KR20180077966A - Photoacoustic and ultrasonic endoscopic mini-probe - Google Patents

Photoacoustic and ultrasonic endoscopic mini-probe Download PDF

Info

Publication number
KR20180077966A
KR20180077966A KR1020160182877A KR20160182877A KR20180077966A KR 20180077966 A KR20180077966 A KR 20180077966A KR 1020160182877 A KR1020160182877 A KR 1020160182877A KR 20160182877 A KR20160182877 A KR 20160182877A KR 20180077966 A KR20180077966 A KR 20180077966A
Authority
KR
South Korea
Prior art keywords
photoacoustic
probe
piezoelectric element
ultrasonic
optical fiber
Prior art date
Application number
KR1020160182877A
Other languages
Korean (ko)
Other versions
KR102001980B1 (en
Inventor
양준모
김채운
Original Assignee
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산과학기술원 filed Critical 울산과학기술원
Priority to KR1020160182877A priority Critical patent/KR102001980B1/en
Publication of KR20180077966A publication Critical patent/KR20180077966A/en
Application granted granted Critical
Publication of KR102001980B1 publication Critical patent/KR102001980B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4494Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0093Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
    • A61B5/0095Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy by applying light and detecting acoustic waves, i.e. photoacoustic measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4477Constructional features of the ultrasonic, sonic or infrasonic diagnostic device using several separate ultrasound transducers or probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2418Probes using optoacoustic interaction with the material, e.g. laser radiation, photoacoustics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating

Abstract

According to the present invention, a photoacoustic-ultrasonic endoscope includes a probe and a probe driving unit. The probe includes: an optical-electromagnetic waveguide assembly which includes a conductive path and optical fiber including a cladding and a core; a scanning tip which is arranged at one end of the optical-electromagnetic wavelength assembly and detects a photoacoustic-ultrasonic signal generated from a subject by sending a laser beam to the subject; and a plastic catheter which surrounds the outside of the scanning tip and the optical-electromagnetic waveguide assembly. The scanning tip includes: an optical reflector included to reflect a laser beam transmitted through the optical fiber to a target point of a subject; and a piezoelectric element having a first window, through which the reflected laser beam passes, and configured to generate ultrasound or detect ultrasound generated from the subject. The photoacoustic-ultrasonic mini endoscope probe is provided to improve the reception sensitivity of a signal and the resolution of a photoacoustic image.

Description

광음향-초음파 미니 내시경 프로브 {Photoacoustic and ultrasonic endoscopic mini-probe}[0001] The present invention relates to a photoacoustic-ultrasonic endoscopic mini-probe,

본 발명은 현재 임상에서 쓰이고 있는 초음파 내시경(EUS) 미니 프로브(mini-probe)나 카테터(catheter) 프로브처럼 매우 가늘고 긴 프로브 형태로 구현되어 피검체 내부에 삽입, 그 주변의 단층 이미지를 제공할 수 있는 의료용 단층촬영 내시경 장치에 관한 것이다. 본 장치는 언급한 초음파 내시경 기기들의 일반적 형태와 크기, 그리고 영상 능력들을 그대로 유지하면서도 광음향(photoacoustic) 이미지 정보를 추가로 제공해 줄 수 있어, 향후 소화기나 심혈관계 질환 진단 등과 같은 다양한 의료 영역에 폭 넓게 활용될 수 있을 것으로 예상된다. The present invention can be implemented in the form of an elongated probe such as an ultrasound endoscope (EUS) mini-probe or a catheter probe, which is currently used in clinical practice, and can be inserted into a subject to provide a tomographic image of the vicinity thereof To a medical tomography endoscope apparatus. This device can provide photoacoustic image information while retaining the general shape, size, and image capabilities of the aforementioned ultrasound endoscopic devices, and it can be applied to a variety of medical fields such as digestive or cardiovascular disease diagnosis It is expected to be widely used.

본 발명은 현재 임상에서 쓰이고 있는 초음파 기반 미니 프로브(일명 endoscopic ultrasound mini-probe, 선행문헌 1, 선행문헌 2)나 혈관 진단용 카테터 프로브(일명 intravascular ultrasound catheter probe, 선행문헌 3, 선행문헌 4) 등과 유사한 방식으로 소화기나 심혈관계 진단과 같은 의료 영역에 적용함을 목적으로 개발된 광음향 내시경술(photoacoustic endoscopy or optoacoustic endoscopy, 선행문헌 5, 선행문헌 6) 분야의 단층촬영 내시경 시스템에 관한 것이다. The present invention relates to an ultrasound-guided mini-probe (also referred to as an endoscopic ultrasound mini-probe, prior art 1, prior art 2) or a catheter probe for a blood vessel diagnosis (also called intravascular ultrasound catheter probe, prior art 3, prior art 4) The present invention relates to a tomographic endoscopic system in the field of photoacoustic endoscopy or optoacoustic endoscopy (Prior Art 5, Prior Art 6) developed for the purpose of applying to a medical field such as a digestive or cardiovascular diagnosis.

광음향 내시경술이란 작은 직경의 프로브를 피검생체에 삽입한 후, 관심 부위에 매우 짧은 (통상 1 ㎲ 이하) 펄스폭을 갖는 전자기파를 순간적으로 조사하여 초음파 신호를 발생시키고, 그렇게 발생된 신호들을 일정 영역에 걸쳐 획득(즉, 스캔)하여 조직 내부의 단층 이미지를 얻는 내시경 기술(tomographic endoscopy)을 말한다. The photoacoustic endoscope is a technique of inserting a small-diameter probe into a subject and generating an ultrasonic signal by momentarily irradiating an electromagnetic wave having a pulse width of a very short (usually 1 占 퐏 or less) Refers to a tomographic endoscopy that acquires a tomographic image of the interior of the tissue by acquiring (i.e., scanning) across the region.

어떻게 생체 조직에 조사된 전자기파가 초음파 신호로 바뀌는지에 대한 전반적 원리는 광음향 효과(photoacoustic effect)라는 이름으로 1880년대부터 알려져 왔으나, 실제 이 원리를 바탕으로 생체조직 등과 같은 피검체로부터 단층 이미지를 얻는 것은 큐스위치 레이저(Q-switched laser)와 같은 펄스형 광원(pulsed light source)이 상용화된 후인 1990년대 초반이었는데, 이후 보다 다양한 의학적 응용 가능성이 보이면서 그간 여러 종류의 시스템 형태로 구현되었다. 보다 넓은 의미에서 광음향 효과를 바탕으로 조직 내의 단층 이미지를 얻는 기술은 광음향 이미징(photoacoustic imaging) 기술 또는 광음향 단층촬영술(photoacoustic tomography)이라는 용어로 총칭되고 있다.The general principle of how electromagnetic waves irradiated to biological tissues are converted into ultrasonic signals has been known as photoacoustic effect since the 1880s. However, based on this principle, a tomographic image is obtained from a subject such as a biotissue It was in the early 1990's, after pulsed light sources such as Q-switched lasers were commercialized, and since then, they have been implemented in many different types of systems, with more diverse medical applications. In a broader sense, techniques for obtaining tomographic images in tissue based on photoacoustic effects are collectively referred to as photoacoustic imaging techniques or photoacoustic tomography.

광음향 이미징 기술이 현재 의료 영상 분야에서 큰 주목을 받는 이유는 실제 임상 현장에서 적용할만한 수준의 영상 깊이와 분해능, 영상 속도, 그리고 안전성 문제 등과 같은 여러 기술 조건을 만족시킴은 물론 기존의 기술이 제공하지 못하는 새롭고 유용한 영상 정보를 제공하기 때문이다. 본 발명은 이 광음향 이미징 기술의 내시경적 응용과 관련된 것으로 기존에 제안된 광음향 내시경 시스템들의 문제점들을 개선할 수 있는 보다 진보된 형태의 장치 구성과 작동 원리 및 그 구현 방법을 제공하는 데 있다. The reason why photoacoustic imaging technology is currently attracting a great deal of attention in the field of medical imaging is that it satisfies various technical conditions such as image depth, resolution, image speed, and safety problem, This is because it provides new and useful video information that can not be reproduced. The present invention relates to an endoscopic application of the photoacoustic imaging technique and provides a more advanced device configuration and operation principle and an implementation method thereof that can overcome the problems of the photoacousticoscopy systems proposed in the prior art.

이미 잘 알려진 일반적인 형태의 광음향 이미징 시스템(즉, 내시경에만 국한되지 않는)의 경우처럼, 광음향 내시경 시스템을 구현하기 위해서는 펄스형 전자기파를 생성해주는 광원부(light source), 피검 생체조직 가까이에 접근하여 광음향 단층 신호를 획득해 주는 영상 스캐너(scanner) 또는 프로브(probe), 그리고 획득한 단층 신호를 처리하여 사용자에게 제시하는 데이타 처리 및 제시 장치(data processor and displayer)라는 세 가지 장치 요소가 필요하다. 하지만 내시경술이라는 특수한 응용 목적을 달성하기 위해서는 영상 프로브가 매우 작거나 가늘고 긴 형태로 구현되어야 한다는 것이 가장 차별되는 기술 조건이다. In order to realize the photoacousticoscopy system, as in the case of a well-known general photoacoustic imaging system (i.e., not limited to an endoscope), a light source for generating a pulsed electromagnetic wave, Three device elements are required: an image scanner or probe to acquire the photoacoustic single-layer signal, and a data processor and displayer to process the obtained single-layer signal and present it to the user . However, in order to achieve the specific application purpose of endoscopy, image probes should be implemented in a very small or slender shape.

그래서 그간 이러한 형태 및 기능적 조건을 만족시킬 수 있는 다양한 종류의 광음향 내시경 프로브가 제안되긴 하였으나, 여러 까다로운 시스템 요구 조건으로 인해 실제 임상 현장에 적용될 수 있는 일종의 상업화된 광음향 내시경 시스템은 아직까지 개발된 바 없다. 광음향 내시경 시스템이 성립되기 위해서는 광소자와 초음파 소자를 프로브라는 작은 공간 안에 효과적으로 통합 배치시키고, 일련의 스캔 방법을 적용하여 단층 이미지를 얻을 수 있게 하는 것이 핵심 요구 조건이다. Various types of photoacousticoscopy probes have been proposed to satisfy these types and functional conditions. However, a commercialized photoacoustic endoscope system that can be applied to actual clinical situations due to various demanding system requirements has been developed yet There is no way. In order to establish a photoacoustic endoscope system, it is a key requirement to integrate an optical element and an ultrasonic element effectively in a small space called a probe, and to obtain a tomographic image by applying a series of scanning methods.

광음향 내시경이 펄스형 전자기파로 초음파를 발생시켜 이미지를 얻는다는 차별된 특성을 갖고 있으나, 이 기술 역시 초음파를 매개로 하여 영상에 필요한 신호를 획득한다는 측면에서 현재 임상에서 쓰이고 있는 초음파 내시경(endoscopic ultrasound: EUS, 선행문헌 1)과 매우 밀접한 관련이 있다. 즉, 쉽게 생각하면, 광음향 내시경은 기존의 초음파 내시경 기술이 갖고 있는 시스템 요소들에 광 또는 전자기파 전달 및 발사 기능이 추가된 것이라고 볼 수도 있으며, 또 이러한 시스템 구성상의 특징으로 인해 대부분의 광음향 내시경 시스템들은 광음향 이미지는 물론 기존의 초음파 이미지를 동시에 제공해줄 수 있는 능력이 있다. Although the endoscope has differentiated characteristics that the ultrasonic wave is generated by the pulsed electromagnetic wave to obtain the image, this technique is also applicable to the endoscopic ultrasound : EUS, Prior Art 1). In other words, the photoacoustic endoscope can be regarded as a system in which the optical or electromagnetic wave transmission and emission functions are added to the system elements of the existing ultrasound endoscopic technology, and due to the feature of the system configuration, Systems have the ability to provide both conventional photoacoustic images as well as conventional ultrasound images.

그러므로 광음향 내시경 프로브에 있어서, 일단 전자기파(일반적으로 레이저 펄스)를 전달하여 피검체 방향으로 발사하는 부위는 제외시키고 초음파 검출부에 대한 구성 방법만을 생각하면, 현재 임상용 초음파 내시경(EUS) 기기들에 사용되고 있는 단일 초음파 트랜스듀서(single-element ultrasonic transducer) 기반 기계적 스캔(mechanical scanning) 방식과 배열형 트랜스듀서(array transducer) 기반 전기적 스캔(electronic scanning) 방식이 모두 적용될 수 있다 (선행문헌 1). 그럼 각각의 스캔 방식을 적용할 경우 어떠한 장단점을 갖고 있는지 간략히 살펴본다. Therefore, in a photoacoustic endoscope probe, it is currently used in clinical ultrasound endoscopy (EUS) devices, considering only a configuration method for an ultrasound detection unit by excluding electromagnetic waves (generally laser pulses) A single-element ultrasonic transducer based mechanical scanning method and an array transducer based electronic scanning method can be applied (Prior Art 1). So let's look briefly to see what advantages and disadvantages to apply each scan method.

먼저 후자를 적용할 경우는 다수의 트랜스듀서 엘리먼트(element)들을 바탕으로 단 하나의 레이저 펄스만을 발사하여 2차원 혹은 3차원 단층 이미지 구성에 필요한 데이타를 동시에 획득할 수 있다는 장점이 있다. 즉, 센서나 프로브의 위치를 공간적으로 옮겨가지 않고도, 단 1회의 레이저 펄스 발사를 통해, 소정 영역에 걸친 단층 이미지를 매우 빠르게 획득할 수 있는 것이다. 하지만 전자에 비해 기기의 소형화가 상대적으로 어렵고, 여러 채널 간의 혼선(cross talk) 등과 같은 문제가 발생하며, 시스템 구현에 필요한 비용도 높다는 단점이 있을 수 있다. 그래서 배열형 트랜스듀서의 바로 이러한 문제 때문에, 현재 임상에서 사용되고 있는 초음파 내시경(EUS) 분야에서는 고도의 소형화가 필요하지 않은 소화기 진단용 내시경 기기에 주로 적용되고 있다 (물론 초음파 내시경 기기에 있어서는 레이저 펄스 등을 발사하는 일이 필요하지 않다).In the latter case, only one laser pulse is emitted based on a plurality of transducer elements to acquire data necessary for a two-dimensional or three-dimensional tomographic image configuration at the same time. That is, without moving the position of the sensor or the probe spatially, it is possible to acquire a tomographic image over a predetermined region very quickly through only one laser pulse emission. However, the miniaturization of the device is relatively difficult compared to the former, problems such as cross talk between the plural channels occur, and the cost for implementing the system may be high. Therefore, due to such a problem of the array type transducer, the ultrasonic endoscope (EUS) field currently used in clinical practice is mainly applied to an endoscope apparatus for digestion diagnosis which does not require a high degree of miniaturization (of course, in the ultrasonic endoscope apparatus, There is no need to fire.

이에 반해 전자를 적용할 경우는, 내시경 프로브 내에 특정 방향으로부터 진행해 오는 신호만을 검출할 수 있는 단 하나의 초음파 트랜스듀서가 장착되어 있는 관계로, 2차원 이상의 단층 이미지를 얻기 위해서는 레이저 펄스를 발사하고 그로 인해 발생된 초음파 신호를 검출하는 일련의 과정을 물리적 위치를 바꾸어(일반적으로 회전) 가며 되풀이해야 하는 단점이 있다. 하지만 하나의 초음파 트랜스듀서가 차지하는 공간이 그다지 크지 않기 때문에 매우 작고 가는 형태로 구현이 가능하며, 기기 구성에 필요한 비용도 상대적으로 저렴하다는 장점이 있다. 그래서 초음파 내시경(EUS) 분야에서는 혈관 진단용 초음파(intravascular ultrasound: IVUS) 카테터 프로브나 (선행문헌 3, 선행문헌 4), 비디오 내시경(video endoscope)의 장비 채널(instrument channel 또는 accessory channel)에 삽입하여 사용할 수 있는 미니 프로브(즉, EUS mini-probe, 선행문헌 1, 선행문헌 2) 등과 같이 프로브의 전체 직경이 1 mm 내지 3 mm 이내인 초소형 내시경 기기에 많이 적용되고 있다.On the other hand, in the case of applying electrons, since only one ultrasonic transducer capable of detecting only a signal propagating from a specific direction is installed in the endoscope probe, in order to obtain a two-dimensional or more tomographic image, (Generally rotating) the ultrasonic signal generated by the ultrasonic wave generated by the ultrasonic wave generated by the ultrasonic oscillator. However, since the space occupied by a single ultrasonic transducer is not so large, it can be implemented in a very small and thin shape, and the cost required for constituting the ultrasonic transducer is relatively low. Thus, in the field of ultrasound endoscopy (EUS), an intravascular ultrasound (IVUS) catheter probe is inserted into an instrument channel or an accessory channel of a video endoscope (prior art 3, prior art 4) Miniature probes (that is, an EUS mini-probe, a prior art 1, a prior art 2), and the like, which have a total diameter of 1 mm to 3 mm or less.

이상과 같은 각각의 장단점으로 인해 그간 광음향 내시경술 분야에서도 이들 두 초음파 검출 방식을 적용한 다양한 시스템들이 제안 되었는데, 이중 본 발명과 관련이 있는 단일 초음파 트랜스듀서 기반 기계적 스캔 방식을 채택하는 선행기술의 대표적 예시로는, 선행문헌 7(Proc. SPIE 4256, 16 (2001)), 선행문헌 8(미국 공개특허 제2011-0021924호), 선행문헌 9(미국 공개특허 제2011-0098572호), 선행문헌 10(PloS One 9(3), e92463 (2014)), 선행문헌 11(Journal of the American College of Cardiology 64(4), 385 (2014)), 선행문헌 12(미국 공개특허 제2011-0275890호), 선행문헌 13(Journal of Biomedical Optics 19(6), 066001(2014)) 등이 있다. Because of the advantages and disadvantages described above, various systems employing the two ultrasonic detection methods have been proposed in the field of photoacoustic endoscopy, and a representative example of the prior art adopting a single ultrasonic transducer- For example, in the prior art 7 (Proc. SPIE 4256, 16 (2001)), Prior Document 8 (U.S. Patent Application No. 2011-0021924), Prior Document 9 (U.S. Patent Application No. 2011-0098572) (PloS One 9 (3), e92463 (2014)), Journal of the American College of Cardiology 64 (4), 385 (2014), Prior Art 12 (U.S. Published Patent Application No. 2011-0275890) Prior Art 13 (Journal of Biomedical Optics 19 (6), 066001 (2014)).

즉, 이들 선행 문헌에 개시된 내시경 시스템들은 모두 빛을 전달하기 위한 광섬유 끝에 체결된 광조명부와 발생된 초음파를 검출하기 위한 단수(single)의 초음파 트랜스듀서를 프로브 말단 부위에 위치시키고 소정의 회전 운동을 통하여 광음향 이미지를 얻는 기계적 스캔 방식을 채택하고 있으며, 또 이들 문헌 중 상당 수는 하나의 기기로 광음향 이미지는 물론 기존의 초음파 이미지를 동시에 획득할 수 있는 일명 이중 모드 영상 가능성을 함께 보여준 발명들이다. That is, all of the endoscope systems disclosed in these prior art documents have a light illuminating unit coupled to an optical fiber end for transmitting light and a single ultrasonic transducer for detecting the generated ultrasonic wave at a distal end of the probe, And a large number of these documents are inventions showing a possibility of a dual mode image capable of simultaneously acquiring a photoacoustic image as well as an existing ultrasonic image by a single device .

하지만 이러한 선행 발명들에서 공통적으로 발생하는 가장 큰 문제점은 바로 조사한 광에너지 대비 실제 검출할 수 있는 광음향 신호의 세기, 즉 신호 검출의 효율이 매우 낮다는 데에 있다. 이는 프로브 말단에 설치된 광조명부 및 초음파 검출부가 공간적으로 서로 이격된 지점에 배치됨으로 인해 이 두 요소가 형성하는 광조명 방향과 초음파 검출 방향이 공간적으로 어긋나기 때문이거나 (선행문헌 7 내지 11), 내시경 프로브 속에 음파(sound wave)를 반사시키는 거울 등을 사용함으로 인해 피검체와 접촉하고 있는 플라스틱 튜브의 벽면에서부터 실제 음파를 검출할 수 있는 초음파 트랜스듀서(transducer)까지의 구간이 멀게 형성되었기 때문에(선행문헌 12 및 13) 발생하는 문제로, 실제 생체조직 영상 시 신호 감도는 물론 이미지 해상도 등과 같은 주요 영상 성능들을 떨어 뜨리는 매우 심각한 요인으로 작용하게 된다. However, the biggest problem commonly occurring in these prior arts is that the intensity of the photoacoustic signal that can actually be detected, that is, the efficiency of signal detection, is very low compared to the irradiated light energy. This is because the light illumination direction and the ultrasound detection direction formed by the two elements are spaced out from each other due to the fact that the light illumination unit and the ultrasonic detection unit provided at the end of the probe are disposed at spatially separated positions (see the prior art documents 7 to 11) Because the use of a mirror or the like that reflects a sound wave in the probe results in a distant section from the wall of the plastic tube in contact with the subject to an ultrasonic transducer that can detect real sound waves Literature 12 and 13), it is a very serious factor that deteriorates the main image performance such as image resolution as well as signal sensitivity in real biomedical image.

또 이러한 문제점 외에도 선행문헌 7 내지 11에 게시된 시스템들의 경우에는 프로브 기부에서부터 프로브 말단까지 이어진 구간(즉, 카테터라 불리는 구간)을 따라 배치된 광에너지 및 전기 신호 전달 케이블이라는 두 요소들을 기계적으로 회전 대칭성을 갖는 하나의 유기적 집합체로 구현한 것이 아닌 각각을 독립적 요소로서 단순 병렬 배치시키기만 하여, 만약 프로브가 휘어진 상황에서 회전 스캔을 할 경우, 역학적 회전력을 프로브 기부에서부터 말단 지점까지 균일하게 전달하지 못하는 기술적 한계를 갖고 있다.In addition to these problems, in the systems disclosed in the prior arts 7 to 11, the two elements, that is, the optical energy and the electric signal transmission cable disposed along the section from the probe base to the probe end (that is, the section called the catheter) It is difficult to uniformly transfer the mechanical rotational force from the probe base to the end point when the probe is subjected to the rotation scan in the bent state only by arranging each of the elements in a simple parallel arrangement instead of one organic assembly having symmetry It has technical limitations.

한 마디로 정리하면 단일 트랜듀서 기반 미니 혹은 카테터형 광음향 내시경 프로브는 회전 스캔의 균일성과 신호 감도의 우수성이라는 두 가지 핵심 요소들을 동시에 충족 시켜야만 실제 임상 현장에 성공적으로 적용할 수 있는 기술이라고 할 수 있다. 하지만 선행 발명들은 이러한 요건들을 모두 충족시키지 못하고 있는 실정이어서, 본 발명을 통해 이 문제를 해결하고자 한다.In short, a single transducer-based mini or catheter-type photoacoustic probe is a technology that can be successfully applied to real clinical situations if it meets both the uniformity of rotation scan and the superiority of signal sensitivity. have. However, the prior art does not satisfy all of these requirements, so the present invention aims to solve this problem.

선행문헌 2: 미국 등록특허 제5131393호 (1992.07.21.)Prior Art 2: United States Patent No. 5131393 (July 21, 1992) 선행문헌 4: 미국 등록특허 제4354502호 (1982.10.19.)Prior Art 4: United States Patent No. 4354502 (October 19, 1982) 선행문헌 8: 미국 공개특허 제2011-0021924호 (2011.01.27.)Prior Art Document 8: U.S. Published Patent Application No. 2011-0021924 (Jan. 27, 2011) 선행문헌 9: 미국 공개특허 제2011-0098572호 (2011.04.28.)Prior Art 9: U.S. Published Patent Application No. 2011-0098572 (April 28, 2011) 선행문헌 12: 미국 공개특허 제2011-0275890호 (2011.11.10.)Prior Art 12: U.S. Published Patent Application No. 2011-0275890 (November 10, 2011) 선행문헌 15: 미국 등록특허 제6134003호 (2000. 10.17.)Prior Art 15: United States Patent No. 6134003 (Oct. 10, 2000)

선행문헌 1: C. Dietrich, Endoscopic Ultrasound: An Introductory Manual and Atlas, (Thieme, New York, 2006)Prior Art 1: C. Dietrich, Endoscopic Ultrasound: An Introductory Manual and Atlas, (Thieme, New York, 2006) 선행문헌 3: P. Schoenhagen, et al., An Atlas and Manual of Coronary Intravascular Ultrasound Imaging, (CRC Press, 2003)(CRC Press, 2003), which is based on the results of the present study, 선행문헌 5: JM Yang, et al., "Photoacoustic endoscopy", Optics Letters 34(10), 1591 (2009)Prior Art 5: JM Yang, et al., "Photoacoustic endoscopy", Optics Letters 34 (10), 1591 (2009) 선행문헌 6: Oraevsky, et al., "Laser optoacoustic tomography of layered tissues: signal processing," Proc. SPIE, 2979, 59 (1997)Prior Art 6: Oraevsky, et al., "Laser optoacoustic tomography of layered tissues: signal processing," SPIE, 2979, 59 (1997) 선행문헌 7: Viator, et al., "Design and testing of an endoscopic photoacoustic probe for determination of treatment depth after photodynamic therapy", Proc. SPIE 4256, 16-27 (2001)Prior Art 7: Viator, et al., "Design and testing of an endoscopic photoacoustic probe for determination of treatment depth after photodynamic therapy ", Proc. SPIE 4256, 16-27 (2001) 선행문헌 10: X Bai, et al., "Intravascular optical-resolution photoacoustic tomography with a 1.1mm diameter catheter", PloS One 9(3), e92463 (2014)Prior art 10: X Bai, et al., "Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter", PloS One 9 (3), e92463 (2014) 선행문헌 11: Da Xing, et al., "Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography", Journal of the American College of Cardiology 64(4), 385-390 (2014)Prior Art 11: Da Xing, et al., "Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography", Journal of the American College of Cardiology 64 (4), 385-390 (2014) 선행문헌 13: JM Yang, et al., "Catheter based photoacoustic endoscope", Journal of Biomedical Optics 19(6), 066001 (2014)Prior Art 13: JM Yang, et al., "Catheter based photoacoustic endoscope", Journal of Biomedical Optics 19 (6), 066001 (2014) 선행문헌 14: JM Yang, et al., "Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo," Nature Medicine 18(8), 1297 (2012)JM Yang, et al., "Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo," Nature Medicine 18 (8), 1297 (2012) 선행문헌 16: G. J. Tearney, et al., "Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography", Optics Letters 21(7), 543-545 (1996)Optics Letters 21 (7), 543-545 (1996), "Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography ", G. J. Tearney,

앞서 언급한 바와 같이, 종래의 광음향 내시경들은, 광조명 방향과 초음파 검출방향 간의 불일치, 또는 카테터라 불리는 플라스틱 튜브의 벽면으로부터 음파(soundwave) 신호를 검출하는 초음파 트랜스듀서(transducer) 까지의 구간이 멀게 형성됨으로 인해 야기되는 신호 감도 및 광음향 해상도의 저하 문제를 가지고 있었다. As mentioned earlier, conventional photoacoustic endoscopes have a range from an inconsistency between the light illumination direction and the ultrasound detection direction, or an ultrasonic transducer, which detects a soundwave signal from a wall of a plastic tube called a catheter And deterioration of the signal sensitivity and the photoacoustic resolution caused by the distant formation.

본 발명은 상기와 같은 핵심적 문제점을 포함하여 앞서 지적한 여러 주요 기술적 문제점들을 해결하기 위한 것으로써, 초음파 신호의 검출 경로를 단축시키고 또 광조명 방향 및 초음파 검출 방향 간의 불일치 문제를 해결하여 신호의 수신 감도 및 광음향 영상의 해상도를 향상시킨 광음향-초음파 미니 내시경 프로브(이하 광음향-초음파 내시경)를 제공하는 것을 목적으로 한다. 그러나, 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.Disclosure of Invention Technical Problem [7] The present invention has been made to solve the above-mentioned main technical problems including the above-mentioned core problems, and it is an object of the present invention to shorten the detection path of the ultrasonic signal and solve the inconsistency problem between the light illumination direction and the ultrasonic detection direction, And a photoacoustic-ultrasound mini-endoscope probe (hereinafter, photoacoustic-ultrasound endoscope) having improved resolution of a photoacoustic image. However, these problems are illustrative and do not limit the scope of the present invention.

본 발명에 따른 광음향-초음파 내시경은 프로브와 프로브 구동유닛을 포함하며, 상기 프로브는 코어와 클래딩을 포함하는 광섬유 및 도전성 통로를 포함하는 광-전자기 도파관 집합체; 상기 광-전자기 도파관 집합체의 한 쪽 끝에 배치되며, 레이저 빔을 피검체에 보내 피검체로부터 발생한 광음향-초음파 신호를 검출하는 스캐닝 팁; 및 상기 광-전자기 도파관 집합체 및 상기 스캐닝 팁의 외부를 감싸는 플라스틱 카테터;를 포함하고, 상기 스캐닝 팁은, 상기 광섬유를 통해 전달된 레이저 빔을 피검체의 목표 지점으로 반사시키도록 구비된 광반사기; 및 상기 반사된 레이저 빔이 통과하는 제1윈도우를 가지며, 초음파를 발생시키거나 피검체로부터 발생한 초음파를 검출하도록 구비된 압전소자;를 포함한다. The photoacoustic-ultrasonic endoscope according to the present invention includes a probe and a probe drive unit, wherein the probe includes an optical-electromagnetic waveguide assembly including an optical fiber and a conductive path including a core and a cladding; A scanning tip disposed at one end of the optical-electromagnetic waveguide assembly for detecting a photoacoustic-ultrasonic signal generated from the subject by sending a laser beam to the subject; And a plastic catheter surrounding the opto-electromagnetic waveguide assembly and the outside of the scanning tip, wherein the scanning tip comprises: a light reflector configured to reflect the laser beam transmitted through the optical fiber to a target point of the subject; And a piezoelectric element having a first window through which the reflected laser beam passes and generating ultrasonic waves or detecting ultrasonic waves generated from a subject.

상기 광반사기는 상기 제1윈도우를 통해 노출될 수 있다. The light reflector may be exposed through the first window.

상기 압전소자는 중앙에 제1윈도우를 가지며, 상기 제1윈도우를 기준으로 대칭으로 형성될 수 있다. The piezoelectric element has a first window at the center and may be formed symmetrically with respect to the first window.

상기 압전소자는 상기 광반사기 방향으로 오목하게 형성될 수 있다. The piezoelectric element may be concave in the direction of the light reflector.

상기 스캐닝 팁은, 음향 잡음을 없앨 수 있는 흡음층; 및 상기 광반사기, 상기 압전소자, 상기 흡음층을 감싸는 케이싱;을 더 포함할 수 있다. The scanning tip includes a sound-absorbing layer capable of eliminating acoustic noise; And a casing surrounding the light reflector, the piezoelectric element, and the sound-absorbing layer.

상기 스캐닝 팁은, 상기 광반사기의 광출구 방향 쪽에 배치되어 상기 압전소자의 상기 제1윈도우 부분으로 유체가 침입하는 것을 막는 투명 충전재를 더 포함할 수 있다. The scanning tip may further include a transparent filler disposed on a light exit side of the light reflector to prevent fluid from entering the first window portion of the piezoelectric element.

상기 광섬유를 통해 전달된 레이저 빔은 상기 광반사기의 내부에서 반사될 수 있다. The laser beam transmitted through the optical fiber may be reflected inside the optical reflector.

상기 스캐닝 팁은, 상기 반사된 레이저 빔이 통과하는 제2윈도우를 가지며 상기 압전소자 표면에 배치된 음향 렌즈를 더 포함할 수 있다. The scanning tip may further include an acoustic lens having a second window through which the reflected laser beam passes and disposed on the surface of the piezoelectric element.

상기 압전소자는 평평하게 형성되고, 상기 음향 렌즈는 상기 광반사기 방향으로 오목하게 형성될 수 있다. The piezoelectric element may be formed flat, and the acoustic lens may be concave in the direction of the light reflector.

일 실시예에 따른 광음향-초음파 내시경은, 상기 광섬유와 상기 광반사기 사이에 배치되고, 빛을 수렴시키도록 구비된 그린(GRIN, gradient index) 렌즈를 더 포함할 수 있다.The photoacoustic-ultrasonic endoscope according to an embodiment may further include a GRIN (gradient index) lens disposed between the optical fiber and the light reflector and adapted to converge light.

전술한 것 외의 다른 측면, 특징, 이점이 이하의 도면, 특허청구범위 및 발명의 상세한 설명으로부터 명확해질 것이다. Other aspects, features, and advantages will become apparent from the following drawings, claims, and detailed description of the invention.

상기한 바와 같이 이루어진 본 발명의 일 실시예에 따르면, 광섬유로부터 나온 레이저 빔이 광반사기를 통해 반사되어 압전소자의 제1윈도우를 통해 피검체에 조사되도록 스캐닝 팁을 구성함에 따라, 광반사기에서 반사된 레이저 빔이 피검체에 조사되는 광조명 방향과 피검체로부터 발생한 초음파 신호를 수신하는 초음파 검출 방향이 일치하여, 조사한 레이저 빔의 광에너지 대비 실제 검출되는 광음향 신호의 세기, 즉 신호 검출의 효율이 높아진다.According to an embodiment of the present invention as described above, since the scanning tip is configured such that a laser beam emitted from an optical fiber is reflected through a light reflector and irradiated to a subject through a first window of the piezoelectric element, The intensity of the photoacoustic signal actually detected relative to the light energy of the irradiated laser beam, that is, the efficiency of signal detection .

뿐만 아니라, 피검체로부터 발생한 초음파 신호가 프로브의 다른 구성요소 등에 의해 반사됨 없이 압전소자에 의해 바로 검출됨으로 인해 초음파 신호의 검출 경로가 단축되어, 신호의 수신 감도 및 광음향 영상의 해상도가 향상된다. In addition, since the ultrasonic signal generated from the subject is directly detected by the piezoelectric element without being reflected by other components of the probe, the detection path of the ultrasonic signal is shortened and the reception sensitivity of the signal and the resolution of the photoacoustic image are improved .

물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.Of course, the scope of the present invention is not limited by these effects.

도 1은 일 실시예에 따른 광음향-초음파 내시경의 구성을 개략적으로 나타낸 모식도이다.
도 2는 도 1의 스캐닝 팁 부분만을 나타낸 모식도이다.
도 3 내지 도 7은 다른 실시예에 따른 스캐닝 팁의 구성을 개략적으로 나타낸 모식도이다.
도 8은 도 1의 VIII-VIII' 선을 따라 취한 단면도이다.
도 9는 다른 실시예에 따른 도파관 집합체를 포함하는 광음향-초음파 내시경의 구성을 개략적으로 나타낸 모식도이다.
도 10은 도 9의 A 부분에 해당하는 도파관 집합체의 구체적인 구성을 나타낸 모식도이다.
도 11은 도 10의 도파관 집합체를 실제로 구현한 사진이다.
도 12는 일 실시예에 따른 도파관 집합체의 구성을 나타낸 모식도 및 이의 단면도이다.
도 13은 다른 실시예에 따른 도파관 집합체의 구성을 나타낸 모식도 및 이의 단면도이다.
도 14는 일 실시예에 따른 광섬유를 나타낸 모식도 및 이의 단면도이다.
도 15는 일 실시예에 따른 플라스틱 카테터의 구성을 나타낸 모식도이다.
도 16은 일 실시예에 따른 혈관 삽입 내시경으로 사용하기 위한 플라스틱 카테터의 형태 및 유체 주입 방법을 모여주는 모식도이다.
도 17은 일 실시예에 따른 가이딩 와이어(guiding wire)를 사용하기 위한 플라스틱 카테터의 구성과 풀백 스캔(pullback scan)을 수행하기 위한 모식도이다.
도 18는 일 실시예에 따른 프로브 기부 및 구동부의 구성을 나타낸 모식도이다.
도 19는 광음향-초음파 내시경 프로브, 프로브 구동유닛 및 이 둘을 구동하고 통제하기 위한 시스템 콘솔 등을 보여주는 전체 시스템 개념도이다.
도 20은 도 19에서 제시한 광음향-초음파 영상 모드(imaging mode)에서 한 단계 더 나아가 광음향-초음파-OCT(optical coherence tomography) 삼중 영상 모드를 구현하기 위한 시스템 요소들과 그들의 연결 관계를 보여주는 개념도이다.
1 is a schematic view schematically showing the configuration of a photoacoustic-ultrasound endoscope according to an embodiment.
Fig. 2 is a schematic view showing only the scanning tip portion of Fig. 1;
FIGS. 3 to 7 are schematic views schematically showing the configuration of a scanning tip according to another embodiment.
8 is a cross-sectional view taken along line VIII-VIII 'of FIG.
9 is a schematic view schematically showing the configuration of a photoacoustic-ultrasonic endoscope including a waveguide assembly according to another embodiment.
10 is a schematic diagram showing a specific configuration of a waveguide aggregate corresponding to A portion in FIG.
FIG. 11 is a photograph showing the actual implementation of the waveguide assembly of FIG.
12 is a schematic view showing a configuration of a waveguide aggregate according to an embodiment and a sectional view thereof.
13 is a schematic view showing a configuration of a waveguide aggregate according to another embodiment and a sectional view thereof.
14 is a schematic view showing an optical fiber according to an embodiment and a sectional view thereof.
15 is a schematic view showing a configuration of a plastic catheter according to an embodiment.
16 is a schematic view of a plastic catheter for use as an endoscopic endoscope according to an embodiment and a method of injecting fluid.
17 is a schematic diagram for performing a configuration of a plastic catheter for using a guiding wire according to an embodiment and performing a pullback scan.
18 is a schematic diagram showing the configuration of a probe base and a driving unit according to an embodiment.
19 is an overall system conceptual diagram showing a photoacoustic-ultrasound endoscope probe, a probe drive unit, and a system console for driving and controlling the two.
FIG. 20 is a diagram illustrating system elements for implementing a photoacoustic-ultrasound-optical coherence tomography (OCT) triplet imaging mode and their connection relationship in the photoacoustic-ultrasound imaging mode shown in FIG. It is a conceptual diagram.

본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 설명하고자 한다. 본 발명의 효과 및 특징, 그리고 그것들을 달성하는 방법은 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 다양한 형태로 구현될 수 있다.The present invention is capable of various modifications and various embodiments, and specific embodiments are illustrated in the drawings and described in the detailed description. The effects and features of the present invention and methods of achieving them will be apparent with reference to the embodiments described in detail below with reference to the drawings. However, the present invention is not limited to the embodiments described below, but may be implemented in various forms.

이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명하기로 하며, 도면을 참조하여 설명할 때 동일하거나 대응하는 구성 요소는 동일한 도면부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings, wherein like reference numerals refer to like or corresponding components throughout the drawings, and a duplicate description thereof will be omitted .

이하의 실시예에서, 제1, 제2 등의 용어는 한정적인 의미가 아니라 하나의 구성 요소를 다른 구성 요소와 구별하는 목적으로 사용된다.In the following embodiments, the terms first, second, etc. are used for the purpose of distinguishing one element from another element, rather than limiting.

이하의 실시예에서, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.In the following examples, the singular forms "a", "an" and "the" include plural referents unless the context clearly dictates otherwise.

이하의 실시예에서, 포함하다 또는 가지다 등의 용어는 명세서상에 기재된 특징, 또는 구성요소가 존재함을 의미하는 것이고, 하나 이상의 다른 특징들 또는 구성요소가 부가될 가능성을 미리 배제하는 것은 아니다.In the following embodiments, terms such as inclusive or possessive are intended to mean that a feature, or element, described in the specification is present, and does not preclude the possibility that one or more other features or elements may be added.

도면에서는 설명의 편의를 위하여 구성 요소들이 그 크기가 과장 또는 축소될 수 있다. 예컨대, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다.In the drawings, components may be exaggerated or reduced in size for convenience of explanation. For example, the size and thickness of each component shown in the drawings are arbitrarily shown for convenience of explanation, and thus the present invention is not necessarily limited to those shown in the drawings.

이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명하기로 하며, 도면을 참조하여 설명할 때 동일하거나 대응하는 구성 요소는 동일한 도면부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings, wherein like reference numerals refer to like or corresponding components throughout the drawings, and a duplicate description thereof will be omitted .

도 1은 일 실시예에 따른 광음향-초음파 내시경의 구성을 개략적으로 나타낸 모식도이다. 1 is a schematic view schematically showing the configuration of a photoacoustic-ultrasound endoscope according to an embodiment.

도 1을 참조하면, 일 실시예에 따른 광음향-초음파 내시경은, 프로브(200)와 프로브 구동유닛(100)을 포함하며, 프로브(200)는 코어와 클래딩을 포함하는 광섬유(241) 및 도전성 통로(conductive path, CP)를 포함하는 광-전자기 도파관 집합체(240, 이하 '도파관 집합체'라 칭함), 도파관 집합체(240)의 한 쪽 끝에 배치되고, 레이저 빔을 피검체에 보내 피검체로부터 발생한 광음향-초음파 신호를 검출하는 스캐닝 팁(250) 및 광-전자기 도파관 집합체(240) 및 스캐닝 팁(250)의 외부를 감싸는 플라스틱 카테터(220)를 포함하고, 스캐닝 팁(250)은, 광섬유(241)를 통해 전달된 레이저 빔을 피검체의 목표 지점으로 반사시키도록 구비된 광반사기(252) 및 반사된 레이저 빔이 통과하는 제1윈도우(251W)를 가지며, 초음파를 발생시키거나 피검체로부터 발생한 초음파를 검출하도록 구비된 압전소자(251)를 포함한다. 1, a photoacoustic-ultrasonic endoscope according to an exemplary embodiment includes a probe 200 and a probe driving unit 100. The probe 200 includes an optical fiber 241 including a core and a cladding, Electromagnetic wave waveguide assembly 240 (hereinafter referred to as 'waveguide assembly') including a conductive path CP and a waveguide assembly 240. The laser beam is transmitted to the object to be inspected, And a plastic catheter 220 that surrounds the outside of the scanning tip 250 and the scanning tip 250 includes a scanning tip 250 that detects the photoacoustic-ultrasonic signal and the optical- And a first window 251W through which the reflected laser beam passes. The first window 251W is configured to generate an ultrasonic wave or to transmit the ultrasonic wave from the object to be inspected To detect the generated ultrasonic waves And a piezoelectric element (251).

도 1을 참조하면, 광음향-초음파 내시경 프로브(200)는 플라스틱 카테터(220)가 감싸고 있는 부분과 프로브 기부(210)라는 명칭으로 포괄된 부분, 즉 물리적으로는 기부 프레임(216)이 감싸고 있는 부분으로 나뉜다. 이 중 플라스틱 카테터(220)가 감싸고 있는 구간은 물리적으로 유연함은 물론, 매우 가늘고 긴 관(tube) 구조 형태로 구성되어 있어 좁고 굴곡진 통로를 통해서만 접근할 수 있는 피검체에 효과적으로 삽입될 수 있다.1, the photoacoustic-ultrasound endoscope probe 200 includes a portion enclosed by a plastic catheter 220 and a portion encompassed by a probe base 210, that is, a portion where the base frame 216 is physically enclosed Section. The section where the plastic catheter 220 is wrapped is not only physically flexible but also configured as a very thin and long tube structure so that it can be effectively inserted into a subject that can only be accessed through a narrow and curved passage.

또한 이 플라스틱 카테터(220)는 그 내부 공간을 따라 배치된 도파관 집합체(240)와 스캐닝 팁(250)을 외부 공간과 차단하고 그 내부에 고립시켜 이들(240, 250)이 피검체에 직접 닿지 않게 하는 역할을 수행한다. 동시에, 플라스틱 카테터(220)는 그 내부에 채워진 매칭 유체(230)가 밖으로 새어 나가지 않게 가두는 역할도 수행할 수 있다. 그리고 플라스틱 카테터(220)의 재질에 있어서는, 그 벽면을 통해 레이저 빔과 초음파 신호가 통과하기 때문에, 광파와 음파가 모두 다 잘 통과할 수 있는 폴리머 계열의 소재를 사용하는 것이 바람직하다. The plastic catheter 220 also blocks the waveguide assembly 240 and the scanning tip 250 disposed along the inner space of the plastic catheter 220 from the outer space and isolates the outer space from the outer space, . At the same time, the plastic catheter 220 can also serve as a trap to prevent the matching fluid 230 filled therein from leaking out. Since the material of the plastic catheter 220 passes through the wall surface of the plastic catheter 220 and the laser beam and the ultrasonic signal, it is preferable to use a polymer material which can pass both the light wave and the sound wave.

플라스틱 카테터(220)의 내부 공간을 채우고 있는 매칭 유체(230)는 디아이 워터(deionized water)와 같은 초순도 물을 이용할 수도 있으나, 저점도의 실리콘 오일(silicone oil) 등과 같이 생체 친화적이며 반영구적으로 사용할 수 있는 물질을 이용하는 것이 바람직하다. 만약 매칭 유체(230)가 물(water)인 경우, 매칭 유체(230) 속에 함께 잠입되는 도파관 집합체(240)의 두 도전성 통로(CP, 이에 대해서는 후술함)를 전기적으로 확실히 절연시키는 것이 중요하다. The matching fluid 230 filling the internal space of the plastic catheter 220 may be ultra-pure water such as deionized water, but may be biocompatible and semi-permanently used, such as silicone oil of low viscosity. It is preferable to use a material that can be used. If the matching fluid 230 is water, it is important to electrically insulate the two conductive passages (CP, discussed below) of the waveguide assembly 240, which are coextensive with the matching fluid 230.

플라스틱 카테터(220)는 가늘고 긴 관 구조 형태로 구성되어 있어 좁고 굴곡진 통로를 통해서만 접근할 수 있는 피검체에 효과적으로 삽입될 수 있다. 그래서 플라스틱 카테터(220)의 직경은 약 1 mm 이상 약 3 mm 이하이고, 전체 길이는 약 0.5 m 이상 약 3 m 이하로 형성될 수 있다. The plastic catheter 220 is configured in the form of an elongated tubular structure that can be effectively inserted into a subject accessible only through a narrow, curved passage. Thus, the plastic catheter 220 may have a diameter of about 1 mm or more and about 3 mm or less, and an overall length of about 0.5 m or more to about 3 m or less.

플라스틱 카테터(220)로 덮여 있는 프로브의 내부에는 도파관 집합체(240)가 프로브 기부(210)에서부터 스캐닝 팁(250)까지 길게 확장된 형태로 배치되어 있다. 도파관 집합체(240) 역시 물리적으로 유연한 특성을 가지고 있으며, 압전소자(251)에 의해 검출된 광음향-초음파 전기 신호를 전달하는 역할을 수행한다. A waveguide assembly 240 is disposed in the probe 210 covered with the plastic catheter 220 so as to extend from the probe base 210 to the scanning tip 250. The waveguide assembly 240 also has a physically flexible characteristic and transmits a photoacoustic-ultrasonic electric signal detected by the piezoelectric element 251.

도파관 집합체(240)의 한 쪽 끝에는, 도파관 집합체(240)를 감싸며 프로브 구동유닛(100)으로부터 회전력을 전달받는 프로브 기부(210)가 배치된다. 프로브 기부(210)는 기부 기어(217), 회전 트랜스포머(211), 볼 베어링 모듈(212), 오링형 기밀부(213), 관통형 샤프트(214), 에폭시 충전부(215) 및 상기 구성요소(211, 212, 213, 214, 215, 217)를 감싸고 있는 기부 프레임(216)을 포함할 수 있다. At one end of the waveguide aggregate 240, a probe base 210 that surrounds the waveguide aggregate 240 and receives rotational force from the probe drive unit 100 is disposed. The probe base 210 includes a base gear 217, a rotary transformer 211, a ball bearing module 212, an O-ring type airtight portion 213, a penetrating shaft 214, an epoxy charging portion 215, 211, 212, 213, 214, 215, 217).

기부 기어(217)는 프로브 구동유닛(100)으로부터 회전력을 전달받아 이를 도파관 집합체(240)에 전해주는 역할을 수행한다. 회전 트랜스포머(211)는 프로브 기부(210)에 위치하면서 초음파 펄서-리시버(101)로부터 발생한 전기 펄스를 받아 압전소자(251)로 보내거나 그 반대로 압전소자(251)에서 발생한 전기 신호를 초음파 펄서-리시버(101)로 보내는 중계 역할을 수행할 수 있다. 물론 이 두 과정에서 언급한 모든 전기 신호는 도파관 집합체(240)를 경유한다.The base gear 217 receives rotational force from the probe drive unit 100 and transmits the rotational force to the waveguide assembly 240. The rotary transformer 211 receives the electric pulse generated from the ultrasonic pulser-receiver 101 and transmits the electric signal generated by the piezoelectric element 251 to the piezoelectric element 251 while being positioned in the probe base 210, To the receiver (101). Of course, all of the electrical signals mentioned in these two processes pass through the waveguide assembly 240.

오링형 기밀부(213)는 플라스틱 카테터(220)의 내부를 채우고 있는 매칭 유체(230)가 밖으로 새어져 나오지 않게 하는 역할을 수행한다. 볼 베어링 모듈(212)은 관통형 샤프트(214)가 안정적 위치에서 매끄럽게 회전할 수 있는 기계적 조건을 제공하는 역할을 수행할 수 있다.The O-ring type airtight portion 213 serves to prevent the matching fluid 230 filling the inside of the plastic catheter 220 from leaking out. The ball bearing module 212 may serve to provide a mechanical condition in which the penetrating shaft 214 can rotate smoothly in a stable position.

프로브 구동유닛(100)은 광음향-초음파 프로브(200)와 분리될 수 있는 물리적으로 독립적인 단위이다. 프로브 구동유닛(100)은 회전 트랜스포머(211)로 전기 신호를 보내거나 받을 수 있고 또한 수신된 전기 신호를 증폭할 수도 있는 초음파 펄서-리시버(101), 회전하는 광섬유(241)에 레이저 펄스를 입력시켜주는 역할을 하고 또 광섬유(241)와 연계하여 소위 회전 광결합부(optical rotary junction)를 형성하는 광입력기(102), 도파관 집합체(240)에 회전력을 전달해주기 위한 구동 기어(103), 구동 기어(103)에 체결된 액추에이터(104) 및 액추에이터(104)를 구동 통제하기 위한 액추에이터 드라이버(105) 등을 포함할 수 있다. 이에 대하여는 후술한다.The probe drive unit 100 is a physically independent unit that can be separated from the photoacoustic-ultrasonic probe 200. The probe driving unit 100 includes an ultrasonic pulser-receiver 101 capable of sending and receiving an electric signal to and receiving an electric signal from the rotary transformer 211, a laser pulse inputting unit A light input device 102 that forms a so-called optical rotary junction in cooperation with the optical fiber 241, a driving gear 103 that transmits a rotational force to the waveguide assembly 240, An actuator 104 fastened to the gear 103, and an actuator driver 105 for driving and controlling the actuator 104, and the like. This will be described later.

도파관 집합체(240)의 다른 쪽 끝에는 스캐닝 팁(250)이 배치된다. 스캐닝 팁(250)은, 도파관 집합체(240)에 있는 광섬유(241)를 통해 전달된 레이저 빔을 피검체의 목표 지점으로 반사시켜 주는 광반사기(252), 반사된 레이저 빔이 통과하는 제1윈도우(251W)를 가지며, 초음파를 발생시키거나 피검체로부터 발생한 초음파 신호를 검출하도록 구비된 압전소자(251)를 포함한다. 즉, 스캐닝 팁(250)은 도파관 집합체(240) 내의 광섬유(241)를 통해 전달된 레이저 빔이나 압전소자(251)에 의해 발생된 초음파 펄스를 피검체에 보내고, 또 그로 인해 피검체 내에서 발생한 광음향 신호나 피검체로부터 반사되어 돌아오는 초음파 신호를 검출하는 핵심적인 역할을 수행하는 것이다. At the other end of the waveguide bundle 240, a scanning tip 250 is disposed. The scanning tip 250 includes a light reflector 252 that reflects the laser beam transmitted through the optical fiber 241 in the waveguide assembly 240 to a target point of the object, (251W), and includes a piezoelectric element (251) provided to generate ultrasonic waves or detect an ultrasonic signal generated from a subject. That is, the scanning tip 250 transmits the laser beam transmitted through the optical fiber 241 in the waveguide bundle 240 or the ultrasonic pulse generated by the piezoelectric element 251 to the subject and causes the ultrasonic pulse generated in the subject And plays a key role in detecting an ultrasound signal reflected from a photoacoustic signal or a subject.

도 2는 도 1의 스캐닝 팁 부분만을 나타낸 모식도이다. Fig. 2 is a schematic view showing only the scanning tip portion of Fig. 1;

도 1 및 도 2를 참조하면, 도파관 집합체(240)의 광섬유(241)에서 나온 레이저 빔이 광반사기(252)를 통해 반사된다. 광반사기(252)는 예컨대 전반사 원리에 의해 작동하는 프리즘 형태의 거울일 수 있다. 광섬유(241)에서 나온 레이저 빔은 광반사기(252)에서 반사되어, 진행경로가 90°만큼 꺾일 수 있다. 도시하지는 않았지만, 광반사기(252)와 레이저 빔의 입사각도를 조절하여, 레이저 빔이 반사되는 방향을 조절할 수도 있다. Referring to FIGS. 1 and 2, a laser beam from an optical fiber 241 of the waveguide assembly 240 is reflected through a light reflector 252. The light reflector 252 may be, for example, a prism-shaped mirror operated by total reflection principle. The laser beam emitted from the optical fiber 241 is reflected by the light reflector 252 so that the traveling path can be bent by 90 degrees. Although not shown, the incident angle of the laser beam with the light reflector 252 can be adjusted to adjust the direction in which the laser beam is reflected.

도 2의 (a), 즉 스캐닝 팁(250)의 측면도를 참조하면, 이 그림을 기준으로 광반사기(252)의 위쪽(즉, 그림상에서 피검체라고 표시된 방향쪽으로)에 압전소자(251)가 배치된다. 압전소자(251)는 광반사기(252)에서 반사된 레이저 빔이 통과하는 제1윈도우(251W)를 가진다. 도면에서는 제1윈도우(251W)가 개구(hole)인 것으로 도시하였으나, 제1윈도우(251W)는 빛을 투과시키는 투명층일 수 있다. Referring to FIG. 2 (a), that is, a side view of the scanning tip 250, a piezoelectric element 251 is arranged on the upper side of the light reflector 252 (that is, . The piezoelectric element 251 has a first window 251W through which the laser beam reflected by the light reflector 252 passes. Although the first window 251W is shown as a hole in the drawing, the first window 251W may be a transparent layer transmitting light.

압전소자(251)는, 초음파를 발생시키거나 피검체로부터 발생한 초음파 신호를 검출하는 초음파 트랜스듀서(transducer)로 기능한다. 광반사기(252)에 의해 반사된 레이저 빔이 피검체를 쪼이면, 빛에너지를 흡수한 피검체가 열팽창하여 음파(SW, soundwave) 또는 초음파 신호를 발생시키는 광음향 효과(photoacoustic effect)가 발생한다. 이렇게 발생된 음파(SW) 또는 초음파 신호는 압전소자(251)를 통해 검출되어 전기적 신호로 변환된다.The piezoelectric element 251 functions as an ultrasonic transducer for generating ultrasonic waves or detecting ultrasonic signals generated from a subject. When the laser beam reflected by the light reflector 252 contacts the subject, a subject absorbing the light energy thermally expands, resulting in a photoacoustic effect that generates a sound wave (SW) or an ultrasonic signal . The generated sound wave (SW) or ultrasonic signal is detected through the piezoelectric element 251 and converted into an electric signal.

압전소자(251)는 프로브(200)의 측면을 바라보도록, 즉 그의 신호 검출 면이 광섬유(241)가 길게 늘어진 방향과 실질적으로 평행이 되도록 배치될 수 있다. 광섬유(241)에서 나온 레이저 빔이 광반사기(252)를 통해 진행경로가 90°꺾여 피검체로 조사되는 경우, 광반사기(252)에서 반사된 레이저 빔의 방향은 압전소자(251)가 배치된 면과 수직이 된다. 이 때 피검체로부터 발생한 초음파 신호(SW)는, 프로브(200) 내의 또 다른 구성요소 등에 의해 반사됨이 없이 최단 경로로 압전소자(251) 쪽으로 전파되어 검출된다. 즉 선행문헌 12에 개시된 검출 방식과 달리 초음파 신호(SW)가 전파하는 총 경로가 단축되고 또 음향 개구수(acoustic numerical aperture)도 증가하여, 신호의 수신 감도 및 광음향 영상의 해상도가 월등히 향상된다.The piezoelectric element 251 can be arranged so as to face the side surface of the probe 200, that is, the signal detecting surface thereof is substantially parallel to the direction in which the optical fiber 241 is elongated. The direction of the laser beam reflected by the optical reflector 252 is the same as that of the surface on which the piezoelectric element 251 is disposed when the laser beam emitted from the optical fiber 241 is bent through the optical reflector 252 by 90 °, . At this time, the ultrasonic signal SW generated from the subject is propagated toward the piezoelectric element 251 in the shortest path without being reflected by another component in the probe 200 and detected. That is, unlike the detection method disclosed in the prior art document 12, the total path through which the ultrasonic signal SW propagates is shortened and the acoustic numerical aperture also increases, so that the reception sensitivity of the signal and the resolution of the photoacoustic image are significantly improved .

나아가, 광반사기(252)에서 반사된 레이저 빔이 조사되는 방향과, 피검체로부터 발생한 초음파의 검출 방향이 일치하게 된다. 이에 따라, 조사한 레이저 빔의 광에너지 대비 실제 검출되는 광음향 신호의 세기, 즉 신호 검출의 효율이 높아지는 효과를 동시에 얻을 수 있다.Further, the direction in which the laser beam reflected by the light reflector 252 is irradiated coincides with the detection direction of ultrasonic waves generated from the test object. Thus, it is possible to obtain the effect of increasing the intensity of the photoacoustic signal actually detected, that is, the efficiency of signal detection, with respect to the light energy of the irradiated laser beam.

한편, 본 발명에서 압전소자(251)는 플라스틱 카테터(220)의 내부에 배치된다. 만일 초음파 신호(SW)의 검출 경로를 더 단축시키기 위하여 압전소자(251)를 플라스틱 카테터(220) 등으로 감싸주지 않으면, 압전소자(251)는 물론 스캐닝 팁(250) 전체가 이물질에 의해 손상되는 현상이 발생한다. 또한, 압전소자(251)가 피검체에 직접 접촉하게 되어, 피검체가 물리적으로 손상되는 문제가 발생할 수 있다. 참고로 선행문헌10과 11에서는 이러한 플라스틱 카테터(220)의 배치 문제나 그의 구체적 역할에 대한 논의가 명확히 제시되어 있지 않다.Meanwhile, in the present invention, the piezoelectric element 251 is disposed inside the plastic catheter 220. If the piezoelectric element 251 is not wrapped with the plastic catheter 220 or the like in order to further shorten the detection path of the ultrasonic signal SW, the whole of the scanning tip 250 as well as the piezoelectric element 251 is damaged by the foreign substance A phenomenon occurs. Further, the piezoelectric element 251 may come into direct contact with the inspected object, thereby causing physical damage to the inspected object. For reference, in the prior arts 10 and 11, there is no definite discussion on the placement problem of the plastic catheter 220 or its specific role.

일 실시예에 따르면, 광반사기(252)는 제1윈도우(251W)를 통해 노출될 수 있다. 도 2의 (b), 즉 압전소자(251)의 표면을 정면으로 바라본 방향에서 잡은 스캐닝 팁 전체의 3차원 모식도를 참조하면, 광반사기(252)는 제1윈도우(251W)를 통해 그 모습의 전부 또는 일부가 노출되어, 스캐닝 팁(250)의 외부에서도 육안으로 보이게 된다. 즉 도 2의 (a)를 기준으로, 압전소자(251)의 제1윈도우(251W) 아래쪽에 광반사기(252)가 배치되므로, 위에서 봤을 때 스캐닝 팁의 내부에 배치된 광반사기(252)를 볼 수 있게 되는 것이다. According to one embodiment, the light reflector 252 may be exposed through the first window 251W. Referring to FIG. 2 (b), that is, a three-dimensional schematic diagram of the entire scanning tip taken in the direction in which the surface of the piezoelectric element 251 is viewed from the front, the light reflector 252 is arranged in a All or a part thereof is exposed, and is visible to the outside of the scanning tip 250 with the naked eye. That is, the light reflector 252 is disposed below the first window 251W of the piezoelectric element 251 on the basis of FIG. 2 (a), so that the light reflector 252 disposed inside the scanning tip as viewed from above I can see it.

일 실시예에 따르면, 압전소자(251)는 중앙에 제1윈도우(251W)를 가지며, 이 제1윈도우(251W)를 기준으로 대칭된 형태로 형성될 수 있다. 도 2를 참조하면, 압전소자(251)는 중앙에 제1윈도우(251W)를 가져, 압전소자(251)의 왼쪽 부분(251L) 및 오른쪽 부분(251R)은 제1윈도우(251W)의 중앙지점을 기준으로 예컨대 좌우 대칭된 형태로 형성될 수 있다. 이와 같은 상황에서 광반사기(252)를 통해 반사된 빛이 제1윈도우(251W) 면과 수직하게 피검체를 쏘면, 빛을 받은 피검체 부위는 압전소자(251)의 왼쪽 부분(251L) 및 오른쪽 부분(251R)에서 같은 거리만큼 떨어져 있게 되므로, 수신되는 초음파(SW)의 세기가 압전소자(251)의 전 영역에 걸쳐 거의 일정하게 된다. 따라서 선행문헌 7 내지 11이 갖는 광조명 방향과 초음파 신호 검출 방향 간의 불일치 문제를 해결하여, 결과적으로 신호의 수신 감도 및 광음향 영상의 해상도가 향상된다.According to one embodiment, the piezoelectric element 251 has a first window 251W at the center and may be formed symmetrically with respect to the first window 251W. 2, the piezoelectric element 251 has a first window 251W at the center, and the left portion 251L and the right portion 251R of the piezoelectric element 251 are located at the center of the first window 251W For example, in a symmetrical manner. In this situation, when the light reflected through the light reflector 252 shoots the object perpendicularly to the first window 251W surface, the portion of the object to be illuminated is moved to the left portion 251L of the piezoelectric element 251 and to the right side The intensity of the received ultrasonic wave SW is substantially constant over the entire region of the piezoelectric element 251. [ Therefore, the problem of inconsistency between the light illumination direction and the ultrasonic signal detection direction of the prior arts 7 to 11 is solved, and consequently, the reception sensitivity of the signal and the resolution of the photoacoustic image are improved.

일 실시예에 따르면, 압전소자(251)는 광반사기(252) 방향으로 오목하게 형성될 수 있다. 일반적으로 아주 작은 점(point)과 같은 형태의 피검체에서 발생한 초음파(SW)는 구면파(spherical wave)의 형태로 전파되는데, 이 때 압전소자(251)가 광반사기(252) 방향으로 오목하게 생긴 경우, 피검체에서 발생한 초음파(SW)가 압전소자(251)의 전체에 걸쳐 거의 일정한 세기로 검출될 수 있다. 따라서 신호의 수신 감도 및 광음향 영상의 해상도가 향상된다.According to one embodiment, the piezoelectric element 251 may be recessed in the direction of the light reflector 252. Generally, an ultrasonic wave (SW) generated in a subject having the shape of a very small point propagates in the form of a spherical wave. At this time, the piezoelectric element 251 is concave in the direction of the light reflector 252 The ultrasonic waves SW generated in the subject can be detected with almost constant intensity throughout the piezoelectric element 251. [ Thus, the reception sensitivity of the signal and the resolution of the photoacoustic image are improved.

또 다른 실시예에 따르면, 제1윈도우(251W)를 기준으로 압전소자(251)의 왼쪽 부분(251L) 및 오른쪽 부분(251R)은 물리적으로 떨어진, 즉 두 조각(pieces)의 압전 소자가 서로 대칭된 형태로 배치되는 방식으로도 구현될 수 있다. 물론 이 경우에도 두 개의 압전 소자는 전기적으로는 병렬 연결인 것처럼 서로 연결된 관계에 놓일 수 있다.According to another embodiment, the left portion 251L and the right portion 251R of the piezoelectric element 251 are physically separated from each other, that is, two pieces of piezoelectric elements are symmetrical with respect to the first window 251W Or in a form in which they are arranged in a form. Of course, in this case also, the two piezoelectric elements may be connected to each other as if they are electrically connected in parallel.

도 3 내지 도 7은 다른 실시예에 따른 광음향-초음파 내시경의 스캐닝 팁(250)의 구성을 개략적으로 나타낸 모식도이다.3 to 7 are schematic views schematically showing the structure of the scanning tip 250 of the photoacoustic-ultrasonic endoscope according to another embodiment.

일 실시예에 따르면, 스캐닝 팁(250)은 음향 잡음을 없앨 수 있는 흡음층(253) 및 광반사기(252), 압전소자(251), 흡음층(253)을 감싸는 케이싱(254)을 포함할 수 있다. 케이싱(254)은 스캐닝 팁(250)을 구성하는 소자들을 감싸주어 이들이 안정적으로 고정될 수 있게 한다. 케이싱(254)의 내부에는 흡음층(253)이 배치된다. 흡음층(253)은 피검체로부터 발생한 음파의 불규칙한 반사로 인해 발생한 음향 잡음을 없애는 역할을 수행함은 물론 압전소자(251)와의 적절한 음향 임피던스(acoustic impedance) 차이를 형성함으로써 압전소자(251)의 감도 값에 영향을 줄 수 있다. 흡음층(253)은 압전소자(251)의 아래쪽에 배치되어, 압전소자(251)를 고정시킬 수 있다. 케이싱(254)은 금속(metal) 재질로 된 하나 또는 여러 개의 피스(piece)로 구성될 수 있다. According to one embodiment, the scanning tip 250 includes a sound absorbing layer 253 that can eliminate acoustic noise and a casing 254 that surrounds the light reflector 252, the piezoelectric element 251, and the sound absorbing layer 253 . The casing 254 surrounds the elements constituting the scanning tip 250 so that they can be stably fixed. A sound-absorbing layer 253 is disposed inside the casing 254. The sound-absorbing layer 253 serves to eliminate acoustic noise caused by the irregular reflection of the sound waves generated from the body of the subject, as well as to create an appropriate acoustic impedance difference with the piezoelectric element 251, It can affect the value. The sound-absorbing layer 253 is disposed below the piezoelectric element 251, and the piezoelectric element 251 can be fixed. The casing 254 may be composed of one or a plurality of pieces made of a metal material.

일 실시예에 따르면, 광음향-초음파 내시경은 광반사기(252)의 광출구 방향 쪽으로 배치되어, 압전소자(251)의 제1윈도우(251W) 부분으로 유체가 침입하는 것을 막는 투명 충전재(255)를 더 포함할 수 있다. 도 3을 참조하면, 광반사기(252) 상에는 제1윈도우(251W)에 의해 노출되는 투명 충전재(255)가 배치된다. 광섬유(241)로부터 나온 빛이 반사되는 경로, 즉 광출구 방향 쪽에 유체가 침입하게 되면, 굴절률의 차이로 빛의 경로가 달라지는 등의 문제가 발생한다. 그러므로 투명 충전재(255)를 사용하면, 레이저 빔을 통과시키면서도 유체의 침입을 완벽히 차단할 수 있다.According to one embodiment, the photoacoustic-ultrasound endoscope is disposed toward the light exit direction of the light reflector 252 and includes a transparent filler 255 that prevents fluid from entering the first window 251W portion of the piezoelectric element 251, As shown in FIG. Referring to FIG. 3, on the light reflector 252, a transparent filler 255 exposed by the first window 251W is disposed. When the fluid enters the path through which the light emitted from the optical fiber 241 is reflected, that is, toward the light outlet direction, there arises a problem that the path of light changes due to the difference in refractive index. Therefore, by using the transparent filler 255, penetration of the fluid can be completely blocked while passing the laser beam.

일 실시예에 따르면, 광섬유(241)를 통해 전달된 레이저 빔은 상기 광반사기(252)의 내부에서 반사될 수 있다. 도 4를 참조하면, 이 실시예에 따른 광반사기(252)는 그림상에 도시한 바와 같이 그의 단면이 직각 이등변 삼각형 형태를 띠는 일종의 광학 프리즘(prism)으로, 도 3에서 투명 충전재(255)가 배치되었던 바로 그 지점에 위치하게 된다. 즉, 광반사기(252)의 한 면은 압전소자(251)와 실질적으로 같은 평면에 위치하여 제1윈도우(251W)를 막고, 다른 한 면은 광섬유(241)와 접촉하게 되는 것이다. 그렇게 되면 결과적으로 광섬유(241)로부터 나온 레이저 빔은 광반사기(252)의 내부로 진입한 후, 광반사기(252)의 빗면, 즉 그 내부에서 반사되어 피검체로 향할 수 있다. According to one embodiment, the laser beam transmitted through the optical fiber 241 may be reflected within the light reflector 252. 4, a light reflector 252 according to this embodiment is a kind of optical prism having an isosceles right triangle shape in cross section, as shown in the figure. In FIG. 3, Lt; / RTI > is located at the point where it was placed. That is, one surface of the light reflector 252 is positioned substantially in the same plane as the piezoelectric element 251 to cover the first window 251W, and the other surface is in contact with the optical fiber 241. [ As a result, the laser beam emitted from the optical fiber 241 enters the inside of the optical reflector 252, and is reflected on the oblique surface of the optical reflector 252, that is, inside the optical reflector 252,

물론 이 때 프리즘 형태을 띠는 광반사기(252)의 빗면은 광반사 코팅시키거나, 빗면 바깥 공간, 즉 도 3을 기준으로 광반사기(252)가 위치했던 바로 그 지점에 공기 챔버(256), 즉 텅 빈 공간을 제공해 주는 것이 바람직하다. 만약 후자의 방법을 적용하게 되면, 광반사기(252) 자체의 굴절률이 공기 챔버(256)의 굴절률보다 크게 되므로, 광반사기(252)의 빗면과 공기 챔버(256)의 경계면에서 레이저 빔의 전반사(total reflection)가 일어날 수 있게 되는 것이다. Of course, the oblique surface of the prism-shaped light reflector 252 may be light-reflective coated, or it may be coated with an air chamber 256 at the point where the light reflector 252 is located relative to the outer surface of the oblique surface, It is desirable to provide an empty space. If the latter method is applied, the refractive index of the light reflector 252 itself becomes larger than the refractive index of the air chamber 256, so that the total reflection of the laser beam at the interface between the oblique surface of the light reflector 252 and the air chamber 256 total reflection) can occur.

일 실시예에 따르면, 압전소자(251)의 표면에는 음향 렌즈(257)가 배치될 수 있다. 도 5를 참조하면, 음향 렌즈(257)는 광반사기(252)에 의해 반사된 레이저 빔이 통과하는 제2윈도우(257W)를 가진다. 음향 렌즈(257)는 피검체로부터 발생한 초음파를 굴절 원리에 따라 포커싱(focusing)하여 압전소자(251)에 전달함으로써 초음파 수신 감도 및 해상도를 향상시킨다. 이 실시예에서는 압전소자(251)가 평평하게 형성될 수 있다. According to one embodiment, an acoustic lens 257 may be disposed on the surface of the piezoelectric element 251. 5, the acoustic lens 257 has a second window 257W through which the laser beam reflected by the light reflector 252 passes. The acoustic lens 257 focuses the ultrasonic wave generated from the inspected object according to the principle of refraction and transmits the focused ultrasonic wave to the piezoelectric element 251 to improve the ultrasonic reception sensitivity and the resolution. In this embodiment, the piezoelectric element 251 may be formed flat.

음향 렌즈(257)의 재질은 매칭 유체(230)를 통해 진행해 오는 음파가 최대한 효율적으로 압전소자(251)에 전달될 수 있도록 하는 그런 음향 임피던스(acoustic impedance) 값을 가지면서도 매칭 유체(230)와는 다른 음파속도 특성을 갖는 것을 선택할 수 있다. 만약 음향 렌즈(257)에서의 음속이 매칭 유체(230) 내에서보다 빠르면, 음향 렌즈(257)는 도 5와 같이 광반사기 방향으로 오목하게 형성될 수 있다. 이와 반대로, 음향 렌즈(257)에서의 음속이 매칭 유체(230)에서의 음속보다 느리다면, 음향 렌즈(257)는 스캐닝 팁으로부터 볼록하게 나온 형태일 수 있다. The material of the acoustic lens 257 has such an acoustic impedance value that the sound waves propagating through the matching fluid 230 can be transmitted to the piezoelectric element 251 as efficiently as possible, It is possible to select those having different sound wave velocity characteristics. If the sonic velocity at the acoustic lens 257 is faster in the matching fluid 230, the acoustic lens 257 may be recessed in the direction of the light reflector as in FIG. Conversely, if the sonic velocity at the acoustic lens 257 is slower than the sonic velocity at the matching fluid 230, then the acoustic lens 257 may be convexly shaped from the scanning tip.

일 실시예에 따르면, 광음향-초음파 내시경은 광섬유(241)와 광반사기(252) 사이에 배치되고, 빛을 집중시키도록 구비된 그린(GRIN, gradient index) 렌즈(258)를 포함할 수 있다. 그린 렌즈(258)는, 중심축에서 멀어질수록 굴절률이 감소하는 재질로 구성된다. 이를 통해 그린 렌즈(258)로 입사한 빛은 그린 렌즈(258)의 중심축을 따라 소정의 거리만큼 떨어진 지점에 위치한 초점을 향해 포커싱된다. 도 6을 참조하면, 그린 렌즈(258)를 통해 포커싱된 레이저 빔은 광반사기(252)를 통해 반사되어 피검체에 조사된다. 이 때 포커싱되지 않은 레이저 빔에 비해, 포커싱된 레이저 빔을 적용할 경우, 피검체 표면에 형성되는 광조사 면적이 작아지고 또 그로 인하여 단위 면적당 레이저 빔의 세기가 커지게 되므로, 피검체에서 발생하는 광음향 신호의 세기 역시 커져 신호대 잡음비(SNR) 및 측면 분해능(lateral resolution)이 높아진다. 물론 그린 렌즈(258)가 배치되는 경우 단일 모드 광섬유(241)를 사용하는 것이 바람직하다. According to one embodiment, the photoacoustic-ultrasound endoscope may include a green (GRIN) gradient index lens 258 disposed between the optical fiber 241 and the light reflector 252 and adapted to focus the light . The green lens 258 is made of a material whose refractive index decreases with distance from the central axis. The light incident on the green lens 258 is focused toward the focus positioned at a predetermined distance along the center axis of the green lens 258. [ Referring to FIG. 6, the laser beam focused through the green lens 258 is reflected through the light reflector 252 and irradiated to the subject. In this case, when the focused laser beam is applied, the light irradiation area formed on the surface of the object is smaller and the intensity of the laser beam per unit area becomes larger as compared with the laser beam not focused. The intensity of the photoacoustic signal is also increased and the signal-to-noise ratio (SNR) and lateral resolution are increased. Of course, it is preferable to use the single mode optical fiber 241 when the green lens 258 is disposed.

한편, 만약 스캐닝 팁(250)의 제작에 허용되는 직경이 작은 상황인 경우, 그린 렌즈(258)와 흡음층(253)을 동시에 배치시킬 만한 공간적인 여유가 부족할 수 있을 뿐만 아니라, 그린 렌즈(258) 내부를 진행하는 빛의 총 경로 상에서 굴절률의 변화가 충분치 않아 초점이 먼 곳에 형성되어 광포커싱이 효과적으로 일어나지 않을 수 있다. 이와 같은 경우, 도 7과 같이 광반사기는(252) 기다란 형태의 기둥부(252C) 및 프리즘 형태의 반사부(252R)를 포함하도록 형성될 수 있다. 이 경우, 기둥부(252C)에 의해 그린 렌즈(258)에서부터 빛이 반사되는 지점까의 거리가 충분히 길어져, 비록 그린 렌즈(258)의 초점 위치가 그린 렌즈(258)로부터 상당히 멀리 떨어져 있더라도 피검체 내의 원하는 정확한 지점에 광포커싱이 가능하다. 물론 이 때, 광반사기(252) 위에는 압전소자(251)가 배치되고, 그 반대쪽에는 흡음층(253)이 얇게 배치될 수 있다.On the other hand, in the case of a small diameter allowable for manufacturing the scanning tip 250, not only a spatial margin to place the green lens 258 and the sound-absorbing layer 253 at the same time may be insufficient, The change in the refractive index is insufficient on the total path of the light traveling in the inside of the optical path, so that the optical focusing may not be effectively performed. In such a case, as shown in FIG. 7, the light reflector may be formed so as to include the prism-shaped reflecting portion 252R and the columnar portion 252C of the elongated shape of (252). In this case, although the distance from the green lens 258 to the point where the light is reflected by the column 252C is sufficiently long, even if the focal point of the green lens 258 is far from the green lens 258, It is possible to focus the light at a desired precise point within the range. Of course, at this time, the piezoelectric element 251 may be disposed on the light reflector 252, and the sound-absorbing layer 253 may be disposed on the opposite side.

상술한 바와 같이 광섬유(241)로부터 나온 레이저 빔이 광반사기(252)를 통해 반사되어 압전소자(251)의 중심에 형성된 제1윈도우(251W)를 통해 피검체에 조사되도록 스캐닝 팁(250)을 구성하면, 광반사기(252)에서 반사된 레이저 빔이 조사되는 광조명 방향과 피검체로부터 발생한 초음파 신호를 수신하는 초음파 검출 방향이 일치하여, 조사한 레이저 빔의 광에너지 대비 실제 검출되는 광음향 신호의 세기, 즉 신호 검출의 효율이 높아지게 되는 것이다.The laser beam emitted from the optical fiber 241 is reflected through the optical reflector 252 and is transmitted through the first window 251W formed at the center of the piezoelectric element 251 to the object to be scanned The light illumination direction in which the laser beam reflected by the light reflector 252 is irradiated and the ultrasonic detection direction in which the ultrasonic signal generated from the object are received coincide with each other, That is, the efficiency of signal detection is enhanced.

뿐만 아니라, 피검체로부터 발생한 초음파 신호가 프로브(200)의 다른 구성 요소 등에 의해 반사됨 없이 압전소자(251)에 의해 검출되므로, 초음파 신호의 검출 경로가 단축되어, 신호의 수신 감도 및 광음향 영상의 해상도가 향상된다.In addition, since the ultrasonic signal generated from the subject is detected by the piezoelectric element 251 without being reflected by the other components of the probe 200, the detection path of the ultrasonic signal is shortened and the reception sensitivity of the signal and the photoacoustic image Resolution is improved.

이하 도파관 집합체(240)에 포함되는 광섬유(241) 및 도전성 통로(CP)에 대해 설명한다. Hereinafter, the optical fiber 241 and the conductive path CP included in the waveguide assembly 240 will be described.

도 8은 도 1의 VIII - VIII' 선을 따라 취한 단면도이다.8 is a sectional view taken along the line VIII - VIII 'in FIG.

도 8을 참조하면, 광섬유(241)는 일반적으로 코어와 클래딩 구조를 기본으로 갖추고 있으며 그 바깥에 폴리머 등과 같은 소재로 된 보호 코팅층(241PCL)이 포함될 수 있다. 광섬유(241)의 바깥에는, 광섬유(241)와 동축으로 배치되고 광섬유(241)를 감싸며, 전기 신호를 전달하는 도전성 통로(CP)가 배치된다. 도전성 통로(CP)는 광섬유(241)와 동축으로 배치된 부분을 포함하는 제1 도전성 통로(242) 및 광섬유(241)와 동축으로 배치된 부분을 포함하고, 제1 도전성 통로(242)와 절연된 제2 도전성 통로(243)를 포함한다.Referring to FIG. 8, the optical fiber 241 generally has a core and a cladding structure as a basis, and a protective coating layer 241PCL made of a polymer or the like may be included outside the optical fiber 241. A conductive path CP which is disposed coaxially with the optical fiber 241 and surrounds the optical fiber 241 and transmits an electric signal is disposed outside the optical fiber 241. The conductive path CP includes a first conductive path 242 including a portion disposed coaxially with the optical fiber 241 and a portion disposed coaxially with the optical fiber 241. The conductive path CP includes a first conductive path 242, And a second conductive path 243 formed therein.

상기 세 요소들(241, 242, 243) 모두는 도파관 집합체(240)의 회전 중심축이라는 하나의 기준점에 대해 동축적 구조로 배치되고 회전 운동시 이들 모두가 일체가 되어 동일한 각속도로 회전할 수 있다. All of the three elements 241, 242, and 243 are arranged in a coaxial structure with respect to one reference point, which is the rotation center axis of the waveguide assembly 240, and all of them are integrated and can rotate at the same angular velocity .

한편, 두 도전성 통로(242, 243)를 전기적으로 절연시키기 위해, 두 도전성 통로(242, 243)의 표면은 절연층(IL)으로 코팅될 수 있다. 상기 절연층(IL)은 폴리머를 포함할 수 있다. 또는, 두 도전성 통로(242, 243) 사이에 절연성 소재로 된 튜브(tube) 모양의 구조체가 추가적으로 배치될 수도 있다.On the other hand, in order to electrically isolate the two conductive passages 242 and 243, the surfaces of the two conductive passages 242 and 243 may be coated with an insulating layer IL. The insulating layer IL may include a polymer. Alternatively, a tube-shaped structure made of an insulating material may be additionally disposed between the two conductive passages 242 and 243.

도 1 및 도 8를 다시 참조하면, 도파관 집합체(240)의 중심에는 광섬유(241)가, 그 바깥쪽에는 제1 도전성 통로(242) 및 제2 도전성 통로(243)가 동축으로 배치되어 있다. 이러한 독특한 구조로 인해 가장 중심에 자리 잡고 있는 광섬유(241)는 빛을 전달하는 광 도파관 역할을 하며, 상기 두 도전성 통로(242, 243)는, 마치 동축 구조를 갖는 전기 케이블처럼, 고주파의 전기 신호를 매우 효과적으로 전달할 수 있는 일종의 라디오 주파수 대역의 전자기 도파관처럼 작용 하게 된다. 참고로 본 발명에서 다루는 전기 신호는 주로 0.1-100 MHz 대역에 놓여 있으며, 광섬유(241)의 경우는 다중 모드(multi-mode)나 단일 모드(single-mode) 또는 이 둘의 혼합된 형태들 중 원하는 응용 목적에 따라 선택적으로 설치될 수 있다. Referring again to FIGS. 1 and 8, an optical fiber 241 is disposed at the center of the waveguide aggregate 240, and a first conductive path 242 and a second conductive path 243 are disposed coaxially outside the waveguide aggregate 240. Due to such a unique structure, the optical fiber 241 located at the center of the optical fiber 241 serves as an optical waveguide for transmitting light, and the two conductive paths 242 and 243 can be formed as an electric cable having a coaxial structure, As a kind of electromagnetic wave waveguide of a radio frequency band which can transmit the electromagnetic waves efficiently. For reference, the electric signal covered by the present invention lies mainly in the 0.1-100 MHz band, and in the case of the optical fiber 241, the multi-mode, the single-mode, And can be selectively installed according to a desired application purpose.

도파관 집합체(240)는 앞서 설명한 광학적 그리고 전자기적 도파관 역할 외에도, 그 집합체를 구성하는 요소들(241, 242, 243)이 마치 통합된 하나의 새로운 기계 모듈이 된 것처럼, 역학적 회전력을 프로브 기부(210)에서부터 스캐닝 팁(250)까지 전달하는 일종의 플렉시블 샤프트(flexible shaft)와 같은 역할도 수행할 수 있다. 이러한 이유에서 제1 도전성 통로(242)와 제2 도전성 통로(243)는 물리적으로 잘 휠 수 있는 형태나 구조를 취하여야 한다. 가령, 광섬유(241)와 상기 두 도전성 통로 사이에 어느 정도의 물리적 간격을 두어 도파관 집합체(240)가 좀 더 유연하게 휘어지면서도 동시에 효과적 회전력 전달이 가능한 형태로 구현될 수 있다.In addition to the optical and electromagnetic waveguide roles described above, the waveguide assembly 240 provides a mechanical rotational force to the probe base 210 (as shown in FIG. 3), as if the elements 241, 242, To the scanning tip 250, as shown in FIG. For this reason, the first conductive path 242 and the second conductive path 243 must take a form or structure that can physically be made good. For example, the optical waveguide assembly 240 may be flexibly bent at a certain physical distance between the optical fiber 241 and the two conductive paths so that the waveguide assembly 240 can effectively transmit the rotational force at the same time.

도 9는 일 실시예에 따른 도파관 집합체(240)의 구성 방법을 예시한 모식도이며, 도 10은 도 9의 A 부분의 상세한 구성을 나타낸 모식도이고, 도 11는 도 10에 제시한 구조를 바탕으로 도파관 집합체(240)를 실 구현한 사진이다. 특히 도 9에서는 본 일 실시예를 바탕으로 구현한 도파관 집합체(240)가 광음향-초음파 내시경 프로브(200)라는 전체 시스템 내에서 어떻게 설치되고 전기적으로 연결되는지 모식적으로 보여주고 있다. 9 is a schematic diagram illustrating a method of configuring a waveguide assembly 240 according to an embodiment, FIG. 10 is a schematic diagram showing a detailed configuration of a portion A in FIG. 9, and FIG. 11 is a diagram And the waveguide assembly 240 is actually implemented. In particular, FIG. 9 schematically shows how a waveguide assembly 240 implemented on the basis of the present embodiment is installed and electrically connected within the entire system of photoacoustic-ultrasonic endoscope probe 200.

일 실시예에 따르면, 제1 도전성 통로(244)는 광섬유(241)를 감싸도록 구비되고, 제2 도전성 통로(245)는 제1 도전성 통로(244)와 동축으로 제1 도전성 통로(244)를 감싸도록 구비될 수 있다. 즉 광섬유(241), 제1 도전성 통로(244)와 제2 도전성 통로(245)를 자른 단면은 도 8에 도시된 바와 같이 동심원 형태일 수 있다. 이 때, 제1 도전성 통로(244) 및 제2 도전성 통로(245) 중 적어도 하나는 튜브형으로 구비될 수 있다. 이 때 튜브형이란, 마치 속이 빈 관(tube) 형태의 제1 도전성 통로(244) 및/또는 제2 도전성 통로(245)가 일정한 두께로 광섬유(241)의 외면을 둘러싸는 것을 의미한다. 이 때 제1 도전성 통로(244) 및 제2 도전성 통로(245) 중 적어도 하나는 광섬유(241)의 표면에 도전성 물질을 예컨대 증착 또는 도금과 같은 방식으로 직접 코팅시켜 형성시킬 수 있다. The first conductive path 244 is provided to enclose the optical fiber 241 and the second conductive path 245 is provided with a first conductive path 244 coaxially with the first conductive path 244. [ As shown in FIG. That is, the cross section of the optical fiber 241, the first conductive path 244, and the second conductive path 245 may be concentric as shown in FIG. At this time, at least one of the first conductive path 244 and the second conductive path 245 may be formed in a tube shape. In this case, the tubular shape means that the first conductive path 244 and / or the second conductive path 245 in the form of a hollow tube surrounds the outer surface of the optical fiber 241 with a constant thickness. At this time, at least one of the first conductive path 244 and the second conductive path 245 may be formed by directly coating a conductive material on the surface of the optical fiber 241, for example, by vapor deposition or plating.

일 실시예에 따르면, 제1 도전성 통로(244)는 광섬유(241)를 감싸도록 구비되고, 제2 도전성 통로(245)는 제1 도전성 통로(244)와 동축으로 제1 도전성 통로(244)를 감싸도록 구비되며, 제1 도전성 통로(244) 및 제2 도전성 통로(245) 중 적어도 하나는 코일(coil) 형태로 광섬유(241) 외측에 위치하도록 구비된 토크 코일 (torque coil) 세트를 포함할 수 있다. The first conductive path 244 is provided to enclose the optical fiber 241 and the second conductive path 245 is provided with a first conductive path 244 coaxially with the first conductive path 244. [ And at least one of the first conductive path 244 and the second conductive path 245 includes a set of torque coils disposed outside the optical fiber 241 in the form of a coil .

도 10을 참조하면, 광섬유(241) 주변을 감싸는 제1 도전성 통로(244) 및 제2 도전성 통로(245)는 토크 코일 세트(244, 245)를 포함할 수 있다. 본 발명에서는 이 두 토크 코일 세트(244, 245)을 각각 안쪽 토크 코일 세트(244)와 바깥 토크 코일 세트(245)라 지칭한다. 여기서 각각의 명칭에 세트(set)라는 표현을 붙인 이유는 각 토크 코일이 도 10에 표현한 것과 같이 단순히 한 겹(또는 층)으로 제작된 것만이 아니라 여러 겹의 토크 코일들이 포개져 이들 전체가 마치 하나의 단위(unit)로서 기능하는 형태를 취할 수도 있기 때문이다. 예컨대 도 11를 참조하면, 각 토크 코일 세트(244, 245)는 다수의 와이어들이 2층 구조를 형성한 방식으로 구성될 수 있다(단면 사진 참조). 이러한 구조는 일반적으로 1미터가 넘는 매우 긴 구간에 걸쳐 역학적 회전력을 보다 효과적으로 전달하는 데 이점이 있다. 한편, 주어진 공간이 제한되고 유연성이 더 중요한 상황이라면 각 토크 코일 세트(244, 245)는 도 10에 표현한 대로 한 층으로만 구성될 수 있다. 10, a first conductive path 244 and a second conductive path 245 surrounding the optical fiber 241 may include a set of torque coils 244 and 245. In the present invention, these two torque coil sets 244 and 245 are referred to as an inner torque coil set 244 and an outer torque coil set 245, respectively. The reason why each name is referred to as a set is that the torque coils are not simply formed as one layer (or layer) as shown in FIG. 10, but a plurality of layers of torque coils are superimposed, It may take a form that functions as one unit. For example, referring to FIG. 11, each torque coil set 244 and 245 may be configured in such a manner that a plurality of wires form a two-layer structure (see a sectional view). This structure has the advantage of more effectively delivering the mechanical rotational force over a very long section, generally over one meter. On the other hand, if the given space is limited and flexibility is more important, each set of torque coils 244 and 245 may consist of only one layer as depicted in FIG.

그리고 이 두 토크 코일 세트(244, 245) 각각의 전기 전도도를 높이기 위하여, 경우에 따라 그들의 표면은 전기 전도성이 높은 물질로 코팅 또는 도금될 수 있다. 또한 안쪽과 바깥 토크 코일 세트(244, 245) 간의 전기적 절연을 위하여 각 토크 코일 세트의 가장 바깥쪽 표면을 폴리머 계열의 절연체로 코팅을 하거나 두 세트(244, 245) 사이에 또 다른 관구조의 폴리머 튜브를 삽입할 수 있다 (도 11의 244PT 참조). 물론 하나의 실시예에 있어서 이 두 방법을 모두 적용할 수 있다.In order to increase the electrical conductivity of each of the two sets of torque coils 244 and 245, their surfaces may be coated or plated with a material having high electrical conductivity. It is also possible to coat the outermost surface of each torque coil set with a polymeric insulator for electrical isolation between the inner and outer torque coil sets 244 and 245 or to apply a different tube structure polymer between the two sets 244 and 245 The tube can be inserted (see 244PT in Fig. 11). Of course, both of these methods can be applied in one embodiment.

이상 도 11의 실시예를 중심으로 토크 코일 세트를 이용하여 도파관 집합체(240)를 구현하는 방법을 제시하였으나, 토크 코일 외에도 매우 얇고 균일한 벽 두께를 갖는 두 개의 도전성 튜브 등을 서로 끼워 넣어 포개는 방식으로도 도파관 집합체(240)를 구현할 수 있다.Although the method of implementing the waveguide assembly 240 using the torque coil set with reference to the embodiment of FIG. 11 has been described, in addition to the torque coil, two conductive tubes having a very thin and uniform wall thickness are interdigitated, The waveguide assembly 240 can be implemented.

도 9를 다시 참조하면, 제1 도전성 통로로 기능하는 안쪽 토크 코일 세트(244)와 제2 도전성 통로로 기능하는 바깥 토크 코일 세트(245)는 각각 압전소자(251)의 두 전극에 연결되어 스캐닝 팁(250)으로부터 프로브 기부(210)에 있는 회전 트랜스포머(211)까지 전기가 흐르는 통로를 제공한다. 물론 도파관 집합체(240)에 포함되는 두 토크 코일 세트(244, 245)는 이들과 함께 회전을 하는 회전 트랜스포머(211)의 좌측 코일부(211-1)에 전기적으로 연결되어 있다.9, the inner torque coil set 244 functioning as the first conductive path and the outer torque coil set 245 functioning as the second conductive path are connected to the two electrodes of the piezoelectric element 251, respectively, Providing a passage through which electricity flows from the tip 250 to the rotating transformer 211 in the probe base 210. Of course, the two sets of torque coils 244 and 245 included in the waveguide assembly 240 are electrically connected to the left coil part 211-1 of the rotary transformer 211 rotating together with them.

도 12 및 도 13은 다른 실시예에 따른 도파관 집합체(240)의 구조를 보여주는 모식도이다.12 and 13 are schematic diagrams showing the structure of the waveguide aggregate 240 according to another embodiment.

도 12의 일 실시예에 따르면, 제1 도전성 통로(248) 및 제2 도전성 통로(249)는 광섬유(241) 표면의 적어도 일부를 감싸도록 구비될 수 있다. 도 12의 도파관 집합체를 XII- XII' 선을 따라 자른 단면도를 참조하면, 도전성 통로(CP)는 U자형으로 생긴 제1 도전성 통로(248) 및 역 U자형으로 생긴 제2 도전성 통로(249) 두 부분으로 분리되어 있다. 두 부분으로 나뉜 제1 및 제2 도전성 통로(248, 249)는 각각 광섬유(241)의 일부를 감싼다. 이 경우 역시 두 도전성 통로(CP)는 광섬유(241)와 기하학적으로 동축 관계라는 기본적 특성을 유지하면서 전기 신호가 흐르는 통로를 제공하기 때문에, 비록 도파관 집합체가 휘어진 상태에 놓이더라도, 역학적 회전력을 매우 균일하게 전달할 수 있게 된다. According to one embodiment of FIG. 12, the first conductive path 248 and the second conductive path 249 may be provided to cover at least a part of the surface of the optical fiber 241. 12, the conductive path CP includes a first conductive path 248 formed in a U-shape and a second conductive path 249 formed in an inverted U-shape. . The first and second conductive passages 248 and 249, which are divided into two parts, respectively surround a portion of the optical fiber 241. In this case also, since the two conductive paths CP provide a passage through which electric signals flow while maintaining the basic property of being geometrically coaxial with the optical fibers 241, even if the waveguide aggregate is placed in a warped state, .

도 12에 제시한 실시예가 갖는 다른 장점 중의 하나는, 앞서 언급한 "도전성 통로"라는 부분을 도면 상에 제시한 것처럼 두 개만 형성시키는 것이 아닌, 그 표면을 따라 다수 개의 형태로 형성시킬 수 있다는 점이다. 즉, 여러 채널의 도전성 통로가 병렬로 형성되도록 구현될 수도 있는 것이다. One of the other advantages of the embodiment shown in Fig. 12 is that the above-mentioned "conductive passage" is formed not only in two but also in a plurality of shapes along its surface to be. That is, the conductive paths of several channels may be formed in parallel.

본 발명은 스캐닝 팁 부분에 하나의 압전 소자를 설치하여 광음향 초음파 신호를 검출하는, 즉 단일 초음파 트랜듀서에 기반 한 광음향 내시경을 구현 하는 것을 주된 목적으로 고안되었다. 그러나 만약 스캐닝 팁 부분에 2개 혹은 그 이상의 압전 소자를 설치하여 그들로부터 발생된 전기 신호를 도파관 집합체를 따라 독립적으로 전달시키고자 할 경우에는 도 12에 제시한 코팅 방법에 따라 도전성 통로의 채널 개수를 그에 맞게 증가시킬 수 있는 것이다.The main object of the present invention is to provide a photoacousticoscope based on a single ultrasonic transducer which detects a photoacoustic ultrasonic signal by installing one piezoelectric element at a scanning tip portion. However, if two or more piezoelectric elements are provided on the scanning tip and the electric signals generated therefrom are independently transmitted along the waveguide aggregate, the number of channels of the conductive channel is determined according to the coating method shown in FIG. 12 It can be increased accordingly.

어떠한 경우든, 도전성 통로(CP)의 바깥층에는 매칭 유체(230)와의 접촉으로 인한 전기 누설을 막아주는 절연 코팅층(246)이 배치되는 것이 바람직 하다.In any case, the outer layer of the conductive path CP is preferably provided with an insulating coating layer 246 to prevent electrical leakage due to contact with the matching fluid 230.

도 13을 참조하면, 일 실시예에 따른 도파관 집합체(240)의 제1 도전성 통로(안쪽 도전층, 242)는 광섬유(241)와 제2 도전성 통로(247) 사이에 개재된 절연 코팅층(246) 바로 내부, 즉 광섬유(241)의 클래딩(241Cd) 표면 또는 제 1 버퍼(buffer)층 (미도시) 표면 전체에 걸쳐 직접 코팅되는 방식으로도 형성될 수 있다. 즉, 이 경우 도파관 집합체(240)는 광섬유(241)의 클래딩(241Cd) 표면 또는 제 1 버퍼(buffer)층 (미도시) 표면 전체를 둘러싸며 튜브형으로 형성된 제1 도전성 통로(CP, 242), 그 바깥을 둘러싸는 절연 코팅층(246), 그리고 토크 코일 세트로 구현된 제2 도전성 통로(CP, 247)가 안에서부터 차례대로 배치된 형태로 구성되는 것이다. 물론 이 때 절연 코팅층(246)은 두 도전성 통로(242, 247)를 전기적으로 절연시키는 역할도 수행한다. 또한 제2 도전성 통로의 형성에 있어서도, 도면상에 제시한 토크 코일 세트라 불리는 기계 요소를 적용하는 것 대신, 전도성이 높은 물질을 광섬유를 감싸고 있는 절연 코팅층(246) 바깥 표면 위에 직접 얇게 코팅하는 방식으로도 구현 할 수 있다.Referring to FIG. 13, the first conductive path (inner conductive layer) 242 of the waveguide assembly 240 according to one embodiment includes an insulating coating layer 246 interposed between the optical fiber 241 and the second conductive path 247, Or directly on the surface of the cladding 241Cd of the optical fiber 241 or the entire surface of the first buffer layer (not shown). That is, in this case, the waveguide aggregate 240 includes a first conductive path CP 242 formed in a tubular shape to surround the entire surface of the cladding 241Cd of the optical fiber 241 or the first buffer layer (not shown) An insulating coating layer 246 surrounding the outer circumference thereof, and a second conductive path CP (247) formed of a torque coil set. Of course, the insulating coating layer 246 also serves to electrically isolate the two conductive passages 242 and 247 at this time. Also in the formation of the second conductive path, instead of applying a mechanical element called the torque coil set shown in the drawing, a method of coating a highly conductive material thinly on the outer surface of the insulating coating layer 246 surrounding the optical fiber Can also be implemented.

어쨌든 도 12 및 도 13에 제시된 구조는 프로브의 전체 직경이 매우 작아야 하는 혈관 삽입 카테터 프로브 (intravascular catheter probe) 등에 적용되면 더욱 효과적일 수 있다.In any case, the structure shown in Figures 12 and 13 may be more effective when applied to an intravascular catheter probe or the like where the overall diameter of the probe must be very small.

도 14는 일 실시예에 따른 광섬유(241)를 나타낸 모식도이다. 이 일 실시예에 따르면, 도파관 집합체(240)에 사용되는 광섬유는 빛을 전달할 수 있는 코어(241Co)와 제1 클래딩(241Cd-1)이라는 기본 구조 외에도 제1 클래딩(241Cd-1)을 둘러싸는 제2 클래딩(241Cd-2)을 포함할 수 있다. 14 is a schematic diagram showing an optical fiber 241 according to an embodiment. According to this embodiment, the optical fiber used in the waveguide bundle 240 includes a core 241Co capable of transmitting light, and a first cladding 241Cd-1. In addition to the basic structure, a first cladding 241Cd- And a second cladding 241Cd-2.

도 1에서는 다중 모드 광섬유나 단일 모드 광섬유 중 하나만을 선택한 광-전자기 도파관 집합체(240)를 개시하였다. 일반적으로 다중 모드 광섬유는 다량의 광에너지를 전달할 수 있는 장점이 있으며, 단일 모드 광섬유의 경우는 비록 전달할 수 있는 총 에너지는 작으나, 그 출구 지점에 렌즈 등을 장착하여 빛을 집중시킬 수 있다는 장점이 있다. 그런데 만약 다량의 광에너지 전달과 광집중이 동시에 요구되는 상황이라면, 도 14와 같이 이중 클래딩 광섬유(241)를 사용하여 도파관 집합체(240)를 구성할 수도 있다. 이러한 이중 클래딩 광섬유(241)는 도 14의 도파관 집합체를 XIV- XIV' 선을 따라 자른 단면도에서 보듯이 그 중심에 단일 모드 빛이 전달될 수 있는 코어(241Co)가 배치되어 있고, 그 바깥에는 다중 모드 빛을 전달할 수 있는 또 다른 빛 전파층인 제1 클래딩(241Cd-1)이 코어(241Co)를 감싸고 있다. 이 때 제1 클래딩(241Cd-1) 또한 빛을 전파해갈 수 있는 광섬유 역할을 할 수 있도록 최외각에 제2 클래딩(241Cd-2)이 배치되는 것이다.In FIG. 1, a plurality of optical-electromagnetic waveguide assemblies 240 having only one of a multimode optical fiber and a single mode optical fiber are disclosed. In general, a multimode optical fiber has the advantage of transmitting a large amount of optical energy. In the case of a single mode optical fiber, although the total energy that can be transmitted is small, an advantage of being able to concentrate light by attaching a lens or the like to the exit have. However, if a large amount of optical energy transfer and optical concentration are required at the same time, the waveguide aggregate 240 may be formed using the double cladding optical fiber 241 as shown in FIG. The double-cladding optical fiber 241 has a core 241Co disposed at the center thereof with a core 241Co as shown in a sectional view taken along the line XIV-XIV 'of FIG. 14, A first cladding 241Cd-1, which is another light propagation layer capable of transmitting mode light, surrounds the core 241Co. At this time, the first cladding 241Cd-1 also has a second cladding 241Cd-2 disposed at an outermost periphery so as to serve as an optical fiber capable of propagating light.

상기와 같이 광섬유(241) 및 두 도전성 통로(CP)가 모두 동축으로 배치되는 경우, 프로브 기부(210)에 작용되는 회전력을 프로브 말단에 배치된 스캐닝 팁(250)까지 균일하게 전달시킬 수 있다. When the optical fiber 241 and the two conductive paths CP are coaxially disposed as described above, the rotational force acting on the probe base 210 can be uniformly transmitted to the scanning tip 250 disposed at the end of the probe.

이하, 회전 트랜스포머(211) 및 회전 광결합부(102, 241)를 포함하는 광음향-초음파 내시경에 대해 설명한다. 참고로 본 발명에서는 이 둘을 합쳐서 회전 광-전자기 결합기(211, 102, 241)라 지칭한다.Hereinafter, a photoacoustic-ultrasound endoscope including the rotation transformer 211 and the rotation optical couplers 102 and 241 will be described. In the present invention, these are collectively referred to as rotating optical-electromagnetic couplers (211, 102, 241).

일 실시예에 따른 광음향-초음파 내시경은, 프로브(200)와 프로브 구동유닛(100)을 포함하며, 프로브(200)는 코어(241Co, 도 13)와 클래딩(241Cd, 도 13)을 포함하는 광섬유(241) 및 광섬유(241)와 동축으로 배치된 도전성 통로(CP)를 포함하는 도파관 집합체(240), 도파관 집합체(240)의 한 쪽 끝에 배치되고, 레이저 빔을 피검체에 보내 피검체로부터 발생한 광음향-초음파 신호를 검출하는 스캐닝 팁(250) 및 도파관 집합체(240) 및 스캐닝 팁(250)의 외부를 감싸는 플라스틱 카테터(220) 및 도전성 통로(CP)와 전기적으로 연결된 회전 트랜스포머(211)를 포함하고, 프로브 구동유닛(100)은 회전하는 광섬유(241)에 광 에너지를 전달하는 광입력기(102) 및 회전 트랜스포머(211)와 전기적으로 연결된 초음파 펄서-리시버(101)를 포함한다. The photoacoustic-ultrasonic endoscope according to one embodiment includes a probe 200 and a probe driving unit 100. The probe 200 includes a core 241Co (FIG. 13) and a cladding 241Cd (FIG. 13) A waveguide assembly 240 including an optical fiber 241 and a conductive path CP disposed coaxially with the optical fiber 241 is disposed at one end of the waveguide aggregate 240. The laser beam is sent from the subject A scanning tip 250 for detecting a photoacoustic-ultrasonic signal generated and a waveguide assembly 240 and a plastic catheter 220 surrounding the outside of the scanning tip 250 and a rotary transformer 211 electrically connected to the conductive path CP, The probe driving unit 100 includes an optical input unit 102 for transmitting optical energy to a rotating optical fiber 241 and an ultrasonic pulser-receiver 101 electrically connected to a rotating transformer 211.

다시 도 1을 참조하면, 회전 트랜스포머(211)는 마치 도넛 모양으로 생긴 자성체 코어(core)의 안쪽 또는 측면 테두리를 따라, 역시 이와 나란한 방향(즉, 도넛 모양)으로 감긴 전기 코일(coil)이 한 조(group)를 이룬 1차 코일부(211-1), 그리고 이와 동일한 구조를 갖는 또 다른 한 조인 2차 코일부(211-2)가 상기 1차 코일부와 서로 대향하여 대칭적 구조를 갖도록 형성된 소자를 말한다. Referring again to FIG. 1, the rotary transformer 211 is wound around an inside or a side edge of a magnetic core formed in a donut shape, and an electric coil wound in a direction parallel to the direction (i.e., a donut shape) The first primary coil portion 211-1 having a group and the other secondary secondary coil portion 211-2 having the same structure are symmetrical with respect to the primary coil portion Lt; / RTI >

여기서 1차 코일부(211-1)는 도파관 집합체(240)의 두 도전성 통로(CP)에, 2차 코일부(211-2)는 초음파 펄서-리시버(101)의 입력부(미도시)에 각각 전기적으로 연결된다. 그래서 기부 기어(217)의 회전에 의해 도파관 집합체(240)는 물론 이와 연결된 관통형 샤프트(214) 그리고 그 주위를 따라 링(ring) 모양으로 형성되어 있는 1차 코일부(211-1)가 함께 회전하더라도, 볼 베어링 모듈(212)에 의해 기부 프레임(216) 및 2차 코일부(211-2)는 전혀 회전하지 않는다. 즉, 도파관 집합체(240)의 두 도전성 통로(CP)에 전기적으로 연결된 1차 코일부(211-1)와는 달리, 2차 코일부(211-2)는 기부 프레임(216)에 고정되어 있어 회전하지 않게 되는 것이다. 결과적으로 회전 트랜스포머(211)라는 전기 소자에 의해 전선 등이 꼬이는 문제가 없이 회전하는 도파관 집합체(240)로부터 전기 신호를 입출할 수 있게 된다. Here, the primary coil part 211-1 is connected to the two conductive paths CP of the waveguide assembly 240, the secondary coil part 211-2 is connected to the input part (not shown) of the ultrasonic pulser- And is electrically connected. Therefore, by the rotation of the base gear 217, the waveguide assembly 240, as well as the through-hole shaft 214 connected to the waveguide assembly 240 and the primary coil portion 211-1 formed in the shape of a ring along the periphery thereof, The base frame 216 and the secondary coil portion 211-2 are not rotated by the ball bearing module 212 at all. That is, unlike the primary coil portion 211-1 electrically connected to the two conductive paths CP of the waveguide assembly 240, the secondary coil portion 211-2 is fixed to the base frame 216, I will not. As a result, electric signals can be input and output from the rotating waveguide assembly 240 without the problem of electric wires being twisted by the electric element called the rotary transformer 211.

즉 회전 트랜스포머(211)는 상대적으로 움직이는 두 물체 간에 직접적인 물리적 접촉이나 전선 등을 통한 연결 없이 전기 신호를 주고 받을 수 있는 전기 소자로 전자기 유도 원리에 의해 작동하는 장치이다. 물론 이러한 작동 원리로 인해, 회전 트랜스포머는 교류 신호만 전달할 수 있다는 한계는 있으나, 물리적으로 직접 접촉하지 않고 회전체로부터 전기 신호를 교환할 수 있는 핵심적 장점이 있다. 또한 언급한 장점 외에도, 각 조의 코일 비를 적절히 조합함으로써 전기 신호 전달 시 전압을 바꾸거나 전기 임피던스를 변환할 수 있다.That is, the rotary transformer 211 is an electric device that can transmit and receive electric signals without direct physical contact between two relatively moving objects or through electric wires, etc., and is operated by electromagnetic induction principle. Of course, due to this operating principle, there is a key advantage that a rotating transformer can only transmit an alternating signal, but it can exchange electrical signals from the rotating body without physical contact. In addition to the advantages mentioned above, it is possible to change the voltage or convert the electrical impedance during the transmission of electric signals by appropriately combining the coil ratios of the respective groups.

광입력기(102)는 볼록 렌즈(convex lens)나 대물 렌즈(objective lens) 등과 같은 것을 말하는 것으로 회전하는 광섬유(241)에 광 에너지를 입력 시킨다. 즉 광원부(300, 도 19에 도시)에서 레이저 펄스가 발생하면, 먼저 그 레이저 펄스는 별도의 가이딩 광섬유(guiding optical fiber, 미도시)를 통해 광입력기(102)로 이동하는데, 이때 광입력기(102)가 유도된 레이저 펄스를 도파관 집합체(240)의 중심축에 설치된 광섬유(241)로 전달하는 역할을 수행하는 것이다. 여기서 중요한 점은 도파관 집합체(240)의 광섬유(241)는 회전하는 반면 광입력기(102)는 회전하지 않고 정지한 상태에서 광 에너지가 전달된다는 것이다. 즉, 빛을 입력해 주는 광입력기(102)와 빛을 전달 받는 광섬유(241)가 일종의 회전형 광결합부(optical rotary junction)를 형성한다.The light input device 102 refers to something like a convex lens, an objective lens, or the like, and inputs light energy to a rotating optical fiber 241. In other words, when a laser pulse is generated in the light source unit 300 (shown in FIG. 19), the laser pulse first travels to the optical input unit 102 through a separate guiding optical fiber (not shown) 102 transmits the induced laser pulse to the optical fiber 241 provided on the central axis of the waveguide assembly 240. The important point here is that the optical fiber 241 of the waveguide assembly 240 rotates while the optical input device 102 transmits light energy in a stationary state without rotating. That is, the optical input unit 102 for inputting light and the optical fiber 241 for receiving light form a kind of optical rotary junction.

경우에 따라서는 도 1에 도시된 볼록 렌즈(convex lens)나 대물 렌즈(objective lens)와 같은 형태를 갖는 광입력기(102)의 사용 없이, 앞서 언급한 가이딩 광섬유(미도시)가 도파관 집합체(240)의 광섬유(241)와 직접 맞물리는 형태로도 회전 광결합부를 구성할 수 있다. 물론 이 경우 그 가이딩 광섬유(미도시)의 말단은 도파관 집합체(240)의 광섬유(241)에 최대한 가까이 배치되어야 하며, 보다 효율적인 광 에너지 전달을 위해 서로 같은 스펙(spec)을 갖는 광섬유들을 사용하는 것이 바람직하다.The guiding optical fiber (not shown) may be attached to the waveguide assembly (not shown) without using the optical input device 102 having the same shape as the convex lens or the objective lens shown in FIG. 240 may be directly engaged with the optical fibers 241 of the optical fibers 241, 240, respectively. Of course, in this case, the ends of the guiding optical fibers (not shown) should be disposed as close as possible to the optical fibers 241 of the waveguide assembly 240, and optical fibers having the same specs are used for more efficient optical energy transmission .

초음파 펄서-리시버(101)는 회전 트랜스포머(211)와 전기적으로 연결되어, 압전소자(251)가 검출하여 전기적으로 변환된 광음향 신호를 받아들이는 역할을 수행한다. 이에 대하여는 후술한다. The ultrasonic pulser-receiver 101 is electrically connected to the rotary transformer 211 and receives the photo-acoustic signal detected by the piezoelectric element 251 and electrically converted. This will be described later.

도 15 내지 도 17은 일 실시예에 따른 광음향-초음파 내시경의 프로브의 구성을 나타낸 모식도이다.15 to 17 are schematic diagrams showing the configuration of a probe of a photoacoustic-ultrasonic endoscope according to an embodiment.

일 실시예에 따르면, 광음향-초음파 내시경은 플라스틱 카테터(220) 내부에 배치되는 메쉬형 보강체(260)를 더 포함할 수 있다. 도 15를 참조하면, 플라스틱 카테터(220) 내부에 금속 재질 등으로 만들어진 브레이디드(braided) 혹은 메쉬(mesh)형 보강체(260)를 삽입할 수 있다. 이를 통해 플라스틱 카테터(220)의 물리적 수명을 연장시킬 수 있다.According to one embodiment, the photoacoustic-ultrasound endoscope may further include a mesh-like reinforcement 260 disposed within the plastic catheter 220. Referring to FIG. 15, a braided or mesh reinforcing member 260 made of a metal material or the like may be inserted into the plastic catheter 220. Thereby extending the physical life of the plastic catheter 220.

도 16의 일 실시예에 따르면, 기부 프레임(216)은 유체주입구(261)를 더 포함할 수 있다. 만약 본 발명이 제시하는 광음향-초음파 내시경 프로브(200)를, 현재 임상에서 쓰이고 있는 비디오 내시경의 장비 채널에 삽입하는 방식으로 사용하는 것과 달리, 혈관 내시경과 같은 형식으로 사용하고자 할 경우, 도 10과 같이 플라스틱 카테터(220)의 말단 부위를 개방시켜 유체방출구(262)를 만들고, 기부 프레임(216)에 유체주입구(261)를 추가로 설치하여 기존의 초음파 기반 IVUS 카테터 프로브와 같은 방식으로 혈관 질환 진단에 사용할 수 있다. 이 경우 유체주입구(261)를 통해 주입되는 유체로는 식염수(saline solution) 등이 사용될 수 있으며, 이때 프로브 내부 공간을 채우는 매칭 유체(230)도 이로 모두 대체 되게 된다.According to one embodiment of FIG. 16, the base frame 216 may further include a fluid inlet 261. Unlike the case where the photoacoustic-ultrasound endoscope probe 200 proposed by the present invention is inserted into a device channel of a video endoscope currently used in clinical practice, when it is desired to use the photoacoustic- The distal end portion of the plastic catheter 220 is opened to form a fluid outlet 262 and a fluid injection port 261 is additionally provided in the base frame 216 so that blood vessels It can be used for disease diagnosis. In this case, a saline solution or the like may be used as a fluid to be injected through the fluid injection port 261, and the matching fluid 230 filling the space inside the probe is also replaced with the saline solution.

한편, 도 17을 참조하면, 광음향-초음파 내시경은 플라스틱 카테터(220)를 둘러싸며, 가이딩 카테터 유체주입구(280)를 포함하는 가이딩 카테터(290) 및 가이딩 카테터 유체주입구(280)에 삽입되는 가이딩 와이어(270)를 더 포함할 수 있다.17, the photoacoustic-ultrasound endoscope encircles the plastic catheter 220 and includes a guiding catheter fluid inlet 280 and a guiding catheter fluid inlet 280 And may further include a guiding wire 270 inserted therein.

즉, 도 17과 같이 이중 관(dual lumen) 구조를 갖는 가이딩 카테터(290)를 추가로 사용하여, 가이딩 카테터 유체주입구(280)를 통해 유체를 주입함과 더불어 가이딩 와이어(270)를 삽입할 수 있는 채널을 확보할 수 있는데, 플라스틱 카테터(220)는 가이딩 카테터(290)보다 굵기가 작고 물리적으로 삽입 퇴출이 가능하여 결론적으로 이의 삽입 깊이를 조절함으로써 스캐닝 팁(250)의 위치를 피검체로부터 바꿔가며 영상을 얻을 수 있다. 17, a guiding catheter 290 having a dual lumen structure is additionally used to inject the fluid through the guiding catheter fluid inlet 280, and the guiding wire 270 The plastic catheter 220 is smaller in thickness than the guiding catheter 290 and can be inserted and withdrawn physically so that the position of the scanning tip 250 can be adjusted The image can be obtained by changing from the subject.

도 18은, 일 실시예에 따른 프로브 구동유닛(100) 및 프로브 기부(210) 부분에 있어서, 도 1에 제시한 동력 전달 및 회전 트랜스포머(211) 원리와는 다른 방식으로 동력을 전달하고 전기 신호를 입출하는 방법을 보여주는 모식도이다.18 is a block diagram of a probe drive unit 100 and a probe base 210 according to an embodiment that transmit power in a manner different from the power transmission and rotation transformer 211 principle shown in FIG. In the case of the present invention.

도 1의 실시예에서는 프로브 구동유닛(100)이, 액추에이터(104)와 연결되어 회전하는 구동 기어(103)를 포함하고, 프로브 기부(210)는 구동 기어(103)와 맞물려 회전하는 기부 기어(217)를 포함하는 광음향-초음파 내시경을 예시하였다. 즉 도파관 집합체(240)가 회전하는데 필요한 동력이 구동 기어(103)에 직접 체결된 기부 기어(217)에 의해 전달되었다.1, the probe driving unit 100 includes a driving gear 103 that rotates in conjunction with an actuator 104. The probe base 210 includes a base gear (not shown) that rotates in engagement with the driving gear 103 217) have been illustrated. The power required for the waveguide assembly 240 to rotate is transmitted by the base gear 217 fastened directly to the drive gear 103. [

그러나 도 18의 일 실시예에 따르면, 프로브 구동유닛(100)은, 상기 액추에이터(104)와 연결되어 회전하는 구동 타이밍 풀리(106)를 포함하고, 광음향-초음파 내시경의 프로브 기부(210)는 구동 타이밍 풀리(106)와 맞물려 회전하는 기부 타이밍 풀리(218)를 포함하며, 구동 타이밍 풀리(106) 및 기부 타이밍 풀리(218) 사이에 동력을 전달하는 타이밍 벨트(107)를 더 포함할 수 있다. 그래서 이 경우에는 도파관 집합체(240)가 회전하는데 필요한 동력이 구동 타이밍 풀리(106)와 기부 타이밍 풀리(218), 그리고 이 둘을 연결하는 타이밍 벨트(107)를 통해 전달된다.18, the probe drive unit 100 includes a drive timing pulley 106 connected to and rotating with the actuator 104, and the probe base 210 of the photoacoustic- And a timing belt 107 that includes a base timing pulley 218 that rotates in engagement with the drive timing pulley 106 and that transmits power between the drive timing pulley 106 and the base timing pulley 218 . Thus, in this case, the power required for the waveguide assembly 240 to rotate is transmitted through the drive timing pulley 106 and the base timing pulley 218, and the timing belt 107 connecting the two.

한편 도 1과 도 9에서는 프로브 기부(210)에 회전 트랜스포머(211)를 장착하여 압전소자(251)에서 발생된 전기 신호를 도파관 집합체(240)로부터 인계 받는 구조를 제시하였다. 그런데 만일 기계적 소음이 크게 문제 되지 않는 상황이라면, 이 회전 트랜스포머(211) 부분은 도 18에 제시한 것과 같이 두 개의 슬립 링(219-1)과 이들에 각각 접촉된 두 브러시(219-2)로 구성된 전기신호 입출 방식을 사용할 수 있다. 물론 이 경우 두 브러시(219-2)는 신호 케이블(219-3) 등을 통해 초음파 펄서-리시버(101)와 전기적으로 연결된다.1 and 9, a structure is shown in which a rotary transformer 211 is mounted on the probe base 210 to receive an electric signal generated from the piezoelectric element 251 from the waveguide aggregate 240. However, if the mechanical noise is not a problem, the rotary transformer 211 is divided into two slip rings 219-1 and two brushes 219-2, A configured electrical signal input / output system can be used. Of course, in this case, the two brushes 219-2 are electrically connected to the ultrasonic pulser-receiver 101 through the signal cable 219-3 or the like.

도 18에서는 기부 타이밍 풀리(218)와 슬립 링(219-1)이 함께 사용된 경우를 예시하였지만, 기부 타이밍 풀리(218)는 회전 트랜스포머(211)와 같이 사용될 수도 있고, 또는 기부 기어(217)가 슬립 링(219-1)과 같이 사용되는 등 서로 교차 적용된 방식로 사용될 수도 있다. 18 illustrates the case where the base timing pulley 218 and the slip ring 219-1 are used together, the base timing pulley 218 may be used as the rotary transformer 211, or the base gear 217, May be used in combination with the slip ring 219-1 or the like.

이상 광음향-초음파 내시경 프로브(200)와 프로브 구동유닛(100)의 구성에 대해 설명하였는데, 실제 이들을 이용하여 광음향-초음파 내시경 이미징을 수행하기 위해서는, 이미 잘 알려진 일반적인 광음향 이미징 시스템들처럼 광원이나 데이터 획득 시스템(data acquisition system: DAQ system)과 같은 부수적 시스템들이 추가적으로 필요하다. In order to perform the photoacoustic-ultrasound endoscopic imaging using the photoacoustic-ultrasound endoscope probe 200 and the probe drive unit 100 in practice, And additional systems such as a data acquisition system (DAQ system) are additionally needed.

도 19는 광음향-초음파 내시경 프로브(200), 프로브 구동유닛(100) 및 이 둘을 구동하기 위한 주변 시스템을 나타낸 개념도이다. 대표적인 주변 시스템으로는 레이저 펄스를 발생시키는 광원부(300), 그리고 시스템 전체를 사용자가 통제할 수 있는 시스템 콘솔(400)이 포함된다. 19 is a conceptual diagram showing a photoacoustic-ultrasound endoscope probe 200, a probe drive unit 100, and a peripheral system for driving both of them. Typical peripheral systems include a light source 300 for generating laser pulses, and a system console 400 for controlling the entire system.

먼저 광원부(300)를 구성하는 핵심 요소로는 매우 짧은 펄스폭의 레이저 빔을 제공할 수 있는 큐스위치 레이저가 바람직한데, 이러한 특성 외에도 본 내시경 시스템이 요구하는 응용 목적을 충족시키기 위하여 충분한 펄스 에너지와 반복율을 가져야 한다. 그리고 두 개 이상의 파장에 대해 다중 파장(multi-wavelength) 광음향 이미징을 동시에 수행하고자 할 경우에는 그 두 파장을 제공할 수 있는 다수의 레이저 시스템들이나 파장 가변 능력을 갖춘 레이저 시스템을 사용할 수 있다.As a key element constituting the light source unit 300, a cue switch laser capable of providing a laser beam with a very short pulse width is preferable. In addition to these characteristics, sufficient pulse energy It should have a repetition rate. When multi-wavelength photoacoustic imaging is to be performed simultaneously for two or more wavelengths, a plurality of laser systems capable of providing the two wavelengths or a laser system having a variable wavelength capability can be used.

시스템 콘솔(400)의 경우는 초음파 펄서-리시버(101)로부터 증폭되고 최적화된 광음향-초음파 신호를 받아들여 컴퓨터가 인식할 수 있는 숫자 신호로 변환시켜주는 데이터 획득 시스템(402), 이 신호를 처리하여 영상 데이터로 변환하는 데이터 처리부(401), 그리고 그 영상 데이터를 사용자가 볼 수 있게 제시해주는 영상 이미지 제시장치(403), 그리고 여러 하위 시스템을 통제하는 세부 시스템 통제부(404)로 크게 구성된다.In the case of the system console 400, a data acquisition system 402 receives a photoacoustic-ultrasound signal amplified and optimized from the ultrasonic pulser-receiver 101 and converts the photoacoustic-ultrasound signal into a numeric signal recognizable by a computer, A data processing unit 401 for converting the image data into image data and converting the image data into image data, a video image presenting apparatus 403 for presenting the image data to the user for viewing, and a detailed system control unit 404 for controlling various subsystems do.

이하 도 1 및 도 19를 참조하여, 도 1에 제시된 광음향-초음파 내시경 프로브(200)와 프로브 구동유닛(100)의 동작 원리를 설명한다. Hereinafter, the principle of operation of the photoacoustic-ultrasound endoscope probe 200 and the probe drive unit 100 shown in FIG. 1 will be described with reference to FIGS. 1 and 19. FIG.

사용자는 먼저 광음향-초음파 내시경 프로브(200)를 피검체에 삽입시켜 스캐닝 팁(250) 부분이 관심 영역에 놓이게 한 후, 액추에이터(104)를 가동시켜 구동 기어(103)와 이에 맞물린 기부 기어(217)가 회전 운동을 시작, 소정의 속도에 도달을 할 수 있도록 가속을 시킨다. 예컨대 일반적인 비디오 속도(video rate)의 이미징을 원할 경우는 30 Hz 정도가 되도록 가속이 될 수 있다. The user first inserts the photoacoustic-ultrasonic endoscope probe 200 into the subject to place the scanning tip 250 in the region of interest and then actuates the actuator 104 to rotate the driving gear 103 and the base gear 217 starts rotating and accelerates to reach a predetermined speed. For example, if imaging of a typical video rate is desired, it can be accelerated to about 30 Hz.

이렇게 기부 기어(217)가 회전 운동을 시작하게 되면, 이와 물리적으로 직접 연결된 관통형 샤프트(214)도 함께 회전을 하게 되는데, 이때 이 회전력은 관통형 샤프트(214)에 역시 함께 물려있는 회전 트랜스포머(211)의 좌측 코일부(211-1), 도파관 집합체(240), 그리고 도파관 집합체(240)의 말단 부위에 위치하고 있는 스캐닝 팁(250)에게도 곧바로 전달되어 소정의 속도로 함께 회전을 하게 된다. 물론 이때 기부에 위치한 볼 베어링 모듈(212)은 관통형 샤프트(214)가 안정된 상태에서 부드럽게 회전을 할 수 있도록 하는 역학적 조건을 제공하며, 오링형 기밀부(213)는 이러한 물리적 회전 과정에서 광음향-초음파 내시경 프로브(200)의 내부 공간을 채우고 있는 매칭 유체(230)가 새어나오지 않게 하는 역할을 한다. When the base gear 217 starts to rotate, the through-hole 214 directly connected to the through-hole gear 217 also rotates together with the rotation transformer (not shown) The waveguide aggregate 240 and the scanning tip 250 located at the end portions of the waveguide aggregate 240 are immediately transmitted to rotate together at a predetermined speed. Of course, the ball bearing module 212 located at the base provides a dynamic condition for smoothly rotating the through-hole shaft 214 in a stable state, and the O-ring type airtight portion 213 is provided with a photo- The matching fluid 230 filling the internal space of the ultrasonic endoscope probe 200 is prevented from leaking out.

이상과 같이 연동된 여러 기계 요소들이 정해진 속도에 도달하게 되면, 액추에이터 드라이버(105)는 물리적 회전의 실제 동력원인 액추에이터(104)가 일정 각 스텝(angular step) 만큼을 회전할 때마다 트리거(trigger) 펄스 신호를 발생시키기 시작하고, 이와 더불어 전체 시스템 내에서는 이 트리거 펄스 신호에 동기화(synchronization)된 형식으로 광음향 및 초음파 1차원 영상 데이터(통상 A-line 데이터라 부름)를 얻기 위한 일련의 이미징 시퀀스(imaging sequence)들이 순차적으로 번갈아 가며 일어난다. 즉, 매 트리거 펄스 신호마다, 그 시점에 스캐닝 팁(250)이 향하고 있는 특정 방향에 대해 깊이 방향 분해 정보를 담고 있는 광음향 및 초음파 1차원 데이터가 얻어지는 것이며, 이러한 일련의 과정들을 스캐닝 팁(250)이 회전하는 동안 연속적으로 되풀이함으로써 공간적으로 겹쳐진(coregistered) 광음향 및 초음파의 2차원 영상 데이터를 얻게 되는 것이다. 또한 이러한 일련의 과정들을 프로브를 밀거나 빼면서 실시하게 되면 3차원 영상에 필요한 데이터도 얻을 수 있다. 여기서 전술한 이미징 시퀀스들을 촉발하는데 사용되는 트리거 펄스는 티티엘(TTL: transistor-transistor logic) 타입인 것이 바람직하다.When the various mechanical elements interlocked with each other reach the predetermined speed, the actuator driver 105 triggers every time the actuator 104, which is an actual power source of physical rotation, rotates by an angular step, A series of imaging sequences to obtain photoacoustic and ultrasound one-dimensional image data (usually called A-line data) in a synchronized form to the trigger pulse signal in the whole system, (imaging sequences) occur sequentially in turn. That is, for each trigger pulse signal, photoacoustic and ultrasonic one-dimensional data containing depth direction decomposition information for a specific direction in which the scanning tip 250 is pointing at that time is obtained, and this series of processes is called a scanning tip 250 ) Are repeated continuously to obtain two-dimensional image data of photoacoustic and ultrasonic waves which are spatially overlapped (coregistered). In addition, when the probe is pushed or pulled out, the data necessary for the three-dimensional image can be obtained. It is preferred that the trigger pulse used to trigger the above-described imaging sequences is of the transistor-transistor logic (TTL) type.

물론 설명한 방식으로 광음향 및 초음파 1차원 데이터들을 순차적으로 얻기 위해서는 일차적으로 액추에이터 드라이버(105)가 제공하는 일련의 트리거 펄스 트레인(train) 신호을 세부 시스템 통제부(404)로 보낸 후, 그곳에서 소정의 시간차 갖는 서로 다른 두 펄스 트레인으로 나누어 각각 광음향과 초음파 이미징 개시에 쓰이도록 해야 한다. 통상 수 십 마이크로 초(㎲)의 시간차가 적당한데, 이와 같이 시간차를 두어 광음향 및 초음파 1차원 데이터 획득을 촉발하는 이유는 교대로 번갈아가며 발생하는 광음향 및 초음파 모드에 대해 피검체가 충분히 완화(relaxation)할 수 있는 시간적인 여유를 주기 위함이다. 참고로 이러한 영상 시퀀스를 실제 적용한 예시로 선행 문헌 14를 들 수 있다. In order to sequentially acquire photoacoustic and ultrasonic one-dimensional data in the manner described above, a sequence of trigger pulse trains provided by the actuator driver 105 is first sent to the detailed system control unit 404, It should be divided into two different pulse trains with time difference to be used for photoacoustic and ultrasound imaging initiation respectively. Generally, the time difference of several tens of microseconds (μs) is appropriate. The reason for triggering the acquisition of photoacoustic and ultrasound one-dimensional data with such a time difference is that the subject sufficiently relaxes the alternating alternating photoacoustic and ultrasonic modes to allow time for relaxation. For reference, the prior art 14 is an example in which such a video sequence is actually applied.

그럼 단일 트리거 펄스에 대해 어떠한 과정으로 1차원 광음향 그리고 초음파 영상 데이터가 얻어지는지를 아래에 설명한다.Hereinafter, how the one-dimensional photoacoustic and ultrasound image data are obtained for a single trigger pulse will be described below.

우선 어떤 특정 시점에 1차원 광음향 데이터를 얻기 위한 광음향 이미징 모드가 개시되면, 가장 먼저 광원부(300)로부터 레이저 펄스가 발생되는데, 이 레이저 펄스는 별도로 설치된 광섬유(미도시) 등을 통해 광입력기(102)로 보내지게 되고, 도파관 집합체(240)의 중심축에 설치되어 있는 광섬유(241)를 따라 프로브 기부(210)에서부터 스캐닝 팁(250)까지 전달된다. 광섬유(241)로부터 나온 레이저 펄스는 광반사기(252)에서 반사되어 압전소자(251)의 제1윈도우(251W) 및 빛을 투과시키는 플라스틱 카테터(220)를 통과한 뒤 피검체에 보내진다. First, when a photoacoustic imaging mode for obtaining one-dimensional photoacoustic data at a specific time is started, a laser pulse is first generated from the light source unit 300. The laser pulse is transmitted through an optical fiber (not shown) And is transmitted from the probe base 210 to the scanning tip 250 along the optical fiber 241 installed on the central axis of the waveguide aggregate 240. [ The laser pulse from the optical fiber 241 is reflected by the light reflector 252 and passes through the first window 251W of the piezoelectric element 251 and the plastic catheter 220 which transmits the light and is then sent to the subject.

피검체 내부로 레이저 빔이 전달되면 그 즉시 광음향 신호가 유도되는데, 그렇게 유도된 광음향파의 일부는 압전소자(251)쪽으로 전파해가 전기 신호로 변환된다. 그 전기 신호는 다시 도파관 집합체(240)의 제1 도전성 통로(242)와 제2 도전성 통로(243)가 형성하는 전자기 도파관을 따라 프로브 기부(210) 내에 있는 회전 트랜스포머(211)를 통해 프로브 구동유닛(100) 내에 위치하는 초음파 펄서-리시버(101)로 보내진다. 물론 이 초음파 펄서-리시버(101)는 압전소자(251)가 검출하여 전기적으로 변환한 광음향 신호를 받아들이는 역할도 수행하지만, 초음파 이미징 모드에서는 압전소자(251)가 초음파 펄스를 발사하여 피검체에 보낼 수 있도록 하는 전기 펄스를 압전소자(251)에 제공하고 다시 그 압전소자(251)가 검출한 초음파 에코(echo) 신호를 받아들이는 역할도 수행한다. When a laser beam is transmitted into the subject, a photoacoustic signal is induced immediately. A part of the thus induced photoacoustic wave propagates to the piezoelectric element 251 and is converted into an electric signal. The electric signal is transmitted through the rotary transformer 211 in the probe base 210 along the electromagnetic waveguide formed by the first conductive channel 242 and the second conductive channel 243 of the waveguide assembly 240, Receiver 101 located in the ultrasonic pulser-receiver 100 of Fig. Of course, the ultrasonic pulser-receiver 101 also serves to receive the photoacoustic signal detected by the piezoelectric element 251 and electrically converted. In the ultrasonic imaging mode, however, the piezoelectric element 251 emits ultrasonic pulses, To the piezoelectric element 251 and receives an ultrasonic echo signal detected by the piezoelectric element 251. [

이외에도 이 초음파 펄서-리시버(101)는 신호를 증폭하고 적절한 주파수 대역만 필터링하는 시그널 컨디셔닝(signal conditioning) 기능도 포함할 수 있는데, 이렇게 최적화된 신호들은 데이터 획득 시스템(402)으로 보내진 후 전체 시스템 콘솔(400) 내에 있는 데이터 처리부(401)에서 처리되어 일시적 혹은 장기적으로 저장된다.In addition, the ultrasonic pulser-receiver 101 may also include a signal conditioning function that amplifies the signal and filters only the appropriate frequency band, which is then sent to the data acquisition system 402, Is processed in the data processing unit 401 in the storage unit 400 and stored temporarily or in the long term.

전술한 바대로 1차원 광음향 데이터를 얻는 일련의 과정이 모두 종료되면 앞서 언급한 소정의 세팅된 시간 차를 두고 1차원 초음파 데이터를 얻을 수 있는 초음파 이미징 모드가 시작된다. 물론 이 시간차 동안 스캐닝 팁(250)은 이미 약간 회전해 있을 수 있다. When the series of processes for obtaining the one-dimensional photoacoustic data as described above is completed, the ultrasound imaging mode in which the one-dimensional ultrasound data can be obtained with the predetermined set time difference is started. Of course, during this time difference, the scanning tip 250 may already be slightly rotated.

어쨌든 이 과정이 개시되면, 우선 앞서 언급한 초음파 펄서-리시버(101)에서 매우 짧은 전기 펄스가 생성되는데, 이렇게 생성된 전기 펄스는 회전 트랜스포머(211)를 경유하여 도파관 집합체(240)의 제1 도전성 통로(242) 및 제2 도전성 통로(243)를 따라 스캐닝 팁(250) 내부에 장착된 압전소자(251)로 전달되고, 결국 초음파 펄스로 변환된다. 그러면 이 초음파 펄스는 전통적인 초음파 이미징 방식과 마찬가지로 피검체 방향으로 진행하고 그 중 일부 에너지가 반사되어 돌아와, 당초 초음파 펄스를 발사했던 동일한 압전소자(251)에 의해 검출, 결국 전기 신호 형태로 변환된다. 그후 이 전기 신호는 전술한 과정의 역순으로 도파관 집합체(240)의 제1 도전성 통로(242) 및 제2 도전성 통로(243)를 따라 회전 트랜스포머(211)로 전달되고 끝내는 초음파 펄서-리시버(101)에 의해 수신 및 증폭된다. 그러면 증폭된 초음파 신호는 전술한 바 있는 광음향 신호와 마찬가지로 데이터 획득 시스템(402)으로 보내진 후 전체 시스템 콘솔(400) 내에 있는 데이터 처리부(401)에서 처리되어 일시적 혹은 장기적으로 저장된다.When this process is started, very short electric pulses are generated in the aforementioned ultrasonic pulser-receiver 101. The generated electric pulses are transmitted through the rotation transformer 211 to the first conductive Is transferred to the piezoelectric element 251 mounted inside the scanning tip 250 along the passage 242 and the second conductive path 243 and ultimately converted into an ultrasonic pulse. Then, the ultrasonic pulse advances in the direction of the subject similarly to the conventional ultrasonic imaging method, and some of the energy is reflected and returned and detected by the same piezoelectric element 251 that originally emitted the ultrasonic pulse, and eventually converted into an electric signal form. Thereafter, the electric signal is transmitted to the rotating transformer 211 along the first conductive path 242 and the second conductive path 243 of the waveguide assembly 240 in the reverse order of the above-described process, and then the ultrasonic pulser- As shown in FIG. Then, the amplified ultrasound signal is sent to the data acquisition system 402 as in the case of the photoacoustic signal described above, and then processed by the data processing unit 401 in the entire system console 400 and stored temporarily or in the long term.

이상 설명한 방식으로 광음향 및 초음파 1차원 영상 데이터를 일정 분량 (통상 스캐닝 팁(250)이 1회 완전히 회전하는 동안) 얻고 나면 관련 데이터들을 데이터 처리부(401)에서 처리한 후, 영상 이미지 제시장치(403)를 통해 사용자에게 제공하게 된다.  After obtaining the photoacoustic and ultrasonic one-dimensional image data in a predetermined amount (while the scanning tip 250 is completely rotated once), the data processing unit 401 processes the related data, 403 to the user.

본 발명은 광음향-초음파 이미징 모드로 사용함을 주요 목적으로 고안되었다. 그런데 만약 도파관 집합체(240)에 필요한 광섬유(241) 부분을 이중 클래딩 광섬유나 단일 모드 광섬유로 사용하고 주변 시스템들을 도 14과 같이 구성할 경우, 광음향-초음파 이미징은 물론 광간섭 단층촬영술(OCT, 선행문헌 15, 선행문헌 16)도 동시에 시행할 수 있다. The present invention has been designed with the primary purpose of being used in photoacoustic-ultrasonic imaging mode. However, if a portion of the optical fiber 241 required for the waveguide assembly 240 is used as a double-cladding optical fiber or a single-mode optical fiber and peripheral systems are configured as shown in FIG. 14, optical-acoustic ultrasound imaging as well as optical coherence tomography (OCT) Preceding Literature 15, Preceding Literature 16) may also be enforced at the same time.

도 20은 도 19에서 제시한 광음향-초음파 영상 모드(imaging mode)에서 한 단계 더 나아가 광음향-초음파-OCT 삼중 영상 모드를 구현하기 위한 시스템 요소들과 그들의 연결 관계를 보여주는 개념도이다.FIG. 20 is a conceptual diagram showing system components and their connection relationship for implementing the photoacoustic-ultrasound-OCT triplet mode in the photoacoustic-ultrasound imaging mode shown in FIG. 19. FIG.

도 20을 참조하면, 일 실시예에 따른 광음향-초음파 내시경 시스템은 광섬유(241)에 광간섭 단층촬영을 위한 광에너지를 제공하는 OCT용 광원(302)을 포함할 수 있다. 도 19과 도 20의 가장 큰 차이점은, 광원부(300)와 프로브 구동유닛(100)의 내부 구성에 있는데, 먼저 광원부(300)의 경우 광간섭 단층촬영술을 수행하기 위해 스웹소스(swept source) 등과 같은 OCT용 광원(302)이 추가되었다는 점이다. 참고로 여기서 사용된 추가의 의미는 기능적 추가를 의미하는 것으로, 반드시 물리적으로 별개의 단위를 갖는 장치가 추가되어야 하는 것을 의미하지 않는다. 가령 하나의 광원이 광음향 이미징과 OCT 이미징에 필요한 광파를 동시에 제공할 수도 있다. 어쨌든 도 20에서는, OCT용 광원(302)의 추가 외에도, 프로브 구동유닛(100)의 내부에는 OCT 영상에 통상적으로 쓰이는 광 간섭계 및 광신호 검출기(108)가 설치되어, OCT용 광원(302)으로부터 빛을 인계 받아 OCT 영상을 추가적으로 수행할 수 있게 하고 있다. 물론 광음향 광원(301)으로부터 인계 받은 빛과 OCT용 광원(302)에서 인계 받은 빛을 효과적으로 광음향-초음파-OCT 내시경 프로브(200)로 전달하기 위해서는 광입력기(102) 앞단에 빔 컴바이너(beam combiner, 109)를 설치하는 것이 바람직하다. Referring to FIG. 20, the photoacoustic-ultrasound endoscopic system according to an exemplary embodiment may include an OCT light source 302 for providing optical energy for optical coherence tomography to an optical fiber 241. 19 and 20 are the internal structures of the light source unit 300 and the probe drive unit 100. First, in the case of the light source unit 300, a swept source or the like is used to perform optical coherence tomography. And the same OCT light source 302 is added. Note that the additional meaning used herein is meant to be a functional addition, not necessarily a device having physically distinct units. For example, a single light source may simultaneously provide the light waves required for photoacoustic imaging and OCT imaging. 20, an optical interferometer and an optical signal detector 108, which are commonly used for OCT images, are provided inside the probe driving unit 100 in addition to the OCT light source 302, And the OCT image can be additionally performed by taking over the light. Of course, in order to transmit the light taken over from the photoacoustic light source 301 and the light taken over from the OCT light source 302 to the photoacoustic-ultrasound-OCT endoscope probe 200 effectively, a beam combiner it is preferable to install a beam combiner 109.

공간적으로 겹쳐진 광음향-초음파-OCT 영상을 얻기 위해서는 전술한 방법과 유사한 방식으로 스캐닝 팁(250)이 회전하는 동안 광음향, 초음파, OCT 1차원 영상 모드를 순차적으로 개시하여 성취할 수 있다.To obtain spatially superimposed photoacoustic-ultrasound-OCT images, photoacoustic, ultrasound, and OCT one-dimensional image modes may be sequentially initiated and accomplished during the rotation of the scanning tip 250 in a manner similar to that described above.

이상 본 발명이 제시한 내시경 시스템을 이용하여 광음향과 초음파 그리고 OCT 영상 정보를 모두 얻는 방법을 설명하였다. 그러나 경우에 따라서는 이들 중 일부 영상 정보만(즉, 광음향 또는 광음향-초음파 영상)을 얻는 시스템 형식으로도 구현될 수 있다. 그리고 도 19과 도 20에 나타난 여러 세부 시스템 요소들(100, 300, 400)의 구성과 배치에 있어서는, 필요에 따라 몇몇 요소들을 하나의 물리적 단위로 통합 시켜 구현할 수 있으며, 그들 안에 있는 세부 요소들의 공간적 위치도 적절히 바꿀 수 있다. 가령 광원부(300)와 프로브 구동유닛(100), 그리고 시스템 콘솔(400)을 일체형으로 만들 수 있으며, OCT용 광원(302)의 위치를 프로브 구동유닛(100) 내부로 옮길 수도 있다.The method of obtaining both photoacoustic, ultrasound, and OCT image information using the endoscope system proposed by the present invention has been described above. However, in some cases, it may be implemented in a system format in which only some of the image information (i.e. photoacoustic or photoacoustic-ultrasound image) is obtained. In the configuration and arrangement of the various subsystem elements 100, 300, and 400 shown in FIGS. 19 and 20, some elements may be integrated into one physical unit, The spatial location can also be changed accordingly. For example, the light source unit 300, the probe driving unit 100, and the system console 400 may be integrally formed, and the position of the OCT light source 302 may be transferred into the probe driving unit 100.

상술한 바와 같이 광섬유(241)로부터 나온 레이저 빔이 광반사기(252)를 통해 반사되어 압전소자(251)의 제1윈도우(251W)를 통해 피검체에 조사되도록 스캐닝 팁(250)을 구성하면, 피검체로부터 발생한 초음파 신호가 프로브(200)의 다른 구성요소 등에 의해 반사됨 없이 압전소자(251)에 의해 검출되므로, 초음파 신호의 검출 경로가 단축되어, 신호의 수신 감도 및 광음향 영상의 해상도가 향상된다.If the scanning tip 250 is configured such that the laser beam emitted from the optical fiber 241 is reflected through the optical reflector 252 and irradiated to the subject through the first window 251W of the piezoelectric element 251 as described above, Since the ultrasonic signal generated from the subject is detected by the piezoelectric element 251 without being reflected by other components of the probe 200 or the like, the detection path of the ultrasonic signal is shortened and the reception sensitivity of the signal and the resolution of the photoacoustic image become .

또한, 도파관 집합체(240)와 회전형 광-전자기 결합기(102, 241, 211)의 구조를 이용하면, 단일 초음파 트랜듀서 기반 기부 발동 회전 스캔 방식 광음향 내시경 프로브에 있어서, 그간 아주 성가신 문제로 제기되어 온 광섬유(241)와 전기 신호선의 처리 문제, 그리고 프로브 기부(210)에서의 광-전기 신호의 입출 문제를 모두 해결할 수 있다.In addition, using the structure of the waveguide assembly 240 and the rotatable optical-electromagnetic couplers 102, 241, and 211, in the single ultrasound transducer-based base-activated rotation scan type photoacousticoscopy probe, It is possible to solve both the problem of processing the optical fiber 241 and the electric signal line and the problem of inputting and outputting the opto-electric signal at the probe base 210.

기부 발동 기반 회전 스캔을 수행하는 광음향 내시경의 경우는 빛을 전달할 수 있는 광섬유와 전기적 신호를 송수신할 수 있는 전기적 통로를 소정의 회전체 (즉, 토크 코일 등) 내부를 따라 형성시켜주어야 하는 것이 핵심 조건인데, 선행문헌 10으로 대표되는 기존의 발명들은 이 두 요소들을 기계적 회전력을 전달하는 토크 코일 내부에 단순히 병렬로 배치시키는 방식으로 구현하여, 기부에서 프로브 말단까지 균일한 회전력을 전달시키지 못하는 문제점이 있었다. In the case of a photoacousticoscope that performs base-based rotation scan, it is necessary to form an electrical path through which an electric signal can be transmitted and received with an optical fiber capable of transmitting light along a predetermined rotating body (i.e., a torque coil or the like) The prior art, which is represented by the prior art document 10, is implemented by simply arranging the two elements in parallel in the torque coil for transmitting the mechanical rotational force, thereby failing to transmit a uniform rotational force from the base to the probe tip .

이러한 배경에서 본 발명은 광섬유(241) 및 동축인 제1 및 제2 도전성 통로(242, 243)를 포함하는 도전성 통로(CP)를 이용하여 통상적으로 사용되던 전기 신호선을 배제하면서도 광 에너지와 전기 신호를 모두 효과적으로 전달할 수 있는 구조와 경제적 구현 방법을 제시하였다. In this context, the present invention is directed to the use of a conductive path (CP) comprising an optical fiber (241) and coaxial first and second conductive passages (242, 243) And to provide an economical implementation method.

그러므로 제안한 발명을 바탕으로 광음향 내시경을 구현하면, 프로브(200)가 완전한 회전 대칭구조를 취하고 있기 때문에 기존 유사 부류의 광음향 내시경들보다 월등히 향상된 프로브 유연성과 회전 스캔의 균일성을 갖게 되어 non-uniform rotational distortion (NURD) 문제를 효과적으로 해결할 수 있음 물론 외부 환경에 존재하는 전자기적 간섭 잡음에도 덜 영향을 받아 신호대 잡음비(SNR)를 크게 향상 시킬 수 있다. 실제 이와 같이 향상된 성능은 삽입 깊이가 깊고 (즉, 프로브를 길게 구현할 경우) 굴곡이 심한 상황에서 프로브의 심각한 꼬임이나 뒤틀림(kink) 문제 등을 줄일 수 있어, 이미지 품질의 향상은 물론 프로브의 수명을 월등히 향상시킬 수 있다. 가령 현재 임상에서 쓰이고 있는 비디오 내시경의 장비 채널에 보다 쉽게 삽입할 수 있다. Therefore, when the photoacoustic endoscope is implemented on the basis of the proposed invention, since the probe 200 has a completely rotationally symmetrical structure, the probe flexibility and the uniformity of the rotation scan are significantly improved compared with the conventional photoacoustic endoscopes, it can effectively solve the problem of uniform rotational distortion (NURD). Of course, it can be greatly influenced by the electromagnetic interference noise existing in the external environment and can greatly improve the signal-to-noise ratio (SNR). In fact, this improved performance reduces deep kinking of the probe in deep bending conditions (ie, long probing depths), which improves image quality and increases probe life Can greatly improve. For example, it can be inserted more easily into the equipment channel of the video endoscope currently in clinical use.

그리고 본 발명에서는 선행 발명에서 해결하지 못한, 회전체 외부에 플라스틱 카테터(220)를 설치하고 그 내부를 매칭 유체(230)로 채우고 봉인하는 문제를 해결하였고, 관련 기술 분야에서는 최초로 프로브 기부(210)에서 레이저 빔은 물론 회전 트랜스포머(211)를 사용하여 전기 신호를 교환하는 회전형 광-전자기 결합기(102, 241, 211)를 구성하는 방법과, 이러한 기술들에 기반하여 하나의 시스템으로 광음향-초음파 이미징은 물론 OCT 이미징도 함께 수행하는 방법도 제시하였다.The present invention solves the problem of installing a plastic catheter 220 outside the rotating body and filling and sealing the inside of the rotating body with the matching fluid 230. In the related art, A method of constructing a rotatable optical-electromagnetic coupler 102, 241, 211 for exchanging an electric signal using a laser beam as well as a rotary transformer 211, and a method for constructing a photoacoustic- A method of performing ultrasonic imaging as well as OCT imaging is also presented.

본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시 예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.While the present invention has been described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims. Accordingly, the true scope of the present invention should be determined by the technical idea of the appended claims.

100: 프로브 구동유닛 101: 초음파 펄서-리시버
102: 광입력기 103: 구동 기어
104: 액추에이터 105: 액추에이터 드라이버
106: 구동 타이밍 풀리 107: 타이밍 벨트
108: OCT용 광 간섭계 및 광신호 검출기
109: 빔 컴바이너
200: 프로브 210: 프로브 기부
211: 회전 트랜스포머 212: 볼 베어링 모듈
213: 오링형 기밀부 214: 관통형 샤프트
215: 에폭시 충전부
216: 기부 프레임 217: 기부 기어
218: 기부 타이밍 풀리 219-1: 슬립 링
219-2: 브러시 219-3: 신호 케이블
220: 플라스틱 카테터 230: 매칭 유체
240: 도파관 집합체 241: 광섬유
241Co: 광섬유 코어 241Cd: 광섬유 클래딩
241PCL: 광섬유 보호 코팅층
242, 244, 248: 제1 도전성 통로
243, 245, 247, 249: 제2 도전성 통로
244PT: 폴리머 튜브
246: 절연 코팅층
250: 스캐닝 팁 251: 압전소자
252: 광반사기 253: 흡음층
254: 케이싱
260: 보강체 261: 유체주입구
262: 유체방출구 270: 가이딩 와이어
280: 가이딩 카테터 유체주입구
290: 가이딩 카테터 300: 광원부
301: 광음향 광원 302: OCT 광원
400: 시스템 콘솔 401: 데이타 처리부
402: 데이타 획득 시스템 403: 영상 이미지 제시 장치
404: 세부 시스템 통제부
100: probe drive unit 101: ultrasonic pulser-receiver
102: optical input device 103: drive gear
104: actuator 105: actuator driver
106: Driving timing pulley 107: Timing belt
108: Optical interferometer and optical signal detector for OCT
109: Beam combiner
200: probe 210: probe donor
211: Rotary transformer 212: Ball bearing module
213: O-ring type airtight portion 214: Through-shaft
215: epoxy-
216: base frame 217: base gear
218: donut timing pulley 219-1: slip ring
219-2: Brush 219-3: Signal cable
220: plastic catheter 230: matching fluid
240: waveguide assembly 241: optical fiber
241Co: Fiber Optic Core 241Cd: Fiber Optic Cladding
241PCL: Optical fiber protective coating layer
242, 244, 248: a first conductive path
243, 245, 247, 249: a second conductive path
244PT: polymer tube
246: Insulation coating layer
250: scanning tip 251: piezoelectric element
252: light reflector 253: sound-absorbing layer
254: casing
260: reinforcement member 261: fluid inlet
262: fluid outlet port 270: guiding wire
280: guiding catheter fluid inlet
290: guiding catheter 300: light source
301: photoacoustic light source 302: OCT light source
400: System console 401: Data processing unit
402: data acquisition system 403: video image presentation device
404: Detailed System Control Department

Claims (10)

프로브와 프로브 구동유닛을 포함하며,
상기 프로브는
코어와 클래딩을 포함하는 광섬유 및 도전성 통로를 포함하는 광-전자기 도파관 집합체;
상기 광-전자기 도파관 집합체의 한 쪽 끝에 배치되며, 레이저 빔을 피검체에 보내 피검체로부터 발생한 광음향-초음파 신호를 검출하는 스캐닝 팁; 및
상기 광-전자기 도파관 집합체 및 상기 스캐닝 팁의 외부를 감싸는 플라스틱 카테터;를 포함하고,
상기 스캐닝 팁은,
상기 광섬유를 통해 전달된 레이저 빔을 피검체의 목표 지점으로 반사시키도록 구비된 광반사기; 및
상기 반사된 레이저 빔이 통과하는 제1윈도우를 가지며, 초음파를 발생시키거나 피검체로부터 발생한 초음파를 검출하도록 구비된 압전소자;를 포함하는, 광음향-초음파 내시경.
A probe and a probe driving unit,
The probe
An optical-electromagnetic waveguide assembly including an optical fiber and a conductive path including a core and a cladding;
A scanning tip disposed at one end of the optical-electromagnetic waveguide assembly for detecting a photoacoustic-ultrasonic signal generated from the subject by sending a laser beam to the subject; And
And a plastic catheter surrounding the opto-electromagnetic waveguide assembly and the outside of the scanning tip,
The scanning tip,
A light reflector provided to reflect the laser beam transmitted through the optical fiber to a target point of the object; And
And a piezoelectric element having a first window through which the reflected laser beam passes, the piezoelectric element being adapted to generate an ultrasonic wave or to detect ultrasonic waves generated from the object to be inspected.
제1항에 있어서,
상기 광반사기는 상기 제1윈도우를 통해 노출되는, 광음향-초음파 내시경.
The method according to claim 1,
Wherein the light reflector is exposed through the first window.
제1항에 있어서,
상기 압전소자는 중앙에 제1윈도우를 가지며, 상기 제1윈도우를 기준으로 대칭으로 형성된, 광음향-초음파 내시경
The method according to claim 1,
Wherein the piezoelectric element has a first window at the center and is formed symmetrically with respect to the first window, the photoacoustic-
제1항에 있어서,
상기 압전소자는 상기 광반사기 방향으로 오목하게 형성된, 광음향-초음파 내시경.
The method according to claim 1,
Wherein the piezoelectric element is recessed in the direction of the light reflector.
제1항에 있어서, 상기 스캐닝 팁은,
음향 잡음을 없앨 수 있는 흡음층; 및
상기 광반사기, 상기 압전소자, 상기 흡음층을 감싸는 케이싱;을 더 포함하는, 광음향-초음파 내시경.
The scanning device according to claim 1,
A sound absorbing layer capable of eliminating acoustic noise; And
And a casing enclosing the light reflector, the piezoelectric element, and the sound-absorbing layer.
제1항에 있어서, 상기 스캐닝 팁은,
상기 광반사기의 광출구 방향 쪽에 배치되어 상기 압전소자의 상기 제1윈도우 부분으로 유체가 침입하는 것을 막는 투명 충전재를 더 포함하는, 광음향-초음파 내시경.
The scanning device according to claim 1,
Further comprising a transparent filler disposed on a light exit side of the light reflector to prevent fluid from entering the first window portion of the piezoelectric element.
제1항에 있어서, 상기 광섬유를 통해 전달된 레이저 빔은 상기 광반사기의 내부에서 반사되는, 광음향-초음파 내시경.The photoacoustic-ultrasonic endoscope according to claim 1, wherein the laser beam transmitted through the optical fiber is reflected inside the light reflector. 제1항에 있어서, 상기 스캐닝 팁은,
상기 반사된 레이저 빔이 통과하는 제2윈도우를 가지며 상기 압전소자 표면에 배치된 음향 렌즈를 더 포함하는, 광음향-초음파 내시경.
The scanning device according to claim 1,
Further comprising an acoustic lens having a second window through which the reflected laser beam passes and disposed on the piezoelectric element surface.
제8항에 있어서,
상기 압전소자는 평평하게 형성되고, 상기 음향 렌즈는 상기 광반사기 방향으로 오목하게 형성된, 광음향-초음파 내시경.
9. The method of claim 8,
Wherein the piezoelectric element is formed flat and the acoustic lens is concave in the direction of the light reflector.
제1항에 있어서,
상기 광섬유와 상기 광반사기 사이에 배치되고, 빛을 수렴시키도록 구비된 그린(GRIN, gradient index) 렌즈를 더 포함하는, 광음향-초음파 내시경.
The method according to claim 1,
Further comprising a green (GRIN) lens disposed between the optical fiber and the light reflector and adapted to converge light.
KR1020160182877A 2016-12-29 2016-12-29 Photoacoustic and ultrasonic endoscopic mini-probe KR102001980B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160182877A KR102001980B1 (en) 2016-12-29 2016-12-29 Photoacoustic and ultrasonic endoscopic mini-probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160182877A KR102001980B1 (en) 2016-12-29 2016-12-29 Photoacoustic and ultrasonic endoscopic mini-probe

Publications (2)

Publication Number Publication Date
KR20180077966A true KR20180077966A (en) 2018-07-09
KR102001980B1 KR102001980B1 (en) 2019-07-19

Family

ID=62919216

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160182877A KR102001980B1 (en) 2016-12-29 2016-12-29 Photoacoustic and ultrasonic endoscopic mini-probe

Country Status (1)

Country Link
KR (1) KR102001980B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108938079A (en) * 2018-08-16 2018-12-07 深圳先进技术研究院 A kind of probe and probe positioning system
CN110652285A (en) * 2019-10-24 2020-01-07 南昌洋深电子科技有限公司 High-sensitivity backward laser ultrasonic endoscopic imaging system and method thereof
US20200315578A1 (en) * 2019-04-04 2020-10-08 Daegu Gyeongbuk Institute Of Science And Technology Probe and system for imaging dental structure comprising the same
KR20210029438A (en) * 2019-09-06 2021-03-16 그린스펙(주) Jig for probe assembly and probe assembly method using jig for probe assembly
KR20210054919A (en) * 2019-11-06 2021-05-14 재단법인대구경북과학기술원 Three-dimensional diagnostic system
US11045076B2 (en) 2018-10-17 2021-06-29 Electronics And Telecommunications Research Institute Optical probe with rotation mirror
CN114159022A (en) * 2020-09-11 2022-03-11 西门子医疗有限公司 Optical waveguide for generating ultrasonic waves
CN116158720A (en) * 2022-12-30 2023-05-26 深圳开立生物医疗科技股份有限公司 Optical-photoacoustic-ultrasonic composite endoscope and endoscope system
CN116299837A (en) * 2023-01-04 2023-06-23 华中科技大学 Preparation method of full-light type lateral photoinduced ultrasonic self-collecting optical fiber endoscope

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4354502A (en) 1979-08-28 1982-10-19 The Board Of Regents Of The University Of Washington Intravascular catheter including untrasonic transducer for use in detection and aspiration of air emboli
US5131393A (en) 1990-06-25 1992-07-21 Fuji Photo Optical Co., Ltd. Ultrasound internal examination system
US6134003A (en) 1991-04-29 2000-10-17 Massachusetts Institute Of Technology Method and apparatus for performing optical measurements using a fiber optic imaging guidewire, catheter or endoscope
KR20090115728A (en) * 2007-01-19 2009-11-05 써니브룩 헬스 사이언시즈 센터 Imaging probe with combined ultrasound and optical means of imaging
US20110021924A1 (en) 2007-02-09 2011-01-27 Shriram Sethuraman Intravascular photoacoustic and utrasound echo imaging
JP4677557B2 (en) * 2005-05-11 2011-04-27 国立大学法人東北大学 Ultrasonic probe, catheter using the same, and manufacturing method thereof
US20110098572A1 (en) 2008-10-28 2011-04-28 The Regents Of The University Of California Ultrasound guided optical coherence tomography, photoacoustic probe for biomedical imaging
US20110275890A1 (en) 2009-01-09 2011-11-10 Washington University In St. Louis Miniaturized photoacoustic imaging apparatus including a rotatable reflector
JP2013022171A (en) * 2011-07-20 2013-02-04 Fujifilm Corp Catheter type photoacoustic probe
JP5769931B2 (en) * 2003-09-22 2015-08-26 インフレアデックス, インク.Infraredx, Inc. Device for detecting unstable plaque
JP2015534896A (en) * 2012-11-19 2015-12-07 ライトラボ・イメージング・インコーポレーテッド Multimodal imaging system, probe and method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4354502A (en) 1979-08-28 1982-10-19 The Board Of Regents Of The University Of Washington Intravascular catheter including untrasonic transducer for use in detection and aspiration of air emboli
US5131393A (en) 1990-06-25 1992-07-21 Fuji Photo Optical Co., Ltd. Ultrasound internal examination system
US6134003A (en) 1991-04-29 2000-10-17 Massachusetts Institute Of Technology Method and apparatus for performing optical measurements using a fiber optic imaging guidewire, catheter or endoscope
JP5769931B2 (en) * 2003-09-22 2015-08-26 インフレアデックス, インク.Infraredx, Inc. Device for detecting unstable plaque
JP4677557B2 (en) * 2005-05-11 2011-04-27 国立大学法人東北大学 Ultrasonic probe, catheter using the same, and manufacturing method thereof
KR20090115728A (en) * 2007-01-19 2009-11-05 써니브룩 헬스 사이언시즈 센터 Imaging probe with combined ultrasound and optical means of imaging
US20110021924A1 (en) 2007-02-09 2011-01-27 Shriram Sethuraman Intravascular photoacoustic and utrasound echo imaging
US20110098572A1 (en) 2008-10-28 2011-04-28 The Regents Of The University Of California Ultrasound guided optical coherence tomography, photoacoustic probe for biomedical imaging
US20110275890A1 (en) 2009-01-09 2011-11-10 Washington University In St. Louis Miniaturized photoacoustic imaging apparatus including a rotatable reflector
JP2013022171A (en) * 2011-07-20 2013-02-04 Fujifilm Corp Catheter type photoacoustic probe
JP2015534896A (en) * 2012-11-19 2015-12-07 ライトラボ・イメージング・インコーポレーテッド Multimodal imaging system, probe and method

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
선행문헌 1: C. Dietrich, Endoscopic Ultrasound: An Introductory Manual and Atlas, (Thieme, New York, 2006)
선행문헌 10: X Bai, et al., "Intravascular optical-resolution photoacoustic tomography with a 1.1mm diameter catheter", PloS One 9(3), e92463 (2014)
선행문헌 11: Da Xing, et al., "Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography", Journal of the American College of Cardiology 64(4), 385-390 (2014)
선행문헌 13: JM Yang, et al., "Catheter based photoacoustic endoscope", Journal of Biomedical Optics 19(6), 066001 (2014)
선행문헌 14: JM Yang, et al., "Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo," Nature Medicine 18(8), 1297 (2012)
선행문헌 16: G. J. Tearney, et al., "Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography", Optics Letters 21(7), 543-545 (1996)
선행문헌 3: P. Schoenhagen, et al., An Atlas and Manual of Coronary Intravascular Ultrasound Imaging, (CRC Press, 2003)
선행문헌 5: JM Yang, et al., "Photoacoustic endoscopy", Optics Letters 34(10), 1591 (2009)
선행문헌 6: Oraevsky, et al., "Laser optoacoustic tomography of layered tissues: signal processing," Proc. SPIE, 2979, 59 (1997)
선행문헌 7: Viator, et al., "Design and testing of an endoscopic photoacoustic probe for determination of treatment depth after photodynamic therapy", Proc. SPIE 4256, 16-27 (2001)
일본 공표특허공보 특표2015-534896호(2015.12.07.) 1부. *
일본 특허공보 특허 제 4677557호(2011.04.27.) 1부. *
일본 특허공보 특허 제 5769931호(2015.08.26.) 1부. *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108938079A (en) * 2018-08-16 2018-12-07 深圳先进技术研究院 A kind of probe and probe positioning system
US11045076B2 (en) 2018-10-17 2021-06-29 Electronics And Telecommunications Research Institute Optical probe with rotation mirror
KR20200117451A (en) * 2019-04-04 2020-10-14 재단법인대구경북과학기술원 Probe and system for imaging dental structure comprising the same
US20200315578A1 (en) * 2019-04-04 2020-10-08 Daegu Gyeongbuk Institute Of Science And Technology Probe and system for imaging dental structure comprising the same
US11660072B2 (en) * 2019-04-04 2023-05-30 Daegu Gyeongbuk Institute Of Science And Technology Probe and system for imaging dental structure comprising the same
KR20210029438A (en) * 2019-09-06 2021-03-16 그린스펙(주) Jig for probe assembly and probe assembly method using jig for probe assembly
CN110652285A (en) * 2019-10-24 2020-01-07 南昌洋深电子科技有限公司 High-sensitivity backward laser ultrasonic endoscopic imaging system and method thereof
KR20210054919A (en) * 2019-11-06 2021-05-14 재단법인대구경북과학기술원 Three-dimensional diagnostic system
CN114159022A (en) * 2020-09-11 2022-03-11 西门子医疗有限公司 Optical waveguide for generating ultrasonic waves
US11896347B2 (en) 2020-09-11 2024-02-13 Siemens Healthcare Gmbh Optical waveguide for generating ultrasonic waves
CN116158720A (en) * 2022-12-30 2023-05-26 深圳开立生物医疗科技股份有限公司 Optical-photoacoustic-ultrasonic composite endoscope and endoscope system
CN116158720B (en) * 2022-12-30 2023-11-21 深圳开立生物医疗科技股份有限公司 Optical-photoacoustic-ultrasonic composite endoscope and endoscope system
CN116299837A (en) * 2023-01-04 2023-06-23 华中科技大学 Preparation method of full-light type lateral photoinduced ultrasonic self-collecting optical fiber endoscope
CN116299837B (en) * 2023-01-04 2024-03-15 华中科技大学 Preparation method of full-light type lateral photoinduced ultrasonic self-collecting optical fiber endoscope

Also Published As

Publication number Publication date
KR102001980B1 (en) 2019-07-19

Similar Documents

Publication Publication Date Title
KR101903074B1 (en) Photoacoustic and ultrasonic endoscopy system including a coaxially-configured optical and electromagnetic rotary waveguide assembly and embodiment method thereof
KR102001980B1 (en) Photoacoustic and ultrasonic endoscopic mini-probe
JP6946400B2 (en) Multimodal imaging systems, probes and methods
US10105062B2 (en) Miniaturized photoacoustic imaging apparatus including a rotatable reflector
US11660071B2 (en) Radial array transducer-based photoacoustic and ultrasonic endoscopy system
US8764666B2 (en) Ultrasound guided optical coherence tomography, photoacoustic probe for biomedical imaging
US10241199B2 (en) Ultrasonic/photoacoustic imaging devices and methods
JP4494127B2 (en) Tomographic image observation device, endoscope device, and probe used for them
JP2019217348A (en) Opto-acoustic imaging devices and methods
Yang et al. Catheter-based photoacoustic endoscope
US10905397B2 (en) Array transducer-based side-scanning photoacoustic-ultrasonic endoscope
US20190021598A1 (en) Integrated catheter device for cardiovascular diagnosis and image processing system
US20210251605A1 (en) Ultrasound imaging probe
US20180028117A1 (en) Ultrasound probe
CN108670177B (en) Imaging probe of breast duct endoscope
KR101327195B1 (en) Dual probe with optical fiber for ultrasound and photacoustic diagnosis and treatment
CN106264604B (en) Full-scanning photoacoustic dual-mode endoscope probe
Miranda et al. Side-viewing photoacoustic waveguide endoscopy
KR102011975B1 (en) Photoacoustic and ultrasonic endoscopy system including a coaxially-configured optical and electromagnetic rotary waveguide assembly and embodiment method thereof
WO2019222505A1 (en) Intravascular photoacoustic tomography apparatus and method thereof
KR20240045956A (en) Helical scan photoacoustic-ultrasonic endoscope

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant