KR20170021351A - Antitumor composition based on hyaluronic acid and inorganic nanoparticles, method of preparation thereof and use thereof - Google Patents

Antitumor composition based on hyaluronic acid and inorganic nanoparticles, method of preparation thereof and use thereof Download PDF

Info

Publication number
KR20170021351A
KR20170021351A KR1020177002613A KR20177002613A KR20170021351A KR 20170021351 A KR20170021351 A KR 20170021351A KR 1020177002613 A KR1020177002613 A KR 1020177002613A KR 20177002613 A KR20177002613 A KR 20177002613A KR 20170021351 A KR20170021351 A KR 20170021351A
Authority
KR
South Korea
Prior art keywords
nanoparticles
composition
hyaluronan
spion
acylated
Prior art date
Application number
KR1020177002613A
Other languages
Korean (ko)
Inventor
다니엘라 스메즈카로바
크리스티나 네스포로바
마르티나 테플라
야쿠프 시로바트카
글로리아 후에르타-앤젤레스
마르티나 포스피실로바
비트 마투스카
지리 므라제크
안드레아스 갈리소바
다니엘 지라크
블라디미르 벨레브니
Original Assignee
콘티프로 에이.에스.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 콘티프로 에이.에스. filed Critical 콘티프로 에이.에스.
Publication of KR20170021351A publication Critical patent/KR20170021351A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/726Glycosaminoglycans, i.e. mucopolysaccharides
    • A61K31/728Hyaluronic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/26Iron; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/30Zinc; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/12Carboxylic acids; Salts or anhydrides thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/12Macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1806Suspensions, emulsions, colloids, dispersions
    • A61K49/1809Micelles, e.g. phospholipidic or polymeric micelles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1833Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with a small organic molecule
    • A61K49/1839Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with a small organic molecule the small organic molecule being a lipid, a fatty acid having 8 or more carbon atoms in the main chain, or a phospholipid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1887Agglomerates, clusters, i.e. more than one (super)(para)magnetic microparticle or nanoparticle are aggregated or entrapped in the same maxtrix
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5115Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5123Organic compounds, e.g. fats, sugars
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0072Hyaluronic acid, i.e. HA or hyaluronan; Derivatives thereof, e.g. crosslinked hyaluronic acid (hylan) or hyaluronates

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dermatology (AREA)
  • Biophysics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

본 발명은, 소수성화된 히알루로난과 올레산에 의해 안정화된 무기 나노입자를 포함하는 항종양 조성물에 관한 것이다. 아실화 히알루로난 형태의 소수성화된 히알루로난은 조성물에서 무기 나노입자에 대한 담체로서 제공된다. 조성물은, 무기 나노입자들 중에서 초상자성 나노입자, ZnO 나노입자 및 아울러 업-컨버전 나노입자를 포함할 수 있다. 본 조성물은 현탁 및 부착성 종양 세포주, 특히 결장직장 암종 및 선암종, 폐 암종, 간세포암 및 유방 선암종의 종양 세포주에 대해 선택적으로 세포독성을 나타낸다. 최대 세포독성 효과는 히알루로난의 올레일 유도체와 SPION을 포함하는 조성물에서 관찰되었다. 또한, 아실화 히알루로난과 SPION으로 된 조성물 역시 체내, 바람직하게는 종양 또는 간내 조성물의 축적으로 인 비보 (in vivo)로 검출하는데 유익하게 사용될 수 있다. 본 조성물은 최종 제품 형태로 멸균처리 가능하다.The present invention relates to antitumor compositions comprising hydrophobized hyaluronan and inorganic nanoparticles stabilized by oleic acid. The hydrophilized hyaluronan in acylated hyaluronan form is provided as a carrier for inorganic nanoparticles in the composition. The composition may include super-magnetic nanoparticles, ZnO nanoparticles and up-converted nanoparticles among the inorganic nanoparticles. This composition selectively exhibits cytotoxicity against tumor cell lines of suspensions and adherent tumor cell lines, particularly colon carcinomas and adenocarcinomas, lung carcinomas, hepatocellular carcinomas and breast adenocarcinomas. The maximal cytotoxic effect was observed in a composition comprising oleyl derivative of hyaluronan and SPION. Also, compositions comprising acylated hyaluronan and SPION can also be advantageously used to detect in vivo in the body, preferably by accumulation of tumors or compositions in the liver. The composition can be sterilized in the form of a final product.

Description

히알루론산과 무기 나노입자를 기재로 하는 항종양 조성물, 그 제조 방법 및 용도 {ANTITUMOR COMPOSITION BASED ON HYALURONIC ACID AND INORGANIC NANOPARTICLES, METHOD OF PREPARATION THEREOF AND USE THEREOF}TECHNICAL FIELD The present invention relates to an antitumor composition based on hyaluronic acid and inorganic nanoparticles, a method for producing the antitumor composition, and a method for producing the antitumor composition.

본 발명은 종양 질환을 치료하는데 사용될 수 있는 히알루론산을 기재로 하는 조성물에 관한 것이다. 이 조성물은, 히알루론산의 소수성화된 유도체 (hydrophobized derivative) 또는 이의 약제학적으로 허용가능한 염, 및 올레산을 이용해 안정화된 나노입자, 바람직하게는 초상자성 철 나노입자, 아연 나노입자 또는 업-컨버전 (up-conversion) 나노입자를 포함하는, 폴리머 나노마이셀 (polymeric nanomicell)을 포함한다.The present invention relates to compositions based on hyaluronic acid which can be used to treat tumor diseases. The composition comprises a hydrophobized derivative of hyaluronic acid, or a pharmaceutically acceptable salt thereof, and a nanoparticle stabilized with oleic acid, preferably a supernatant iron nanoparticle, a zinc nanoparticle or an upconversion and polymeric nanomicell, including up-conversion nanoparticles.

종양 질환의 치료에는, 신체 전역으로 분산되는 시스템인 약제 물질을 환자에게 정맥내 또는 경구로 투여하는, 화학요법이 가장 흔히 사용된다. 그러나, 항종양 물질은 종양 세포 뿐만 아니라 건강한 세포에도 매우 유해하다. 그래서, 전신 분산의 결과로, 종양 질환이 발생된 부위 뿐 아니라 건강한 조직과 세포 영역에도 항종양 치료제는 독성을 발휘하게 된다. 더욱이, 약물의 비-선택적인 분산은 종양 세포에 최종적으로 도달하는 약제 물질의 양을 감소시켜, 치료의 유효성을 떨어뜨린다.For the treatment of tumor diseases, chemotherapy is most commonly used to administer a drug substance, a system that is dispersed throughout the body, intravenously or orally to a patient. However, antitumor agents are very harmful to tumor cells as well as healthy cells. Thus, as a result of systemic dispersion, antitumor agents become toxic not only in the site where the tumor disease occurred, but also in the healthy tissue and cell area. Moreover, the non-selective dispersion of the drug reduces the amount of the drug substance eventually reaching the tumor cells, thereby reducing the efficacy of the treatment.

전술한 측면들로 인해, 종양 세포에 대한 화학요법의 효능은 강화하면서 동시에 치료제의 부적절한 전신 독성은 억제할 수 있는, 적절한 전략을 발굴하는데 엄청난 관심이 쏠리고 있다. 약물이 담체 시스템의 매트릭스에 병합되면, 약제 물질의 부적절한 부작용이 상당 수준 억제되고, 때로는 심지어 소거되는 것으로 밝혀졌다. 이런 목적으로, 연구는 담체 시스템을 종양 세포로 타겟팅하는 것을 목표로 한다.Due to the above-mentioned aspects, there is a great deal of interest in finding suitable strategies to enhance the efficacy of chemotherapy on tumor cells while at the same time inhibiting the inadequate systemic toxicity of therapeutic agents. When the drug is incorporated into the matrix of the carrier system, it has been found that the adverse side effects of the drug substance are significantly inhibited, and sometimes even erased. For this purpose, the research aims to target the carrier system to tumor cells.

오늘날, 타겟팅에 사용되는 가장 일반적인 전략은 2가지이다. 그 중 한가지는 종양 조직의 투과성과 체류성 증가가 적용되는 소위 수동 타겟팅 (passive targeting)을 기초로 한다 (소위 EPR 효과) (Maeda, 2001). 종양 세포는, 건강한 조직과는 반대로, 나노미터 크기의 분자를 혈류에서 종양으로 취해할 수 있게 하는 천공된 혈관 구조가 특징적이다. 그러나, 수동 타겟팅은, 다른 요인들 외에도, 종양 세포가 약제 물질을 가진 담체 시스템을 포착하는데 다소 비-효율적이고 비-특이적인 한계가 있다 (Duncan & Gaspar, 2011; El-Dakdouki, Pure & Huang, 2013). 그러나, 만일 담체 시스템이 수동 타겟팅에 적합한 크기를 가진다면, 이런 타겟팅 방법은 담체의 다른 특성들로 인한 해당 치료제의 종양 세포에 대한 항종양 효과 강화를 겸비할 수 있다. 예를 들어, 특허 출원 WO2008/130121은 수용액에서 폴리머 마이셀을 형성하는 종양-선택적인 생분해성 사이클로트리포스파젠-플래티늄 (II) 접합체를 청구하는데, 이것은 US2001/6333422의 비슷한 접합체와 비교해 종양 조직에 대한 수동 타겟팅에 있어 선택성 강화를 보인다. 수동 타겟팅에서 종양 세포의 선택성 강화는, 또한, 신속하게 절단되는 에스테르 페놀 결합에 의해 결합된 약제 물질 (SN-38, PI-103, 에토포시드 (etoposide), 펜레티니드 (phenretinide))과 레티노에이트의 접합체를 포함하는 페길화된 생분해성 나노입자를 개시한, 특허 출원에도 언급되어 있다. 이들 양자 모두에서, 선택성 강화는 유사 시스템과 비교하는 경우 실험 데이타를 기초로 검출되었다.Today, there are two most common strategies for targeting. One of them is based on so-called passive targeting, in which permeability and retention enhancement of tumor tissue is applied (so-called EPR effect) (Maeda, 2001). Tumor cells, as opposed to healthy tissues, are characterized by a perforated vascular structure that allows nanometer-sized molecules to be taken from the bloodstream into the tumor. However, manual targeting, in addition to other factors, has somewhat non-efficient and non-specific limits for tumor cells to capture carrier systems with drug substances (Duncan & Gaspar, 2011; El-Dakdouki, Pure & Huang, 2013). However, if the carrier system has a size suitable for manual targeting, this targeting method may combine the antitumor effect enhancement of the therapeutic agent with tumor cells due to other properties of the carrier. For example, patent application WO2008 / 130121 claims a tumor-selective biodegradable cyclotriphosphazene-platinum (II) conjugate that forms polymeric micelles in aqueous solution, which is useful for tumor tissue as compared to similar conjugates of US2001 / 6333422 Enhance selectivity in manual targeting. The selective enhancement of tumor cells in the manual targeting is also effected by the drug substance (SN-38, PI-103, etoposide, phenretinide) bound by the ester phenol bond cleaved rapidly and retinoic acid Eta < / RTI > conjugates, which are incorporated herein by reference. In both cases, the selectivity enhancement was detected based on the experimental data when compared to a similar system.

약물의 타겟팅, 즉 선택성 작용을 보다 효과적이게 하기 위한 또 다른 방법은, 치료제를 종양 세포의 표면에 위치한 수용체에 고친화성인 리간드에 의해 변형시켰을 때 가능하다 (Duncan & Gaspar, 2011; Ruoslahti, Bhatia & Sailor, 2010). 2번째 전략은 능동 타겟팅이라고 하는데, 종양 세포로의 선택적인 치료제 공급을 보장하여야 한다. 그 예로는, LPL 수용체 발현이 증가된 흑색종 세포에 대한 선택적인 거동이 검출된, 티아졸리디논 아미드와 티아졸리디닌 아미드의 카르복시산 유도체를 청구하고 있는, US2007/0155807에 개시된 해법이 예시될 수 있다. 이 해법과 이와 유사한 해법의 문제점은, LPL 수용체가 건강한 세포, 예를 들어 심근세포에서도 물론 발현되어, 건강한 조직에도 역시 선택적으로 작용할 수 있다는 것이다. 이 해법과 이와 유사한 다른 해법(예, WO 2012/173677, US 2013/02742200)의 또 다른 문제점은, 종양 세포 수용체의 발현이 시기 및 환자에 따라 가변적이라는 것이다 (Duncan & Gaspar, 2011). 능동 타겟팅용으로 선택된 결합된 리간드는 종양 질환의 특정 단계의 세포에만 효과가 있거나 또는 일부 환자에만 효과가 있을 수 있다.Another way to make the targeting, or selective, action of the drug more effective is when the therapeutic agent is modified by a high affinity ligand to a receptor located on the surface of tumor cells (Duncan & Gaspar, 2011; Ruoslahti, Bhatia & Sailor , 2010). The second strategy, called active targeting, should ensure selective treatment of tumor cells. As an example, the solution disclosed in US2007 / 0155807 can be exemplified, claiming a carboxylic acid derivative of thiazolidinone amide and thiazolidinamide, wherein selective action on melanoma cells with increased LPL receptor expression is detected . The problem with this and similar solutions is that LPL receptors are expressed in healthy cells, such as myocardial cells, as well, and can also act selectively in healthy tissues. Another problem with this solution and other similar solutions (e.g., WO 2012/173677, US 2013/02742200) is that the expression of tumor cell receptors is variable in time and patient (Duncan & Gaspar, 2011). The bound ligand selected for active targeting may be effective only in cells at certain stages of the tumor disease, or may be effective only in some patients.

능동 타겟팅의 또 다른 가능성은, 시스템이 공유결합으로 또는 비-공유결합으로 결합된 자기 나노입자를 포함하는 경우에, 외부 자기장을 이용하여 담체 시스템을 타겟팅하는 것이다. 이 경우, 바람직하게는 초상자성 나노입자 (SPION)가 사용될 수 있다. 가장 일반적으로는, 이것은 임의의 의도된 약리학적 기능이 없는 MRI 비활성 조영 수단으로서 간주되는 Fe3O4 나노입자이다 (Huang et al., 2013). 지금까지 SPION과 관련하여 세포내 내재화된 후 단기 또는 장기 독성은 보고된 바 없다 (Huang et al., 2013). SPION은, MRI 조영 및 자기 타겟팅 외에도, 세포 증식 억제제로서 또는 기타 약제 물질과 조합하여 담체로서 사용될 수 있다. 다른 바람직한 용도는 SPION이 교번 자기장 에너지를 흡수하여 이를 열로 변환하는 자기장 온열치료 (magnetic fluid hyperthermia)이다. 따라서, SPION이 위치된 영역의 온도를 선택적으로 승온시키는 것이 가능하다. SPION이 종양 영역에 위치한다면, 종양 세포가 건강한 세포 보다 훨씬 온도에 민감하기 때문에 승온된 온도를 이용해 종양 세포를 파괴할 수 있다 (Laurent, Dutz, Hafeli & Mahmoudi, 2011).Another possibility of active targeting is to target the carrier system using an external magnetic field when the system comprises magnetic nanoparticles bound in covalent or non-covalent association. In this case, a supernatant nanoparticle (SPION) may preferably be used. Most commonly, this is an Fe 3 O 4 nanoparticle considered as an MRI inactive imaging means without any intended pharmacological function (Huang et al., 2013). So far no short-term or long-term toxicity has been reported for intracellular internalization in relation to SPION (Huang et al., 2013). SPION can be used as a carrier in addition to MRI contrast and magnetic targeting, as a cell proliferation inhibitor or in combination with other pharmaceutical substances. Another preferred use is magnetic fluid hyperthermia where SPION absorbs alternating magnetic field energy and converts it into heat. Therefore, it is possible to selectively raise the temperature of the region where the SPION is located. If SPION is located in the tumor area, tumor cells can be destroyed using warmed temperatures because tumor cells are much more sensitive to temperature than healthy cells (Laurent, Dutz, Hafeli & Mahmoudi, 2011).

치료제의 선택성을 강화하기 위해, 수동 타겟팅 또는 능동 타겟팅과 조합하여, 건강한 세포와 비교되는 종양 세포의 몇가지 구분되는 특성들이 사용된다 (Fleige, Quadir & Haag, 2012). 이러한 특성으로는, 예를 들어, 더 높은 산성 pH 또는 활성 산소 형태 (ROS)의 농도 증가가 있다. 특허 출원 US2013/0230542는 ROS가 존재하는 환경에서 활성화되는 치료 성분 (페놀 유도체)을 개시하고 있는데, 즉 ROS 농도가 증가된 종양 세포에서 선택적으로 작용할 것이다. 이런 해법의 문제점은 ROS 농도 증가가 건강한 특정 세포에서도 물론 이루어진다는 점이다. 그 예가, 고수준의 ROS로 인해 파고좀 (phagozome)에서 병원체 소거가 이루어지는, 대식세포이다. 또한, 증가된 ROS 농도는 다른 세포들에서는 저산소증에 대한 천연 방어 기전으로서, 그리고 또한 다수의 생리학적 기능에 작용하는 신호 분자로서 기능한다.To enhance the selectivity of therapeutic agents, several distinctive characteristics of tumor cells compared with healthy cells are used in combination with manual targeting or active targeting (Fleige, Quadir & Haag, 2012). Such properties include, for example, higher acidic pH or increased concentration of reactive oxygen species (ROS). The patent application US2013 / 0230542 discloses a therapeutic component (phenol derivative) that is activated in the presence of ROS, i.e. it will selectively function in tumor cells with increased ROS concentration. The problem with this solution is that the increase in ROS concentration occurs in certain healthy cells as well. An example is a macrophage, where pathogen clearance occurs in the phagosome due to high levels of ROS. In addition, increased ROS concentration functions as a natural defense mechanism against hypoxia in other cells and also as a signaling molecule that acts on many physiological functions.

문헌에 따르면, 시험관내에서 일부 타입의 종양 세포에 항종양 방식으로 작용하는 점에서 기대되는 항종양 조성물들이 있다. 그 예는 하기 군으로부터 선택되는 1 내지 3개의 성분을 포함하는 US 2005/0255173의 조성물이다: 시트르산, 아연 및 알부민. 이 조성물은 대조군 세포 WI38 (정상적인 인간 폐 섬유모세포) 보다 선암종 NIH:OV-CAR-3 및 SKOV-3로부터 유래되는 인간 세포주에 대해 시험관내 세포독성이 더 높았다. 이 조성물의 단점은 이의 항종양 효과가 각 성분의 농도 함량에 따라 결정된다는 것이다 (US 2005/0255173). 성분이 신체-내인성 (body-innate) 물질이기 때문에, 청구된 조성물의 효과는 제공된 투여 부위내 개개 성분의 국소 농도 (예, 혈중 알부민 고농도)에 의해 영향을 받을 수 있다.According to the literature, there are anticancer compositions that are expected to act antitumorally on some types of tumor cells in vitro. Examples thereof are the compositions of US 2005/0255173 comprising 1 to 3 components selected from the group consisting of: citric acid, zinc and albumin. This composition was more cytotoxic in vitro to human cell lines derived from adenocarcinomas NIH: OV-CAR-3 and SKOV-3 than control cells WI38 (normal human lung fibroblast). A disadvantage of this composition is that its antitumor effect is determined by the concentration of each component (US 2005/0255173). As the component is a body-innate material, the effect of the claimed composition may be influenced by the local concentration of the individual components in the provided administration site (e. G., High concentrations of albumin in the blood).

인용된 문헌들에 따르면 항종양 치료제에 대한 연구는 전세계적으로 이루어지고 있다. 그러나, 제안된 해법에 대한 임상적인 사용 성공은, 특히 해법의 대부분이 생분해성이 아닌 유기 폴리머를 포함하고 있고 종양 세포에 대해 충분한 선택성을 가지고 있지 않다는 점으로 인해, 여전히 도전 대상이 되고 있다. 이런 이유로, 종양 세포에 선택적인 효과를 가지는 새로운 조성물을 발굴하고자 하는 관심은 여전한 실정이다.According to the cited documents, research on antitumor agents has been carried out all over the world. However, the clinical success of the proposed solution is still challenging, especially because most of the solutions contain organic polymers that are not biodegradable and do not have sufficient selectivity for tumor cells. For this reason, there is a continuing interest in discovering new compositions that have selective effects on tumor cells.

Duncan, R., & Gaspar, R. (2011). Nanomedicine(s) under the Microscope. Molecular Pharmaceutics, 8(6), 2101-2141.Duncan, R., & Gaspar, R. (2011). Nanomedicine (s) under the Microscope. Molecular Pharmaceutics, 8 (6), 2101-2141. El-Dakdouki, M. H., Pure, E., & Huang, X. (2013). Development of drug loaded nanoparticles for tumor targeting. Part 1: synthesis, characterization, and biological evaluation in 2D cell cultures. Nanoscale, 5(9), 3895-3903.El-Dakdouki, M. H., Pure, E., & Huang, X. (2013). Development of drug loaded nanoparticles for tumor targeting. Part 1: synthesis, characterization, and biological evaluation in 2D cell cultures. Nanoscale, 5 (9), 3895-3903. El-Dakdouki, M. H., Zhu, D. C., El-Boubbou, K., Kamat, M., Chen, J., Li, W., & Huang, X. (2012). Development of Multifunctional Hyaluronan-Coated Nanoparticles for Imaging and Drug Delivery to Cancer Cells. Biomacromolecules, 13(4), 1144-1151.El-Dakdouki, M. H., Zhu, D. C., El-Boubbou, K., Kamat, M., Chen, J., Li, W., & Huang, X. (2012). Development of Multifunctional Hyaluronan-Coated Nanoparticles for Imaging and Drug Delivery to Cancer Cells. Biomacromolecules, 13 (4), 1144-1151. Fleige, E., Quadir, M. A., & Haag, R. (2012). Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: Concepts and applications. Advanced Drug Delivery Reviews, 64(9), 866-884.Fleige, E., Quadir, M.A., & Haag, R. (2012). Stimuli-responsive polymeric nanocarriers for the control of active compounds: Concepts and applications. Advanced Drug Delivery Reviews, 64 (9), 866-884. Huang, G., Chen, H., Dong, Y., Luo, X., Yu, H., Moore, Z., Bey, E. A., Boothman, D. A., & Gao, J. (2013). Superparamagnetic iron oxide nanoparticles: amplifying ROS stress to improve anticancer drug efficacy. Theranostics, 3(2), 116-126.Huang, G., Chen, H., Dong, Y., Luo, X., Yu, H., Moore, Z., Bey, E. A., Boothman, D. A., & Gao, J. (2013). Superparamagnetic iron oxide nanoparticles: amplifying ROS stress to improve anticancer drug efficacy. Theranostics, 3 (2), 116-126. Laurent, S., Dutz, S., Hafeli, U. O., & Mahmoudi, M. (2011). Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Advances in Colloid and Interface Science, 166(1-2), 8-23.Laurent, S., Dutz, S., Hafeli, U. O., & Mahmoudi, M. (2011). Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Advances in Colloid and Interface Science, 166 (1-2), 8-23. Li, M., Kim, H. S., Tian, L., Yu, M. K., Jon, S., & Moon, W. K. (2012). Comparison of Two Ultrasmall Superparamagnetic Iron Oxides on Cytotoxicity and MR Imaging of Tumors. Theranostics, 2(1), 76-85.Li, M., Kim, H. S., Tian, L., Yu, M. K., Jon, S., & Moon, W. K. (2012). Comparison of Two Ultrasmall Superparamagnetic Iron Oxides on Cytotoxicity and MR Imaging of Tumors. Theranostics, 2 (1), 76-85. Maeda, H. (2001). The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Advances in Enzyme Regulation, 41(1), 189-207.Maeda, H. (2001). The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Advances in Enzyme Regulation, 41 (1), 189-207. Ruoslahti, E., Bhatia, S. N., & Sailor, M. J. (2010). Targeting of drugs and nanoparticles to tumors. The Journal of Cell Biology, 188(6), 759-768.Ruoslahti, E., Bhatia, S. N., & Sailor, M. J. (2010). Targeting of drugs and nanoparticles to tumors. The Journal of Cell Biology, 188 (6), 759-768.

본 발명의 내용은 선택적인 항종양 치료제로서 무기 나노입자와 조합된 히알루로난 나노마이셀에 관한 것이다. 보다 상세하게는, 본 발명은 결장직장 암종 또는 선암종, 폐 암종, 간세포암 및 유방 암종으로부터 유래되는 세포에 선택적으로 작용하는, 소수성화된 히알루론산 및 무기 나노입자를 기재로 하는 조성물에 관한 것이다. 이 조성물은, 또한, 인 비보 (in vivo) 조영 매질로도 이용될 수 있다. 나아가, 본 발명은 상기 조성물의 제조 방법에 관한 것이다.The present invention relates to hyaluronan nano micelles in combination with inorganic nanoparticles as selective antitumor agents. More particularly, the present invention relates to a composition based on hydrophobized hyaluronic acid and inorganic nanoparticles that selectively acts on cells derived from colorectal adenocarcinoma or adenocarcinoma, lung carcinoma, hepatocellular carcinoma and breast carcinoma. This composition can also be used as an in vivo imaging medium. Further, the present invention relates to a process for producing the composition.

본 조성물은 올레산에 의해 안정화된 무기 나노입자를 소수성화된 히알루로난 나노마이셀에 탑재 (loading)하는 것을 기반으로 한다. 탑재는 유기 용매 중의 나노입자 용액을 소수성화된 히알루로난 수용액과 함께 초음파 처리함으로써 수행될 수 있다. 무기 나노입자를 포함하는 제조된 나노마이셀은, 그런 후, 원심분리를 적용하여, 유리형 무기 나노입자로부터 분리하여, 종양 세포에 대한 선택적인 효능을 위해 사용될 수 있다. 본 발명의 조성물의 주요하고 독특한 이점은, 종양 세포와 대조군 세포의 혼합물에 처리되더라도, 종양 세포에 대한 시험관내 선택적인 활성을 나타낸다는 것이다. 본 조성물은 올레산에 의해 안정화된 무기 나노입자를 포함하며, 이때 무기 나노입자의 본래 목적은 이를 체내 투여한 후 조성물의 인 비보 (in vivo) 검출을 가능하게 하기 위함이었다. 그러나, 놀랍게도, 상기 조성물이, 소수성화된 히알루론산, 특히 히알루론산의 올레일 유도체와 조합되었을 때, 어떠한 세포 증식 억제 물질 또는 기타 치료학적 물질 없이도, 종양 세포에 대해 시험관내에서 선택적으로 세포독성을 나타내는 것으로 밝혀졌다. 지금까지 예상하지도 설명된 바도 없는 효과는 SPION 나노입자, 아연 산화물 나노입자 및 업-컨버전 나노입자에서 관찰되었는데, 이들은 올레산에 의해 안정화된 것이다. 예상치 못한 효과는 히알루로난에 특이적인 CD44 수용체를 통해 매개되는 수용체-매개 효과로서 명확하게 설명될 수 없을 뿐만 아니라, 지금까지 수집된 데이타에 따른 관찰된 선택성을 ROS 생산 증가에 따른 효과와 관련지을 수도 없다. 그러나, 선택성은 나노입자 이온의 또 다른 세포내 방출 기전에 의해 유발될 수 있다. 종양 세포에 대한 선택적인 효과는, 다당류 또는 기타 폴리머 매트릭스 기반의 담체에 병합된 SPION이 비-세포독성으로서 해석되게 사용된다는 점에서 오히려 더 놀랍다 (El-Dakdouki et al., 2012; Li, Kim, Tian, Yu, Jon & Moon, 2012). The present compositions are based on loading inorganic nanoparticles stabilized with oleic acid in hydrophobized hyaluronan nano-micelles. The mounting can be performed by ultrasonication of the nanoparticle solution in an organic solvent with a hydrophobized hyaluronan aqueous solution. The prepared nanomyelite containing inorganic nanoparticles can then be separated from the free inorganic nanoparticles by centrifugation and used for selective effect on tumor cells. A major and unique advantage of the compositions of the present invention is that they exhibit selective in vitro activity against tumor cells, even when treated with a mixture of tumor cells and control cells. The composition comprises inorganic nanoparticles stabilized by oleic acid, wherein the original purpose of the inorganic nanoparticles was to enable in vivo detection of the composition after administration to the body. Surprisingly, however, when the composition is combined with an oleoyl derivative of hydrophobized hyaluronic acid, particularly hyaluronic acid, it is possible to selectively induce cytotoxicity in vitro in tumor cells without any cell proliferation inhibitor or other therapeutic substance . Unexpected and unexplained effects have been observed in SPION nanoparticles, zinc oxide nanoparticles, and up-converted nanoparticles, which are stabilized by oleic acid. Unexpected effects can not be clearly accounted for as receptor-mediated effects mediated through hyaluronan-mediated CD44 receptors, but also correlate observed selectivity with data collected so far to the effect of increasing ROS production I can not. However, selectivity can be induced by another intracellular release mechanism of the nanoparticle ion. The selective effect on tumor cells is rather surprising in that SPION incorporated into polysaccharide or other polymer matrix based carriers is used to be interpreted as non-cytotoxic (El-Dakdouki et al., 2012; Li, Kim, Tian, Yu, Jon & Moon, 2012).

본 조성물의 다른 이점으로는 생리학적 용액과의 양립성 (compatibility), 인 비보 (in vivo) 정맥내 투여 가능성 및 생리학적 pH에서 적정 시간 동안의 나노마이셀 안정성 등이 있다. 이 조성물의 또 다른 이점은 나노마이셀 시스템을 둘러싼 외막을 형성하는 담체 폴리머로서 히알루로난을 사용한다는 점이며, 이로써 조성물의 인 비보 (in vivo) 투여 적합성이 보장된다. 바람직하게는, 히알루로난은 CD44 수용체 발현 증가가 특징적인 종양 세포에 조성물이 결합되게 지원해줄 수 있다. 조성물내 SPION의 존재는 바람직하게는 자기장을 이용해 담체를 체내 원하는 위치로 타겟팅하는데 이용될 수 있다. 교번 자기장은 온열치료를 유도하는데 사용되어, 종양 조직의 파괴를 이끌 수 있다. 또 다른 이점은, 주어진 조성물이 세포 분열 억제제와 같은 다른 활성 물질과 조합될 수 있다는 것이다. SPION 및 아연 산화물 나노입자와 마찬가지로, 업-컨버전 나노입자의 존재도 바람직하게는 조직내 조성물을 인 비보 (in vivo)로 검출하는데 이용될 수 있다. 아울러, 특정 조성을 가진 업-컨버전 나노입자는 광역학 요법 (photodynamic therapy) 또는 조성물로부터 약제를 조절-방출하는데 이용될 수 있다. 아연 산화물 나노입자의 존재는 바람직하게는 산성 pH가 더 높은 종양 조직에 사용되는데, 이곳에서 ZnO 나노입자는 용해되어 Zn2 + 이온을 방출시키고 고 농도 부위에서 국소 세포독성을 나타낸다.Other advantages of the present compositions include compatibility with physiological solutions, the possibility of intravenous administration in vivo, and nanomyelite stability during the appropriate time at physiological pH. Another advantage of this composition is the use of hyaluronan as a carrier polymer to form an outer membrane surrounding the nano-micelle system, thereby ensuring the in vivo suitability of the composition. Preferably, the hyaluronan can assist in binding the composition to tumor cells characterized by increased CD44 receptor expression. The presence of SPION in the composition can be preferably used to target the carrier to a desired location in the body using a magnetic field. Alternating magnetic fields can be used to induce hyperthermia, leading to the destruction of tumor tissue. Another advantage is that a given composition can be combined with other active substances such as cell division inhibitors. Like SPION and zinc oxide nanoparticles, the presence of up-converted nanoparticles can also be used to detect in vivo compositions, preferably in tissue. In addition, up-converted nanoparticles with a particular composition can be used to control-release the drug from photodynamic therapy or composition. The presence of zinc oxide nano-particles preferably are used in a higher acidic pH tumor tissue, here ZnO nanoparticles are dissolved shows a local cytotoxicity in emitting Zn 2 + ions and a high concentration region.

따라서, 본 발명은 아실화된 히알루로난과, 올레산에 의해 안정화되며 초상자성 나노입자, 업-컨버전 나노입자 또는 아연 산화물 나노입자, 특히 초상자성 나노입자를 포함하는 군으로부터 선택되는, 무기 나노입자를 포함하는, 항종양 조성물에 관한 것이다. 아실화된 히알루로난은 포화 결합 및 불포화 결합을 가진 히알루론산의 C6-C18-아실화 유도체, 특히 히알루론산의 C18:1 아실화 유도체일 수 있으며, 아실화된 히알루로난은 무기 나노입자의 담체로서 사용된다. 본 발명에 따른 조성물이 초상자성 나노입자를 포함하는 경우, 나노입자는, 바람직하게는 조성물내 Fe의 양이 0.3 - 3 중량%, 바람직하게는 1.0 중량%인 철 산화물을 기재로 하는, 나노입자이다. 초상자성 나노입자의 크기는 5 내지 20 nm, 바람직하게는 5-7 nm, 더 바람직하게는 5 nm이다. 항종양 조성물이 아연 산화물 나노입자를 포함하는 경우, 조성물내 Zn의 함량은 바람직하게는 0.3 - 3 중량%로 존재한다. 항종양 조성물이 업-컨버전 나노입자를 포함하는 경우, 바람직하게는 조성물내 희토류 원소들의 총량이 0.3 내지 3% hm이 되는 함량으로 존재한다. 업-컨버전 나노입자는 예를 들어 Er, Yb 및 Y를 포함할 수 있다. 본 발명에 따른 조성물의 이점은 또한 자동멸균을 이용해 최종 제품 형태로 살균처리가능하다는 것이다.Thus, the present invention relates to a process for the preparation of a pharmaceutical composition comprising an acylated hyaluronan and an inorganic nanoparticle stabilized by oleic acid and selected from the group consisting of a super-magnetic nanoparticle, an up-converted nanoparticle or a zinc oxide nanoparticle, ≪ / RTI > Acylated hyaluronan is a C 6 -C 18 -acylated derivative of hyaluronic acid with saturated and unsaturated bonds, especially C 18: 1 of hyaluronic acid Acylated derivatives, and acylated hyaluronan is used as a carrier of inorganic nanoparticles. When the composition according to the present invention comprises superpowder nanoparticles, the nanoparticles are preferably nanoparticles of iron oxide based on 0.3-3 wt.%, Preferably 1.0 wt.% Fe in the composition. to be. The size of the superpowder magnetic nanoparticles is 5 to 20 nm, preferably 5-7 nm, more preferably 5 nm. When the antitumor composition comprises zinc oxide nanoparticles, the content of Zn in the composition is preferably in the range of 0.3 - 3% by weight. When the antitumor composition comprises up-converted nanoparticles, it is preferably present in an amount such that the total amount of rare earth elements in the composition is between 0.3 and 3% hm. The up-converted nanoparticles may include, for example, Er, Yb and Y. [ The advantage of the composition according to the invention is that it can also be sterilized in the form of a final product using automatic sterilization.

본 발명에 따른 항종양 조성물은 특히 결장직장 암종 및 선암종, 폐 암종, 간세포암, 유방 암종, 바람직하게는 결장직장 암종 및 선암종으로부터 유래되는 부착 및 현탁 (suspension)성 인간 종양 세포주 둘다의 증식을 저해하기 위해 사용될 수 있다. 나아가, 초상자성 나노입자를 포함하는 항종양 조성물은 인 비보 (in vivo) 조영 물질로서, 즉, 체내, 특히 간 및 병변 발생부, 예를 들어 종양내 조성물의 축적을 검출하기 위해 사용될 수 있다. 본 발명에 따른 조성물은 종양 및 비-종양 세포에서, 특히 인간 결장직장 선암종 (=종양) 및 인간 진피 섬유모세포 (=비-종양)로부터 유래된 세포에서 금속 이온 방출에 서로 다른 양상을 나타내는 것으로 확인되었다.The antineoplastic composition according to the present invention inhibits the proliferation of both adhesion and suspension human tumor cell lines derived from colorectal carcinomas and adenocarcinomas, lung carcinomas, hepatocellular carcinomas, breast carcinomas, preferably colorectal carcinomas and adenocarcinomas Lt; / RTI > Furthermore, antitumor compositions comprising superparamagnetic nanoparticles can be used as in vivo contrast agents, i.e., to detect accumulation of the composition in the body, particularly the liver and lesion development, e.g., a tumor. The compositions according to the present invention have been shown to exhibit different patterns of metal ion release in tumor and non-tumor cells, particularly in cells derived from human colorectal adenocarcinoma (= tumor) and human dermal fibroblast (= non-tumor) .

본 발명에 따른 항종양 조성물은 비경구 또는 국소 투여, 예를 들어 정맥내 투여용 제형으로 적용될 수 있다. 약학적 조성물에 사용되는 다른 첨가제, 바람직하게는 염화나트륨, 덱스트로스 또는 완충성 염 (buffering salt)을 더 포함할 수 있다.The anti-tumor composition according to the present invention can be applied as parenteral or topical administration, for example, for intravenous administration. Other additives used in the pharmaceutical composition may be further included, preferably sodium chloride, dextrose or buffering salt.

본 발명에 따른 조성물은 다음과 같은 방식으로 제조될 수 있다: 히알루론산의 아실화 유도체의 수용액을 제조한 다음 할라이드 용매, 예를 들어 클로로포름에 분산시킨 무기 입자를 첨가하고, 제조되는 현탁액을 균질한 혼합물이 형성될 때까지 초음파 처리한 후 원심분리 및 후속적인 여과를 통해 나노마이셀에 탑재된 무기 나노입자로부터 유리형의 무기 나노입자를 분리시키며, 이때 무기 입자는 올레산에 의해 안정화된 것이며, 초상자성 나노입자, 업-컨버전 나노입자 또는 아연 산화물 나노입자로 이루어진 군으로부터 선택된다. 이후, 여과물은 장기 보관을 위해 동결건조하거나 또는 자동멸균에 의해 멸균 처리할 수 있다. 동결건조물은 이후 수용액에 용해시켜, 자동멸균으로 멸균 처리할 수 있다.The composition according to the present invention can be prepared in the following manner: an aqueous solution of an acylated derivative of hyaluronic acid is prepared and then inorganic particles dispersed in a halide solvent such as chloroform are added and the resulting suspension is homogenized The inorganic nanoparticles are separated from the inorganic nanoparticles loaded on the nanomicels by centrifugation and subsequent filtration, after which the inorganic nanoparticles are stabilized by oleic acid, Nanoparticles, up-converted nanoparticles, or zinc oxide nanoparticles. The filtrate can then be lyophilized for long term storage or sterilized by automatic sterilization. The lyophilized product can then be dissolved in an aqueous solution and sterilized by automatic sterilization.

본 발명의 목적에서, 올레산으로 안정화된 상업적으로 구입가능한 SPION이 사용될 수 있다.For the purposes of the present invention, commercially available SPION stabilized with oleic acid may be used.

도 1. 소수성화된 히알루로난 캡슐로 둘러싸인 나노입자 (SPION)의 TEM 사진.
도 2A, 2B, 2C. 대조군 NHDF 섬유모세포 및 마우스 비-종양 3T3 세포주에서 양성/중성 효과 대비, 종양 HT-29 세포주에서의 아실화된 히알루로난과 SPION으로 구성된 조성물의 생존 저해.
도 3. 대조군 NHDF 섬유모세포 및 마우스 비-종양 3T3 세포주에서 양성 효과 대비, 다양한 종양 세포주에서 아실화된 히알루로난과 SPION으로 구성된 조성물의 생존 저해 효과.
도 4A, 4B, 4C. 종양 세포 HT-29와 건강한 세포 NHDF 및 3T3의 생존성에 대한, 아실화 히알루로난으로 캡슐화된 5nm, 10nm, 20nm SPION 조성물의 효과 비교.
도 5A, 5B, 5C. 대조군 NHDF 섬유모세포 및 마우스 비-종양 3T3 세포주에서 양성/중성 효과 대비, 종양 HT-29 세포주에서 아실화 히알루로난과 아연 나노입자로 된 조성물에 의한 생존성 저해.
도 6A, 6B, 6C. 대조군 NHDF 섬유모세포 및 마우스 비-종양 3T3 세포주에서 양성/중성 효과 대비, 종양 HT-29 세포주에서 아실화 히알루로난과 업-컨버전 나노입자로 된 조성물에 의한 생존성 저해.
도 7. 아실화 히알루로난 및 SPION으로 된 조성물 첨가 하의, 건강한 NHDF 섬유모세포와 대조군 HT-29 세포의 공동-배양.
도 8. 유세포 측정에 의해 측정된 NHDF, MCF-7 및 MDA-MB-231 세포의 표면 상에서의 CD44 수용체의 발현.
도 9. NHDF 및 HT-29에서 아실화 히알루로난 및 SPION으로 된 조성물에 의한 ROS 형성 유도.
도 10. 아실화 히알루로난 및 SPION으로 된 조성물 (스케일: 10 ㎛)과 함께 배양 후, 종양 HT-29 및 대조군 NHDF 세포에 대한 세포내 Fe 염색.
도 11. 정맥내 투여 후 아실화 히알루로난 내에 탑재된 SPION의 종양내 경시적인 축적에 대한 MRI 검출 (교모세포종 종양, 1.1 mg Fe/kg).
도 12. 아실화 히알루로난 내에 탑재된 SPION 조성물의 정맥내 투여 후 간에 대한 MRI 조영술 (1.1 mg Fe/kg).
도 13. 프러시안 블루로 염색한 후 종양의 조직 단편에서의 Fe 검출 (SPION 조성물 투여한 지 2시간 및 24시간째).
도 14. 프러시안 블루로 염색한 후 간 조직 단편에서의 Fe 검출 (SPION 조성물 투여한 지 2시간 및 24시간째).
도 15. 멸균 처리 후 소수성화된 히알루로난 내에 캡슐화된 나노입자 (SPION)의 TEM 사진.
도 16. 자동멸균에 의한 멸균 처리 전과 후의 SPION 조성물의 선택적인 세포독성.
도 17A, 17B, 17C. 마우스 종양 림프종 세포주 EL4에서 SPION 조성물에 의한 세포자살 유도.
Fig . TEM photograph of nanoparticles (SPION) surrounded by hydrophobized hyaluronan capsules.
2A, 2B, 2C . Inhibition of survival of compositions consisting of acylated hyaluronan and SPION in tumor HT-29 cell line versus positive / neutral effect in control NHDF fibroblast and mouse non-tumor 3T3 cell lines.
3 . The effect of inhibiting the viability of compositions composed of acylated hyaluronan and SPION in various tumor cell lines versus positive effects in control NHDF fibroblasts and mouse non-tumor 3T3 cell lines.
4A, 4B, 4C . Comparison of the effect of 5 nm, 10 nm, 20 nm SPION compositions encapsulated with acylated hyaluronan on survival of tumor cells HT-29 and healthy cells NHDF and 3T3.
5A, 5B, 5C . Survival inhibition by the composition of acylated hyaluronan and zinc nanoparticles in tumor HT-29 cell line versus positive / neutral effect in control NHDF fibroblast and mouse non-tumor 3T3 cell lines.
6A, 6B, 6C . Survival inhibition by acylated hyaluronan and up-converted nanoparticle composition in tumor HT-29 cell line versus positive / neutral effect in control NHDF fibroblast and mouse non-tumor 3T3 cell lines.
7 . Co-culture of healthy NHDF fibroblasts and control HT-29 cells with addition of acylated hyaluronan and SPION compositions.
Figure 8 . Expression of CD44 receptors on the surface of NHDF, MCF-7 and MDA-MB-231 cells as measured by flow cytometry.
Figure 9. Induction of ROS formation by compositions with acylated hyaluronan and SPION in NHDF and HT-29.
Figure 10. Intracellular Fe staining for tumor HT-29 and control NHDF cells after incubation with a composition of acylated hyaluronan and SPION (scale: 10 mu m).
11 . MRI detection (glioblastoma tumors, 1.1 mg Fe / kg) on the accumulation of SPION in tumors mounted in acylated hyaluronan after intravenous administration.
12 . Magnetic resonance angiography (1.1 mg Fe / kg) following intravenous administration of the SPION composition loaded in acylated hyaluronan.
13 . (2 hours and 24 hours after administration of the SPION composition) in tissue fragments after staining with Prussian blue.
FIG . Fe detection in hepatic tissue fragments after staining with Prussian blue (2 hours and 24 hours after SPION composition administration).
15. TEM photograph of nanoparticles (SPION) encapsulated in hydrophobized hyaluronan after sterilization treatment.
Figure 16. Selective cytotoxicity of SPION compositions before and after sterilization by automatic sterilization.
17A, 17B, 17C. Induction of cell suicide by SPION composition in mouse tumor lymphoma cell line EL4.

실시예Example

SS = 치환도 = 100 % * 결합된 치환기의 몰 량 / 총 다당류 다이머의 몰 량SS = degree of substitution = 100% * molar amount of bonded substituent / molar amount of total polysaccharide dimer

본원에 사용되는 용어 당량 (eq)은 달리 언급되지 않은 경우 히알루론산 다이머에 대한 것이다. 퍼센트는 달리 언급되지 않은 경우 중량%이다.As used herein, the term equivalence (eq) is to hyaluronic acid dimer unless otherwise stated. Percentages are percent by weight unless otherwise noted.

히알루론산 (소스: Contipro Pharma, a.s., Dolni Dobrouc, CZ)의 분자량은 SEC-MALLS에 의해 측정하였다.The molecular weight of hyaluronic acid (source: Contipro Pharma, a.s., Dolni Dobrouc, CZ) was measured by SEC-MALLS.

용어 무기 나노입자는 진단 기능을 가진 무기 나노입자를 의미하는데, 진단 기능은 본 발명에 따른 조성물에 사용되는 무기 나노입자의 공통적인 기본 특성이다. 진단 기능은 의학에서 이용가능한 방법을 통해 이 입자를 검출할 수 있는 가능성을 의미하는 것으로 의도된다. SPION은 자기 공명을 이용해, ZnO 및 업-컨버전 나노입자는 발광 영상화를 이용해 검출될 수 있으며, 이들 입자 모두 검출에 맞게 최적화되며, 이것이 사용 이유이다. 이에, 무기 나노입자 세트에서 인 비보 (in vivo) 또는 인 비트로 (in vitro) (마이셀) 검출이 가능한 것으로 선택하였다.The term inorganic nanoparticle refers to an inorganic nanoparticle having a diagnostic function, and the diagnostic function is a common basic characteristic of the inorganic nanoparticles used in the composition according to the present invention. The diagnostic function is intended to mean the possibility of detecting these particles through methods available in medicine. SPION uses magnetic resonance, ZnO and up-converted nanoparticles can be detected using emission imaging, all of which are optimized for detection, which is why they are used. We chose to be able to detect in vivo or in vitro (micelles) in a set of inorganic nanoparticles.

용어 업-컨버전 나노입자는 업-컨버전 란타노이드 나노입자, 즉 효율적인 에너지 업-컨버전이 가능한 다른 무기 나노입자는 알려진 바 없으므로, 희토류 군으로부터 유래되는 원소를 함유한 나노입자를 의미한다.The term up-conversion nanoparticles refers to nanoparticles containing up-converted lanthanoid nanoparticles, ie, other inorganic nanoparticles capable of efficient energy up-conversion, since they are not known.

실시예Example 1 One 소수성화된Hydrophobicized 히알루론산, 특히 무수 벤조산 및 올레산 혼합물을 이용한 히알루론산의 올레일 유도체 (C18:1)의 제조. Preparation of an oleyl derivative of hyaluronic acid (C18: 1) using hyaluronic acid, especially a mixture of anhydrous benzoic acid and oleic acid.

소듐 히알루로난 100 g (250 mmol, 15 kDa)을 탈염수 2000 ml에 용해하였다. 그런 후, 이소프로판올 1000 ml을 천천히 첨가하였다. 그 후, TEA (70 ml, 3 eq.)와 DMAP (1.52 g, 0.05 eq.)를 이 용액에 첨가하였다. 동시에, 올레산 (35.3 g 0.5 eq)을 이소프로판올 1000 ml에 용해한 다음 이 용액에 TEA (70 ml, 3 eq.)와 벤조일 클로라이드 (14.4 ml, 0.5 eq.)를 첨가하였다. 산 활성화 후, 석출물을 HA 용액으로 여과 추출하였다. 실온에서 3시간 반응을 진행하였다. 그런 후, 반응 혼합물을 제거하고, NaCl 95 g이 첨가된 탈염수 1000 ml에 희석하였다. 무수 이소프로판올을 4배로 사용하여 석출시켜, 반응 혼합물로부터 아실화 유도체를 단리하였다. 이를 디캔팅한 후, 석출물을 이소프로판올 수용액 (85% vol.)으로 반복적으로 헹구었다.100 g (250 mmol, 15 kDa) of sodium hyaluronan was dissolved in 2000 ml of demineralized water. Then 1000 ml of isopropanol was slowly added. TEA (70 ml, 3 eq.) And DMAP (1.52 g, 0.05 eq.) Were then added to this solution. At the same time, oleic acid (35.3 g, 0.5 eq) was dissolved in 1000 ml of isopropanol and TEA (70 ml, 3 eq.) And benzoyl chloride (14.4 ml, 0.5 eq.) Were added to this solution. After acid activation, the precipitate was filtered off with HA solution. The reaction was allowed to proceed at room temperature for 3 hours. The reaction mixture was then removed and diluted with 1000 ml of demineralised water to which 95 g of NaCl had been added. And precipitated using four times anhydrous isopropanol, and the acylated derivative was isolated from the reaction mixture. After decanting, the precipitate was repeatedly rinsed with isopropanol aqueous solution (85% vol.).

SS 13 % (NMR에서 측정됨).SS 13% (measured by NMR).

1H NMR (D2O): δ 0.88 (t, 3H, -CH2-CH 3 ), δ 1.22-1.35 (m, 20H, (-CH2-)10), δ 1.60 (m, 2H, -CH 2 -CH2-CO-), δ 2.0 (4H, (-CH2-)2), δ 2.41 (t, 2H, -CH2-CO-), δ 5.41 (d, 2H, CH=CH) 1 H NMR (D 2 O) : δ 0.88 (t, 3H, -CH 2 -C H 3), δ 1.22-1.35 (m, 20H, (-CH 2 -) 10), δ 1.60 (m, 2H, -C H 2 -CH 2 -CO-), δ 2.0 (4H, (-CH 2 -) 2), δ 2.41 (t, 2H, -CH 2 -CO-), δ 5.41 (d, 2H, CH = CH)

본 실시예는 히알루론산의 소수성화된 유도체에 대한 일반적인 합성 방법을 기술한다. 그러나, 이 공정은 올레일 유도체만으로 한정되는 것은 아니다. 소수성화된 유도체의 합성에 대한 상세 내용은 특허 출원 번호 CZ PV2012-842에 언급되어 있다.This example describes a general synthetic method for hydrophobically-derivatized derivatives of hyaluronic acid. However, this process is not limited to oleyl derivatives. Details of the synthesis of hydrophobically-derivatized derivatives are given in patent application number CZ PV2012-842.

실시예Example 2. 평균  2. Average 5 nm5 nm 크기의  Sized SPIONSPION 제조 Produce

패릭 올리에이트 1.80 g, 올레산 0.35 ml 및 1-옥타데센 13.35 ml을 50 ml 부피의 3구 플라스크에 넣었다. 혼합물을 진공 하에 100℃까지 가열하고, 휘발성 물질을 증발시키면서 30분간 유지하였다. 그런 다음, 혼합물을 약한 아르곤 흐름 하에 280℃로 가열하여, 60분간 이 온도에서 유지하였다. 혼합물을 280℃에서 반응시키면서 아르곤 기포를 처리하였다. 실온으로 냉각시킨 다음, 반응 혼합물에 아세톤을 첨가하고, 원심분리를 통해 나노입자를 분리하였다. 침전된 SPION을 헥산/아세톤 혼합물 (1:4에서 1:1까지 순차적으로)로 4번 헹구고, 마지막으로 이를 톨루엔에 분산시켜, 4℃ 암조건에서 보관하였다.1.80 g of paricylate, 0.35 ml of oleic acid and 13.35 ml of 1-octadecene were placed in a 50 ml three-necked flask. The mixture was heated to 100 < 0 > C under vacuum and the volatiles were held for 30 minutes with evaporation. The mixture was then heated to 280 DEG C under a weak argon stream and held at this temperature for 60 minutes. The mixture was treated with argon bubbles while reacting at 280 ° C. After cooling to room temperature, acetone was added to the reaction mixture and the nanoparticles were separated by centrifugation. The precipitated SPION was rinsed four times with a hexane / acetone mixture (1: 4 to 1: 1 sequentially) and finally dispersed in toluene and stored at 4 [deg.] C under dark conditions.

수율: 78%Yield: 78%

나노입자의 크기: 5.2 ± 0.8 nm (전자현미경 사진에 따른 결과).Size of nanoparticles: 5.2 ± 0.8 nm (electron micrograph results).

실시예Example 3. 평균  3. Average 10 nm10 nm 크기의  Sized SPIONSPION 제조 Produce

패릭 올리에이트 1.80 g, 올레산 0.35 ml 및 1-옥타데센 13.35 ml을 50 ml 부피의 3구 플라스크에 넣었다. 혼합물을 진공 하에 100℃까지 서서히 가열하여, 휘발성 물질을 증발시키기 위해 30분간 유지하였다. 이후, 혼합물은 약한 아르곤 흐름 하에 끓는 점 (~317℃)까지 가열하고, 그 온도에서 60분간 유지하였다. 실온으로 냉각 후, 실시예 2와 동일한 방법으로 SPION을 분리하였다.1.80 g of paricylate, 0.35 ml of oleic acid and 13.35 ml of 1-octadecene were placed in a 50 ml three-necked flask. The mixture was heated slowly to 100 < 0 > C under vacuum and held for 30 minutes to evaporate the volatiles. The mixture was then heated to a boiling point (~ 317 ° C) under a weak argon flow and held at that temperature for 60 minutes. After cooling to room temperature, SPION was separated in the same manner as in Example 2.

수율: 74%Yield: 74%

나노입자의 크기: 9.8 ± 0.5 nm (전자현미경 사진의 결과임).Size of nanoparticles: 9.8 ± 0.5 nm (results of electron microscopy).

실시예Example 4. 평균  4. Average 20 nm20 nm 크기의  Sized SPIONSPION 제조 Produce

패릭 올리에이트 1.80 g, 올레산 0.35 ml, 1-옥타데센 5.34 ml 및 n-도코산 6 g을 50 ml 부피의 3구 플라스크에 넣었다. 혼합물을 진공 하에 100℃까지 서서히 가열하여, 휘발성 물질을 증발시키기 위해 30분간 유지하였다. 이후, 혼합물은 약한 아르곤 흐름 하에 315℃까지 가열하고, 그 온도에서 60분간 유지하였다. 실온으로 냉각 후, 실시예 2와 동일한 방법으로 SPION을 분리하였다.1.80 g of a paricylate, 0.35 ml of oleic acid, 5.34 ml of 1-octadecene and 6 g of n-docosane were placed in a 50 ml three-necked flask. The mixture was heated slowly to 100 < 0 > C under vacuum and held for 30 minutes to evaporate the volatiles. The mixture was then heated to 315 DEG C under a weak argon flow and held at that temperature for 60 minutes. After cooling to room temperature, SPION was separated in the same manner as in Example 2.

수율: 56%Yield: 56%

나노입자의 크기: 21.1 ± 3.1 nm (전자현미경 사진의 결과임)Size of nanoparticles: 21.1 ± 3.1 nm (result of electron micrograph)

실시예Example 5. 5. ZnOZnO 나노입자의 제조 Manufacture of nanoparticles

아연 아세테이트 이수화물 (1185.30 mg; 5.4 mmol)을 250 ml 부피의 3구 플라스크에 넣고, 실온에서 메탄올 (90 ml)에 용해하였다. 한편, 메탄올 (22.39 ml) 중의 테트라메틸 암모늄 하이드록사이드 (1622.91 mg; 8.96 mmol) 용액을 2구 플라스크에서 준비하였다. 이들 2가지 용액을 초음파 조에서 15분간 아르곤으로 버블링하면서 탈기시켰다 (수조 온도 50℃, 출력 120 W). 아연 아세테이트의 메탄올 용액을 오일 조 (조 온도 60℃)에서 환류 가열하였다. 올레산 (310 ㎕; 0.99 mmol)을 첨가한 후, 혼합물을 끓는 점 (조 온도 85℃)까지 승온시켰다. 메탄올 중의 테트라메틸 암모늄 하이드록사이드 용액을 환류 가열 (조 온도 75℃)하고, 신속하게 아연 아세테이트와 올레산이 들어 있는 3구 플라스크에 투입하였다. 반응 혼합물을 일정한 속도 (600 rpm)로 교반하면서 환류하고, 2분간 (조 온도 85℃) 아르곤으로 버블링을 수행하였다. 이후, 혼합물을 메탄올 (90 ml)로 희석하고, 얼음조 위에서 15분간 냉각시켰다. 냉각된 혼합물을 15분간 원심분리하였다 (4000 xg, 4℃). 입자들을 에탄올 (3 x 25 ml)로 헹구고, 각 헹굼 단계 다음에는 10분간 원심분리를 수행하였다 (4000 xg, 25℃). 입자를 클로로포름 (45 ml)에 분산시켜, 암조건 하 4℃에 보관하였다.The zinc acetate dihydrate (1185.30 mg; 5.4 mmol) was placed in a 250 ml three-necked flask and dissolved in methanol (90 ml) at room temperature. Meanwhile, a solution of tetramethylammonium hydroxide (1622.91 mg; 8.96 mmol) in methanol (22.39 ml) was prepared in a two-necked flask. These two solutions were degassed (bath temperature 50 ° C, output 120 W) while bubbling with argon in an ultrasonic bath for 15 minutes. The methanol solution of zinc acetate was heated to reflux in an oil bath (bath temperature 60 占 폚). After addition of oleic acid (310 L, 0.99 mmol), the mixture was warmed to the boiling point (bath temperature 85 DEG C). A solution of tetramethylammonium hydroxide in methanol was heated under reflux (at a bath temperature of 75 ° C) and rapidly added to a three-necked flask containing zinc acetate and oleic acid. The reaction mixture was refluxed with stirring at a constant rate (600 rpm) and bubbled with argon for 2 minutes (bath temperature 85 ° C). The mixture was then diluted with methanol (90 ml) and cooled in an ice bath for 15 minutes. The cooled mixture was centrifuged for 15 minutes (4000 xg, 4 < 0 > C). The particles were rinsed with ethanol (3 x 25 ml) and each rinse step followed by centrifugation for 10 min (4000 xg, 25 [deg.] C). The particles were dispersed in chloroform (45 ml) and stored at 4 ° C under dark conditions.

형광의 양자 효율: 34% (상대적인 방법으로 측정됨, 기준 물질 = norharman)Quantum efficiency of fluorescence: 34% (measured by relative method, reference material = norharman)

나노입자의 크기: 3.4 ± 0.3 nm (전자현미경 사진의 결과임)Size of nanoparticles: 3.4 ± 0.3 nm (results of electron micrograph)

실시예Example 6. 6. 업-work- 컨버전Conversion 나노입자의 제조 Manufacture of nanoparticles

1.60 mmol 이트륨 (III) 아세테이트, 0.36 mmol 이테르븀 (III) 아세테이트 및 0.04 mmol 에르븀 (III) 아세테이트에 해당되는 몰 량을 100 ml 부피의 3구 플라스크에 넣고, 옥타덱-1-엔 (34 ml)과 올레산 (12.0 ml)을 첨가하였다. 강하게 교반 (600 rpm)하면서 혼합물에 진공처리하고, 오일 조에서 서서히 80℃로 가열하였다. 이 온도에서, 전체적으로 투명해질 때까지 혼합물은 진공 하에 교반하고, 투명해진 시점부터 90분 더 교반하였다. 혼합물이 든 플라스크에 아르곤을 충진하고, 아르곤 분위기 하에 실온으로 냉각시킨 다음 메탄올 (20 ml) 중의 NaOH (200 mg) 및 NH4F (296.3 mg) 용액을 첨가하였으며, 이때 혼합물은 탁해졌다. 혼합물을 실온에서 밤새 교반한 다음, 65℃에서 메탄올을 천천히 증발시켰다 (오일조). 그런 다음, 혼합물이 든 플라스크를 PID-컨트롤러에 의해 제어되는 가열 맨틀로 이동시켰다. 혼합물에 점차적으로 진공을 가하였으며, 진공 하에 112℃까지 천천히 가열한 후 이 온도에서 30분간 탈기시켰다. 그런 다음, 혼합물이 든 플라스크에 아르곤을 충진하고, 공기 환류 하에 약한 아르곤 흐름 하에 2℃/분 속도로 305℃까지 가열하였다. 305℃에서 혼합물을 110분간 둔 다음 가열 조건에서 꺼내 자연적으로 실온까지 냉각되게 하였다.A molar amount corresponding to 1.60 mmol of yttrium (III) acetate, 0.36 mmol of ytterbium (III) acetate and 0.04 mmol of erbium (III) acetate was placed in a three-necked flask of 100 ml volume, octadodec- Oleic acid (12.0 ml) was added. The mixture was vigorously agitated (600 rpm) and the mixture was slowly heated to 80 ° C in an oil bath. At this temperature, the mixture was stirred under vacuum until it became totally clear and stirred for a further 90 minutes from the time it became clear. The mixture is filled with argon in a flask all, and cooling to room temperature under an argon atmosphere and then was added to NaOH (200 mg) and NH 4 F (296.3 mg) solution in methanol (20 ml), then mixture became turbid. The mixture was stirred at room temperature overnight, and the methanol was slowly evaporated at 65 [deg.] C (oil bath). The flask with the mixture was then transferred to a heating mantle controlled by a PID-controller. The mixture was gradually evacuated and slowly heated to 112 < 0 > C under vacuum and degassed at this temperature for 30 minutes. The flask with the mixture was then charged with argon and heated to 305 DEG C at a rate of 2 DEG C / min under a slight argon flow under air reflux. The mixture was allowed to stand at 305 DEG C for 110 minutes, then taken out under heating conditions and allowed to cool naturally to room temperature.

반응 혼합물로부터 에탄올 (반응 혼합물의 2배 부피)을 사용해 업-컨버전 나노입자를 침전시킨 다음, 원심분리 (RCF 3000 xg; 10분)에 의해 분리하였다. 나노입자 (침전물)를 헥산 (5 ml)에 분산시키고, 에탄올 (10 ml)로 침전시킨 다음 원심분리 (RCF 3000 xg; 7분)에 의해 분리하였다. 이런 방식으로 헥산/에탄올 시스템으로 3번, 그리고 헥산/아세톤 시스템으로 3번 나노입자를 정제하였다. 마지막으로, 나노입자를 클로로포름 (10 ml)에 분산시켜, 실온에 보관하였다.The up-converted nanoparticles were precipitated from the reaction mixture using ethanol (twice the volume of the reaction mixture) and then separated by centrifugation (RCF 3000 xg; 10 min). The nanoparticles (precipitate) were dispersed in hexane (5 ml), precipitated with ethanol (10 ml) and then separated by centrifugation (RCF 3000 xg; 7 min). In this way, the nanoparticles were purified three times with a hexane / ethanol system and three times with a hexane / acetone system. Finally, the nanoparticles were dispersed in chloroform (10 ml) and stored at room temperature.

나노입자 조성 (ICP-OES):NaYF4:Yb/Er (80 mol.% Y, 18 mol.% Yb, 2 mol.% Er Nanoparticle composition (ICP-OES): NaYF 4 : Yb / Er (80 mol% Y, 18 mol% Yb, 2 mol% Er

유기 성분 비율 (TGA): 7% Organic component ratio (TGA): 7%

나노입자의 크기 (전자 현미경): 34 ± 2 nmSize of nanoparticles (electron microscope): 34 ± 2 nm

실시예Example 7. 7. SPION과SPION and 히알루론산의  Hyaluronic 카프로닐Capronyl 유도체 ( Derivatives ( HAC6HAC6 )로 된 조성물의 제조) ≪ / RTI >

실시예 1에 따라 제조한 히알루로난의 아실화 유도체 150 mg (HAC6, DS = 60%, Mw = 38 kDa)을 자기 교반기 위에서 일정하게 교반하면서 2시간 동안 탈염수 15 ml에 용해하였다. 실시예 2에 따라 제조된 SPION (올레산에 의해 안정화됨, 나노입자의 크기: 5 nm)을 톨루엔 매질에서 클로로포름 매질로 이동시켰다.150 mg (HAC6, DS = 60%, Mw = 38 kDa) of the acylated derivative of hyaluronan prepared according to Example 1 was dissolved in 15 ml of demineralized water for 2 hours with constant stirring on a magnetic stirrer. SPION (stabilized by oleic acid, nanoparticle size: 5 nm) prepared according to Example 2 was transferred from the toluene medium to the chloroform medium.

아실화 히알루로난 용액을 얼음조에 침지된 로제트 초음파조 (RZ 1, 부피: 25 ml)로 옮겼다. 먼저, 용액을 60초간 초음파 처리하였다 (초음파 파라미터: 200 W, 진폭 65%, 주기 0.5 s 및 소노트로드 (sonotrode) S2). 또한, CHCl3 3 ml에 분산된 SPION 5 mg을 이 용액에 점차 첨가하였다 (초음파 파라미터: 200 W, 진폭 85%, 주기 0.8 s 및 소노트로드 S2). 균질화된 현탁액을 15분간 추가로 초음파 처리하였다 (초음파 파라미터: 진폭 65%, 주기 0.5 s 및 소노트로드 S2). 유리형 나노입자를 반복적인 원심분리(3 x 4500RPM, 10분)를 통해 분리하고, 나노입자가 탑재된 히알루로난 나노마이셀이 함유된 수득되는 상층물을 취하여, 1.0 ㎛으로 여과하고, 동결건조하였다.The acylated hyaluronan solution was transferred to a rosette sonicator (RZ 1, volume: 25 ml) immersed in an ice bath. First, the solution was sonicated for 60 seconds (ultrasound parameter: 200 W, amplitude 65%, cycle 0.5 s and sonotrode S2). Also, CHCl 3 5 mg of SPION dispersed in 3 ml was gradually added to this solution (ultrasound parameter: 200 W, amplitude 85%, cycle 0.8 s and small note load S2). The homogenized suspension was further sonicated for 15 minutes (ultrasound parameters: amplitude 65%, cycle 0.5 s and small note load S2). The glassy nanoparticles were separated by repeated centrifugation (3 x 4500 RPM for 10 minutes), and the resulting supernatant containing the hyaluronan nano-micelles loaded with the nanoparticles was taken, filtered at 1.0 쨉 m, lyophilized Respectively.

탑재된 Fe의 양 (ICP 측정): 1.1% (wt.)Amount of Fe loaded (ICP measurement): 1.1% (wt.)

실시예Example 8. 8. 히알루론산의 Hyaluronic 카프릴릴Caprylil 유도체 ( Derivatives ( HAC8HAC8 )와 )Wow SPION으로With SPION 된 조성물의 제조 ≪ / RTI >

실시예 1에 따라 제조한 히알루로난의 아실화 유도체 150 mg (HAC8, DS = 22%, Mw = 20 kDa)을 자기 교반기 위에서 일정하게 교반하면서 2시간 동안 탈염수 15 ml에 용해하였다. 실시예 2에 따라 제조된 SPION (올레산에 의해 안정화됨, 나노입자의 크기: 5 nm)을 톨루엔 매질에서 클로로포름 매질로 이동시켰다.150 mg (HAC8, DS = 22%, Mw = 20 kDa) of the acylated derivative of hyaluronan prepared according to Example 1 was dissolved in 15 ml of demineralized water for 2 hours with constant stirring on a magnetic stirrer. SPION (stabilized by oleic acid, nanoparticle size: 5 nm) prepared according to Example 2 was transferred from the toluene medium to the chloroform medium.

아실화 히알루로난 용액을 얼음조에 침지된 로제트 초음파조 (RZ 1, 부피: 25 ml)로 옮겼다. 먼저, 용액을 60초간 초음파 처리하였다 (초음파 파라미터: 200 W, 진폭 65%, 주기 0.5 s 및 소노트로드 S2). 또한, CHCl3 3 ml에 분산된 SPION 5 mg을 이 용액에 점차 첨가하였다 (초음파 파라미터: 200 W, 진폭 85%, 주기 0.8 s 및 소노트로드 S2). 균질화된 현탁액을 15분간 추가로 초음파 처리하였다 (초음파 파라미터: 진폭 65%, 주기 0.5 s 및 소노트로드 S2). 유리형 나노입자를 반복적인 원심분리(3 x 4500RPM, 10분)를 통해 분리하고, 나노입자가 탑재된 히알루로난 나노마이셀이 함유된 수득되는 상층물을 취하여, 1.0 ㎛으로 여과하고, 동결건조하였다.The acylated hyaluronan solution was transferred to a rosette sonicator (RZ 1, volume: 25 ml) immersed in an ice bath. First, the solution was sonicated for 60 seconds (ultrasound parameter: 200 W, amplitude 65%, period 0.5 s and small note load S2). Also, CHCl 3 5 mg of SPION dispersed in 3 ml was gradually added to this solution (ultrasound parameter: 200 W, amplitude 85%, cycle 0.8 s and small note load S2). The homogenized suspension was further sonicated for 15 minutes (ultrasound parameters: amplitude 65%, cycle 0.5 s and small note load S2). The glassy nanoparticles were separated by repeated centrifugation (3 x 4500 RPM for 10 minutes), and the resulting supernatant containing the hyaluronan nano-micelles loaded with the nanoparticles was taken, filtered at 1.0 쨉 m, lyophilized Respectively.

탑재된 Fe의 양 (ICP 측정): 1.1% (wt.)Amount of Fe loaded (ICP measurement): 1.1% (wt.)

실시예Example 9. 9. 히알루론산의 Hyaluronic 카프리닐Caprilin 유도체 ( Derivatives ( HAC10HAC10 )와 )Wow SPION으로With SPION 된 조성물의 제조 ≪ / RTI >

실시예 1에 따라 제조한 히알루로난의 아실화 유도체 150 mg (HAC10, DS = 15%, Mw = 15 kDa)을 자기 교반기 위에서 일정하게 교반하면서 2시간 동안 탈염수 15 ml에 용해하였다. 실시예 2에 따라 제조된 SPION (올레산에 의해 안정화됨, 나노입자의 크기: 5 nm)을 톨루엔 매질에서 클로로포름 매질로 이동시켰다.150 mg (HAC10, DS = 15%, Mw = 15 kDa) of the acylated derivative of hyaluronan prepared according to Example 1 was dissolved in 15 ml of demineralized water for 2 hours with constant stirring on a magnetic stirrer. SPION (stabilized by oleic acid, nanoparticle size: 5 nm) prepared according to Example 2 was transferred from the toluene medium to the chloroform medium.

아실화 히알루로난 용액을 얼음조에 침지된 로제트 초음파조 (RZ 1, 부피: 25 ml)로 옮겼다. 먼저, 용액을 60초간 초음파 처리하였다 (초음파 파라미터: 200 W, 진폭 65%, 주기 0.5 s 및 소노트로드 S2). 또한, CHCl3 3 ml에 분산된 SPION 5 mg을 이 용액에 점차 첨가하였다 (초음파 파라미터: 200 W, 진폭 85%, 주기 0.8 s 및 소노트로드 S2). 균질화된 현탁액을 15분간 추가로 초음파 처리하였다 (초음파 파라미터: 진폭 65%, 주기 0.5 s 및 소노트로드 S2). 유리형 나노입자를 반복적인 원심분리(3 x 4500RPM, 10분)를 통해 분리하고, 나노입자가 탑재된 히알루로난 나노마이셀이 함유된 수득되는 상층물을 취하여, 1.0 ㎛으로 여과하고, 동결건조하였다.The acylated hyaluronan solution was transferred to a rosette sonicator (RZ 1, volume: 25 ml) immersed in an ice bath. First, the solution was sonicated for 60 seconds (ultrasound parameter: 200 W, amplitude 65%, period 0.5 s and small note load S2). Also, CHCl 3 5 mg of SPION dispersed in 3 ml was gradually added to this solution (ultrasound parameter: 200 W, amplitude 85%, cycle 0.8 s and small note load S2). The homogenized suspension was further sonicated for 15 minutes (ultrasound parameters: amplitude 65%, cycle 0.5 s and small note load S2). The glassy nanoparticles were separated by repeated centrifugation (3 x 4500 RPM for 10 minutes), and the resulting supernatant containing the hyaluronan nano-micelles loaded with the nanoparticles was taken, filtered at 1.0 쨉 m, lyophilized Respectively.

탑재된 Fe의 양 (ICP 측정): 1.2% (wt.)Amount of Fe loaded (ICP measurement): 1.2% (wt.)

실시예Example 10. 10. 히알루론산의 Hyaluronic 팔미토일Palmy toil 유도체 ( Derivatives ( HAC16HAC16 )와 )Wow SPION으로With SPION 된 조성물의 제조 ≪ / RTI >

실시예 1에 따라 제조한 히알루로난의 아실화 유도체 150 mg (HAC16, DS = 9%, Mw = 15 kDa)을 자기 교반기 위에서 일정하게 교반하면서 2시간 동안 탈염수 15 ml에 용해하였다. 실시예 2에 따라 제조된 SPION (올레산에 의해 안정화됨, 나노입자의 크기: 5 nm)을 톨루엔 매질에서 클로로포름 매질로 이동시켰다.150 mg (HAC16, DS = 9%, Mw = 15 kDa) of the acylated derivative of hyaluronan prepared according to Example 1 was dissolved in 15 ml of demineralized water for 2 hours with constant stirring on a magnetic stirrer. SPION (stabilized by oleic acid, nanoparticle size: 5 nm) prepared according to Example 2 was transferred from the toluene medium to the chloroform medium.

아실화 히알루로난 용액을 얼음조에 침지된 로제트 초음파조 (RZ 1, 부피: 25 ml)로 옮겼다. 먼저, 용액을 60초간 초음파 처리하였다 (초음파 파라미터: 200 W, 진폭 65%, 주기 0.5 s 및 소노트로드 S2). 또한, CHCl3 3 ml에 분산된 SPION 5 mg을 이 용액에 점차 첨가하였다 (초음파 파라미터: 200 W, 진폭 85%, 주기 0.8 s 및 소노트로드 S2). 균질화된 현탁액을 15분간 추가로 초음파 처리하였다 (초음파 파라미터: 진폭 65%, 주기 0.5 s 및 소노트로드 S2). 유리형 나노입자를 반복적인 원심분리(3 x 4500RPM, 10분)를 통해 분리하고, 나노입자가 탑재된 히알루로난 나노마이셀이 함유된 수득되는 상층물을 취하여, 1.0 ㎛으로 여과하고, 동결건조하였다.The acylated hyaluronan solution was transferred to a rosette sonicator (RZ 1, volume: 25 ml) immersed in an ice bath. First, the solution was sonicated for 60 seconds (ultrasound parameter: 200 W, amplitude 65%, period 0.5 s and small note load S2). Also, CHCl 3 5 mg of SPION dispersed in 3 ml was gradually added to this solution (ultrasound parameter: 200 W, amplitude 85%, cycle 0.8 s and small note load S2). The homogenized suspension was further sonicated for 15 minutes (ultrasound parameters: amplitude 65%, cycle 0.5 s and small note load S2). The glassy nanoparticles were separated by repeated centrifugation (3 x 4500 RPM for 10 minutes), and the resulting supernatant containing the hyaluronan nano-micelles loaded with the nanoparticles was taken, filtered at 1.0 쨉 m, lyophilized Respectively.

탑재된 Fe의 양 (ICP 측정): 1.2% (wt.)Amount of Fe loaded (ICP measurement): 1.2% (wt.)

실시예Example 11. 히알루론산의  11. Hyaluronic acid 스테아릴Stearyl 유도체 ( Derivatives ( HAC18HAC18 )와 )Wow SPION으로With SPION 된 조성물의 제조 ≪ / RTI >

실시예 1에 따라 제조한 히알루로난의 아실화 유도체 150 mg (HAC18, DS = 9%, Mw = 15 kDa)을 자기 교반기 위에서 일정하게 교반하면서 2시간 동안 탈염수 15 ml에 용해하였다. 실시예 2에 따라 제조된 SPION (올레산에 의해 안정화됨, 나노입자의 크기: 5 nm)을 톨루엔 매질에서 클로로포름 매질로 이동시켰다.150 mg (HAC18, DS = 9%, Mw = 15 kDa) of the acylated derivative of hyaluronan prepared according to Example 1 was dissolved in 15 ml of demineralized water for 2 hours with constant stirring on a magnetic stirrer. SPION (stabilized by oleic acid, nanoparticle size: 5 nm) prepared according to Example 2 was transferred from the toluene medium to the chloroform medium.

아실화 히알루로난 용액을 얼음조에 침지된 로제트 초음파조 (RZ 1, 부피: 25 ml)로 옮겼다. 먼저, 용액을 60초간 초음파 처리하였다 (초음파 파라미터: 200 W, 진폭 65%, 주기 0.5 s 및 소노트로드 S2). 또한, CHCl3 3 ml에 분산된 SPION 5 mg을 이 용액에 점차 첨가하였다 (초음파 파라미터: 200 W, 진폭 85%, 주기 0.8 s 및 소노트로드 S2). 균질화된 현탁액을 15분간 추가로 초음파 처리하였다 (초음파 파라미터: 진폭 65%, 주기 0.5 s 및 소노트로드 S2). 유리형 나노입자를 반복적인 원심분리(3 x 4500RPM, 10분)를 통해 분리하고, 나노입자가 탑재된 히알루로난 나노마이셀이 함유된 수득되는 상층물을 취하여, 1.0 ㎛으로 여과하고, 동결건조하였다.The acylated hyaluronan solution was transferred to a rosette sonicator (RZ 1, volume: 25 ml) immersed in an ice bath. First, the solution was sonicated for 60 seconds (ultrasound parameter: 200 W, amplitude 65%, period 0.5 s and small note load S2). Also, CHCl 3 5 mg of SPION dispersed in 3 ml was gradually added to this solution (ultrasound parameter: 200 W, amplitude 85%, cycle 0.8 s and small note load S2). The homogenized suspension was further sonicated for 15 minutes (ultrasound parameters: amplitude 65%, cycle 0.5 s and small note load S2). The glassy nanoparticles were separated by repeated centrifugation (3 x 4500 RPM for 10 minutes), and the resulting supernatant containing the hyaluronan nano-micelles loaded with the nanoparticles was taken, filtered at 1.0 쨉 m, lyophilized Respectively.

탑재된 Fe의 양 (ICP 측정): 1.0% (wt.)Amount of Fe loaded (ICP measurement): 1.0% (wt.)

실시예Example 12. 12. 히알루론산의 Hyaluronic 올레일Ole 유도체 ( Derivatives ( HAC18:1)와HAC18: 1) and SPION으로With SPION 된 조성물의 제조 ≪ / RTI >

실시예 1에 따라 제조한 히알루로난의 아실화 유도체 150 mg (HAC18:1, DS = 12%, Mw = 15 kDa)을 자기 교반기 위에서 일정하게 교반하면서 2시간 동안 탈염수 15 ml에 용해하였다. 실시예 2에 따라 제조된 SPION (올레산에 의해 안정화됨, 나노입자의 크기: 5 nm)을 톨루엔 매질에서 클로로포름 매질로 이동시켰다.150 mg (HAC18: 1, DS = 12%, Mw = 15 kDa) of the acylated derivative of hyaluronan prepared according to Example 1 was dissolved in 15 ml of demineralized water for 2 hours while being constantly stirred on a magnetic stirrer. SPION (stabilized by oleic acid, nanoparticle size: 5 nm) prepared according to Example 2 was transferred from the toluene medium to the chloroform medium.

아실화 히알루로난 용액을 얼음조에 침지된 로제트 초음파조 (RZ 1, 부피: 25 ml)로 옮겼다. 먼저, 용액을 60초간 초음파 처리하였다 (초음파 파라미터: 200 W, 진폭 65%, 주기 0.5 s 및 소노트로드 S2). 또한, CHCl3 3 ml에 분산된 SPION 5 mg을 이 용액에 점차 첨가하였다 (초음파 파라미터: 200 W, 진폭 85%, 주기 0.8 s 및 소노트로드 S2). 균질화된 현탁액을 15분간 추가로 초음파 처리하였다 (초음파 파라미터: 진폭 65%, 주기 0.5 s 및 소노트로드 S2). 유리형 나노입자를 반복적인 원심분리(3 x 4500RPM, 10분)를 통해 분리하고, 나노입자가 탑재된 히알루로난 나노마이셀이 함유된 수득되는 상층물을 취하여, 1.0 ㎛으로 여과하고, 동결건조하였다.The acylated hyaluronan solution was transferred to a rosette sonicator (RZ 1, volume: 25 ml) immersed in an ice bath. First, the solution was sonicated for 60 seconds (ultrasound parameter: 200 W, amplitude 65%, period 0.5 s and small note load S2). In addition, 5 mg of SPION dispersed in 3 ml of CHCl 3 was gradually added to the solution (ultrasound parameter: 200 W, amplitude 85%, cycle 0.8 s and small note load S2). The homogenized suspension was further sonicated for 15 minutes (ultrasound parameters: amplitude 65%, cycle 0.5 s and small note load S2). The glassy nanoparticles were separated by repeated centrifugation (3 x 4500 RPM for 10 minutes), and the resulting supernatant containing the hyaluronan nano-micelles loaded with the nanoparticles was taken, filtered at 1.0 쨉 m, lyophilized Respectively.

탑재된 Fe의 양 (ICP 측정): 1.0% (wt.)Amount of Fe loaded (ICP measurement): 1.0% (wt.)

폴리머 마이셀에 군집된 나노입자의 형태는 도 1에 나타낸다.The form of nano-particles in the polymer micelle cluster is shown in Figure 1;

실시예Example 13. 13. 히알루론산의 Hyaluronic 올레일Ole 유도체 ( Derivatives ( HAC18:1)와HAC18: 1) and SPION으로With SPION 된 조성물의 제조 ≪ / RTI >

실시예 1에 따라 제조된 히알루로난의 아실화 유도체 120 mg (HAC18:1, DS = 12%, Mw = 15 kDa)을 자기 교반기 위에서 일정하게 교반하면서 2시간 동안 탈염수 12 ml에 용해하였다. 실시예 2에 따라 제조된 SPION (올레산에 의해 안정화됨, 나노입자의 크기: 5 nm)을 톨루엔 매질에서 클로로포름 매질로 이동시켰다.120 mg (HAC 18: 1, DS = 12%, Mw = 15 kDa) of the acylated derivative of hyaluronan prepared according to Example 1 was dissolved in 12 ml of demineralized water for 2 hours with constant stirring on a magnetic stirrer. SPION (stabilized by oleic acid, nanoparticle size: 5 nm) prepared according to Example 2 was transferred from the toluene medium to the chloroform medium.

아실화 히알루로난 용액을 얼음조에 침지된 로제트 초음파조 (RZ 1, 부피: 25 ml)로 옮겼다. 먼저, 용액을 60초간 초음파 처리하였다 (초음파 파라미터: 200 W, 진폭 65%, 주기 0.5 s 및 소노트로드 S2). 또한, CHCl3 4 ml에 분산된 SPION 7.25 mg을 이 용액에 점차 첨가하였다 (초음파 파라미터: 200 W, 진폭 85%, 주기 0.8 s 및 소노트로드 S2). 균질화된 현탁액을 15분간 추가로 초음파 처리하였다 (초음파 파라미터: 진폭 65%, 주기 0.5 s 및 소노트로드 S2). 유리형 나노입자를 반복적인 원심분리(3 x 4500RPM, 10분)를 통해 분리하고, 나노입자가 탑재된 히알루로난 나노마이셀이 함유된 수득되는 상층물을 취하여, 1.0 ㎛으로 여과하고, 동결건조하였다.The acylated hyaluronan solution was transferred to a rosette sonicator (RZ 1, volume: 25 ml) immersed in an ice bath. First, the solution was sonicated for 60 seconds (ultrasound parameter: 200 W, amplitude 65%, period 0.5 s and small note load S2). Also, CHCl 3 7.25 mg of SPION dispersed in 4 ml was gradually added to this solution (ultrasound parameter: 200 W, amplitude 85%, cycle 0.8 s and small note load S2). The homogenized suspension was further sonicated for 15 minutes (ultrasound parameters: amplitude 65%, cycle 0.5 s and small note load S2). The glassy nanoparticles were separated by repeated centrifugation (3 x 4500 RPM for 10 minutes), and the resulting supernatant containing the hyaluronan nano-micelles loaded with the nanoparticles was taken, filtered at 1.0 쨉 m, lyophilized Respectively.

탑재된 Fe의 양 (ICP 측정): 1.8% (wt.)Amount of Fe loaded (ICP measurement): 1.8% (wt.)

실시예Example 14. 14. 히알루론산의 Hyaluronic 리놀레일Linoleil 유도체 ( Derivatives ( HAC18:2)와HAC18: 2) and SPION으로With SPION 된 조성물의 제조 ≪ / RTI >

실시예 1에 따라 제조한 히알루로난의 아실화 유도체 150 mg (HAC18:2, DS = 12%, Mw = 15 kDa)을 자기 교반기 위에서 일정하게 교반하면서 4시간 동안 탈염수 15 ml에 용해하였다. 실시예 2에 따라 제조된 SPION (올레산에 의해 안정화됨, 나노입자의 크기: 5 nm)을 톨루엔 매질에서 클로로포름 매질로 이동시켰다.150 mg (HAC18: 2, DS = 12%, Mw = 15 kDa) of the acylated derivative of hyaluronan prepared according to Example 1 was dissolved in 15 ml of demineralized water for 4 hours with constant stirring on a magnetic stirrer. SPION (stabilized by oleic acid, nanoparticle size: 5 nm) prepared according to Example 2 was transferred from the toluene medium to the chloroform medium.

아실화 히알루로난 용액을 얼음조에 침지된 로제트 초음파조 (RZ 1, 부피: 25 ml)로 옮겼다. 먼저, 용액을 60초간 초음파 처리하였다 (초음파 파라미터: 200 W, 진폭 65%, 주기 0.5 s 및 소노트로드 S2). 또한, CHCl3 3 ml에 분산된 SPION 5 mg을 이 용액에 점차 첨가하였다 (초음파 파라미터: 200 W, 진폭 85%, 주기 0.8 s 및 소노트로드 S2). 균질화된 현탁액을 15분간 추가로 초음파 처리하였다 (초음파 파라미터: 진폭 65%, 주기 0.5 s 및 소노트로드 S2). 유리형 나노입자를 반복적인 원심분리(3 x 4500RPM, 10분)를 통해 분리하고, 나노입자가 탑재된 히알루로난 나노마이셀이 함유된 수득되는 상층물을 취하여, 1.0 ㎛으로 여과하고, 동결건조하였다.The acylated hyaluronan solution was transferred to a rosette sonicator (RZ 1, volume: 25 ml) immersed in an ice bath. First, the solution was sonicated for 60 seconds (ultrasound parameter: 200 W, amplitude 65%, period 0.5 s and small note load S2). In addition, 5 mg of SPION dispersed in 3 ml of CHCl 3 was gradually added to the solution (ultrasound parameter: 200 W, amplitude 85%, cycle 0.8 s and small note load S2). The homogenized suspension was further sonicated for 15 minutes (ultrasound parameters: amplitude 65%, cycle 0.5 s and small note load S2). The glassy nanoparticles were separated by repeated centrifugation (3 x 4500 RPM for 10 minutes), and the resulting supernatant containing the hyaluronan nano-micelles loaded with the nanoparticles was taken, filtered at 1.0 쨉 m, lyophilized Respectively.

탑재된 Fe의 양 (ICP 측정): 0.98% (wt.)Amount of Fe loaded (ICP measurement): 0.98% (wt.)

실시예Example 15. 15. 히알루론산의 Hyaluronic 리놀레닐Linolenyl 유도체 ( Derivatives ( HAC18:3)와HAC18: 3) and SPION으로With SPION 된 조성물의 제조 ≪ / RTI >

실시예 1에 따라 제조한 히알루로난의 아실화 유도체 150 mg (HAC18:3, DS = 3%, Mw = 15 kDa)을 자기 교반기 위에서 일정하게 교반하면서 4시간 동안 탈염수 15 ml에 용해하였다. 실시예 2에 따라 제조된 SPION (올레산에 의해 안정화됨, 나노입자의 크기: 5 nm)을 톨루엔 매질에서 클로로포름 매질로 이동시켰다.150 mg (HAC18: 3, DS = 3%, Mw = 15 kDa) of the acylated derivative of hyaluronan prepared according to Example 1 was dissolved in 15 ml of demineralized water for 4 hours with constant stirring on a magnetic stirrer. SPION (stabilized by oleic acid, nanoparticle size: 5 nm) prepared according to Example 2 was transferred from the toluene medium to the chloroform medium.

아실화 히알루로난 용액을 얼음조에 침지된 로제트 초음파조 (RZ 1, 부피: 25 ml)로 옮겼다. 먼저, 용액을 60초간 초음파 처리하였다 (초음파 파라미터: 200 W, 진폭 65%, 주기 0.5 s 및 소노트로드 S2). 또한, CHCl3 3 ml에 분산된 SPION 5 mg을 이 용액에 점차 첨가하였다 (초음파 파라미터: 200 W, 진폭 85%, 주기 0.8 s 및 소노트로드 S2). 균질화된 현탁액을 15분간 추가로 초음파 처리하였다 (초음파 파라미터: 진폭 65%, 주기 0.5 s 및 소노트로드 S2). 유리형 나노입자를 반복적인 원심분리(3 x 4500RPM, 10분)를 통해 분리하고, 나노입자가 탑재된 히알루로난 나노마이셀이 함유된 수득되는 상층물을 취하여, 1.0 ㎛으로 여과하고, 동결건조하였다.The acylated hyaluronan solution was transferred to a rosette sonicator (RZ 1, volume: 25 ml) immersed in an ice bath. First, the solution was sonicated for 60 seconds (ultrasound parameter: 200 W, amplitude 65%, period 0.5 s and small note load S2). In addition, 5 mg of SPION dispersed in 3 ml of CHCl 3 was gradually added to the solution (ultrasound parameter: 200 W, amplitude 85%, cycle 0.8 s and small note load S2). The homogenized suspension was further sonicated for 15 minutes (ultrasound parameters: amplitude 65%, cycle 0.5 s and small note load S2). The glassy nanoparticles were separated by repeated centrifugation (3 x 4500 RPM for 10 minutes), and the resulting supernatant containing the hyaluronan nano-micelles loaded with the nanoparticles was taken, filtered at 1.0 쨉 m, lyophilized Respectively.

탑재된 Fe의 양 (ICP 측정): 1.0% (wt.)Amount of Fe loaded (ICP measurement): 1.0% (wt.)

실시예Example 16. 16. 히알루론산의 Hyaluronic 올레일Ole 유도체 ( Derivatives ( HAC18:1)와HAC18: 1) and SPION으로With SPION 된 조성물의 제조 ≪ / RTI >

실시예 1에 따라 제조한 히알루로난의 아실화 유도체 150 mg (HAC18:1, DS = 12%, Mw = 15 kDa)을 자기 교반기 위에서 일정하게 교반하면서 2시간 동안 탈염수 15 ml에 용해하였다. 실시예 3에 따라 제조된 SPION (올레산에 의해 안정화됨, 나노입자의 크기: 10 nm)을 톨루엔 매질에서 클로로포름 매질로 이동시켰다.150 mg (HAC18: 1, DS = 12%, Mw = 15 kDa) of the acylated derivative of hyaluronan prepared according to Example 1 was dissolved in 15 ml of demineralized water for 2 hours with constant stirring on a magnetic stirrer. SPION (stabilized by oleic acid, nanoparticle size: 10 nm) prepared according to Example 3 was transferred from the toluene medium to the chloroform medium.

아실화 히알루로난 용액을 얼음조에 침지된 로제트 초음파조 (RZ 1, 부피: 25 ml)로 옮겼다. 먼저, 용액을 60초간 초음파 처리하였다 (초음파 파라미터: 200 W, 진폭 65%, 주기 0.5 s 및 소노트로드 S2). 또한, CHCl3 3 ml에 분산된 SPION 5 mg을 이 용액에 점차 첨가하였다 (초음파 파라미터: 200 W, 진폭 85%, 주기 0.8 s 및 소노트로드 S2). 균질화된 현탁액을 15분간 추가로 초음파 처리하였다 (초음파 파라미터: 진폭 65%, 주기 0.5 s 및 소노트로드 S2). 유리형 나노입자를 반복적인 원심분리(3 x 4500RPM, 10분)를 통해 분리하고, 나노입자가 탑재된 히알루로난 나노마이셀이 함유된 수득되는 상층물을 취하여, 1.0 ㎛으로 여과하고, 동결건조하였다.The acylated hyaluronan solution was transferred to a rosette sonicator (RZ 1, volume: 25 ml) immersed in an ice bath. First, the solution was sonicated for 60 seconds (ultrasound parameter: 200 W, amplitude 65%, period 0.5 s and small note load S2). In addition, 5 mg of SPION dispersed in 3 ml of CHCl 3 was gradually added to the solution (ultrasound parameter: 200 W, amplitude 85%, cycle 0.8 s and small note load S2). The homogenized suspension was further sonicated for 15 minutes (ultrasound parameters: amplitude 65%, cycle 0.5 s and small note load S2). The glassy nanoparticles were separated by repeated centrifugation (3 x 4500 RPM for 10 minutes), and the resulting supernatant containing the hyaluronan nano-micelles loaded with the nanoparticles was taken, filtered at 1.0 쨉 m, lyophilized Respectively.

탑재된 Fe의 양 (ICP 측정): 0.4% (wt.)Amount of Fe loaded (ICP measurement): 0.4% (wt.)

실시예Example 17. 17. 히알루론산의 Hyaluronic 올레일Ole 유도체 ( Derivatives ( HAC18:1)와HAC18: 1) and SPION으로With SPION 된 조성물의 제조 ≪ / RTI >

실시예 1에 따라 제조한 히알루로난의 아실화 유도체 150 mg (HAC18:1, DS = 12%, Mw = 15 kDa)을 자기 교반기 위에서 일정하게 교반하면서 2시간 동안 탈염수 15 ml에 용해하였다. 실시예 4에 따라 제조된 SPION (올레산에 의해 안정화됨, 나노입자의 크기: 20 nm)을 톨루엔 매질에서 클로로포름 매질로 이동시켰다.150 mg (HAC18: 1, DS = 12%, Mw = 15 kDa) of the acylated derivative of hyaluronan prepared according to Example 1 was dissolved in 15 ml of demineralized water for 2 hours with constant stirring on a magnetic stirrer. SPION (stabilized by oleic acid, nanoparticle size: 20 nm) prepared according to Example 4 was transferred from the toluene medium to the chloroform medium.

아실화 히알루로난 용액을 얼음조에 침지된 로제트 초음파조 (RZ 1, 부피: 25 ml)로 옮겼다. 먼저, 용액을 60초간 초음파 처리하였다 (초음파 파라미터: 200 W, 진폭 65%, 주기 0.5 s 및 소노트로드 S2). 또한, CHCl3 3 ml에 분산된 SPION 5 mg을 이 용액에 점차 첨가하였다 (초음파 파라미터: 200 W, 진폭 85%, 주기 0.8 s 및 소노트로드 S2). 균질화된 현탁액을 15분간 추가로 초음파 처리하였다 (초음파 파라미터: 진폭 65%, 주기 0.5 s 및 소노트로드 S2). 유리형 나노입자를 반복적인 원심분리(3 x 4500RPM, 10분)를 통해 분리하고, 나노입자가 탑재된 히알루로난 나노마이셀이 함유된 수득되는 상층물을 취하여, 1.0 ㎛으로 여과하고, 동결건조하였다.The acylated hyaluronan solution was transferred to a rosette sonicator (RZ 1, volume: 25 ml) immersed in an ice bath. First, the solution was sonicated for 60 seconds (ultrasound parameter: 200 W, amplitude 65%, period 0.5 s and small note load S2). In addition, 5 mg of SPION dispersed in 3 ml of CHCl 3 was gradually added to the solution (ultrasound parameter: 200 W, amplitude 85%, cycle 0.8 s and small note load S2). The homogenized suspension was further sonicated for 15 minutes (ultrasound parameters: amplitude 65%, cycle 0.5 s and small note load S2). The glassy nanoparticles were separated by repeated centrifugation (3 x 4500 RPM for 10 minutes), and the resulting supernatant containing the hyaluronan nano-micelles loaded with the nanoparticles was taken, filtered at 1.0 쨉 m, lyophilized Respectively.

탑재된 Fe의 양 (ICP 측정): 1.7% (wt.)Amount of Fe loaded (ICP measurement): 1.7% (wt.)

실시예Example 18. 18. 히알루론산의 Hyaluronic 올레일Ole 유도체 ( Derivatives ( HAC18:1HAC18: 1 ), ), SPIONSPION  And 파클리탁셀로Paclitaxel 된 조성물의 제조 ≪ / RTI >

실시예 1에 따라 제조한 히알루로난의 아실화 유도체 150 mg (HAC18:1, DS = 12%, Mw = 15 kDa)을 자기 교반기 위에서 일정하게 교반하면서 2시간 동안 탈염수 15 ml에 용해하였다. 그런 후, 실시예 2에 따라 제조된 SPION 5 mg (올레산에 의해 안정화됨, 나노입자의 크기: 5 nm)을 톨루엔에서 클로로포름으로 옮겼다. 이런 방식으로 제조된 나노입자를 클로로포름 3 ml에 용해된 파클리탁셀 6 mg과 혼합하였다.150 mg (HAC18: 1, DS = 12%, Mw = 15 kDa) of the acylated derivative of hyaluronan prepared according to Example 1 was dissolved in 15 ml of demineralized water for 2 hours while being constantly stirred on a magnetic stirrer. Then, SPION 5 mg (stabilized by oleic acid, nanoparticle size: 5 nm) prepared according to Example 2 was transferred from toluene to chloroform. The nanoparticles thus prepared were mixed with 6 mg of paclitaxel dissolved in 3 ml of chloroform.

아실화 히알루로난 용액을 얼음조에 침지된 로제트 초음파조 (RZ 1, 부피: 25 ml)로 옮겼다. 먼저, 용액을 60초간 초음파 처리하였다 (초음파 파라미터: 200 W, 진폭 65%, 주기 0.5 s 및 소노트로드 S2). 나아가, CHCl3 중의 SPION 5 mg 및 파클리탁셀 6 mg을 이 용액에 점차 첨가하였다 (초음파 파라미터: 200 W, 진폭 85%, 주기 0.8 s 및 소노트로드 S2). 균질화된 현탁액을 15분간 추가로 초음파 처리하였다 (초음파 파라미터: 진폭 65%, 주기 0.5 s 및 소노트로드 S2). 유리형 나노입자와 파클리탁셀을 반복적인 원심분리(3 x 4500RPM, 10분)를 통해 분리하고, 나노입자와 파클리탁셀이 탑재된 히알루로난 마이셀이 함유된 수득되는 상층물을 취하여 1.0 ㎛으로 여과하고, 동결건조하였다.The acylated hyaluronan solution was transferred to a rosette sonicator (RZ 1, volume: 25 ml) immersed in an ice bath. First, the solution was sonicated for 60 seconds (ultrasound parameter: 200 W, amplitude 65%, period 0.5 s and small note load S2). Further, 5 mg of SPION and 6 mg of paclitaxel in CHCl 3 were gradually added to this solution (ultrasound parameter: 200 W, amplitude 85%, cycle 0.8 s and small note load S2). The homogenized suspension was further sonicated for 15 minutes (ultrasound parameters: amplitude 65%, cycle 0.5 s and small note load S2). The free nanoparticles and paclitaxel were separated by repeated centrifugation (3 x 4500 RPM, 10 min), and the resulting supernatant containing the hyaluronan micelle loaded with the nanoparticles and paclitaxel was filtered off at 1.0 [mu] m, And lyophilized.

탑재된 Fe의 양 (ICP 측정): 1.5% (wt.)Amount of Fe loaded (ICP measurement): 1.5% (wt.)

탑재된 PTX의 양 (HPLC 측정): 0.3% (wt.)Amount of PTX loaded (HPLC measurement): 0.3% (wt.)

실시예Example 19. 19. 히알루론산의 올레인 유도체 (An olein derivative of hyaluronic acid ( HAC18:1)와HAC18: 1) and ZnOZnO 나노입자로 된 조성물의 제조 Preparation of nanoparticulate compositions

실시예 1에 따라 제조한 히알루로난의 아실화 유도체 150 mg (HAC18:1, DS = 12%, Mw = 15 kDa)을 자기 교반기 위에서 일정하게 교반하면서 2시간 동안 탈염수 15 ml에 용해하였다. 150 mg (HAC18: 1, DS = 12%, Mw = 15 kDa) of the acylated derivative of hyaluronan prepared according to Example 1 was dissolved in 15 ml of demineralized water for 2 hours with constant stirring on a magnetic stirrer.

아실화 히알루로난 용액을 얼음조에 침지된 로제트 초음파조 (RZ 1, 부피: 25 ml)로 옮겼다. 먼저, 용액을 60초간 초음파 처리하였다 (초음파 파라미터: 200 W, 진폭 65%, 주기 0.5 s 및 소노트로드 S2). 또한, CHCl3 3 ml에 분산된 ZnO 5 mg (실시예 5)을 이 용액에 점차 첨가하였다 (초음파 파라미터: 200 W, 진폭 85%, 주기 0.8 s 및 소노트로드 S2). 균질화된 현탁액을 15분간 추가로 초음파 처리하였다 (초음파 파라미터: 진폭 65%, 주기 0.5 s 및 소노트로드 S2). 유리형 나노입자를 반복적인 원심분리(3 x 4500RPM, 10분)를 통해 분리하고, 나노입자가 탑재된 히알루로난 나노마이셀이 함유된 수득되는 상층물을 취하여, 1.0 ㎛으로 여과하고, 동결건조하였다.The acylated hyaluronan solution was transferred to a rosette sonicator (RZ 1, volume: 25 ml) immersed in an ice bath. First, the solution was sonicated for 60 seconds (ultrasound parameter: 200 W, amplitude 65%, period 0.5 s and small note load S2). Also, CHCl 3 5 mg of ZnO dispersed in 3 ml (Example 5) was gradually added to this solution (ultrasonic parameters: 200 W, amplitude 85%, period 0.8 s and soot roots S2). The homogenized suspension was further sonicated for 15 minutes (ultrasound parameters: amplitude 65%, cycle 0.5 s and small note load S2). The glassy nanoparticles were separated by repeated centrifugation (3 x 4500 RPM for 10 minutes), and the resulting supernatant containing the hyaluronan nano-micelles loaded with the nanoparticles was taken, filtered at 1.0 쨉 m, lyophilized Respectively.

탑재된 Zn의 양 (ICP 측정): 1.6% (wt.)Amount of Zn loaded (ICP measurement): 1.6% (wt.)

실시예Example 20. 20. 히알루론산의 올레인 유도체 (An olein derivative of hyaluronic acid ( HAC18:1)와HAC18: 1) and 업- work- 컨버전Conversion 나노입자로 된 조성물의 제조 Preparation of nanoparticulate compositions

실시예 1에 따라 제조한 히알루로난의 아실화 유도체 150 mg (HAC18:1, DS = 12%, Mw = 15 kDa)을 자기 교반기 위에서 일정하게 교반하면서 2시간 동안 탈염수 15 ml에 용해하였다.150 mg (HAC18: 1, DS = 12%, Mw = 15 kDa) of the acylated derivative of hyaluronan prepared according to Example 1 was dissolved in 15 ml of demineralized water for 2 hours while being constantly stirred on a magnetic stirrer.

아실화 히알루로난 용액을 얼음조에 침지된 로제트 초음파조 (RZ 1, 부피: 25 ml)로 옮겼다. 먼저, 용액을 60초간 초음파 처리하였다 (초음파 파라미터: 200 W, 진폭 65%, 주기 0.5 s 및 소노트로드 S2). 또한, CHCl3 3 ml에 분산된 업-컨버전 나노입자 SPION 5 mg (실시예 6)을 이 용액에 점차 첨가하였다 (초음파 파라미터: 200 W, 진폭 85%, 주기 0.8 s 및 소노트로드 S2). 균질화된 현탁액을 15분간 추가로 초음파 처리하였다 (초음파 파라미터: 진폭 65%, 주기 0.5 s 및 소노트로드 S2). 유리형 나노입자를 반복적인 원심분리(3 x 4500RPM, 10분)를 통해 분리하고, 나노입자가 탑재된 히알루로난 나노마이셀이 함유된 수득되는 상층물을 취하여, 1.0 ㎛으로 여과하고, 동결건조하였다.The acylated hyaluronan solution was transferred to a rosette sonicator (RZ 1, volume: 25 ml) immersed in an ice bath. First, the solution was sonicated for 60 seconds (ultrasound parameter: 200 W, amplitude 65%, period 0.5 s and small note load S2). Also, CHCl 3 5 mg (Example 6) of the up-converted nanoparticles SPION dispersed in 3 ml was gradually added to this solution (ultrasonic parameter: 200 W, amplitude 85%, period 0.8 s and small note load S2). The homogenized suspension was further sonicated for 15 minutes (ultrasound parameters: amplitude 65%, cycle 0.5 s and small note load S2). The glassy nanoparticles were separated by repeated centrifugation (3 x 4500 RPM for 10 minutes), and the resulting supernatant containing the hyaluronan nano-micelles loaded with the nanoparticles was taken, filtered at 1.0 쨉 m, lyophilized Respectively.

Er; Y; Yb의 탑재량 (ICP 측정): 0.02; 0.50; 0.19% (wt.)Er; Y; Yb payload (ICP measurement): 0.02; 0.50; 0.19% (wt.)

실시예Example 21. 21. 아실화Acylation 히알루로난Hyaluronan  And SPION으로With SPION 된 조성물의  Of the composition 시험관내In vitro 세포독성 Cytotoxicity

초대 세포 (primary cell), 비-종양 세포 및 종양 세포 (표 1)를 96웰 패널에 접종하여, 37℃/5 % CO2에서 24시간 배양하였다. 그런 후, 세포에, 실시예 7-14, 14 및 15에서 수득된 아실화 히알루로난과 SPION으로 된 조성물 용액을 10, 100, 200 및 500 ㎍/ml 농도 (배양 배지내 폴리머 마이셀의 농도)로 처리하였다. 동시에, 아실화 히알루로난 단독과 SPION 단독 처리시의 생존성도 (각 농도에서) 측정하였다. 세포의 생존성은 MTT 방법을 이용해 0, 24, 48 및 72시간에 모니터링하였으며, 수득되는 값은 해당 시간대에 세포 생존의 저해 또는 활성화를 나타낸다. 다양한 아실화 HA 유도체 및 SPION으로 된 조성물이 처리된 세포의 세포 생존 저해 (도 2A-C) 및 다양한 종양 세포주에 대한 조성물 HAC18:1+SPION (실시예 12)의 영향을 모니터링하였다 (도 3). 도 4A-C는 SPION 5, 10 및 20 nm이 포함된 조성물 (실시예 12, 16, 17)의 세포독성 작용을 비교하여 도시한다. 세포주는 표 1에 나타낸다.Primary cells, non-tumor cells and tumor cells (Table 1) were inoculated on 96-well panels and cultured for 24 hours at 37 ° C / 5% CO 2 . Cells were then treated with the composition solutions of acylated hyaluronan and SPION obtained in Examples 7-14, 14 and 15 at concentrations of 10, 100, 200 and 500 / / ml (concentration of polymer micelle in the culture medium) Lt; / RTI > At the same time, survival (at each concentration) of acylated hyaluronan alone and SPION alone was measured. Viability of the cells was monitored at 0, 24, 48 and 72 hours using the MTT method, and the values obtained indicate inhibition or activation of cell survival at that time. The effects of various HAC18: 1 + SPION (Example 12) on the inhibition of cell viability ( Figure 2A-C ) and various tumor cell lines of cells treated with various acylated HA derivatives and SPION were monitored (Figure 3) . Figures 4A-C show comparative cytotoxic effects of compositions comprising SPION 5, 10 and 20 nm (Examples 12, 16, 17). The cell lines are shown in Table 1 .

표 1. 테스트한 부착 세포주의 목록 Table 1. List of cell lines tested

세포주의 명칭Name of cell line 세포 타입/기원Cell type / Origin 대조군 세포주Control cell line NHDFNHDF 초대 인간 진피 섬유모세포Invasive human dermal fibroblast 3T33T3 마우스 섬유모세포주Mouse fibroblast 종양 세포주Tumor cell line HT29HT29 인간 결장직장 선암종Human colon rectal adenocarcinoma A2058A2058 인간 흑색종Human melanoma A549A549 인간 폐 암종Human lung carcinoma C3AC3A 인간 간세포암Human hepatocellular carcinoma MCF7MCF7 인간 유방 선암종Human breast adenocarcinoma HCT116HCT116 인간 결장직장 암종Human colon rectal carcinoma MDA-MB231MDA-MB231 인간 유방 선암종Human breast adenocarcinoma Caco2Caco2 인간 결장직장 선암종Human colon rectal adenocarcinoma

2A-C의 결과는, 대조군 세포주 (NHDF 및 3T3)와는 다르게, 종양 세포주 HT29의 경우, 세포 증식에 현저한 저해가 있음을 보여준다. 최대 저해는 C18 및 C18:1 아실화 유도체를 기재로 한 조성물에서 나타났다. C18:1 유도체와 SPION을 기재로 포함하는 조성물은 NHDF와 3T3 세포의 생존성에 대해서는 보다 강력한 지지를 나타내었다. 아실화 히알루로난 단독과 SPION은 어떠한 테스트 세포에서도 생존에 영향을 미치지 않았다 (데이타 도시안됨).The results in Figures 2A-C show that, unlike the control cell lines (NHDF and 3T3), there is a significant inhibition of cell proliferation in the tumor cell line HT29. The maximal inhibition appeared in compositions based on C18 and C18: 1 acylated derivatives. The compositions containing C18: 1 derivatives and SPION as substrates showed stronger support for the viability of NHDF and 3T3 cells. Acylated hyaluronan alone and SPION did not affect survival in any test cell (data not shown).

HAC18:1과 SPION으로 된 조성물을 다른 종양 세포주에 처리하였다 (도 3). 실험 데이타는, 종양 세포주 A549, HCT116, C3A, MCF7, MDA-MB231 및 Caco2의 증식을 늦추는 것으로 나타났다. 흑색종 세포주 A2058은 예외였는데, 이 세포주의 경우 조성물을 최고 농도 (500 ㎍/ml)로 처리한 경우에만 저해가 약간 나타났다. 대조군 섬유모세포 (NHDF와 3T3)는, 이와는 반대로, 조성물에 의해 현저하게 자극되었으며, 심지어 최고 농도 500 ㎍/ml에서도 어떠한 세포독성 특성은 나타나지 않았다.The composition with HAC18: 1 and SPION was processed into other tumor cell lines ( Figure 3 ). The experimental data showed that the growth of tumor cell lines A549, HCT116, C3A, MCF7, MDA-MB231 and Caco2 was delayed. An exception was the melanoma cell line A2058, which showed only a slight inhibition when treated with the highest concentration (500 μg / ml) of the composition. Control fibroblasts (NHDF and 3T3), on the other hand, were markedly stimulated by the composition and did not exhibit any cytotoxic properties even at the highest concentration of 500 [mu] g / ml.

4A-C는 5nm SPION을 포함하는 조성물의 선택적인 항종양 활성을 검증해준다. 이런 효과는 10nm SPION 함유 조성물과 20nm SPION 함유 조성물에서는 상기한 수준으로 관찰되지 않는다. Figures 4A-C demonstrate selective anti-tumor activity of compositions comprising 5 nm SPION. Such an effect can not be observed at the above-mentioned levels in the composition containing 10 nm SPION and the composition containing 20 nm SPION.

실시예Example 22. 22. 아실화 히알루로난과 아연 산화물 나노입자로 된 조성물의 A composition comprising acylated hyaluronan and zinc oxide nanoparticles 시험관내In vitro 세포독성Cytotoxicity

초대 인간 섬유모세포 (NHDF), 장의 종양 세포 HT-29 및 마우스 섬유모세포 3T3를 96웰 패널에 접종하고, 37℃/5 % CO2에서 24시간 배양하였다. 그런 후, 세포에, 실시예 19에서 수득된 아실화 히알루로난과 아연 산화물 나노입자로 된 조성물 용액을 10, 100, 200 및 500 ㎍/ml 농도 (폴리머 마이셀의 농도)로 처리하였다. 세포의 생존성은 MTT 방법을 이용해 0, 24, 48 및 72시간에 모니터링하였으며, 수득되는 값은 해당 시간대에 세포 생존의 저해 또는 활성화를 나타낸다 (도 5A-C).Early human fibroblast (NHDF), intestinal tumor cells HT-29 and mouse fibroblast 3T3 were seeded in 96-well panels and cultured for 24 hours at 37 ° C / 5% CO 2 . Then, the cells were treated with the composition solution of the acylated hyaluronan and zinc oxide nanoparticles obtained in Example 19 at a concentration of 10, 100, 200 and 500 占 퐂 / ml (concentration of polymer micelle). Cell viability was monitored at 0, 24, 48 and 72 hours using the MTT method, and the values obtained show inhibition or activation of cell survival at that time ( FIGS. 5A - C ).

5A-C의 결과는, 대조군 세포주 (NHDF 및 3T3)와는 다르게, 배양 시간이 증가함에 따라 폴리머 마이셀의 고 농도에서 종양 세포주의 증식 저해가 발생됨을 보여준다. 그러나, 이 때, 3T3 세포에서도 500 ㎍/ml로 처리한 경우에는 증식 저해가 관찰되었다. 더 낮은 농도의 조성물과 대조군 NHDF 세포주에서는 저해가 관찰되지 않았다.The results in Figures 5A-C show that, unlike the control cell lines (NHDF and 3T3), the proliferation inhibition of tumor cell lines occurs at high concentrations of polymer micelles with increasing incubation time. However, at this time, proliferation inhibition was also observed in 3T3 cells treated with 500 ㎍ / ml. No inhibition was observed with lower concentrations of the composition and the control NHDF cell line.

실시예Example 23. 23. 아실화 히알루로난과 업-컨버전 나노입자로 된 조성물의 The composition of acylated hyaluronan and up-converted nanoparticles 시험관내In vitro 세포독성Cytotoxicity

초대 인간 섬유모세포 (NHDF), 장의 종양 세포 HT-29 및 마우스 섬유모세포 3T3를 96웰 패널에 접종하고, 37℃/5 % CO2에서 24시간 배양하였다. 그런 후, 세포에, 실시예 20에서 수득된 업-컨버전 나노입자를 포함하는 폴리머 마이셀 용액을 10, 100, 200 및 500 ㎍/ml 농도 (폴리머 마이셀의 농도)로 처리하였다. 세포의 생존성은 MTT 방법을 이용해 0, 24, 48 및 72시간에 모니터링하였으며, 수득되는 값은 해당 시간대에 세포 생존의 저해 또는 활성화를 나타낸다 (도 6A-C).Early human fibroblast (NHDF), intestinal tumor cells HT-29 and mouse fibroblast 3T3 were seeded in 96-well panels and cultured for 24 hours at 37 ° C / 5% CO 2 . Cells were then treated with polymeric micellar solutions containing the up-converted nanoparticles obtained in Example 20 at concentrations of 10, 100, 200 and 500 占 퐂 / ml (concentration of polymer micelle). Cell viability was monitored at 0, 24, 48 and 72 hours using the MTT method, and the values obtained show inhibition or activation of cell survival at that time ( FIGS. 6A - C ).

도 6A-C의 결과는, 생존성이 고도로 증가된 대조군 세포주 NHDF와는 다르게, 배양 시간이 증가함에 따라 종양 세포에서는 증식이 저해됨을 보여준다. 그러나, 비-종양 세포인 3T3에서도 약간의 저해가 관찰된다.The results in Figures 6A-C show that, unlike the highly viable control cell line NHDF, survival is inhibited in tumor cells as incubation time increases. However, some inhibition is also observed in 3T3, a non-tumor cell.

실시예Example 24. 24. 아실화 히알루로난과 SPION으로 된 조성물의 Of a composition comprising acylated hyaluronan and SPION 시험관내 선택적인 세포독성In vitro selective cytotoxicity

DiO(녹색)로 표지된 초대 인간 섬유모세포와 DiI (적색)로 표시된 종양 세포 HT-29는 3:1의 비율이었으며, 전체 농도 50,000 세포/웰로 24웰 패널의 각 웰에서 RPMI 1640 (Roswell Park Memorial Institut) 배지 1 ml에 접종하였다. 세포 단일층의 min 80% 컨플루언스에 도달한 후, 세포에 실시예 12의 SPION을 포함하는 조성물 용액 200 ㎍/ml을 처리하였다. 72시간 배양한 후, 형광 현미경 Nikon Ti-Eclipse를 사용해 세포 사진을 촬영하였다 (도 7).The early human fibroblasts labeled with DiO (green) and the tumor cells HT-29 labeled with DiI (red) were in a ratio of 3: 1 and were grown in RPMI 1640 (Roswell Park Memorial Institut) medium. After reaching a min 80% confluence of the cell monolayer, the cells were treated with 200 [mu] g / ml of the composition solution containing SPION of Example 12. After 72 hours of culture, cell photographs were taken using a fluorescence microscope Nikon Ti-Eclipse ( Fig. 7 ).

대조군 세포 및 종양 세포에 대한 가능성있는 차별적인 활성 기전을 해명하기 위해, 히알루로란에 대한 CD44 수용체의 발현을 NHDF, MCF-7 및 MDA-MB-231 세포들에서 유세포 측정을 통해 분석하였다. 80% 컨플루언스에 도달한 후, 세포를 PBS로 헹군 다음 anti-CD44-FITC 항체와 함께 15분간 인큐베이션하였고, 인큐베이션이 끝나면 이를 PBS로 2번 헹군 다음 유세포 측정기 MACSQuant Analyzer (Miltenyi Biotec)로 분석하였다. 그 결과는 형광 세기 (RFU)로 표시된다 (도 8).Expression of CD44 receptor on hyaluronan was analyzed by flow cytometry in NHDF, MCF-7 and MDA-MB-231 cells to elucidate possible differential active mechanisms for control and tumor cells. After reaching 80% confluence, the cells were rinsed with PBS and incubated with anti-CD44-FITC antibody for 15 minutes. When incubation was complete, the cells were rinsed twice with PBS and analyzed with a flow cytometer MACSQuant Analyzer (Miltenyi Biotec) . The results are expressed in terms of fluorescence intensity (RFU) ( Fig. 8 ).

또한, NHDF 세포와 HT-29 세포의 경우, 실시예 12의 아실화 히알루로난과 SPION으로 된 조성물로 처리한 다음 산화적 스트레스를 측정하였다. 세포를 6웰 패널에서 배양하고, 80% 컨플루언스에 도달한 후 여기에 SPION이 포함된 조성물 용액 200 ㎍/ml을 24시간 처리하였다. 대조군 세포의 경우에는 테스트 조성물을 첨가하지 않고, 배지만 신선한 배지로 한번 교체하였다. 배양 후, 세포를 헹구고, DCF-DA (세포내 ROS에 의해 산화되어 형광성 DCF가 되는 비-형광 물질, 최종 농도: 1 uM)를 20분/37℃/암조건 하에 처리하였다. PBS로 헹군 다음, 세포를 유세포 측정기 MACSQuant Analyzer (Miltenyi Biotec)에서 분석하였다. 그 결과는 세포 내부의 DCF의 상대적인 형광 세기 (비-처리 대조군 대비 %)로 표시된다 (도 9).In the case of NHDF cells and HT-29 cells, the oxidative stress was measured after treatment with the composition of acylated hyaluronan of Example 12 and SPION. Cells were cultured on a 6-well panel, and after reaching 80% confluence, 200 μg / ml of the composition solution containing SPION was treated for 24 hours. In the case of control cells, the test composition was not added and the medium was replaced once with fresh medium. After incubation, the cells were rinsed and treated with DCF-DA (non-fluorescent material oxidized by intracellular ROS to become fluorescent DCF, final concentration: 1 uM) for 20 min / 37 ° C / dark condition. Rinsed with PBS, and then the cells were analyzed on a flow cytometer MACSQuant Analyzer (Miltenyi Biotec). The results are expressed as the relative fluorescence intensity (% vs. non-treated control) of DCF within the cells ( Figure 9 ).

도 7의 결과는 종양 세포주 HT-29에 대한 선택적인 증식 저해와, 이와는 반대로 대조군 섬유모세포인 NHDF에서는 부정적인 영향이 없고 컨플루언스에 도달함을 검증해준다. 이런 효과는 차별적인 ROS 형성 유도에 의해 야기된 것이 아니었으며, ROS 형성 유도는 2가지 세포 타입들 모두에서 증가되고, 동일한 수준으로 증가하였다 (도 9). 그에 대한 설명으로, NHDF 및 HT-29 세포에서 ROS 생성 증가에 대한 차별적인 반응 수준을 언급할 수 있다.The results of FIG. 7 demonstrate that selective proliferation inhibition of tumor cell line HT-29 and, conversely, NHFF, a control fibroblast, do not adversely affect confluence. This effect was not caused by differential induction of ROS formation, and induction of ROS formation was increased and increased to the same level in both cell types (FIG. 9) . As an explanation for this, we can refer to differentiated levels of response to increased ROS production in NHDF and HT-29 cells.

대조군 세포와 종양 세포에 대한 활성 차이가, 히알루로난에 대한 주요 표면 수용체, CD44의 발현과 연관된 것은 아니다. 도 8은 조성물에 의해 생존성이 증가된 대조군 NHDF 섬유모세포에서는 CD44의 발현이 높고, 현저한 생존성 저해가 관찰되는 종양 세포주 MCF-7과 MDA-MB-231에서는 발현 수준이 낮다는 것을 검증해준다 (도 3).Differences in activity against control cells and tumor cells are not associated with expression of the major surface receptor, hyaluronan, CD44. Figure 8 verifies that the expression level of the tumor cells MCF-7 and MDA-MB-231, which are highly expressed in the CD44 and high survival inhibition, is low in the control NHDF fibroblasts with increased viability by the composition 3).

실시예 12의 아실화 히알루로난과 SPION으로 된 조성물과 함께 인큐베이션한 세포를 염색한 후 (프러시안 블루를 이용한 Fe 존재 검출), Fe 이온의 차별적인 분포를 관찰하였는데, 종양 세포에서는 용해된 Fe가 검출된 반면, 대조군 세포에서는 철 응집체가 검출되었다 (도 10). 이 현상이 종양 세포에서 조성물의 선택적인 활성의 원인일 수 있었다.Differential distribution of Fe ions was observed after staining cells incubated with the composition of acylated hyaluronan of Example 12 and SPION (presence of Fe using Prussian Blue), and in the tumor cells, dissolved Fe While iron aggregates were detected in control cells ( Figure 10 ). This phenomenon could be the cause of the selective activity of the composition in tumor cells.

실시예 25.Example 25. 정맥내 투여용 조성물의 제조Preparation of a composition for intravenous administration

멸균 0.9% NaCl 650 ㎕를 무균 방식으로 제조한 실시예 12의 아실화 히알루로난 및 SPION으로 된 조성물 20-30 mg에 첨가하고, 용액을 동결건조물이 완전히 용해될 때까지 가끔 교반한다. 이 용액은 문제없이 인 비보 (in vivo)로 주사가능하다.650 [mu] l of sterile 0.9% NaCl is added to 20-30 mg of the acylated hyaluronan and SPION composition of Example 12 prepared aseptically and the solution is stirred occasionally until the lyophilizate is completely dissolved. This solution is injectable in vivo without problems.

이 방식으로 제조된 용액은 입자의 수력학적 크기 (hydrodynamic size)에 대한 한 적어도 2일간 안정적이다.Solutions prepared in this manner are stable for at least 2 days as long as the hydrodynamic size of the particles.

실시예 26.Example 26. 정맥내 투여용 조성물의 제조Preparation of a composition for intravenous administration

멸균 5% 덱스트로스 650 ㎕를 무균 방식으로 제조한 실시예 12의 아실화 히알루로난 및 SPION으로 된 조성물 20-30 mg에 첨가하고, 용액을 동결건조물이 완전히 용해될 때까지 가끔 교반한다. 이 용액은 문제없이 인 비보 (in vivo)로 주사가능하다.650 [mu] l of sterile 5% dextrose is added to 20-30 mg of the acylated hyaluronan and SPION of Example 12 prepared aseptically, and the solution is stirred occasionally until the lyophilizate is completely dissolved. This solution is injectable in vivo without problems.

이 방식으로 제조된 용액은 입자의 수력학적 크기에 대한 한 적어도 2일간 안정적이다.Solutions prepared in this manner are stable for at least 2 days as long as the hydrodynamic size of the particles.

실시예Example 27. 27. 아실화Acylation 히알루로난Hyaluronan  And SPION으로With SPION 된 조성물의 인 비보 (in vivo) 검출 In Vivo Detection of < RTI ID = 0.0 >

교모세포종 종양을 가진 루이스 브라운 노르웨이 랫을 생체내 검사에 이용하였다. 이 종양은 3 x 106개의 교모세포종 세포를 다리 근육에 주사하여 확립하였으며, 9일 후 아실화 히알루로난 (HAC18:1) 및 SPION으로 된 조성물 (0.9% NaCl 중의 용액 750 ㎕, Fe 함량 1.1 mg/kg)을 정맥내 투여하였다. 그런 다음, Bruker Biospec (4.7 T)을 이용해 랫을 분석하였다.Lewis Brown Norweg rats with glioblastoma tumors were used for in vivo examination. This tumor was established by injecting 3 x 10 6 glioma cells into the leg muscles and after 9 days the composition consisting of acylated hyaluronan (HAC18: 1) and SPION (750 μl of solution in 0.9% NaCl, Fe content 1.1 mg / kg) was intravenously administered. The rats were then analyzed using a Bruker Biospec (4.7 T).

조성물을 정맥내 투여한 후 종양내 SPION의 축적은 도 11에서 검증되었는데, 특히 종양의 가장자리에서 어두운 부분이 검출된 부분이다. 가시적인 SPION 축적은 간에서도 검출되었으며 (도 12), 따라서, 이 조성물은 간의 조영제로서 사용될 수 있다.Accumulation of SPION in the tumor after intravenous administration of the composition has been verified in Fig. 11, particularly where the dark portion is detected at the edge of the tumor. Visible accumulation of SPION was also detected in the liver ( Fig. 12 ), and thus this composition can be used as contrast medium in the liver.

SPION 축적은 동물 안락사 후 종양 (도 13)과 간 (도 14)의 조직 단편에서도 검증되었는데, Fe의 존재는 프러시안 블루 착색으로 검출되었다 (도에서 청색 염색). 블루 착색은 어떤 대조군 샘플에서도 검출되지 않았다.The accumulation of SPION was also confirmed in tissue sections after tumor euthanasia ( FIG. 13 ) and liver ( FIG. 14 ), where the presence of Fe was detected by prussian blue staining (blue staining in the figure). No blue staining was detected in any of the control samples.

실시예Example 28. 28. 자동멸균에 의한 아실화 히알루로난 및 SPION으로 된 조성물의 멸균Sterilization of autoclaved hyaluronan and SPION compositions

실시예 12에 따라 제조된 조성물 (농도: 0.9% NaCl 중의 30 mg/ml)의 멸균을 121℃에서 15분간 자동멸균기에서 수행하였다.Sterilization of the composition prepared according to Example 12 (concentration: 30 mg / ml in 0.9% NaCl) was carried out in a sterilizer for 15 minutes at 121 占 폚.

용액은 멸균 후 안정적이었으며, SPION은 히알루로난 나노마이셀 내에 군집된 상태로 유지되었고 (도 15), 종양 세포에 대한 선택적인 세포독성 효과가 유지되었다.The solution was stable after sterilization and the SPION remained clustered in hyaluronan nano-micelles ( Fig. 15 ), maintaining a selective cytotoxic effect on tumor cells.

실시예 21에 기술된 공정에 따라 종양 세포 HT-29와 대조군 초대 NHDF 섬유모세포에 대해 세포독성을 측정하였다. 도 16은 실시예 12의 조성물을 자동멸균에 의한 멸균 전과 멸균 이후에 비교한 결과를 보여주는데, 종양 세포에 대한 선택적인 세포독성이 자동멸균에 의해 멸균 이후에도 유지되었다.Cytotoxicity was measured for tumor cell HT-29 and control primary NHDF fibroblasts according to the procedure described in Example 21. [ Figure 16 shows the results of comparing the composition of Example 12 before autoclaving and after sterilization, with selective cytotoxicity to tumor cells maintained after sterilization by automatic sterilization.

실시예 29.Example 29. 마우스 종양 현탁 림프종 세포주 EL4에서의 세포자살 유도Induction of cell suicide in mouse tumor-suspending lymphoma cell line EL4

마우스 림프종 세포주 EL4 (마우스의 발암 실험 모델에서 종양 유도를 위해 사용됨)를 RPMI 1640 (Roswell Park Memorial Institut) 배지에서 배양하였다. 지수 증식기에, 5 x 105 세포/ ml(RPMI 배지) 농도의 세포 배양물로부터 분액들을 준비하였고, 여기에 실시예 9의 SPION이 포함된 조성물 용액을 100, 200 및 500 ㎍/ml로 처리하였다. 72시간 인큐베이션한 다음, 세포를 헹구고, 세포 사멸의 형광 마커 (프로피듐 아이오다이드, 아넥신 V-FITC)를 이용해 특이적으로 발색시키고, 유세포 측정기 MACSQuant (Miltenyi Biotec)에서 검출하였다.The mouse lymphoma cell line EL4 (used for tumor induction in a mouse carcinogenicity test model) was cultured in RPMI 1640 (Roswell Park Memorial Institut) medium. In the exponential growth phase, aliquots were prepared from cell cultures at a concentration of 5 x 10 5 cells / ml (RPMI medium), and the composition solution containing SPION of Example 9 was treated with 100, 200 and 500 μg / ml . After incubation for 72 hours, the cells were rinsed and developed specifically using a fluorescent marker (propidium iodide, Annexin V-FITC) for cell death and detected on a flow cytometer MACSQuant (Miltenyi Biotec).

17A-C에서, 실시예 12의 SPION을 포함하는 조성물 용액을 100 ㎍/ml 처리 후 명백한 세포자살 유도 (우측 하단 사분위 세포 집단, 도 17B)와 세포괴사의 일부 증가 유도 (좌/우측 상단 사분위, 도 17B)가 존재하였다. 조성물을 각각의 농도로 처리한 후 살아있는 세포, 세포자살 세포 및 괴사 세포를 그래프에 표시한다 (도 17C).In Figure 17A-C, Example 12 of SPION after 100 ㎍ / ml treatment a composition solution containing the apparent apoptotic induction (lower right quartile cell population, FIG. 17B) with some increase in the induction of cell death (left / upper right Quartile, Figure 17B). After the composition is treated at each concentration, live cells, apoptotic cells and necrotic cells are displayed on the graph (FIG. 17C).

Claims (23)

일반식 (I)에 따른 히알루론산의 C6-C18 아실화 유도체를 포함하는 항종양 조성물로서,
안정화 올레산을 함유하는 무기 나노입자를 더 포함하며,
상기 무기 나노입자가 초상자성 나노입자, 업-컨버전 (upconversion) 나노입자 또는 아연 산화물 나노입자로 이루어진 군으로부터 선택되고, 특히 초상자성 나노입자로부터 선택되는, 항종양 조성물:
Figure pct00001
(I)
상기 식에서,
R은 H+ 또는 Na+이고;
R1은 H 또는 -C(=O)CxHy 또는 -C(=O)CH=CH-het이며, 여기서 x는 5-17 범위의 정수이고, y는 11-35 범위의 정수이고, CxHy는 선형 또는 분지형의, 포화 또는 불포화된 C5-C17 체인이고, het는 선택적으로 N, S 또는 O 원자를 포함하는 헤테로사이클릭 또는 헤테로방향족 잔기이고;
적어도 하나의 반복 단위에서, 하나 이상의 R1 -C(=O)CxHy 또는 -C(=O)CH=CH-het이고;
n은 12 - 4000의 범위임.
An antitumor composition comprising a C 6 -C 18 acylated derivative of hyaluronic acid according to general formula (I)
Further comprising inorganic nanoparticles containing stabilized oleic acid,
Wherein the inorganic nanoparticles are selected from the group consisting of a superpowder nanoparticle, an upconversion nanoparticle or a zinc oxide nanoparticle, and is selected from a superparamagnetic nanoparticle.
Figure pct00001
(I)
In this formula,
R is H + or Na + ;
R 1 is H or -C (= O) C x H y or -C (= O) CH = CH -het, where x is an integer from the range 5-17, y is an integer in the range of 11-35, C x H y is a linear or branched, saturated or unsaturated C 5 -C 17 chain, and het is a heterocyclic or heteroaromatic moiety optionally containing N, S or O atoms;
In at least one repeat unit, one or more R < 1 > -C (= O) C x H y or -C (= O) CH = CH-het;
n ranges from 12 to 4000.
제1항에 있어서,
아실화 히알루로난이 포화 결합과 불포화 결합을 가진 히알루론산의 C6-C18 아실화 유도체이고, 특히 C18:1 아실화 히알루론산 유도체인, 항종양 조성물.
The method according to claim 1,
Wherein the acylated hyaluronan is a C 6 -C 18 acylated derivative of hyaluronic acid having a saturated bond and an unsaturated bond, in particular a C 18: 1 acylated hyaluronic acid derivative.
제1항 또는 제2항에 있어서,
아실화 히알루로난이 무기 나노입자의 담체로서 사용되는, 항종양 조성물.
3. The method according to claim 1 or 2,
Wherein the acylated hyaluronan is used as a carrier for the inorganic nanoparticles.
제1항 내지 제3항 중 어느 한항에 있어서,
상기 무기 나노입자가 초상자성 나노입자인, 항종양 조성물.
4. The method according to any one of claims 1 to 3,
Wherein the inorganic nanoparticles are superparamagnetic nanoparticles.
제4항에 있어서,
철 산화물계의 초상자성 나노입자를 포함하며,
조성물내 Fe 함량이 0.3 - 3% wt., 바람직하게는 1.0 % wt.인, 항종양 조성물.
5. The method of claim 4,
Iron oxide based superpowder magnetic nanoparticles,
Wherein the Fe content in the composition is 0.3 - 3% wt., Preferably 1.0% wt.
제4항 또는 제5항에 있어서,
5 - 20 nm 크기를 가진 초상자성 나노입자를 포함하는, 항종양 조성물.
The method according to claim 4 or 5,
Wherein the nanoparticles comprise superparamagnetic nanoparticles having a size of 5-20 nm.
제4항 또는 제5항에 있어서,
5 - 7 nm 크기를 가진 초상자성 나노입자를 포함하는, 항종양 조성물.
The method according to claim 4 or 5,
An antitumor composition comprising superparamagnetic nanoparticles having a size of 5-7 nm.
제4항 또는 제5항에 있어서,
5 nm 크기를 가진 초상자성 나노입자를 포함하는, 항종양 조성물.
The method according to claim 4 or 5,
Lt; RTI ID = 0.0 > 5 nm < / RTI > size.
제1항 내지 제3항 중 어느 한항에 있어서,
아연 산화물 나노입자를 0.3 - 3% wt. 함량으로 포함하는, 항종양 조성물.
4. The method according to any one of claims 1 to 3,
Zinc oxide nanoparticles 0.3 - 3% wt. Lt; RTI ID = 0.0 > 1, < / RTI >
제1항 내지 제3항 중 어느 한항에 있어서,
상기 조성물내 희토류 원소의 총 함유량이 0.3 - 3% wt.이 되는 함량으로 업-컨버전 나노입자를 포함하는, 항종양 조성물.
4. The method according to any one of claims 1 to 3,
Wherein the composition comprises up-converted nanoparticles in an amount such that the total content of rare earth elements in the composition is 0.3 - 3% wt.
제10항에 있어서,
Er, Yb 및 Y를 함유하는 업-컨버전 나노입자를 포함하는, 항종양 조성물.
11. The method of claim 10,
0.0 > Er, < / RTI > Yb, and Y. The anti-
제1항 내지 제11항 중 어느 한항에 있어서,
종양 세포의 부착성 증식 (adherent growth)과 현탁성 증식 (suspension growth)을 저해하는데 사용하기 위한 것인, 항종양 조성물.
12. The method according to any one of claims 1 to 11,
Wherein the composition is for use in inhibiting adherent growth and suspension growth of tumor cells.
제1항 내지 제12항 중 어느 한항에 있어서,
결장직장 암종 및 선암종, 폐 암종, 간세포암, 유방 선암종, 바람직하게는 결장직장 암종 및 선암종으로부터 유래되는 종양 세포의 증식을 저해하는데 사용하기 위한 것인, 항종양 조성물.
13. The method according to any one of claims 1 to 12,
Wherein the composition is for use in inhibiting the proliferation of tumor cells derived from colorectal carcinomas and adenocarcinomas, lung carcinomas, hepatocellular carcinomas, breast adenocarcinomas, preferably from colorectal carcinomas and adenocarcinomas.
제4항 내지 제8항 중 어느 한항에 있어서,
상기 조성물의 체내 축적을 인 비보 (in vivo)로 검출하는데, 특히 종양 및 간내 축적을 인 비보로 검출하는데 사용하기 위한 것인, 항종양 조성물.
9. The method according to any one of claims 4 to 8,
Wherein said composition is for detecting in vivo accumulation of said composition in vivo, especially for use in detecting tumor and intracranial accumulation in vivo.
제4항 내지 제8항 중 어느 한항에 있어서,
체내 병변 형성 (pathological formation), 특히 종양 형성을 인 비보로 검출하는데 사용하기 위한 것인, 항종양 조성물.
9. The method according to any one of claims 4 to 8,
Wherein the composition is for use in detecting pathological formation, particularly tumor formation, in vivo.
제1항 내지 제15항 중 어느 한항에 있어서,
비경구 투여 또는 국소 투여 (local administration)용 제형으로 적용가능한, 항종양 조성물.
16. The method according to any one of claims 1 to 15,
Which is applicable as a parenteral administration or formulation for local administration.
제1항 내지 제16항 중 어느 한항에 있어서,
약학적 조성물에 사용되는 다른 첨가제, 바람직하게는 염화나트륨, 덱스트로스 또는 완충성 염 (buffering salt)을 더 포함하는, 항종양 조성물.
17. The method according to any one of claims 1 to 16,
Further comprising other additives used in the pharmaceutical composition, preferably sodium chloride, dextrose or buffering salt.
제1항 내지 제17항 중 어느 한항에 있어서,
의학적 물질, 바람직하게는 세포증식 억제제 (cytostatic)를 더 포함하는, 항종양 조성물.
18. The method according to any one of claims 1 to 17,
An antitumor composition, which further comprises a medical substance, preferably a cell growth inhibitor (cytostatic).
제1항 내지 제18항 중 어느 한항에 있어서,
자동멸균 (autoclaving)에 의해 최종 제품 형태 (final casing)로 멸균가능한, 항종양 조성물.
19. The method according to any one of claims 1 to 18,
An antitumor composition capable of being sterilized by a final casing by autoclaving.
제1항 내지 제19항 중 어느 한항에 따른 조성물의 제조 방법으로서,
히알루론산의 아실화 유도체의 수용액을 제조하는 단계,
유기 할라이드 용매에 분산되고 올레산에 의해 안정화된 무기 입자를 첨가하는 단계;
형성된 현탁액을, 균질한 혼합물이 형성될 때까지 초음파 처리하는 단계; 및
원심분리와 후속적인 여과를 통해, 나노마이셀에 탑재된 나노입자로부터 유리형 무기 나노입자를 분리하는 단계를 포함하며,
상기 무기 입자가 초상자성 나노입자, 업-컨버전 나노입자 또는 아연 산화물 나노입자로 이루어진 군으로부터 선택되는, 제조 방법.
A process for the production of a composition according to any one of claims 1 to 19,
Preparing an aqueous solution of an acylated derivative of hyaluronic acid,
Adding inorganic particles dispersed in an organic halide solvent and stabilized by oleic acid;
Sonicating the formed suspension until a homogeneous mixture is formed; And
Separating the free inorganic nanoparticles from the nanomyelite-loaded nanoparticles through centrifugation and subsequent filtration,
Wherein the inorganic particles are selected from the group consisting of a super-magnetic nanoparticle, an up-converted nanoparticle or a zinc oxide nanoparticle.
제20항에 있어서,
여과물은 이후 동결건조되는, 제조 방법.
21. The method of claim 20,
The filtrate is then lyophilized.
제20항에 있어서,
여과물은 이후 최종 제품 형태로 자동멸균에 의해 멸균처리되는, 제조 방법.
21. The method of claim 20,
The filtrate is then sterilized by automatic sterilization in the form of a final product.
제21항에 있어서,
동결건조물은 이후 수용액에 용해되며, 최종 제품 형태로 자동멸균에 의해 멸균처리되는, 제조 방법.
22. The method of claim 21,
The lyophilisate is then dissolved in an aqueous solution and sterilized by automatic sterilization in the form of a final product.
KR1020177002613A 2014-06-30 2015-06-30 Antitumor composition based on hyaluronic acid and inorganic nanoparticles, method of preparation thereof and use thereof KR20170021351A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CZPV2014-451 2014-06-30
CZ2014-451A CZ2014451A3 (en) 2014-06-30 2014-06-30 Antitumor composition based on hyaluronic acid and inorganic nanoparticles, process of its preparation and use
PCT/CZ2015/000068 WO2016000669A2 (en) 2014-06-30 2015-06-30 Antitumor composition based on hyaluronic acid and inorganic nanoparticles, method of preparation thereof and use thereof

Publications (1)

Publication Number Publication Date
KR20170021351A true KR20170021351A (en) 2017-02-27

Family

ID=54754397

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177002613A KR20170021351A (en) 2014-06-30 2015-06-30 Antitumor composition based on hyaluronic acid and inorganic nanoparticles, method of preparation thereof and use thereof

Country Status (11)

Country Link
US (1) US10617711B2 (en)
EP (1) EP3160509B1 (en)
JP (1) JP6556765B2 (en)
KR (1) KR20170021351A (en)
CZ (1) CZ2014451A3 (en)
DK (1) DK3160509T3 (en)
ES (1) ES2768798T3 (en)
HU (1) HUE049244T2 (en)
PL (1) PL3160509T3 (en)
RU (1) RU2686679C2 (en)
WO (1) WO2016000669A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200080094A (en) * 2018-12-26 2020-07-06 서울대학교산학협력단 Nanoparticles for the selective death of cancer cells through ferroptosis, method for preparing the same, and the use thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112442355B (en) * 2020-11-28 2022-04-05 江西师范大学 VS coated by rare earth-hyaluronic acid coordination polymer2Nano structure and preparation method and application thereof

Family Cites Families (207)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2001633A (en) 1934-09-22 1935-05-14 Crispin B Segovia Geographical clock
US3075527A (en) 1960-06-02 1963-01-29 Chemway Corp Sterile medicated strips
US3720662A (en) 1971-09-13 1973-03-13 Nat Starch Chem Corp Preparation of starch esters
US3728223A (en) 1971-10-08 1973-04-17 Amano Pharma Co Ltd Production of hyaluronidase from a strain of streptomyces
GB1527592A (en) 1974-08-05 1978-10-04 Ici Ltd Wound dressing
CH628088A5 (en) 1975-09-17 1982-02-15 Dresden Arzneimittel Process for obtaining streptococcal metabolic products
US4205025A (en) 1975-12-22 1980-05-27 Champion International Corporation Synthetic polymeric fibrids, fibrid products and process for their production
JPS6033474B2 (en) 1978-05-11 1985-08-02 藤沢薬品工業株式会社 Novel hyaluronidase BMP-8231 and its production method
US4716224A (en) 1984-05-04 1987-12-29 Seikagaku Kogyo Co. Ltd. Crosslinked hyaluronic acid and its use
US4713448A (en) 1985-03-12 1987-12-15 Biomatrix, Inc. Chemically modified hyaluronic acid preparation and method of recovery thereof from animal tissues
US4851521A (en) 1985-07-08 1989-07-25 Fidia, S.P.A. Esters of hyaluronic acid
GB8519416D0 (en) 1985-08-01 1985-09-04 Unilever Plc Oligosaccharides
JPS62104579A (en) 1985-10-30 1987-05-15 Kyowa Hakko Kogyo Co Ltd Production of hyaluronidase
JPH0751064B2 (en) 1986-08-13 1995-06-05 生化学工業株式会社 Novel hyaluronidase SD-678 and method for producing the same
IT1219587B (en) 1988-05-13 1990-05-18 Fidia Farmaceutici SELF-CROSS-LINKED CARBOXYLY POLYSACCHARIDES
JPH0214019A (en) 1988-06-30 1990-01-18 Tonen Corp Fibrous shaped material and production thereof
JPH0755961B2 (en) 1989-04-18 1995-06-14 工業技術院長 Novel hyaluronic acid derivative and method for producing the same
IT1248666B (en) 1990-05-30 1995-01-26 Fidia Spa GEL IN THE FORM OF HIGHLY HYDRATED SELF-SUPPORTING FILMS, PROCESS FOR THEIR PREPARATION AND USE IN THE THERAPY OF INJURIES AND / OR SKIN PATHOLOGIES
US5522879A (en) 1991-11-12 1996-06-04 Ethicon, Inc. Piezoelectric biomedical device
IT1254704B (en) 1991-12-18 1995-10-09 Mini Ricerca Scient Tecnolog NON-WOVEN FABRIC ESSENTIALLY CONSTITUTED FROM DERIVATIVES OF HYALURONIC ACID
US5824335A (en) 1991-12-18 1998-10-20 Dorigatti; Franco Non-woven fabric material comprising auto-crosslinked hyaluronic acid derivatives
JP2855307B2 (en) 1992-02-05 1999-02-10 生化学工業株式会社 Photoreactive glycosaminoglycans, cross-linked glycosaminoglycans and methods for producing them
FR2689131B1 (en) 1992-03-30 1994-05-20 Oreal PROCESS FOR THE PREPARATION OF MONOESTERS MAJORITY IN THE 6 'POSITION OF D-MALTOSE AND THEIR USE IN THE COSMETIC, ORAL-DENTAL, PHARMACEUTICAL AND FOOD FIELDS.
JPH0625306A (en) 1992-04-21 1994-02-01 Shiseido Co Ltd Solvent-insoluble hyaluronic acid and its production
IT1263316B (en) 1993-02-12 1996-08-05 Fidia Advanced Biopolymers Srl MULTILAYER NON WOVEN FABRIC IN WHICH ONE OF THE LAYERS IS ESSENTIALS ESSENTIALS FROM HYALURONIC ACID ESTERS
NL9700003A (en) 1993-09-28 1997-07-01 House Foods Corp Method of inoculating Fistulina hepatica
US5616568A (en) 1993-11-30 1997-04-01 The Research Foundation Of State University Of New York Functionalized derivatives of hyaluronic acid
CN1128065A (en) 1994-03-14 1996-07-31 生化学工业株式会社 Material to be worn on the eyeball
US5455349A (en) 1994-05-13 1995-10-03 Polaroid Corporation Vinylbenzyl thymine monomers
RU2147243C1 (en) * 1994-09-27 2000-04-10 Нюкомед Имагинг А/С Contrast agent
US6025444A (en) 1994-11-17 2000-02-15 Seikagaku Kogyo Kabushiki Kaisha (Seikagaku Corporation) Cinnamic acid derivative
JP3308742B2 (en) 1994-11-17 2002-07-29 生化学工業株式会社 Photocrosslinkable hyaluronic acid derivative, crosslinked product thereof and methods for producing them
US5690961A (en) 1994-12-22 1997-11-25 Hercules Incorporated Acidic polysaccharides crosslinked with polycarboxylic acids and their uses
CN1177358A (en) 1995-03-07 1998-03-25 诺瓦蒂斯有限公司 Photochemically cross-linked polysaccharide derivatives as supports for the chromatoghaphic separation of enantiomers
IT1281877B1 (en) 1995-05-10 1998-03-03 Fidia Advanced Biopolymers Srl Heavy metal salts of succinyl derivatives of hyaluronic acid and their use as potential therapeutic agents
IT1281886B1 (en) 1995-05-22 1998-03-03 Fidia Advanced Biopolymers Srl PROCESS FOR THE PREPARATION OF HYDROGELS OBTAINED FROM CHEMICAL DERIVATIVES OF HYALURONIC ACID BY MEANS OF ULTRAVIOLET IRRADIATION AND THEIR
CZ293968B6 (en) 1995-08-29 2004-08-18 Fidiaáadvancedábiopolymersźásrl Compound biomaterial for inhibiting surgical adhesions of tissue, use thereof and method
US5789462A (en) 1995-09-13 1998-08-04 Seikagaku Kogyo Kabushiki Kaisha (Seikagaku Corporation) Photocured crosslinked-hyaluronic acid contact lens
DE19604706A1 (en) 1996-02-09 1997-08-14 Merck Patent Gmbh Crosslinking products of biopolymers containing amino groups
DE19616010C2 (en) 1996-04-23 1998-07-09 Seitz Filter Werke Process and device for the production of fibrets (fibrids) from cellulose derivatives
US6632802B2 (en) 1996-08-29 2003-10-14 Fidia Advanced Biopolymers S.R.L. Hyaluronic acid esters, threads and biomaterials containing them, and their use in surgery
IT1287698B1 (en) 1996-08-29 1998-08-18 Fidia Advanced Biopolymers Srl SUTURE THREADS ESSENTIALLY MADE OF ESTERE DERIVATIVES OF HYALURONIC ACID
US6162537A (en) 1996-11-12 2000-12-19 Solutia Inc. Implantable fibers and medical articles
WO1999001143A1 (en) 1997-07-03 1999-01-14 Orquest, Inc. Cross-linked polysaccharide drug carrier
ITPD980037A1 (en) 1998-02-25 1999-08-25 Fidia Advanced Biopolymers Srl SULFATED HYALURONIC ACID AND ITS DERIVATIVES COVALENTLY LINKED TO SYNTHETIC POLYMERS FOR THE PREPARATION OF BIOMATERIALS AND FOR COATING
WO1999057301A1 (en) 1998-04-30 1999-11-11 Maruha Corporation Compounds having glucuronic acid derivatives and glucosamine derivatives in the structure, process for producing the same and utilization thereof
IL139346A (en) 1998-05-07 2004-06-20 Tno Process for selective oxidation of primary alcohols
ITPD980169A1 (en) * 1998-07-06 2000-01-06 Fidia Advanced Biopolymers Srl AMIDES OF HYALURONIC ACID AND ITS DERIVATIVES AND PROCESS FOR THEIR PREPARATION.
US6630457B1 (en) 1998-09-18 2003-10-07 Orthogene Llc Functionalized derivatives of hyaluronic acid, formation of hydrogels in situ using same, and methods for making and using same
US6472541B2 (en) 1998-11-20 2002-10-29 The Regents Of The University Of California Protecting groups with increased photosensitivities
IT1302534B1 (en) 1998-12-21 2000-09-05 Fidia Advanced Biopolymers Srl INJECTABLE, BIOCOMPATIBLE AND BIODEGRADABLE COMPOSITIONS INCLUDING AT LEAST A DERIVATIVE OF HYALURONIC ACID, CHONDROGENIC CELLS, FOR
AU1865100A (en) 1998-12-23 2000-07-31 Esparma Gmbh Hyaluronate lyase used for promoting penetration in topical agents
DE19917614C2 (en) 1999-04-19 2001-07-05 Thueringisches Inst Textil Process for the production of cellulosic moldings with high adsorption capacity
US6288043B1 (en) 1999-06-18 2001-09-11 Orquest, Inc. Injectable hyaluronate-sulfated polysaccharide conjugates
US7033603B2 (en) 1999-08-06 2006-04-25 Board Of Regents The University Of Texas Drug releasing biodegradable fiber for delivery of therapeutics
US6592794B1 (en) 1999-09-28 2003-07-15 Organogenesis Inc. Process of making bioengineered collagen fibrils
EP1237933A1 (en) 1999-11-08 2002-09-11 SCA Hygiene Products Zeist B.V. Process of oxidising primary alcohols
US6180087B1 (en) 2000-01-18 2001-01-30 Mallinckrodt Inc. Tunable indocyanine dyes for biomedical applications
DE10003397A1 (en) 2000-01-27 2001-08-09 Hartmann Paul Ag Polyelectrolyte solid system, process for producing the same and wound dressing
DE10009996B4 (en) 2000-03-02 2005-10-13 Cognis Ip Management Gmbh Solid granules with monodisperse particle size distribution, a process for their preparation and their use
IT1317358B1 (en) 2000-08-31 2003-06-16 Fidia Advanced Biopolymers Srl CROSS-LINKATED DERIVATIVES OF HYALURONIC ACID.
IT1317359B1 (en) 2000-08-31 2003-06-16 Fidia Advanced Biopolymers Srl PERCARBOXYLATE POLYSACCHARIDES, SUCH AS HYALURONIC ACID, PROCESS FOR THEIR PREPARATION AND USE IN THE PHARMACEUTICAL FIELD AND
US6669926B1 (en) 2000-10-16 2003-12-30 Mallinckrodt, Inc. Hydrophilic light absorbing indole compounds for determination of physiological function in critically ill patients
US6498269B1 (en) 2000-10-17 2002-12-24 The University Of Connecticut Method for the oxidation of aldehydes, hemiacetals and primary alcohols
AU2002219718A1 (en) 2000-12-13 2002-06-24 Sca Hygiene Products Zeist B.V. Process for oxidising primary alcohols
EP1217008B1 (en) 2000-12-19 2006-03-01 Seikagaku Corporation Photocurable hyaluronic acid derivative and process for producing the same, and photocured crosslinked hyaluronic acid derivative and medical material using the same
FR2819808B1 (en) 2001-01-19 2003-04-18 Simafex STABILIZED COMPOSITIONS OF O-IODOXYBENZOIC ACID AND PROCESS FOR THEIR PREPARATION
CA2435491C (en) 2001-01-31 2010-02-02 Seikagaku Corporation Crosslinked polysaccharide sponge
US6902548B1 (en) 2001-03-19 2005-06-07 Ed Schuler Use of Streptomyces hyalurolyticus enzyme in ophthalmic treatments
US6673919B2 (en) 2001-03-30 2004-01-06 Chisso Cororation Chemically modified hyaluronic acid or salts thereof, and a process for producing thereof
US6946284B2 (en) 2001-11-16 2005-09-20 University Of Massachusetts Solubilizing cross-linked polymers with photolyase
FR2833493B1 (en) 2001-12-18 2005-09-23 Ioltechnologie Production SOLID AND SOLUBLE GALENIC FORM FOR OCCULAR ADMINISTRATION OF ACTIVE INGREDIENTS AND PROCESS FOR PRODUCING A SOLID AND SOLUBLE OPHTHALMIC INSERT
US20060189516A1 (en) 2002-02-19 2006-08-24 Industrial Technology Research Institute Method for producing cross-linked hyaluronic acid-protein bio-composites
ITPD20020064A1 (en) 2002-03-12 2003-09-12 Fidia Advanced Biopolymers Srl FOREIGN DERIVATIVES OF HYALURONIC ACID FOR THE PREPARATION OF HYDROGELD FOR USE IN THE BIOMEDICAL, SANITARY AND SURGICAL FIELD AND AS A SYSTEM
US7163919B2 (en) 2002-03-16 2007-01-16 Seog-Nyeon Bae Anticancer composition
JP3975267B2 (en) 2002-06-03 2007-09-12 独立行政法人産業技術総合研究所 Method for acylating polysaccharide substances
US20040101546A1 (en) 2002-11-26 2004-05-27 Gorman Anne Jessica Hemostatic wound dressing containing aldehyde-modified polysaccharide and hemostatic agents
JP4323148B2 (en) 2002-09-30 2009-09-02 チッソ株式会社 n-Alkanoylated hyaluronic acid or salt thereof and process for producing the same
US6965040B1 (en) 2002-11-04 2005-11-15 Xiaolian Gao Photogenerated reagents
US20040116018A1 (en) 2002-12-17 2004-06-17 Kimberly-Clark Worldwide, Inc. Method of making fibers, nonwoven fabrics, porous films and foams that include skin treatment additives
US7550136B2 (en) 2002-12-20 2009-06-23 University Of Massachusetts Photo-reactive polymers and devices for use in hair treatments
US6982298B2 (en) 2003-01-10 2006-01-03 The Cleveland Clinic Foundation Hydroxyphenyl cross-linked macromolecular network and applications thereof
US7465766B2 (en) 2004-01-08 2008-12-16 The Cleveland Clinic Foundation Hydroxyphenyl cross-linked macromolecular network and applications thereof
US20050126338A1 (en) 2003-02-24 2005-06-16 Nanoproducts Corporation Zinc comprising nanoparticles and related nanotechnology
FR2852012B1 (en) 2003-03-04 2006-06-23 Oreal PROCESS FOR THE PREPARATION OF O-ACYLATED GLUCOSE DERIVATIVES
EP1607405B1 (en) 2003-03-11 2011-05-04 Seikagaku Corporation Photocrosslinked polysaccharide composition and process for producing the same
US7947766B2 (en) 2003-06-06 2011-05-24 The Procter & Gamble Company Crosslinking systems for hydroxyl polymers
ES2226567B1 (en) 2003-06-20 2006-07-01 Universidad De Santiago De Compostela NANOPARTICULAS OF HIALURONIC ACID.
DE10331342B4 (en) 2003-07-11 2009-03-12 Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. Thermostable molding or spinning mass
WO2005014655A2 (en) 2003-08-08 2005-02-17 Fresenius Kabi Deutschland Gmbh Conjugates of hydroxyalkyl starch and a protein
US7235295B2 (en) 2003-09-10 2007-06-26 Laurencin Cato T Polymeric nanofibers for tissue engineering and drug delivery
WO2005028632A2 (en) 2003-09-19 2005-03-31 Colorado State University Research Foundation (Csurf) Hyaluronan (ha) esterification via acylation technique for moldable devices
MXPA06005528A (en) 2003-11-18 2007-01-30 Univ Tennessee Res Foundation Thiazolidinone amides, thiazolidine carboxylic acid amides, methods of making, and uses thereof.
US20100330143A1 (en) 2003-12-04 2010-12-30 University Of Utah Research Foundation Modified macromolecules and methods of making and using thereof
GB2408741B (en) 2003-12-04 2008-06-18 Ind Tech Res Inst Hyaluronic acid derivative with urethane linkage
US8313765B2 (en) 2003-12-04 2012-11-20 Industrial Technology Research Institute Biodegradable hyaluronic acid derivative, biodegradable polymeric micelle composition and pharmaceutical or bioactive composition
GB0406013D0 (en) 2004-03-17 2004-04-21 Chiron Srl Analysis of saccharide vaccines without interference
WO2005097223A1 (en) 2004-03-26 2005-10-20 Surmodics, Inc. Composition and method for preparing biocompatible surfaces
ITMI20040605A1 (en) 2004-03-29 2004-06-29 Coimex S C R L United Companie BUTYRICAL ESTERS OF HYALURONIC ACID WITH LOW DEGREE OF SUBSTITUTION PROCEDURE FOR THEIR PREPARATION AND USE
CN101052684B (en) 2004-07-09 2014-02-12 克利夫兰临床基金会 Hydroxyphenyl cross-linked macromolecular network and applications thereof
US7323425B2 (en) 2004-08-27 2008-01-29 Stony Brook Technology And Applied Research Crosslinking of hyaluronan solutions and nanofiberous membranes made therefrom
US8143391B2 (en) 2004-09-07 2012-03-27 Chugai Seiyaku Kabushiki Kaisha Process for producing water-soluble hyaluronic acid modification
EP1817347B1 (en) 2004-11-24 2017-05-17 Albumedix A/S Method of cross-linking hyaluronic acid with divinylsulfone
US7214759B2 (en) 2004-11-24 2007-05-08 Advanced Cardiovascular Systems, Inc. Biologically absorbable coatings for implantable devices based on polyesters and methods for fabricating the same
WO2006078914A1 (en) 2005-01-21 2006-07-27 Washington University In St. Louis Compounds having rd targeting motifs
AU2006227112A1 (en) 2005-03-22 2006-09-28 Tyco Healthcare Group Lp Bioactive wide-weave mesh
US7680038B1 (en) 2005-04-25 2010-03-16 Electronic Arts, Inc. Dynamic bandwidth detection and response for online games
EP1738774A1 (en) * 2005-06-29 2007-01-03 Schering AG Compositions comprising magnetic iron oxide particles and use thereof in medical imaging
GB0513552D0 (en) 2005-07-01 2005-08-10 Bristol Myers Squibb Co Bandage
AU2006266741B2 (en) 2005-07-06 2011-09-01 Seikagaku Corporation Drug-introduced photo-crosslinked hyaluronic acid derived gel
ITPD20050206A1 (en) 2005-07-07 2007-01-08 Fidia Advanced Biopolymers Srl BIOMATERIALS IN THE FORM OF FIBER TO BE USED AS MEDICAL DEVICES IN THE TREATMENT OF WOUNDS AND THEIR PROCESSES OF PRODUCTION
ITMI20051415A1 (en) 2005-07-22 2007-01-23 Fidia Advanced Biopolymers Srl BIOMATERIALS BASED ON SALT-MADE CORBOSSIMETHYLCELLULOSE WITH ZINC ASSOCIATED WITH IALURONIC ACID DERIVATIVES TO BE USED AS MEDICAL DEVICES WITH ANTIMICROBIAL AND ANTIFUNGAL ACTIVITY AND THEIR PRODUCTION PROCESS
WO2007035116A1 (en) 2005-09-21 2007-03-29 Kode Biotech Limited Cell surface coating with hyaluronic acid oligomer derivative
US7993678B2 (en) 2005-09-26 2011-08-09 Novozymes Biopolymer A/S Hyaluronic acid derivatives
US20070202084A1 (en) 2005-12-14 2007-08-30 Anika Therapeutics, Inc. Bioabsorbable implant of hyaluronic acid derivative for treatment of osteochondral and chondral defects
US20070202570A1 (en) 2006-02-24 2007-08-30 Kikkoman Corporation Enzyme composition, low molecular weight hyaluronan and process for preparing the same
EP1991588A1 (en) 2006-02-28 2008-11-19 Novozymes Biopolymer A/S Derivatives of hyaluronic acids
JP4892679B2 (en) 2006-03-27 2012-03-07 国立大学法人弘前大学 Hyaluronic acid fiber by gel spinning and method for producing the same
KR20070118730A (en) 2006-06-13 2007-12-18 주식회사 코오롱 Wound dressing materials with excellent ability to moisturized skin and method of manufacturing the same
US20080124395A1 (en) 2006-06-22 2008-05-29 Weiliam Chen Formulations and devices for treatment or prevention of neural ischemic damage
WO2008008481A2 (en) 2006-07-12 2008-01-17 Georgia Tech Research Corporation Deprotection of functional groups by multi-photon induced electron transfer
AU2007280846B2 (en) 2006-08-04 2012-06-14 Novozymes Biopharma Dk A/S Branched hyaluronic acid and method of manufacture
US20080063617A1 (en) 2006-09-07 2008-03-13 Abrahams John M Cosmetics formulations
ITMI20061726A1 (en) 2006-09-11 2008-03-12 Fidia Farmaceutici CROSSLINKATI DERIVATIVES BASED ON HYALURONIC ACID RETICULATED VIA CLICK CHEMISTRY
CZ302856B6 (en) 2006-09-27 2011-12-14 Cpn Spol. S R. O. Process for preparing polysaccharide derivatives
US8979931B2 (en) 2006-12-08 2015-03-17 DePuy Synthes Products, LLC Nucleus replacement device and method
JP5513893B2 (en) 2006-12-22 2014-06-04 クローマ−ファルマ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Tissue augmentation implant
EP1942117A1 (en) 2006-12-29 2008-07-09 Sigea S.R.L. Derivatives of acid polysaccharides
KR20080062092A (en) 2006-12-29 2008-07-03 주식회사 핸슨바이오텍 Hyaluronic acid derivatives for cell delivery carriers and their process for preparing the same
US20080213382A1 (en) * 2007-01-19 2008-09-04 Triton Biosystems, Inc. Thermotherapy susceptors and methods of using same
JP5329767B2 (en) 2007-02-26 2013-10-30 帝人株式会社 Aromatic copolyamide fiber production equipment
WO2008115799A1 (en) 2007-03-21 2008-09-25 William Marsh Rice University Novel gene delivery vectors for human mesenchymal stem cells
KR100807358B1 (en) 2007-04-18 2008-02-28 (주)나노하이브리드 Tumor selective and biodegradable cyclotriphosphazene-platinum(ii) conjugate anticancer agent, and preparation method thereof
CZ2007299A3 (en) 2007-04-24 2009-02-04 Cpn Spol. S R. O. Preparation of nanofibers from polysaccharides and mixtures thereof with polyvinyl alcohol
JP5165281B2 (en) 2007-06-01 2013-03-21 株式会社バイオベルデ Two-reactor type water-containing medical gel-forming agent and hyaluronic acid gel obtained therefrom
US8288142B2 (en) 2007-06-19 2012-10-16 Uvarkina Tamara P Hyaluronidase and method of use thereof
KR101226851B1 (en) 2007-06-20 2013-01-25 (주)엘지하우시스 Process for preparing nanofiber using double nozzle
CA2691541A1 (en) 2007-06-22 2008-12-31 Innovative Surface Technologies, Inc. Nanofibers containing latent reactive groups
US8268638B2 (en) * 2007-07-18 2012-09-18 Advantageous Systems, Llc Methods and apparatuses for detecting analytes in biological fluid of an animal
FR2920786B1 (en) 2007-09-07 2010-09-10 Univ Claude Bernard Lyon HOLLOW FIBERS, IN PARTICULAR MULTI-MEMBRANE, PROCESS FOR THE PREPARATION THEREOF AND DEVICE FOR CARRYING OUT SAID METHOD
FR2921675B1 (en) 2007-09-28 2010-03-19 Univ Claude Bernard Lyon HYALURONIC ACID FILAMENT AND PROCESS FOR OBTAINING SAME
US20130136784A1 (en) 2007-10-11 2013-05-30 Robert J. Staab Methods for delivery of medication using dissolvable devices
US7976825B2 (en) * 2007-12-06 2011-07-12 Janos Borbely Cancer cell diagnosis by targeting delivery of nanodevices
BRPI0908352A2 (en) 2008-02-11 2015-07-28 Basf Se Process for producing porous structures, porous structures, and use thereof
CN101952491A (en) 2008-02-14 2011-01-19 博爱科罗温有限公司 Bicomponent fibers, textile sheets and use thereof
EP2254944B1 (en) 2008-02-29 2018-12-19 PVAC Medical Technologies Ltd. Composition for the formation of gels
AU2009246822B2 (en) 2008-03-31 2012-05-03 University Of Louisville Research Foundation, Inc. Site specific fluorescence marking and contrast marker for same
JP2011516462A (en) * 2008-04-03 2011-05-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Biocompatible materials for magnetic particle imaging
WO2009148405A1 (en) 2008-06-05 2009-12-10 Agency For Science, Technology And Research Formation of hydrogel in the presence of peroxidase and low concentration of hydrogen peroxide
JP2010014784A (en) 2008-07-01 2010-01-21 Fuji Xerox Co Ltd Optical writing display apparatus, optical writing apparatus, and optical writing method
IT1391734B1 (en) 2008-07-29 2012-01-27 Anika Therapeutics Srl NEW BIOMATERIALS, THEIR PREPARATION FOR ELECTROSPINNING AND THEIR USE IN BIOMEDICAL AND SURGICAL FIELDS.
FR2934999B1 (en) 2008-08-13 2011-07-29 Adocia POLYSACCHARIDES FUNCTIONALIZED BY TRYPTOPHAN DERIVATIVES
AU2009288118B2 (en) 2008-09-02 2014-12-11 Allergan, Inc. Threads of hyaluronic acid and/or derivatives thereof, methods of making thereof and uses thereof
CZ2008705A3 (en) 2008-11-06 2010-04-14 Cpn S. R. O. Process for preparing DTPA crosslinked derivatives of hyaluronic acid and their modifications
ITRM20080636A1 (en) 2008-11-28 2010-05-29 Univ Palermo PROCEDURE FOR THE PRODUCTION OF FUNCTIONAL DERIVATIVES OF HYALURONIC ACID AND RELATIVE HYDROGELS.
JP2010154842A (en) 2008-12-03 2010-07-15 Koji Kawakami New anticancer chimeric peptide with egfr as target
JP2010138276A (en) 2008-12-11 2010-06-24 Nipro Corp Method for producing single yarn of hyaluronic acid
AU2010215199B2 (en) 2009-02-21 2015-01-15 Sofradim Production Compounds and medical devices activated with solvophobic linkers
US8648144B2 (en) 2009-02-21 2014-02-11 Sofradim Production Crosslinked fibers and method of making same by extrusion
WO2010095056A2 (en) 2009-02-21 2010-08-26 Sofradim Production Medical devices with an activated coating
CZ2009168A3 (en) 2009-03-17 2010-07-21 Contipro C, A.S. Process for preparing hyaluronic acid derivatives using O-acyl-O?-alkyl carbonate in the presence of substituted pyridine
US8551378B2 (en) 2009-03-24 2013-10-08 North Carolina State University Nanospinning of polymer fibers from sheared solutions
PL3156075T3 (en) * 2009-03-25 2021-04-19 Pharmacosmos Holding A/S An oligosaccharide and a process for preparation thereof
IT1396003B1 (en) 2009-05-14 2012-11-09 Fidia Farmaceutici EXTRACELLULAR IALURONIDASE FROM STREPTOMYCES KOGANEIENSIS
WO2010138074A1 (en) 2009-05-29 2010-12-02 Hilborn Joens Hyaluronic acid based delivery systems
ES2537385T3 (en) 2009-06-09 2015-06-08 Aurinia Pharmaceuticals Inc. Topical supply systems for ophthalmic use
AU2010276574B2 (en) 2009-07-30 2015-08-20 Carbylan Therapeutics, Inc. Modified hyaluronic acid polymer compositions and related methods
KR101103423B1 (en) 2009-09-04 2012-01-06 아주대학교산학협력단 In situ forming hydrogel for tissue adhesives and biomedical use thereof
WO2011059325A2 (en) 2009-11-11 2011-05-19 University Of Twente, Institute For Biomedical Technology And Technical Medicine (Mira) Dextran-hyaluronic acid based hydrogels
EP2498824B1 (en) 2009-11-11 2016-04-20 University of Twente, Institute for Biomedical Technology and Technical Medicine (MIRA) Hydrogels based on polymers of dextran tyramine and tyramine conjugates of natural polymers
US20110111012A1 (en) 2009-11-12 2011-05-12 Hemcon Medical Technologies, Inc. Nanomaterial wound dressing assembly
CZ2009836A3 (en) 2009-12-11 2011-06-22 Contipro C A.S. Hyaluronic acid derivative oxidized in position 6 of saccharide glucosamine portion selectively to aldehyde, process of its preparation and modification method thereof
CZ2009835A3 (en) 2009-12-11 2011-06-22 Contipro C A.S. Process for preparing hyaluronic acid derivative oxidized in position 6 of saccharide glucosamine portion selectively to aldehyde and modification method thereof
US8197849B2 (en) 2010-02-12 2012-06-12 National Health Research Institutes Cross-linked oxidated hyaluronic acid for use as a vitreous substitute
US20110229551A1 (en) 2010-03-17 2011-09-22 Notus Laboratories, Inc. Drug delivery compositions and methods using nanofiber webs
IT1399202B1 (en) 2010-03-30 2013-04-11 Corbelli METHOD FOR THE PRODUCTION OF FUNCTIONALIZED ELASTOMERIC ARTICLES AND MANUFACTURED ARTICLES
EP2585108A4 (en) 2010-06-24 2016-04-13 Univ Kansas Conjugates comprising an n-oxime bond and associated methods
CN101897976A (en) 2010-07-16 2010-12-01 沈阳药科大学 Medicament solubilization carrier and preparation method and application thereof
CZ305040B6 (en) 2010-09-14 2015-04-08 Contipro Biotech S.R.O. Process for preparing highly substituted hyaluronic acid amides
CZ302994B6 (en) 2010-12-31 2012-02-08 Cpn S.R.O. Hyaluronic fibers, process of their preparation and use
US9200271B2 (en) 2011-02-03 2015-12-01 Empire Technology Development Llc Selective 3D biopatterning
EP2688566A4 (en) 2011-03-23 2014-09-10 Univ Indiana Res & Tech Corp Anticancer therapeutic agents
KR101201412B1 (en) 2011-04-19 2012-11-14 한양대학교 에리카산학협력단 Preparation method for highly porous core-shell nanoweb
CZ304072B6 (en) 2011-04-26 2013-09-25 Contipro Biotech S.R.O. Amphoteric material based on crosslinked hyaluronic acid, process for its preparation, materials containing active agents enclosed in hyaluronate network, process for their preparation and their use
CN102154738B (en) 2011-05-10 2012-08-01 青岛大学 Method for preparing red algae agar fiber
CA2835498C (en) * 2011-05-12 2019-06-25 Gnosis S.P.A. Biotechnological sulphated chondroitin sulphate at position 4 or 6 on the same polysaccharide chain, and process for the preparation thereof
ITTO20110428A1 (en) 2011-05-13 2012-11-14 Rottapharm Spa ESTERS OF HYALURONIC ACID, THEIR PREPARATION AND USE IN DERMATOLOGY
CA2852305C (en) 2011-10-18 2020-06-16 Cytomatrix Pty Ltd Fibre-forming process and fibres produced by the process
KR20130085294A (en) 2012-01-19 2013-07-29 충남대학교산학협력단 Fluorescent polymer nanogels for lymph node mapping and the methods for lymph node mapping
WO2013110828A1 (en) * 2012-01-27 2013-08-01 Soluciones Nanotecnológicas, S.L. Superparamagnetic nanoparticles as a contrast agent for magnetic resonance imaging (mri) of magnetic susceptibility (t2*)
CZ2012136A3 (en) 2012-02-28 2013-06-05 Contipro Biotech S.R.O. Derivatives based on hyaluronic acid capable of forming hydrogels, process of their preparation, hydrogels based on these derivatives, process of their preparation and use
EP2819993B1 (en) 2012-03-01 2020-09-02 University Of Cincinnati Ros-activated compounds as selective anti-cancer therapeutics
CZ2012282A3 (en) 2012-04-25 2013-11-06 Contipro Biotech S.R.O. Crosslinked hyaluronate derivative, process of its preparation, hydrogel and microfibers based thereon
WO2013171764A2 (en) 2012-04-30 2013-11-21 Rubicon Research Private Limited Ophthalmic formulations
CZ304651B6 (en) 2012-05-11 2014-08-20 Contipro Biotech S.R.O. Process for preparing microfibers, process for preparing wound covers, wound covers per se and apparatus for preparing polysachharide fibers
WO2013188727A2 (en) 2012-06-15 2013-12-19 The Children's Hospital Of Philadelphia Novel pro- and codrug derivatives for nanoparticle delivery of select anticancer agents formed using rapidly cleavable phenolic ester bridges
CZ304512B6 (en) 2012-08-08 2014-06-11 Contipro Biotech S.R.O. Hyaluronic acid derivative, process for its preparation, modification process and use thereof
CZ304303B6 (en) 2012-11-27 2014-02-19 Contipro Biotech S.R.O. Fibers based on hydrophobized hyaluronate, process for their preparation and use, fabric based thereon and use thereof
CZ2012843A3 (en) 2012-11-27 2014-02-05 Contipro Biotech S.R.O. Endless fibers based on hyaluronate selectively oxidized in position 6 N-acetyl-D-glucosamine portion, their preparation, use, threads, yatns, fabrics and process for preparing thereof
CZ304654B6 (en) * 2012-11-27 2014-08-20 Contipro Biotech S.R.O. C6-C18-acylated hyaluronate-based nanomicellar composition, process for preparing C6-C18-acylated hyaluronate, process for preparing nanomicellar composition and stabilized nanomicellar composition as well as use thereof
CZ304267B6 (en) 2012-11-27 2014-02-05 Contipro Biotech S.R.O. Photoreactive derivative of hyaluronic acid, process for its preparation, 3D crosslinked derivative of hyaluronic acid, process for its preparation and use
KR101386096B1 (en) 2013-02-28 2014-04-21 강원대학교산학협력단 Chitosan nanofiber for delivering anionic protein, a process for the preparation thereof, and transmucosal administrative agent comprising the chitosan nanofiber
CN103505736A (en) * 2013-09-23 2014-01-15 天津大学 Modified hyaluronic acid based macromolecule lipidosome and preparation method thereof
CN103789874B (en) 2014-01-23 2016-02-10 北京化工大学常州先进材料研究院 Parallel electric field induction phase separation method prepares nucleocapsid structure natural polyelectrolyte nanofiber
EP2899214A1 (en) 2014-01-27 2015-07-29 Basf Se Ethylenically unsaturated polysaccharides, method for their production and their use
CZ305153B6 (en) 2014-03-11 2015-05-20 Contipro Biotech S.R.O. Conjugates of hyaluronic acid oligomer or a salt thereof, process for their preparation and use
GB201411294D0 (en) * 2014-06-25 2014-08-06 Trw Ltd An electric power assisted steering system

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
Duncan, R., & Gaspar, R. (2011). Nanomedicine(s) under the Microscope. Molecular Pharmaceutics, 8(6), 2101-2141.
El-Dakdouki, M. H., Pure, E., & Huang, X. (2013). Development of drug loaded nanoparticles for tumor targeting. Part 1: synthesis, characterization, and biological evaluation in 2D cell cultures. Nanoscale, 5(9), 3895-3903.
El-Dakdouki, M. H., Zhu, D. C., El-Boubbou, K., Kamat, M., Chen, J., Li, W., & Huang, X. (2012). Development of Multifunctional Hyaluronan-Coated Nanoparticles for Imaging and Drug Delivery to Cancer Cells. Biomacromolecules, 13(4), 1144-1151.
Fleige, E., Quadir, M. A., & Haag, R. (2012). Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: Concepts and applications. Advanced Drug Delivery Reviews, 64(9), 866-884.
Huang, G., Chen, H., Dong, Y., Luo, X., Yu, H., Moore, Z., Bey, E. A., Boothman, D. A., & Gao, J. (2013). Superparamagnetic iron oxide nanoparticles: amplifying ROS stress to improve anticancer drug efficacy. Theranostics, 3(2), 116-126.
Laurent, S., Dutz, S., Hafeli, U. O., & Mahmoudi, M. (2011). Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Advances in Colloid and Interface Science, 166(1-2), 8-23.
Li, M., Kim, H. S., Tian, L., Yu, M. K., Jon, S., & Moon, W. K. (2012). Comparison of Two Ultrasmall Superparamagnetic Iron Oxides on Cytotoxicity and MR Imaging of Tumors. Theranostics, 2(1), 76-85.
Maeda, H. (2001). The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Advances in Enzyme Regulation, 41(1), 189-207.
Ruoslahti, E., Bhatia, S. N., & Sailor, M. J. (2010). Targeting of drugs and nanoparticles to tumors. The Journal of Cell Biology, 188(6), 759-768.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200080094A (en) * 2018-12-26 2020-07-06 서울대학교산학협력단 Nanoparticles for the selective death of cancer cells through ferroptosis, method for preparing the same, and the use thereof
US11819477B2 (en) 2018-12-26 2023-11-21 Seoul National University R & Db Foundation Nanoparticles for selective death of cancer cells through ferroptosis, method of preparing the same, and use of the nanoparticles

Also Published As

Publication number Publication date
JP6556765B2 (en) 2019-08-07
US20170143756A1 (en) 2017-05-25
ES2768798T3 (en) 2020-06-23
EP3160509A2 (en) 2017-05-03
PL3160509T3 (en) 2020-07-13
DK3160509T3 (en) 2020-02-10
WO2016000669A2 (en) 2016-01-07
RU2016151263A3 (en) 2018-12-12
EP3160509B1 (en) 2019-12-18
JP2017519785A (en) 2017-07-20
WO2016000669A3 (en) 2016-02-25
RU2686679C2 (en) 2019-04-30
RU2016151263A (en) 2018-07-30
US10617711B2 (en) 2020-04-14
HUE049244T2 (en) 2020-09-28
CZ2014451A3 (en) 2016-01-13

Similar Documents

Publication Publication Date Title
Xiong et al. A NIR light triggered disintegratable nanoplatform for enhanced penetration and chemotherapy in deep tumor tissues
Xia et al. pH-responsive gold nanoclusters-based nanoprobes for lung cancer targeted near-infrared fluorescence imaging and chemo-photodynamic therapy
Sasikala et al. An implantable smart magnetic nanofiber device for endoscopic hyperthermia treatment and tumor-triggered controlled drug release
Yang et al. Red fluorescent ZnO nanoparticle grafted with polyglycerol and conjugated RGD peptide as drug delivery vehicles for efficient target cancer therapy
Liu et al. The antitumor effect of novel docetaxel-loaded thermosensitive micelles
Huang et al. Amphiphilic prodrug-decorated graphene oxide as a multi-functional drug delivery system for efficient cancer therapy
US9233163B2 (en) Hydrolytically releasable prodrugs for sustained release nanoparticle formulations
Pooja et al. Nanomedicines for targeted delivery of etoposide to non-small cell lung cancer using transferrin functionalized nanoparticles
Zhang et al. Magnetofluorescent photothermal micelles packaged with GdN@ CQDs as photothermal and chemical dual-modal therapeutic agents
Ma et al. Novel Pt-loaded layered double hydroxide nanoparticles for efficient and cancer-cell specific delivery of a cisplatin prodrug
KR102187362B1 (en) Nanoparticles for the selective death of cancer cells through ferroptosis, method for preparing the same, and the use thereof
Gao et al. Multiple functionalized carbon quantum dots for targeting glioma and tissue imaging
Li et al. A macromolecular prodrug strategy for combinatorial drug delivery
KR102395946B1 (en) Micelle complex and drug delivery system comprising the same
Sivasubramanian et al. Carboxymethyl dextran-cyclodextrin conjugate as the carrier of doxorubicin
Zhao et al. Buffet-style Cu (II) for enhance disulfiram-based cancer therapy
Xie et al. Modification of magnetic molybdenum disulfide by chitosan/carboxymethylcellulose with enhanced dispersibility for targeted photothermal-/chemotherapy of cancer
Pucek et al. Phosphatidylcholine with conjugated linoleic acid in fabrication of novel lipid nanocarriers
KR20170021351A (en) Antitumor composition based on hyaluronic acid and inorganic nanoparticles, method of preparation thereof and use thereof
Yadav et al. Chondroitin sulphate decorated nanoparticulate carriers of 5-fluorouracil: development and in vitro characterization
Cui et al. RGDS covalently surfaced nanodiamond as a tumor targeting carrier of VEGF-siRNA: synthesis, characterization and bioassay
Ruan et al. Non-invasive imaging of breast cancer using RGDyK functionalized fluorescent carbonaceous nanospheres
Hong et al. Hyaluronan-fullerene/AIEgen nanogel as CD44-targeted delivery of tirapazamine for synergistic photodynamic-hypoxia activated therapy
Thu et al. Fe3O4/o-carboxymethyl chitosan/curcumin-based nanodrug system for chemotherapy and fluorescence imaging in HT29 cancer cell line
Huang et al. Chitosan-derived nanoparticles impede signal transduction in T790M lung cancer therapy

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application