5G 통신 기술 및 IoT 관련 기술을 기반으로 지능형 서비스(예를 들어, 스마트 홈, 스마트 빌딩, 스마트 시티, 스마트 카 또는 커넥티드 카, 헬스 케어, 디지털 교육, 소매업, 보안 및 안전 관련 서비스 등)에 적용될 수 있다.For convenience of description below, the present disclosure uses terms and names defined in the 3GPP 3rd Generation Partnership Project Long Term Evolution (LTE) standard, or modified terms and names based thereon. However, the present disclosure is not limited by the above-described terms and names, and may be equally applied to systems conforming to other standards. In particular, the present disclosure can be applied to 3GPP NR (5th generation mobile communication standard). In addition, the present disclosure is based on 5G communication technology and IoT-related technology, based on intelligent services (e.g., smart home, smart building, smart city, smart car or connected car, healthcare, digital education, retail, security and safety related services. Etc.).

이하 본 개시는 무선 통신 시스템에서 소프트버퍼를 관리하기 위한 장치 및 방법에 관한 것이다. 구체적으로, 본 개시는 무선 통신 시스템에서 채널 코딩(channel coding) 후 전송되는 신호가 수신기에 도달하였을 때 수신기가 수신 신호 또는 가공된(modified) 수신 신호를 저장하기 위한 소프트버퍼를 결정하고, 송신 단말은 소프트버퍼에 대한 결정에 기반하여 전송되는 패리티 비트들을 결정하기 위한 기술을 설명한다.Hereinafter, the present disclosure relates to an apparatus and method for managing a soft buffer in a wireless communication system. Specifically, the present disclosure is to determine a soft buffer for storing a received signal or a modified received signal by the receiver when a signal transmitted after channel coding in a wireless communication system reaches the receiver, and the transmitting terminal Describes a technique for determining the transmitted parity bits based on the decision on the soft buffer.

도 1은 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템을 도시한다. 1 illustrates a wireless communication system according to various embodiments of the present disclosure.

도 1은 무선 통신 시스템에서 무선 채널을 이용하는 노드(node)들의 일부로서, 기지국(110), 단말(120), 단말(130)을 예시한다. 도 1은 하나의 기지국만을 도시하나, 기지국(110)과 동일 또는 유사한 다른 기지국이 더 포함될 수 있다.1 illustrates a base station 110, a terminal 120, and a terminal 130 as some of nodes using a radio channel in a wireless communication system. 1 shows only one base station, but another base station that is the same or similar to the base station 110 may be further included.

기지국(110)은 단말들(120, 130)에게 무선 접속을 제공하는 네트워크 인프라스트럭쳐(infrastructure)이다. 기지국(110)은 신호를 송신할 수 있는 거리에 기초하여 일정한 지리적 영역으로 정의되는 커버리지(coverage)를 가진다. 기지국(110)은 기지국(base station) 외에 '액세스 포인트(access point, AP)', '이노드비(eNodeB, eNB)', '5G 노드(5th generation node)', '지노드비(next generation nodeB, gNB)', '무선 포인트(wireless point)', '송수신 포인트(transmission/reception point, TRP)' 또는 이와 동등한 기술적 의미를 가지는 다른 용어로 지칭될 수 있다.The base station 110 is a network infrastructure that provides wireless access to the terminals 120 and 130. The base station 110 has coverage defined as a certain geographic area based on a distance at which signals can be transmitted. In addition to the base station, the base station 110 includes'access point (AP)','eNodeB, eNB', '5G node', and'next generation nodeB. , gNB)','wireless point','transmission/reception point (TRP)', or another term having an equivalent technical meaning.

단말(120) 및 단말(130) 각각은 사용자에 의해 사용되는 장치로서, 기지국(110)과 무선 채널을 통해 통신을 수행한다. 기지국(110)에서 단말(120) 또는 단말(130)을 향하는 링크는 하향링크(downlink, DL), 단말(120) 또는 단말(130)에서 기지국(110)을 향하는 링크는 상향링크(uplink, UL)라 지칭된다. 또한, 단말(120) 및 단말(130)은 상호 간 무선 채널을 통해 통신을 수행할 수 있다. 이때, 단말(120) 및 단말(130) 간 링크(device-to-device link; D2D)는 사이드링크(sidelink)라 지칭되며, 사이드링크는 PC5 인터페이스와 혼용될 수 있다. 경우에 따라, 단말(120) 및 단말(130) 중 적어도 하나는 사용자의 관여 없이 운영될 수 있다. 즉, 단말(120) 및 단말(130) 중 적어도 하나는 기계 타입 통신(machine type communication, MTC)을 수행하는 장치로서, 사용자에 의해 휴대되지 아니할 수 있다. 단말(120) 및 단말(130) 각각은 단말(terminal) 외 '사용자 장비(user equipment, UE)', '이동국(mobile station)', '가입자국(subscriber station)', '원격 단말(remote terminal)', '무선 단말(wireless terminal)', 또는 '사용자 장치(user device)' 또는 이와 동등한 기술적 의미를 가지는 다른 용어로 지칭될 수 있다.Each of the terminal 120 and the terminal 130 is a device used by a user and performs communication with the base station 110 through a wireless channel. The link from the base station 110 to the terminal 120 or the terminal 130 is a downlink (DL), and the link from the terminal 120 or the terminal 130 to the base station 110 is an uplink (UL). ). In addition, the terminal 120 and the terminal 130 may communicate with each other through a wireless channel. In this case, a device-to-device link (D2D) between the terminal 120 and the terminal 130 is referred to as a sidelink, and the sidelink may be used interchangeably with the PC5 interface. In some cases, at least one of the terminal 120 and the terminal 130 may be operated without a user's involvement. That is, at least one of the terminal 120 and the terminal 130 is a device that performs machine type communication (MTC), and may not be carried by a user. Each of the terminal 120 and the terminal 130 is a terminal other than'user equipment (UE)','mobile station','subscriber station', and'remote terminal. )','wireless terminal', or'user device', or another term having an equivalent technical meaning.

기지국(110), 단말(120), 단말(130)은 밀리미터 파(mmWave) 대역(예: 28GHz, 30GHz, 38GHz, 60GHz)에서 무선 신호를 송신 및 수신할 수 있다. 이때, 채널 이득의 향상을 위해, 기지국(110), 단말(120), 단말(130)은 빔포밍(beamforming)을 수행할 수 있다. 여기서, 빔포밍은 송신 빔포밍 및 수신 빔포밍을 포함할 수 있다. 즉, 기지국(110), 단말(120), 단말(130)은 송신 신호 또는 수신 신호에 방향성(directivity)을 부여할 수 있다. 이를 위해, 기지국(110) 및 단말들(120, 130)은 빔 탐색(beam search) 또는 빔 관리(beam management) 절차를 통해 서빙(serving) 빔들(112, 113, 121, 131)을 선택할 수 있다. 서빙 빔들(112, 113, 121, 131)이 선택된 후, 이후 통신은 서빙 빔들(112, 113, 121, 131)을 송신한 자원과 QCL(quasi co-located) 관계에 있는 자원을 통해 수행될 수 있다. The base station 110, the terminal 120, and the terminal 130 may transmit and receive radio signals in a millimeter wave (mmWave) band (eg, 28 GHz, 30 GHz, 38 GHz, 60 GHz). In this case, in order to improve the channel gain, the base station 110, the terminal 120, and the terminal 130 may perform beamforming. Here, beamforming may include transmission beamforming and reception beamforming. That is, the base station 110, the terminal 120, and the terminal 130 may impart directivity to a transmitted signal or a received signal. To this end, the base station 110 and the terminals 120 and 130 may select the serving beams 112, 113, 121, 131 through a beam search or beam management procedure. . After the serving beams 112, 113, 121, 131 are selected, subsequent communication may be performed through a resource in a QCL (quasi co-located) relationship with the resource transmitting the serving beams 112, 113, 121, 131. have.

제1 안테나 포트 상의 심볼을 전달한 채널의 광범위한(large-scale) 특성들이 제2 안테나 포트 상의 심볼을 전달한 채널로부터 추정될(inferred) 수 있다면, 제1 안테나 포트 및 제2 안테나 포트는 QCL 관계에 있다고 평가될 수 있다. 예를 들어, 광범위한 특성들은 지연 스프레드(delay spread), 도플러 스프레드(doppler spread), 도플러 쉬프트(doppler shift), 평균 이득(average gain), 평균 지연(average delay), 공간적 수신 파라미터(spatial receiver parameter) 중 적어도 하나를 포함할 수 있다.If the large-scale characteristics of the channel carrying the symbol on the first antenna port can be inferred from the channel carrying the symbol on the second antenna port, the first antenna port and the second antenna port are in a QCL relationship. Can be evaluated. For example, a wide range of features include delay spread, Doppler spread, Doppler shift, average gain, average delay, and spatial receiver parameter. It may include at least one of.

도 2는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 기지국의 구성을 도시한다. 2 illustrates a configuration of a base station in a wireless communication system according to various embodiments of the present disclosure.

도 2에 예시된 구성은 기지국(110)의 구성으로서 이해될 수 있다. 이하 사용되는 '…부', '…기' 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어, 또는, 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.The configuration illustrated in FIG. 2 can be understood as the configuration of the base station 110. Used below'… Boo','… A term such as'group' refers to a unit that processes at least one function or operation, which may be implemented by hardware or software, or a combination of hardware and software.

도 2를 참고하면, 기지국은 무선통신부(210), 백홀통신부(220), 저장부(230), 제어부(240)를 포함한다.Referring to FIG. 2, the base station includes a wireless communication unit 210, a backhaul communication unit 220, a storage unit 230, and a control unit 240.

무선통신부(210)는 무선 채널을 통해 신호를 송수신하기 위한 기능들을 수행한다. 예를 들어, 무선통신부(210)는 시스템의 물리 계층 규격에 따라 기저대역 신호 및 비트열 간 변환 기능을 수행한다. 예를 들어, 데이터 송신 시, 무선통신부(210)는 송신 비트열을 부호화 및 변조함으로써 복소 심볼들을 생성한다. 또한, 데이터 수신 시, 무선통신부(210)는 기저대역 신호를 복조 및 복호화를 통해 수신 비트열을 복원한다. The wireless communication unit 210 performs functions for transmitting and receiving signals through a wireless channel. For example, the wireless communication unit 210 performs a function of converting between a baseband signal and a bit stream according to the physical layer standard of the system. For example, when transmitting data, the wireless communication unit 210 generates complex symbols by encoding and modulating a transmission bit stream. In addition, when receiving data, the wireless communication unit 210 restores the received bit stream through demodulation and decoding of the baseband signal.

또한, 무선통신부(210)는 기저대역 신호를 RF(radio frequency) 대역 신호로 상향변환한 후 안테나를 통해 송신하고, 안테나를 통해 수신되는 RF 대역 신호를 기저대역 신호로 하향변환한다. 이를 위해, 무선통신부(210)는 송신 필터, 수신 필터, 증폭기, 믹서(mixer), 오실레이터(oscillator), DAC(digital to analog convertor), ADC(analog to digital convertor) 등을 포함할 수 있다. 또한, 무선통신부(210)는 다수의 송수신 경로(path)들을 포함할 수 있다. 나아가, 무선통신부(210)는 다수의 안테나 요소들(antenna elements)로 구성된 적어도 하나의 안테나 어레이(antenna array)를 포함할 수 있다.In addition, the wireless communication unit 210 up-converts the baseband signal into a radio frequency (RF) band signal and then transmits it through an antenna, and down-converts the RF band signal received through the antenna into a baseband signal. To this end, the wireless communication unit 210 may include a transmission filter, a reception filter, an amplifier, a mixer, an oscillator, a digital to analog convertor (DAC), an analog to digital convertor (ADC), and the like. In addition, the wireless communication unit 210 may include a plurality of transmission/reception paths. Furthermore, the wireless communication unit 210 may include at least one antenna array composed of a plurality of antenna elements.

하드웨어의 측면에서, 무선통신부(210)는 디지털 유닛(digital unit) 및 아날로그 유닛(analog unit)으로 구성될 수 있으며, 아날로그 유닛은 동작 전력, 동작 주파수 등에 따라 다수의 서브 유닛(sub-unit)들로 구성될 수 있다. 디지털 유닛은 적어도 하나의 프로세서(예: DSP(digital signal processor))로 구현될 수 있다.In terms of hardware, the wireless communication unit 210 may be composed of a digital unit and an analog unit, and the analog unit includes a plurality of sub-units according to operation power, operation frequency, etc. It can be composed of. The digital unit may be implemented with at least one processor (eg, a digital signal processor (DSP)).

무선통신부(210)는 상술한 바와 같이 신호를 송신 및 수신한다. 이에 따라, 무선통신부(210)의 전부 또는 일부는 '송신부(transmitter)', '수신부(receiver)' 또는 '송수신부(transceiver)'로 지칭될 수 있다. 또한, 이하 설명에서, 무선 채널을 통해 수행되는 송신 및 수신은 무선통신부(210)에 의해 상술한 바와 같은 처리가 수행되는 것을 포함하는 의미로 사용된다.The wireless communication unit 210 transmits and receives signals as described above. Accordingly, all or part of the wireless communication unit 210 may be referred to as a'transmitter', a'receiver', or a'transceiver'. In addition, in the following description, transmission and reception performed through a wireless channel is used in a sense including the processing as described above is performed by the wireless communication unit 210.

백홀통신부(220)는 네트워크 내 다른 노드들과 통신을 수행하기 위한 인터페이스를 제공한다. 즉, 백홀통신부(220)는 기지국에서 다른 노드, 예를 들어, 다른 접속 노드, 다른 기지국, 상위 노드, 코어망 등으로 송신되는 비트열을 물리적 신호로 변환하고, 다른 노드로부터 수신되는 물리적 신호를 비트열로 변환한다.The backhaul communication unit 220 provides an interface for performing communication with other nodes in the network. That is, the backhaul communication unit 220 converts the bit stream transmitted from the base station to another node, for example, another access node, another base station, an upper node, a core network, etc., into a physical signal, and converts the physical signal received from the other node. Convert to bit string.

저장부(230)는 기지국의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장한다. 저장부(230)는 휘발성 메모리, 비휘발성 메모리 또는 휘발성 메모리와 비휘발성 메모리의 조합으로 구성될 수 있다. 그리고, 저장부(230)는 제어부(240)의 요청에 따라 저장된 데이터를 제공한다.The storage unit 230 stores data such as a basic program, an application program, and setting information for the operation of the base station. The storage unit 230 may be formed of a volatile memory, a nonvolatile memory, or a combination of a volatile memory and a nonvolatile memory. In addition, the storage unit 230 provides stored data according to the request of the control unit 240.

제어부(240)는 기지국의 전반적인 동작들을 제어한다. 예를 들어, 제어부(240)는 무선통신부(210)를 통해 또는 백홀통신부(220)를 통해 신호를 송신 및 수신한다. 또한, 제어부(240)는 저장부(230)에 데이터를 기록하고, 읽는다. 그리고, 제어부(240)는 통신 규격에서 요구하는 프로토콜 스택(protocol stack)의 기능들을 수행할 수 있다. 다른 구현 예에 따라, 프로토콜 스텍은 무선통신부(210)에 포함될 수 있다. 이를 위해, 제어부(240)는 적어도 하나의 프로세서(processor)를 포함할 수 있다. 다양한 실시 예들에 따라, 제어부(240)는 기지국이 후술하는 다양한 실시 예들에 따른 동작들을 수행하도록 제어할 수 있다.The control unit 240 controls overall operations of the base station. For example, the control unit 240 transmits and receives signals through the wireless communication unit 210 or through the backhaul communication unit 220. In addition, the control unit 240 writes and reads data in the storage unit 230. In addition, the control unit 240 may perform functions of a protocol stack required by a communication standard. According to another implementation example, the protocol stack may be included in the wireless communication unit 210. To this end, the control unit 240 may include at least one processor. According to various embodiments, the control unit 240 may control the base station to perform operations according to various embodiments to be described later.

도 3은 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 단말의 구성을 도시한다. 3 illustrates a configuration of a terminal in a wireless communication system according to various embodiments of the present disclosure.

도 3에 예시된 구성은 단말(120)의 구성으로서 이해될 수 있다. 이하 사용되는 '…부', '…기' 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어, 또는, 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.The configuration illustrated in FIG. 3 may be understood as the configuration of the terminal 120. Used below'… Boo','… A term such as'group' refers to a unit that processes at least one function or operation, which may be implemented by hardware or software, or a combination of hardware and software.

도 3을 참고하면, 단말은 통신부(310), 저장부(320), 제어부(330)를 포함한다.Referring to FIG. 3, the terminal includes a communication unit 310, a storage unit 320, and a control unit 330.

통신부(310)는 무선 채널을 통해 신호를 송수신하기 위한 기능들을 수행한다. 예를 들어, 통신부(310)는 시스템의 물리 계층 규격에 따라 기저대역 신호 및 비트열 간 변환 기능을 수행한다. 예를 들어, 데이터 송신 시, 통신부(310)는 송신 비트열을 부호화 및 변조함으로써 복소 심볼들을 생성한다. 또한, 데이터 수신 시, 통신부(310)는 기저대역 신호를 복조 및 복호화를 통해 수신 비트열을 복원한다. 또한, 통신부(310)는 기저대역 신호를 RF 대역 신호로 상향변환한 후 안테나를 통해 송신하고, 안테나를 통해 수신되는 RF 대역 신호를 기저대역 신호로 하향변환한다. 예를 들어, 통신부(310)는 송신 필터, 수신 필터, 증폭기, 믹서, 오실레이터, DAC, ADC 등을 포함할 수 있다. The communication unit 310 performs functions for transmitting and receiving signals through a wireless channel. For example, the communication unit 310 performs a function of converting between a baseband signal and a bit stream according to the physical layer standard of the system. For example, when transmitting data, the communication unit 310 generates complex symbols by encoding and modulating a transmission bit stream. In addition, when receiving data, the communication unit 310 restores the received bit stream through demodulation and decoding of the baseband signal. In addition, the communication unit 310 up-converts the baseband signal into an RF band signal and then transmits it through an antenna, and down-converts the RF band signal received through the antenna into a baseband signal. For example, the communication unit 310 may include a transmission filter, a reception filter, an amplifier, a mixer, an oscillator, a DAC, an ADC, and the like.

또한, 통신부(310)는 다수의 송수신 경로(path)들을 포함할 수 있다. 나아가, 통신부(310)는 다수의 안테나 요소들로 구성된 적어도 하나의 안테나 어레이를 포함할 수 있다. 하드웨어의 측면에서, 통신부(310)는 디지털 회로 및 아날로그 회로(예: RFIC(radio frequency integrated circuit))로 구성될 수 있다. 여기서, 디지털 회로 및 아날로그 회로는 하나의 패키지로 구현될 수 있다. 또한, 통신부(310)는 다수의 RF 체인들을 포함할 수 있다. 나아가, 통신부(310)는 빔포밍을 수행할 수 있다. In addition, the communication unit 310 may include a plurality of transmission/reception paths. Furthermore, the communication unit 310 may include at least one antenna array composed of a plurality of antenna elements. In terms of hardware, the communication unit 310 may include a digital circuit and an analog circuit (eg, radio frequency integrated circuit (RFIC)). Here, the digital circuit and the analog circuit may be implemented in one package. In addition, the communication unit 310 may include a plurality of RF chains. Furthermore, the communication unit 310 may perform beamforming.

통신부(310)는 상술한 바와 같이 신호를 송신 및 수신한다. 이에 따라, 통신부(310)의 전부 또는 일부는 '송신부', '수신부' 또는 '송수신부'로 지칭될 수 있다. 또한, 이하 설명에서 무선 채널을 통해 수행되는 송신 및 수신은 통신부(310)에 의해 상술한 바와 같은 처리가 수행되는 것을 포함하는 의미로 사용된다.The communication unit 310 transmits and receives signals as described above. Accordingly, all or part of the communication unit 310 may be referred to as a'transmitting unit', a'receiving unit', or a'transmitting/receiving unit'. In addition, in the following description, transmission and reception performed through a wireless channel is used in a sense including the processing as described above is performed by the communication unit 310.

저장부(320)는 단말의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장한다. 저장부(320)는 휘발성 메모리, 비휘발성 메모리 또는 휘발성 메모리와 비휘발성 메모리의 조합으로 구성될 수 있다. 그리고, 저장부(320)는 제어부(330)의 요청에 따라 저장된 데이터를 제공한다.The storage unit 320 stores data such as a basic program, an application program, and setting information for the operation of the terminal. The storage unit 320 may be formed of a volatile memory, a nonvolatile memory, or a combination of a volatile memory and a nonvolatile memory. In addition, the storage unit 320 provides stored data according to the request of the control unit 330.

제어부(330)는 단말의 전반적인 동작들을 제어한다. 예를 들어, 제어부(330)는 통신부(310)를 통해 신호를 송신 및 수신한다. 또한, 제어부(330)는 저장부(320)에 데이터를 기록하고, 읽는다. 그리고, 제어부(330)는 통신 규격에서 요구하는 프로토콜 스택의 기능들을 수행할 수 있다. 이를 위해, 제어부(330)는 적어도 하나의 프로세서 또는 마이크로(micro) 프로세서를 포함하거나, 또는, 프로세서의 일부일 수 있다. 또한, 통신부(310)의 일부 및 제어부(330)는 CP(communication processor)라 지칭될 수 있다. 다양한 실시 예들에 따라, 제어부(330)는 단말이 후술하는 다양한 실시 예들에 따른 동작들을 수행하도록 제어할 수 있다. The controller 330 controls overall operations of the terminal. For example, the control unit 330 transmits and receives signals through the communication unit 310. In addition, the control unit 330 writes and reads data in the storage unit 320. In addition, the control unit 330 may perform functions of a protocol stack required by a communication standard. To this end, the controller 330 may include at least one processor or a micro processor, or may be a part of a processor. In addition, a part of the communication unit 310 and the control unit 330 may be referred to as a communication processor (CP). According to various embodiments, the controller 330 may control the terminal to perform operations according to various embodiments to be described later.

도 4는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 통신부의 구성을 도시한다. 4 is a diagram illustrating a configuration of a communication unit in a wireless communication system according to various embodiments of the present disclosure.

도 4는 도 2의 무선통신부(210) 또는 도 3의 통신부(310)의 상세한 구성에 대한 예를 도시한다. 구체적으로, 도 4는 도 2의 무선통신부(210) 또는 도 3의 통신부(310)의 일부로서, 빔포밍을 수행하기 위한 구성요소들을 예시한다.4 shows an example of a detailed configuration of the wireless communication unit 210 of FIG. 2 or the communication unit 310 of FIG. 3. Specifically, FIG. 4 is a part of the wireless communication unit 210 of FIG. 2 or the communication unit 310 of FIG. 3 and illustrates components for performing beamforming.

도 4를 참고하면, 무선통신부(210) 또는 통신부(310)는 부호화 및 변조부(402), 디지털 빔포밍부(404), 다수의 송신 경로들(406-1 내지 406-N), 아날로그 빔포밍부(408)를 포함한다. Referring to FIG. 4, the wireless communication unit 210 or the communication unit 310 includes an encoding and modulating unit 402, a digital beamforming unit 404, a plurality of transmission paths 406-1 to 406-N, and an analog beam. It includes a forming part (408).

부호화 및 변조부(402)는 채널 인코딩을 수행한다. 채널 인코딩을 위해, LDPC(low density parity check) 코드, 컨볼루션(convoluation) 코드, 폴라(polar) 코드 중 적어도 하나가 사용될 수 있다. 부호화 및 변조부(402)는 성상도 맵핑(constellation mapping)을 수행함으로써 변조 심볼들을 생성한다.The encoding and modulating unit 402 performs channel encoding. For channel encoding, at least one of a low density parity check (LDPC) code, a convoluation code, and a polar code may be used. The encoding and modulating unit 402 generates modulation symbols by performing constellation mapping.

디지털 빔포밍부(404)는 디지털 신호(예: 변조 심볼들)에 대한 빔포밍을 수행한다. 이를 위해, 디지털 빔포밍부(404)는 변조 심볼들에 빔포밍 가중치들을 곱한다. 여기서, 빔포밍 가중치들은 신호의 크기 및 위상을 변경하기 위해 사용되며, '프리코딩 행렬(precoding matrix)', '프리코더(precoder)' 등으로 지칭될 수 있다. 디지털 빔포밍부(404)는 다수의 송신 경로들(406-1 내지 406-N)로 디지털 빔포밍된 변조 심볼들을 출력한다. 이때, MIMO(multiple input multiple output) 전송 기법에 따라, 변조 심볼들은 다중화되거나, 다수의 송신 경로들(406-1 내지 406-N)로 동일한 변조 심볼들이 제공될 수 있다.The digital beamforming unit 404 performs beamforming on a digital signal (eg, modulation symbols). To this end, the digital beamforming unit 404 multiplies the modulation symbols by beamforming weights. Here, the beamforming weights are used to change the size and phase of a signal, and may be referred to as a'precoding matrix', a'precoder', and the like. The digital beamforming unit 404 outputs digitally beamformed modulation symbols through a plurality of transmission paths 406-1 to 406-N. In this case, according to a multiple input multiple output (MIMO) transmission scheme, modulation symbols may be multiplexed or the same modulation symbols may be provided through a plurality of transmission paths 406-1 to 406-N.

다수의 송신 경로들(406-1 내지 406-N)은 디지털 빔포밍된 디지털 신호들을 아날로그 신호로 변환한다. 이를 위해, 다수의 송신 경로들(406-1 내지 406-N) 각각은 IFFT(inverse fast fourier transform) 연산부, CP(cyclic prefix) 삽입부, DAC, 상향 변환부를 포함할 수 있다. CP 삽입부는 OFDM(orthogonal frequency division multiplexing) 방식을 위한 것으로, 다른 물리 계층 방식(예: FBMC(filter bank multi-carrier))이 적용되는 경우 제외될 수 있다. 즉, 다수의 송신 경로들(406-1 내지 406-N)은 디지털 빔포밍을 통해 생성된 다수의 스트림(stream)들에 대하여 독립된 신호처리 프로세스를 제공한다. 단, 구현 방식에 따라, 다수의 송신 경로들(406-1 내지 406-N)의 구성요소들 중 일부는 공용으로 사용될 수 있다.The plurality of transmission paths 406-1 to 406-N convert digital beamformed digital signals into analog signals. To this end, each of the plurality of transmission paths 406-1 to 406-N may include an inverse fast fourier transform (IFFT) operation unit, a cyclic prefix (CP) insertion unit, a DAC, and an up-conversion unit. The CP insertion unit is for an orthogonal frequency division multiplexing (OFDM) scheme, and may be excluded when a different physical layer scheme (eg, filter bank multi-carrier (FBMC)) is applied. That is, the plurality of transmission paths 406-1 to 406-N provide an independent signal processing process for a plurality of streams generated through digital beamforming. However, depending on the implementation method, some of the components of the plurality of transmission paths 406-1 to 406-N may be used in common.

아날로그 빔포밍부(408)는 아날로그 신호에 대한 빔포밍을 수행한다. 이를 위해, 디지털 빔포밍부(404)는 아날로그 신호들에 빔포밍 가중치들을 곱한다. 여기서, 빔포밍 가중치들은 신호의 크기 및 위상을 변경하기 위해 사용된다. 구체적으로, 다수의 송신 경로들(406-1 내지 406-N) 및 안테나들 간 연결 구조에 따라, 아날로그 빔포밍부(440)는 다양하게 구성될 수 있다. 예를 들어, 다수의 송신 경로들(406-1 내지 406-N) 각각이 하나의 안테나 어레이와 연결될 수 있다. 다른 예로, 다수의 송신 경로들(406-1 내지 406-N)이 하나의 안테나 어레이와 연결될 수 있다. 또 다른 예로, 다수의 송신 경로들(406-1 내지 406-N)은 적응적으로 하나의 안테나 어레이와 연결되거나, 둘 이상의 안테나 어레이들과 연결될 수 있다.The analog beamforming unit 408 performs beamforming on an analog signal. To this end, the digital beamforming unit 404 multiplies the analog signals by beamforming weights. Here, the beamforming weights are used to change the magnitude and phase of the signal. Specifically, the analog beamforming unit 440 may be configured in various ways according to a connection structure between the plurality of transmission paths 406-1 to 406-N and antennas. For example, each of the plurality of transmission paths 406-1 to 406-N may be connected to one antenna array. As another example, a plurality of transmission paths 406-1 to 406-N may be connected to one antenna array. As another example, the plurality of transmission paths 406-1 to 406-N may be adaptively connected to one antenna array, or may be connected to two or more antenna arrays.

무선 통신 시스템은 초기의 음성 위주의 서비스를 제공하던 것에서 벗어나 예를 들어, 3GPP의 HSPA(high speed packet access), LTE(long term evolution 또는 E-UTRA(evolved universal terrestrial radio access)), LTE-A(advanced), 3GPP2의 HRPD(high rate packet data), UMB(ultra mobile broadband), 및 IEEE의 802.16e 등의 통신 표준과 같이 고속, 고품질의 패킷 데이터 서비스를 제공하는 광대역 무선 통신 시스템으로 발전하고 있다. 또한, 5세대 무선통신 시스템으로서, 5G 또는 NR(new radio)의 통신 표준이 만들어지고 있다. The wireless communication system deviates from the initial voice-oriented service, for example, 3GPP high speed packet access (HSPA), long term evolution (LTE) or evolved universal terrestrial radio access (E-UTRA)), LTE-A. (advanced), 3GPP2 high rate packet data (HRPD), UMB (ultra mobile broadband), and IEEE 802.16e communication standards, such as a broadband wireless communication system that provides high-speed, high-quality packet data service. . In addition, as a 5th generation wireless communication system, a communication standard of 5G or NR (new radio) is being created.

NR 시스템은 하향링크(downlink, DL) 및 상향링크에서는 OFDM(orthogonal frequency division multiplexing) 방식을 채용하고 있다. 보다 구체적으로, 하향링크에서 CP-OFDM(cyclic-prefix OFDM) 방식이, 상향링크에서 CP-OFDM과 더불어 DFT-S-OFDM(discrete Fourier transform spreading OFDM) 방식이 채용되었다. 상향링크는 단말이 기지국으로 데이터 또는 제어 신호를 전송하는 무선 링크를 뜻하고, 하향링크는 기지국이 단말로 데이터 또는 제어 신호를 전송하는 무선 링크를 뜻한다. 다중 접속 방식은, 통상 각 사용자 별로 데이터 또는 제어 정보를 실어 보낼 시간-주파수 자원을 서로 겹치지 않도록, 즉, 직교성(orthogonality)이 성립하도록, 할당 및 운용함으로써 각 사용자의 데이터 또는 제어 정보를 구분한다.The NR system employs an orthogonal frequency division multiplexing (OFDM) scheme in downlink (DL) and uplink. More specifically, a cyclic-prefix OFDM (CP-OFDM) scheme in downlink and a discrete Fourier transform spreading OFDM (DFT-S-OFDM) scheme in addition to CP-OFDM in uplink were employed. The uplink refers to a radio link through which the UE transmits data or control signals to the base station, and the downlink refers to a radio link through which the base station transmits data or control signals to the UE. In the multiple access scheme, data or control information of each user is classified by assigning and operating time-frequency resources to carry data or control information for each user so that they do not overlap with each other, that is, orthogonality is established.

NR 시스템은 초기 전송에서 복호 실패가 발생된 경우, 물리 계층에서 해당 데이터를 재전송하는 HARQ(hybrid automatic repeat request) 방식을 채용하고 있다. HARQ 방식에 따르면, 수신기가 데이터를 정확하게 복호화(decoding)하지 못한 경우, 수신기는 송신기에게 복호 실패를 알리는 정보인 NACK(negative acknowledgement)를 송신함으로써, 송신기가 물리 계층에서 해당 데이터를 재전송할 수 있게 한다. 수신기는 송신기가 재전송한 데이터를 이전에 디코딩 실패한 데이터와 결합함으로써 데이터 수신 성능을 높일 수 있다. 또한, 수신기가 데이터를 정확하게 복호한 경우, 송신기에게 디코딩 성공을 알리는 정보인 ACK(acknowledgement)를 송신함으로써, 송신기가 새로운 데이터를 전송할 수 있도록 할 수 있다.The NR system employs a hybrid automatic repeat request (HARQ) scheme in which a physical layer retransmits corresponding data when a decoding failure occurs in initial transmission. According to the HARQ scheme, when the receiver fails to accurately decode data, the receiver transmits NACK (negative acknowledgment), which is information notifying the transmitter of the decoding failure, so that the transmitter can retransmit the corresponding data in the physical layer. . The receiver may improve data reception performance by combining the data retransmitted by the transmitter with data that has previously failed to be decoded. In addition, when the receiver correctly decodes the data, the transmitter can transmit new data by transmitting an acknowledgment (ACK), which is information indicating success of the decoding to the transmitter.

도 5은 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 시간-주파수 영역의 자원 구조를 도시한다. 5 illustrates a resource structure in a time-frequency domain in a wireless communication system according to various embodiments of the present disclosure.

도 5는 하향링크 또는 상향링크에서 데이터 또는 제어 채널이 전송되는 무선 자원 영역인 시간-주파수 영역의 기본 구조를 예시한다.5 illustrates a basic structure of a time-frequency domain, which is a radio resource domain in which data or control channels are transmitted in downlink or uplink.

도 5에서, 가로 축은 시간 영역을, 세로 축은 주파수 영역을 나타낸다. 시간 영역에서의 최소 전송단위는 OFDM 심볼로서, Nsymb개의 OFDM 심볼들(502)이 모여 하나의 슬롯(506)을 구성한다. 서브프레임의 길이는 1.0ms으로 정의되고, 라디오 프레임(radio frame)(514)의 길이는 10ms로 정의된다. 주파수 영역에서의 최소 전송 단위는 부반송파(subcarrier)로서, 전체 시스템 전송 대역(Transmission bandwidth)의 대역폭은 총(total) NBW개의 부반송파들(504)로 구성된다. Nsymb, NBW 등의 구체적인 수치는 시스템에 따라 가변적으로 적용될 수 있다.In FIG. 5, the horizontal axis represents the time domain and the vertical axis represents the frequency domain. The minimum transmission unit in the time domain is an OFDM symbol, and N symb OFDM symbols 502 are gathered to form one slot 506. The length of the subframe is defined as 1.0 ms, and the length of the radio frame 514 is defined as 10 ms. The minimum transmission unit in the frequency domain is a subcarrier, and the bandwidth of the entire system transmission bandwidth is composed of a total N BW subcarriers 504. Specific values such as Nsymb and NBW can be variably applied depending on the system.

시간-주파수 영역에서 자원의 기본 단위는 자원 요소(resource element, 이하 'RE')(512)로서, OFDM 심볼 인덱스 및 부반송파 인덱스로 나타낼 수 있다. 자원 블록(resource block, RB 또는 physical resource Block, 이하 'PRB')(508)은 시간 영역에서 Nsymb개의 연속된 OFDM 심볼들(502) 및 주파수 영역에서 NRB개의 연속된 부반송파들(510)로 정의된다. 따라서, 하나의 RB(508)는 Nsymb×NRB 개의 RE(512)들을 포함한다. 일반적으로 데이터의 최소 전송단위는 RB이다. NR 시스템에서, 일반적으로 Nsymb=14, NRB=12 이고, NBW 및 NRB는 시스템 전송 대역의 대역폭에 비례한다. 단말에게 스케줄링되는 RB들의 개수에 비례하여 데이터 전송률(data rate)이 증가할 수 있다. NR 시스템에서, 하향링크와 상향링크를 주파수로 구분하여 운영하는 FDD(frequency division duplex) 시스템의 경우, 하향링크 전송 대역폭과 상향링크 전송 대역폭이 서로 다를 수 있다. 채널 대역폭은 시스템 전송 대역폭에 대응되는 RF(radio frequency) 대역폭을 나타낸다. [표 1] 및 [표 2]는 6GHz 보다 낮은 주파수 대역 그리고 6GHz 보다 높은 주파수 대역에서의 NR 시스템에 정의된 시스템 전송 대역폭, 부반송파 간격(subcarrier spacing, SCS)과 채널 대역폭(channel bandwidth)의 대응관계의 일부를 나타낸다. 예를 들어, 30 kHz 부반송파 간격으로 100 MHz 채널 대역폭을 갖는 NR 시스템은 전송 대역폭이 273개의 RB들로 구성된다. [표 1] 및 [표 2]에서 N/A는 NR 시스템에서 지원하지 않는 대역폭-부반송파 조합일 수 있다.In the time-frequency domain, a basic unit of a resource is a resource element (“RE”) 512, which can be represented by an OFDM symbol index and a subcarrier index. A resource block (RB or physical resource block, hereinafter'PRB') 508 is composed of N symb consecutive OFDM symbols 502 in the time domain and N RB consecutive subcarriers 510 in the frequency domain. Is defined. Thus, one RB 508 includes N symb × N RB REs 512. In general, the minimum transmission unit of data is RB. In an NR system, in general, N symb =14, N RB =12, and N BW and N RB are proportional to the bandwidth of the system transmission band. The data rate may increase in proportion to the number of RBs scheduled to the terminal. In the NR system, in the case of a frequency division duplex (FDD) system operating by dividing downlink and uplink into frequencies, the downlink transmission bandwidth and the uplink transmission bandwidth may be different from each other. The channel bandwidth represents a radio frequency (RF) bandwidth corresponding to the system transmission bandwidth. [Table 1] and [Table 2] are the correspondence between the system transmission bandwidth, subcarrier spacing (SCS) and channel bandwidth defined in the NR system in a frequency band lower than 6GHz and a frequency band higher than 6GHz. Represents a part of. For example, an NR system having a 100 MHz channel bandwidth with a 30 kHz subcarrier spacing consists of 273 RBs with a transmission bandwidth. In [Table 1] and [Table 2], N/A may be a bandwidth-subcarrier combination that is not supported by the NR system.

[표 1][Table 1]

Figure pat00001
Figure pat00001

[표 2][Table 2]

Figure pat00002
Figure pat00002

NR 시스템에서 하향링크 데이터 또는 상향링크 데이터에 대한 스케줄링 정보는 하향링크 제어 정보(downlink control information, 이하 'DCI')를 통해 기지국으로부터 단말에게 전달된다. DCI는 여러 가지 포맷으로 정의되며, 각 포맷에 따라 상향링크 데이터에 대한 스케줄링 정보인 상향링크 그랜트(grant)인지 하향링크 데이터에 대한 스케줄링 정보인 하향링크 그랜트(grant) 인지 여부, 제어 정보의 크기가 작은 컴팩트(compact) DCI인지 여부, 다중안테나를 사용한 공간 다중화(spatial multiplexing)을 적용하는지 여부, 전력 제어 용 DCI인지 여부 등이 결정될 수 있다. 예를 들어, 하향링크 데이터에 대한 스케줄링 제어 정보인 DCI 포맷(format) 1-1 은 이하 [표 3]과 같은 항목들 중 적어도 하나를 포함할 수 있다.In the NR system, scheduling information for downlink data or uplink data is transmitted from the base station to the terminal through downlink control information (“DCI”). DCI is defined in various formats, and depending on each format, whether it is an uplink grant, which is scheduling information for uplink data, or a downlink grant, which is scheduling information for downlink data, and the size of control information is Whether it is a small compact DCI, whether spatial multiplexing using multiple antennas is applied, whether it is a DCI for power control, and the like may be determined. For example, DCI format 1-1, which is scheduling control information for downlink data, may include at least one of the items shown in Table 3 below.

[표 3][Table 3]

Figure pat00003
Figure pat00003

[표 3]에서, PDSCH 전송의 경우 시간 영역 자원 할당(time domain resource assignment)은 PDSCH가 전송되는 슬롯에 관한 정보 및 해당 슬롯에서의 시작 심볼 위치 S와 PDSCH가 맵핑되는 심볼 개수 L에 의해 표현될 수 있다. 여기서, S는 슬롯의 시작으로부터 상대적인 위치일 수 있고, L은 연속된 심볼들의 개수일 수 있으며, S 및 L은 이하 [표 4]와 같이 정의되는 시작 및 길이 지시자 값(start and length indicator value, SLIV)로부터 결정될 수 있다.In [Table 3], in the case of PDSCH transmission, time domain resource assignment is expressed by information on a slot in which the PDSCH is transmitted and the start symbol position S in the corresponding slot and the number of symbols L to which the PDSCH is mapped. I can. Here, S may be a relative position from the start of the slot, L may be the number of consecutive symbols, and S and L are start and length indicator values defined as shown in [Table 4] below. SLIV).

[표 4][Table 4]

Figure pat00004
Figure pat00004

NR 시스템에서, 일반적으로 RRC 설정을 통해서, 하나의 행에 SLIV 값과 PDSCH 또는 PUSCH(physical uplink shared channel) 맵핑 타입 및 PDSCH 또는 PUSCH가 전송되는 슬롯에 대한 정보 간 대응 관계에 대한 정보가 구성될(configured) 수 있다. 이후, DCI의 시간 영역 자원 할당을 이용하여, 구성된 대응 관계에서 정의하는 인덱스(index) 값을 지시함으로써, 기지국이 단말에게 SLIV 값, PDSCH 또는 PUSCH 맵핑 타입, PDSCH 또는 PUSCH가 전송되는 슬롯에 대한 정보를 전달할 수 있다. In the NR system, information on the correspondence between the SLIV value and the PDSCH or physical uplink shared channel (PUSCH) mapping type and information on the slot in which the PDSCH or PUSCH is transmitted is configured in one row through RRC configuration in general ( configured) can be. Thereafter, by using the time domain resource allocation of the DCI, the base station indicates the SLIV value, the PDSCH or PUSCH mapping type, and the information on the slot in which the PDSCH or PUSCH is transmitted to the terminal by indicating an index value defined in the configured correspondence relationship. Can be delivered.

NR 시스템의 경우, PDSCH 또는 PUSCH 맵핑 타입은 타입A(type A) 및 타입B(type B)로 정의된다. PDSCH 또는 PUSCH 맵핑 타입A의 경우, 슬롯에서 두 번째 또는 세 번째 OFDM 심볼에서 DMRS(demodulation reference signal) 심볼이 시작한다. PDSCH 또는 PUSCH 맵핑 타입B의 경우, PUSCH 전송으로 할당 받은 시간 영역 자원의 첫 번째 OFDM 심볼에서 DMRS 심볼이 시작한다.In the case of the NR system, the PDSCH or PUSCH mapping type is defined as type A and type B. In the case of PDSCH or PUSCH mapping type A, a demodulation reference signal (DMRS) symbol starts in the second or third OFDM symbol in the slot. In the case of PDSCH or PUSCH mapping type B, a DMRS symbol starts in the first OFDM symbol of a time domain resource allocated for PUSCH transmission.

DCI는 채널 코딩 및 변조를 거쳐 하향링크 제어 채널인 PDCCH(physical downlink control channel)에서 전송될 수 있다. PDCCH는 채널이 아닌 제어 정보 자체를 지칭하기 위해 사용될 수도 있다. 일반적으로, DCI는 각 단말에 대해 독립적으로 특정 RNTI(radio network temporary identifier) 또는 단말 식별자를 이용하여 스크램블링되고, CRC(cyclic redundancy check) 추가 및 채널 코딩 후, 각각 독립적인 PDCCH로 구성되고, 전송된다. PDCCH는 단말에게 설정된 제어 자원 집합(control resource set, CORESET)에 맵핑된다.DCI may be transmitted in a physical downlink control channel (PDCCH) that is a downlink control channel through channel coding and modulation. The PDCCH may be used to refer to the control information itself, not the channel. In general, DCI is scrambled for each terminal independently using a specific radio network temporary identifier (RNTI) or terminal identifier, and after adding a cyclic redundancy check (CRC) and channel coding, each terminal is configured as an independent PDCCH and transmitted. . The PDCCH is mapped to a control resource set (CORESET) set to the terminal.

하향링크 데이터는 하향링크 데이터 전송용 물리채널인 PDSCH에서 전송 될 수 있다. PDSCH는 제어 채널 전송 구간 이후부터 전송될 수 있으며, 주파수 영역에서의 구체적인 맵핑 위치, 변조 방식 등의 스케줄링 정보는 PDCCH를 통해 전송되는 DCI에 의해 지시된다. DCI를 구성하는 제어정보 중에서 MCS를 통해서, 기지국은 단말에게 전송하고자 하는 PDSCH에 적용된 변조 방식과 전송하고자 하는 데이터의 크기(예: TBS(transport block size)를 통지한다. 일 실시 예에서, MCS는 5비트 또는 그 보다 더 많거나 적은 비트들로 구성될 수 있다. TBS는 기지국이 전송하고자 하는 데이터인 TB(transport block)에 오류 정정을 위한 채널 코딩이 적용되기 이전의 크기에 해당한다. Downlink data may be transmitted on the PDSCH, which is a physical channel for downlink data transmission. The PDSCH may be transmitted after the control channel transmission period, and scheduling information such as a specific mapping position and modulation scheme in the frequency domain is indicated by the DCI transmitted through the PDCCH. Among the control information constituting DCI, through the MCS, the base station notifies the terminal of the modulation scheme applied to the PDSCH to be transmitted and the size of the data to be transmitted (eg, transport block size (TBS). In one embodiment, the MCS is It may be composed of 5 bits or more or fewer bits TBS corresponds to a size before channel coding for error correction is applied to a transport block (TB), which is data to be transmitted by the base station.

본 개시에서 TB(transport block)라 함은, MAC(medium access control) 헤더, MAC CE, 1개 이상의 MAC SDU(service data unit), 패딩(padding) 비트들을 포함할 수 있다. 또는, TB는 MAC 계층에서 물리계층(physical layer)로 내려주는 데이터의 단위 또는 MAC PDU(protocol data unit)를 가리킬 수 있다.In the present disclosure, a transport block (TB) may include a medium access control (MAC) header, a MAC CE, one or more MAC service data units (SDUs), and padding bits. Alternatively, the TB may indicate a unit of data dropped from the MAC layer to a physical layer or a MAC protocol data unit (PDU).

NR 시스템에서 지원하는 변조 방식은 QPSK(quadrature phase shift keying), 16 QAM(quadrature amplitude modulation), 64 QAM, 및 256 QAM으로서, 각각의 변조 차수(modulation order)(Qm)는 2, 4, 6 또는 8일 수 있다. 즉, QPSK의 경우 심볼 당 2 비트들, 16 QAM의 경우 심볼 당 4 비트들, 64 QAM의 경우 심볼 당 6 비트들이 전송될 수 있으며, 256 QAM의 경우 심볼 당 8 비트들이 전송될 수 있으며, 1024 QAM이 지원 될 경우, 1024 QAM의 한 심볼 당 10 비트들이 맵핑되어 전송될 수 있다. The modulation schemes supported by the NR system are QPSK (quadrature phase shift keying), 16 QAM (quadrature amplitude modulation), 64 QAM, and 256 QAM, and each modulation order (Qm) is 2, 4, 6 or May be 8. That is, 2 bits per symbol for QPSK, 4 bits per symbol for 16 QAM, 6 bits per symbol for 64 QAM, and 8 bits per symbol for 256 QAM, 1024 When QAM is supported, 10 bits per symbol of 1024 QAM may be mapped and transmitted.

서비스의 측면에서, NR 시스템은 시간 및 주파수 자원에서 다양한 서비스들이 자유롭게 다중화 될 수 있도록 하기 위하여 디자인되고 있으며, 이에 따라 파형/뉴머롤로지(waveform/numerology), 기준 신호 등이 필요에 따라 동적으로 또는 자유롭게 조절될 수 있다. 무선 통신에서 단말에게 최적의 서비스를 제공하기 위해서는 채널의 품질과 간섭량의 측정을 통한 최적화된 데이터 송신이 중요하며, 이에 따라 정확한 채널 상태 측정은 필수적이다. 하지만, 주파수 자원에 따라 채널 및 간섭 특성이 크게 변화하지 않는 4G 통신과 달리 5G 채널의 경우 서비스에 따라 채널 및 간섭 특성이 크게 변화하기 때문에, 이를 나누어 측정할 수 있도록 하는 FRG(frequency resource group) 차원의 서브셋(subset)의 지원이 필요하다. 한편, NR 시스템은 지원되는 서비스의 종류를 eMBB(enhanced mobile broadband), mMTC (massive machine type communications), URLLC(ultra-reliable and low-latency communications)로 나눌 수 있다. eMBB는 고용량 데이터의 고속 전송, mMTC는 단말전력 최소화와 다수 단말의 접속, URLLC는 고신뢰도와 저지연을 목표로 하는 서비스이다. 단말에게 적용되는 서비스의 종류에 따라 서로 다른 요구사항들이 적용될 수 있다. 각 서비스들의 자원 분배의 예들은 이하 도 6a 및 도 6b와 같다. 이하 도 6a 및 도 6b을 참조하면, 각 시스템에서 정보 전송을 위해 주파수 및 시간 자원이 할당된 방식이 확인된다.In terms of service, the NR system is designed so that various services can be freely multiplexed in time and frequency resources, and accordingly, waveform/numerology, reference signals, etc. are dynamically or Can be adjusted freely. In order to provide an optimal service to a terminal in wireless communication, optimized data transmission through measurement of channel quality and interference amount is important, and accordingly, accurate channel state measurement is essential. However, unlike 4G communication, in which the channel and interference characteristics do not change significantly depending on the frequency resource, in the case of 5G channels, the channel and interference characteristics change significantly depending on the service. Support of a subset of is required. Meanwhile, the NR system may divide the types of supported services into enhanced mobile broadband (eMBB), massive machine type communications (mMTC), and ultra-reliable and low-latency communications (URLLC). eMBB is a service aiming at high-speed transmission of high-capacity data, mMTC is a service aiming at minimizing terminal power and connecting multiple terminals, and URLLC for high reliability and low latency. Different requirements may be applied according to the type of service applied to the terminal. Examples of resource distribution of each service are shown in FIGS. 6A and 6B below. 6A and 6B, a method in which frequency and time resources are allocated for information transmission in each system is identified.

도 6a는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 주파수-시간 자원에 서비스 별 데이터들의 할당 예를 도시한다. 6A illustrates an example of allocation of service-specific data to frequency-time resources in a wireless communication system according to various embodiments of the present disclosure.

도 6a의 경우, 전제 시스템 주파수 대역(610)에서 eMBB(622), URLLC(612, 614, 616), mMTC(632)를 위해 자원들이 할당된다. eMBB(622) 데이터 및 mMTC(632) 데이터가 특정 주파수 대역에서 할당되어 전송되는 도중에, URLLC(612, 614, 616) 데이터가 발생하는 경우, eMBB(622) 및 mMTC(632)를 위해 이미 할당된 부분을 비우거나, 전송을 하지 않고 URLLC(612, 614, 616) 데이터가 송신될 수 있다. URLLC는 지연시간을 줄이는 것을 요구하므로, eMBB(622)에게 할당된 자원의 일부분에 URLLC(612, 614, 616) 데이터를 송신하기 위한 자원이 할당될 수 있다. 물론 eMBB(622)가 할당된 자원에서 URLLC(612, 614, 616)가 추가로 할당되어 전송되는 경우, 중복되는 주파수-시간 자원에서는 eMBB(622) 데이터가 전송되지 않을 수 있으며, 따라서, eMBB(622) 데이터의 전송 성능이 낮아질 수 있다. 즉, 이러한 경우에 URLLC(612, 614, 616)를 위한 자원의 할당으로 인한 eMBB(622) 데이터 전송 실패가 발생할 수 있다. 도 6a와 같은 방식은 선취(preemption) 방식이라 지칭될 수 있다.In the case of FIG. 6A, resources are allocated for the eMBB 622, the URLLC 612, 614, and 616, and the mMTC 632 in the entire system frequency band 610. When the URLLC (612, 614, 616) data is generated while the eMBB 622 data and the mMTC 632 data are allocated and transmitted in a specific frequency band, the already allocated for the eMBB 622 and the mMTC 632 The URLLC (612, 614, 616) data may be transmitted without emptying or transmitting the part. Since the URLLC requires reducing the delay time, resources for transmitting URLLC (612, 614, 616) data may be allocated to a portion of the resources allocated to the eMBB (622). Of course, when URLLCs 612, 614, and 616 are additionally allocated and transmitted from the resource to which the eMBB 622 is allocated, the eMBB 622 data may not be transmitted from the overlapping frequency-time resource, and thus, eMBB ( 622) Data transmission performance may be lowered. That is, in this case, the eMBB 622 data transmission failure may occur due to resource allocation for the URLLCs 612, 614, and 616. The method of FIG. 6A may be referred to as a preemption method.

도 6b은 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 주파수-시간 자원에 서비스 별 데이터들의 다른 할당 예를 도시한다. 6B illustrates another example of allocation of service-specific data to frequency-time resources in a wireless communication system according to various embodiments of the present disclosure.

도 6b는 전체 시스템 주파수 대역(660)을 분할한 서브밴드들(662, 664, 666) 각각에서 각 서비스가 제공되는 에를 도시한다. 구체적으로, 서브밴드(662)는 URLLC(672, 674, 576) 데이터 전송, 서브밴드(664)는 eMBB(682) 데이터 전송, 서브밴드(666)는 mMTC(692) 데이터 전송을 위해 사용된다. 서브밴드들(662, 664, 666)의 구성(configuration)과 관련된 정보는 미리 결정될 수 있으며, 그 정보는 상위 시그널링을 통해 기지국에서 단말로 전송될 수 있다. 또는, 서브밴드들(662, 664, 666)과 관련된 정보는 기지국 또는 네트워크 노드가 임의로 나누어, 단말에게 별도의 서브밴드 구성 정보의 전송 없이 서비스들을 제공할 수도 있다. FIG. 6B shows an example in which each service is provided in each of the subbands 662, 664, and 666 in which the entire system frequency band 660 is divided. Specifically, the subband 662 is used for URLLC (672, 674, 576) data transmission, the subband 664 is used for eMBB 682 data transmission, and the subband 666 is used for mMTC 692 data transmission. Information related to the configuration of the subbands 662, 664, 666 may be determined in advance, and the information may be transmitted from the base station to the terminal through higher-level signaling. Alternatively, information related to the subbands 662, 664, and 666 may be arbitrarily divided by a base station or a network node, and services may be provided to the terminal without transmitting additional subband configuration information.

다양한 실시 예들에 따르면, URLLC 전송에 사용되는 전송 시간 구간(transmission time interval, TTI)의 길이는 eMBB 또는 mMTC 전송에 사용되는 TTI의 길이보다 짧을 수 있다. 또한, URLLC와 관련된 정보의 응답은 eMBB 또는 mMTC 보다 빨리 전송할 수 있으며, 이에 따라, URLLC 서비스를 이용하는 단말은 낮은 지연으로 정보를 송수신 할 수 있다. 상술한 3가지의 서비스들 또는 데이터를 전송하기 위해 각 타입 별로 사용하는 물리 계층 채널의 구조는 서로 다를 수 있다. 예를 들어, TTI의 길이, 주파수 자원의 할당 단위, 제어 채널의 구조 및 데이터의 맵핑 방법 중 적어도 하나가 서로 다를 수 있다.According to various embodiments, a length of a transmission time interval (TTI) used for URLLC transmission may be shorter than a length of a TTI used for eMBB or mMTC transmission. In addition, a response of information related to URLLC can be transmitted faster than eMBB or mMTC, and thus, a terminal using a URLLC service can transmit and receive information with a low delay. The structure of a physical layer channel used for each type to transmit the three services or data described above may be different from each other. For example, at least one of a TTI length, a frequency resource allocation unit, a control channel structure, and a data mapping method may be different from each other.

이상 3가지의 서비스들 및 3가지의 데이터 타입들이 설명되었으나, 더 많은 종류의 서비스들 및 그에 해당하는 데이터 타입들이 존재할 수 있다. 이 경우에도, 후술하는 다양한 실시 예들이 실시될 수 있을 것이다. Although the three services and three data types have been described above, there may be more types of services and data types corresponding thereto. Even in this case, various embodiments to be described later may be implemented.

도 7는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 데이터의 부호화 방식을 도시한다. 7 illustrates a data encoding method in a wireless communication system according to various embodiments of the present disclosure.

도 7은 하나의 TB가 여러 개의 코드 블록(codeblock, CB)들로 분할되고(segmented), CRC가 추가되는 것을 예시한다.7 illustrates that one TB is segmented into several code blocks (CBs) and a CRC is added.

도 7을 참고하면, 상향링크 또는 하향링크에서 전송하고자 하는 하나의 TB(712)의 후단 또는 전단에 CRC(714)가 추가될 수 있다. CRC(714)는 16-비트 또는 24-비트 또는 미리 고정된 비트 수를 가지거나, 채널 상황 등에 따라 가변적인 비트 수를 가질 수 있으며, 수신기에서 채널 코딩의 성공 여부를 판단하기 위해 사용될 수 있다. TB(712) 및 CRC(714)가 추가된 블록은 복수의 CB들(722-1, 722-2, 722-(N-1), 722-N)로 분할된다. CB의 미리 정의된 크기로 분할될 있으며, 이 경우, 마지막 CB(722-N)는 다른 CB보다 크기가 작거나, 또는 0, 랜덤 값 또는 1을 추가함으로써 다른 CB들과 같은 길이를 가지도록 구성될 수 있다. 분할된 CB들 각각에 CRC들(732-1, 732-2, 732-(N-1), 732-N)이 추가될 수 있다. CRC들(732-1, 732-2, 732-(N-1), 732-N)은 16 비트 또는 24 비트 또는 미리 고정된 비트 수를 가질 수 있으며, 수신기에서 채널 코딩의 성공 여부를 판단하기 위해 사용될 수 있다. Referring to FIG. 7, a CRC 714 may be added to the rear or front end of one TB 712 to be transmitted in uplink or downlink. The CRC 714 may have 16-bit, 24-bit, or a fixed number of bits in advance, or a variable number of bits according to a channel condition, and the like, and may be used by the receiver to determine whether channel coding is successful. The block to which the TB 712 and CRC 714 are added is divided into a plurality of CBs 722-1, 722-2, 722-(N-1), and 722-N. It can be divided into a predefined size of CB, and in this case, the last CB (722-N) is smaller in size than other CBs, or is configured to have the same length as other CBs by adding 0, random value or 1 Can be. CRCs 732-1, 732-2, 732-(N-1), and 732-N may be added to each of the divided CBs. The CRCs 732-1, 732-2, 732-(N-1), and 732-N may have 16 bits or 24 bits or a predetermined number of bits, and the receiver determines whether channel coding is successful. Can be used for

CRC(714)을 생성하기 위해 TB(712)와 순환 생성 다항식(cyclic generator polynomial)이 사용될 수 있다. 순환 생성 다항식은 다양하게 정의될 수 있다. 예를 들어, 24 비트 CRC를 위한 순환 생성 다항식 gCRC24A(D) = D24+D23+D18+D17+D14+D11+D10+D7+D6+D5+D4+D3+D+1 이라고 가정하고, L=24이면, TB 데이터 a0,a1,a2,a3,…,aA-1에 대해, CRC p1,p2,…,pL-1는 a0DA+23+a1DA+22+…+aA-1D24+p0D23+p1D22+…+p22D1+p23를 gCRC24A(D)로 나누어 나머지가 0이 되는 값으로 결정될 수 있다. 위 예에서, CRC 길이 L은 24인 것으로 설명되었지만, 길이 L은 12, 16, 24, 32, 40, 48, 64 등 다르게 정의될 수 있을 것이다. To generate the CRC 714, the TB 712 and a cyclic generator polynomial may be used. Cyclic generation polynomials can be defined in various ways. For example, cyclic generation polynomial for 24-bit CRC g CRC24A (D) = D 24 +D 23 +D 18 +D 17 +D 14 +D 11 +D 10 +D 7 +D 6 +D 5 +D 4 Assume +D 3 +D+1, and if L=24, TB data a 0 ,a 1 ,a 2 ,a 3 ,... For ,a A-1 , CRC p 1 ,p 2 ,... ,p L-1 is a 0 D A+23 +a 1 D A+22 +... +a A-1 D 24 +p 0 D 23 +p 1 D 22 +... +p 22 D 1 +p 23 may be divided by g CRC24A (D) and the remainder may be determined as a value of 0. In the above example, the CRC length L is described as being 24, but the length L may be defined differently, such as 12, 16, 24, 32, 40, 48, 64, etc.

전술한 바와 같이 TB에 CRC를 추가한 후, TB 및 CRC의 합은 N개의 CB들(722-1, 722-2, 722-(N-1), 722-N)로 분할된다. CB들(722-1, 722-2, 722-(N-1), 722-N) 각각에 CRC(732-1, 732-2, 732-(N-1), 732-N)가 추가된다. 각 CB에 추가되는 CRC는 TB에 추가된 CRC를 생성할 때와 다른 길이의 CRC 또는 다른 순환 생성 다항식에 기반하여 생성될 수 있다. 하지만, 다른 실시 예에 따라, TB에 추가된 CRC(714)과 CB들(722-1, 722-2, 722-(N-1), 722-N)에 추가된 CRC들(732-1, 732-2, 732-(N-1), 732-N)은 CB에 적용될 채널 코드의 종류에 따라 생략될 수 있다. 예를 들어, 터보코드가 아니라 LDPC(low density parity code) 코드가 CB에 적용되는 경우, CB 마다 추가되는 CRC들(732-1, 732-2, 732-(N-1), 732-N)은 생략될 수 있다. 하지만, LDPC가 적용되는 경우에도, CRC들(732-1, 732-2, 732-(N-1), 732-N)은 CB들(732-1, 732-2, 732-(N-1), 732-N)에 추가될 수 있다. 또한 폴라(polar) 코드가 사용되는 경우에도, CRC가 추가되거나 또는 생략될 수 있다. After adding CRC to TB as described above, the sum of TB and CRC is divided into N CBs 722-1, 722-2, 722-(N-1), and 722-N. CRCs 732-1, 732-2, 732-(N-1), and 732-N are added to each of the CBs 722-1, 722-2, 722-(N-1), and 722-N. . The CRC added to each CB may be generated based on a CRC of a different length from when generating the CRC added to the TB or a different cyclic generation polynomial. However, according to another embodiment, the CRC 714 added to the TB and the CRCs 732-1 added to the CBs 722-1, 722-2, 722-(N-1), and 722-N. 732-2, 732-(N-1), and 732-N) may be omitted depending on the type of channel code to be applied to the CB. For example, when LDPC (low density parity code) code is applied to CB, not turbo code, CRCs 732-1, 732-2, 732-(N-1), 732-N added for each CB Can be omitted. However, even when LDPC is applied, the CRCs 732-1, 732-2, 732-(N-1), and 732-N are the CBs 732-1, 732-2, and 732-(N-1). ), 732-N). Also, even when a polar code is used, a CRC may be added or omitted.

도 7에 도시된 바와 같이, TB는 적용되는 채널 코딩의 종류에 따라 하나의 CB의 최대 길이가 정해지고, CB의 최대 길이에 따라 TB 및 TB에 추가되는 CRC는 CB으로의 분할이 수행된다. 종래 LTE 시스템에서는 분할된 CB에 CB용 CRC가 추가되고, CB의 데이터 비트 및 CRC는 채널코드로 인코딩되며, 이에 따라 코딩된 비트들(coded bits)이 결정되고, 각각의 코딩된 비트들은 미리 약속된 바와 같이 레이트 매칭되는 비트수가 결정된다.As shown in FIG. 7, the maximum length of one CB is determined according to the type of channel coding applied to the TB, and the TB and the CRC added to the TB are divided into CBs according to the maximum length of the CB. In the conventional LTE system, the CB CRC is added to the divided CB, the data bits and the CRC of the CB are encoded with a channel code, and coded bits are determined accordingly, and each coded bit is promised in advance. As described above, the number of rate-matched bits is determined.

도 8은 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 동기 신호 및 방송 채널의 맵핑을 도시한다. 8 illustrates mapping of a synchronization signal and a broadcast channel in a wireless communication system according to various embodiments of the present disclosure.

도 8은 3GPP NR 시스템의 동기 신호(synchronization signal)들 및 물리 방송 채널(physical broadcast channel, PBCH)의 주파수 및 시간 영역에서의 맵핑된 결과의 예를 도시한다. 주 동기 신호(primary synchronization signal, PSS)(802), 보조 동기 신호(secondary synchronization signal, SSS)(806), PBCH(804)가 4개 OFDM 심볼들에 걸쳐 맵핑되며, PSS(802)와 SSS(806)는 12개 RB들에 맵핑되고, PBCH(804)는 20 RB들에 맵핑된다. 부반송파 간격(subcarrier spacing, SCS)에 따른 20개 RB들의 주파수 대역폭이 도 8에 도시된다. PSS(802), SSS(806), PBCH(804)의 집합, 또는, PSS(802), SSS(806), PBCH(804)를 전달하는 자원 영역은 SS/PBCH 블록(SS block, SSB)이라 지칭될 수 있다.FIG. 8 shows an example of a result of mapping synchronization signals of a 3GPP NR system in a frequency and time domain of a physical broadcast channel (PBCH). A primary synchronization signal (PSS) 802, a secondary synchronization signal (SSS) 806, and a PBCH 804 are mapped over four OFDM symbols, and the PSS 802 and SSS ( 806) is mapped to 12 RBs, and PBCH 804 is mapped to 20 RBs. The frequency bandwidth of 20 RBs according to subcarrier spacing (SCS) is shown in FIG. 8. A set of PSS 802, SSS 806, and PBCH 804, or a resource region carrying the PSS 802, SSS 806, and PBCH 804 is called an SS/PBCH block (SS block, SSB). May be referred to.

도 9는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 SSB의 배치의 예를 도시한다. 9 illustrates an example of an arrangement of an SSB in a wireless communication system according to various embodiments of the present disclosure.

도 9는 하나의 SSB가 슬롯 내에서 어떤 심볼들에 맵핑되는지의 예로서, 15kHz의 부반송파 간격을 사용하는 LTE 시스템과 30 kHz의 부반송파 간격을 사용하는 NR 시스템의 예를 도시한다. 도 9를 참고하면, LTE 시스템에서 항상 전송되는 셀-특정 기준 신호(cell-specific reference signal, CRS)들과 중첩되지 아니하는 위치들(902, 904, 906, 908)에서 NR 시스템의 SSB들(912, 914, 916, 918)이 송신된다. 도 9와 같은 설계는 하나의 주파수 대역에서 LTE 시스템 및 NR 시스템이 공존할 수 있도록 하기 위함일 수 있다.9 illustrates an example of an LTE system using a subcarrier spacing of 15 kHz and an NR system using a subcarrier spacing of 30 kHz as an example of which symbols are mapped to one SSB in a slot. Referring to FIG. 9, SSBs of the NR system at positions 902, 904, 906 and 908 that do not overlap with cell-specific reference signals (CRSs) that are always transmitted in the LTE system ( 912, 914, 916, 918) are transmitted. The design as shown in FIG. 9 may be for enabling the LTE system and the NR system to coexist in one frequency band.

도 10a 및 도 10b는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 부반송파 간격에 따른 SSB의 송신 가능 심볼 위치들을 도시한다. 도 10a는 1ms 구간 내에서, 도 10b는 5ms 구간 내에서의 SSB가 송신 가능한 심볼 위치들을 예시한다. 도 10a 및 도 10b에 도시된 SSB가 송신될 수 있는 영역에서, SSB이 항상 전송되어야 하는 것은 아니며, SSB는 기지국의 선택에 따라 전송되거나 또는 전송되지 아니할 수 있다.10A and 10B illustrate transmission possible symbol positions of an SSB according to subcarrier spacing in a wireless communication system according to various embodiments of the present disclosure. FIG. 10A illustrates symbol positions that can be transmitted by an SSB within a 1ms interval and FIG. 10B within a 5ms interval. In the region in which the SSB shown in FIGS. 10A and 10B can be transmitted, the SSB does not always have to be transmitted, and the SSB may or may not be transmitted according to the selection of the base station.

다양한 실시 예들에 따른 무선 통신 시스템에서, TB의 크기는 이하 단계들을 거쳐 계산될 수 있다.In the wireless communication system according to various embodiments, the size of the TB may be calculated through the following steps.

단계 1: 할당 자원 안의 하나의 PRB에서 PDSCH 맵핑에 할당된 RE 개수인

Figure pat00005
를 계산한다.
Figure pat00006
Figure pat00007
로 계산될 수 있다. 여기에서,
Figure pat00008
는 하나의 RB에 포함되는 부반송파 개수(예: 12),
Figure pat00009
는 PDSCH에 할당된 OFDM 심볼 개수,
Figure pat00010
는 같은 CDM(code division multiplexing) 그룹의 DMRS(demodulation reference signal)가 점유하는, 하나의 PRB 내의 RE 개수,
Figure pat00011
는 상위 시그널링에 의해 구성되는 하나의 한 PRB 내의 오버헤드가 점유하는 RE 개수(예: 0, 6, 12, 18 중 하나로 설정)를 의미한다. 이후, PDSCH에 할당된 총 RE 개수
Figure pat00012
가 계산될 수 있다.
Figure pat00013
Figure pat00014
로 계산된다. n PRB 는 단말에게 할당된 PRB 개수를 의미한다. Step 1: The number of REs allocated to PDSCH mapping in one PRB in the allocated resource
Figure pat00005
Calculate
Figure pat00006
Is
Figure pat00007
Can be calculated as From here,
Figure pat00008
Is the number of subcarriers included in one RB (eg 12),
Figure pat00009
Is the number of OFDM symbols allocated to the PDSCH,
Figure pat00010
Is the number of REs in one PRB occupied by a demodulation reference signal (DMRS) of the same code division multiplexing (CDM) group,
Figure pat00011
Denotes the number of REs occupied by overhead in one PRB configured by higher signaling (eg, set to one of 0, 6, 12, 18). Thereafter, the total number of REs allocated to the PDSCH
Figure pat00012
Can be calculated.
Figure pat00013
Is
Figure pat00014
Is calculated as n PRB means the number of PRBs allocated to the terminal.

단계 2: 임시 정보 비트 개수 N info

Figure pat00015
로 계산될 수 있다. 여기서, R은 부호화율(code rate), Qm은 변조 차수(modulation order), ν는 할당된 레이어 개수를 의미한다. 부호화율 및 변조 차수는 제어 정보에 포함되는 MCS 필드와 미리 정의된 대응 관계를 이용하여 전달될 수 있다. 만약,
Figure pat00016
이면, 이하 단계 3에 따라, 그렇지 아니하면, 이하 단계 4에 따라 TBS가 계산될 수 있다. Step 2: The number of temporary information bits N info is
Figure pat00015
Can be calculated as Here, R denotes a code rate, Qm denotes a modulation order, and ν denotes the number of allocated layers. The coding rate and modulation order may be transmitted using a predefined correspondence relationship with the MCS field included in the control information. if,
Figure pat00016
If so, TBS may be calculated according to step 3 below, otherwise, according to step 4 below.

단계 3:

Figure pat00017
Figure pat00018
와 같이
Figure pat00019
가 계산될 수 있다. 이어, TBS는 이하 [표 5]에서
Figure pat00020
보다 작지 않은 값 중
Figure pat00021
에 가장 가까운 값으로 결정될 수 있다. Step 3:
Figure pat00017
Wow
Figure pat00018
together with
Figure pat00019
Can be calculated. Then, TBS in the following [Table 5]
Figure pat00020
Among the values not less than
Figure pat00021
It can be determined as the value closest to.

[표 5][Table 5]

Figure pat00022
Figure pat00022

단계 4:

Figure pat00023
Figure pat00024
에 따라
Figure pat00025
가 계산될 수 있다. 이어, TBS는
Figure pat00026
값과 이하 [표 6]과 같은 수도-코드를 통해 결정될 수 있다. Step 4:
Figure pat00023
Wow
Figure pat00024
Depending on the
Figure pat00025
Can be calculated. Next, TBS
Figure pat00026
It can be determined through a value and a number-code as shown in [Table 6] below.

[표 6][Table 6]

Figure pat00027
Figure pat00027

하나의 CB가 LDPC 인코더로 입력되면, 패리티 비트들이 추가되어 출력될 수 있다. 이때, LDPC 베이스 그래프(LDPC base graph)에 따라 패리티 비트의 양(size)이 달라질 수 있다. 레이트 매칭(rate matching)의 방식에 따라, LDPC 코딩에 의해 생성되는 모든 패리티 비트들은 모두 송신 가능하거나 또는 일부만 송신 가능할 수 있다. LDPC 코딩에 의해 생성되는 모든 패리티 비트들을 전달 가능하도록 처리하는 방식은 'FBRM(full buffer rate matching)'라 지칭되며, 전송 가능한 패리티 비트 개수에 제한을 두는 방식은 'LBRM(limited buffer rate matching)'라 지칭된다. 데이터 전송을 위해 자원이 할당되면, LDPC 인코더 출력이 순환 버퍼(circular buffer)로 입력되고, 버퍼의 비트들은 할당된 자원만큼 반복적으로 전송된다. When one CB is input to the LDPC encoder, parity bits may be added and output. In this case, the size of the parity bit may vary according to the LDPC base graph. According to a rate matching method, all parity bits generated by LDPC coding may be transmittable or may be partially transmitted. The method of processing all parity bits generated by LDPC coding to be transferable is referred to as'FBRM (full buffer rate matching)', and the method of limiting the number of transferable parity bits is'LBRM (limited buffer rate matching)'. It is referred to as. When resources are allocated for data transmission, the LDPC encoder output is input to a circular buffer, and bits of the buffer are repeatedly transmitted as many as the allocated resources.

순환 버퍼의 길이를 Ncb, LDPC 코딩에 의해 생성되는 모든 패리티 비트들의 개수를 N이라 하면, FBRM 방식의 경우,

Figure pat00028
이 된다. LBRM 방식의 경우,
Figure pat00029
,
Figure pat00030
,
Figure pat00031
은 2/3으로 결정될 수 있다.
Figure pat00032
을 결정하기 위해 전술한 TBS를 결정하는 방식이 사용될 수 있다. 이때, C는 스케줄링할 때 스케줄링되는 TB의 실제 코드블록 수이다. 이때, 레이어 개수는 해당 셀에서 단말이 지원하는 최대 레이어 개수로 가정되고, 변조 차수는 해당 셀에서 단말에게 설정된 최대 변조 차수로 또는 설정되지 아니한 경우에는 64-QAM로 가정되고, 부호화율은 최대 부호화율인 948/1024로 가정되고, NRE
Figure pat00033
로 가정되고, nPRB
Figure pat00034
으로 가정될 수 있다. nPRB,LBRM은 이하 [표 7]와 같이 정의될 수 있다. Assuming that the length of the circular buffer is N cb and the number of all parity bits generated by LDPC coding is N, in the case of the FBRM scheme,
Figure pat00028
Becomes. In the case of the LBRM method,
Figure pat00029
,
Figure pat00030
,
Figure pat00031
Can be determined as 2/3.
Figure pat00032
In order to determine the TBS, the above-described method of determining the TBS may be used. At this time, C is the actual number of code blocks of TBs scheduled during scheduling. At this time, the number of layers is assumed to be the maximum number of layers supported by the terminal in the cell, and the modulation order is assumed to be the maximum modulation order set for the terminal in the corresponding cell or 64-QAM when not set, and the coding rate is the maximum coding Assuming the rate of 948/1024, N RE is
Figure pat00033
Is assumed to be, and n PRB is
Figure pat00034
Can be assumed. n PRB, LBRM may be defined as shown in [Table 7] below.

[표 7][Table 7]

Figure pat00035
Figure pat00035

다양한 실시 예들에 따른 무선 통신 시스템에서, 단말이 지원하는 최대 데이터율은 이하 [수학식 1]을 통해 결정될 수 있다.In the wireless communication system according to various embodiments, the maximum data rate supported by the terminal may be determined through [Equation 1] below.

[수학식 1][Equation 1]

Figure pat00036
Figure pat00036

[수학식 1]에서 J는 반송파 집적(carrier aggregation, CA)으로 묶인 반송파들의 개수, Rmax = 948/1024,

Figure pat00037
는 인덱스 j의 반송파의 최대 레이어 개수,
Figure pat00038
는 인덱스 j의 반송파의 최대 변조 오더,
Figure pat00039
는 인덱스 j의 반송파의 스케일링 계수,
Figure pat00040
는 부반송파 간격을 의미한다.
Figure pat00041
는 1, 0.8, 0.75, 0.4 중 하나의 값으로서, 단말에 의해 보고될 수 있으며,
Figure pat00042
는 이하 [표 8]과 같이 주어질 수 있다. In [Equation 1], J is the number of carriers bound by carrier aggregation (CA), Rmax = 948/1024,
Figure pat00037
Is the maximum number of layers of the carrier at index j,
Figure pat00038
Is the maximum modulation order of the carrier at index j,
Figure pat00039
Is the scaling factor of the carrier at index j,
Figure pat00040
Denotes a subcarrier spacing.
Figure pat00041
Is one of 1, 0.8, 0.75, and 0.4, and may be reported by the terminal,
Figure pat00042
May be given as shown in [Table 8] below.

[표 8][Table 8]

Figure pat00043
Figure pat00043

여기서,

Figure pat00044
는 평균 OFDM 심볼 길이이며,
Figure pat00045
로 계산될 수 있고,
Figure pat00046
Figure pat00047
에서 최대 RB 개수다.
Figure pat00048
는 오버헤드 값으로, FR1(예: 6 GHz 또는 7.125 GHz 이하 대역)의 하향링크에서는 0.14, 상향링크에서는 0.18로 주어질 수 있으며, FR2(예: 6 GHz 또는 7.125 GHz 초과 대역)의 하향링크에서는 0.08, 상향링크에서는 0.10로 주어질 수 있다. [수학식 1]에 따라, 30 kHz 부반송파 간격에서 100 MHz 주파수 대역폭을 갖는 셀에서의 하향링크에서의 최대 데이터율은 이하 [표 9]과 같이 계산될 수 있다. here,
Figure pat00044
Is the average OFDM symbol length,
Figure pat00045
Can be calculated as,
Figure pat00046
Is
Figure pat00047
Is the maximum number of RBs in.
Figure pat00048
Is an overhead value, can be given as 0.14 in the downlink of FR1 (e.g., a band below 6 GHz or 7.125 GHz) and 0.18 in the uplink, and 0.08 in the downlink of FR2 (e.g., a band above 6 GHz or 7.125 GHz) , May be given as 0.10 in uplink. According to [Equation 1], the maximum data rate in the downlink in a cell having a frequency bandwidth of 100 MHz in a 30 kHz subcarrier interval may be calculated as shown in [Table 9] below.

[표 9][Table 9]

Figure pat00049
Figure pat00049

반면, 단말이 실제 데이터 전송에서 측정될 수 있는 실제 데이터율은 데이터양을 데이터 전송 시간으로 나눈 값이 될 수 있을 것이다. 이는 1 TB 전송에서 TBS(TB size) 또는 2 TB 전송에서 TBS들의 합을 TTI 길이로 나눈 값이 될 수 있다. 예를 들어, 30 kHz 부반송파 간격에서 100 MHz 주파수 대역폭을 갖는 셀에서의 하향링크에서의 최대 실제 데이터율은 할당된 PDSCH 심볼 개수에 따라 이하 [표 10]와 같이 정해질 수 있다.On the other hand, the actual data rate that the terminal can measure in actual data transmission may be a value obtained by dividing the amount of data by the data transmission time. This may be a value obtained by dividing the TBS (TB size) in 1 TB transmission or the sum of TBSs in 2 TB transmission by the TTI length. For example, the maximum actual data rate in the downlink in a cell having a 100 MHz frequency bandwidth in a 30 kHz subcarrier interval may be determined as shown in Table 10 below according to the number of allocated PDSCH symbols.

[표 10][Table 10]

Figure pat00050
Figure pat00050

[표 9]를 통해 단말이 지원하는 최대 데이터율이 확인 가능하고, [표 10]을 통해 할당된 TBS에 따르는 실제 데이터율이 확인 가능하다. 이때, 스케줄링 정보에 따라, 최대 데이터율보다 실제 데이터율이 더 큰 경우가 있을 수 있다. The maximum data rate supported by the terminal can be checked through [Table 9], and the actual data rate according to the allocated TBS can be checked through [Table 10]. In this case, according to the scheduling information, there may be a case where the actual data rate is greater than the maximum data rate.

무선 통신 시스템, 특히 NR 시스템에서, 단말이 지원할 수 있는 데이터율이 기지국과 단말 사이에 서로 약속될 수 있다. 이는 단말이 지원하는 최대 주파수 대역, 최대 변조 차수, 최대 레이어 개수 등을 이용하여 계산될 수 있다. 하지만, 계산된 데이터율은, 실제 데이터 전송에 사용되는 TB의 크기(transport block size, TBS) 및 TTI(transmission time interval) 길이로부터 계산되는 값과 다를 수 있다. 이에 따라, 단말은 자신이 지원하는 데이터율에 해당하는 값보다 큰 TBS를 할당 받을 수 있으며, 이를 방지하기 위해 단말이 지원하는 데이터율에 따라 스케줄링 가능한 TBS의 제약이 있을 수 있다. 이러한 경우를 최소화하고, 이러한 경우의 단말의 동작을 정의하는 것이 필요할 수 있다. 또한, 현재 NR에서 정의된 통신 시스템에서 LBRM을 적용할 때 단말이 지원하는 레이어 개수 또는 랭크(rank) 등에 기초하여 TBSLBRM이 결정되는데, 그 과정이 비효율적이거나 파라미터 구성(configuration) 등이 모호하여 기지국 또는 단말에서 LBRM을 안정적으로 적용하기 어려운 문제점이 있다. 이하 본 개시는 이러한 문제를 해결하기 위한 다양한 실시 예들을 설명한다. In a wireless communication system, particularly an NR system, a data rate that the terminal can support can be agreed upon between the base station and the terminal. This can be calculated using the maximum frequency band supported by the terminal, the maximum modulation order, the maximum number of layers, and the like. However, the calculated data rate may be different from a value calculated from a size of a TB (transport block size, TBS) and a length of a transmission time interval (TTI) used for actual data transmission. Accordingly, the terminal may be assigned a TBS larger than a value corresponding to the data rate supported by the terminal, and to prevent this, there may be a constraint on the TBS that can be scheduled according to the data rate supported by the terminal. It may be necessary to minimize this case and define the operation of the terminal in this case. In addition, when LBRM is applied in the communication system defined in the current NR, the TBS LBRM is determined based on the number of layers or rank supported by the terminal, and the process is inefficient or the parameter configuration is ambiguous. Or, there is a problem in that it is difficult to stably apply the LBRM in the terminal. Hereinafter, the present disclosure describes various embodiments for solving this problem.

도 11은 무선 통신 시스템에서 패리티 비트들의 생성 및 송신의 예를 도시한다. 11 shows an example of generation and transmission of parity bits in a wireless communication system.

도 11은 전송하고자 하는 데이터를 코드블록들로 분할하고, 분할된 CB에 채널 코딩을 적용함으로써 패리티 비트들을 생성하고, 전송하는 패리티 비트들을 결정 및 전송하는 과정의 일 예이다. 11 is an example of a process of generating parity bits by dividing data to be transmitted into code blocks, applying channel coding to the divided CB, and determining and transmitting the transmitted parity bits.

도 11을 참고하면, 하나의 CB는 채널 인코더(1102)에 전달되고, 채널 인코더(1102)에 의해 데이터 비트들(1112) 및 패리티 비트들(1114, 1116)이 생성된다. 예를 들어, 채널 인코더(1102)는 LDPC, 폴라 코드 또는 다른 채널 코드를 이용하여 인코딩을 수행할 수 있다. 이때, 채널 코드의 종류 및 자세한 사항에 따라 생성되는 패리티 비트들의 양이 달라질 수 있다. 채널 인코더(1102)의 인코딩에 의해 생성된 비트들(1110)의 총 길이를 N 비트라 하면, 모든 패리티 비트들(1114 및 1116)를 전송하는 경우, 수신기에서 N 비트의 수신 정보를 저장할 수 있는 소프트버퍼 또는 메모리가 필요할 수 있다. 만일, 수신기가 N 비트 보다 적은 크기의 소프트버퍼를 사용하면, 수신 성능이 열화될 수 있다.Referring to FIG. 11, one CB is transmitted to the channel encoder 1102, and data bits 1112 and parity bits 1114 and 1116 are generated by the channel encoder 1102. For example, the channel encoder 1102 may perform encoding using LDPC, polar codes, or other channel codes. In this case, the amount of generated parity bits may vary according to the type and details of the channel code. If the total length of the bits 1110 generated by the encoding of the channel encoder 1102 is N bits, when all parity bits 1114 and 1116 are transmitted, the receiver can store N bits of reception information. You may need a soft buffer or memory. If the receiver uses a soft buffer with a size smaller than N bits, reception performance may deteriorate.

요구되는 소프트버퍼의 크기를 줄이기 위해서, 전송되지 않는(not transmitted) 패리티 비트들(1116)을 결정하고, 결정된 패리티 비트들(1116)을 전송하지 않도록 하는 방안이 사용될 수 있다. 즉, 데이터 비트들(1112) 및 패리티 비트들의 일부(1114)만이 송신 버퍼(transmit buffer)(1120)에 입력되고, 순환 버퍼(soft buffer)(1130)로 전달됨으로써, 전송될 수 있다. 즉, 송신 가능한 패리티 비트들이 제한될 수 있으며, 제한되는 양은 데이터 비트들(1112)의 크기 및 패리티 비트들의 일부(1114)의 크기의 합으로서, Ncb로 지칭될 수 있다. Ncb가 N이라는 것은, 송신 가능한 패리티 비트들이 제한되지 않는다는 의미이며, 이는 채널 코드로 생성된 모든 패리티가 송신되는 것이다. 이와 같이, 모든 패리티 비트들을 전달 가능하도록 처리하는 방식은 FBRM(full buffer rate matching)이라 지칭될 수 있다. 반면, Ncb가 Ncb=min(N,Nref)와 같이 결정되고,

Figure pat00051
로 주어지는 방법으로, 송신 가능한 패리티 비트들이 제한될 수 있다. 이와 같이, 전송 가능한 패리티 비트 개수에 제한을 두는 방식은 'LBRM(limited buffer rate matching)'라 지칭된다. In order to reduce the size of the required soft buffer, a method of determining not transmitted parity bits 1116 and not transmitting the determined parity bits 1116 may be used. That is, only the data bits 1112 and some of the parity bits 1114 are input to the transmit buffer 1120 and are transmitted to the soft buffer 1130, thereby being transmitted. That is, transmittable parity bits may be limited, and the limited amount is a sum of the sizes of the data bits 1112 and the sizes of some of the parity bits 1114, and may be referred to as N cb. When N cb is N, it means that the transmittable parity bits are not limited, which means that all parity generated by the channel code is transmitted. In this way, a method of processing all parity bits to be transferable may be referred to as full buffer rate matching (FBRM). On the other hand, N cb is determined as N cb =min(N,N ref ),
Figure pat00051
In a method given by, the transmittable parity bits can be limited. In this way, a method of limiting the number of transmittable parity bits is referred to as'limited buffer rate matching (LBRM)'.

이하 설명되는 실시 예들에서, 기지국은 단말의 자원 할당을 수행하는 주체로, V2X 통신과 일반 셀룰러 통신을 모두 지원하는 기지국이거나, V2X 통신만을 지원하는 기지국일 수 있다. 즉, 기지국은 gNB, eNB, 또는 RSU(road site unit) 또는 고정국을 의미할 수 있다. 단말은 일반적인 UE, 이동국(mobile station) 뿐만 아니라 차량 간 통신(vehicular-to-vehicular, V2V)을 지원하는 차량, 차량과 보행자 간 통신(vehicular-to-pedestrian, V2P)을 지원하는 차량 또는 보행자의 핸드셋(예: 스마트폰), 차량과 네트워크 간 통신(vehicular-to-network, V2N)을 지원하는 차량 또는 차량과 교통 인프라(infrastructure) 간 통신(vehicular-to-infrastructure, V2I)을 지원하는 차량 및 단말 기능을 장착한 RSU, 기지국 기능을 장착한 RSU, 또는 기지국 기능의 일부 및 단말 기능의 일부를 장착한 RSU 중 하나일 수 있다. In the embodiments described below, the base station is a subject that performs resource allocation of the terminal, and may be a base station supporting both V2X communication and general cellular communication, or a base station supporting only V2X communication. That is, the base station may mean a gNB, an eNB, or a road site unit (RSU) or a fixed station. The terminal is a general UE, a mobile station, as well as a vehicle that supports vehicle-to-vehicular communication (vehicular-to-vehicular, V2V), a vehicle that supports vehicle-to-pedestrian communication (vehicular-to-pedestrian, V2P), or A handset (e.g., a smartphone), a vehicle that supports communication between a vehicle and a network (vehicular-to-network, V2N), or a vehicle that supports communication between a vehicle and a transportation infrastructure (vehicular-to-infrastructure, V2I), and It may be one of an RSU equipped with a terminal function, an RSU equipped with a base station function, or a part of a base station function and an RSU equipped with a part of the terminal function.

V2X 환경에서, 하나의 단말에서 복수의 단말들로 데이터가 전송될 수 있고, 또는 하나의 단말에서 하나의 단말로 데이터가 전송될 수 있다. 또는 기지국에서 복수의 단말들로 데이터가 전송될 수 있다. 하지만, 본 개시는 이에 한정되지 않고, 다양한 경우에 적용될 수 있을 것이다. In the V2X environment, data may be transmitted from one terminal to a plurality of terminals, or data may be transmitted from one terminal to one terminal. Alternatively, data may be transmitted from the base station to a plurality of terminals. However, the present disclosure is not limited thereto, and may be applied in various cases.

사이드링크에서 단말이 송수신을 하기 위해서 단말들간에 이미 정의된 또는 설정된 또는 미리 설정된 리소스 풀(resource pool)에 기반하여 동작한다. 리소스 풀은, 사이드링크 신호의 송수신에 사용될 수 있는 주파수 및 시간 영역 자원의 집합일 수 있다. 즉, 사이드링크 신호를 송수신하기 위해 미리 정해진 주파수-시간 자원에서 사이드링크 신호의 송수신이 수행되어야 하는데, 그러한 자원이 리소스 풀이란 것으로 정의되는 것이다. 리소스 풀은 송신과 수신에 있어 각각 정의되는 것일 수 있고, 송신과 수신에 공통으로 정의되어 이용될 수 있다. 또한 단말들이 하나 또는 복수개의 리소스 풀을 설정 받고 사이드링크 신호의 송수신 동작을 수행할 수 있다. 사이드링크 송수신에 사용되는 리소스 풀에 관한 설정 정보 및 사이드링크를 위한 다른 설정 정보들은 단말이 생산될 때 미리 설치되거나(pre-installed), 현재 기지국으로부터 구성되거나(configured), 현재 기지국 접속 이전에 다른 기지국으로부터 또는 다른 네트워크 유닛으로부터 미리 구성되거나(pre-configured), 또는 고정된 값이거나(fixed), 네트워크로부터 지정되거나(provisioned), 또는 단말 스스로 생성(self-constructed)할 수 있을 것이다. In order for the terminal to transmit/receive in the sidelink, it operates based on a previously defined or set or preset resource pool between terminals. The resource pool may be a set of frequency and time domain resources that can be used for transmission and reception of sidelink signals. That is, in order to transmit and receive a sidelink signal, transmission and reception of a sidelink signal must be performed in a predetermined frequency-time resource, and such a resource is defined as a resource pool. The resource pool may be defined respectively for transmission and reception, and may be commonly defined and used for transmission and reception. In addition, the terminals may be configured with one or a plurality of resource pools and may perform a sidelink signal transmission/reception operation. The configuration information on the resource pool used for sidelink transmission and reception and other configuration information for the sidelink are pre-installed when the terminal is produced, configured from the current base station, or other configuration information before accessing the current base station. It may be pre-configured from the base station or from another network unit, or may be a fixed value, provisioned from a network, or self-constructed.

리소스 풀의 주파수 영역 자원을 지시하기 위해, 기지국은 리소스 풀에 속하는 PRB의 시작 인덱스와 길이(예: PRB 개수)를 지시할 수 있지만, 이에 한정되지 않고, 비트맵을 이용하여 PRB들을 지시함으로써 하나의 리소스 풀을 구성할 수 있다. 또한, 리소스 풀의 시간 영역 자원을 지시하기 위해, 기지국은 리소스 풀에 속하는 OFDM 심볼 또는 슬롯의 인덱스들을 비트맵 단위로 지시할 수 있다. 또는, 다른 방법에 따라, 시스템은 특정 슬롯들의 집합에서 공식을 사용하여 해당 공식을 만족하는 슬롯들이 해당 리소스 풀에 속하게 되도록 정의할 수 있을 것이다. 시간 영역 자원을 설정함에 있어, 예를 들어, 기지국은 비트맵을 이용하여 특정 시간 동안의 슬롯 중 어느 슬롯들이 특정 리소스 풀에 속하는지를 알릴 수 있으며, 이때, 특정 시간 마다 시간 자원의 리소스 풀에 해당되는지 여부는 비트맵에 따라 지시될 수 있다. In order to indicate the frequency domain resource of the resource pool, the base station may indicate the start index and length (eg, the number of PRBs) of the PRB belonging to the resource pool, but is not limited thereto, and one by indicating the PRBs using a bitmap. You can configure the resource pool of In addition, in order to indicate the time domain resource of the resource pool, the base station may indicate the indexes of OFDM symbols or slots belonging to the resource pool in bitmap units. Alternatively, according to another method, the system may use a formula in a specific set of slots to define slots satisfying the formula to belong to the corresponding resource pool. In setting the time domain resource, for example, the base station can notify which of the slots for a specific time belong to a specific resource pool using a bitmap, and at this time, corresponding to the resource pool of the time resource at each specific time. Whether or not it can be indicated according to the bitmap.

한편, 서브채널은 다수의 RB들을 포함하는 주파수 상의 자원 단위로 정의될 수 있다. 달리 말해, 서브채널은 RB의 정수배로 정의될 수도 있다. 서브채널의 크기는, 서브채널 마다 같거나 또는 다르게 설정될 수 있으며, 하나의 서브채널은 연속적인 PRB들로 구성되는 것이 일반적이나 반드시 연속적인 PRB로 구성되어야 한다는 제한은 없다. 서브채널은 PSSCH(physical sidelink shared channel)나 PSCCH(physical sidelink control channel)에 대한 자원 할당의 기본 단위가 될 수 있다. 따라서, 해당 채널이 PSSCH인지 PSCCH인지에 따라서 서브채널의 사이즈가 다르게 설정될 수 도 있다. 또한, 서브채널의 용어는 RBG(resource block group) 또는 RBG의 집합 또는 PRB의 집합 등과 같은 다른 용어로 대체될 수 있다.Meanwhile, the subchannel may be defined as a resource unit on a frequency including a plurality of RBs. In other words, the subchannel may be defined as an integer multiple of RB. The size of the sub-channel may be set the same or different for each sub-channel, and one sub-channel is generally composed of consecutive PRBs, but there is no limitation that it must be composed of consecutive PRBs. The subchannel may be a basic unit of resource allocation for a physical sidelink shared channel (PSSCH) or a physical sidelink control channel (PSCCH). Accordingly, the size of the subchannel may be set differently depending on whether the corresponding channel is PSSCH or PSCCH. In addition, the term of the subchannel may be replaced with another term such as a resource block group (RBG) or a set of RBGs or a set of PRBs.

예를 들어, 상위 시그널링 또는 설정 정보인 ‘startRBSubchanel’은 리소스 풀에서 주파수상의 서브채널의 시작위치를 지시할 수 있다. 예를 들어, LTE V2X 시스템에서, PSSCH를 위한 리소스 풀에 속한 주파수 자원인 자원 블록 (resource block)은 이하 [표 11]과 같은 방법으로 결정될 수 있다. For example,'startRBSubchanel', which is higher signaling or configuration information, may indicate a start position of a subchannel on a frequency in the resource pool. For example, in the LTE V2X system, a resource block, which is a frequency resource belonging to a resource pool for PSSCH, may be determined in the following manner as shown in [Table 11].

[표 11][Table 11]

Figure pat00052
Figure pat00052

리소스 풀 설정을 위해 시간상 리소스 할당의 그래뉴얼리티(granularity)는 슬롯(slot)일 수 있다. 본 개시에서, 리소스 풀이 시간 상에서 비연속적으로 할당된 슬롯으로 예시되나, 시간상에서 리소스 풀이 연속적으로 할당될 수 있고, 또는 심볼 단위로 설정하는 것도 가능할 수 있다. For resource pool configuration, the granularity of resource allocation in time may be a slot. In the present disclosure, although the resource pool is exemplified as a slot that is non-contiguously allocated in time, the resource pool may be continuously allocated in time, or it may be possible to set in units of symbols.

또 다른 예로, 상위 시그널링 또는 설정 정보인 'startSlot'이 리소스 풀에서 시간상의 슬롯의 시작 위치를 지시하는 경우, LTE V2X 시스템에서의 PSSCH를 위한 리소스 풀에 속한 시간 자원인 서브프레임들

Figure pat00053
은 이하 [표 12]와 같은 방법으로 결정될 수 있다.As another example, when'startSlot', which is higher signaling or configuration information, indicates the start position of a time slot in the resource pool, subframes that are time resources belonging to the resource pool for PSSCH in the LTE V2X system
Figure pat00053
May be determined in the same manner as in [Table 12] below.

[표 12][Table 12]

Figure pat00054
Figure pat00054

[표 12]의 절차에 따르면, 비트맵으로 먼저 특정 주기 동안의 슬롯들([표 12]에서 서브프레임들) 중 하향링크로 사용되는 적어도 하나의 슬롯을 제외하고, 어떤 슬롯이 리소스 풀에 포함되는지 여부가 지시되며, 리소스 풀에 속한다고 지시된 슬롯들 중 어떤 슬롯에 비트맵 정보에 따라 리소스 풀에 속하는지 여부가 지시된다. According to the procedure of [Table 12], a bitmap is first included in the resource pool except for at least one slot used as a downlink among slots (subframes in [Table 12]) for a specific period. Whether to belong to the resource pool is indicated, and whether to belong to the resource pool according to the bitmap information is indicated to which of the slots indicated to belong to the resource pool.

사이드링크 제어 채널은 PSCCH(physical sidelink control channel)로 불릴 수 있고, 사이드링크 공유 채널 또는 데이터 채널은 PSSCH(physical sidelink shared channel)로 불릴 수 있다. 또한, 동기화 신호와 함께 방송되는 방송 채널은 PSBCH(physical sidelink broadcast channel)로 불릴 수 있으며, 피드백 전송을 위한 채널은 PSFCH(physical sidelink feedback channel)로 불릴 수 있다. 다만, 피드백 전송을 위해서 PSCCH 또는 PSSCH가 사용될 수 있다. 통신 시스템에 따라, 상술한 채널들은 LTE-PSCCH, LTE-PSSCH, NR-PSCCH, NR-PSSCH 등으로 지칭될 수 있다. 본 개시에서, 사이드링크는 단말간의 링크를 의미하고, Uu 링크는 기지국과 단말 사이의 링크를 의미할 수 있다.The sidelink control channel may be referred to as a physical sidelink control channel (PSCCH), and the sidelink shared channel or data channel may be referred to as a physical sidelink shared channel (PSSCH). In addition, a broadcast channel broadcast with a synchronization signal may be referred to as a physical sidelink broadcast channel (PSBCH), and a channel for feedback transmission may be referred to as a physical sidelink feedback channel (PSFCH). However, PSCCH or PSSCH may be used for feedback transmission. Depending on the communication system, the above-described channels may be referred to as LTE-PSCCH, LTE-PSSCH, NR-PSCCH, NR-PSSCH, and the like. In the present disclosure, a sidelink may mean a link between terminals, and a Uu link may mean a link between a base station and a terminal.

사이드링크에서 전송되는 정보는 사이드링크 제어 정보(sidelink control information, SCI), 사이드링크 피드백 제어 정보(sidelink feedback control information, SFCI), 사이드링크 채널 상태 정보(sidelink channel state information, SCSI), 그리고 전송 채널인 사이드링크 공유 채널(sidelink shared channel, SL-SCH)를 포함할 수 있다. Information transmitted on the sidelink includes sidelink control information (SCI), sidelink feedback control information (SFCI), sidelink channel state information (SCSI), and transmission channel. It may include an in sidelink shared channel (SL-SCH).

상술한 정보 및 전송 채널은 이하 [표 13] 및 [표 14]와 같이 물리 채널에 맵핑될 수 있다.The above-described information and transport channels may be mapped to physical channels as shown in [Table 13] and [Table 14] below.

[표 13] [Table 13]

Figure pat00055
Figure pat00055

[표 14][Table 14]

Figure pat00056
Figure pat00056

또는, SCSI가 PSFCH를 통해 전송되면, 이하 [표 15] 및 [표 16]과 같은 전송채널-물리채널 맵핑이 적용될 수 있다.Alternatively, when SCSI is transmitted through the PSFCH, transport channel-physical channel mapping as shown in [Table 15] and [Table 16] below may be applied.

[표 15][Table 15]

Figure pat00057
Figure pat00057

[표 16][Table 16]

Figure pat00058
Figure pat00058

또는, SCSI가 상위 계층으로 전달되어, 예를 들어, MAC CE를 이용하여 전달되면, 이는 SC-SCH에 해당하므로, PSSCH를 통해 전송될 수 있고, 이하 [표 17] 및 [표 18]과 같은 전송채널-물리채널 맵핑이 적용될 수 있을 것이다.Or, if the SCSI is transmitted to the upper layer, for example, using MAC CE, it corresponds to the SC-SCH, and can be transmitted through the PSSCH, as shown in [Table 17] and [Table 18] below. Transport channel-physical channel mapping may be applied.

[표 17][Table 17]

Figure pat00059
Figure pat00059

[표 18][Table 18]

Figure pat00060
Figure pat00060

사이드링크의 CSI가 MAC CE를 통해 전송되는 경우, 수신 단말은 송신 단말에게 하기의 추가 정보 중 적어도 하나를 함께 전달할 수 있다. When the CSI of the sidelink is transmitted through the MAC CE, the receiving terminal may transmit at least one of the following additional information to the transmitting terminal together.

● CSI를 측정할 때 사용한 사이드링크 CSI-RS가 전송된 슬롯의 정보, 즉, 사이드링크 CSI-RS가 전송된 타이밍에 관한 정보● Information on the slot in which the sidelink CSI-RS used when measuring CSI is transmitted, that is, information on the timing at which the sidelink CSI-RS is transmitted

● CSI가 측정된 주파수 영역에 대한 정보, 즉, 사이드링크 CSI-RS가 전송된 주파수 영역에 관한 정보. 서브채널의 인덱스 등을 포함할 수 있다. ● Information on the frequency domain in which CSI is measured, that is, information on the frequency domain in which the sidelink CSI-RS is transmitted. It may include an index of a subchannel, and the like.

● 랭크 지시자(rank indicator, RI), 채널 품질 지시자(channel quality indicator, CQI)의 정보 ● Information on a rank indicator (RI) and a channel quality indicator (CQI)

● 선호하는 프리코딩 행렬의 정보● Information of the preferred precoding matrix

● 선호하는 빔포밍 관련 정보● Preferred beamforming related information

● 사이드링크 CSI-RS를 수신한 수신 단말의 ID 정보● ID information of the receiving terminal receiving the sidelink CSI-RS

● 사이드링크 CSI-RS를 송신한 송신 단말의 ID 정보● ID information of the transmitting terminal that transmitted the sidelink CSI-RS

● 사이드링크 CSI 피드백 정보를 송신하는 송신 단말의 ID 정보● ID information of the transmitting terminal transmitting the sidelink CSI feedback information

● 사이드링크 CSI 피드백 정보를 수신하는 수신 단말의 ID 정보● ID information of the receiving terminal receiving sidelink CSI feedback information

도 12a는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 그룹캐스팅(groupcasting) 전송의 예를 도시한다. 12A illustrates an example of groupcasting transmission in a wireless communication system according to various embodiments of the present disclosure.

도 12a를 참고하면, 단말(1220)은 복수의 단말들(1221a, 1221b, 1221c, 1221d)에게 공통의 데이터를 전송, 즉, 그룹캐스팅 방식으로 데이터를 송신한다. 단말(1220) 및 단말들(1221a, 1221b, 1221c, 1221d)은 차량과 같이 이동하는 장치일 수 있다. 그룹캐스팅을 위해 별도의 제어 정보(예: SCI(sidelink control information), 물리 제어 채널(예: PSCCH(physical sidelink control channel), 데이터 중 적어도 하나가 더 송신될 수 있다. Referring to FIG. 12A, the terminal 1220 transmits common data to a plurality of terminals 1221a, 1221b, 1221c, and 1221d, that is, transmits data in a groupcasting method. The terminal 1220 and the terminals 1221a, 1221b, 1221c, and 1221d may be devices that move like a vehicle. For groupcasting, at least one of separate control information (eg, sidelink control information (SCI)), a physical control channel (eg, physical sidelink control channel (PSCCH)), and data may be further transmitted.

도 12b는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 그룹캐스팅에 따른 HARQ 피드백 전송의 예를 도시한다. 12B illustrates an example of HARQ feedback transmission according to groupcasting in a wireless communication system according to various embodiments of the present disclosure.

도 12b를 참고하면, 그룹캐스팅에 의해 공통의 데이터를 전송 받은 단말들(1221a, 1221b, 1221c, 1221d)이 데이터 수신 성공 또는 실패를 지시하는 정보를 데이터를 전송한 단말(1220)에게 송신한다. 정보는 HARQ-ACK 피드백을 포함할 수 있다. 도 12a 및 도 12b와 같은 데이터 송신 및 피드백 동작들은 그룹캐스팅을 기반으로 수행되었다. 하지만, 다른 실시 예에 따라, 도 12a 및 도 12b와 같은 데이터 송신 및 피드백 동작들은 유니캐스트(unicast) 방식의 전송에도 적용될 수 있다.Referring to FIG. 12B, terminals 1221a, 1221b, 1221c, and 1221d that have received common data by groupcasting transmit information indicating success or failure of data reception to the terminal 1220 that has transmitted the data. The information may include HARQ-ACK feedback. Data transmission and feedback operations as shown in FIGS. 12A and 12B were performed based on groupcasting. However, according to another embodiment, data transmission and feedback operations as shown in FIGS. 12A and 12B may be applied to unicast transmission.

도 13는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 유니캐스팅(unicasting) 전송의 예를 도시한다. 13 illustrates an example of unicasting transmission in a wireless communication system according to various embodiments of the present disclosure.

도 13를 참고하면, 제1 단말(1320a)은 제2 단말(1320b)로 데이터를 전송한다. 다른 예로, 데이터의 전송 방향은 반대(예: 제2 단말(1320b)에서 제1 단말(1320a)로)가 될 수 있다. 제1 단말(1320a) 및 제2 단말(1320b)을 제외한 다른 단말들(1320c, 1320d)은 제1 단말(1320a) 및 제2 단말(1320b) 간 유니캐스트 방식으로 송수신되는 데이터를 수신할 수 없다. 제1 단말(1320a) 및 제2 단말(1320b) 간 유니캐스트를 통한 데이터의 송수신은 제1 단말(1320a) 및 제2 단말(1320b) 간 약속된 자원에서 맵핑되거나, 서로 약속된 값을 이용한 스크램블링되거나, 사전에 설정된 값을 이용하여 송신될 수 있다. 또는, 제1 단말(1320a) 및 제2 단말(1320b) 간 유니캐스트를 통한 데이터에 관련된 제어 정보는 서로 약속된 방식으로 맵핑될 수 있다. 또는, 제1 단말(1320a) 및 제2 단말(1320b) 간 유니캐스트를 통한 데이터의 송수신은 상호 간 고유의 ID를 확인하는 동작을 포함할 수 있다. 단말들은 차량과 같이 이동하는 장치일 수 있다. 유니캐스트를 위해 별도의 제어 정보, 물리 제어 채널, 데이터 중 적어도 하나가 더 송신될 수 있다.Referring to FIG. 13, a first terminal 1320a transmits data to a second terminal 1320b. As another example, the data transmission direction may be opposite (eg, from the second terminal 1320b to the first terminal 1320a). Except for the first terminal 1320a and the second terminal 1320b, other terminals 1320c and 1320d cannot receive data transmitted and received in a unicast manner between the first terminal 1320a and the second terminal 1320b. . Transmission and reception of data through unicast between the first terminal 1320a and the second terminal 1320b is mapped from the resources promised between the first terminal 1320a and the second terminal 1320b, or scrambling using mutually promised values Or, it may be transmitted using a preset value. Alternatively, control information related to data through unicast between the first terminal 1320a and the second terminal 1320b may be mapped in a manner promised to each other. Alternatively, transmission and reception of data through unicast between the first terminal 1320a and the second terminal 1320b may include an operation of checking mutually unique IDs. The terminals may be devices that move like a vehicle. For unicast, at least one of separate control information, a physical control channel, and data may be further transmitted.

도 14a는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 기지국의 스케줄링에 따른 사이드링크 데이터 전송의 예를 도시한다. 14A illustrates an example of sidelink data transmission according to scheduling of a base station in a wireless communication system according to various embodiments of the present disclosure.

도 14a는 기지국으로부터 스케줄링 정보를 수신한 단말이 사이드링크 데이터를 송신하는 방식인 모드(mode) 1을 예시한다. 본 개시는 스케줄링 정보에 기반하여 사이드링크 통신을 수행하는 방식을 모드 1이라 칭하지만, 이는 다른 명칭으로 지칭될 수 있다. 도 14a를 참고하면, 사이드링크에서 데이터를 송신하고자 하는 단말(1420a)(이하 '송신 단말'이라 칭함)은 기지국(1410)으로부터 사이드링크 통신을 위한 스케줄링 정보를 수신한다. 스케줄링 정보를 수신한 송신 단말(1420a)은 다른 단말(1420b)(이하 '수신 단말'이라 칭함)에게 사이드링크 데이터를 송신한다. 사이드링크 통신을 위한 스케줄링 정보는 DCI에 포함되며, 그 DCI는 이하 [표 19]와 같은 항목들 중 적어도 하나를 포함할 수 있다.14A illustrates mode 1, which is a method in which a terminal receiving scheduling information from a base station transmits sidelink data. In the present disclosure, a method of performing sidelink communication based on scheduling information is referred to as mode 1, but this may be referred to as a different name. Referring to FIG. 14A, a terminal 1420a (hereinafter referred to as a “transmitting terminal”) that intends to transmit data on the sidelink receives scheduling information for sidelink communication from the base station 1410. Receiving the scheduling information, the transmitting terminal 1420a transmits sidelink data to the other terminal 1420b (hereinafter referred to as'receiving terminal'). Scheduling information for sidelink communication is included in the DCI, and the DCI may include at least one of the items shown in [Table 19] below.

[표 19][Table 19]

Figure pat00061
Figure pat00061

스케줄링은 1회의 사이드링크 전송을 위해 수행될 수 있고, 또는 주기적 전송 또는 SPS(semi-persistent scheduling) 또는 구성된 그랜트(configured grant) 전송을 위해 수행될 수 있다. 스케줄링 방법은 DCI에 포함된 지시자에 의해 구분되거나 또는 DCI에 추가되는 CRC에 스크램블되는 RNTI 또는 ID 값에 의해 구분될 수 있다. 하향링크 스케줄링 또는 상향링크 스케줄링을 위한 DCI 등의 다른 DCI 포맷과 동일한 크기를 가지도록, 사이드링크 전송을 위한 DCI는 패딩 비트(예: 0 비트)를 더 포함할 수 있다.Scheduling may be performed for one sidelink transmission, or may be performed for periodic transmission or semi-persistent scheduling (SPS) or configured grant transmission. The scheduling method may be classified by an indicator included in the DCI or by an RNTI or ID value scrambled in a CRC added to the DCI. DCI for sidelink transmission may further include a padding bit (eg, 0 bit) so as to have the same size as other DCI formats such as downlink scheduling or DCI for uplink scheduling.

기지국(1410)으로부터 사이드링크 스케줄링을 위한 DCI를 수신하고, 송신 단말(1420a)은 사이드링크 스케줄링 정보를 포함하는 PSCCH를 송신한 후, 이에 해당하는 데이터인 PSSCH를 송신한다. 사이드링크 스케줄링 정보인 PSCCH는 SCI를 포함하며, SCI는 이하 [표 20]와 같은 항목들 중 적어도 하나를 포함할 수 있다.Upon receiving the DCI for sidelink scheduling from the base station 1410, the transmitting terminal 1420a transmits the PSCCH including the sidelink scheduling information, and then transmits the corresponding data, the PSSCH. The PSCCH, which is the sidelink scheduling information, includes SCI, and the SCI may include at least one of the items shown in Table 20 below.

[표 20][Table 20]

Figure pat00062
Figure pat00062

[표 20]와 같은 항목들 중 적어도 하나를 포함하는 제어 정보는 수신 단말에게 전달되기 위해, 하나의 SCI 또는 두 개의 SCI들에 포함될 수 있다. 두 개의 SCI들에 나뉘어 전송되는 방식은 2-단계(2-stage) SCI로 지칭될 수 있다.Control information including at least one of the items shown in [Table 20] may be included in one SCI or two SCIs in order to be delivered to the receiving terminal. The transmission method divided into two SCIs may be referred to as a 2-stage SCI.

도 14b는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 기지국의 스케줄링 없는 사이드링크 데이터 전송의 예를 도시한다. 도 14b는 기지국으로부터 스케줄링 정보를 수신함 없이 단말이 사이드링크 데이터를 송신하는 방식인 모드(mode) 2를 예시한다. 본 개시는 스케줄링 정보 없이 사이드링크 통신을 수행하는 방식을 모드 2라 칭하지만, 이는 다른 명칭으로 지칭될 수 있다. 사이드링크에서 데이터를 송신하고자 하는 단말(1420a)은 기지국으로부터의 스케줄링 없이, 자신이 판단하여 사이드링크 스케줄링 제어 정보 및 사이드링크 데이터를 수신 단말(1420b)에게 송신할 수 있다. 이때, 사이드링크 스케줄링 제어 정보는 모드 1 사이드링크 통신에서 사용된 SCI와 동일한 포맷의 SCI가 사용될 수 있다. 예를 들어, 스케줄링 제어 정보는 [표 6]에 나타난 항목들 중 적어도 하나를 포함할 수 있다.14B illustrates an example of sidelink data transmission without scheduling by a base station in a wireless communication system according to various embodiments of the present disclosure. 14B illustrates mode 2, which is a method in which a terminal transmits sidelink data without receiving scheduling information from a base station. In the present disclosure, a method of performing sidelink communication without scheduling information is referred to as mode 2, but this may be referred to as a different name. The terminal 1420a wishing to transmit data in the sidelink may transmit sidelink scheduling control information and sidelink data to the receiving terminal 1420b by determining itself without scheduling from the base station. In this case, as the sidelink scheduling control information, SCI having the same format as the SCI used in mode 1 sidelink communication may be used. For example, the scheduling control information may include at least one of the items shown in [Table 6].

도 15는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 사이드링크 통신을 위해 사용되는 슬롯의 채널 구조의 예를 도시한다. 도 15는 사이드링크 통산을 위한 슬롯에 맵핑된 물리 채널들을 예시한다. 도 15를 참고하면, 슬롯의 시작 전, 즉, 이전 슬롯의 후단에 프리앰블(1502)이 맵핑된다. 이후, 슬롯의 시작으로부터, PSCCH(1504), PSSCH(1506), 갭(gap)(1508), PSFCH(physical sidelink feedback channel)(1510), 갭(1512)이 맵핑된다. 15 illustrates an example of a channel structure of a slot used for sidelink communication in a wireless communication system according to various embodiments of the present disclosure. 15 illustrates physical channels mapped to slots for sidelink communication. Referring to FIG. 15, the preamble 1502 is mapped before the start of the slot, that is, to the rear end of the previous slot. Thereafter, from the start of the slot, the PSCCH 1504, PSSCH 1506, gap 1508, physical sidelink feedback channel (PSFCH) 1510, and gap 1512 are mapped.

해당 슬롯에서 신호를 송신하기 전, 송신 단말은 하나 이상의 심볼에서 프리앰블(1502)을 신호를 송신한다. 프리앰블은 수신 단말이 수신 신호의 전력을 증폭할 때 증폭의 세기를 조절하기 위한 AGC(Automatic Gain Control)를 올바르게 수행할 수 있도록 하기 위해 사용될 수 있다. 또한, 프리앰블은, 송신 단말의 이전 슬롯의 전송 여부에 따라 송신되거나 또는 송신되지 아니할 수 있다. 즉, 송신 단말이 해당 슬롯(예: 슬롯#n)의 이전 슬롯(예: 슬롯#n-1)에서 동일한 단말에게 신호를 송신하는 경우, 프리앰블(1502)의 전송이 생략될 수 있다. 프리앰블(1502)은 '동기 신호', '사이드링크 동기 신호', '사이드링크 기준 신호', '미드앰블(midamble)', '초기 신호', '웨이크-업(wake-up) 신호' 또는 이와 동등한 기술적 의미를 가지는 다른 용어로 지칭될 수 있다.Before transmitting a signal in the corresponding slot, the transmitting terminal transmits a signal of the preamble 1502 in one or more symbols. The preamble can be used to correctly perform AGC (Automatic Gain Control) for adjusting the intensity of amplification when the receiving terminal amplifies the power of the received signal. In addition, the preamble may or may not be transmitted depending on whether the transmitting terminal transmits a previous slot. That is, when the transmitting terminal transmits a signal to the same terminal in a previous slot (eg, slot #n-1) of the corresponding slot (eg, slot #n), transmission of the preamble 1502 may be omitted. The preamble 1502 is a'sync signal','sidelink sync signal','sidelink reference signal','midamble','initial signal','wake-up signal', or It may be referred to as other terms having an equivalent technical meaning.

슬롯의 초반에 송신되는 심볼들을 이용하여 제어 정보를 포함하는 PSCCH(1504)가 송신되며, PSCCH(1504)의 제어 정보가 스케줄링하는 PSSCH(1506)가 송신될 수 있다. PSSCH(1504)는 제어 정보인 SCI의 적어도 일부가 맵핑될 수 있다. 이후, GAP(1508)이 존재하고, 피드백 정보를 전송하는 물리 채널인 PSFCH(1510)이 맵핑된다. The PSCCH 1504 including control information is transmitted using symbols transmitted at the beginning of the slot, and the PSSCH 1506 scheduled by the control information of the PSCCH 1504 may be transmitted. At least a part of SCI, which is control information, may be mapped to the PSSCH 1504. Thereafter, the GAP 1508 exists, and the PSFCH 1510, which is a physical channel for transmitting feedback information, is mapped.

단말은 PSFCH를 전송할 수 있는 슬롯의 위치를 미리 설정 받을 수 있다. 미리 설정 받는 것은, 단말이 만들어지는 과정에서 미리 정해지거나, 또는 사이드링크 관련된 시스템에 접속하였을 때 전달되거나, 또는 기지국에 접속했을 때 기지국으로부터 전달되거나, 또는 다른 단말로부터 전달 받을 수 있을 것이다.The terminal may receive a position of a slot capable of transmitting the PSFCH in advance. The preset reception may be determined in advance during the process of creating the terminal, or may be transmitted when accessing a sidelink-related system, or transmitted from the base station when accessing the base station, or may be transmitted from another terminal.

도 15의 경우, PSFCH(1510)는 슬롯의 마지막 부분에 위치하는 것으로 예시된다. PSSCH(1504) 및 PSFCH(1510) 사이에 일정 시간의 비어있는 시간인 갭(1506)을 확보함으로써, PSSCH(1504)를 송신 또는 수신한 단말이 PSFCH(1510)를 수신 또는 송신하기 위한 준비(예: 송수신 전환)를 할 수 있다. PSFCH(1510) 이후, 일정 시간 비어 있는 구간인 갭(1512)이 존재한다.In the case of FIG. 15, the PSFCH 1510 is illustrated as being located at the last part of the slot. By securing a gap 1506, which is an empty time for a predetermined period of time between the PSSCH 1504 and the PSFCH 1510, the terminal transmitting or receiving the PSSCH 1504 prepares for receiving or transmitting the PSFCH 1510 (e.g. : Sending/receiving conversion) can be performed. After the PSFCH 1510, a gap 1512, which is an empty period for a predetermined time, exists.

도 16a는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 피드백 채널의 분포에 대한 제1 예를 도시한다. 16A illustrates a first example of a distribution of a feedback channel in a wireless communication system according to various embodiments of the present disclosure.

도 16a은 매 슬롯에서 PSFCH를 송수신할 수 있는 자원이 할당된 경우를 예시한다. 도 16a서, 화살표는 PSSCH에 대응하는 HARQ-ACK 피드백 정보가 전송되는 PSFCH의 슬롯을 가리킨다. 도 16a를 참고하면, 슬롯#n에서 송신된 PSSCH(1612)에 대한 HARQ-ACK 피드백 정보는 슬롯#n+1의 PSFCH(1614)에서 송신된다. PSFCH가 매 슬롯에 할당되므로, PSFCH는 PSSCH를 포함하는 슬롯과 1:1 대응될 수 있다. 예를 들어, 'periodicity_PSFCH_resource'와 같은 파라미터에 의해 PSFCH를 송수신할 수 있는 자원의 주기가 구성되면, 도 16a의 경우, periodicity_PSFCH_resource는 1 슬롯을 지시한다. 또는, 주기는 msec 단위로 설정되고, 부반송파 간격에 따라 매 슬롯 할당되는 값으로 주기가 지시될 수 있다.16A illustrates a case in which a resource capable of transmitting and receiving PSFCH is allocated in every slot. In FIG. 16A, an arrow indicates a slot of a PSFCH through which HARQ-ACK feedback information corresponding to a PSSCH is transmitted. Referring to FIG. 16A, HARQ-ACK feedback information for the PSSCH 1612 transmitted in slot #n is transmitted in the PSFCH 1614 of slot #n+1. Since the PSFCH is allocated to every slot, the PSFCH may correspond 1:1 to the slot including the PSSCH. For example, when a period of a resource capable of transmitting and receiving PSFCH is configured by a parameter such as'periodicity_PSFCH_resource', in the case of FIG. 16A, periodicity_PSFCH_resource indicates 1 slot. Alternatively, the period may be set in units of msec, and the period may be indicated as a value allocated for every slot according to the subcarrier interval.

도 16b는 본 개시의 다양한 실시 예들에 따른 무선 통신 시스템에서 피드백 채널의 분포에 대한 제2 예를 도시한다. 16B illustrates a second example of a distribution of a feedback channel in a wireless communication system according to various embodiments of the present disclosure.

도 16b는 4개 슬롯들마다 PSFCH를 송수신할 수 있도록 자원이 할당되는 경우를 예시한다. 도 16b에서, 화살표는 PSSCH에 대응하는 HARQ-ACK 피드백 정보가 전송되는 PSFCH의 슬롯을 가리킨다. 도 16b를 참고하면, 4개의 슬롯들 중 마지막 슬롯만 PSFCH를 포함된다. 이와 유사하게, 그 다음 4개의 슬롯 중 마지막 슬롯만 PSFCH를 포함한다. 이에 따라, 슬롯#n의 PSSCH(1622a), 슬롯#n+1의 PSSCH(1622b), 슬롯#n+2의 PSSCH(1622c), 슬롯#n+3의 PSSCH(1622d)에 대한 HARQ-ACK 피드백 정보는 슬롯#+4의 PSFCH(1624)에서 송신된다. 여기서, 슬롯의 인덱스는 리소스 풀에 포함되는 슬롯들에 대한 인덱스일 수 있다. 즉, 4개의 슬롯들은 실제 물리적으로는 연속된 슬롯은 아니지만, 단말들 간 사이드링크 통신을 위해 사용되는 리소스 풀(또는 슬롯 풀)에 포함되는 슬롯들 중에서 연속적으로 나열된 슬롯들일 수 있다. 4번째 슬롯에서 전송된 PSSCH의 HARQ-ACK 피드백 정보가 같은 슬롯의 PSFCH에서 전송되지 못하는 것은 단말이 해당 슬롯에서 전송된 PSSCH를 디코딩을 끝내고 같은 슬롯에서 PSFCH를 전송할 만큼 처리 시간이 짧지 아니하기 때문일 수 있다.16B illustrates a case in which resources are allocated so that PSFCH can be transmitted/received in every 4 slots. In FIG. 16B, an arrow indicates a slot of a PSFCH through which HARQ-ACK feedback information corresponding to a PSSCH is transmitted. Referring to FIG. 16B, only the last slot among four slots includes a PSFCH. Similarly, only the last one of the next four slots contains the PSFCH. Accordingly, HARQ-ACK feedback for the PSSCH 1622a of slot #n, PSSCH 1622b of slot #n+1, PSSCH 1622c of slot #n+2, and PSSCH 1622d of slot #n+3 The information is transmitted on the PSFCH 1624 in slot #+4. Here, the index of the slot may be an index of slots included in the resource pool. That is, the four slots are not actually consecutive slots, but may be slots sequentially listed among slots included in a resource pool (or slot pool) used for sidelink communication between terminals. The reason that the HARQ-ACK feedback information of the PSSCH transmitted in the 4th slot cannot be transmitted in the PSFCH of the same slot may be because the processing time is not short enough to transmit the PSFCH in the same slot after the terminal finishes decoding the PSSCH transmitted in the corresponding slot. have.

단말이 PSFCH를 송신 또는 수신할 때 PSFCH에 포함된 HARQ-ACK 피드백 비트의 개수를 알아야 송신 또는 수신이 올바르게 수행될 수 있을 것이다. PSFCH에 포함된 HARQ-ACK 피드백 비트의 개수 및 어느 PSSCH의 HARQ-ACK 비트들을 포함할지는 이하 [표 21]에 나타난 항목들 중 적어도 하나 또는 둘 이상의 조합에 기반하여 결정될 수 있다.When the UE transmits or receives the PSFCH, it must know the number of HARQ-ACK feedback bits included in the PSFCH so that the transmission or reception can be performed correctly. The number of HARQ-ACK feedback bits included in the PSFCH and the number of HARQ-ACK bits of which PSSCH are included may be determined based on at least one or a combination of two or more of the items shown in Table 21 below.

[표 21][Table 21]

Figure pat00063
Figure pat00063

슬롯#n에서 PSSCH를 수신한 단말은, 슬롯#n+x에 PSFCH를 전송할 수 있는 자원이 설정되거나 주어지면, K보다 크거나 같은 정수 중에 제일 작은 x를 이용하여, PSSCH의 HARQ-ACK 피드백의 정보를 슬롯 n+x의 PSFCH를 이용하여 전송한다. K는 송신 단말로부터 미리 설정된 값이거나, 또는 해당 PSSCH나 PSFCH가 전송되는 리소스 풀에서 설정된 값일 수 있다. K의 설정을 위해 각 단말이 자신의 능력(capability) 정보를 송신 단말과 미리 교환할 수 있다. 예를 들어, K는 부반송파 간격, 단말 능력, 송신 단말과의 설정 값, 또는 리소스 풀의 설정 중 적어도 하나에 따라 결정될 수 있다.The terminal receiving the PSSCH in slot #n, when the resource for transmitting the PSFCH in slot #n+x is set or given, using the smallest x among integers greater than or equal to K, the HARQ-ACK feedback of the PSSCH Information is transmitted using the PSFCH of slot n+x. K may be a value set in advance from the transmitting terminal, or may be a value set in a resource pool through which the corresponding PSSCH or PSFCH is transmitted. In order to set K, each terminal can exchange its own capability information with the transmitting terminal in advance. For example, K may be determined according to at least one of a subcarrier interval, a terminal capability, a setting value with a transmitting terminal, or a resource pool setting.

이하 본 개시는, 사이드링크 제어정보를 송수신 함에 있어서 단말이 디코딩하는 방법 및 비트필드를 해석하기 위한 실시예들을 설명한다. Hereinafter, the present disclosure describes a method for decoding by a terminal in transmitting and receiving sidelink control information and embodiments for interpreting a bit field.

[제1 실시예][First embodiment]

제1 실시에에서는 사이드링크 제어정보 송수신 방법에서 송신 단말과 수신 단말의 제어정보 송수신 방법 및 장치를 제공한다. The first embodiment provides a method and apparatus for transmitting and receiving control information between a transmitting terminal and a receiving terminal in a method of transmitting and receiving sidelink control information.

도 17은 송신 단말이 제1 제어정보와 제2 제어정보의 비트필드의 값들을 결정하는 방법을 도시한 순서도이다. 송신 단말은 상기에서 설명한 채널 점유, 채널 예약 등의 방법을 통해 PSSCH를 전송할 자원을 결정한다(17-01). 이를 기반으로 SCI에 포함될 스케줄링 파라미터들을 결정한다. 스케줄링 파라미터는 PSSCH의 주파수 및 시간 자원, MCS, RV, NDI, H17RQ process ID 등을 포함할 수 있다. 송신 단말은 결정한 스케줄링 파라미터에 기반하여 제2 제어정보의 비트필드의 값들을 결정하고, 제2 제어정보를 어디에 매핑할 것인지 전송자원을 결정한다(17-03). 또한, 송신 단말은 상기 PSSCH의 스케줄링 파라미터와 제2 제어정보의 비트필드 값 및 제2 제어정보가 매핑된 전송자원에 기반하여, 제1 제어정보의 비트필드 값을 결정한다(17-05). 이는 제1 제어정보에 제2 제어정보 디코딩을 위한 정보가 포함될 수 있기 때문이다. 정된 정보들을 기반으로 송신 단말은 제1제어정보, 제2제어정보 및 PSSCH를 전송한다. 17 is a flowchart illustrating a method for a transmitting terminal to determine bitfield values of first control information and second control information. The transmitting terminal determines a resource to transmit the PSSCH through a method such as channel occupancy and channel reservation described above (17-01). Based on this, scheduling parameters to be included in the SCI are determined. The scheduling parameters may include frequency and time resources of the PSSCH, MCS, RV, NDI, H17RQ process ID, and the like. The transmitting terminal determines the values of the bit field of the second control information based on the determined scheduling parameter, and determines the transmission resource to which the second control information is to be mapped (17-03). In addition, the transmitting terminal determines the bit field value of the first control information based on the scheduling parameter of the PSSCH, the bit field value of the second control information, and the transmission resource to which the second control information is mapped (17-05). This is because information for decoding the second control information may be included in the first control information. Based on the determined information, the transmitting terminal transmits the first control information, the second control information, and the PSSCH.

도 18은 수신 단말이 제1 제어정보와 제2 제어정보를 순차적으로 디코딩하고, 이를 기반으로 PSSCH를 디코딩하는 방법을 도시한 순서도이다. 18 is a flowchart illustrating a method of sequentially decoding first control information and second control information by a receiving terminal and decoding a PSSCH based on the decoding of the first control information and the second control information.

수신 단말은 미리 설정된 정보 등을 기반으로 제1 제어정보를 디코딩 시도한다(18-01). 수신 단말은 디코딩 성공한 제1 제어정보의 비트필드 값에 따라 제2 제어정보를 디코딩할 것인지에 대한 여부를 결정하고, 제2 제어정보의 디코딩이 필요하다면 어느 자원에 제2 제어정보가 매핑되어 있는지 결정하고, 디코딩을 수행한다(18-03). 여기에서 제2 제어정보를 디코딩할 것인지를 결정하는 이유는, 어떠한 전송 타입 또는 전송 모드에서는 제1 제어정보의 디코딩만으로도 PSSCH의 디코딩이 가능할 수도 있기 때문이다. 그 후, 수신 단말은 디코딩된 제1 제어정보(SCI 1)와 제2 제어정보(SCI 2)의 비트필드 값에 기반하여 PSSCH 전송 자원 및 다른 스케줄링 정보를 파악한다(18-05). 수신 단말은 파악된 스케줄링 정보를 활용하여 PSSCH 디코딩을 수행하고 필요한 후속 동작을 수행한다(18-07).The receiving terminal attempts to decode the first control information based on preset information and the like (18-01). The receiving terminal determines whether to decode the second control information according to the bitfield value of the first control information that has been successfully decoded, and determines which resource the second control information is mapped to if decoding of the second control information is required. And decoding (18-03). Herein, the reason for determining whether to decode the second control information is because in any transmission type or transmission mode, decoding of the PSSCH may be possible only by decoding the first control information. Thereafter, the receiving terminal identifies PSSCH transmission resources and other scheduling information based on the bitfield values of the decoded first control information (SCI 1) and second control information (SCI 2) (18-05). The receiving terminal performs PSSCH decoding using the identified scheduling information and performs necessary subsequent operations (18-07).

위에서 설명한 바와 같이 단말이 제1 제어정보를 성공적으로 디코딩한 후에, 반드시 제2제어정보를 디코딩 해야하는 것은 아닐 수 있다. 제어정보를 성공적으로 디코딩하였다는 것은 CRC 체킹에 성공하였다는 것일 수 있다. 단말은 아래에서 제공하는 방법들을 이용하여 제2 제어정보를 디코딩 시도할지 여부를 결정할 수 있다. As described above, after the terminal successfully decodes the first control information, it may not necessarily be necessary to decode the second control information. Successful decoding of the control information may indicate success of CRC checking. The terminal may determine whether to attempt to decode the second control information using methods provided below.

- 방법1: 제1 제어정보에서는 제2 제어정보의 크기 등의 여부를 지시하는 정보가 포함되어 있을 수 있다. 예를 들어, 직접적으로 크기를 지시하는 지시자, 또는 크기의 값을 전달하는 인덱스를 지시하는 지시자, 또는 제1 제어정보에 포함된 정보들로부터 제2 제어정보의 크기가 계산되어질 수 있다. 이 때, 만약 제2 제어정보의 크기가 X 비트 이하 또는 미만이라면 단말은 제2 제어정보 디코딩을 수행하지 않을 수 있다. 단말은 제2 제어정보를 디코딩 하지 않고, PSSCH 또는 데이터를 디코딩 수행할 수 있으며, 디코딩에 필요한 다른 제어정보는 제1 제어정보의 예약된 비트필드 (reserved 18its)에서 전달받거나, 또는 미리 설정된 값을 이용할 수 있다. 여기서, X는 리소스 풀(resource pool)마다 설정되는 값이거나 미리 고정된 값일 수 있으며, 예를 들어, 10비트로 결정되거나 설정될 수 있을 것이다. -Method 1: In the first control information, information indicating whether the size of the second control information is included may be included. For example, the size of the second control information may be calculated from an indicator that directly indicates the size, an index that transfers the value of the size, or information included in the first control information. In this case, if the size of the second control information is less than or equal to X bits, the UE may not perform decoding of the second control information. The terminal can decode the PSSCH or data without decoding the second control information, and other control information necessary for decoding is transmitted from the reserved bitfield (reserved 18its) of the first control information or a preset value. Can be used. Here, X may be a value set for each resource pool or a preset fixed value, and may be determined or set as 10 bits, for example.

- 방법2: 제1 제어정보에는 1비트 지시자가 포함될 수 있으며, 여기서,1비트는 제2 제어정보 디코딩 여부를 지시하는 정보일 수 있다. 이때, 비트값이 0이면 단말은 제2 제어정보 디코딩을 수행하지 않고, 비트값이 1이면 단말은 주어진 정보를 이용하여 제2 제어정보 디코딩을 수행한다. 단말이 제2 제어정보를 디코딩 하지 않았을 경우에는 방법1에서 설명한 바와 같이 데이터를 디코딩할 수 있을 수 있다. -Method 2: The first control information may include a 1-bit indicator, where 1 bit may be information indicating whether to decode the second control information. In this case, if the bit value is 0, the UE does not perform second control information decoding, and if the bit value is 1, the UE performs second control information decoding using the given information. If the terminal does not decode the second control information, it may be able to decode data as described in Method 1.

- 방법3: 단말은 리소스 풀 설정에 따라 단말이 제2 제어정보를 디코딩할 것인지 여부에 대한 정보를 미리 전달 받을 수 있다. 설정된 또는 미리 설정된 정보에 따라 단말은 해당 리소스 풀에서 제1 제어정보만 디코딩하고 해당 제어정보에 따라 데이터 디코딩을 수행할지, 또는 제1 제어정보를 디코딩하고 이에 따라 제2 제어정보를 디코딩한 후, 제1 및 제2 제어정보들에 따라 데이터 디코딩을 수행할지를 결정할 수 있다. -Method 3: The terminal may receive information on whether or not the terminal decodes the second control information in advance according to the resource pool setting. According to the set or preset information, the terminal decodes only the first control information from the corresponding resource pool and performs data decoding according to the control information, or decodes the first control information and decodes the second control information accordingly, Whether to perform data decoding may be determined according to the first and second control information.

- 방법4: 제1 제어정보는, 제1 제어정보와 관련된 제2 제어정보가 같은 슬롯에서 존재하는지에 대한 여부를 지시할 수 있다. 또는 제1 제어정보는, 제1 제어정보와 관련된 제2 제어정보가 같은 슬롯에서 존재할 때, 제2 제어정보의 크기에 대한 정보 또는 제2 제어정보가 매핑된 자원영역 크기에 대한 정보를 지시할 수 있다. 제2 제어정보의 크기 또는 제2 제어정보가 매핑된 자원영역 크기는 미리 설정된(configured or pre-configured) 가능한 크기의 집합 중 하나를 제1제어정보에서 가리키는 것일 수 있다. -Method 4: The first control information may indicate whether the second control information related to the first control information exists in the same slot. Alternatively, the first control information may indicate information on the size of the second control information or the size of the resource region to which the second control information is mapped, when the second control information related to the first control information exists in the same slot. I can. The size of the second control information or the size of the resource region to which the second control information is mapped may indicate in the first control information one of a set of configured or pre-configured sizes.

[제2 실시예][Second Example]

제2 실시예에서는 제어정보에서 자원할당 정보를 매핑하는 비트필드의 크기를 계산하고 비트필드를 해석하는 방법 및 장치를 제공한다. The second embodiment provides a method and apparatus for calculating the size of a bitfield for mapping resource allocation information in control information and analyzing the bitfield.

도 19는 주어진 리소스 풀에서 서브채널 단위로 주파수영역이 나뉘어지고, 서브채널 단위로 데이터 전송을 위한 자원 할당이 된 일례를 도시한 도면이다. FIG. 19 is a diagram illustrating an example in which a frequency domain is divided in units of subchannels in a given resource pool, and resources for data transmission are allocated in units of subchannels.

리소스풀의 서브채널 수를 Nsubchannel이라고 가정한다. 하나의 서브채널은 하나 또는 그 이상의 PRB로 구성되어 있을 수 있으며, 이는 리소스풀에서 설정 혹은 미리 설정되는 값일 수 있고, 또는 특정 파라미터에 의해 계산되어지는 값일 수 있다. 여기에서 데이터는 PSSCH에서 전송되는 것일 수 있고, 데이터 전송을 위한 자원할당이란 PSSCH 매핑에 사용되는 자원 영역을 가리키는 것일 수 있다. Assume that the number of subchannels in the resource pool is N subchannel. One sub-channel may be composed of one or more PRBs, which may be a value set in a resource pool or preset, or may be a value calculated by a specific parameter. Here, data may be transmitted in the PSSCH, and resource allocation for data transmission may indicate a resource region used for PSSCH mapping.

만약 초기전송이 슬롯 n1에서 수행되고, 초기전송에 대한 재전송이 슬롯 n2에서 수행될 때, 슬롯 n1에서 전송되는 제어정보에는 초기전송 및 재전송 1번에 대한 자원할당 정보가 포함되어 있을 수 있다. 이는 슬롯 n2에 대한 시간 영역 자원 정보일 수 있고, 또는 슬롯 n1 및 슬롯 n2의 주파수 영역 정보일 수 있다. 만약, 초기전송과 재전송에 사용되는 주파수 영역에서의 서브채널 수가 동일하다고 가정하면, 해당 슬롯에서의 PSSCH가 매핑시작되는 첫 서브채널의 정보가 동일 슬롯에서 전송되는 해당 제어정보의 매핑 위치로부터 결정되는 경우에는, 초기전송에서 전송되는 제어정보에는 PSSCH 매핑에 사용되는 서브채널의 수와 재전송을 위한 PSSCH가 매핑되는 첫 서브채널의 정보가 포함될 필요가 있다. 이 경우에는, 초기전송 및 재전송의 PSSCH의 주파수영역 자원 할당 정보를 전달하기 위해 제어정보에 하기와 같은 크기의 비트필드가 사용될 수 있다. If initial transmission is performed in slot n 1 and retransmission for initial transmission is performed in slot n 2 , the control information transmitted in slot n 1 may include resource allocation information for initial transmission and retransmission 1 have. This may be time domain resource information for slot n 2 or frequency domain information of slot n 1 and slot n 2. If, assuming that the number of subchannels in the frequency domain used for initial transmission and retransmission is the same, information on the first subchannel in which the PSSCH in the corresponding slot is mapped is determined from the mapping position of the corresponding control information transmitted in the same slot. In this case, the control information transmitted in the initial transmission needs to include the number of subchannels used for PSSCH mapping and information on the first subchannel to which the PSSCH for retransmission is mapped. In this case, a bitfield having the following size may be used in the control information in order to convey the frequency domain resource allocation information of the PSSCH for initial transmission and retransmission.

Figure pat00064
Figure pat00064

이러한 크기의 비트필드는 PSSCH 매핑되는 서브채널의 수와 재전송 PSSCH의 시작 서브채널 위치를 가리키기 위한 것일 수 있으며,

Figure pat00065
는 PSSCH 매핑되는 서브채널의 수와 재전송 PSSCH의 시작 서브채널 위치가 가능한 조합의 경우의 수를 나타내는 것일 수 있다. 베이스를 2로 하는 log를 사용하는 것은 경우의 수의 가능한 경우를 지시하기 위한 비트 수를 계산하기 위한 것일 수 있다.
Figure pat00066
Figure pat00067
보다 큰 정수 중 제일 작은 정수를 가리킬 수 있으며, 이는 필요한 비트필드의 크기를 정수로 나타내기 위한 것일 수 있다. The bitfield of this size may be for indicating the number of subchannels to which the PSSCH is mapped and the position of the start subchannel of the retransmission PSSCH,
Figure pat00065
May denote the number of possible combinations of the number of subchannels to which the PSSCH is mapped and the position of the start subchannel of the retransmission PSSCH. Using a log with a base of 2 may be for calculating the number of bits for indicating possible cases of the number of cases.
Figure pat00066
Is
Figure pat00067
It may refer to the smallest integer among larger integers, and this may be for indicating the size of a required bitfield as an integer.

만약 도 19와 같이 초기전송 및 3번의 재전송에 대한 PSSCH가 매핑되는 주파수 자원 정보를 지시하기 위해서는 아래와 같은 방법으로 주파수 자원 할당을 위한 비트필드의 크기를 계산할 수 있을 것이다. If, as shown in FIG. 19, in order to indicate the frequency resource information to which the PSSCH is mapped for the initial transmission and the third retransmission, the size of the bit field for frequency resource allocation may be calculated as follows.

- 방법1: 초기전송 및 재전송 3번의 PSSCH의 주파수영역 자원 할당 정보를 전달하기 위해 제어정보에 하기와 같은 크기의 비트필드가 사용될 수 있다.-Method 1: In order to transmit the frequency domain resource allocation information of the PSSCH for initial transmission and retransmission 3, a bitfield of the following size may be used for control information.

Figure pat00068
Figure pat00068

일례로, 도 19에서 슬롯 n3에서와 슬롯 n4에서 전송되는 PSSCH의 시작 서브채널 위치의 경우의 수를

Figure pat00069
로 나타낼 수 있기 때문에, 방법 1과 같이 비트필드의 크기를 결정할 수 있다. As an example, in FIG. 19, the number of cases of the start subchannel positions of the PSSCH transmitted in slot n 3 and slot n 4
Figure pat00069
Since it can be expressed as, the size of the bitfield can be determined as in Method 1.

- 방법2: 초기전송 및 재전송 3번의 PSSCH의 주파수영역 자원 할당 정보를 전달하기 위해 제어정보에 하기와 같은 크기의 비트필드가 사용될 수 있다. -Method 2: In order to convey the frequency domain resource allocation information of the PSSCH for initial transmission and retransmission 3, a bitfield of the following size may be used for control information.

Figure pat00070
Figure pat00070

일례로, 도 19에서 슬롯 n3에서와 슬롯 n4에서 전송되는 PSSCH의 시작 서브채널 위치가 각각

Figure pat00071
가지인 경우가 가능할 수 있으므로, 이 경우, 방법 2와 같이 비트필드의 크기를 결정할 수 있다. 방법 2는 슬롯 n3에서와 슬롯 n4에서 전송되는 PSSCH의 시작 서브채널 위치를 독립적인 별도의 비트들로 정보전달 하는 방법일 수 있다. For example, in FIG. 19, the starting subchannel positions of the PSSCH transmitted in slot n 3 and slot n 4 are respectively
Figure pat00071
Since there may be branches, in this case, the size of the bitfield can be determined as in Method 2. Method 2 may be a method of transmitting information on a starting subchannel position of a PSSCH transmitted in slot n 3 and in slot n 4 as independent and separate bits.

- 방법3: 초기전송 및 재전송 3번의 PSSCH의 주파수영역 자원 할당 정보를 전달하기 위해 제어정보에 하기와 같은 크기의 비트필드가 사용될 수 있다.-Method 3: In order to convey the frequency domain resource allocation information of the PSSCH for initial transmission and retransmission 3, a bitfield of the following size may be used for control information.

Figure pat00072
Figure pat00072

일례로, 도 19에서 슬롯 n3에서와 슬롯 n4에서 전송되는 PSSCH의 시작 서브채널 위치가 각각

Figure pat00073
가지의 경우가 가능할 수 있으므로, 이 경우, 방법 3과 같이 비트필드의 크기를 결정할 수 있다. 방법 3은 슬롯 n3에서와 슬롯 n4에서 전송되는 PSSCH의 시작 서브채널 위치를 여러 비트들로 함께 전달 하는 방법일 수 있다. For example, in FIG. 19, the starting subchannel positions of the PSSCH transmitted in slot n 3 and slot n 4 are respectively
Figure pat00073
Since branch cases may be possible, in this case, the size of the bitfield can be determined as in Method 3. Method 3 may be a method of transmitting the starting subchannel position of the PSSCH transmitted in slot n 3 and slot n 4 together in several bits.

본 개시의 청구항 또는 명세서에 기재된 실시 예들에 따른 방법들은 하드웨어, 소프트웨어, 또는 하드웨어와 소프트웨어의 조합의 형태로 구현될(implemented) 수 있다. The methods according to the embodiments described in the claims or the specification of the present disclosure may be implemented in the form of hardware, software, or a combination of hardware and software.

소프트웨어로 구현하는 경우, 하나 이상의 프로그램(소프트웨어 모듈)을 저장하는 컴퓨터 판독 가능 저장 매체가 제공될 수 있다. 컴퓨터 판독 가능 저장 매체에 저장되는 하나 이상의 프로그램은, 전자 장치(device) 내의 하나 이상의 프로세서에 의해 실행 가능하도록 구성된다(configured for execution). 하나 이상의 프로그램은, 전자 장치로 하여금 본 개시의 청구항 또는 명세서에 기재된 실시 예들에 따른 방법들을 실행하게 하는 명령어(instructions)를 포함한다. When implemented in software, a computer-readable storage medium storing one or more programs (software modules) may be provided. One or more programs stored in a computer-readable storage medium are configured to be executable by one or more processors in an electronic device (device). The one or more programs include instructions for causing the electronic device to execute methods according to embodiments described in the claims or specification of the present disclosure.

이러한 프로그램(소프트웨어 모듈, 소프트웨어)은 랜덤 액세스 메모리 (random access memory), 플래시(flash) 메모리를 포함하는 불휘발성(non-volatile) 메모리, 롬(read only memory, ROM), 전기적 삭제가능 프로그램가능 롬(electrically erasable programmable read only memory, EEPROM), 자기 디스크 저장 장치(magnetic disc storage device), 컴팩트 디스크 롬(compact disc-ROM, CD-ROM), 디지털 다목적 디스크(digital versatile discs, DVDs) 또는 다른 형태의 광학 저장 장치, 마그네틱 카세트(magnetic cassette)에 저장될 수 있다. 또는, 이들의 일부 또는 전부의 조합으로 구성된 메모리에 저장될 수 있다. 또한, 각각의 구성 메모리는 다수 개 포함될 수도 있다. These programs (software modules, software) include random access memory, non-volatile memory including flash memory, read only memory (ROM), and electrically erasable programmable ROM. (electrically erasable programmable read only memory, EEPROM), magnetic disc storage device, compact disc-ROM (CD-ROM), digital versatile discs (DVDs) or other forms of It may be stored in an optical storage device or a magnetic cassette. Alternatively, it may be stored in a memory composed of a combination of some or all of them. In addition, a plurality of configuration memories may be included.

또한, 프로그램은 인터넷(Internet), 인트라넷(Intranet), LAN(local area network), WAN(wide area network), 또는 SAN(storage area network)과 같은 통신 네트워크, 또는 이들의 조합으로 구성된 통신 네트워크를 통하여 접근(access)할 수 있는 부착 가능한(attachable) 저장 장치(storage device)에 저장될 수 있다. 이러한 저장 장치는 외부 포트를 통하여 본 개시의 실시 예를 수행하는 장치에 접속할 수 있다. 또한, 통신 네트워크상의 별도의 저장장치가 본 개시의 실시 예를 수행하는 장치에 접속할 수도 있다.In addition, the program is a communication network such as the Internet (Internet), Intranet (Intranet), LAN (local area network), WAN (wide area network), or SAN (storage area network), or a communication network composed of a combination thereof. It may be stored in an accessible storage device. Such a storage device may access a device performing an embodiment of the present disclosure through an external port. In addition, a separate storage device on the communication network may access a device performing an embodiment of the present disclosure.

상술한 본 개시의 구체적인 실시 예들에서, 개시에 포함되는 구성 요소는 제시된 구체적인 실시 예에 따라 단수 또는 복수로 표현되었다. 그러나, 단수 또는 복수의 표현은 설명의 편의를 위해 제시한 상황에 적합하게 선택된 것으로서, 본 개시가 단수 또는 복수의 구성 요소에 제한되는 것은 아니며, 복수로 표현된 구성 요소라 하더라도 단수로 구성되거나, 단수로 표현된 구성 요소라 하더라도 복수로 구성될 수 있다.In the above-described specific embodiments of the present disclosure, components included in the disclosure are expressed in the singular or plural according to the presented specific embodiments. However, the singular or plural expression is selected appropriately for the situation presented for convenience of description, and the present disclosure is not limited to the singular or plural constituent elements, and even constituent elements expressed in plural are composed of the singular or in the singular. Even the expressed constituent elements may be composed of pluralities.

한편 본 개시의 상세한 설명에서는 구체적인 실시 예에 관해 설명하였으나, 본 개시의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 그러므로 본 개시의 범위는 설명된 실시 예에 국한되어 정해져서는 아니 되며 후술하는 특허청구의 범위뿐만 아니라 이 특허청구의 범위와 균등한 것들에 의해 정해져야 한다.Meanwhile, although specific embodiments have been described in the detailed description of the present disclosure, various modifications may be made without departing from the scope of the present disclosure. Therefore, the scope of the present disclosure is limited to the described embodiments and should not be defined, and should be determined by the scope of the claims and equivalents as well as the scope of the claims to be described later.

Claims (1)

이동통신 시스템의 수신 단말에서 PSSCH를 디코딩하는 방법에 있어서,
제1 제어정보를 디코딩 하는 단계;
상기 제1 제어정보의 디코딩 결과에 따라, 제2 제어정보의 디코딩 여부를 결정하는 단계;
상기 제1 제어정보의 디코딩 결과와 상기 제2 제어정보의 디코딩 결과에 기초하여, PSSCH 전송 자원을 확인하는 단계; 및
상기 PSSCH 전송 자원을 기초로, 상기 PSSCH를 디코딩하는 단계를 포함하는, 방법.
In a method for decoding a PSSCH in a receiving terminal of a mobile communication system,
Decoding the first control information;
Determining whether to decode second control information according to a result of decoding the first control information;
Checking a PSSCH transmission resource based on a decoding result of the first control information and a decoding result of the second control information; And
And decoding the PSSCH based on the PSSCH transmission resource.
KR1020190124155A 2019-10-07 2019-10-07 Method and apparatus for transmission and reception of control information in wirelss communication system KR20210041429A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020190124155A KR20210041429A (en) 2019-10-07 2019-10-07 Method and apparatus for transmission and reception of control information in wirelss communication system
PCT/KR2020/013568 WO2021071199A1 (en) 2019-10-07 2020-10-06 Method and apparatus for transmitting and receiving control information in wireless communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190124155A KR20210041429A (en) 2019-10-07 2019-10-07 Method and apparatus for transmission and reception of control information in wirelss communication system

Publications (1)

Publication Number Publication Date
KR20210041429A true KR20210041429A (en) 2021-04-15

Family

ID=75437631

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190124155A KR20210041429A (en) 2019-10-07 2019-10-07 Method and apparatus for transmission and reception of control information in wirelss communication system

Country Status (2)

Country Link
KR (1) KR20210041429A (en)
WO (1) WO2021071199A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160345312A1 (en) * 2014-02-11 2016-11-24 Lg Electronics Inc. Method and apparatus for transmitting and receiving signals in wireless communication system
US9930679B2 (en) * 2014-02-22 2018-03-27 Lg Electronics Inc. Method for reducing interference in wireless communication system supporting device to-device communication and apparatus for the same
US10536958B2 (en) * 2015-09-15 2020-01-14 Lg Electronics Inc. Resource selection method for V2X operation of terminal in wireless communication system, and terminal using method
WO2018004323A1 (en) * 2016-07-01 2018-01-04 엘지전자(주) Method for transmitting and receiving data in wireless communication system and apparatus therefor

Also Published As

Publication number Publication date
WO2021071199A1 (en) 2021-04-15

Similar Documents

Publication Publication Date Title
US11659544B2 (en) Method and apparatus for transmitting and receiving sidelink signal in wireless cellular communication system
US11563526B2 (en) Apparatus and method for performing retransmission in wireless communication system
US11652581B2 (en) Apparatus and method for managing soft buffer in wireless communication system
KR20240049531A (en) Method and apparatus for data transmission in wirelss cellular communication system
US20230057836A1 (en) Apparatus and method for transmitting or receiving signal in wireless communication system
US20230089655A1 (en) Method and device for transmitting and receiving data by terminal in communication system
US11595848B2 (en) Method and apparatus for transmission and reception of data in communication system
US20210321414A1 (en) Data communication method and device using multiple mcs in wireless communication system
KR20210039870A (en) Method and apparatus for transmission and reception with repetition in wireless communication system
US11330536B2 (en) Apparatus and method for controlling gain of received signal in wireless communication system
KR20190127193A (en) Synchronization method and apparatus for groupcast in wireless communication system
US20230058037A1 (en) Method and device for transmitting and receiving control information and data in wireless communication system
KR20200036702A (en) A METHOD AND APPARATUS FOR Transmission and reception of feedback for groupcast IN A WIRELSS CELLULAR COMMUNICATION SYSTEM
KR20200036725A (en) A METHOD AND APPARATUS FOR Transmission and reception of feedback for groupcast IN A WIRELSS CELLULAR COMMUNICATION SYSTEM
KR20210049612A (en) Method and apparatus for transmitting and receiving data in a wireless communication system
US11902214B2 (en) Apparatus and method for determining maximum transport block size in communication system
KR20210010268A (en) Apparatus and method for transmission and reception of data and control signals in wireless communication systems
KR20210017222A (en) Apparatus and method for sub slot configuration and uplink information transmisison in wirelss communication system
KR20200107725A (en) Apparatus and method for transmitting feedback information in wireless communication system
KR20210004104A (en) Method and apparatus for code block group based retransmission in wireless communication system
KR20200036726A (en) Method and apparatus for transmission of control information for user separation in wireless communication system
KR20210041429A (en) Method and apparatus for transmission and reception of control information in wirelss communication system
CN114258650B (en) Apparatus and method for managing soft buffers in a wireless communication system
US20230043797A1 (en) Apparatus and method for transmitting and receiving data and control signal in communication system
KR20210103903A (en) Method and apparatus for data transmission and reception in wirelss communications system