KR20200134354A - Surfur-carbon complex and lithium secondary battery comprising the same - Google Patents

Surfur-carbon complex and lithium secondary battery comprising the same Download PDF

Info

Publication number
KR20200134354A
KR20200134354A KR1020190059226A KR20190059226A KR20200134354A KR 20200134354 A KR20200134354 A KR 20200134354A KR 1020190059226 A KR1020190059226 A KR 1020190059226A KR 20190059226 A KR20190059226 A KR 20190059226A KR 20200134354 A KR20200134354 A KR 20200134354A
Authority
KR
South Korea
Prior art keywords
sulfur
solvent
secondary battery
lithium
carbon composite
Prior art date
Application number
KR1020190059226A
Other languages
Korean (ko)
Inventor
김일토
박인태
조현아
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020190059226A priority Critical patent/KR20200134354A/en
Publication of KR20200134354A publication Critical patent/KR20200134354A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0034Fluorinated solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to a sulfur-carbon complex and a lithium secondary battery comprising same. More specifically, the lithium secondary battery includes an electrolyte solution including: a sulfur-carbon complex having a form in which sulfur is uniformly supported on carbon, a conductive structure; and a solvent having high dipole moment and low viscosity, thereby showing improved service life properties.

Description

황-탄소 복합체 및 이를 포함하는 리튬 이차전지 {SURFUR-CARBON COMPLEX AND LITHIUM SECONDARY BATTERY COMPRISING THE SAME}Sulfur-carbon composite and lithium secondary battery containing the same {SURFUR-CARBON COMPLEX AND LITHIUM SECONDARY BATTERY COMPRISING THE SAME}

본 발명은 황-탄소 복합체 및 이를 포함하는 리튬 이차전지에 관한 것이다.The present invention relates to a sulfur-carbon composite and a lithium secondary battery including the same.

이차전지의 응용 영역이 전기 자동차(EV)나 에너지 저장 장치(ESS) 등으로 확대됨에 따라, 상대적으로 낮은 무게 대비 에너지 저장 밀도(~250 Wh/kg)를 갖는 리튬-이온 이차전지는 이러한 제품에 대한 적용의 한계가 있다. 이와 달리, 리튬-황 이차전지는 이론상으로 높은 무게 대비 에너지 저장 밀도(~2,600 Wh/kg)를 구현할 수 있기 때문에, 차세대 이차전지 기술로 각광을 받고 있다.As the application area of secondary batteries expands to electric vehicles (EV) and energy storage devices (ESS), lithium-ion secondary batteries with relatively low weight-to-energy storage density (~250 Wh/kg) are suitable for these products. There is a limitation in application to In contrast, lithium-sulfur secondary batteries are in the spotlight as a next-generation secondary battery technology because they can theoretically realize a high energy storage density (~2,600 Wh/kg) to weight.

리튬-황 이차전지는 S-S 결합(Sulfur-Sulfur Bond)을 갖는 황 계열 물질을 양극 활물질로 사용하고, 리튬 금속을 음극 활물질로 사용한 전지 시스템을 의미한다. 상기 양극 활물질의 주재료인 황은 전 세계적으로 자원량이 풍부하고, 독성이 없으며, 낮은 원자당 무게를 가지고 있는 장점이 있다.The lithium-sulfur secondary battery refers to a battery system in which a sulfur-based material having an S-S bond is used as a positive electrode active material and lithium metal is used as a negative electrode active material. Sulfur, which is the main material of the positive electrode active material, has the advantage of having abundant resources, non-toxicity, and low weight per atom worldwide.

리튬-황 이차전지는 방전 시에 음극 활물질인 리튬이 전자를 내어놓고 이온화되면서 산화되며, 양극 활물질인 황 계열 물질이 전자를 받아들여 환원된다. 여기서, 리튬의 산화반응은 리튬 금속이 전자를 내어놓고 리튬 양이온 형태로 변환되는 과정이다. 또한, 황의 환원반응은 S-S 결합이 2개의 전자를 받아들여 황 음이온 형태로 변환되는 과정이다. 리튬의 산화반응에 의해 생성된 리튬 양이온은 전해질을 통해 양극으로 전달되고, 황의 환원반응에 의해 생성된 황 음이온과 결합하여 염을 형성한다. 구체적으로, 방전 전의 황은 환형의 S8 구조를 가지고 있는데, 이는 환원반응에 의해 리튬 폴리설파이드(Lithium polysulfide, LiSx)로 변환된다. 리튬 폴리설파이드가 완전히 환원되는 경우에는 리튬 설파이드(Li2S)가 생성되게 된다.In a lithium-sulfur secondary battery, lithium, which is a negative electrode active material, is oxidized while ionizing and releasing electrons during discharge, and a sulfur-based material, which is a positive electrode active material, accepts electrons and is reduced. Here, the oxidation reaction of lithium is a process in which lithium metal releases electrons and is converted into lithium cation form. In addition, the sulfur reduction reaction is a process in which the SS bond accepts two electrons and is converted into a sulfur anion form. The lithium cation generated by the oxidation reaction of lithium is transferred to the positive electrode through the electrolyte, and forms a salt by combining with the sulfur anion generated by the reduction reaction of sulfur. Specifically, sulfur before discharging has a cyclic S8 structure, which is converted into lithium polysulfide (LiS x ) by a reduction reaction. When lithium polysulfide is completely reduced, lithium sulfide (Li 2 S) is generated.

양극 활물질인 황은 낮은 전기전도도의 특성으로 인해, 고상 형태에서는 전자 및 리튬 이온과의 반응성을 확보하기가 어렵다. 기존 리튬-황 이차전지는 이러한 황의 반응성을 개선하기 위해 Li2Sx 형태의 중간 폴리설파이드(intermediate polysulfide)를 생성하여 액상 반응을 유도하고 반응성을 개선한다. 이 경우, 전해액의 용매로 리튬 폴리설파이드에 대해 용해성이 높은 디옥솔란(dioxolane), 디메톡시에탄(dimethoxyethane) 등의 에테르계 용매가 사용된다. 또한, 기존 리튬-황 이차전지는 반응성을 개선하기 위해 캐솔라이트(catholyte) 타입의 리튬-황 이차전지 시스템을 구축하는데, 이 경우 전해액 내에 녹는 리튬 폴리설파이드의 특성으로 인해 전해액의 함량에 따라 황의 반응성 및 수명 특성이 영향을 받게 된다. 높은 에너지 밀도를 구축하기 위해서는 낮은 함량의 전해액을 주액해야 하나, 전해액 함량이 감소함에 따라 전해액 내 리튬 폴리설파이드의 농도가 증가하게 되어, 활물질의 유동성 감소 및 부반응 증가로 인해 정상적인 전지의 구동이 어렵다.Sulfur, which is a positive electrode active material, has low electrical conductivity, so it is difficult to secure reactivity with electrons and lithium ions in a solid state. Existing lithium-sulfur secondary batteries induce a liquid phase reaction and improve reactivity by generating Li 2 S x type intermediate polysulfide to improve the reactivity of sulfur. In this case, an ether solvent such as dioxolane and dimethoxyethane having high solubility in lithium polysulfide is used as a solvent for the electrolyte solution. In addition, the existing lithium-sulfur secondary battery builds a catholyte-type lithium-sulfur secondary battery system to improve reactivity. In this case, the reactivity of sulfur depends on the content of the electrolyte due to the characteristics of lithium polysulfide dissolved in the electrolyte. And life characteristics are affected. In order to build a high energy density, it is necessary to inject a low content of electrolyte, but as the electrolyte content decreases, the concentration of lithium polysulfide in the electrolyte increases, and it is difficult to operate a normal battery due to a decrease in fluidity of the active material and an increase in side reactions.

또한, 황-탄소 복합체를 용매 처리하여 비표면적과 기공부피를 개선하여 표면 개질된 황-탄소 복합체를 리튬-황 이차전지에 적용하여 전지의 성능을 개선하고자 하는 기술이 개발된 바 있다 (Online ISBN 978-981-10-3406-0 (Zhou Chapter 2. Revealing Localized Electrochemical Transition of Sulfur in Sub-nanometer Confinement)). In addition, a technology to improve battery performance by applying the surface-modified sulfur-carbon composite to a lithium-sulfur secondary battery by improving the specific surface area and pore volume by treating the sulfur-carbon composite with a solvent has been developed (Online ISBN 978-981-10-3406-0 (Zhou Chapter 2. Revealing Localized Electrochemical Transition of Sulfur in Sub-nanometer Confinement)).

수명 특성 개선을 비롯한 전반적인 성능이 향상된 리튬-황 이차전지를 구축하기 위해서는 고로딩, 저기공도의 전극을 구동할 수 있는 전지 시스템을 필요로하고, 해당 기술 분야에서는 이러한 전지 시스템에 대한 연구가 지속적으로 수행되고 있다.In order to build a lithium-sulfur secondary battery with improved overall performance including improved life characteristics, a battery system capable of driving electrodes with high loading and low porosity is required, and research on such a battery system is continuously conducted in the relevant technical field. Is being carried out.

Online ISBN 978-981-10-3406-0 (Zhou Chapter 2. Revealing Localized Electrochemical Transition of Sulfur in Sub-nanometer Confinement) Online ISBN 978-981-10-3406-0 (Zhou Chapter 2. Revealing Localized Electrochemical Transition of Sulfur in Sub-nanometer Confinement)

이에, 본 발명자들은 표면에 황이 균일하게 분포된 황-탄소 복합체를 포함하는 양극 및 일정 수치 미만의 쌍극자 모멘트를 가지는 용매를 포함하는 전해액을 이용하여 리튬 이차전지를 제조하였으며, 이와 같이 제조된 리튬 이차전지가 고에너지 밀도를 나타낸다는 것을 확인하였다.Accordingly, the present inventors manufactured a lithium secondary battery using an electrolyte solution including a positive electrode including a sulfur-carbon composite in which sulfur is uniformly distributed on the surface and a solvent having a dipole moment less than a certain value. It was confirmed that the battery showed a high energy density.

따라서, 본 발명의 목적은 수명 특성을 개선된 리튬 이차전지를 제공하는데 있다.Accordingly, an object of the present invention is to provide a lithium secondary battery with improved life characteristics.

상기 목적을 달성하기 위해, 본 발명은 탄소재에 황이 담지된 황-탄소 복합체에 있어서, 상기 황-탄소 복합체의 비표면적은 10 내지 60 ㎡/g이고, 기공부피는 0.3 내지 1.0 ㎤/g인 황-탄소 복합체를 제공한다.In order to achieve the above object, the present invention is a sulfur-carbon composite in which sulfur is supported on a carbon material, wherein the specific surface area of the sulfur-carbon composite is 10 to 60 m 2 /g, and the pore volume is 0.3 to 1.0 cm 3 /g. It provides a sulfur-carbon complex.

본 발명은 또한, (P1) 황과 탄소재를 혼합하여 열처리하는 단계; 및 (P2) 상기 (P1) 단계에서 얻은 황-탄소 복합체를 황 용해용 용매에 담지시켜 표면 개질하는 단계;를 포함하는, 황-탄소 복합체의 제조방법을 제공한다.The present invention also includes the steps of (P1) heat treatment by mixing sulfur and a carbon material; And (P2) surface-modifying the sulfur-carbon composite obtained in the step (P1) by supporting it in a solvent for dissolving sulfur; containing, a method for preparing a sulfur-carbon composite is provided.

본 발명은 또한, (P1) 황과 탄소재를 혼합하여 열처리하는 단계; 및 (P2) 상기 (P1) 단계에서 얻은 황-탄소 복합체를 황 용해용 용매에 담지시켜 표면 개질하는 단계;를 포함하는, 황-탄소 복합체의 제조방법을 제공한다.The present invention also includes the steps of (P1) heat treatment by mixing sulfur and a carbon material; And (P2) surface-modifying the sulfur-carbon composite obtained in the step (P1) by supporting it in a solvent for dissolving sulfur; containing, a method for preparing a sulfur-carbon composite is provided.

본 발명은 또한, 양극; 음극; 이들 사이에 개재된 분리막; 및 전해액을 포함하는 리튬 이차전지로서,The present invention also, the anode; cathode; A separator interposed therebetween; And as a lithium secondary battery comprising an electrolyte,

상기 양극은 상기 황-탄소 복합체를 포함하고,The positive electrode includes the sulfur-carbon composite,

상기 전해액은 용매 및 리튬염을 포함하며,The electrolyte solution contains a solvent and a lithium salt,

상기 용매는,The solvent is,

하기 수학식 1로 표시되는 DV2 factor 값이 1.5 이하인 제1 용매; 및A first solvent having a DV 2 factor of 1.5 or less represented by Equation 1 below; And

불소화된 에테르계 용매인 제2 용매를 포함하는 것을 특징으로 하는 리튬 이차전지를 제공한다:It provides a lithium secondary battery comprising a second solvent that is a fluorinated ether-based solvent:

[수학식 1][Equation 1]

Figure pat00001
Figure pat00001

여기서, DV는 단위 부피당 쌍극자 모멘트(D·mol/L)이고, μ는 용매의 점도(cP)이며, γ는 100(상수)이다.Here, DV is the dipole moment per unit volume (D·mol/L), μ is the viscosity (cP) of the solvent, and γ is 100 (constant).

본 발명에 따르면, 리튬-황 이차전지에 있어서, 표면 개질된 황-탄소 복합체를 포함하는 양극; 및 DV2 factor 값이 1.5 이하인 제1 용매; 및 불소화된 에테르계 용매인 제2 용매를 포함하는 전해액;을 포함하는 경우, 수명 특성을 향상시키는 효과가 있다. 이때, 표면 개질된 황-탄소 복합체란 용매에 의해 처리되어 황이 표면에 균일하게 분포되도록 한 황-탄소 복합체를 의미한다.According to the present invention, there is provided a lithium-sulfur secondary battery, comprising: a positive electrode including a surface-modified sulfur-carbon composite; And a first solvent having a DV 2 factor of 1.5 or less. And an electrolyte solution including a second solvent that is a fluorinated ether-based solvent; when it contains, there is an effect of improving life characteristics. In this case, the surface-modified sulfur-carbon composite refers to a sulfur-carbon composite in which sulfur is uniformly distributed on the surface by being treated with a solvent.

도 1은 제조예 1 및 비교 제조예 1에서 각각 제조된 표면 개질된 황-탄소 복합체(EtOH 처리군) 및 황-탄소 복합체(EtOH 미처리군)의 주사전사현미경(SEM) 사진이다.
도 2a 및 도 2b는 각각 제조예 1 및 비교 제조예 1에서 각각 제조된 표면 개질된 황-탄소 복합체(EtOH 처리군) 및 황-탄소 복합체(EtOH 미처리군)의 비표면적 및 기공도 측정 결과에 대한 그래프이다.
도 3은 제조예 1 및 비교 제조예 1에서 각각 제조된 표면 개질된 황-탄소 복합체(EtOH 처리군) 및 황-탄소 복합체(EtOH 미처리군)에 대한 열중량분석(TGA, thermogravimetric analysis) 결과를 나타낸 그래프이다.
도 4는 실시예 1 및 비교예 1 내지 3에서 각각 제조된 리튬-황 이차전지에 대한 수명 특성 실험 결과이다.
1 is a scanning transfer microscope (SEM) photograph of the surface-modified sulfur-carbon composite (EtOH-treated group) and sulfur-carbon composite (non-EtOH-treated group) prepared in Preparation Example 1 and Comparative Preparation Example 1, respectively.
2A and 2B show the specific surface area and porosity measurement results of the surface-modified sulfur-carbon composites (EtOH treated group) and sulfur-carbon composites (EtOH untreated group) prepared in Preparation Example 1 and Comparative Preparation Example 1, respectively. It is a graph for.
3 is a thermogravimetric analysis (TGA, thermogravimetric analysis) results for the surface-modified sulfur-carbon composite (EtOH-treated group) and sulfur-carbon composite (non-EtOH-treated group) prepared in Preparation Example 1 and Comparative Preparation Example 1, respectively. This is the graph shown.
4 is a result of a life characteristic experiment for lithium-sulfur secondary batteries prepared in Example 1 and Comparative Examples 1 to 3, respectively.

이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail to aid understanding of the present invention.

본 명세서 및 청구범위에서 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in the specification and claims should not be construed as being limited to their usual or dictionary meanings, and the inventor may appropriately define the concept of terms in order to describe his own invention in the best way. It should be interpreted as a meaning and concept consistent with the technical idea of the present invention based on the principle that there is.

본 발명은 양극, 음극, 이들 사이에 개재된 분리막 및 전해액을 포함하는 리튬 이차전지를 제공한다. 구체적으로, 상기 리튬 이차전지는 양극 활물질로서 황을 포함하는 리튬-황 이차전지일 수 있다.The present invention provides a lithium secondary battery including a positive electrode, a negative electrode, a separator interposed therebetween, and an electrolyte. Specifically, the lithium secondary battery may be a lithium-sulfur secondary battery containing sulfur as a positive electrode active material.

본 발명에 따른 리튬-황 이차전지는 양극 활물질로서 황-탄소 복합체를 사용하되, 황이 균일하게 분포된 형태로 표면 개질된 황-탄소 복합체를 사용하고 상기 황-탄소 복합체가 전지 성능을 개선할 수 있도록 하는 최적의 조성을 가지는 전해액을 함께 도입한 것을 특징으로 한다.The lithium-sulfur secondary battery according to the present invention uses a sulfur-carbon composite as a positive electrode active material, but uses a sulfur-carbon composite surface-modified in a form in which sulfur is uniformly distributed, and the sulfur-carbon composite can improve battery performance. It is characterized in that an electrolyte solution having an optimal composition to be used is introduced together.

황-탄소 복합체Sulfur-carbon complex

본 발명에 따른 리튬 이차전지의 양극에 양극 활물질로 포함된 황-탄소 복합체는 전도성 구조체인 탄소재에 황이 균일하게 담지된 형태를 가져, 전지의 성능을 향상시킬 수 있다. 구체적으로, 상기 황-탄소 복합체는 상기 탄소재의 표면에 황이 균일하게 분포된 형태를 가지는 것일 수 있다. 이때, 균일하게 담지되었다는 의미는 황이 탄소재의 표면의 특정 부위에 뭉치거나 몰려있지 않고, 양적으로 고르게 분포되어 있다는 것을 가리키며, 이와 같은 황의 균일한 분포는 후술하는 바와 같이 규정된 황-탄소 복합체의 비표면적과 기공부피 특성으로 인하여 구현될 수 있다.The sulfur-carbon composite included as a positive electrode active material in the positive electrode of the lithium secondary battery according to the present invention has a form in which sulfur is uniformly supported on a carbon material that is a conductive structure, thereby improving battery performance. Specifically, the sulfur-carbon composite may have a form in which sulfur is uniformly distributed on the surface of the carbon material. At this time, the meaning of uniformly supported means that sulfur is not agglomerated or concentrated in a specific part of the surface of the carbon material, and is distributed quantitatively and evenly, and this uniform distribution of sulfur is defined as the sulfur-carbon composite It can be implemented due to the specific surface area and pore volume characteristics.

상기 황-탄소 복합체는 황이 전해질로 유출되는 것을 감소시키고, 황이 포함된 전극의 전기 전도도를 높이기 위해 탄소와 황을 혼합시킨 것이다.The sulfur-carbon composite is obtained by mixing carbon and sulfur in order to reduce the leakage of sulfur into the electrolyte and increase the electrical conductivity of the sulfur-containing electrode.

또한, 상기 황-탄소 복합체의 비표면적은 10 내지 60 ㎡/g, 바람직하게는 20 내지 50 ㎡/g, 보다 바람직하게는 25 내지 45 ㎡/g 일 수 있다. 상기 황-탄소 복합체의 비표면적이 10 ㎡/g 미만이면 탄소 표면에 균일한 황의 담지가 되지 않아 이차전지의 반응성이 떨어질 수 있고, 60 ㎡/g 초과이면 양극 내구성이 저하될 수 있다.In addition, the specific surface area of the sulfur-carbon composite may be 10 to 60 m 2 /g, preferably 20 to 50 m 2 /g, more preferably 25 to 45 m 2 /g. If the specific surface area of the sulfur-carbon composite is less than 10 ㎡/g, uniform sulfur cannot be supported on the carbon surface, so that the reactivity of the secondary battery may decrease, and if it exceeds 60 ㎡/g, durability of the anode may be reduced.

또한, 상기 황-탄소 복합체의 기공부피가 부피는 0.3 내지 1.0 ㎤/g, 바람직하게는 0.4 내지 0.7 ㎤/g, 보다 바람직하게는 0.4 내지 0.6 ㎤/g 일 수 있다. 상기 황-탄소 복합체의 기공부피가 0.3 ㎤/g 미만이면 도전 구조 유지와 리튬 이온 경로 확보가 어려울 수 있고, 1.0 ㎤/g 초과이면 양극 내구성이 저하될 수 있다. In addition, the volume of the sulfur-carbon composite may have a pore volume of 0.3 to 1.0 cm 3 /g, preferably 0.4 to 0.7 cm 3 /g, more preferably 0.4 to 0.6 cm 3 /g. When the pore volume of the sulfur-carbon composite is less than 0.3 cm 3 /g, it may be difficult to maintain a conductive structure and secure a lithium ion path, and when it exceeds 1.0 cm 3 /g, durability of the anode may be deteriorated.

상기 황-탄소 복합체는 황과 탄소재를 포함하는 것일 수 있으며, 구체적으로, 상기 황과 탄소재를 55 ~ 90 : 45 ~10 의 중량비로 포함할 수 있다. 상기 황-탄소 복합체에 포함된 황과 탄소재의 중량비를 만족할 경우, 전지의 용량을 향상시키는 동시에 도전성을 유지할 수 있다.The sulfur-carbon composite may include sulfur and a carbon material, and specifically, the sulfur and carbon material may be included in a weight ratio of 55 to 90: 45 to 10. When the weight ratio of the sulfur and the carbon material contained in the sulfur-carbon composite is satisfied, the capacity of the battery can be improved and the conductivity can be maintained.

또한, 상기 탄소재는 천연 흑연, 인조 흑연, 팽창 흑연, 그래핀(Graphene)과 같은 흑연(Graphite)계, 활성탄(Active carbon)계, 채널 블랙(Channel black), 퍼니스 블랙(Furnace black), 써말 블랙(Thermal black), 컨택트 블랙(Contact black), 램프 블랙(Lamp black), 아세틸렌 블랙(Acetylene black)과 같은 카본 블랙(Carbon black)계; 탄소 섬유(Carbon fiber)계, 탄소나노튜브(Carbon nanotube: CNT), 풀러렌(Fullerene)과 같은 탄소 나노 구조체 및 이들의 조합으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.In addition, the carbon material is natural graphite, artificial graphite, expanded graphite, graphite such as graphene, activated carbon, channel black, furnace black, thermal black (Thermal black), contact black (Contact black), lamp black (Lamp black), such as a carbon black (Carbon black) such as acetylene black (Acetylene black); It may be at least one selected from the group consisting of carbon nanostructures such as carbon fiber, carbon nanotube (CNT), and fullerene, and combinations thereof.

또한, 상기 황은 황 원소(elemental sulfur, S8), 황 계열 화합물 및 황-탄소 복합체로 이루어진 군에서 선택되는 것일 수 있다. 상기 황 계열 화합물은 구체적으로, Li2Sn(n≥1), 유기황 화합물 또는 탄소-황 폴리머((C2Sx)n: x=2.5∼50, n≥2) 등일 수 있다.In addition, the sulfur may be selected from the group consisting of elemental sulfur (S8), a sulfur-based compound, and a sulfur-carbon complex. Specifically, the sulfur-based compound may be Li 2 Sn (n≥1), an organosulfur compound or a carbon-sulfur polymer ((C 2 S x ) n :x=2.5-50, n≥2).

황-탄소 복합체의 제조방법Method for producing sulfur-carbon composite

본 발명에 있어서, 상기 황-탄소 복합체는 황 용해용 용매에 의해 표면 개질됨으로써, 전술한 바와 같은 비표면적과 기공면적을 가질 수 있다.In the present invention, the sulfur-carbon composite may have a specific surface area and a pore area as described above by being surface-modified by a solvent for dissolving sulfur.

상기 표면 개질된 황-탄소 복합체는 (P1) 황과 탄소재를 혼합하여 열처리하는 단계; 및 (P2) 상기 (P1) 단계에서 얻은 황-탄소 복합체를 황 용해용 용매에 담지시켜 표면 개질하는 단계;에 의해 제조될 수 있다.The surface-modified sulfur-carbon composite is heat-treated by mixing sulfur and a carbon material (P1); And (P2) surface-modifying the sulfur-carbon composite obtained in the step (P1) by supporting it in a solvent for dissolving sulfur.

상기 (P1) 단계에서 황과 탄소재의 혼합 비율은 앞서 설명한 바와 같은 황과 탄소재의 중량비로 혼합할 수 있다.In the step (P1), the mixing ratio of the sulfur and the carbon material may be mixed by the weight ratio of the sulfur and the carbon material as described above.

또한, 상기 열처리는 120℃ 내지 180℃, 바람직하게는 130℃ 내지 170℃, 140℃ 내지 160℃의 온도 범위에서 실시될 수 있다. 상기 열처리 온도가 120℃ 미만이면 황-탄소 복합체가 형성될 수 없고, 180℃ 초과이면 황과 탄소가 변성될 수 있다.In addition, the heat treatment may be performed in a temperature range of 120°C to 180°C, preferably 130°C to 170°C, and 140°C to 160°C. If the heat treatment temperature is less than 120°C, a sulfur-carbon composite cannot be formed, and if it exceeds 180°C, sulfur and carbon may be denatured.

또한, 상기 (P2) 단계에서 황 용해용 용매는 에탄올, 아세톤 및 CS2으로 이루어진 군에서 선택된 1종 이상인 것일 수 있다. In addition, the solvent for dissolving sulfur in step (P2) may be one or more selected from the group consisting of ethanol, acetone and CS 2 .

상기 황 용해용 용매에 상기 황-탄소 복합체를 담지시켜 혼합할 경우 황-탄소 복합체 표면에 뭉쳐져 있던 황이 용매에 용해 혹은 분산된 상태로 탄소 내 작은 기공으로의 이동이 가능하게 되어, 상기 황-탄소 복합체에 황이 균일하게 분포됨으로써 표면 개질될 수 있다.When the sulfur-carbon composite is supported and mixed in the sulfur-dissolving solvent, the sulfur accumulated on the surface of the sulfur-carbon composite is dissolved or dispersed in the solvent, and it is possible to move to small pores in the carbon. The surface can be modified by uniform distribution of sulfur in the composite.

양극anode

본 발명에 따른 양극은, 전술한 바와 같은 황-탄소 복합체; 도전재; 및 바인더;를 포함하는 양극 활물질층이 형성된 것일 수 있다.The positive electrode according to the present invention includes a sulfur-carbon composite as described above; Conductive material; And a binder; may be formed with a positive electrode active material layer.

구체적으로, 본 발명의 리튬 이차전지용 양극은 양극 집전체; 및 상기 집전체의 적어도 일면에 형성된 양극 활물질층;을 포함할 수 있다.Specifically, the positive electrode for a lithium secondary battery of the present invention includes a positive electrode current collector; And a positive active material layer formed on at least one surface of the current collector.

본 발명에 따른 리튬 이차전지용 양극에 있어서, 상기 황-탄소 복합체의 구성 및 형태는 앞서 설명한 바와 동일하다. In the positive electrode for a lithium secondary battery according to the present invention, the configuration and shape of the sulfur-carbon composite is the same as described above.

상기 황-탄소 복합체는 상기 양극 활물질층 전체 중량을 기준으로 60 내지 95 중량%, 바람직하게는 65 내지 95 중량%, 보다 바람직하게는 70 내지 90 중량%로 포함될 수 있다. 상기 범위 미만이면 전지 성능이 저하될 수 있고, 상기 범위 초과이면 양극 활물질 이외의 도전재 또는 바인더의 함량이 상대적으로 감소하여 도전성 또는 내구성과 같은 특성이 저하될 수 있다. The sulfur-carbon composite may be included in an amount of 60 to 95% by weight, preferably 65 to 95% by weight, more preferably 70 to 90% by weight based on the total weight of the positive active material layer. If it is less than the above range, battery performance may be deteriorated, and if it is greater than the above range, the content of a conductive material or a binder other than the positive electrode active material is relatively reduced, and properties such as conductivity or durability may be deteriorated.

본 발명에 있어서, 상기 도전재는 특별히 제한하지 않으나, 예컨대 천연흑연이나 인조흑연 등의 흑연; 카본블랙(super-p), 아세틸렌 블랙, 케첸블랙, 채널블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙, 덴카 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등일 수 있다. 특별히 제한하지 않으나, 예컨대 천연흑연이나 인조흑연 등의 흑연; 카본블랙(super-p), 아세틸렌 블랙, 케첸블랙, 채널블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙, 덴카 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등일 수 있다. 상기 도전재는 통상적으로 상기 양극 활물질 슬러리 전체 중량을 기준으로 0.05 중량% 내지 5 중량%의 함량일 수 있다.In the present invention, the conductive material is not particularly limited, for example, graphite such as natural graphite or artificial graphite; Carbon blacks such as carbon black (super-p), acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, and denka black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; It may be a conductive material such as a polyphenylene derivative. Although not particularly limited, for example, graphite such as natural graphite or artificial graphite; Carbon blacks such as carbon black (super-p), acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, and denka black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; It may be a conductive material such as a polyphenylene derivative. The conductive material may be in an amount of 0.05% to 5% by weight based on the total weight of the positive electrode active material slurry.

본 발명에 따른 리튬 이차전지용 양극에 있어서, 상기 바인더는 SBR (Styrene-Butadiene Rubber)/CMC (Carboxymethyl Cellulose), 폴리(비닐 아세테이트), 폴리비닐알코올, 폴리에틸렌옥사이드, 폴리비닐피롤리돈, 알킬레이티드 폴리에틸렌옥사이드, 가교결합된 폴리에틸렌옥사이드, 폴리비닐에테르, 폴리(메틸메타크릴레이트), 폴리비닐리덴플루오라이드, 폴리헥사플루오로프로필렌과 폴리비닐리덴플루오라이드의 코폴리머(상품명: Kynar), 폴리(에틸아크릴레이트), 폴리테트라플루오로에틸렌, 폴리비닐클로라이드, 폴리아크릴로니트릴, 폴리비닐피리딘, 폴리스티렌, 폴리아크릴산, 이들의 유도체, 블랜드, 코폴리머 등이 사용될 수 있다. In the positive electrode for a lithium secondary battery according to the present invention, the binder is SBR (Styrene-Butadiene Rubber)/CMC (Carboxymethyl Cellulose), poly(vinyl acetate), polyvinyl alcohol, polyethylene oxide, polyvinylpyrrolidone, alkylated Polyethylene oxide, cross-linked polyethylene oxide, polyvinyl ether, poly(methyl methacrylate), polyvinylidene fluoride, a copolymer of polyhexafluoropropylene and polyvinylidene fluoride (trade name: Kynar), poly(ethyl) Acrylate), polytetrafluoroethylene, polyvinyl chloride, polyacrylonitrile, polyvinylpyridine, polystyrene, polyacrylic acid, derivatives, blends, copolymers and the like thereof may be used.

또한, 상기 바인더의 함량은 상기 양극 활물질층 전체 중량을 기준으로 1 내지 20중량%, 바람직하게는 3 내지 18 중량%, 보다 바람직하게는 5 내지 15 중량%일 수 있다. 상기 범위 미만이면 양극 활물질간 또는 양극 활물질과 집전체간 결착력이 크게 개선되고, 용량 특성이 저하되는 문제도 방지될 수 있다. 또한 폴리설파이드와 바인더로 사용되는 고분자 사슬의 특정 작용기 간 상호작용에 의한 폴리설파이드 용출 억제 또한 기대할 수 있다. 상기 범위 초과이면 전지 용량이 저하될 수 있다.In addition, the content of the binder may be 1 to 20% by weight, preferably 3 to 18% by weight, more preferably 5 to 15% by weight based on the total weight of the positive electrode active material layer. If it is less than the above range, the bonding strength between the positive electrode active material or between the positive electrode active material and the current collector may be greatly improved, and a problem of deteriorating capacity characteristics may be prevented. In addition, suppression of polysulfide elution due to the interaction between polysulfide and specific functional groups of the polymer chain used as a binder can be expected. If it exceeds the above range, the battery capacity may decrease.

본 발명에 따른 리튬 이차전지용 양극에 있어서, 상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되지 않으며, 예를 들면 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 이때, 상기 양극 집전체는 양극 활물질과의 접착력을 높일 수도 있도록, 표면에 미세한 요철이 형성된 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태를 사용할 수 있다.In the positive electrode for a lithium secondary battery according to the present invention, the positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery, for example, stainless steel, aluminum, nickel, titanium, and calcined carbon. , Or a surface-treated aluminum or stainless steel surface with carbon, nickel, titanium, silver, or the like may be used. In this case, the positive electrode current collector may be in various forms such as a film, sheet, foil, net, porous material, foam, non-woven fabric having fine irregularities formed on the surface so as to increase adhesion to the positive electrode active material.

본 발명에 있어서, 상기 양극은 하기 수학식 2로 표시되는 SC factor 값에 의해 구분된다.In the present invention, the anode is classified by an SC factor value represented by Equation 2 below.

[수학식 2][Equation 2]

Figure pat00002
Figure pat00002

여기서, P는 양극 내 양극 활물질 층의 공극률(%)이고, L은 양극 내 양극 활물질 층의 단위 면적당 황의 질량(mg/㎠)이며, α는 10(상수)이다. 본 발명에 따른 리튬-황 이차전지는 상술한 양극뿐만 아니라 음극, 분리막 및 전해질 등의 유기적인 결합에 의해 고에너지 밀도를 구현하며, 본 발명의 구체예에 따르면, 리튬-황 이차전지가 고에너지 밀도를 구현하기 위해, 상기 SC factor 값은 0.45 이상, 바람직하게는 0.5 이상일 수 있다. 본 발명에 있어서, 상기 SC factor 값의 상한은 특별하게 제한되지 않지만, 실제 리튬-황 이차전지의 구현예를 고려해 볼 때, 상기 SC factor 값은 4.5 이하일 수 있다. 상기 SC factor 값이 0.45 이상인 경우, 기존의 리튬-황 이차전지의 경우에는 실제 구현 시 전지의 에너지 밀도 등의 성능이 저하되지만, 본 발명에 따른 리튬-황 이차전지를 비롯한 리튬 이차전지의 경우에는 실제 구현 시에도 전지의 성능이 저하되지 않고 유지된다.Here, P is the porosity (%) of the positive electrode active material layer in the positive electrode, L is the mass of sulfur per unit area of the positive electrode active material layer in the positive electrode (mg/cm2), and α is 10 (constant). The lithium-sulfur secondary battery according to the present invention realizes a high energy density by organic bonding of the above-described positive electrode as well as a negative electrode, a separator, and an electrolyte, and according to a specific embodiment of the present invention, a lithium-sulfur secondary battery In order to implement the density, the SC factor value may be 0.45 or more, preferably 0.5 or more. In the present invention, the upper limit of the SC factor value is not particularly limited, but considering an embodiment of an actual lithium-sulfur secondary battery, the SC factor value may be 4.5 or less. When the SC factor value is 0.45 or more, in the case of a conventional lithium-sulfur secondary battery, performance such as energy density of the battery is deteriorated in actual implementation, but in the case of lithium secondary batteries including the lithium-sulfur secondary battery according to the present invention Even in actual implementation, the performance of the battery is maintained without deterioration.

음극cathode

본 발명에서 상기 음극은 음극 집전체, 및 음극 집전체 상에 형성된 음극 활물질 층을 포함한다.In the present invention, the negative electrode includes a negative electrode current collector and a negative electrode active material layer formed on the negative electrode current collector.

상기 음극 활물질 층은 음극 활물질, 바인더 및 도전재를 포함한다. 상기 음극 활물질로는 리튬 이온(Li+)을 가역적으로 흡장(Intercalation) 또는 방출(Deintercalation)할 수 있는 물질, 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질, 리튬 금속 또는 리튬 합금을 사용할 수 있다. 상기 리튬 이온(Li+)을 가역적으로 흡장 또는 방출할 수 있는 물질은 예컨대 결정질 탄소, 비정질 탄소 또는 이들의 혼합물일 수 있다. 상기 리튬 이온(Li+)과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질은 예를 들어, 산화주석, 티타늄나이트레이트 또는 실리콘일 수 있다. 상기 리튬 합금은 예를 들어, 리튬(Li)과 나트륨(Na), 칼륨(K), 루비듐(Rb), 세슘(Cs), 프랑슘(Fr), 베릴륨(Be), 마그네슘(Mg), 칼슘(Ca), 스트론튬(Sr), 바륨(Ba), 라듐(Ra), 알루미늄(Al) 및 주석(Sn)으로 이루어지는 군에서 선택되는 금속의 합금일 수 있다.The negative active material layer includes a negative active material, a binder, and a conductive material. As the negative active material, a material capable of reversibly intercalating or deintercalating lithium ions (Li + ), a material capable of reversibly forming a lithium-containing compound by reacting with lithium ions, lithium metal or lithium alloy You can use The material capable of reversibly occluding or releasing lithium ions (Li + ) may be, for example, crystalline carbon, amorphous carbon, or a mixture thereof. A material capable of reversibly forming a lithium-containing compound by reacting with the lithium ions (Li + ) may be, for example, tin oxide, titanium nitrate, or silicon. The lithium alloy is, for example, lithium (Li) and sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), francium (Fr), beryllium (Be), magnesium (Mg), calcium ( It may be an alloy of a metal selected from the group consisting of Ca), strontium (Sr), barium (Ba), radium (Ra), aluminum (Al), and tin (Sn).

상기 바인더는 상술한 바인더에 한정되지 않고, 해당 기술 분야에서 바인더로 사용될 수 있는 것이라면 모두 가능하다.The binder is not limited to the above-described binder, and any binder that can be used in the relevant technical field may be used.

상기 음극 활물질 및 도전재를 제외한 집전체 등의 구성은 상술한 양극에서 사용된 물질 및 방법 등이 사용될 수 있다.Materials and methods used in the above-described positive electrode may be used as a configuration of a current collector excluding the negative active material and the conductive material.

분리막Separator

본 발명에서 상기 분리막은 전극을 물리적으로 분리하는 기능을 갖는 물리적인 분리막으로서, 통상의 분리막으로 사용되는 것이라면 특별한 제한 없이 사용 가능하며, 특히 전해액의 이온 이동에 대하여 저 저항이면서 전해액 함습 능력이 우수한 것이 바람직하다.In the present invention, the separator is a physical separator having a function of physically separating an electrode, and if it is used as a conventional separator, it can be used without particular limitation. In particular, it has a low resistance against ion migration of the electrolyte and has excellent electrolyte moisture-absorbing ability. desirable.

또한, 상기 분리막은 양극과 음극을 서로 분리 또는 절연시키면서 양극과 음극 사이에 리튬 이온의 수송을 가능하게 한다. 이러한 분리막은 기공도 30~50%의 다공성이고, 비전도성 또는 절연성인 물질로 이루어질 수 있다. In addition, the separator separates or insulates the positive electrode and the negative electrode from each other and enables transport of lithium ions between the positive electrode and the negative electrode. This separator has a porosity of 30-50% and may be made of a non-conductive or insulating material.

구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 사용할 수 있고, 고융점의 유리 섬유 등으로 된 부직포를 사용할 수 있다. 이 중 바람직하기로 다공성 고분자 필름을 사용한다.Specifically, a porous polymer film, for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer may be used. In addition, nonwoven fabrics made of high melting point glass fibers or the like can be used. Among these, a porous polymer film is preferably used.

만일 버퍼층 및 분리막으로 모두 고분자 필름을 사용하게 되면, 전해액 함침량 및 이온 전도 특성이 감소하고, 과전압 감소 및 용량 특성 개선 효과가 미미하게 된다. 반대로, 모두 부직포 소재를 사용할 경우는 기계적 강성이 확보되지 못하여 전지 단락의 문제가 발생한다. 그러나, 필름형의 분리막과 고분자 부직포 버퍼층을 함께 사용하면, 버퍼층의 채용으로 인한 전지 성능 개선 효과와 함께 기계적 강도 또한 확보할 수 있다.If a polymer film is used as both the buffer layer and the separator, the impregnation amount of the electrolyte solution and the ion conduction characteristics decrease, and the effect of reducing the overvoltage and improving the capacity characteristics becomes insignificant. Conversely, when all non-woven materials are used, mechanical stiffness cannot be secured, resulting in a battery short circuit. However, when a film-type separator and a polymer nonwoven buffer layer are used together, it is possible to secure mechanical strength as well as an effect of improving battery performance due to the adoption of the buffer layer.

본 발명의 바람직한 일 구체예에 따르면 에틸렌 단독중합체(폴리에틸렌) 고분자 필름을 분리막으로, 폴리이미드 부직포를 버퍼층으로 사용한다. 이때, 상기 폴리에틸렌 고분자 필름은 두께가 10 내지 25μm, 기공도가 40 내지 50%인 것이 바람직하다. According to a preferred embodiment of the present invention, an ethylene homopolymer (polyethylene) polymer film is used as a separator, and a polyimide nonwoven fabric is used as a buffer layer. In this case, the polyethylene polymer film preferably has a thickness of 10 to 25 μm and a porosity of 40 to 50%.

전해액Electrolyte

본 발명에서 상기 전해액은 리튬염을 함유하는 비수계 전해액으로서 리튬염과 용매로 구성된다. 상기 전해액은 1.5 g/㎤ 미만의 밀도를 가진다. 상기 전해액이 1.5 g/㎤ 이상의 밀도를 가지는 경우, 전해액의 무게 증가로 인해 리튬-황 이차전지의 고에너지 밀도를 구현하기 어렵다.In the present invention, the electrolytic solution is a non-aqueous electrolytic solution containing a lithium salt and is composed of a lithium salt and a solvent. The electrolyte solution has a density of less than 1.5 g/cm 3. When the electrolyte has a density of 1.5 g/cm 3 or more, it is difficult to achieve a high energy density of a lithium-sulfur secondary battery due to an increase in weight of the electrolyte.

상기 리튬염은 비수계 유기 용매에 쉽게 용해될 수 있는 물질로서, 예컨대, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiB(Ph)4 , LiC4BO8, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, LiSO3CH3, LiSO3CF3, LiSCN, LiC(CF3SO2)3, LiN(CF3SO2)2, LiN(C2F5SO2)2, LiN(SO2F)2, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 테트라 페닐 붕산 리튬 및 리튬 이미드로 이루어진 군으로부터 하나 이상일 수 있다. 본 발명의 일 구체예에 있어서, 상기 리튬염은 LiTFSI 등과 같은 리튬 이미드가 바람직할 수 있다.The lithium salt is a material that can be easily dissolved in a non-aqueous organic solvent, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiB(Ph) 4 , LiC 4 BO 8 , LiPF 6 , LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, LiSO 3 CH 3, LiSO 3 CF 3, LiSCN, LiC (CF 3 SO 2) 3, LiN (CF 3 SO 2) 2, LiN (C 2 F 5 SO 2 ) 2 , LiN(SO 2 F) 2 , lithium chloroborane, lithium lower aliphatic carboxylic acid, lithium tetraphenylborate, and lithium imide. In one embodiment of the present invention, the lithium salt may be a lithium imide such as LiTFSI.

상기 리튬염의 농도는, 전해액 혼합물의 정확한 조성, 염의 용해도, 용해된 염의 전도성, 전지의 충전 및 방전 조건, 작업 온도 및 리튬 이차전지 분야에 공지된 다른 요인과 같은 여러 요인에 따라, 0.1 내지 8.0M, 바람직하게는 0.5 내지 5.0M, 더욱 바람직하게는 1.0 내지 3.0M일 수 있다. 만약, 리튬염의 농도가 상기 범위 미만이면 전해액의 전도도가 낮아져서 전지 성능이 저하될 수 있고, 상기 범위 초과이면 전해액의 점도가 증가하여 리튬 이온(Li+)의 이동성이 감소될 수 있으므로 상기 범위 내에서 적정 농도를 선택하는 것이 바람직하다.The concentration of the lithium salt is 0.1 to 8.0M, depending on various factors such as the exact composition of the electrolyte mixture, the solubility of the salt, the conductivity of the dissolved salt, the charging and discharging conditions of the battery, working temperature and other factors known in the lithium secondary battery field. , Preferably it may be 0.5 to 5.0M, more preferably 1.0 to 3.0M. If the concentration of the lithium salt is less than the above range, the conductivity of the electrolyte may be lowered and battery performance may be deteriorated. If the concentration of the lithium salt is less than the above range, the viscosity of the electrolyte may increase and the mobility of lithium ions (Li + ) may decrease. It is desirable to select an appropriate concentration.

상기 용매는 제1 용매 및 제2 용매를 포함한다. 상기 제1 용매는 높은 쌍극자 모멘트(dipole moment) 및 낮은 점도를 갖는 것을 특징으로 한다. 쌍극자 모멘트가 높은 용매를 사용하는 경우, 황의 고상 반응성을 개선하는 효과를 가지는데, 이러한 효과는 용매 자체가 낮은 점도를 가질 때에 우수하게 발현될 수 있다. 본 발명에서 제1 용매는 하기 수학식 2로 표시되는 DV2 factor에 의해 구분된다.The solvent includes a first solvent and a second solvent. The first solvent is characterized by having a high dipole moment and a low viscosity. When a solvent having a high dipole moment is used, it has an effect of improving the solid state reactivity of sulfur, and this effect can be excellently expressed when the solvent itself has a low viscosity. In the present invention, the first solvent is classified by a DV 2 factor represented by Equation 2 below.

[수학식 1][Equation 1]

Figure pat00003
Figure pat00003

여기서, DV는 단위 부피당 쌍극자 모멘트(debye(D)·mol/L)이고, μ는 용매의 점도(cP)이며, γ는 100(상수)이다. 본 발명의 구체예에 따르면, 상기 DV2 factor 값은 1.75 이하, 바람직하게는 1.5 이하일 수 있다. 본 발명에 있어서, 상기 DV2 factor 값의 하한은 특별하게 제한되지 않지만, 실제 리튬-황 이차전지의 구현예를 고려해 볼 때, 상기 DV2 factor 값은 0.1 이상일 수 있다. 제1 용매와 같이 DV2 factor 값이 1.5 이하인 용매를 혼합하는 경우, 전술한 바와 같은 표면 개질된 황-탄소 복합체를 포함하는 리튬-황 이차전지에 적용되었을 때 수명 특성 개선과 같은 전지 성능 개선에 유리할 수 있다.Here, DV is the dipole moment per unit volume (debye(D)·mol/L), μ is the viscosity (cP) of the solvent, and γ is 100 (constant). According to an embodiment of the present invention, the DV 2 factor value may be 1.75 or less, preferably 1.5 or less. In the present invention, the lower limit of the value of the DV 2 factor is not particularly limited, but considering an embodiment of an actual lithium-sulfur secondary battery, the value of the DV 2 factor may be 0.1 or more. When mixing a solvent having a DV 2 factor of 1.5 or less, such as the first solvent, when applied to a lithium-sulfur secondary battery including a surface-modified sulfur-carbon composite as described above, it is possible to improve battery performance, such as improving life characteristics. It can be advantageous.

본 발명에서 제1 용매는 상술한 DV2 factor 값의 범위에 포함되면, 그 종류는 특별히 한정되지 않으나, 프로피오니트릴(Propionitrile), 디메틸아세트아미드(Dimethylacetamide), 디메틸포름아미드(Dimethylformamide), 감마-부티로락톤(Gamma-Butyrolactone), 트리에틸아민(Triethylamine), 1-아이오도프로판(1-iodopropane) 및 이의 조합으로 이루어진 군으로부터 선택될 수 있다. 본 발명의 구체예에 따르면, 상기 제1 용매는 전해액을 구성하는 용매를 기준으로 1 내지 50 중량%, 바람직하게는 5 내지 40 중량%, 보다 바람직하게는 10 내지 30 중량%가 포함될 수 있다. 본 발명에 따른 용매가 상술한 중량% 범위 내에서 제1 용매를 포함하는 경우, 전술한 바와 같은 표면 개질된 황-탄소 복합체를 포함하는 리튬-황 이차전지에 적용되었을 때 수명 특성 개선과 같은 전지 성능 개선에 유리할 수 있다.In the present invention, if the first solvent is included in the range of the DV 2 factor, the type is not particularly limited, but propionitrile, dimethylacetamide, dimethylformamide, gamma- It may be selected from the group consisting of butyrolactone (Gamma-Butyrolactone), triethylamine (Triethylamine), 1-iodopropane (1-iodopropane), and combinations thereof. According to an embodiment of the present invention, the first solvent may contain 1 to 50% by weight, preferably 5 to 40% by weight, and more preferably 10 to 30% by weight, based on the solvent constituting the electrolyte. When the solvent according to the present invention contains the first solvent within the above-described weight% range, a battery such as improvement in life characteristics when applied to a lithium-sulfur secondary battery including the surface-modified sulfur-carbon composite as described above It can be beneficial to improve performance.

본 발명의 리튬-황 이차전지는 상기 SC factor와 상기 DV2 factor를 조합한 NS factor에 의해 추가적으로 구분될 수 있다. 상기 NS factor는 하기 수학식 3으로 표시된다.The lithium-sulfur secondary battery of the present invention may be further classified by an NS factor obtained by combining the SC factor and the DV 2 factor. The NS factor is represented by Equation 3 below.

[수학식 3][Equation 3]

Figure pat00004
Figure pat00004

여기서, SC factor는 상기 수학식 1에 의해 정의된 값과 동일하고, DV2 factor는 상기 수학식 2에 의해 정의된 값과 동일하다. 본 발명의 구체예에 따르면, 상기 NS factor 값은 3.5 이하, 바람직하게는 3.0 이하, 보다 바람직하게는 2.7 이하일 수 있다. 본 발명에 있어서, 상기 NS factor 값의 하한은 특별하게 제한되지 않지만, 실제 리튬-황 이차전지의 구현예를 고려해 볼 때, 상기 NS factor 값은 0.1 이상일 수 있다. 상기 NS factor 값을 상기 범위 내로 조절하는 경우, 리튬-황 이차전지의 성능 개선 효과가 보다 우수할 수 있다.Here, the SC factor is the same as the value defined by Equation 1, and the DV 2 factor is the same as the value defined by Equation 2 above. According to an embodiment of the present invention, the value of the NS factor may be 3.5 or less, preferably 3.0 or less, and more preferably 2.7 or less. In the present invention, the lower limit of the value of the NS factor is not particularly limited, but considering an embodiment of an actual lithium-sulfur secondary battery, the value of the NS factor may be 0.1 or more. When the NS factor value is adjusted within the above range, the effect of improving the performance of the lithium-sulfur secondary battery may be more excellent.

본 발명에서 제2 용매는 불소화된 에테르계 용매이다. 기존에는 전해액의 점도를 조절하기 위하여, 희석제(diluent)로 디메톡시에탄(dimethoxyethane), 디메틸카보네이트(dimethylcarbonate) 등의 용매가 사용되었는데, 이와 같은 용매를 희석제로 사용하는 경우, 본 발명과 같은 전술한 바와 같은 표면 개질된 황-탄소 복합체를 포함하는 리튬-황 이차전지에 적용되었을 때 수명 특성 개선과 같은 전지 성능 개선에 유리할 수 있다.In the present invention, the second solvent is a fluorinated ether solvent. Conventionally, in order to control the viscosity of the electrolyte, a solvent such as dimethoxyethane and dimethylcarbonate was used as a diluent. When such a solvent is used as a diluent, the above-described solvent is used as a diluent. When applied to a lithium-sulfur secondary battery including the surface-modified sulfur-carbon composite as described above, it may be advantageous in improving battery performance, such as improving life characteristics.

따라서, 본 발명에서 제2 용매는 제1 용매와 함께 본 발명에 따른 양극을 구동하기 위해 첨가된다. 상기 제2 용매는 해당 기술 분야에서 일반적으로 사용되는 불소화된 에테르계 용매이면, 그 종류는 특별히 한정되지 않으나, 1H,1H,2'H,3H-데카플루오로디프로필 에테르(1H,1H,2'H,3H-Decafluorodipropyl ether), 디플루오로메틸 2,2,2-트리플루오로에틸 에테르(Difluoromethyl 2,2,2-trifluoroethyl ether), 1,2,2,2-테트라플루오로에틸 트리플루오로메틸 에테르(1,2,2,2-Tetrafluoroethyl trifluoromethyl ether), 1,1,2,3,3,3-헥사플루오로프로필 디플루오로메틸 에테르(1,1,2,3,3,3-Hexafluoropropyl difluoromethyl ether), 1H,1H,2'H,3H-데카플루오로디프로필 에테르(1H,1H,2'H,3H-Decafluorodipropyl ether), 펜타플루오로에틸 2,2,2-트리플루오로에틸 에테르(Pentafluoroethyl 2,2,2-trifluoroethyl ether), 1H,1H,2'H-퍼플루오로디프로필 에테르(1H,1H,2'H-Perfluorodipropyl ether) 및 이의 조합으로 이루어진 군으로부터 선택될 수 있다. 본 발명의 구체예에 따르면, 상기 제2 용매는 전해액을 구성하는 용매를 기준으로 50 내지 99 중량%, 바람직하게는 60 내지 95 중량%, 보다 바람직하게는 70 내지 90 중량%가 포함될 수 있다. 본 발명에 따른 용매가 상술한 중량% 범위 내에서 제2 용매를 포함하는 경우, 제1 용매와 마찬가지로 전술한 바와 같은 표면 개질된 황-탄소 복합체를 포함하는 리튬-황 이차전지에 적용되었을 때 수명 특성 개선과 같은 전지 성능 개선에 유리할 수 있다. Therefore, in the present invention, the second solvent is added together with the first solvent to drive the anode according to the present invention. If the second solvent is a fluorinated ether solvent generally used in the relevant technical field, the type is not particularly limited, but 1H,1H,2'H,3H-decafluorodipropyl ether (1H,1H,2' H,3H-Decafluorodipropyl ether), difluoromethyl 2,2,2-trifluoroethyl ether, 1,2,2,2-tetrafluoroethyl trifluoro Methyl ether (1,2,2,2-Tetrafluoroethyl trifluoromethyl ether), 1,1,2,3,3,3-hexafluoropropyl difluoromethyl ether (1,1,2,3,3,3- Hexafluoropropyl difluoromethyl ether), 1H,1H,2'H,3H-decafluorodipropyl ether (1H,1H,2'H,3H-Decafluorodipropyl ether), pentafluoroethyl 2,2,2-trifluoroethyl ether (Pentafluoroethyl 2,2,2-trifluoroethyl ether), 1H,1H,2'H-perfluorodipropyl ether (1H,1H,2'H-Perfluorodipropyl ether) and a combination thereof may be selected from the group consisting of. According to an embodiment of the present invention, the second solvent may contain 50 to 99% by weight, preferably 60 to 95% by weight, and more preferably 70 to 90% by weight, based on the solvent constituting the electrolyte. When the solvent according to the present invention contains the second solvent within the above-described weight% range, the lifespan when applied to a lithium-sulfur secondary battery containing the surface-modified sulfur-carbon composite as described above, like the first solvent It may be advantageous for improving battery performance, such as improving properties.

제1 용매와 제2 용매를 혼합 시, 전지의 성능 개선 효과를 고려하여 제2 용매는 제1 용매와 동일하거나 그 이상의 양이 전해액에 포함될 수 있다. 본 발명의 구체예에 따르면, 상기 용매는 1:1 내지 1:9, 바람직하게는 3:7 내지 1:9 중량비(제1 용매:제2 용매)로 제1 용매 및 제2 용매를 포함할 수 있다. When mixing the first solvent and the second solvent, the second solvent may be included in the electrolyte in an amount equal to or greater than the first solvent in consideration of an effect of improving the performance of the battery. According to an embodiment of the present invention, the solvent may contain a first solvent and a second solvent in a weight ratio of 1:1 to 1:9, preferably 3:7 to 1:9 (first solvent: second solvent). I can.

본 발명의 리튬-황 이차전지용 비수계 전해액은 첨가제로서 질산 또는 아질산계 화합물을 더 포함할 수 있다. 상기 질산 또는 아질산계 화합물은 리튬 전극에 안정적인 피막을 형성하고 충방전 효율을 향상시키는 효과가 있다. 이러한 질산 또는 아질산계 화합물로는 본 발명에서 특별히 한정하지는 않으나, 질산리튬(LiNO3), 질산칼륨(KNO3), 질산세슘(CsNO3), 질산바륨(Ba(NO3)2), 질산암모늄(NH4NO3), 아질산리튬(LiNO2), 아질산칼륨(KNO2), 아질산세슘(CsNO2), 아질산암모늄(NH4NO2) 등의 무기계 질산 또는 아질산 화합물; 메틸 니트레이트, 디알킬 이미다졸륨 니트레이트, 구아니딘 니트레이트, 이미다졸륨 니트레이트, 피리디늄 니트레이트, 에틸 니트라이트, 프로필 니트라이트, 부틸 니트라이트, 펜틸 니트라이트, 옥틸 니트라이트 등의 유기계 질산 또는 아질산 화합물; 니트로메탄, 니트로프로판, 니트로부탄, 니트로벤젠, 디니트로벤젠, 니트로 피리딘, 디니트로피리딘, 니트로톨루엔, 디니트로톨루엔 등의 유기 니트로 화합물 및 이들의 조합으로 이루어진 군에서 선택된 1종이 가능하며, 바람직하게는 질산리튬을 사용한다.The non-aqueous electrolyte for a lithium-sulfur secondary battery of the present invention may further include nitric acid or nitrous acid-based compounds as an additive. The nitric acid or nitrite-based compound has an effect of forming a stable film on the lithium electrode and improving charging and discharging efficiency. The nitric acid or nitrous acid-based compound is not particularly limited in the present invention, but lithium nitrate (LiNO 3 ), potassium nitrate (KNO 3 ), cesium nitrate (CsNO 3 ), barium nitrate (Ba(NO 3 ) 2 ), ammonium nitrate Inorganic nitric acid or nitrite compounds such as (NH 4 NO 3 ), lithium nitrite (LiNO 2 ), potassium nitrite (KNO 2 ), cesium nitrite (CsNO 2 ), and ammonium nitrite (NH 4 NO 2 ); Organic nitric acids such as methyl nitrate, dialkyl imidazolium nitrate, guanidine nitrate, imidazolium nitrate, pyridinium nitrate, ethyl nitrite, propyl nitrite, butyl nitrite, pentyl nitrite, and octyl nitrite Or nitrous acid compounds; One selected from the group consisting of organic nitro compounds such as nitromethane, nitropropane, nitrobutane, nitrobenzene, dinitrobenzene, nitro pyridine, dinitropyridine, nitrotoluene, dinitrotoluene, and combinations thereof is possible, and preferably Uses lithium nitrate.

또한, 상기 비수계 전해액은 충방전 특성, 난연성 등의 개선을 목적으로 기타 첨가제를 더 포함할 수 있다. 상기 첨가제의 예시로는 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아마이드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄, 플루오로에틸렌 카보네이트(FEC), 프로펜 설톤(PRS), 비닐렌 카보네이트(VC) 등을 들 수 있다.In addition, the non-aqueous electrolyte may further include other additives for the purpose of improving charge/discharge characteristics and flame retardancy. Examples of the additives include pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazoli Dinon, N,N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol, aluminum trichloride, fluoroethylene carbonate (FEC), propene sultone (PRS), vinylene carbonate ( VC) and the like.

본 발명의 리튬-황 이차전지는 양극과 음극 사이에 분리막을 배치하여 전극 조립체를 형성하고, 상기 전극 조립체는 원통형 전지 케이스 또는 각형 전지 케이스에 넣은 다음 전해질을 주입하여 제조할 수 있다. 또는, 상기 전극 조립체를 적층한 후, 이를 전해질에 함침시키고 얻어진 결과물을 전지 케이스에 넣어 밀봉하여 제조할 수도 있다.The lithium-sulfur secondary battery of the present invention may be prepared by disposing a separator between a positive electrode and a negative electrode to form an electrode assembly, and the electrode assembly may be placed in a cylindrical battery case or a prismatic battery case, and then an electrolyte is injected. Alternatively, after laminating the electrode assembly, the electrode assembly may be impregnated with an electrolyte, and the resulting product may be sealed by putting it in a battery case.

본 발명에 따른 리튬-황 이차전지는 하기 수학식 4로 표시되는 ED factor 값에 의해 구분된다. The lithium-sulfur secondary battery according to the present invention is classified by the ED factor value represented by Equation 4 below.

[수학식 4][Equation 4]

Figure pat00005
Figure pat00005

여기서, V는 Li/Li+에 대한 방전 공칭 전압(V)이고, D는 전해액의 밀도(g/㎤)이고, C는 0.1C rate로 방전 시 방전 용량(mAh/g)이며, SC factor는 상기 수학식 1에 의해 정의된 값과 동일하다. 상기 ED factor는 그 값이 높을수록 실제 리튬-황 이차전지에서 높은 에너지 밀도를 구현할 수 있다. 본 발명의 구체예에 따르면, 상기 ED factor 값은 850 이상, 바람직하게는 870 이상, 더욱 바람직하게는 891 이상 일 수 있다. 본 발명에 있어서, 상기 ED factor 값의 상한은 특별하게 제한되지 않지만, 실제 리튬-황 이차전지의 구현예를 고려해 볼 때, 상기 ED factor 값은 10,000 이하일 수 있다. 상기 ED factor 값의 범위는 본 발명에 따른 리튬-황 이차전지가 기존의 리튬-황 이차전지보다 더 향상된 에너지 밀도를 구현할 수 있음을 의미한다.Where V is the nominal discharge voltage for Li/Li + (V), D is the density of the electrolyte (g/cm 3 ), C is the discharge capacity (mAh/g) when discharging at a 0.1C rate, and the SC factor is It is the same as the value defined by Equation 1 above. The higher the value of the ED factor, the higher the energy density can be realized in the actual lithium-sulfur secondary battery. According to an embodiment of the present invention, the ED factor value may be 850 or more, preferably 870 or more, and more preferably 891 or more. In the present invention, the upper limit of the ED factor value is not particularly limited, but considering an embodiment of an actual lithium-sulfur secondary battery, the ED factor value may be 10,000 or less. The range of the ED factor value means that the lithium-sulfur secondary battery according to the present invention can realize an improved energy density than the conventional lithium-sulfur secondary battery.

본 발명은 또한, 리튬 이차전지용 양극의 제조방법에 관한 것이다.The present invention also relates to a method of manufacturing a positive electrode for a lithium secondary battery.

상기 리튬 이차전지용 양극의 제조방법은, (S1) 황-탄소 복합체를 황 용해용 용매에 담지하여 표면 개질된 황-탄소 복합체를 제조하는 단계; (S2) 상기 황-탄소 복합체, 바인더 및 도전재를 이용하여 양극 슬러리를 제조하는 단계; 및 (S3) 상기 양극 슬러리를 양극 집전체에 코팅 및 건조하는 단계;를 포함할 수 있다.The method of manufacturing a positive electrode for a lithium secondary battery includes: (S1) preparing a surface-modified sulfur-carbon composite by supporting a sulfur-carbon composite in a sulfur dissolving solvent; (S2) preparing a positive electrode slurry using the sulfur-carbon composite, a binder, and a conductive material; And (S3) coating and drying the positive electrode slurry on a positive electrode current collector.

상기 (S1) 단계의 표면 개질된 황-탄소 복합체의 제조는 앞서 설명한 바와 같은 (P1) 단계 및 (P2) 단계와 동일하다.The preparation of the surface-modified sulfur-carbon composite in step (S1) is the same as steps (P1) and (P2) as described above.

상기 (S2) 단계에서, 상기 양극 슬러리를 제조하기 위하여 사용된 바인더 및 도전재의 종류 및 사용량은 앞서 설명한 바와 동일하다. In the step (S2), the type and amount of the binder and the conductive material used to prepare the positive electrode slurry are the same as described above.

상기 양극 슬러리 제조시 사용하는 용매는 물(증류수), 메탄올, 에탄올, 이소프로필 알코올, 아세톤, 디메틸설폭사이드, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 아세트산, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸 및 프로피온산 에틸로 이루어진 군에서 선택되는 1종 이상일 수 있으며, 특히 물(증류수)이나 무수 알코올계 용매를 사용하는 경우, 양극 활물질 손상을 방지할 수 있어 바람직하다ㅣThe solvent used for preparing the positive electrode slurry is water (distilled water), methanol, ethanol, isopropyl alcohol, acetone, dimethyl sulfoxide, formamide, dimethylformamide, dioxolone, acetonitrile, nitromethane, acetic acid, methyl formate, Methyl acetate, phosphoric acid tryester, trimethoxy methane, dioxolone derivative, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ether, It may be one or more selected from the group consisting of methyl pyropionate and ethyl propionate. In particular, when using water (distilled water) or an anhydrous alcohol-based solvent, it is preferable to prevent damage to the positive electrode active material.

상기 양극 슬러리의 농도는 코팅 공정을 원활하게 수행할 수 있는 정도이면 특별히 제한되는 것은 아니다.The concentration of the positive electrode slurry is not particularly limited as long as it is such that the coating process can be smoothly performed.

상기 (S3) 단계에서는, 상기 양극 슬러리를 양극 집전체에 코팅 및 건조시켜, 양극 활물질층을 형성하여 리튬 이차전지를 제조할 수 있다.In the step (S3), the positive electrode slurry may be coated and dried on a positive electrode current collector to form a positive electrode active material layer to manufacture a lithium secondary battery.

본 발명에 따른 리튬 이차전지는, 일반적인 공정인 권취(winding) 이외에도 세퍼레이터와 전극의 적층(lamination, stack) 및 접음(folding) 공정이 가능하다.In the lithium secondary battery according to the present invention, in addition to winding, which is a general process, lamination, stacking, and folding of a separator and an electrode are possible.

그리고, 상기 전지케이스의 형상은 특별히 제한되지 않으며, 원통형, 적층형, 각형, 파우치(pouch)형 또는 코인(coin)형 등 다양한 형상으로 할 수 있다. 이들 전지의 구조와 제조 방법은 이 분야에 널리 알려져 있으므로 상세한 설명은 생략한다.Further, the shape of the battery case is not particularly limited, and may be in various shapes such as a cylindrical shape, a stacked type, a square shape, a pouch type, or a coin type. The structure and manufacturing method of these batteries are well known in this field, and thus detailed descriptions are omitted.

또한, 상기 리튬 이차전지는 사용하는 양극/음극 재질에 따라 리튬-황 이차전지, 리튬-공기 전지, 리튬-산화물 전지, 리튬 전고체 전지 등 다양한 전지로 분류가 가능하다.In addition, the lithium secondary battery can be classified into various batteries, such as lithium-sulfur secondary batteries, lithium-air batteries, lithium-oxide batteries, and lithium all-solid batteries, depending on the material of the positive electrode/cathode used.

본 발명은 또한, 상기 리튬 이차전지를 단위전지로 포함하는 전지모듈을 제공한다.The present invention also provides a battery module including the lithium secondary battery as a unit cell.

상기 전지모듈은 고온 안정성, 긴 사이클 특성 및 높은 용량 특성 등이 요구되는 중대형 디바이스의 전원으로 사용될 수 있다.The battery module can be used as a power source for medium and large-sized devices that require high temperature stability, long cycle characteristics, and high capacity characteristics.

상기 중대형 디바이스의 예로는 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(electric vehicle, EV), 하이브리드 전기자동차(hybrid electric vehicle, HEV), 플러그-인 하이브리드 전기자동차(plug-in hybrid electric vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.Examples of the medium and large-sized devices include a power tool that is powered by an omniscient motor and moves; Electric vehicles including electric vehicles (EV), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; Electric two-wheeled vehicles including electric bicycles (E-bikes) and electric scooters (E-scooters); Electric golf cart; Power storage systems, etc., but are not limited thereto.

이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, preferred embodiments are presented to aid the understanding of the present invention, but the following examples are only illustrative of the present invention, and it is obvious to those skilled in the art that various changes and modifications are possible within the scope and spirit of the present invention. It is natural that changes and modifications fall within the scope of the appended claims.

제조예Manufacturing example 1: 표면 개질된 황-탄소 복합체 제조 ( 1: Surface-modified sulfur-carbon composite preparation ( EtOHEtOH 처리군) Treatment group)

황과 케첸 블랙을 70 : 30 의 중량비로 혼합한 후, 155℃에서 30분 동안 열처리를 하여 황-탄소 복합체를 제조하였다,After mixing sulfur and Ketjen black at a weight ratio of 70:30, heat treatment was performed at 155° C. for 30 minutes to prepare a sulfur-carbon composite.

상기 황-탄소 복합체를 에탄올(EtOH)에 담지하고 유발믹싱을 진행한 후, 상기 EtOH을 건조시켜, EtOH 처리에 의해 표면 개질된 황-탄소 복합체를 제조하였다.After the sulfur-carbon complex was loaded in ethanol (EtOH) and induced mixing was performed, the EtOH was dried to prepare a sulfur-carbon complex surface-modified by EtOH treatment.

비교 compare 제조예Manufacturing example 1: 황-탄소 복합체 제조 ( 1: Preparation of sulfur-carbon composite ( EtOHEtOH 미처리군) Untreated)

황과 케첸 블랙을 70 : 30 의 중량비로 혼합한 후, 155℃에서 30분 동안 열처리를 하여 황-탄소 복합체를 제조하였다,After mixing sulfur and Ketjen black at a weight ratio of 70:30, heat treatment was performed at 155° C. for 30 minutes to prepare a sulfur-carbon composite.

실시예Example 1 One

(1)양극 제조(1) anode manufacturing

상기 제조예 1에서 제조된 표면 개질된 황-탄소 복합체(EtOH 처리군) 90 중량%, 바인더로서 스티렌부타디엔고무/ 카르복시메틸 셀룰로오스(SBR/CMC 7:3) 5 중량% 및 도전재로서 덴카블랙 5 중량%를 혼합하고, 물에 용해시켜 농도 (고형분 함량을 기준으로 한 농도 20%) 인 양극 슬러리를 제조하였다. 90% by weight of the surface-modified sulfur-carbon composite (EtOH treated group) prepared in Preparation Example 1, 5% by weight of styrene butadiene rubber/carboxymethyl cellulose (SBR/CMC 7:3) as a binder, and 5% by weight of Denka Black as a conductive material. The weight percent was mixed and dissolved in water to prepare a positive electrode slurry having a concentration (20% concentration based on the solid content).

상기 양극 슬러리를 알루미늄 집전체 상에 코팅하여 양극 활물질층을 형성하고, 건조 및 압연하여 양극을 제조하였다. 제조된 양극에서 전극 무게와 전극 두께(TESA사 TESA-μHITE 장비 이용)를 측정하여 계산된 양극 활물질 층의 공극률은 70%이었고, 양극 활물질 층의 단위 면적당 황의 질량은 4.7 mg/㎠이었다. 이를 기초로 계산된 SC factor 값은 0.67이었다.The positive electrode slurry was coated on an aluminum current collector to form a positive electrode active material layer, followed by drying and rolling to prepare a positive electrode. The porosity of the positive electrode active material layer calculated by measuring the electrode weight and electrode thickness (using TESA-μHITE equipment) in the prepared positive electrode was 70%, and the mass of sulfur per unit area of the positive electrode active material layer was 4.7 mg/cm 2. The SC factor value calculated based on this was 0.67.

(2)리튬-황 이차전지 제조(2) Manufacture of lithium-sulfur secondary battery

상술한 방법으로 제조한 양극과 음극을 대면하도록 위치시킨 후, 두께 20μm 기공도 45%의 폴리에틸렌 분리막을 상기 양극과 음극 사이에 개재하였다.After positioning the positive electrode and negative electrode prepared by the above-described method to face each other, a polyethylene separator having a thickness of 20 μm and a porosity of 45% was interposed between the positive electrode and the negative electrode.

그 후, 케이스 내부로 전해액을 주입하여 리튬-황 이차전지를 제조하였다. 이때 상기 전해액은, 유기 용매에 3.0M 농도의 리튬 비스(트리플루오르메틸 설포닐)이미드(LiTFSI)를 용해시켜 제조한 것이며, 상기 유기 용매는 프로피오니트릴(제1 용매)과 1H,1H,2'H,3H-데카플루오로디프로필 에테르(제2 용매)를 3:7 중량비(w/w)로 혼합한 용매인 것이다. 상기 제1 용매의 DV2는 0.39이다 (전해액: Propionitrile:1H,1H,2'H,3H-Decafluorodipropyl ether(3:7, w/w), 3.0M LiTFSI).After that, an electrolyte was injected into the case to prepare a lithium-sulfur secondary battery. At this time, the electrolyte was prepared by dissolving lithium bis (trifluoromethyl sulfonyl) imide (LiTFSI) at a concentration of 3.0 M in an organic solvent, and the organic solvent was propionitrile (first solvent) and 1H,1H, It is a solvent obtained by mixing 2'H,3H-decafluorodipropyl ether (second solvent) in a 3:7 weight ratio (w/w). DV 2 of the first solvent is 0.39 (electrolyte: Propionitrile:1H,1H,2'H,3H-Decafluorodipropyl ether (3:7, w/w), 3.0M LiTFSI).

비교예Comparative example 1 One

비교 제조예 1에서 제조된 황-탄소 복합체(EtOH 미처리군)를 사용하고, 전해액으로서 비교 전해액을 사용한 것을 제외하고, 실시예 1과 동일한 방법으로 리튬-황 이차전지를 제조하였다. 상기 비교 전해액은 유기 용매에 LiNO3를 1중량% 첨가하여 제조한 것으로, 상기 유기 용매는 DOL(디옥솔란)(제1 용매)과 DME(디메톡시에탄)(제2 용매)를 5:5 중량비로 혼합한 용매이다 (비교 전해액: DOL:DME(5:5, v/v), 1.0M LiTFSI, 1.0wt% LiNO3).A lithium-sulfur secondary battery was manufactured in the same manner as in Example 1, except that the sulfur-carbon composite (non-EtOH group) prepared in Comparative Preparation Example 1 was used, and a comparative electrolyte was used as an electrolyte. The comparative electrolyte is prepared by adding 1% by weight of LiNO 3 to an organic solvent, and the organic solvent is a 5:5 weight ratio of DOL (dioxolane) (first solvent) and DME (dimethoxyethane) (second solvent) (Comparative electrolyte: DOL:DME (5:5, v/v), 1.0M LiTFSI, 1.0wt% LiNO 3 ).

비교예Comparative example 2 2

비교 전해액을 사용한 것을 제외하고, 실시예 1과 동일한 방법으로 리튬-황 이차전지를 제조하였다. 상기 비교 전해액은 유기 용매에 LiNO3를 1중량% 첨가하여 제조한 것으로, 상기 유기 용매는 DOL(디옥솔란)(제1 용매)과 DME(디메톡시에탄)(제2 용매)를 5:5 중량비로 혼합한 용매이다 (비교 전해액: DOL:DME(5:5, v/v), 1.0M LiTFSI, 1.0wt% LiNO3).A lithium-sulfur secondary battery was manufactured in the same manner as in Example 1, except that a comparative electrolyte was used. The comparative electrolyte is prepared by adding 1% by weight of LiNO 3 to an organic solvent, and the organic solvent is a 5:5 weight ratio of DOL (dioxolane) (first solvent) and DME (dimethoxyethane) (second solvent) (Comparative electrolyte: DOL:DME (5:5, v/v), 1.0M LiTFSI, 1.0wt% LiNO 3 ).

비교예Comparative example 3 3

비교 제조예 1에서 제조된 황-탄소 복합체(EtOH 미처리군)를 사용한 것을 제외하고, 실시예 1과 동일한 방법으로 리튬-황 이차전지를 제조하였다. A lithium-sulfur secondary battery was manufactured in the same manner as in Example 1, except that the sulfur-carbon composite (EtOH untreated group) prepared in Comparative Preparation Example 1 was used.

실험예Experimental example 1 One

제조예 1 및 비교 제조예 1에서 각각 제조된 표면 개질된 황-탄소 복합체(EtOH 처리군) 및 황-탄소 복합체(EtOH 미처리군)의 표면 형상, 비표면적, 기공도 및 열중량분석에 대한 실험을 실시하였다.Experiments on surface shape, specific surface area, porosity, and thermogravimetric analysis of the surface-modified sulfur-carbon composite (EtOH treatment group) and sulfur-carbon composite (EtOH untreated group) prepared in Preparation Example 1 and Comparative Preparation Example 1, respectively Was carried out.

(1)표면 형상 관찰(1) Observation of surface shape

도 1은 제조예 1 및 비교 제조예 1에서 각각 제조된 표면 개질된 황-탄소 복합체(EtOH 처리군) 및 황-탄소 복합체(EtOH 미처리군)의 주사전사현미경(SEM) 사진이다. 1 is a scanning transfer microscope (SEM) photograph of the surface-modified sulfur-carbon composite (EtOH-treated group) and sulfur-carbon composite (non-EtOH-treated group) prepared in Preparation Example 1 and Comparative Preparation Example 1, respectively.

도 1을 참조하면, 비교 제조예 1에 비해 제조예 1의 황-탄소 복합체는 EtOH 처리에 의해, 황-탄소 복합체 표면에 뭉쳐있는 형태의 황이 감소한 것을 알 수 있다.Referring to FIG. 1, compared to Comparative Preparation Example 1, it can be seen that the sulfur-carbon composite of Preparation Example 1 reduced the amount of sulfur aggregated on the surface of the sulfur-carbon composite by EtOH treatment.

(2) 비표면적과 기공도(2) Specific surface area and porosity

도 2a 및 도 2b는 각각 제조예 1 및 비교 제조예 1에서 각각 제조된 표면 개질된 황-탄소 복합체(EtOH 처리군) 및 황-탄소 복합체(EtOH 미처리군)의 비표면적 및 기공도 측정 결과에 대한 그래프이다. 이때, 비표면적(Surface area) 및 기공도(Total pore volume)는 BJH(barrettjoyner-halenda)법을 이용하여 측정하였다. 상기 BET 비표면적 및 기공도는 해당 기술 분야에서 일반적으로 알려진 방법에 의해 측정될 수 있으며, 구체적으로는 Microtrac BET 사 BELSORP-max 장비를 이용하여 액체 질소 온도 하(77K)에서의 질소가스 흡착량으로부터 산출할 수 있다.2A and 2B show the specific surface area and porosity measurement results of the surface-modified sulfur-carbon composites (EtOH treated group) and sulfur-carbon composites (EtOH untreated group) prepared in Preparation Example 1 and Comparative Preparation Example 1, respectively. It is a graph for. At this time, the specific surface area and the total pore volume were measured using the barrettjoyner-halenda (BJH) method. The BET specific surface area and porosity can be measured by methods generally known in the art. Specifically, from the amount of nitrogen gas adsorption under liquid nitrogen temperature (77K) using the BELSORP-max equipment of Microtrac BET Can be calculated.

도 2a 및 도 2b를 참조하면, 제조예 1의 표면 개질된 황-탄소 복합체(EtOH 처리군)은 비교 제조예 1의 황-탄소 복합체(EtOH 미처리군)에 비해 비표면적 및 기공도가 증가한 것을 알 수 있다. 구체적인 증가율은 하기 표 1에 나타난 바와 같다.2A and 2B, the surface-modified sulfur-carbon composite (EtOH-treated group) of Preparation Example 1 increased the specific surface area and porosity compared to the sulfur-carbon composite (non-EtOH-treated group) of Comparative Preparation Example 1. Able to know. The specific increase rate is as shown in Table 1 below.

비교 제조예 1Comparative Preparation Example 1 제조예 1Manufacturing Example 1 Surface area
(㎡/g)
Surface area
(㎡/g)
측정치Measure 33.18633.186 42.73542.735
증가율Rate of increase -- 1.291.29 Total pore volume
(㎤/g)
Total pore volume
(Cm 3 /g)
측정치Measure 0.37030.3703 0.4590.459
증가율Rate of increase -- 1.241.24

(3) 열중량분석(3) Thermogravimetric analysis

도 3은 제조예 1 및 비교 제조예 1에서 각각 제조된 표면 개질된 황-탄소 복합체(EtOH 처리군) 및 황-탄소 복합체(EtOH 미처리군)에 대한 열중량분석(TGA, thermogravimetric analysis) 결과를 나타낸 그래프이다.3 is a thermogravimetric analysis (TGA, thermogravimetric analysis) results for the surface-modified sulfur-carbon composite (EtOH-treated group) and sulfur-carbon composite (non-EtOH-treated group) prepared in Preparation Example 1 and Comparative Preparation Example 1, respectively. This is the graph shown.

도 3을 참조하면, 제조예 1 및 비교 제조예 1에서 각각 제조된 표면 개질된 황-탄소 복합체(EtOH 처리군) 및 황-탄소 복합체(EtOH 미처리군)의 황 함량의 차이가 없으며, 이로부터 EtOH 처리에 의한 황의 손실은 없다는 것을 알 수 있다.Referring to Figure 3, there is no difference in the sulfur content of the surface-modified sulfur-carbon composite (EtOH treated group) and sulfur-carbon composite (EtOH untreated group) prepared in Preparation Example 1 and Comparative Preparation Example 1, respectively, from this It can be seen that there is no loss of sulfur by the EtOH treatment.

실험예Experimental example 2 2

실시예 및 비교예에서 각각 제조된 양극 및 이차전지에 대한 조건을 정리하여 하기 표 2에 나타내었다.The conditions for the positive electrode and secondary battery each prepared in Examples and Comparative Examples are summarized in Table 2 below.

실시예 및 비교예에서 제조된 전지의 성능을 충방전 측정 장치(LAND CT-2100A, 우한(Wuhan), 중국)를 이용하여 평가하였다. 0.1C-rate에서 3회, 이후 0.3C-rate에서 충전 및 방전하여 전지 성능을 평가하였으며, 첫 방전 결과에 대해 수학식 4에 정의된 바와 같이 ED factor를 계산하였다. 상기 계산된 결과를 표 2에 나타내었다.The performance of the batteries prepared in Examples and Comparative Examples was evaluated using a charge/discharge measuring device (LAND CT-2100A, Wuhan, China). Battery performance was evaluated by charging and discharging three times at 0.1C-rate and then at 0.3C-rate, and the ED factor was calculated as defined in Equation 4 for the first discharge result. Table 2 shows the calculated results.

EtOH
처리여부
EtOH
Whether to process
전해액Electrolyte SC factor SC factor DV2 factorDV 2 factor NS factorNS factor ED factorED factor
비교예 1Comparative Example 1 XX 비교 전해액Comparison electrolyte 0.670.67 2.072.07 3.093.09 12901290 비교예 2Comparative Example 2 0.680.68 2.072.07 3.043.04 13351335 비교예 3Comparative Example 3 XX 전해액Electrolyte 0.670.67 0.390.39 0.580.58 14431443 실시예 1Example 1 0.670.67 0.390.39 0.580.58 14501450 비교 전해액: DOL:DME(5:5, v/v), 1.0M LiTFSI, 1.0wt% LiNO3
전해액: Propionitrile:1H,1H,2'H,3H-Decafluorodipropyl ether(3:7, w/w), 3.0M LiTFSI
Comparative electrolyte: DOL:DME(5:5, v/v), 1.0M LiTFSI, 1.0wt% LiNO 3
Electrolyte: Propionitrile:1H,1H,2'H,3H-Decafluorodipropyl ether (3:7, w/w), 3.0M LiTFSI

상기 표 2를 참조하면, EtOH 처리된 황-탄소 복합체와 전해액(DV2 factor 값이 1.5 이하인 제1 용매; 및 불소화된 에테르계 용매인 제2 용매를 포함하는 전해액)을 함께 사용하는 실시예 1의 ED factor가 높은 것으로 나타났다.Referring to Table 2, Example 1 in which an EtOH-treated sulfur-carbon composite and an electrolyte (a first solvent having a DV 2 factor value of 1.5 or less; and an electrolyte including a second solvent that is a fluorinated ether-based solvent) are used together. Showed high ED factor.

도 4는 실시예 1 및 비교예 1 내지 3에서 각각 제조된 리튬-황 이차전지에 대한 수명 특성 실험 결과이다.4 is a result of a life characteristic experiment for lithium-sulfur secondary batteries prepared in Example 1 and Comparative Examples 1 to 3, respectively.

도 4를 참조하면, EtOH 처리된 황-탄소 복합체와 전해액(DV2 factor 값이 1.5 이하인 제1 용매; 및 불소화된 에테르계 용매인 제2 용매를 포함하는 전해액)을 함께 사용하는 실시예 1의 수명 특성이 가장 좋은 것으로 나타났다.Referring to FIG. 4, in Example 1, in which an EtOH-treated sulfur-carbon composite and an electrolyte (a first solvent having a DV 2 factor value of 1.5 or less; and an electrolyte including a second solvent that is a fluorinated ether-based solvent) are used together. It was found that the lifetime characteristics were the best.

이와 같은 결과를 통해, EtOH 처리된 황-탄소 복합체는 전해액(DV2 factor 값이 1.5 이하인 제1 용매; 및 불소화된 에테르계 용매인 제2 용매를 포함하는 전해액)에서 더 효과적인 성능을 나타낸다는 것을 알 수 있다.Through these results, it was found that the EtOH-treated sulfur-carbon complex exhibits more effective performance in an electrolyte (a first solvent having a DV 2 factor value of 1.5 or less; and an electrolyte including a second solvent, which is a fluorinated ether-based solvent). Able to know.

이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다. In the above, although the present invention has been described by limited embodiments and drawings, the present invention is not limited thereto, and the technical idea of the present invention and the following description by those of ordinary skill in the art to which the present invention pertains. It goes without saying that various modifications and variations are possible within the equivalent range of the claims to be made.

Claims (13)

탄소재에 황이 담지된 황-탄소 복합체에 있어서,
상기 황-탄소 복합체의 비표면적은 10 내지 60 ㎡/g이고, 기공부피는 0.3 내지 1.0 ㎤/g인 황-탄소 복합체.
In the sulfur-carbon composite in which sulfur is supported on a carbon material,
The sulfur-carbon composite has a specific surface area of 10 to 60 m 2 /g and a pore volume of 0.3 to 1.0 cm 3 /g.
제1항에 있어서,
상기 황과 탄소재는 55 ~ 90 : 45 ~ 10 의 중량비로 포함된 것인, 황-탄소 복합체.
The method of claim 1,
The sulfur and the carbon material is 55 to 90: that is contained in a weight ratio of 45 to 10, sulfur-carbon composite.
(P1) 황과 탄소재를 혼합하여 열처리하는 단계; 및
(P2) 상기 (P1) 단계에서 얻은 황-탄소 복합체를 황 용해용 용매에 담지시켜 표면 개질하는 단계;
를 포함하는, 황-탄소 복합체의 제조방법.
(P1) heat-treating by mixing sulfur and a carbon material; And
(P2) surface modification by supporting the sulfur-carbon composite obtained in step (P1) in a solvent for dissolving sulfur;
Containing, sulfur-carbon composite manufacturing method.
제3항에 있어서,
상기 황 용해용 용매는 에탄올, 아세톤 및 CS2으로 이루어진 군에서 선택된 1종 이상을 포함하는 것인, 황-탄소 복합체의 제조방법.
The method of claim 3,
The sulfur dissolving solvent comprises one or more selected from the group consisting of ethanol, acetone, and CS 2 , sulfur-carbon composite manufacturing method.
양극; 음극; 이들 사이에 개재된 분리막; 및 전해액을 포함하는 리튬 이차전지로서,
상기 양극은 제1항의 황-탄소 복합체를 포함하고,
상기 전해액은 용매 및 리튬염을 포함하며,
상기 용매는,
하기 수학식 1로 표시되는 DV2 factor 값이 1.5 이하인 제1 용매; 및
불소화된 에테르계 용매인 제2 용매를 포함하는 것인, 리튬 이차전지:
[수학식 1]
Figure pat00006

여기서, DV는 단위 부피당 쌍극자 모멘트(D·mol/L)이고, μ는 용매의 점도(cP)이며, γ는 100(상수)이다.
anode; cathode; A separator interposed therebetween; And as a lithium secondary battery comprising an electrolyte,
The positive electrode comprises the sulfur-carbon composite of claim 1,
The electrolyte solution contains a solvent and a lithium salt,
The solvent is,
A first solvent having a DV 2 factor of 1.5 or less represented by Equation 1 below; And
A lithium secondary battery comprising a second solvent that is a fluorinated ether-based solvent:
[Equation 1]
Figure pat00006

Here, DV is the dipole moment per unit volume (D·mol/L), μ is the viscosity (cP) of the solvent, and γ is 100 (constant).
제5항에 있어서,
상기 양극은 하기 수학식 2로 표시되는 SC factor 값이 0.45 이상인, 리튬 이차전지:
[수학식 2]
Figure pat00007

여기서, P는 양극 내 양극 활물질 층의 공극률(%)이고, L은 양극 내 양극 활물질 층의 단위 면적당 황의 질량(mg/㎠)이며, α는 10(상수)이다.
The method of claim 5,
The positive electrode has an SC factor value of 0.45 or more represented by Equation 2 below:
[Equation 2]
Figure pat00007

Here, P is the porosity (%) of the positive electrode active material layer in the positive electrode, L is the mass of sulfur per unit area of the positive electrode active material layer in the positive electrode (mg/cm2), and α is 10 (constant).
제5항 또는 제6항에 있어서,
상기 리튬 이차전지는 하기 수학식 3으로 표시되는 NS factor 값이 3.5 이하인, 리튬 이차전지:
[수학식 3]
Figure pat00008

여기서, SC factor는 상기 수학식 2에 의해 정의된 값과 동일하고, DV2 factor는 상기 수학식 1에 의해 정의된 값과 동일하다.
The method according to claim 5 or 6,
The lithium secondary battery has an NS factor value of 3.5 or less represented by Equation 3 below:
[Equation 3]
Figure pat00008

Here, the SC factor is the same as the value defined by Equation 2, and the DV 2 factor is the same as the value defined by Equation 1 above.
제5항 또는 제6항에 있어서,
상기 리튬 이차전지는 하기 수학식 4로 표시되는 ED factor 값이 850 이상인, 리튬 이차전지:
[수학식 4]
Figure pat00009

여기서, V는 Li/Li+에 대한 방전 공칭 전압(V)이고, D는 전해액의 밀도(g/㎤)이고, C는 0.1C rate로 방전 시 방전 용량(mAh/g)이며, SC factor는 상기 수학식 2에 의해 정의된 값과 동일하다.
The method of claim 5 or 6,
The lithium secondary battery has an ED factor value of 850 or more represented by Equation 4 below:
[Equation 4]
Figure pat00009

Where V is the nominal discharge voltage for Li/Li + (V), D is the density of the electrolyte (g/cm 3 ), C is the discharge capacity (mAh/g) when discharging at a 0.1C rate, and the SC factor is It is the same as the value defined by Equation 2 above.
제5항에 있어서,
상기 제1 용매는 프로피오니트릴, 디메틸아세트아미드, 디메틸포름아미드, 감마-부티로락톤, 트리에틸아민, 1-아이오도프로판 및 이의 조합으로 이루어진 군으로부터 선택되는 것인, 리튬 이차전지.
The method of claim 5,
The first solvent is selected from the group consisting of propionitrile, dimethylacetamide, dimethylformamide, gamma-butyrolactone, triethylamine, 1-iodopropane, and combinations thereof.
제5항에 있어서,
상기 제2 용매는 1H,1H,2'H,3H-데카플루오로디프로필 에테르, 디플루오로메틸 2,2,2-트리플루오로에틸 에테르, 1,2,2,2-테트라플루오로에틸 트리플루오로메틸 에테르, 1,1,2,3,3,3-헥사플루오로프로필 디플루오로메틸 에테르, 1H,1H,2'H,3H-데카플루오로디프로필 에테르, 펜타플루오로에틸 2,2,2-트리플루오로에틸 에테르, 1H,1H,2'H-퍼플루오로디프로필 에테르 및 이의 조합으로 이루어진 군으로부터 선택되는 것인, 리튬 이차전지.
The method of claim 5,
The second solvent is 1H,1H,2'H,3H-decafluorodipropyl ether, difluoromethyl 2,2,2-trifluoroethyl ether, 1,2,2,2-tetrafluoroethyl tri Fluoromethyl ether, 1,1,2,3,3,3-hexafluoropropyl difluoromethyl ether, 1H,1H,2'H,3H-decafluorodipropyl ether, pentafluoroethyl 2,2 ,2-trifluoroethyl ether, 1H,1H,2'H-perfluorodipropyl ether, and a lithium secondary battery selected from the group consisting of a combination thereof.
제5항에 있어서,
상기 용매는 제1 용매를 1 내지 50 중량% 포함하는 것인, 리튬 이차전지.
The method of claim 5,
The solvent is a lithium secondary battery containing 1 to 50% by weight of the first solvent.
제5항에 있어서,
상기 용매는 제2 용매를 50 내지 99 중량% 포함하는 것인, 리튬 이차전지.
The method of claim 5,
The solvent is a lithium secondary battery containing 50 to 99% by weight of the second solvent.
제5항에 있어서,
상기 용매는 3:7 내지 1:9 중량비로 제1 용매 및 제2 용매를 포함하는 것인, 리튬 이차전지.
The method of claim 5,
The solvent comprises a first solvent and a second solvent in a weight ratio of 3:7 to 1:9, a lithium secondary battery.
KR1020190059226A 2019-05-21 2019-05-21 Surfur-carbon complex and lithium secondary battery comprising the same KR20200134354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190059226A KR20200134354A (en) 2019-05-21 2019-05-21 Surfur-carbon complex and lithium secondary battery comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190059226A KR20200134354A (en) 2019-05-21 2019-05-21 Surfur-carbon complex and lithium secondary battery comprising the same

Publications (1)

Publication Number Publication Date
KR20200134354A true KR20200134354A (en) 2020-12-02

Family

ID=73791732

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190059226A KR20200134354A (en) 2019-05-21 2019-05-21 Surfur-carbon complex and lithium secondary battery comprising the same

Country Status (1)

Country Link
KR (1) KR20200134354A (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Online ISBN 978-981-10-3406-0 (Zhou Chapter 2. Revealing Localized Electrochemical Transition of Sulfur in Sub-nanometer Confinement)

Similar Documents

Publication Publication Date Title
JP7196304B2 (en) Lithium-sulfur secondary battery
KR20200047365A (en) Lithium-sulfur secondary battery
KR20200060258A (en) Lithium-sulfur secondary battery
KR20200129546A (en) Lithium-sulfur secondary battery
KR20210112026A (en) Lithium-sulfur secondary battery
KR20210010334A (en) Lithium-sulfur secondary battery
EP4138169A1 (en) Lithium secondary battery
KR102567965B1 (en) Lithium secondary battery
EP3985776A1 (en) Lithium-sulfur battery electrolyte and lithium-sulfur battery including same
EP3863089A1 (en) Lithium secondary battery
KR20220136099A (en) Lithium secondary battery
KR20200073120A (en) Lithium-sulfur secondary battery
KR20220056334A (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising thereof
KR20200117752A (en) Lithium-sulfur secondary battery
KR20200134354A (en) Surfur-carbon complex and lithium secondary battery comprising the same
KR102663586B1 (en) Lithium-sulfur secondary battery
JP7427025B2 (en) lithium secondary battery
US20210399294A1 (en) Lithium secondary battery
US20220384849A1 (en) Electrolyte for lithium-sulfur battery, and lithium-sulfur battery including same
US20220263136A1 (en) Lithium-sulfur battery electrolyte and lithium-sulfur battery comprising same
KR20200110160A (en) Lithium secondary battery
JP7193627B2 (en) lithium secondary battery
KR20200089237A (en) Lithium secondary battery
KR20230074882A (en) Negative electrode for lithium secondary battery and lithium secondary comprising the same
KR20210010335A (en) Lithium-sulfur secondary battery

Legal Events

Date Code Title Description
E902 Notification of reason for refusal