KR20200011887A - Process for oligomerization of butene with determination of the proportion of acidic catalysis - Google Patents

Process for oligomerization of butene with determination of the proportion of acidic catalysis Download PDF

Info

Publication number
KR20200011887A
KR20200011887A KR1020190089297A KR20190089297A KR20200011887A KR 20200011887 A KR20200011887 A KR 20200011887A KR 1020190089297 A KR1020190089297 A KR 1020190089297A KR 20190089297 A KR20190089297 A KR 20190089297A KR 20200011887 A KR20200011887 A KR 20200011887A
Authority
KR
South Korea
Prior art keywords
oligomerization
dimethylhexene
amount
nickel
ratio
Prior art date
Application number
KR1020190089297A
Other languages
Korean (ko)
Inventor
파비안 나돌니
스테판 파이츠
구이도 슈토흐니올
로베르트 프란케
펠릭스 알쉐르
코넬리아 브라이트코프
블라디미르 레쉐틸로브스키
Original Assignee
에보니크 오퍼레이션즈 게엠베하
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에보니크 오퍼레이션즈 게엠베하 filed Critical 에보니크 오퍼레이션즈 게엠베하
Publication of KR20200011887A publication Critical patent/KR20200011887A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/10Catalytic processes with metal oxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/12Catalytic processes with crystalline alumino-silicates or with catalysts comprising molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00211Control algorithm comparing a sensed parameter with a pre-set value
    • B01J2219/00218Dynamically variable (in-line) parameter values
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • C07C2529/072Iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65
    • C07C2529/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65 containing iron group metals, noble metals or copper
    • C07C2529/76Iron group metals or copper
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/884Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample organic compounds
    • G01N2030/8854Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample organic compounds involving hydrocarbons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Nanotechnology (AREA)

Abstract

The present invention provides a method for manufacturing a product mixture by oligomerzing n-butene using a nickel-containing aluminosilicate catalyst, which accompanies determining and monitoring a ratio of 4,4-dimethylhexene to 3,4-dimethylhexene of the product mixture. The present invention also relates to a method for determining a ratio of the amount of formed 4,4-dimethylhexene or the amount of formed 3-ethyl-2-methylpentene to the amount of formed 3,4-dimethylhexene. An object of the present invention to provide an oligomerization method which makes it possible to achieve higher selectivity and higher conversion for a higher linear product.

Description

산성 촉매작용의 비율의 결정을 수반하는 부텐의 올리고머화 방법 {PROCESS FOR OLIGOMERIZATION OF BUTENE WITH DETERMINATION OF THE PROPORTION OF ACIDIC CATALYSIS}Process for oligomerization of butene with determination of the rate of acid catalysis {PROCESS FOR OLIGOMERIZATION OF BUTENE WITH DETERMINATION OF THE PROPORTION OF ACIDIC CATALYSIS}

본 발명은 생성물 혼합물의 4,4-디메틸헥센 대 3,4-디메틸헥센의 비를 결정하고 모니터링하는 것을 수반하는, 니켈-함유 알루미노실리케이트 촉매를 사용하여 n-부텐을 올리고머화함으로써 상기 생성물 혼합물을 제조하는 방법에 관한 것이다. 본 발명은 또한 형성된 4,4-디메틸헥센의 양 또는 형성된 3-에틸-2-메틸펜텐의 양 대 형성된 3,4-디메틸헥센의 양의 비를 결정하기 위한 방법에 관한 것이다.The present invention provides a product mixture by oligomerizing n-butene using a nickel-containing aluminosilicate catalyst, which involves determining and monitoring the ratio of 4,4-dimethylhexene to 3,4-dimethylhexene in the product mixture. It relates to a method of manufacturing. The invention also relates to a method for determining the ratio of the amount of 4,4-dimethylhexene formed or the amount of 3-ethyl-2-methylpentene formed to the amount of 3,4-dimethylhexene formed.

올리고머화는 일반적으로 불포화 탄화수소들끼리 반응하여 상응하게 더 긴 사슬의 탄화수소, 소위 올리고머를 형성하는 것을 의미하는 것으로 이해된다. 따라서, 예를 들어, 8개의 탄소 원자를 갖는 올레핀 (옥텐)은 4개의 탄소 원자를 갖는 2개의 올레핀 (부텐)의 올리고머화에 의해 형성될 수 있다. 2개의 분자들끼리의 올리고머화는 또한 이량체화라고도 지칭된다.Oligomerization is generally understood to mean the reaction of unsaturated hydrocarbons to form correspondingly longer chain hydrocarbons, so-called oligomers. Thus, for example, an olefin (octene) having eight carbon atoms can be formed by oligomerization of two olefins (butene) having four carbon atoms. Oligomerization between two molecules is also referred to as dimerization.

그 결과의 올리고머는, 예를 들어, 알데히드, 카르복실산 및 알콜의 제조를 위해 사용되는 중간체이다. 올레핀의 올리고머화는, 용해된 촉매를 사용하여 균질 상에서, 또는 불균질하게 고체 촉매 상에서, 또는 이상(biphasic) 촉매 시스템을 사용하여, 산업적으로 대규모로 수행된다.The resulting oligomers are, for example, intermediates used for the preparation of aldehydes, carboxylic acids and alcohols. Oligomerization of olefins is carried out industrially on a large scale, either homogeneously using dissolved catalysts, or heterogeneously on solid catalysts, or using biphasic catalyst systems.

불균질 촉매작용에 의한 공정의 경우에, 산성 올리고머화 촉매 상에서의 올리고머화가 오랫동안 공지되어 있다. 산업적으로 사용되는 시스템은 지지체 상의 산성 촉매, 예를 들어 제올라이트 또는 인산을 포함한다. 이 경우에 어느 정도 분지화된 올레핀의 이성질체 혼합물이 수득된다. 이 경우에 용어 산성 촉매작용 또는 산성 촉매는 브뢴스테드 산성을 표현하며, 즉, 상기 촉매는 촉매 활성 양성자를 제공한다. 관련 기술분야에서, 높은 이량체 선택도를 갖는 올레핀의 비-산성 불균질 촉매작용에 의한 올리고머화의 경우에, 지지체 물질 상의 니켈 화합물이 종종 사용되며, 여기서 니켈은 양성자를 제공하지 않고 전자쌍 받개 (루이스 산)로서 작용한다. 따라서 WO 95/14647 A1에는, 올레핀 올리고머화를 위한, 성분 산화티타늄 및/또는 산화지르코늄, 산화규소 및 임의로 산화알루미늄으로 이루어진 지지체 물질을 포함하는 니켈 촉매가 기술되어 있다. 이러한 촉매 상에서, 선형 부텐의 혼합물은 75% 미만의 선택도를 갖고서 C8-올레핀으로 올리고머화된다. 올레핀의 올리고머화에 대한 니켈계 불균질 촉매의 촉매 활성은 니켈 양이온과 표면 알루미늄 원자 사이의 상호작용에 기초한다고 생각된다.In the case of processes by heterogeneous catalysis, oligomerization on acidic oligomerization catalysts has long been known. Industrially used systems include acidic catalysts on the support, for example zeolites or phosphoric acid. In this case an isomeric mixture of olefins somewhat branched is obtained. In this case the term acidic catalysis or acidic catalyst expresses Bronsted acid, ie the catalyst provides catalytically active protons. In the related art, in the case of oligomerization by non-acidic heterogeneous catalysis of olefins with high dimer selectivity, nickel compounds on support materials are often used, where nickel does not provide protons and does not provide electron pair acceptors ( Lewis acid). WO 95/14647 A1 thus describes a nickel catalyst comprising a support material consisting of component titanium oxide and / or zirconium oxide, silicon oxide and optionally aluminum oxide for olefin oligomerization. On this catalyst, the mixture of linear butenes is oligomerized to C8-olefins with selectivity less than 75%. It is believed that the catalytic activity of the nickel-based heterogeneous catalyst for oligomerization of olefins is based on the interaction between the nickel cation and the surface aluminum atom.

올리고머화의 경우에, 올리고머화가 진행될 수 있게 하는 다양한 메커니즘이 존재한다. 이는 산성 촉매작용을 포함하는데, 여기서는 올레핀이 촉매의 산 중심과 카르베늄(carbenium) 이온을 형성하며, 상기 카르베늄 이온은 추가의 올레핀의 이중결합과 반응하여 새로운 C-C 결합을 형성할 수 있다. 카르베늄 이온은 양이온의 가장 고도로 분지화된 부위에서 가장 잘 안정화되기 때문에, 거의 전적으로 연료의 제조와만 관련있는, 고도로 분지화된 올리고머가 형성된다. 가소제 또는 계면활성제와 같은 최종 화학 제품을 제공하는 추가의 가공을 위해서는, 특히 비교적 높은 선형도를 갖는 올리고머가 산업적으로 요구된다. 추가의 메커니즘은 배위 메커니즘이며, 여기서는 제1 올레핀이 촉매에 배위 결합한다. 그것에 추가의 올레핀이 부착되어 새로운 C-C 결합의 형성을 야기하여 올리고머의 형성을 야기한다. 이러한 메커니즘의 생성물은 전형적으로 덜 고도로 분지화된다.In the case of oligomerization, various mechanisms exist that allow oligomerization to proceed. This includes acid catalysis, in which olefins form carbenium ions with the acid center of the catalyst, where the carbenium ions can react with double bonds of additional olefins to form new C-C bonds. Because carbenium ions are best stabilized at the most highly branched sites of the cation, highly branched oligomers are formed, almost exclusively related to fuel production. For further processing to provide final chemical products such as plasticizers or surfactants, in particular, oligomers having a relatively high linearity are industrially required. An additional mechanism is the coordination mechanism, wherein the first olefin is coordinatively bound to the catalyst. Additional olefins are attached to it, leading to the formation of new C-C bonds, leading to the formation of oligomers. The product of this mechanism is typically less highly branched.

공지된 올리고머화 방법에 비해, 선형 생성물을 제공하는 올레핀의 올리고머화에서 사용 시 전환율 및/또는 선택도에 있어서 개선을 초래하는 신규한 과정 중심의 접근법을 개발할 필요가 여전히 있다. 따라서 본 발명의 목적은, 올리고머화를 통해, 특정한 생성물 이성질체를 사용하여 모니터링되는, 더 고도의 선형 생성물에 대한 더 높은 선택도 및 더 높은 전환율을 달성하는 것을 가능하게 하는 올리고머화 방법을 제공하는 것이다.Compared to known oligomerization methods, there is still a need to develop new process-driven approaches that lead to improvements in conversion and / or selectivity when used in oligomerization of olefins that give linear products. It is therefore an object of the present invention to provide an oligomerization method which makes it possible to achieve higher selectivity and higher conversion for higher linear products, which are monitored using specific product isomers through oligomerization. .

본 발명의 추가의 목적은 니켈에 의한 촉매 산 중심의 포화를 정량할 수 있게 하여 산업적으로 대규모의 올리고머화에 대한 촉매의 적합성의 개선된 예측을 달성할 수 있게 하는 것이다. 본 발명의 추가의 목적은 촉매의 형성 과정 및 반응 동안의 특정 촉매 중심의 불활성화를 규명하기 위해 촉매 데이터를 해석할 수 있게 하는 것이다. 올리고머화는 승압에서 연속적인 작업으로서 수행되기 때문에, 작업 동안에 촉매 샘플을 채취하는 것은, 불가능하지는 않을지라도, 어려운 일이다. 그러므로 추가의 실행 시간의 추정 및 기대되는 생성물 스펙트럼의 평가를 위해, 형성된 생성물을 사용하여 촉매의 상태를 확인할 수 있게 하는 것은 매우 중요하다.It is a further object of the present invention to be able to quantify the saturation of the catalytic acid center with nickel, thereby making it possible to achieve an improved prediction of the suitability of the catalyst for industrially large scale oligomerization. It is a further object of the present invention to be able to interpret the catalyst data to identify the deactivation of specific catalyst centers during the formation of the catalyst and during the reaction. Since oligomerization is performed as a continuous operation at elevated pressures, taking a catalyst sample during the operation is difficult, if not impossible. It is therefore very important to be able to confirm the state of the catalyst using the formed product for the estimation of further run times and for the estimation of the expected product spectrum.

본 발명의 근간을 이루는 목적은 청구항 1에 따른 올리고머화 방법 및 청구항 7에 따른 포화의 결정 방법을 사용하여 달성되었다. 바람직한 실시양태는 종속항에 명시되어 있다.The object underlying the present invention has been achieved using an oligomerization method according to claim 1 and a determination method of saturation according to claim 7. Preferred embodiments are specified in the dependent claims.

본 발명에 따른 방법은 n-부텐을 함유하는 반응물 스트림을 메조기공성(mesoporous) 니켈-함유 알루미노실리케이트 촉매 상에 통과시켜 생성물 혼합물을 형성하는 것인 n-부텐의 올리고머화 방법이며, 생성물 혼합물 중 형성된 4,4-디메틸헥센의 양 대 형성된 3,4-디메틸헥센의 양의 비를 모니터링하고, 비 (4,4-디메틸헥센의 양 / 3,4-디메틸헥센의 양)에 대한 문턱값이 초과될 때 촉매를 교체하는 것을 특징으로 하고, 여기서 비 (4,4-디메틸헥센의 양 / 3,4-디메틸헥센의 양)에 대한 문턱값이 0.05 이하, 바람직하게는 0.01 이하, 특히 바람직하게는 0.005 이하인 것인 방법에 관한 것이다.The process according to the invention is a process for oligomerization of n-butenes wherein a reactant stream containing n-butenes is passed over a mesoporous nickel-containing aluminosilicate catalyst to form a product mixture, the product mixture Monitor the ratio of the amount of 4,4-dimethylhexene formed to the amount of 3,4-dimethylhexene formed, and the threshold for the ratio (amount of 4,4-dimethylhexene / amount of 3,4-dimethylhexene) Characterized in that the catalyst is replaced when this is exceeded, wherein the threshold for the ratio (amount of 4,4-dimethylhexene / amount of 3,4-dimethylhexene) is 0.05 or less, preferably 0.01 or less, particularly preferred Preferably to 0.005 or less.

비를 결정하는 것은 초기에 바람직하게는 기체 크로마토그래피를 사용하여 개별 이성질체의 양을 결정하고 그로부터 비를 결정하는 것을 포함한다. 더 우수한 분리 효율을 달성하기 위해, 분석될 샘플 (생성물 혼합물)을, 이것이 분리 칼럼에 도달하기 전에, 불균질 Pd-함유 촉매 상에서 운반 기체로서의 수소로써 수소화시킬 수 있다. 그로부터 수득된 알칸은 올리고머화에서 형성된 C8 올레핀 이성질체보다 더 용이하게 구별 가능하다.Determining the ratio comprises initially determining the amount of the individual isomers and preferably determining the ratio therefrom using gas chromatography. To achieve better separation efficiency, the sample to be analyzed (product mixture) can be hydrogenated with hydrogen as carrier gas on a heterogeneous Pd-containing catalyst before it reaches the separation column. The alkanes obtained therefrom are more readily distinguishable than the C8 olefin isomers formed in oligomerization.

비 (4,4-디메틸헥센의 양 / 3,4-디메틸헥센의 양)는 실행 공정 동안에 연속적으로, 즉, 중단 없이, 또는 불연속적으로, 즉, 작업 동안에 공정으로부터의 생성물 혼합물의 샘플의 정기적인 채취에 의해, 결정될 수 있다. 비 (4,4-디메틸헥센의 양 / 3,4-디메틸헥센의 양)는 정기적인 간격으로 수행되는 생성물 혼합물로부터의 샘플의 채취에 의해 불연속적으로 결정되는 것이 바람직하다. 정기적인 샘플 채취들 사이의 간격은 자유롭게 선택 가능하며 작동되는 설비에 따라 다르다. 비의 불연속적인 결정에 있어서 샘플 채취들 사이의 간격은 원칙적으로 1 내지 59분, 1 내지 23시간, 1 내지 6일 또는 1 내지 20주일의 간격일 수 있다. 간격은 또한 다양할 수 있고, 즉, 예를 들어 신선한 촉매의 장착 후에 더 길 수 있고 시간 경과에 따라 더 짧아질 수 있다.The ratio (amount of 4,4-dimethylhexene / amount of 3,4-dimethylhexene) is used to determine the periodicity of the sample of the product mixture from the process continuously, ie without interruption, or discontinuously, ie during operation. By phosphorus extraction, it can be determined. The ratio (amount of 4,4-dimethylhexene / amount of 3,4-dimethylhexene) is preferably determined discontinuously by taking samples from the product mixture carried out at regular intervals. The spacing between regular samplings is freely selectable and depends on the equipment in operation. In discontinuous determination of ratios the interval between samplings may in principle be an interval of 1 to 59 minutes, 1 to 23 hours, 1 to 6 days or 1 to 20 weeks. The spacing can also vary, ie it can be longer, for example after installation of fresh catalyst and shorter over time.

놀랍게도, 4,4-디메틸헥센 대 3,4-디메틸헥센의 비를 모니터링하는 것은, 본 발명에 따른 올리고머화 방법에서 사용 시, 특히 우수한 생성물 품질 및 선형 생성물에 대한 더 높은 전환율 및/또는 더 높은 선택도를 달성하는 것을 가능하게 하는 것으로 밝혀졌다. 이러한 비가 작을수록, 올리고머화에 있어서 산성 촉매작용의 비율이 더 낮아서, 형성된, 더 고도로 분지화된 올리고머의 양이 더 적다. 그러나, 4,4-디메틸헥센 대 3,4-디메틸헥센의 비가 증가하면, 촉매 표면 상에서 형성이 일어났다. 이는, 추가의 작업을 위해, 형성된 올리고머가 갖게 될 평균 분지화도를 결정하는 것을 가능하게 한다. 공정 동안에 특정한 문턱값이 초과되면, 촉매가 교체되어야 한다. 그러므로 형성된 올리고머의 높은 선형도를 사실상 균일하게 달성하는 것이 가능한데, 왜냐하면 비에 대한 적합한 문턱값을 설정함으로써, 비교적 많은 양의 분지화된 부산물이 형성되기 전에 공정을 조기에 중단시키고 촉매를 교체할 수 있기 때문이다.Surprisingly, monitoring the ratio of 4,4-dimethylhexene to 3,4-dimethylhexene is particularly advantageous when used in the oligomerization process according to the invention, with higher product and higher conversion and / or higher It has been found to make it possible to achieve selectivity. The smaller this ratio is, the lower the rate of acidic catalysis in oligomerization, resulting in less amount of higher branched oligomers formed. However, as the ratio of 4,4-dimethylhexene to 3,4-dimethylhexene increased, formation occurred on the catalyst surface. This makes it possible to determine the average degree of branching that the formed oligomer will have for further work. If a certain threshold is exceeded during the process, the catalyst must be replaced. It is therefore possible to achieve a substantially uniform high linearity of the oligomers formed, because by setting a suitable threshold for the ratio, it is possible to stop the process early and replace the catalyst before a relatively large amount of branched by-products are formed. Because there is.

문턱값의 초과로 인해 촉매 교체가 요구되면, 사용된 촉매는 신선한 촉매로 교체된다. 설비의 구조에 따라, 이는 관련 기술분야의 통상의 기술자에게 공지된 방식으로 진행된다. 신선한 촉매는 새로이 제조된 촉매이거나, 사용되었지만 재생된 촉매일 수 있다.If catalyst replacement is required due to the exceeding of the threshold, the catalyst used is replaced with fresh catalyst. Depending on the structure of the installation, this proceeds in a manner known to those skilled in the art. The fresh catalyst may be a freshly prepared catalyst or a used but regenerated catalyst.

n-부텐을 함유하는 반응물 스트림은 또한 순수한 n-부텐의 스트림일 수 있지만 이것은 산업적으로 거의 실현 가능하지 않다. N-부텐을 함유하고 반응물 스트림으로서 사용 가능한 산업적 혼합물은 정유소로부터의 경질 석유 유분, FC 크래커 또는 스팀 크래커로부터의 C4 유분, 피셔-트롭쉬(Fischer-Tropsch) 합성으로부터의 혼합물, 부탄의 탈수소화로부터의 혼합물, 복분해 또는 다른 산업적 공정에 의해 형성된 혼합물이다. 본 발명에 따른 방법에 적합한 n-부텐의 혼합물은 예를 들어 스팀 크래커의 C4 분획으로부터 수득 가능하다. 이 경우에 부타디엔은 제1 단계에서 제거된다. 이는 부타디엔의 추출 또는 추출 증류 또는 그것의 선택적 수소화에 의해 수행된다. 두 경우에 있어서, 사실상 부타디엔-비함유 C4-분획, 즉, 라피네이트(raffinate) I이 수득된다. 제2 단계에서, 이소부텐이, 예를 들어 메틸 tert-부틸 에테르 (MTBE)의 제조에 의해, C4-스트림으로부터 제거된다. 다른 대안은 tert-부탄올을 제공하는, 라피네이트 I로부터의 이소부텐과 물의 반응, 또는 디이소부텐을 제공하는, 이소부텐의 산-촉매작용에 의한 올리고머화를 포함한다. 원하는 대로, 새로운 실질적 이소부텐-비함유 C4-분획인 라피네이트 II는 n-부텐 및 가능하다면 부탄을 함유한다.The reactant stream containing n-butene may also be a stream of pure n-butene but this is hardly feasible industrially. Industrial mixtures containing N-butene and usable as reactant streams include light petroleum fractions from refineries, C 4 fractions from FC crackers or steam crackers, mixtures from Fischer-Tropsch synthesis, dehydrogenation of butane From mixtures, mixtures formed by metathesis or other industrial processes. Mixtures of n-butenes suitable for the process according to the invention are for example obtainable from the C 4 fraction of steam crackers. In this case butadiene is removed in the first step. This is done by extraction or extractive distillation of butadiene or selective hydrogenation thereof. In both cases, butadiene-free C 4 -fractions, ie, raffinate I, are obtained. In the second step, isobutene is removed from the C 4 -stream, for example by the preparation of methyl tert-butyl ether (MTBE). Another alternative includes the reaction of isobutene with water from raffinate I to give tert-butanol, or oligomerization by acid-catalysis of isobutene to give diisobutene. As desired, the new substantially isobutene-free C 4 -fraction Raffinate II contains n-butene and possibly butane.

바람직한 실시양태에서 라피네이트 I (스팀 크래커로부터의 부타디엔-비함유 C4 분획) 또는 라피네이트 II (스팀 크래커로부터의 부타디엔- 및 이소부텐-비함유 C4 분획)가 반응물 스트림으로서 공정에 공급된다.In a preferred embodiment raffinate I (butadiene-free C4 fraction from steam cracker) or raffinate II (butadiene- and isobutene-free C4 fraction from steam cracker) is fed to the process as a reactant stream.

적합한 올레핀 혼합물의 제조에 대한 추가의 대안은 라피네이트 I, 라피네이트 II 또는 유사하게 구성된 탄화수소 혼합물을 반응성 칼럼 내에서 수소첨가 이성질체화에 적용하는 것이다. 이는 특히 2-부텐, 작은 비율의 1-부텐 및 가능하다면 n-부탄 및 또한 이소부탄 및 이소부텐으로 이루어진 혼합물을 제공할 수 있다.A further alternative to the preparation of suitable olefin mixtures is to apply raffinate I, raffinate II or similarly constructed hydrocarbon mixtures to the hydroisomerization in a reactive column. This may in particular provide a mixture of 2-butene, a small proportion of 1-butene and possibly n-butane and also isobutane and isobutene.

반응물 스트림의 기원 및 후처리에 따라, 헤테로원자를 포함하는 화합물, 특히 질소-, 황- 및/또는 산소-함유 화합물이 스트림에 존재할 수 있다.Depending on the origin and aftertreatment of the reactant stream, compounds comprising heteroatoms, in particular nitrogen-, sulfur- and / or oxygen-containing compounds, may be present in the stream.

본 발명에 따른 올리고머화 방법은 바람직하게는 50℃ 내지 200℃의 범위, 바람직하게는 60℃ 내지 180℃의 범위, 특히 바람직하게는 60℃ 내지 130℃의 범위의 온도에서 수행된다. 본 발명에 따른 방법에서 압력은 바람직하게는 10 내지 70 bar의 범위, 특히 바람직하게는 15 내지 42 bar의 범위이다.The oligomerization process according to the invention is preferably carried out at a temperature in the range from 50 ° C to 200 ° C, preferably in the range from 60 ° C to 180 ° C, particularly preferably in the range from 60 ° C to 130 ° C. In the process according to the invention the pressure is preferably in the range from 10 to 70 bar, particularly preferably in the range from 15 to 42 bar.

추가의 바람직한 실시양태에서, 반응물은 본 발명에 따른 방법에서 액체 상에 존재한다. 올리고머화가 액체 상에서 수행된다면, 이를 위해 매개변수 압력 및 온도는 반응물이 액체 상에 존재하도록 설정되어야 한다.In a further preferred embodiment, the reactants are in the liquid phase in the process according to the invention. If oligomerization is carried out in the liquid phase, for this the parameter pressure and temperature must be set such that the reactants are present in the liquid phase.

본 발명에 따른 올리고머화 방법에 있어서, 중량-기준 공간 속도 (단위 촉매 질량 당 및 단위 시간 당 반응물 질량; 중량 시공간 속도 (WHSV))는 바람직하게는 촉매 g 당 및 h 당 반응물 1 g (= 1 h-1) 내지 190 h-1, 바람직하게는 2 h-1 내지 35 h-1, 특히 바람직하게는 3 h-1 내지 25 h-1의 범위이다.In the oligomerization process according to the invention, the weight-based space velocity (reactant mass per unit catalyst mass and per unit time; weight space-time velocity (WHSV)) is preferably 1 g of reactant per gram of catalyst and per h (= 1) h −1 ) to 190 h −1 , preferably 2 h −1 to 35 h −1 , particularly preferably 3 h −1 to 25 h −1 .

본 발명에 따라 사용되는 올리고머화 촉매는 적어도 산화니켈 및 지지체 물질로서의 실리케이트, 바람직하게는 무정형 알루미노실리케이트를 포함한다. 본 발명의 맥락에서, "무정형"은 고체가 결정 구조를 갖지 않는다는 사실, 즉, 장거리 규칙성(long-range order)을 갖지 않는다는 사실로부터 초래된 고체의 특성을 의미하는 것으로 이해되어야 한다. 그러나, 본 발명의 맥락에서 무정형 실리카-알루미나 지지체 물질이 작은 결정질 도메인을 갖는다는 것은 배제될 수 없다. 무정형 실리카-알루미나 지지체 물질은 결정질 물질이 아니고, 예를 들어 제올라이트 물질이 아니다.The oligomerization catalyst used according to the invention comprises at least nickel oxide and silicates as support material, preferably amorphous aluminosilicates. In the context of the present invention, "amorphous" should be understood to mean the properties of a solid resulting from the fact that the solid does not have a crystalline structure, ie it does not have a long-range order. However, in the context of the present invention it cannot be excluded that the amorphous silica-alumina support material has a small crystalline domain. The amorphous silica-alumina support material is not a crystalline material, for example not a zeolite material.

본 발명에 따른 방법에서 사용되는 니켈-함유 알루미노실리케이트 촉매는 메조기공성이고, 즉, 적어도 메조기공을 포함한다. 사용되는 알루미노실리케이트 촉매의 평균 기공 직경은 바람직하게는 적어도 0.7 nm이다. 평균 기공 직경은 DIN 66133 (1993-06 버전)에 따른 수은 기공도측정법에 의해 결정될 수 있다.Nickel-containing aluminosilicate catalysts used in the process according to the invention are mesoporous, ie comprise at least mesopores. The average pore diameter of the aluminosilicate catalyst used is preferably at least 0.7 nm. The average pore diameter can be determined by mercury porosimetry according to DIN 66133 (version 193-06).

본 발명에 따른 니켈-함유 알루미노실리케이트 촉매는 바람직하게는, 메조기공성 니켈-함유 알루미노실리케이트 촉매의 총 조성을 기준으로 0.1 중량% 내지 51 중량%, 바람직하게는 1 중량% 내지 42 중량%, 특히 바람직하게는 5 중량% 내지 33 중량%의 양의 니켈을 포함한다. 본 발명의 특히 바람직한 실시양태에서, 올리고머화 촉매는 이산화티타늄 및/또는 이산화지르코늄을 실질적으로 함유하지 않고, 올리고머화 촉매는 특히 그것의 총 조성에, 0.5 중량% 미만, 바람직하게는 0.1 중량% 미만, 특히 바람직하게는 0.01 중량% 미만의 이산화티타늄 및/또는 이산화지르코늄을 포함한다.The nickel-containing aluminosilicate catalyst according to the present invention is preferably 0.1 to 51% by weight, preferably 1 to 42% by weight, based on the total composition of the mesoporous nickel-containing aluminosilicate catalyst, Particularly preferably nickel in an amount of from 5% to 33% by weight. In a particularly preferred embodiment of the invention, the oligomerization catalyst is substantially free of titanium dioxide and / or zirconium dioxide, and the oligomerization catalyst is in particular in its total composition, less than 0.5% by weight, preferably less than 0.1% by weight. , Particularly preferably less than 0.01% by weight of titanium dioxide and / or zirconium dioxide.

본 발명에 따르면, 니켈-함유 알루미노실리케이트 촉매는 150 내지 700 m²/g, 바람직하게는 190 내지 600 m²/g, 특히 바람직하게는 220 내지 550 m²/g의 비표면적 (BET에 따라 계산됨)을 가질 수 있다. BET 표면적은 DIN ISO 9277 (2014-01 버전)에 따른 질소 물리흡착에 의해 측정된다.According to the invention, the nickel-containing aluminosilicate catalyst has a specific surface area of 150 to 700 m² / g, preferably 190 to 600 m² / g, particularly preferably 220 to 550 m² / g (calculated according to BET). May have The BET surface area is measured by nitrogen physisorption according to DIN ISO 9277 (version 2014-01).

추가의 바람직한 실시양태에서 니켈-함유 알루미노실리케이트 촉매는 1 내지 100, 바람직하게는 2 내지 80, 특히 바람직하게는 3 내지 50의 규소-알루미늄 비 (Si/Al)를 갖는다.In a further preferred embodiment the nickel-containing aluminosilicate catalyst has a silicon-aluminum ratio (Si / Al) of 1 to 100, preferably 2 to 80, particularly preferably 3 to 50.

본 발명에 따른 방법을 수행하는 데 사용될 수 있는 적합한 반응기는, 올리고머화가 연속적으로 또는 불연속적으로 수행될 수 있게 하는, 관련 기술분야의 통상의 기술자에게 공지된 반응기를 포함한다. 바람직한 실시양태에서 연속적 또는 불연속적으로 작동되는 고정층 반응기 또는 슬러리 반응기가 본 발명에 따른 올리고머화 방법을 수행하는 데 사용된다. 방법은 특히 불균질 촉매작용 하에 수행된다.Suitable reactors that can be used to carry out the process according to the invention include reactors known to those skilled in the art, which allow the oligomerization to be carried out continuously or discontinuously. In a preferred embodiment a fixed bed reactor or slurry reactor operated continuously or discontinuously is used to carry out the oligomerization process according to the invention. The process is carried out in particular under heterogeneous catalysis.

바람직한 실시양태에서, 전환된 반응물을 기준으로, 올리고머화로부터 수득된 생성물/생성물 스트림에 대한 이량체화도 ("이량체화를 기준으로 하는 퍼센트 선택도"라고도 지칭됨)는 적어도 60%, 더 바람직하게는 적어도 75%, 특히 바람직하게는 적어도 80%이다.In a preferred embodiment, the degree of dimerization (also referred to as "percent selectivity based on dimerization") for the product / product stream obtained from the oligomerization, based on the converted reactants, is at least 60%, more preferably Is at least 75%, particularly preferably at least 80%.

형성된 올리고머화 생성물/이량체의 선형도는 ISO 지수에 의해 표현되고 이는 이량체 내 메틸 분지의 평균 개수 값을 나타낸다. 예를 들어 (반응물이 부텐인 경우에), C8 분획의 ISO 지수는, n-옥텐의 경우에 0이고, 메틸헵텐의 경우에 1이고, 디메틸헥센의 경우에 2이다. ISO 지수가 낮을수록, 각각의 분획 내의 분자의 구조는 더 선형이다. ISO 지수는 하기 식에 의해 계산된다:The linearity of the oligomerization product / dimer formed is represented by the ISO index which indicates the average number value of the methyl branches in the dimer. For example (if the reactant is butene), the ISO index of the C8 fraction is 0 for n-octene, 1 for methylheptene and 2 for dimethylhexene. The lower the ISO index, the more linear the structure of the molecules in each fraction. The ISO index is calculated by the formula:

Figure pat00001
Figure pat00001

따라서, 1.0의 ISO 지수를 갖는 이량체 혼합물은 이량체 분자 당 평균적으로 정확히 1개의 메틸 분지를 갖는다.Thus, dimer mixtures with an ISO index of 1.0 have exactly one methyl branch on average per dimer molecule.

본 발명에 따른 올리고머화 방법으로부터의 생성물의 ISO 지수는 바람직하게는 0.8 내지 1.2, 더 바람직하게는 0.8 내지 1.15이다.The ISO index of the product from the oligomerization process according to the invention is preferably 0.8 to 1.2, more preferably 0.8 to 1.15.

본 발명에 따른 방법에 의해 제조된 올리고머는 특히 알데히드, 알콜 및 카르복실산의 제조를 위해 이용된다. 따라서 예를 들어 선형 부텐의 이량체는 히드로포르밀화에 의해 노난알 혼합물을 제공한다. 이는 산화에 의해 상응하는 카르복실산 또는 수소화에 의해 C9 알콜 혼합물을 제공한다. C9 산 혼합물은 윤활제 또는 건조제를 제조하는 데 사용될 수 있다. C9 알콜 혼합물은 가소제, 특히 디노닐 프탈레이트, 또는 DINCH의 제조를 위한 전구체이다.The oligomers produced by the process according to the invention are used in particular for the preparation of aldehydes, alcohols and carboxylic acids. Thus, for example, dimers of linear butenes provide nonanal mixtures by hydroformylation. This gives the C 9 alcohol mixture by oxidation or the corresponding carboxylic acid by hydrogenation. C 9 acid mixtures can be used to prepare lubricants or desiccants. The C 9 alcohol mixture is a precursor for the preparation of plasticizers, in particular dinonyl phthalate, or DINCH.

본 발명은 또한The invention also

a) 메조기공성 니켈-함유 알루미노실리케이트 촉매를 사용하여 n-부텐의 올리고머화를 수행하는 단계;a) performing oligomerization of n-butene using a mesoporous nickel-containing aluminosilicate catalyst;

b) 올리고머화에서 형성된 C8 이성질체, 특히 n-옥텐, 3-메틸헵텐, 3,4-디메틸헥센, 4,4-디메틸헥센, 2,3-디메틸헥센 및 3-에틸-2-메틸펜텐의 양을 결정하기 위해, 올리고머화로부터 수득된 생성물 스트림을 정량 분석하는 단계; 및b) amounts of C8 isomers formed in oligomerization, in particular n-octene, 3-methylheptene, 3,4-dimethylhexene, 4,4-dimethylhexene, 2,3-dimethylhexene and 3-ethyl-2-methylpentene Quantitatively analyzing the product stream obtained from oligomerization to determine And

c) 0.05 이하, 바람직하게는 0.01 이하, 특히 바람직하게는 0.005 이하인, 형성된 4,4-디메틸헥센의 양 또는 형성된 3-에틸-2-메틸펜텐의 양 대 형성된 3,4-디메틸헥센의 양의 비를 결정하는 단계c) the amount of 4,4-dimethylhexene formed or the amount of 3-ethyl-2-methylpentene formed to the amount of 3,4-dimethylhexene formed, which is 0.05 or less, preferably 0.01 or less, particularly preferably 0.005 or less Steps to determine the ratio

를 포함하는, 형성된 4,4-디메틸헥센의 양 또는 형성된 3-에틸-2-메틸펜텐의 양 대 형성된 3,4-디메틸헥센의 양의 비를 결정하기 위한 방법을 또한 제공한다.Also provided is a method for determining the ratio of the amount of 4,4-dimethylhexene formed or the amount of 3-ethyl-2-methylpentene formed to the amount of 3,4-dimethylhexene formed, comprising.

단계 a)에서의 올리고머화는 바람직하게는 50℃ 내지 200℃의 범위, 바람직하게는 60℃ 내지 180℃의 범위, 특히 바람직하게는 60℃ 내지 130℃의 범위의 온도에서 수행된다. 단계 a)에서의 올리고머화에서 압력은 바람직하게는 10 내지 70 bar의 범위, 특히 바람직하게는 15 내지 42 bar의 범위이다.The oligomerization in step a) is preferably carried out at a temperature in the range from 50 ° C to 200 ° C, preferably in the range from 60 ° C to 180 ° C, particularly preferably in the range from 60 ° C to 130 ° C. The pressure in the oligomerization in step a) is preferably in the range from 10 to 70 bar, particularly preferably in the range from 15 to 42 bar.

추가의 바람직한 실시양태에서 반응물은 본 발명에 따른 결정 방법의 단계 a)에서 액체 상에 존재하고, 올리고머화는 액체 상에서 수행된다. 올리고머화가 액체 상에서 수행된다면, 이를 위해 매개변수 압력 및 온도는 반응물이 액체 상에 존재하도록 설정되어야 한다.In a further preferred embodiment the reactants are present in the liquid phase in step a) of the determination process according to the invention and the oligomerization is carried out in the liquid phase. If oligomerization is carried out in the liquid phase, for this the parameter pressure and temperature must be set such that the reactants are present in the liquid phase.

본 발명에 따른 결정 방법의 단계 a)에서, 중량-기준 공간 속도 (단위 촉매 질량 당 및 단위 시간 당 반응물 질량; 중량 시공간 속도 (WHSV))는 바람직하게는 촉매 g 당 및 h 당 반응물 1 g (= 1 h-1) 내지 190 h-1, 바람직하게는 2 h-1 내지 35 h-1, 특히 바람직하게는 3 h-1 내지 25 h-1의 범위이다.In step a) of the determination process according to the invention, the weight-based space velocity (reactant mass per unit catalyst mass and per unit time; weight space time velocity (WHSV)) is preferably 1 g of reactant per gram of catalyst and per h ( = 1 h -1 ) to 190 h -1 , preferably 2 h -1 to 35 h -1 , particularly preferably 3 h -1 to 25 h -1 .

결정 방법의 단계 a)에서의 올리고머화를 위한, 본 발명에 따른 올리고머화 촉매는, 적어도 산화니켈 및 지지체 물질로서의 알루미노실리케이트, 바람직하게는 무정형 알루미노실리케이트를 포함한다. 본 발명의 맥락에서, "무정형"은 고체가 결정 구조를 갖지 않는다는 사실, 즉, 장거리 규칙성을 갖지 않는다는 사실로부터 초래된 고체의 특성을 의미하는 것으로 이해되어야 한다. 그러나, 본 발명의 맥락에서 무정형 실리카-알루미나 지지체 물질이 작은 결정질 도메인을 갖는다는 것은 배제될 수 없다. 무정형 실리카-알루미나 지지체 물질은 결정질 물질이 아니고, 예를 들어 제올라이트 물질이 아니다.The oligomerization catalyst according to the invention for the oligomerization in step a) of the determination process comprises at least nickel oxide and an aluminosilicate, preferably amorphous aluminosilicate, as support material. In the context of the present invention, "amorphous" should be understood to mean the properties of a solid resulting from the fact that the solid does not have a crystalline structure, that is, does not have long range regularity. However, in the context of the present invention it cannot be excluded that the amorphous silica-alumina support material has a small crystalline domain. The amorphous silica-alumina support material is not a crystalline material, for example not a zeolite material.

본 발명에 따른 방법의 단계 a)에서 사용되는 니켈-함유 알루미노실리케이트는 메조기공성이고, 즉, 적어도 메조기공을 포함한다. 사용되는 알루미노실리케이트 촉매의 평균 기공 직경은 바람직하게는 적어도 0.7 nm이다. 평균 기공 직경은 DIN 66133 (1993-06 버전)에 따른 수은 기공도측정법에 의해 결정될 수 있다.The nickel-containing aluminosilicate used in step a) of the process according to the invention is mesoporous, ie comprises at least mesopores. The average pore diameter of the aluminosilicate catalyst used is preferably at least 0.7 nm. The average pore diameter can be determined by mercury porosimetry according to DIN 66133 (version 193-06).

단계 a)에서의 올리고머화를 위한, 본 발명에 따른 니켈-함유 알루미노실리케이트 촉매는, 바람직하게는, 메조기공성 니켈-함유 알루미노실리케이트 촉매의 총 조성을 기준으로 0.1 중량% 내지 51 중량%, 바람직하게는 1 중량% 내지 42 중량%, 특히 바람직하게는 5 중량% 내지 33 중량%의 양의 니켈을 포함한다. 본 발명의 특히 바람직한 실시양태에서, 단계 a)에서의 올리고머화 촉매는 이산화티타늄 및/또는 이산화지르코늄을 실질적으로 함유하지 않고, 올리고머화 촉매는 특히 그것의 총 조성에, 0.5 중량% 미만, 바람직하게는 0.1 중량% 미만, 특히 바람직하게는 0.01 중량% 미만의 이산화티타늄 및/또는 이산화지르코늄을 포함한다.The nickel-containing aluminosilicate catalyst according to the invention for oligomerization in step a) is preferably from 0.1% to 51% by weight, based on the total composition of the mesoporous nickel-containing aluminosilicate catalyst, It preferably comprises nickel in an amount of 1% to 42% by weight, particularly preferably 5% to 33% by weight. In a particularly preferred embodiment of the invention, the oligomerization catalyst in step a) is substantially free of titanium dioxide and / or zirconium dioxide, and the oligomerization catalyst is, in particular in its total composition, less than 0.5% by weight, preferably Comprises less than 0.1% by weight, particularly preferably less than 0.01% by weight of titanium dioxide and / or zirconium dioxide.

포화를 결정하는 데 사용되는 니켈-함유 알루미노실리케이트 촉매는 특히 알루미노실리케이트를 니켈 염을 함유하는 용액으로써 함침시키거나 단일 용액으로부터 공침시킴으로써 제조될 수 있다. 두 경우에, 후속적으로 공기 스트림 또는 질소 스트림 또는 둘의 혼합물의 존재 하에 적어도 450℃에서 니켈-함유 알루미노실리케이트 촉매의 하소가 수행된다.Nickel-containing aluminosilicate catalysts used to determine saturation can in particular be prepared by impregnating aluminosilicates with solutions containing nickel salts or by coprecipitation from a single solution. In both cases, calcination of the nickel-containing aluminosilicate catalyst is subsequently performed at at least 450 ° C. in the presence of an air stream or a nitrogen stream or a mixture of the two.

본 발명에 따르면, 단계 a)에서의 올리고머화를 위한 니켈-함유 알루미노실리케이트 촉매는 150 내지 700 m²/g, 바람직하게는 190 내지 600 m²/g, 특히 바람직하게는 220 내지 550 m²/g의 비표면적 (BET에 따라 계산됨)을 가질 수 있다. BET 표면적은 DIN ISO 9277 (2014-01 버전)에 따른 질소 물리흡착에 의해 측정된다.According to the invention, the nickel-containing aluminosilicate catalyst for oligomerization in step a) is 150 to 700 m 2 / g, preferably 190 to 600 m 2 / g, particularly preferably 220 to 550 m 2 / g. It may have a specific surface area (calculated according to BET). The BET surface area is measured by nitrogen physisorption according to DIN ISO 9277 (version 2014-01).

추가의 바람직한 실시양태에서 단계 a)에서의 올리고머화를 위해 사용되는 니켈-함유 알루미노실리케이트 촉매는 1 내지 100, 바람직하게는 2 내지 80, 특히 바람직하게는 3 내지 50의 규소-알루미늄 비 (Si/Al)를 갖는다.In a further preferred embodiment the nickel-containing aluminosilicate catalyst used for the oligomerization in step a) has a silicon-aluminum ratio (Si) of 1 to 100, preferably 2 to 80, particularly preferably 3 to 50. / Al).

본 발명에 따른 결정 방법을 수행하는 데 사용될 수 있는 적합한 반응기는, 올리고머화가 연속적으로 또는 불연속적으로 수행될 수 있게 하는, 관련 기술분야의 통상의 기술자에게 공지된 반응기를 포함한다. 바람직한 실시양태에서 연속적 또는 불연속적으로 작동되는 고정층 반응기 또는 슬러리 반응기가 본 발명에 따른 결정 방법을 수행하는 데 사용된다. 방법은 특히 불균질 촉매작용 하에 수행된다.Suitable reactors that can be used to carry out the determination process according to the invention include those reactors known to those skilled in the art, which allow the oligomerization to be carried out continuously or discontinuously. In a preferred embodiment a fixed bed reactor or slurry reactor operated continuously or discontinuously is used to carry out the determination process according to the invention. The process is carried out in particular under heterogeneous catalysis.

단계 a)에서의 올리고머화 후에, 수득된 생성물/수득된 생성물 스트림은 그것의 조성에 대해, 특히 n-옥텐, 3-메틸헵텐, 3,4-디메틸헥센, 4,4-디메틸헥센, 2,3-디메틸헥센 및 3-에틸-2-메틸펜텐에 대해 정량 분석된다. 이는 관련 기술분야의 통상의 기술자에게 공지된 기체 크로마토그래피 방법을 사용하여 달성될 수 있다. 용출되는 탄화수소의 구조를 규명하기 위한, 관련 기술분야의 통상의 기술자에게 공지된 추가의 방법, 예컨대 IR 분광법 또는 다른 분광법이 마찬가지로 개별 이성질체의 양을 결정하는 데 사용될 수 있다.After oligomerization in step a), the obtained product / obtained product stream is characterized for its composition, in particular n-octene, 3-methylheptene, 3,4-dimethylhexene, 4,4-dimethylhexene, 2, Quantitative analysis for 3-dimethylhexene and 3-ethyl-2-methylpentene. This can be accomplished using gas chromatography methods known to those skilled in the art. Further methods known to those skilled in the art, such as IR spectroscopy or other spectroscopy, to characterize the structure of the hydrocarbons eluted can likewise be used to determine the amount of individual isomers.

단계 b)에서, 단계 a)로부터의 생성물/생성물 스트림이 정량 분석을 위해 특히 기체 크로마토그래피에 보내지기 전에, 기체 크로마토그래피에 의한 분석에 있어서의 더 우수한 분리 효율을 달성하기 위해 생성물/생성물 스트림은 수소화에 적용될 수 있다. 이는 특히 팔라듐-함유 촉매를 사용하여 달성될 수 있다. 수소화는 특히 또한, 특히 운반 기체로서 수소를 사용한, 가수소분해적 기체 크로마토그래피의 형태의 기체 크로마토그래피를 사용하여 실행될 수 있다. 주입된 샘플이 수소화되면, 결정될 이성질체의 개수가 급격히 감소한다. 이 경우에 이중결합 이성질체는 더 이상 구별되지 않고 단지 골격 이성질체만이 규명된다. 이러한 정보는 생성물의 평균 분지화도를 결정하는 데 및 4,4-디메틸헥센 대 3,4-디메틸헥센의 비를 결정하는 데 충분하다. 주입된 샘플은 상업적으로 입수 가능한 비극성 칼럼을 사용하여 분리된다. 온도 프로그램은 옥텐 골격 이성질체의 효과적인 바탕선 분리가 실행되도록 최적화된다. 검출은 불꽃 이온화 검출기, 줄여서 FID를 통해 수행된다. 이성질체의 할당은 동일한 측정 조건에서 검출기로서 질량분석기를 사용하여 각각의 순수한 물질의 체류 시간을 통해 수행될 수 있다.In step b), before the product / product stream from step a) is sent to gas chromatography, in particular for quantitative analysis, the product / product stream is subjected to a better separation efficiency in the analysis by gas chromatography. It can be applied to hydrogenation. This can be achieved in particular using a palladium-containing catalyst. Hydrogenation can in particular also be carried out using gas chromatography in the form of hydrolytic gas chromatography, in particular using hydrogen as the carrier gas. When the injected sample is hydrogenated, the number of isomers to be determined is drastically reduced. In this case the double bond isomers are no longer distinguished and only the backbone isomers are identified. This information is sufficient to determine the average degree of branching of the product and to determine the ratio of 4,4-dimethylhexene to 3,4-dimethylhexene. The injected sample is separated using a commercially available nonpolar column. The temperature program is optimized to effect effective baseline separation of the octene isomers. Detection is carried out via a flame ionization detector, FID for short. The assignment of the isomers can be carried out through the residence time of each pure material using a mass spectrometer as a detector under the same measurement conditions.

올리고머화 촉매의 변화가 본 발명에 따른 방법을 통해 모니터링되는 경우에, 결정 방법은 미리 보정되어야 한다. 사용되는 촉매는, 니켈이 존재하지 않고 (= 0 값) 올리고머화가 사실상 전적으로 산성 촉매작용에 의해서만 진행되는 경우에, 형성된 4,4-디메틸헥센의 양 또는 형성된 3-에틸-2-메틸펜텐의 양 대 형성된 3,4-디메틸헥센의 양의 비가 얼마나 높은지를 결정하기 위한 니켈-비함유 알루미노실리케이트여야 한다. 포화를 결정하기 위한 본 발명에 따른 방법 전에 수행되는 보정 방법은 특히If the change in the oligomerization catalyst is monitored through the method according to the invention, the determination method must be corrected in advance. The catalyst used is the amount of 4,4-dimethylhexene formed or the amount of 3-ethyl-2-methylpentene formed when nickel is absent (= 0 value) and the oligomerization proceeds substantially exclusively by acid catalysis. It should be nickel-free aluminosilicate to determine how high the ratio of the amount of 3,4-dimethylhexene formed to. The correction method carried out before the method according to the invention for determining saturation is particularly

aa) 메조기공성 니켈-비함유 알루미노실리케이트 촉매를 다양한 온도 및/또는 담지량(loading) (다양한 WHSV)에서 사용하여 n-부텐의 올리고머화를 수행하는 단계;aa) performing oligomerization of n-butene using a mesoporous nickel-free aluminosilicate catalyst at various temperatures and / or loadings (various WHSV);

bb) 올리고머화에서 형성된 C8 이성질체, 특히 n-옥텐, 3-메틸헵텐, 3,4-디메틸헥센, 4,4-디메틸헥센, 2,3-디메틸헥센 및 3-에틸-2-메틸펜텐의 양을 결정하기 위해, 올리고머화로부터 수득된 생성물 스트림을 정량 분석하는 단계; 및bb) amounts of C8 isomers formed in oligomerization, in particular n-octene, 3-methylheptene, 3,4-dimethylhexene, 4,4-dimethylhexene, 2,3-dimethylhexene and 3-ethyl-2-methylpentene Quantitatively analyzing the product stream obtained from oligomerization to determine And

cc) 형성된 4,4-디메틸헥센의 양 또는 형성된 3-에틸-2-메틸펜텐의 양 대 형성된 3,4-디메틸헥센의 양의 비를 결정하는 단계cc) determining the ratio of the amount of 4,4-dimethylhexene formed or the amount of 3-ethyl-2-methylpentene formed to the amount of 3,4-dimethylhexene formed

를 포함한다.It includes.

임의로 단계 aa) 또는 단계 a), 즉, 본 발명에 따른 결정 방법의 올리고머화는, 산소-, 황- 및/또는 질소-함유 화합물, 예컨대, 예를 들어 물, 일산화탄소, 이산화탄소, 1 내지 5개의 탄소 원자를 갖는 알킬아민, 1 내지 6개의 탄소 원자를 갖는 알데히드 및 케톤, 1 내지 6개의 탄소 원자를 갖는 알콜, 카르복실산, 및 1 내지 8개의 탄소 원자를 갖는 에테르 및 에스테르 및 1 내지 4개의 탄소 원자를 갖는 황화물, 이황화물, 티오에테르 및/또는 메르캅탄을 첨가함으로써, 수행될 수 있다. 첨가량은 화합물에 존재하는 원소 O, S 및/또는 N를 기준으로 10 ppmw를 초과해서는 안 된다. 생성물 스펙트럼의, 특히 4,4-디메틸헥센 및 3,4-디메틸헥센의 비의 추이에 기초하여, 이는 산소-, 황- 및/또는 질소-함유 화합물에 의해 또는 오랜 가동시간으로 인한 니켈 화학종의 소결에 의해 일어나는 형성 및 불활성화 과정을 규명하는 것을 가능하게 한다.Optionally step aa) or step a), ie the oligomerization of the crystallization process according to the invention, comprises oxygen-, sulfur- and / or nitrogen-containing compounds such as, for example, water, carbon monoxide, carbon dioxide, 1-5 Alkylamines with carbon atoms, aldehydes and ketones with 1 to 6 carbon atoms, alcohols with 1 to 6 carbon atoms, carboxylic acids, and ethers and esters with 1 to 8 carbon atoms and 1 to 4 carbon atoms By addition of sulfides, disulfides, thioethers and / or mercaptans with carbon atoms. The amount of addition should not exceed 10 ppmw based on the elements O, S and / or N present in the compound. Based on the trend of the ratios of the 4,4-dimethylhexene and 3,4-dimethylhexene in the product spectrum, this is due to the oxygen species, the sulfur- and / or nitrogen-containing compounds or due to the long operating time It is possible to identify the formation and inactivation processes that occur by the sintering of.

이러한 데이터는 연속적인 작동 시에 올리고머화에 대한 예측을 하는 것을 가능하게 한다. 반응물 스트림의 기원에 따라, 산업적 반응물 스트림에 매우 소량으로 존재할 수 있는 헤테로원자-함유 화합물은 반응 동안의 촉매 변화를 초래하고, 이는 본 발명에 따른 결정 방법에 의해 더 잘 예측될 수 있다.This data makes it possible to make predictions for oligomerization in continuous operation. Depending on the origin of the reactant stream, heteroatom-containing compounds, which may be present in very small amounts in the industrial reactant stream, result in catalytic changes during the reaction, which can be better predicted by the determination process according to the invention.

실시예:Example

촉매 합성:Catalyst Synthesis:

1 내지 2 mm의 평균 입자 직경, 11 nm의 평균 기공 직경 (평균 기공 직경 및 수은 기공도측정법을 사용하여 결정됨) 및 1 g/l의 기공 부피를 갖는, 과립 형태의, 무정형, 산성 및 메조기공성 알루미노실리케이트를 촉매로서 사용하였다. 이러한 알루미노실리케이트 (니켈을 함유하지 않음)를 산 촉매작용에 의한 n-부텐의 반응의 생성물 분포를 결정하는 데 및 본 발명에 따른 결정 방법을 보정하는 데 사용한다.Granular, amorphous, acidic and meso groups with an average particle diameter of 1-2 mm, an average pore diameter of 11 nm (determined using average pore diameter and mercury porosimetry) and a pore volume of 1 g / l. Silicate aluminosilicate was used as a catalyst. This aluminosilicate (containing no nickel) is used to determine the product distribution of the reaction of n-butene by acid catalysis and to calibrate the determination method according to the invention.

알루미노실리케이트를 또한 수성 Ni(NO3)2 용액으로써 함침시킴으로써 니켈을 도입시켰다. 상기 함침에서는 기공 부피를 채우기에 충분히 큰 부피의 용액을 사용하였다. 이러한 방법은 관련 기술분야의 통상의 기술자에게 초기 습식 함침으로서 공지되어 있다. 용액 중 니켈의 농도를, 초기 습식 함침에 의해 1 중량%, 6 중량% 및 14 중량%의 니켈 함량을 갖는 알루미노실리케이트 촉매가 제공되도록, 조정하였다. 이어서 이러한 촉매를 550℃에서 10 h 동안 질소 스트림의 존재 하에 하소시켰다.Nickel was introduced by impregnating the aluminosilicate with an aqueous Ni (NO 3 ) 2 solution. In the impregnation, a solution of a volume large enough to fill the pore volume was used. Such a method is known to those skilled in the art as initial wet impregnation. The concentration of nickel in the solution was adjusted by initial wet impregnation to provide an aluminosilicate catalyst having a nickel content of 1 wt%, 6 wt% and 14 wt%. This catalyst was then calcined at 550 ° C. for 10 h in the presence of a nitrogen stream.

제조된 촉매에 대한 생성물 분포:Product distribution for prepared catalysts:

n-부텐의 올리고머화를 관형 반응기에서 시간 당 및 촉매 그램 당 7.5 g 올레핀의 담지량 (WHSV)을 사용하여 연속적으로 수행하였다. 반응을 100℃에서 30 bar의 압력에서 수행하였다. 이는 반응물 및 생성물이 액체 상에 존재하는 것을 보장하였다. 반응기로부터의 산출물을 기체 크로마토그래피를 사용하여 분석하였고 생성물 스펙트럼 내 개별 옥텐 이성질체의 비율을 결정하였다. n-옥텐 (n-O), 3,4-디메틸헥센 (3,4-DMH) 및 4,4-디메틸헥센 (4,4-DMH)의 비율이 표 1에 요약되어 있다.Oligomerization of n-butene was carried out continuously in a tubular reactor using a loading of 7.5 g olefins per hour and per gram of catalyst (WHSV). The reaction was carried out at 100 ° C. at a pressure of 30 bar. This ensured that the reactants and products were in the liquid phase. The output from the reactor was analyzed using gas chromatography and the ratio of the individual octene isomers in the product spectrum was determined. The ratios of n-octene (n-O), 3,4-dimethylhexene (3,4-DMH) and 4,4-dimethylhexene (4,4-DMH) are summarized in Table 1.

<표 1>TABLE 1

생성물 스펙트럼 내 n-옥텐 (n-O), 3,4-디메틸헥센 (3,4-DMH) 및 4,4-디메틸헥센 (4,4-DMH)의 비율 및 4,4-DMH 대 3,4-DMH의 비N-octene (nO), 3,4-dimethylhexene (3,4-DMH) and 4,4-dimethylhexene (4,4-DMH) in the product spectrum and 4,4-DMH to 3,4- Ratio of DMH

Figure pat00002
Figure pat00002

본 방법의 목표는 가능한 한 선형인 옥텐 이성질체의 형성이다. 14 중량%의 니켈을 포함하는 촉매가 형성된 n-옥텐의 가장 많은 양 및 따라서 또한 선형 이량체에 대한 가장 높은 선택도를 나타내었다. 니켈 비율이 감소함에 따라 n-부텐은 산-촉매작용에 의한 메카니즘을 통해 점점 많이 전환되며, 따라서 분지화된 생성물의 비율이 증가한다. 이는 4,4-DMH 대 3,4-DMH의 비에도 반영된다. 산 촉매작용의 비율이 높을수록 상기 비는 더 크다. 0.05 미만의 비는 배위 촉매작용의 개시의 특징이며, 원하는 n-옥텐의 가장 높은 비율은 0.01 미만의 비에서 발견된다.The goal of the method is the formation of octene isomers as linear as possible. Catalysts comprising 14% by weight of nickel exhibited the highest amount of n-octene formed and thus also the highest selectivity for linear dimers. As the nickel ratio decreases, n-butene is converted more and more through an acid-catalyzed mechanism, thus increasing the proportion of branched product. This is also reflected in the ratio of 4,4-DMH to 3,4-DMH. The higher the rate of acid catalysis, the greater the ratio. A ratio below 0.05 is characteristic of the onset of coordination catalysis and the highest proportion of n-octene desired is found at a ratio below 0.01.

Claims (14)

n-부텐을 함유하는 반응물 스트림을 메조기공성 니켈-함유 알루미노실리케이트 촉매 상에 통과시켜 생성물 혼합물을 형성하는 것인 n-부텐의 올리고머화 방법이며, 생성물 혼합물 중 형성된 4,4-디메틸헥센의 양 대 형성된 3,4-디메틸헥센의 양의 비를 모니터링하고, 비 (4,4-디메틸헥센의 양 / 3,4-디메틸헥센의 양)에 대한 문턱값이 초과될 때 촉매를 교체하는 것을 특징으로 하고, 여기서 비 (4,4-디메틸헥센의 양 / 3,4-디메틸헥센의 양)에 대한 문턱값은 0.05 이하인 방법.A process for oligomerization of n-butenes in which a reactant stream containing n-butenes is passed over a mesoporous nickel-containing aluminosilicate catalyst to form a product mixture, wherein the 4,4-dimethylhexene formed in the product mixture Monitor the ratio of the amount to the amount of 3,4-dimethylhexene formed and replace the catalyst when the threshold for the ratio (amount of 4,4-dimethylhexene / amount of 3,4-dimethylhexene) is exceeded Characterized in that the threshold for the ratio (amount of 4,4-dimethylhexene / 3amount of 3,4-dimethylhexene) is 0.05 or less. 제1항에 있어서, 올리고머화 방법을 50℃ 내지 200℃, 바람직하게는 60℃ 내지 130℃의 범위의 온도에서 수행하는 것인 방법.The process according to claim 1, wherein the oligomerization process is carried out at a temperature in the range of 50 ° C to 200 ° C, preferably 60 ° C to 130 ° C. 제1항 또는 제2항에 있어서, 올리고머화 방법을 10 bar 내지 70 bar, 바람직하게는 15 bar 내지 42 bar의 범위의 압력에서 수행하는 것인 방법.The process according to claim 1 or 2, wherein the oligomerization process is carried out at a pressure in the range of 10 bar to 70 bar, preferably 15 bar to 42 bar. 제1항 내지 제3항 중 어느 한 항에 있어서, 올리고머화 방법에서 사용되는 메조기공성 니켈-함유 알루미노실리케이트 촉매가, 메조기공성 니켈-함유 알루미노실리케이트 촉매의 총 조성을 기준으로, 0.1 중량% 내지 51 중량%, 바람직하게는 1 중량% 내지 42 중량%, 특히 바람직하게는 5 중량% 내지 33 중량%의 양의, 산화니켈 NiO로서 계산된 니켈을 함유하는 것인 방법.The mesoporous nickel-containing aluminosilicate catalyst used in the oligomerization method is 0.1 weight based on the total composition of the mesoporous nickel-containing aluminosilicate catalyst. A nickel calculated as nickel oxide NiO in an amount of% to 51% by weight, preferably 1% to 42% by weight, particularly preferably 5% to 33% by weight. 제1항 내지 제4항 중 어느 한 항에 있어서, 올리고머화 방법에서 사용되는 메조기공성 니켈-함유 알루미노실리케이트 촉매가 1 내지 100, 바람직하게는 2 내지 80, 특히 바람직하게는 3 내지 50의 Si/Al 비를 갖는 것인 방법.5. The mesoporous nickel-containing aluminosilicate catalyst used in the oligomerization process is according to any one of claims 1 to 4, wherein Having a Si / Al ratio. 제1항 내지 제5항 중 어느 한 항에 있어서, 메조기공성 니켈-함유 알루미노실리케이트 촉매가 이산화티타늄 및/또는 이산화지르코늄을 함유하지 않는 것인 방법.The process according to claim 1, wherein the mesoporous nickel-containing aluminosilicate catalyst does not contain titanium dioxide and / or zirconium dioxide. a) 메조기공성 니켈-함유 알루미노실리케이트 촉매를 사용한 n-부텐의 올리고머화를 수행하는 단계;
b) 올리고머화에서 형성된 C8 이성질체, 특히 n-옥텐, 3-메틸헵텐, 3,4-디메틸헥센, 4,4-디메틸헥센, 2,3-디메틸헥센 및 3-에틸-2-메틸펜텐의 양을 결정하기 위해, 올리고머화로부터 수득된 생성물 스트림을 정량 분석하는 단계; 및
c) 0.05 이하인, 형성된 4,4-디메틸헥센의 양 또는 형성된 3-에틸-2-메틸펜텐의 양 대 형성된 3,4-디메틸헥센의 양의 비를 결정하는 단계
를 포함하는 것인, 형성된 4,4-디메틸헥센의 양 또는 형성된 3-에틸-2-메틸펜텐의 양 대 형성된 3,4-디메틸헥센의 양의 비를 결정하는 방법.
a) performing oligomerization of n-butene with mesoporous nickel-containing aluminosilicate catalyst;
b) amounts of C8 isomers formed in oligomerization, in particular n-octene, 3-methylheptene, 3,4-dimethylhexene, 4,4-dimethylhexene, 2,3-dimethylhexene and 3-ethyl-2-methylpentene Quantitatively analyzing the product stream obtained from oligomerization to determine And
c) determining the ratio of the amount of 4,4-dimethylhexene formed or the amount of 3-ethyl-2-methylpentene formed to the amount of 3,4-dimethylhexene formed that is 0.05 or less;
A method for determining the ratio of the amount of 4,4-dimethylhexene formed or the amount of 3-ethyl-2-methylpentene formed to the amount of 3,4-dimethylhexene formed.
제7항에 있어서, 단계 a)에서의 올리고머화를 50℃ 내지 200℃, 바람직하게는 60℃ 내지 130℃의 범위의 온도에서 수행하는 것인 방법.8. The process according to claim 7, wherein the oligomerization in step a) is carried out at a temperature in the range of 50 ° C to 200 ° C, preferably 60 ° C to 130 ° C. 제7항 또는 제8항에 있어서, 단계 a)에서의 올리고머화를 10 bar 내지 70 bar, 바람직하게는 15 bar 내지 42 bar의 범위의 압력에서 수행하는 것인 방법.The process according to claim 7 or 8, wherein the oligomerization in step a) is carried out at a pressure in the range of 10 bar to 70 bar, preferably 15 bar to 42 bar. 제7항 내지 제9항 중 어느 한 항에 있어서, 단계 a)에서 사용되는 메조기공성 니켈-함유 알루미노실리케이트 촉매가, 메조기공성 니켈-함유 알루미노실리케이트 촉매의 총 조성을 기준으로, 0.1 중량% 내지 51 중량%, 바람직하게는 1 중량% 내지 42 중량%, 특히 바람직하게는 5 중량% 내지 33 중량%의 양의, 산화니켈 NiO로서 계산된 니켈을 함유하는 것인 방법.10. The mesoporous nickel-containing aluminosilicate catalyst used in step a) is 0.1 weight based on the total composition of the mesoporous nickel-containing aluminosilicate catalyst. A nickel calculated as nickel oxide NiO in an amount of% to 51% by weight, preferably 1% to 42% by weight, particularly preferably 5% to 33% by weight. 제7항 내지 제10항 중 어느 한 항에 있어서, 단계 a)에서의 올리고머화에서 사용되는 메조기공성 니켈-함유 알루미노실리케이트 촉매가 1 내지 100, 바람직하게는 2 내지 80, 특히 바람직하게는 3 내지 50의 Si/Al 비를 갖는 것인 방법.The mesoporous nickel-containing aluminosilicate catalyst used in the oligomerization in step a) is 1 to 100, preferably 2 to 80, particularly preferably Having a Si / Al ratio of 3 to 50. 제7항 내지 제11항 중 어느 한 항에 있어서, 단계 a)에서의 메조기공성 니켈-함유 알루미노실리케이트 촉매가 이산화티타늄 및/또는 이산화지르코늄을 함유하지 않는 것인 방법.The process according to claim 7, wherein the mesoporous nickel-containing aluminosilicate catalyst in step a) does not contain titanium dioxide and / or zirconium dioxide. 제7항 내지 제12항 중 어느 한 항에 있어서, 올리고머화를 1 h-1 내지 190 h-1, 바람직하게는 2 h-1 내지 35 h-1, 특히 바람직하게는 3 h-1 내지 25 h-1의 중량 시공간 속도 (WHSV)에서 수행하는 것인 방법.13. The oligomerization according to any of claims 7 to 12, wherein the oligomerization is from 1 h -1 to 190 h -1 , preferably from 2 h -1 to 35 h -1 , particularly preferably from 3 h -1 to 25 the weight spacetime velocity (WHSV) of h −1 . 제7항 내지 제13항 중 어느 한 항에 있어서, 단계 b)에서의 정량 분석을 기체 크로마토그래피를 사용하여 수행하는 것인 방법.The method according to any one of claims 7 to 13, wherein the quantitative analysis in step b) is carried out using gas chromatography.
KR1020190089297A 2018-07-25 2019-07-24 Process for oligomerization of butene with determination of the proportion of acidic catalysis KR20200011887A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP18185533.9 2018-07-25
EP18185533 2018-07-25

Publications (1)

Publication Number Publication Date
KR20200011887A true KR20200011887A (en) 2020-02-04

Family

ID=63173943

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190089297A KR20200011887A (en) 2018-07-25 2019-07-24 Process for oligomerization of butene with determination of the proportion of acidic catalysis

Country Status (11)

Country Link
US (1) US10633302B2 (en)
EP (1) EP3599230B1 (en)
JP (1) JP7358101B2 (en)
KR (1) KR20200011887A (en)
CN (1) CN110776390B (en)
CA (1) CA3049521A1 (en)
MX (1) MX2019008769A (en)
MY (1) MY191614A (en)
SG (1) SG10201906736PA (en)
TW (1) TWI827640B (en)
ZA (1) ZA201904795B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11365171B2 (en) 2019-06-12 2022-06-21 Evonik Operations Gmbh Process for preparing an ester by alkoxycarbonylation
US11008275B2 (en) 2019-06-12 2021-05-18 Evonik Operations Gmbh Process for preparing carboxylic acids or salts thereof from hydrocarbons
US11440863B2 (en) 2019-06-12 2022-09-13 Evonik Operations Gmbh Process for preparing an alcohol from hydrocarbons
US11254631B2 (en) 2019-08-21 2022-02-22 Evonik Operations Gmbh Process for oligomerization of olefins with optimized distillation
US11332421B2 (en) 2019-08-21 2022-05-17 Evonik Operations Gmbh Process for oligomerization of olefins with optimized distillation
JP7354861B2 (en) 2020-01-31 2023-10-03 トヨタ自動車株式会社 vehicle
US11396488B2 (en) 2020-07-30 2022-07-26 Evonik Operations Gmbh Process for preparing aldehydes and separation of the catalyst system by membrane separation
US11806669B2 (en) 2020-12-22 2023-11-07 Evonik Operations Gmbh Variable and self-regulating permeate recycling in organophilic nanofiltration
EP4091712B1 (en) 2021-05-18 2024-05-15 Evonik Oxeno GmbH & Co. KG Method for regenerating a catalyst for the hydroformylation of olefins in the gas phase
CA3183265A1 (en) * 2021-12-08 2023-06-08 Evonik Operations Gmbh Process for producing an oligomerization catalyst having a hydrothermal treatment step
EP4223737A1 (en) * 2022-02-08 2023-08-09 Evonik Operations GmbH Optimized thermal separation by prior gas exchange

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4855528A (en) * 1988-02-05 1989-08-08 Exxon Chemical Patents Inc. Catalysts and process for oligomerization of olefins with nickel-containing zeolite catalysts
DE4339713A1 (en) 1993-11-22 1995-05-24 Basf Ag Process for oligomerization of olefins to highly linear oligomers and catalysts therefor
DE10335510A1 (en) 2003-07-31 2005-03-10 Stockhausen Chem Fab Gmbh Coated catalyst carrier body
FR2873116B1 (en) 2004-07-15 2012-11-30 Inst Francais Du Petrole OLEFIN OLIGOMERIZATION METHOD USING SILICA-ALUMINATED CATALYST
DE102005018606A1 (en) 2005-04-21 2006-11-09 Basf Ag Process for the oligomerization of olefins having 2 to 6 carbon atoms
US20090068440A1 (en) 2005-06-20 2009-03-12 Gunther Bub Production of acrolein, acrylic acid and water-absorbent polymer structures made from glycerine
DE102006039205A1 (en) 2006-08-22 2008-03-20 Stockhausen Gmbh On renewable raw materials based acrylic acid and water-absorbing polymer structures and processes for their preparation by dehydration
DE102006039203B4 (en) 2006-08-22 2014-06-18 Evonik Degussa Gmbh Process for the preparation of crystallization-purified acrylic acid from hydroxypropionic acid and apparatus therefor
CN101631614B (en) 2006-10-17 2013-12-11 路慕斯技术有限公司 Bimetallic alkylation catalysts
DE102008060888A1 (en) 2008-12-09 2010-06-10 Evonik Stockhausen Gmbh A process for producing acrolein comprising the processing of a crude glycerol phase
AT510489B1 (en) 2010-10-14 2012-06-15 Aba Hoertnagl Gmbh BUCKLE
JP2014151253A (en) 2013-02-06 2014-08-25 Jx Nippon Oil & Energy Corp Method for low polymerization of olefin, and catalyst used for the method
DE102013212481A1 (en) 2013-06-27 2014-12-31 Evonik Industries Ag Oligomerization of C4 streams with the lowest content of 1-butene
DE102014201756A1 (en) 2014-01-31 2015-08-06 Evonik Degussa Gmbh Purification of chlorine-contaminated organophosphorus compounds
EP3059005B1 (en) 2015-02-18 2018-10-24 Evonik Degussa GmbH Separation of a homogeneous catalyst from a reaction mixture using organophilic nanofiltration under consideration of a membrane performance indicator
JP6228246B2 (en) 2015-03-03 2017-11-08 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH Regeneration of heterogeneous catalysts used for ethene oligomerization
SG10201601501QA (en) 2015-03-05 2016-10-28 Evonik Degussa Gmbh Preparation of 2,2`-biaryls in the presence of molybdenum(v) chloride
EP3246303B8 (en) 2016-05-19 2020-01-01 Evonik Operations GmbH Preparation of n-pentanal from low-butene reaction feed
ES2711317T3 (en) 2016-06-10 2019-05-03 Evonik Degussa Gmbh Oligomerization of ethene in supercritical regime
EP3266757B1 (en) 2016-07-08 2019-12-25 Evonik Operations GmbH Producing at least 1-hexene and octen from ethene
US10227279B2 (en) 2016-09-12 2019-03-12 Evonik Degussa Gmbh Dehydrogenation of LPG or NGL and flexible utilization of the olefins thus obtained
US10245578B2 (en) 2016-11-09 2019-04-02 Evonik Degussa Gmbh Chromium- and nickel-free hydrogenation of hydroformylation mixtures
ZA201808002B (en) 2017-12-01 2019-08-28 Evonik Degussa Gmbh Method for obtaining alcohols from aldehydes
US10562833B2 (en) 2017-12-01 2020-02-18 Evonik Degussa Gmbh Method for obtaining alcohols from aldehydes III
ZA201808003B (en) 2017-12-01 2019-08-28 Evonik Degussa Gmbh Method for obtaining alcohols from aldehydes ii

Also Published As

Publication number Publication date
TW202007678A (en) 2020-02-16
MY191614A (en) 2022-07-03
MX2019008769A (en) 2020-01-27
JP7358101B2 (en) 2023-10-10
CA3049521A1 (en) 2020-01-25
US10633302B2 (en) 2020-04-28
US20200031732A1 (en) 2020-01-30
CN110776390B (en) 2023-12-01
ZA201904795B (en) 2022-08-31
SG10201906736PA (en) 2020-02-27
JP2020015721A (en) 2020-01-30
CN110776390A (en) 2020-02-11
TWI827640B (en) 2024-01-01
EP3599230B1 (en) 2022-06-15
EP3599230A1 (en) 2020-01-29

Similar Documents

Publication Publication Date Title
CN110776390B (en) Method for oligomerizing butenes by determining the ratio of acid catalysis
US7501548B2 (en) Oligomerization of isobutene-containing feedstocks
CA2791219C (en) Production of propylene via simultaneous dehydration and skeletal isomerisation of isobutanol on acid catalysts followed by metathesis
KR101174204B1 (en) A PROCESS FOR PRODUCING s-BUTYLBENZENE
JP2008519033A (en) Catalyst and process for producing propylene by metathesis of ethylene and butene
MX2011002087A (en) Olefin isomerization and metathesis catalyst.
JP2011042799A (en) Method for controlling degree of branching of oligomerization reaction product
KR101849422B1 (en) Process for co-oligomerization of olefins
Wei et al. Coupling conversion of n-hexane and CO over an HZSM-5 zeolite: tuning the H/C balance and achieving high aromatic selectivity
Yoon et al. Oligomerization of isobutene over dealuminated Y zeolite catalysts
JP2011510918A (en) Method for oligomerizing alkenes
US9394212B2 (en) Process for the cooligomerization of olefins
US20170368540A1 (en) Isoparaffin-olefin alkylation
CA2990185C (en) Process for manufacturing methyl tertiary-butyl ether (mtbe) and hydrocarbons
KR20180099514A (en) Selective oligomerization of olefins
KR20200131761A (en) Process for the oligomerization of olefins with control of the oligomer content in the hydrocarbon streams to be oligomerized
WO2016150529A1 (en) Process for converting an olefin containing hydrocarbon feed into an oligomerization product or a hydrogenated oligomerization product
US11174207B2 (en) Process for the isomerization of olefins
EP2522424B1 (en) Supported nanocatalyst for conversion of monoolefins, process for conversion of monoolefins and process for preparing the nanocatalyst
US20220250046A1 (en) Stable, high selectivity catalysts and catalyst systems, and processes for their use
KR100864376B1 (en) Preparing method of butene trimers from olefins containing various olefin components and production of heavy alkylates by using thereof
TW202415450A (en) Process for treatment of a catalyst
US20210238110A1 (en) p-XYLENE PRODUCTION METHOD

Legal Events

Date Code Title Description
E902 Notification of reason for refusal