KR20200048511A - Electrode active material for lithium secondary battery and lithium secondary battery using the same - Google Patents

Electrode active material for lithium secondary battery and lithium secondary battery using the same Download PDF

Info

Publication number
KR20200048511A
KR20200048511A KR1020180130676A KR20180130676A KR20200048511A KR 20200048511 A KR20200048511 A KR 20200048511A KR 1020180130676 A KR1020180130676 A KR 1020180130676A KR 20180130676 A KR20180130676 A KR 20180130676A KR 20200048511 A KR20200048511 A KR 20200048511A
Authority
KR
South Korea
Prior art keywords
secondary battery
lithium secondary
active material
electrode active
single molecule
Prior art date
Application number
KR1020180130676A
Other languages
Korean (ko)
Other versions
KR102162231B1 (en
Inventor
박수영
권지언
민동주
이규남
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Priority to KR1020180130676A priority Critical patent/KR102162231B1/en
Publication of KR20200048511A publication Critical patent/KR20200048511A/en
Application granted granted Critical
Publication of KR102162231B1 publication Critical patent/KR102162231B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • H01M2/1653
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to an electrode active material for a lithium secondary battery and a lithium secondary battery using the same. More specifically, the electrode active material for a lithium secondary battery is manufactured using an organic compound based on tetrazine single molecule. The electrode active material for a lithium secondary battery made of a tetrazine single molecule-based organic compound enables easy control of the reduction potential while stable lithium redox is possible, thereby having excellent dissolution resistance.

Description

리튬이차전지용 전극활물질 및 그것을 이용한 리튬이차전지 {ELECTRODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY USING THE SAME}Electrode active material for lithium secondary battery and lithium secondary battery using the same {ELECTRODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY USING THE SAME}

개시된 내용은 리튬이차전지용 전극활물질 및 그것을 이용한 리튬이차전지에 관한 것으로, 더욱 상세하게는 안정적인 산화환원이 가능한 유기 화합물을 활용한 신규 전극활물질, 이를 포함한 우수한 용해저항성을 갖는 신규 복합 전극활물질 및 그것을 이용한 리튬이차전지에 관한 것이다.Disclosed is an electrode active material for a lithium secondary battery and a lithium secondary battery using the same, and more specifically, a new electrode active material using an organic compound capable of stable redox, a new composite electrode active material having excellent dissolution resistance including the same, and using the same It relates to a lithium secondary battery.

최근에는 휴대전화나 랩탑 컴퓨터 등과 같은 휴대 전자기기를 비롯해 다방면에서 리튬이차전지가 사용되고 있는데, 특히 환경문제에 대한 관심이 커짐에 따라 대기오염의 주요원인 중 하나인 가솔린 차량, 디젤 차량 등 화석 연료를 사용하는 차량을 대체할 수 있는 전기자동차의 구동원으로서 높은 에너지 밀도와 방전 전압을 갖는 리튬이차전지에 대한 연구가 활발히 진행되고 있으며, 일부는 상용화 단계에 있다.Recently, lithium secondary batteries have been used in various fields including portable electronic devices such as mobile phones and laptop computers. Especially, as interest in environmental problems has increased, fossil fuels such as gasoline vehicles and diesel vehicles, which are one of the main causes of air pollution, have been used. Research into lithium secondary batteries having high energy density and discharge voltage as driving sources for electric vehicles that can replace used vehicles has been actively conducted, and some are in the commercialization stage.

기존에는 금속산화물 기반의 리튬 이차전지가 많은 발전을 이루며 상업적으로 성공해왔지만 Energy Storage System(ESS), Electric Vehicle 산업의 성장으로 더욱 높은 수치의 에너지밀도가 요구되고 있는 시점에서 금속산화물 리튬 이차 전지의 이론용량 한계와 한정된 양의 희귀금속을 이용해야 된다는 점 그리고 중금속 사용에 따른 환경 문제가 대두되고 있다.In the past, metal oxide-based lithium secondary batteries have been commercially successful with many developments, but the growth of the Energy Storage System (ESS) and Electric Vehicle industries has led to the demand for higher levels of energy density. The theoretical capacity limit, the limited amount of rare metals must be used, and the environmental problems of heavy metals are emerging.

한편 리튬이차전지를 이러한 전기자동차의 구동원으로 사용하기 위해서는 높은 출력과 더불어 넓은 구간의 충전상태(SOC: State Of Charge)에서 안정적으로 출력을 유지할 수 있어야 한다.On the other hand, in order to use a lithium secondary battery as a driving source of such an electric vehicle, it must be able to stably maintain the output in a wide state of charge (SOC) in addition to high output.

고용량 리튬이차전지의 양극재로서, 기존의 대표적 양극물질인 LiCoO2의 경우 에너지 밀도의 증가와 출력 특성의 실용 한계치에 도달하고 있고, 특히 고에너지 밀도 응용 분야에 사용될 경우 그 구조적 불안정성으로 인하여 고온 충전상태에서 구조 변성과 더불어 구조 내의 산소를 방출하여 전지 내의 전해질과 발열 반응을 일으켜 전지폭발의 주원인이 된다. 이러한 LiCoO2의 안전성 문제를 개선하기 위하여 층상 결정구조의 LiMnO2, 스피넬 결정구조의 LiMn2O4 등 리튬함유 망간산화물과 LiNiO2 등 리튬함유 니켈산화물의 사용이 고려되어 왔으며, 최근에는 고용량의 재료로서 층상 구조의 리튬망간산화물에 필수 전이금속으로 망간(Mn)을 다른 전이 금속들(리튬 제외)보다 다량으로 첨가하는 리튬망간산화물(이하, "Mn-rich"로도 약칭함)에 대해 많은 연구가 진행되고 있다.As a positive electrode material for a high capacity lithium secondary battery, LiCoO 2 , which is a typical representative positive electrode material, has reached the practical limit of increase in energy density and output characteristics, especially when used in high energy density applications, due to its structural instability, charging at high temperature In the state, it releases oxygen in the structure in addition to structural modification, causing an exothermic reaction with the electrolyte in the cell, which is the main cause of the battery explosion. In order to improve the safety problems of LiCoO 2, the use of lithium-containing manganese oxides such as LiMnO 2 in a layered crystal structure and LiMn 2 O 4 in a spinel crystal structure and a nickel-containing nickel oxide such as LiNiO 2 have been considered, and recently, high-capacity materials As a necessary transition metal to layered lithium manganese oxide, many studies have been conducted on lithium manganese oxide (hereinafter abbreviated as "Mn-rich") in which manganese (Mn) is added in a larger amount than other transition metals (excluding lithium). Is going on.

또한, 상기의 리튬망간산화물 외에도 더 좋은 성능을 내면서 낮은 가격으로 생산이 가능한 유기화합물 기반의 활물질을 리튬 이차 전지에 적용하고자 하는 연구가 증대되고 있고 현재도 활발하게 연구가 이루어지고 있는데, 희귀금속들에 비해 비교적 저렴하고 친환경적인 유기화합물 활물질에 대한 연구들이 진행되어져 왔고 일부 물질군의 경우는 상업화에 근접하기도 하였다.In addition, research to apply an organic compound-based active material capable of producing at a low price while exhibiting better performance in addition to the lithium manganese oxide has been increasing, and research is currently actively conducted. Compared to this, studies have been conducted on relatively inexpensive and environmentally friendly organic compound active materials, and some material groups have approached commercialization.

가장 대표적인 유기화합물 활물질은 카르보닐 물질군으로 벤조퀴논의 경우 500mAh/g에 달하는 높은 이론 용량을 갖지만, 분자량이 매우 작아서 전해질에 잘 용해되어서 상용화 되기에는 무리가 있다. 에너지 밀도 측면에서 보아도 아직까지 금속산화물 활물질을 대체할 만한 수준에 이르지 못하였기 때문에 새로운 활물군에 관한 연구가 필요하며, 더 발전된 고성능의 이차전지가 점차 요구되고 있는 만큼 더 높은 에너지 밀도의 전지가 요구되고 있다.The most representative organic compound active material is a group of carbonyl materials, which has a high theoretical capacity of 500 mAh / g in the case of benzoquinone, but has a very small molecular weight and is difficult to commercialize because it is well dissolved in an electrolyte. In terms of energy density, it has not yet reached a level that can replace the metal oxide active material, so research on a new active group is needed, and a battery with a higher energy density is required as more advanced high-performance secondary batteries are gradually required. Is becoming.

미국특허공개 US 20170226270호에 질소를 다수 함유하고 있고 고에너지를 갖는 테트라진 고분자들의 대한 기재가 있으나, 테트라진을 기본구조로 하는 다양한 고분자들에 대해 구조를 보고하고 간단한 합성조건에 대해서만 기재되어 있고, 미국특허공개 US 20170358748호에는 래더 테트라진 폴리머와 래더 테트라진 폴리머를 합성하는 방법이 기술되어 있으며, 유기태양전지의 활동층의 성분으로서 이용될 수 있다고 기재되어 있으나, 리튬 이차 전지로의 응용이 아닌 유기태양전지 활동층으로의 가능성만을 제시하고 있다.US Patent Publication No. US 20170226270 describes a large number of nitrogen-containing and high-energy tetrazine polymers, but reports the structure of various polymers based on tetrazine and describes only simple synthesis conditions. , US Patent Publication No. US 20170358748 describes a method for synthesizing a ladder tetrazine polymer and a ladder tetrazine polymer, and is described as being able to be used as a component of the active layer of an organic solar cell. Rather, it presents only the potential as an active layer of organic solar cells.

또한, 논문 Tetrahedron, 2007, 63, 11189에는 테트라진과 피리딘으로 이루어진 선형고분자, hyperbranced 고분자 및 그 합성법을 보고되어 있으나, 리튬 이차 전지가 아닌 building block이나 질소를 다량 포함하는 고에너지 물질로의 응용 가능성을 제시하였고, 논문 J. Mater. Chem. A, 2016, 4, 11491-11497에는 나프탈이미드를 기반으로 하는 선형고분자를 합성 및 소듐 이차 전지로의 특성을 평가하는 내용이 기재되어 있으나, 테트라진이 아닌 안트라센과 나프탈이미드로 구성된 선형고분자를 합성하였고 적용분야가 리튬이차전지가 아닌 소듐이차전지로 기재되어 차이점이 있다.In addition, in the paper Tetrahedron, 2007, 63, 11189, a linear polymer composed of tetrazine and pyridine, a hyperbranced polymer, and a synthesis method thereof are reported, but the possibility of application as a high energy material containing a large amount of building block or nitrogen rather than a lithium secondary battery And J. Mater. Chem. A, 2016, 4, 11491-11497 describes the synthesis of naphthalimide-based linear polymers and evaluation of properties of sodium secondary batteries, but is composed of anthracene and naphthalimide rather than tetrazine. The polymer is synthesized and the application field is described as a sodium secondary battery rather than a lithium secondary battery.

개시된 내용은 안정적인 산화환원이 가능함과 동시에 환원전위의 조절이 용이하며, 우수한 용해저항성을 갖는 전극활물질 및 그것을 이용한 리튬이차전지를 제공하는 것이다.Disclosed is to provide an electrode active material having excellent dissolution resistance, and a lithium secondary battery using the same, which is capable of stable redox and easy to control the reduction potential.

하나의 일 실시예로서 이 개시의 내용은 하기 화학식 1로 표기되는 테트라진 유도체 단분자를 기반으로 하는 리튬이차전지용 전극활물질에 대해 기술하고 있다.As one embodiment, the content of this disclosure describes an electrode active material for a lithium secondary battery based on a single molecule of a tetrazine derivative represented by Formula 1 below.

[화학식 1][Formula 1]

Figure pat00001
Figure pat00001

상기 화학식 1에서 R1 및 R2는 서로 같거나 다른 치환기이며, 상기 화학식 1에서 R1 및 R2는 각각 독립적으로 알콕시, 페닐, 헤테로고리 방향족 화합물, 클로린, 카르복실기 및 -COOM으로 이루어진 그룹 중에서 선택될 수 있으며, 상기 M은 금속양이온이다.In Formula 1, R 1 and R 2 are the same or different substituents, and in Formula 1, R 1 and R 2 are each independently selected from the group consisting of alkoxy, phenyl, heterocyclic aromatic compound, chlorine, carboxyl group, and -COOM. M is a metal cation.

바람직하기로는, 상기 헤테로고리 방향족 화합물은 피리딘, 피리미딘, 티오펜, 퓨란, 피롤 및 이미다졸로 이루어진 그룹에서 선택된 하나 이상의 화합물일 수 있다.Preferably, the heterocyclic aromatic compound may be one or more compounds selected from the group consisting of pyridine, pyrimidine, thiophene, furan, pyrrole and imidazole.

더 바람직하기로는, 상기 전극활물질은 다공성 탄소 재료를 더 포함할 수 있다.More preferably, the electrode active material may further include a porous carbon material.

더욱 바람직하기로는, 상기 테트라진 유도체 단분자와 다공성 탄소 재료는 무게비가 1:0.5 내지 2로 이루어질 수 있다.More preferably, the tetraazine derivative single molecule and the porous carbon material may have a weight ratio of 1: 0.5 to 2.

더욱 더 바람직하기로는, 상기 테트라진 유도체 단분자와 다공성 탄소 재료는 무게비가 1:2로 이루어질 수 있다.Even more preferably, the tetraazine derivative single molecule and the porous carbon material may have a weight ratio of 1: 2.

더욱 더 바람직하기로는, 상기 다공성 탄소 재료는 CMK-3로 이루어질 수 있다.Even more preferably, the porous carbon material may be made of CMK-3.

다른 실시예로서 이 개시의 내용은 상기 테트라진 단분자가 코팅된 알루미늄 호일로 이루어진 것을 특징으로 하는 리튬이차전지용 양극에 대해 기술하고 있다.As another example, the content of this disclosure describes a positive electrode for a lithium secondary battery, characterized in that the tetrazine single molecule is made of aluminum foil coated.

바람직하기로는, 상기 리튬이차전지용 양극은 상기 테트라진 단분자, Super-P 및 폴리비닐리덴플루오라이드를 다이메틸폼아마이드에 혼합하여 혼합물을 제조한 후에, 상기 혼합물을 알루미늄 호일에 코팅하고, 건조하여 제조될 수 있다.Preferably, the positive electrode for a lithium secondary battery is prepared by mixing the tetraazine single molecule, Super-P and polyvinylidene fluoride in dimethylformamide, and then coating the mixture on aluminum foil and drying it. Can be manufactured.

또 다른 실시예로서 이 개시의 내용은 상기 리튬이차전지용 양극, 리튬 금속으로 이루어진 음극, 다공성 폴리프로필렌 막으로 이루어진 전극 분리막 및 전해액으로 이루어지는 것을 특징으로 하는 리튬이차전지에 대해 기술하고 있다.As another embodiment, the contents of this disclosure describe a lithium secondary battery comprising the positive electrode for a lithium secondary battery, a negative electrode made of lithium metal, an electrode separator made of a porous polypropylene membrane, and an electrolyte.

바람직하기로는, 상기 전해액은 1,3-디옥솔레인(DOL)/1,2-디메톡시에테인(DME)(1:1 v/v) 1M에 2M의 리튬 비스(트리플루오로메테인)설폰이미드(LiTFSi)가 녹아있는 용액으로 이루어질 수 있다.Preferably, the electrolyte is 1,3-dioxolane (DOL) / 1,2-dimethoxyethane (DME) (1: 1 v / v) 1M of 2M lithium bis (trifluoromethane) sulfone It may be made of a solution in which imide (LiTFSi) is dissolved.

개시된 리튬이차전지용 전극활물질 및 그것을 이용한 리튬이차전지는 안정적인 산화환원이 가능함과 동시에 환원전위의 조절이 용이하며, 우수한 용해저항성을 갖는 전극활물질 및 그것을 이용한 리튬이차전지를 제공하는 탁월한 효과를 나타낸다.The disclosed electrode active material for a lithium secondary battery and the lithium secondary battery using the same exhibit stable effects of stable redox and at the same time easy to control the reduction potential, and exhibit excellent effects of providing an electrode active material having excellent dissolution resistance and a lithium secondary battery using the same.

도 1은 개시된 화학식 2 내지 5를 나타내는 테트라진 단분자의 전류에 따른 환원전위를 측정하여 나타낸 그래프이다.
도 2는 개시된 화학식 2 내지 5를 나타내는 테트라진 단분자의 최저비점유분자궤도함수에 따른 환원전위를 측정하여 나타낸 그래프이다.
도 3은 페닐기가 양쪽에 치환된 테트라진 단분자를 주사전자현미경(SEM)으로 촬영하여 나타낸 사진이다.
도 4는 개시된 CMK-3를 주사전자현미경(SEM)으로 촬영하여 나타낸 사진이다.
도 5는 개시된 제조예 3 내지 5를 통해 제조된 리튬이자전지용 양극을 주사전자현미경(SEM)으로 촬영하여 나타낸 사진이다.
도 6은 개시된 제조예 3 내지 5를 통해 제조된 리튬이자전지용 양극의 적외선 파수에 따른 투광도를 측정하여 나타낸 그래프이다.
도 7은 개시된 실시예 1 내지 2를 통해 제조된 CR2032 코인형 리튬이차전지의 물성을 측정하여 나타낸 그래프이다.
도 8은 개시된 실시예 3 내지 5를 통해 제조된 CR2032 코인형 리튬이차전지의 특성을 평가하여 나타낸 그래프이다.
Figure 1 is a graph showing the measurement of the reduction potential according to the current of the tetrazine single molecule of Formulas 2 to 5 disclosed.
Figure 2 is a graph showing the measurement of the reduction potential according to the lowest non-occupied molecular orbital function of the tetrazine single molecule of Formula 2 to 5 disclosed.
FIG. 3 is a photograph showing a tetrazine single molecule having phenyl groups substituted on both sides by a scanning electron microscope (SEM).
4 is a photograph showing the disclosed CMK-3 by scanning electron microscope (SEM).
FIG. 5 is a photograph showing a positive electrode for a lithium secondary battery manufactured through Preparation Examples 3 to 5 photographed with a scanning electron microscope (SEM).
6 is a graph showing the transmittance according to the infrared wave number of the positive electrode for a lithium secondary battery prepared through the disclosed Preparation Examples 3 to 5.
7 is a graph showing physical properties of CR2032 coin-type lithium secondary batteries manufactured through Examples 1 to 2 as disclosed.
8 is a graph showing the characteristics of CR2032 coin-type lithium secondary batteries manufactured through Examples 3 to 5 disclosed.

이하에는, 본 발명의 바람직한 실시예와 각 성분의 물성을 상세하게 설명하되, 이는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 발명을 용이하게 실시할 수 있을 정도로 상세하게 설명하기 위한 것이지, 이로 인해 본 발명의 기술적인 사상 및 범주가 한정되는 것을 의미하지는 않는다.Hereinafter, a preferred embodiment of the present invention and the physical properties of each component will be described in detail, but it is intended to be described in detail so that a person skilled in the art to which the present invention pertains can easily implement the invention. This does not mean that the technical spirit and scope of the present invention is limited.

개시된 리튬이차전지용 전극활물질은 테트라진 단분자를 기반으로 하는 유기화합물로 제조되며, 상기 테트라진 단분자는 아래 화학식 1로 표기된다.The disclosed electrode active material for a lithium secondary battery is made of an organic compound based on a tetrazine single molecule, and the tetrazine single molecule is represented by Formula 1 below.

[화학식 1][Formula 1]

Figure pat00002
Figure pat00002

상기 화학식 1에서 R1 및 R2는 서로 같거나 다른 치환기이며, 상기 화학식 1에서 R1 및 R2는 각각 독립적으로 알콕시, 페닐, 헤테로고리 방향족 화합물, 클로린, 카르복실기 및 -COOM으로 이루어진 그룹 중에서 선택될 수 있으며, 상기 M은 금속양이온이다.In Formula 1, R 1 and R 2 are the same or different substituents, and in Formula 1, R 1 and R 2 are each independently selected from the group consisting of alkoxy, phenyl, heterocyclic aromatic compound, chlorine, carboxyl group, and -COOM. M is a metal cation.

바람직하기로는, 상기 헤테로고리 방향족 화합물은 피리딘, 피리미딘, 티오펜, 퓨란, 피롤 및 이미다졸로 이루어진 그룹에서 선택된 하나 이상의 화합물일 수 있다.Preferably, the heterocyclic aromatic compound may be one or more compounds selected from the group consisting of pyridine, pyrimidine, thiophene, furan, pyrrole and imidazole.

테트라진은 19세기 후반에 처음으로 보고된 물질로 현재까지 많은 연구가 이루어졌고, 매우 안정적으로 하나의 전자를 주고받으며 산화환원 활성을 갖는 것으로 알려져 있다. 이를 기반으로 트랜지스터나 태양전지로의 보고는 있었으나 리튬이차전지용 전극활물질로 사용된 기술은 없었다.Tetragene is the first substance reported in the late 19th century, and many studies have been conducted to date, and it is known that it has a very stable electron exchange and redox activity. Based on this, there have been reports of transistors or solar cells, but no technology has been used as an electrode active material for lithium secondary batteries.

개시된 내용에 사용되는 테트라진 단분자는 상기 화학식 1에 나타낸 것처럼, 전자를 당기는 능력이 다른 알콕시, 페닐, 헤테로고리 방향족 화합물, 클로린, 카르복실기 및 -COOM이 각각 대칭적으로 혹은 비대칭적으로 치환되어 있고, 전자를 당기는 능력이 가장 강한 클로린이 양쪽으로 치환된 물질은 가장 안정화된 최저비점유분자궤도함수(LUMO) level을 가짐으로써 가장 높은 환원전위를 보인다.Tetragene single molecule used in the disclosed contents, as shown in the formula (1), alkoxy, phenyl, heterocyclic aromatic compound, chlorine, carboxyl group and -COOM, which have different electron-withdrawing ability, are each substituted symmetrically or asymmetrically. , Substances with chlorine, which has the strongest ability to pull electrons, are substituted on both sides and have the highest stabilized lowest non-occupied molecular orbital function (LUMO) level.

이때, 상기 알콕시는 메톡시 또는 에톡시로 이루어지는 것이 바람직하며, 상기 헤테로고리 방향족 화합물은 피리딘, 피리미딘, 티오펜, 퓨란, 피롤 및 이미다졸로 이루어진 그룹에서 선택된 하나 이상의 화합물로 이루어지는 것이 바람직하다.In this case, the alkoxy is preferably made of methoxy or ethoxy, and the heterocyclic aromatic compound is preferably made of at least one compound selected from the group consisting of pyridine, pyrimidine, thiophene, furan, pyrrole and imidazole.

또한, 테트라진 구조를 기본으로 하고 치환기를 도입함으로서 환원전위를 조절할 수 있고, 향상된 성능의 이차전지를 제공할 수 있을 뿐만 아니라, 다공성 탄소 나노소재로 이루어져, 낮은 분자량을 갖는 테트라진의 용해 저항성을 향상시킬 수 있다.In addition, it is possible to control the reduction potential by introducing a substituent based on the tetraazine structure and to provide a secondary battery with improved performance, and is made of a porous carbon nanomaterial, thereby improving the dissolution resistance of tetraazine having a low molecular weight. I can do it.

상기 화학식 2 내지 5를 나타내는 테트라진 단분자의 전류에 따른 환원전위와 최저비점유분자궤도함수에 따른 환원전위를 측정하여 아래 도 1 내지 도 2에 나타내었다.The reduction potential according to the current of the tetrazine single molecule having the formulas 2 to 5 and the reduction potential according to the lowest non-occupied molecular orbital function are measured and are shown in FIGS. 1 to 2 below.

상기의 효과를 나타내는 테트라진 단분자는 일예로 아래 화학식 2 내지 5와 같은 형태로 제조될 수 있다.Tetrazin monomolecules exhibiting the above-described effect may be prepared in the following formulas 2 to 5, for example.

[화학식 2][Formula 2]

Figure pat00003
Figure pat00003

상기 화학식 2(디페닐테트라진, DPT)에 나타낸 것처럼, 개시된 리튬이차전지용 전극활물질에 사용되는 테트라진 단분자는 페닐기가 양쪽에 치환된 형태로 제조될 수 있는데, 상기와 같이 페닐기가 양쪽에 치환된 테트라진 단분자를 주사전자현미경(SEM)으로 촬영하여 아래 도 3에 나타내었다.As shown in Chemical Formula 2 (diphenyltetrazin, DPT), the tetraazine single molecule used in the disclosed electrode active material for lithium secondary batteries may be prepared in a form in which phenyl groups are substituted on both sides, as described above, phenyl groups are substituted on both sides. The tetraazine monomolecule was photographed with a scanning electron microscope (SEM) and is shown in FIG. 3 below.

[화학식 3][Formula 3]

Figure pat00004
Figure pat00004

또한, 상기 화학식 3(디클로로테트라진, DCT)에 나타낸 것처럼, 개시된 리튬이차전지용 전극활물질에 사용되는 테트라진 단분자는 클로린기가 양쪽에 치환된 형태로 제조될 수 있다.In addition, as shown in Chemical Formula 3 (dichlorotetrazine, DCT), the tetrazine single molecule used in the disclosed electrode active material for a lithium secondary battery may be prepared in a form in which chlorine groups are substituted on both sides.

이때, 상기와 같은 화학식 3을 나타내는 테트라진 단분자의 합성방법은 아래 반응식 1의 과정을 통해 이루어진다.At this time, the method for synthesizing the tetrazine single molecule having Chemical Formula 3 is performed through the process of Scheme 1 below.

<반응식 1><Scheme 1>

Figure pat00005
Figure pat00005

[화학식 4][Formula 4]

Figure pat00006
Figure pat00006

또한, 상기 화학식 4(디메톡시테트라진, DMT)에 나타낸 것처럼, 개시된 리튬이차전지용 전극활물질에 사용되는 테트라진 단분자는 메톡시기가 양쪽에 치환된 형태로 제조될 수 있다.In addition, as shown in Chemical Formula 4 (dimethoxytetrazin, DMT), the tetraazine single molecule used in the disclosed electrode active material for lithium secondary batteries may be prepared in a form in which methoxy groups are substituted on both sides.

이때, 상기와 같은 화학식 4를 나타내는 테트라진 단분자는 상기 반응식 1을 통해 제조된 반응물을 하기 반응식 2에 나타낸 방법과 같이 반응시켜 제조될 수 있다.At this time, the tetrazine single molecule represented by Chemical Formula 4 may be prepared by reacting the reactant prepared through Reaction Scheme 1 as shown in Reaction Scheme 2 below.

<반응식 2><Reaction Scheme 2>

Figure pat00007
Figure pat00007

[화학식 5] [Formula 5]

Figure pat00008
Figure pat00008

또한, 상기 화학식 5(클로로에톡시테트라진, CET)에 나타낸 것처럼, 개시된 리튬이차전지용 전극활물질에 사용되는 테트라진 단분자는 일측은 클로린으로 치환되고, 타측은 에톡시기로 치환된 형태로 제조될 수도 있다.In addition, as shown in Chemical Formula 5 (chloroethoxytetrazin, CET), the tetraazine monomolecule used in the disclosed electrode active material for lithium secondary batteries may be prepared in a form in which one side is substituted with chlorine and the other side is substituted with ethoxy group. It might be.

이때, 상기 리튬이차전지용 전극활물질은 상기와 같은 화학식 2 내지 5의 테트라진 단분자 100 중량부, Super-P 90 내지 110 중량부 및 폴리비닐리덴플루오라이드 40 내지 60 중량부를 N-메틸피롤리돈에 혼합하여 테트라진 단분자 기반의 유기화합물을 제조한 후에, 상기 유기화합물을 알루미늄 호일에 코팅하고, 20 내지 30℃의 진공오븐에서 7 내지 9시간 동안 건조하여 제조될 수 있다.At this time, the electrode active material for the lithium secondary battery is 100 parts by weight of the tetraazine single molecule of Formulas 2 to 5, 90 to 110 parts by weight of Super-P, and 40 to 60 parts by weight of polyvinylidene fluoride as N-methylpyrrolidone. After mixing to prepare an organic compound based on a tetraazine single molecule, the organic compound may be coated on aluminum foil and dried in a vacuum oven at 20 to 30 ° C. for 7 to 9 hours.

또한, 상기 리튬이차전지용 전극활물질은 상기와 같은 과정을 통해 제조되는 테트라진 단분자 기반의 유기화합물을 용제에 용융한 후에, CMK-3를 혼합하고 음파처리를 한 후에, 20 내지 30℃의 진공오븐에서 건조하여 제조될 수 있는데, 더욱 상세하게는 상기 테트라진 단분자가 기반의 유기화합물을 용제인 다이메틸폼아마이드(dimethylformamide)에 완전히 녹인 후, CMK-3를 혼합하고 1시간 동안 음파처리를 실시한 후에 25℃의 진공오븐에서 건조를 실시하는 과정을 통해 제조될 수도 있다.In addition, the electrode active material for a lithium secondary battery, after melting a tetrazine single-molecule-based organic compound prepared through the above process in a solvent, mixed with CMK-3 and subjected to sonic treatment, vacuum at 20 to 30 ° C It can be prepared by drying in an oven. More specifically, the tetrazine single-molecule-based organic compound is completely dissolved in a solvent, dimethylformamide, and then mixed with CMK-3 and sonicated for 1 hour. It may be produced through a process of drying in a vacuum oven at 25 ℃ after the implementation.

이때, 상기 테트라진 유도체 단분자를 기반으로 하는 유기화합물과 다공성 탄소 재료인 CMK-3은 무게비 1:0.5 내지 2로 혼합되며, 무게비가 1:2로 혼합되는 것이 가장 바람직하다.At this time, the organic compound based on the tetraazine derivative single molecule and the porous carbon material CMK-3 are mixed in a weight ratio of 1: 0.5 to 2, and most preferably in a weight ratio of 1: 2.

상기의 과정을 통해 제조되는 리튬이차전지용 전극활물질은 다공성탄소 물질인 CMK-3에 테트라진 유도체 단분자를 기반으로 하는 유기화합물이 침투되어 제조되기 때문에, 우수한 용해저항성을 갖게 된다.The electrode active material for a lithium secondary battery manufactured through the above process has excellent dissolution resistance because it is manufactured by intrusion of an organic compound based on a single molecule of tetraazine derivative into the porous carbon material CMK-3.

상기의 CMK-3를 주사전자현미경(SEM)으로 촬영하여 아래 도 4에 나타내었다.The CMK-3 was photographed with a scanning electron microscope (SEM) and is shown in FIG. 4 below.

아래 도 4에 나타낸 것처럼, CMK-3는 넓은 비표면적을 나타내는 다공성 구조를 갖는 것을 알 수 있다. 4, it can be seen that CMK-3 has a porous structure exhibiting a large specific surface area.

이하에서는, 개시된 리튬이차전지용 전극활물질이 적용된 리튬이차전지용 양극의 제조방법 및 그 양극이 적용된 리튬이차전지의 물성을 실시예를 들어 설명하기로 한다.Hereinafter, a method for manufacturing a positive electrode for a lithium secondary battery to which the electrode active material for a disclosed lithium secondary battery is applied and the properties of a lithium secondary battery to which the positive electrode is applied will be described with reference to examples.

<제조예 1> 리튬이차전지용 양극의 제조<Production Example 1> Preparation of a positive electrode for a lithium secondary battery

상기 화학식 2와 같이 페닐기가 양쪽에 치환된 테트라진 단분자 100 중량부, Super-P 100 중량부 및 폴리비닐리덴플루오라이드 50 중량부를 다이메틸폼아마이드에 혼합하여 혼합물을 제조한 후에, 상기 혼합물을 닥터블레이드를 이용하여 알루미늄 호일에 코팅하고, 25℃의 진공오븐에서 8시간 동안 건조하여 리튬이차전지용 양극을 제조하였다.After preparing a mixture by mixing 100 parts by weight of tetraazine single molecule, 100 parts by weight of Super-P and 50 parts by weight of polyvinylidene fluoride in dimethylformamide as shown in Chemical Formula 2 above, the mixture is prepared. A positive electrode for a lithium secondary battery was prepared by coating on an aluminum foil using a doctor blade and drying in a vacuum oven at 25 ° C. for 8 hours.

<제조예 2> 리튬이차전지용 양극의 제조<Production Example 2> Preparation of a positive electrode for a lithium secondary battery

상기 제조예 1과 동일하게 진행하되, 상기 화학식 3으로 표기되는 테트라진 단분자를 기반으로 하는 유기화합물을 이용하여 리튬이차전지용 양극을 제조하였다.The same procedure as in Preparation Example 1 was performed, and an anode for a lithium secondary battery was manufactured using an organic compound based on the tetraazine single molecule represented by Chemical Formula 3.

<제조예 3> 리튬이차전지용 양극의 제조<Production Example 3> Preparation of a positive electrode for a lithium secondary battery

상기 화학식 2로 표기되는 테트라진 단분자를 기반으로 하는 유기화합물 100 중량부, Super-P 100 중량부 및 폴리비닐리덴플루오라이드 50 중량부를 다이메틸폼아마이드에 혼합하여 혼합물을 제조한 후에, 상기 혼합물에 CMK-3 50 중량부를 혼합하고 1시간 동안 15kHz의 음파를 1시간 동안 가한 후에, 상기 혼합물을 닥터블레이드를 이용하여 알루미늄 호일에 코팅하고, 25℃의 진공오븐에서 8시간 동안 건조하여 리튬이차전지용 양극을 제조하였다.After preparing a mixture by mixing 100 parts by weight of an organic compound based on a tetrazine single molecule represented by Chemical Formula 2, 100 parts by weight of Super-P and 50 parts by weight of polyvinylidene fluoride in dimethylformamide, After mixing 50 parts by weight of CMK-3 and adding 15 kHz sound waves for 1 hour to 1 hour, the mixture was coated on an aluminum foil using a doctor blade, and dried in a vacuum oven at 25 ° C. for 8 hours for a lithium secondary battery. An anode was prepared.

<제조예 4> 리튬이차전지용 양극의 제조<Production Example 4> Preparation of a positive electrode for a lithium secondary battery

상기 제조예 3과 동일하게 진행하되, CMK-3 100 중량부를 혼합하여 리튬이차전지용 양극을 제조하였다.The same procedure as in Preparation Example 3 was performed, but 100 parts by weight of CMK-3 was mixed to prepare a positive electrode for a lithium secondary battery.

<제조예 5> 리튬이차전지용 양극의 제조<Production Example 5> Preparation of a positive electrode for a lithium secondary battery

상기 제조예 3과 동일하게 진행하되, CMK-3 200 중량부를 혼합하여 리튬이차전지용 양극을 제조하였다.The same procedure as in Production Example 3 was performed, and 200 parts by weight of CMK-3 was mixed to prepare a positive electrode for a lithium secondary battery.

상기 제조예 3 내지 5를 통해 제조된 리튬이자전지용 양극을 주사전자현미경(SEM)으로 촬영하여 아래 도 5에 나타내었으며, 적외선 파수에 따른 투광도를 측정하여 아래 도 6에 나타내었다. 아래 도 5에 나타낸 것처럼, CMK-3의 함량이 페닐기가 양쪽에 치환된 테트라진 단분자 대비 2배인 제조예 5를 통해 제조된 리튬전지용 양극의 단면적이 가장 넓게 형성되며 CMK-3 나노구조체 외부에 남아있는 테트라진 단분자가 가장 적음을 알 수 있고, 아래 도 6에 나타낸 것처럼 제조예 5를 통해 제조된 리튬이차전지용 양극은 다공성탄소 물질인 CMK-3에 테트라진 유도체 단분자를 기반으로 하는 유기화합물이 침투되는 비율이 높기 때문에, 테트라진 단분자 고유의 적외선 흡수 비율이 낮은 것을 알 수 있다.The positive electrode for a lithium secondary battery manufactured through Preparation Examples 3 to 5 was photographed with a scanning electron microscope (SEM) and is shown in FIG. 5 below, and the transmittance according to the infrared wave number was measured and shown in FIG. 6 below. As shown in FIG. 5 below, the cross-sectional area of the positive electrode for a lithium battery prepared through Preparation Example 5, in which the content of CMK-3 is twice that of the tetraazine single molecule in which the phenyl group is substituted on both sides, is formed most widely and outside the CMK-3 nanostructure. It can be seen that the remaining tetrazine single molecule is the smallest, and the positive electrode for a lithium secondary battery prepared through Preparation Example 5 as shown in FIG. 6 below is an organic based on a tetraazine derivative single molecule in the porous carbon material CMK-3. Since the rate of penetration of the compound is high, it can be seen that the rate of infrared absorption inherent in the tetraazine single molecule is low.

<실시예 1><Example 1>

상기 제조예 1을 통해 제조된 리튬이차전지용 양극, 리튬 금속을 음극으로 하며, 다공성 폴리프로필렌 막을 전극 분리막으로 하고, 전해액으로는 1,3-디옥솔레인(DOL)/1,2-디메톡시에테인(DME)(1:1 v/v) 1M에 2M의 리튬 비스(트리플루오로메테인)설폰이미드(LiTFSi)가 녹아있는 용액을 사용하여 CR2032 코인형 리튬이차전지를 제조하였다.The positive electrode for a lithium secondary battery prepared in Preparation Example 1, a lithium metal as a negative electrode, a porous polypropylene membrane as an electrode separator, and 1,3-dioxolane (DOL) / 1,2-dimethoxyethane as an electrolyte. (DME) (1: 1 v / v) A CR2032 coin-type lithium secondary battery was prepared using a solution in which 2M of lithium bis (trifluoromethane) sulfonimide (LiTFSi) was dissolved in 1M.

<실시예 2><Example 2>

상기 실시예 1과 동일하게 진행하되, 상기 제조예 2를 통해 제조된 리튬이차전지용 양극을 사용하여 CR2032 코인형 리튬이차전지를 제조하였다.CR2032 coin-type lithium secondary battery was manufactured in the same manner as in Example 1, using the positive electrode for a lithium secondary battery prepared in Preparation Example 2.

상기 실시예 1 내지 2를 통해 제조된 CR2032 코인형 리튬이차전지의 물성을 측정하여 아래 도 7에 나타내었다.The physical properties of the CR2032 coin-type lithium secondary battery manufactured through Examples 1 to 2 were measured and are shown in FIG. 7 below.

아래 도 7에 나타낸 것처럼, 상기 실시예 1 내지 2를 통해 제조된 코인형 리튬 이차 전지의 성능 평가 결과 신규 물질군인 테트라진이 산화환원 활성을 가지면서 전지로서 작동하는 것을 알 수 있다.As shown in FIG. 7 below, as a result of performance evaluation of the coin-type lithium secondary battery prepared through Examples 1 to 2, it can be seen that the new material group tetrazine has redox activity and operates as a battery.

<실시예 3><Example 3>

상기 실시예 1과 동일하게 진행하되, 상기 제조예 3를 통해 제조된 리튬이차전지용 양극을 이용하여 CR2032 코인형 리튬이차전지를 제조하였다.CR2032 coin-type lithium secondary battery was prepared in the same manner as in Example 1, using the positive electrode for a lithium secondary battery prepared in Preparation Example 3.

<실시예 4><Example 4>

상기 실시예 1과 동일하게 진행하되, 상기 제조예 4를 통해 제조된 리튬이차전지용 양극을 이용하여 CR2032 코인형 리튬이차전지를 제조하였다.CR2032 coin-type lithium secondary battery was manufactured in the same manner as in Example 1, using the positive electrode for a lithium secondary battery prepared in Preparation Example 4.

<실시예 5><Example 5>

상기 실시예 1과 동일하게 진행하되, 상기 제조예 5를 통해 제조된 리튬이차전지용 양극을 이용하여 CR2032 코인형 리튬이차전지를 제조하였다.CR2032 coin-type lithium secondary battery was manufactured in the same manner as in Example 1, using the positive electrode for a lithium secondary battery prepared in Preparation Example 5.

상기 실시예 3 내지 5를 통해 제조된 CR2032 코인형 리튬이차전지의 특성을 평가하여 아래 도 8에 나타내었다.The characteristics of the CR2032 coin-type lithium secondary battery manufactured through Examples 3 to 5 were evaluated and are shown in FIG. 8 below.

아래 도 8에 나타낸 것처럼, 개시된 실시예 3 내지 5를 통해 제조된 CR2032 코인형 리튬이차전지의 특성 평가 결과 신규 물질군인 테트라진이 산화환원 활성을 가지면서 충방전 사이클 또한 향상된 것이 확인되었다. 특히 상기 제조예 1을 통해 제조된 테트라진 단분자를 기반으로 하는 유기화합물과 CMK-3의 중량부가 1:2의 비율로 제조된 실시예 5의 경우 가장 좋은 사이클 유지력을 나타내었다.As shown in FIG. 8 below, as a result of evaluating the properties of the CR2032 coin-type lithium secondary battery prepared through the disclosed Examples 3 to 5, it was confirmed that the charge / discharge cycle was also improved while the new material group tetrazine had redox activity. Particularly, in the case of Example 5, in which the organic compound based on the tetraazine single molecule prepared through Preparation Example 1 and the weight part of CMK-3 were prepared at a ratio of 1: 2, the best cycle retention was shown.

따라서, 개시된 리튬이차전지용 전극활물질 및 그것을 이용한 리튬이차전지는 안정적인 산화환원이 가능함과 동시에 환원전위의 조절이 용이하며, 우수한 용해저항성을 갖는 전극활물질 및 그것을 이용한 리튬이차전지를 제공한다.Accordingly, the disclosed electrode active material for a lithium secondary battery and the lithium secondary battery using the same provide stable electrode oxidation and easy control of the reduction potential, and provide an electrode active material having excellent dissolution resistance and a lithium secondary battery using the same.

Claims (11)

하기 화학식 1로 표기되는 테트라진 유도체 단분자를 포함하는 것을 특징으로 하는 리튬이차전지용 전극활물질.
[화학식 1]
Figure pat00009

(상기 화학식 1에서 R1 및 R2는 서로 같거나 다른 치환기)
Electrode active material for a lithium secondary battery, characterized in that it comprises a single molecule of tetraazine derivative represented by the following formula (1).
[Formula 1]
Figure pat00009

(In Formula 1, R 1 and R 2 are the same or different substituents)
청구항 1에 있어서,
상기 화학식 1에서 R1, R2는 각각 독립적으로 알콕시, 페닐, 헤테로고리 방향족 화합물, 클로린, 카르복실기 및 -COOM으로 이루어진 그룹 중에서 선택되며, 상기 M은 금속양이온인 것을 특징으로 하는 리튬이차전지용 전극활물질.
The method according to claim 1,
In Formula 1, R 1 , R 2 are each independently selected from the group consisting of alkoxy, phenyl, heterocyclic aromatic compound, chlorine, carboxyl group, and -COOM, wherein M is a metal cation electrode active material for a lithium secondary battery .
청구항 2에 있어서,
상기 헤테로고리 방향족 화합물은 피리딘, 피리미딘, 티오펜, 퓨란, 피롤 및 이미다졸 중에서 선택된 하나 이상의 화합물을 포함하는 것을 특징으로 하는 리튬이차전지용 전극활물질.
The method according to claim 2,
The heterocyclic aromatic compound is an electrode active material for a lithium secondary battery, characterized in that it comprises at least one compound selected from pyridine, pyrimidine, thiophene, furan, pyrrole and imidazole.
청구항 1에 있어서,
다공성 탄소 재료를 더 포함하는 것을 특징으로 하는 리튬이차전지용 전극활물질.
The method according to claim 1,
An electrode active material for a lithium secondary battery, further comprising a porous carbon material.
청구항 4에 있어서,
상기 테트라진 유도체 단분자와 다공성 탄소 재료는 무게비가 1:0.5 내지 2로 이루어지는 것을 특징으로 하는 리튬이차전지용 전극활물질.
The method according to claim 4,
The tetraazine derivative single molecule and the porous carbon material has an electrode active material for a lithium secondary battery, characterized in that the weight ratio is made of 1: 0.5 to 2.
청구항 5에 있어서,
상기 테트라진 유도체 단분자와 다공성 탄소 재료는 무게비가 1:2로 이루어지는 것을 특징으로 하는 리튬이차전지용 전극활물질.
The method according to claim 5,
The tetraazine derivative single molecule and the porous carbon material is an electrode active material for a lithium secondary battery, characterized in that the weight ratio is made of 1: 2.
청구항 4 내지 6 중 어느 한 항에 있어서,
상기 다공성 탄소 재료는 CMK-3인 것을 특징으로 하는 리튬이차전지용 전극활물질.
The method according to any one of claims 4 to 6,
The porous carbon material is an electrode active material for a lithium secondary battery, characterized in that CMK-3.
제1항의 테트라진 단분자가 코팅된 알루미늄 호일로 이루어지는 것을 특징으로 하는 리튬이차전지용 양극.
A positive electrode for a lithium secondary battery, characterized in that it is made of aluminum foil coated with the tetraazine single molecule of claim 1.
청구항 8에 있어서,
상기 리튬이차전지용 양극은 상기 테트라진 단분자, Super-P 및 폴리비닐리덴플루오라이드를 다이메틸폼아마이드에 혼합하여 혼합물을 제조한 후에, 상기 혼합물을 알루미늄 호일에 코팅하고, 건조하여 제조되는 것을 특징으로 하는 리튬이차전지용 양극.
The method according to claim 8,
The positive electrode for a lithium secondary battery is prepared by mixing the tetraazine single molecule, Super-P and polyvinylidene fluoride in dimethylformamide, and then coating the mixture on aluminum foil and drying it. A positive electrode for a lithium secondary battery.
청구항 8 내지 9 중 어느 한 항에 따른 리튬이차전지용 양극, 리튬 금속으로 이루어진 음극, 다공성 폴리프로필렌 막으로 이루어진 전극 분리막 및 전해액으로 이루어지는 것을 특징으로 하는 리튬이차전지.
A lithium secondary battery comprising a positive electrode for a lithium secondary battery according to any one of claims 8 to 9, a negative electrode made of lithium metal, an electrode separator made of a porous polypropylene membrane, and an electrolyte.
청구항 10에 있어서,
상기 전해액은 1,3-디옥솔레인(DOL)/1,2-디메톡시에테인(DME)(1:1 v/v) 1M에 2M의 리튬 비스(트리플루오로메테인)설폰이미드(LiTFSi)가 녹아있는 용액으로 이루어지는 것을 특징으로 하는 리튬이차전지.
The method according to claim 10,
The electrolyte is 1,3-dioxolane (DOL) / 1,2-dimethoxyethane (DME) (1: 1 v / v) 1M to 2M lithium bis (trifluoromethane) sulfonimide (LiTFSi Lithium secondary battery, characterized in that made of a dissolved solution.
KR1020180130676A 2018-10-30 2018-10-30 Electrode active material for lithium secondary battery and lithium secondary battery using the same KR102162231B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180130676A KR102162231B1 (en) 2018-10-30 2018-10-30 Electrode active material for lithium secondary battery and lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180130676A KR102162231B1 (en) 2018-10-30 2018-10-30 Electrode active material for lithium secondary battery and lithium secondary battery using the same

Publications (2)

Publication Number Publication Date
KR20200048511A true KR20200048511A (en) 2020-05-08
KR102162231B1 KR102162231B1 (en) 2020-10-06

Family

ID=70678311

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180130676A KR102162231B1 (en) 2018-10-30 2018-10-30 Electrode active material for lithium secondary battery and lithium secondary battery using the same

Country Status (1)

Country Link
KR (1) KR102162231B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012174350A (en) * 2011-02-17 2012-09-10 Toshiba Corp Electrode for battery and manufacturing method therefor, nonaqueous electrolyte battery, battery pack, and active material
KR20130076859A (en) * 2010-06-17 2013-07-08 상뜨로 나쇼날 드 라 러쉐르쉐 샹띠피크 Method for producing a lithium or sodium battery
KR20140032624A (en) * 2012-09-07 2014-03-17 주식회사 엘지화학 Electrode for secondary battery and method of preparing the same
KR20150022650A (en) * 2013-08-22 2015-03-04 솔브레인 주식회사 Electrode for lithium secondary battery and lithium secondary battery comprising the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130076859A (en) * 2010-06-17 2013-07-08 상뜨로 나쇼날 드 라 러쉐르쉐 샹띠피크 Method for producing a lithium or sodium battery
JP2012174350A (en) * 2011-02-17 2012-09-10 Toshiba Corp Electrode for battery and manufacturing method therefor, nonaqueous electrolyte battery, battery pack, and active material
KR20140032624A (en) * 2012-09-07 2014-03-17 주식회사 엘지화학 Electrode for secondary battery and method of preparing the same
KR20150022650A (en) * 2013-08-22 2015-03-04 솔브레인 주식회사 Electrode for lithium secondary battery and lithium secondary battery comprising the same

Also Published As

Publication number Publication date
KR102162231B1 (en) 2020-10-06

Similar Documents

Publication Publication Date Title
KR101982790B1 (en) Positive Electrode Active Material Comprising Layered Lithium Metal Oxides and Positive Electrode having the Same
Renault et al. Improving the electrochemical performance of organic Li-ion battery electrodes
JP5954179B2 (en) Non-aqueous secondary battery electrode, non-aqueous secondary battery including the same, and assembled battery
KR100449073B1 (en) Cathode material for lithium secondary batteries and method for manufacturing the Same
US20020055039A1 (en) Cathode active material and lithium battery employing the same
JP2010212152A (en) Electrode active material, and secondary battery using the same
KR20170045833A (en) Precursor for Preparation of Positive Electrode Active Material Comprising Layered Metal Oxides and Electrode Active Material Prepared with the Same
JP2013225413A (en) Electrode active material, electrode for nonaqueous secondary battery and nonaqueous secondary battery
JP2010118320A (en) Secondary battery
JP2002208434A5 (en)
KR101646994B1 (en) Positive active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
JP2002203541A (en) Organic-inorganic complex oxide for positive electrode of lithium secondary battery and its manufacturing method
JP5391832B2 (en) Secondary battery and manufacturing method thereof
KR100824931B1 (en) Active material, manufacturing method thereof and lithium secondary battery comprising the same
JP6346733B2 (en) Electrode, non-aqueous secondary battery and electrode manufacturing method
KR101713259B1 (en) -TiO LITHIUM TITANIUM OXIDE-TiO COMPLEX FOR SECONDARY BATTERY PREPARING METHOD OF THE SAME AND SECONDARY BATTERY INCLUDING THE SAME
JP5818689B2 (en) Lithium ion secondary battery
CN107093731B (en) Polyvanadyl compound, preparation method and application thereof, and lithium ion battery containing same
KR102162231B1 (en) Electrode active material for lithium secondary battery and lithium secondary battery using the same
KR100420145B1 (en) Montmorillonite/sulfur complex compound, cathode active material comprising the same and lithium secondary battery employing the cathode active material
JP4314508B2 (en) Radical battery
JP3722462B2 (en) Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery using the same
KR102351971B1 (en) Mellitic triimide as electrode active material for lithium secondary battery and lithium secondary battery using the same
KR102443867B1 (en) Compound for electrode, electrode and energy storage device comprising the same
CN110957468B (en) Electrode for electricity storage device, and method for manufacturing electrode for electricity storage device

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant