KR20160123145A - - Human IgG Fc-fusion human -glucocerebrosidase and preparation thereof - Google Patents

- Human IgG Fc-fusion human -glucocerebrosidase and preparation thereof Download PDF

Info

Publication number
KR20160123145A
KR20160123145A KR1020150053313A KR20150053313A KR20160123145A KR 20160123145 A KR20160123145 A KR 20160123145A KR 1020150053313 A KR1020150053313 A KR 1020150053313A KR 20150053313 A KR20150053313 A KR 20150053313A KR 20160123145 A KR20160123145 A KR 20160123145A
Authority
KR
South Korea
Prior art keywords
glucocerebrosidase
human
fragment
fused
human igg
Prior art date
Application number
KR1020150053313A
Other languages
Korean (ko)
Inventor
최홍열
김동일
강승훈
권준영
남형진
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020150053313A priority Critical patent/KR20160123145A/en
Publication of KR20160123145A publication Critical patent/KR20160123145A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8257Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01045Glucosylceramidase (3.2.1.45), i.e. beta-glucocerebrosidase
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/30Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention relates to a polynucleotide fused with a protein secretion signal sequence, human beta-glucocerebrosidase, and a human IgG Fc fragment, and to a method for mass-producing beta-glucocerebrosidase and human IgG Fc fragment fused proteins by using the same. According to the present invention, a protein secretion signal sequence, human beta-glucocerebrosidase, and human IgG Fc are fused, and thus human beta-glucocerebrosidase can be mass-produced in a plant expression system. Accordingly, fused proteins can be easily qualitatively and quantitatively analyzed, and blood half-life thereof can be improved. Thus, the present invention can be useful in producing improved human beta-glucocerebrosidase.

Description

인간 IgG Fc 절편을 융합한 인간 베타-글루코세레브로시다제 및 이의 생산방법{Human IgG Fc-fusion human β-glucocerebrosidase and preparation thereof}Human beta-glucocerebrosidase and preparation thereof, which comprises fusing a human IgG Fc fragment,

본 발명은 단백질 분비 신호 서열, 인간 베타-글루코세레브로시다제 및 인간 IgG Fc 절편이 융합된 폴리뉴클레오티드 및, 이를 이용한 인간 베타-글루코세레브로시다제 및 인간 IgG Fc 절편 융합 단백질을 대량 생산하는 방법에 관한 것이다.
The present invention relates to a method for mass production of human beta-glucocerebrosidase and human IgG Fc fragment fusion protein using a polynucleotide fused with a protein secretion signal sequence, human beta-glucocerebrosidase and human IgG Fc fragment, .

리소좀 축적 질환(lysosomal storage disorder)은 리소좀효소의 유전적 이상으로 인해 분해되지 않고 남은 기질이 리소좀내에 축적되어 세포기능에 장애가 일어나는 질환의 총칭이다. 리소좀 축적 질환의 치료는 효소대체치료법으로 이루어지고 있다. 효소대체치료법이란 리소좀 축적 질환 환자에게 결핍된 특정한 효소를 in vitro 상에서 합성된 기능성 효소로 대체시키는 치료법을 말한다. 이러한 질환은 유아기 때 치료를 받을수록 치료 효과가 좋다고 알려져 있다. 현재 효소 대체 치료가 가능한 리소좀 축적 질환에는 고셔병(Gaucher disease), 파브리병(Fabry disease), 폼페병(Pompe disease), 뮤코다당체침착병(Mucopolysaccharidosis, MPS) 1형, 2형, 6형이 있다. 이들 중 고셔병은 리소좀 효소인 글루코세레브로시다제(glucocerebrocidase)의 결핍을 특징으로 한다. A lysosomal storage disorder is a collective term for diseases in which the remaining substrate is not degraded by the genetic abnormality of lysosomal enzymes and accumulates in the lysosomes, resulting in impaired cell function. The treatment of lysosomal accumulation diseases is done with enzyme replacement therapy. Enzyme replacement therapy refers to a therapy that replaces a specific enzyme deficient in a lysosomal disease patient with a functional enzyme synthesized in vitro. These diseases are known to be more effective when treated in infancy. Currently, lysosomal storage diseases that can be substituted for enzymes include Gaucher disease, Fabry disease, Pompe disease, Mucopolysaccharidosis (MPS) type 1, 2 and 6. Among them, Gaucher disease is characterized by a deficiency of the lysozyme enzyme glucocerebrocidase.

글루코세레브로시다제(glucocerebrosidase)는 글루코스핑고지질 글루코세레브로시드(글루코실세라미드, GlcCer)를 가수분해하여 글루코스와 세라미드를 생산하는 막 결합 리소좀 효소로서, 열성 유전자 장애(염색체 1의 q21-q31)에 의해 결핍이 야기된다. 따라서 글루코세레브로시다제(glucocerebrosidase)를 재조합 기술에 의해 대량 생산할 수 있다면 고셔병의 효소대체치료제로서 사용될 가능성이 있다. 상업적인 면에서는 E.coli 등과 같은 원핵 세포나 효모와 같은 저비용의 진핵 세포에서 생산하는 것이 바람직하나 이 경우 비-글리코실화되거나 당패턴이 변화된 rGCR이 유도된다는 점이 한계로 작용해 왔다. 따라서 여전히 글루코세레브로시다제를 대량으로 얻을 수 있는 새로운 기술에 대한 필요성이 있다.
Glucocerebrosidase is a membrane-bound lysosomal enzyme that produces glucose and ceramide by hydrolyzing glucoserine glucocerebroside (glucosylceramide, GlcCer), and is a thermoregulatory disorder (chromosome 1 q21-q31 ) Causes deficiency. Therefore, if glucocerebrosidase can be mass produced by recombinant technology, it is likely to be used as an alternative treatment for Gaucher's disease. In commercial terms, it is preferable to produce low cost eukaryotic cells such as prokaryotic cells such as E. coli or yeast, but in this case, it has been a limitation that rGCRs which are non-glycosylated or changed in sugar pattern are induced. Therefore, there is still a need for a new technique for obtaining large quantities of glucocerebrosidase.

과거 15년 내지 20년 동안 미생물 및 동물세포 배양에 집중적인 연구가 수행되어왔으나, 현재는 식물세포 배양을 이용하여 단백질을 대량으로 생산할 수 있는 발현시스템이 연구되고 있다. 의약품, 기능성 단백질, 산업용 효소 및 기능성 2차 대사산물의 생산을 위한 형질전환 식물 또는 식물 세포 배양의 이용은 최근 분자 농업 (molecular farming)이라고 불리고 있다. In the past 15 to 20 years, intensive studies have been conducted on culturing microorganisms and animal cells. However, expression systems capable of mass production of proteins using plant cell cultures are being studied. The use of transgenic plant or plant cell cultures for the production of pharmaceuticals, functional proteins, industrial enzymes and functional secondary metabolites has recently been referred to as molecular farming.

식물세포 배양은 동물세포 배양 및 미생물과 비교하였을 때 여러 가지 장점을 가지고 있다. 미생물과 비교하면, 식물 세포는 진핵 세포이기 때문에 거의 모든 번역 후 변형 (post-translational modification)을 수행할 수 있고 생산된 재조합 단백질의 생물학적 활성을 천연형과 유사하게 유지시킬 수 있다. 동물 세포 시스템에 비해 특히 뛰어난 점은 오염 위험성이 없다는 점이며, 이는 식물 세포가 어떠한 인간 병원균도 갖지 않기 때문이다. 또한 식물세포의 배지나 배양조건이 동물세포에 비해 간단하고 저렴하다. 따라서 식물세포배양으로 생산되는 단백질은 원핵세포 시스템 또는 동물세포 시스템에 비하여 안전하고, 특히 사람의 질병치료에 사용되는 단백질의 생산에 있어서는 더욱 안전함이 입증되었다 (Doran, 2000. Curr. Opin. Biotech. 11:199-204).Plant cell culture has several advantages when compared with animal cell culture and microorganisms. Compared to microorganisms, since plant cells are eukaryotic cells, they can perform almost any post-translational modification and can maintain the biological activity of the produced recombinant protein similar to the native form. Particularly superior to animal cell systems is that there is no risk of contamination, as plant cells do not have any human pathogens. In addition, the cell culture conditions of the plant cells are simpler and cheaper than those of the animal cells. Thus, proteins produced by plant cell cultures have proven to be safer than prokaryotic or animal cell systems, particularly in the production of proteins used in the treatment of human diseases (Doran, 2000. Curr. Opin. Biotech. 11: 199-204).

식물세포 배양에 이러한 장점이 있는 반면, 식물 현탁 세포 배양을 이용하여 외래 단백질을 식물세포 밖으로 분비시켜 생산하는 경우 일반적으로 식물세포 밖으로 분비되어 생산되는 재조합 단백질의 수율은 총 세포외분비 단백질의 0.05-0.5 %에 불과하다(James et al., 2000, Protein Expr. Purif. 19:131-138). 이러한 낮은 생산수율은 일반적으로 식물세포 밖으로 배출된 단백질이 배지 내의 pH, 염분농도 등과 같은 물리적인 요인에 의하여 변성이 일어나거나 단백질분해효소에 의하여 분해되어 단백질의 활성이 떨어지기 때문이라고 알려져 있다. 따라서 이러한 문제점을 극복하여 재조합 단백질을 대량으로 생산할 수 있는 식물 세포 배양 방법에 대한 연구가 필요한 실정이며, 글루코세레브로시다제를 식물 세포에서 효과적으로 대량 생산 및 수득하기 위한 배양방법에 대한 필요성이 있다.
In the case of plant cell culturing, when the plant protein is secreted out of the plant cell using the plant suspension cell culture, the yield of the recombinant protein secreted out of the plant cell is 0.05-0.5 of the total cell exocrine protein (James et al., 2000, Protein Expr. Purif. 19: 131-138). These low yields are generally known to be caused by the denaturation of proteins released from plant cells by physical factors such as pH, salinity, etc. in the medium or degradation of protein by proteolytic enzymes. Therefore, there is a need for a method for culturing a plant cell capable of mass-producing a recombinant protein by overcoming such a problem. There is a need for a culture method for effectively mass-producing and obtaining glucocerebrosidase in plant cells.

본 발명자들은 단백질 분비 신호 서열, 인간 IgG Fc 절편 및 인간 베타-글루코세레브로시다제를 융합하고 이를 식물 발현 시스템에서 발현시키는 경우, 인간 IgG-Fc 절편이 융합된 인간 베타-글루코세레브로시다제를 대량으로 생산할 수 있음을 발견하고 본 발명을 완성하였다.When the protein secretion signal sequence, the human IgG Fc fragment, and the human beta-glucocerebrosidase are fused and expressed in a plant expression system, the present inventors have found that human beta-glucocerebrosidase fused with human IgG-Fc fragments And the present invention has been completed.

따라서, 본 발명의 목적은 단백질 분비 신호 서열, 인간 베타-글루코세레브로시다제 및 인간 IgG Fc 절편이 융합된 폴리뉴클레오티드를 제공하는 것이다.Accordingly, an object of the present invention is to provide a polynucleotide fused with a protein secretion signal sequence, human beta-glucocerebrosidase, and human IgG Fc fragment.

본 발명의 다른 목적은 상기 폴리뉴클레오티드를 포함하는 벡터, 상기 벡터로 형질전환된 식물 형질전환세포, 상기 식물 형질전환세포에서 인간 베타-글루코세레브로시다제 및 인간 IgG Fc 융합 단백질을 만드는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing a vector comprising the polynucleotide, a plant transformed cell transformed with the vector, a human beta-glucocerebrosidase and a human IgG Fc fusion protein in the plant transformed cell .

본 발명의 또 다른 목적은 상기 방법에 의해 생산된 재조합 융합 단백질을 제공하는 것이다.
It is another object of the present invention to provide a recombinant fusion protein produced by the above method.

상기 목적을 달성하기 위하여 본 발명은 단백질 분비 신호 서열, 인간 베타-글루코세레브로시다제 및 인간 IgG Fc 절편이 융합된 폴리뉴클레오티드를 제공한다.In order to achieve the above object, the present invention provides a polynucleotide in which a protein secretion signal sequence, human beta-glucocerebrosidase, and human IgG Fc fragment are fused.

또한, 본 발명은 상기 폴리뉴클레오티드를 포함하는 벡터를 제공한다.The present invention also provides a vector comprising the polynucleotide.

또한, 본 발명은 상기 벡터로 형질전환된 식물 형질전환세포를 제공한다.The present invention also provides a plant transformed cell transformed with said vector.

또한, 본 발명은 In addition,

1) 단백질 분비 신호 서열, 인간 베타-글루코세레브로시다제(human β-glucocerebrosidase) 및 인간 IgG Fc 절편이 융합된 폴리뉴클레오티드를 포함하는 벡터를 제조하는 단계;1) preparing a vector comprising a protein secretion signal sequence, a polynucleotide fused with human beta-glucocerebrosidase and a human IgG Fc fragment;

2) 상기 1)단계의 벡터로 형질전환된 식물 형질전환세포를 제조하는 단계; 및2) preparing a plant transformed cell transformed with the vector of step 1); And

3) 상기 2)단계의 식물 형질전환세포로부터 인간 IgG Fc 절편이 융합된 인간 베타-글루코세레브로시다제(human β-glucocerebrosidase)를 얻는 단계;를 포함하는 인간 베타-글루코세레브로시다제(human β-glucocerebrosidase)의 대량 생산 방법을 제공한다.3) obtaining a human beta-glucocerebrosidase fused with a human IgG Fc fragment from the plant transformed cells of step 2), wherein the human beta-glucocerebrosidase is fused with human beta-glucocerebrosidase, beta-glucocerebrosidase).

또한, 본 발명은 상기 방법에 의해 생산된 인간 베타-글루코세레브로시다제 및 인간 IgG Fc 융합 재조합 단백질을 제공한다.
The present invention also provides human beta-glucocerebrosidase and human IgG Fc fusion recombinant protein produced by the above method.

본 발명은 단백질 분비 신호 서열, 인간 베타-글루코세레브로시다제 및 인간 IgG Fc를 융합하여 식물 발현 시스템에서 인간 베타-글루코세레브로시다제의 대량생산을 가능하게 하므로, 융합 단백질의 정성, 정량적 분석을 용이하게 하고 이의 혈중 반감기를 향상시킬 수 있어 개선된 인간 베타-글루코세레브로시다제의 생산에 유용하게 이용될 수 있다.
The present invention enables the mass production of human beta-glucocerebrosidase in a plant expression system by fusing a protein secretion signal sequence, human beta-glucocerebrosidase, and human IgG Fc, so that the qualitative and quantitative analysis And its half life of blood can be improved, so that it can be usefully used for the production of improved human beta-glucocerebrosidase.

도 1은 단백질 분비 신호 서열 (RAmy1ASP), 인간 베타-글루코세레브로시다제(GCD) 및 인간 IgG Fc 절편의 융합 유전자를 포함하는 재조합 벡터의 구조를 나타낸 도이다.
도 2는 상기 도 1의 발현 벡터의 백본(backbone)을 나타낸 도이다.
도 3은 융합 폴리뉴클레오티드가 발현벡터에 도입되었는지 여부 및 상기 발현벡터가 아그로박테리아에 도입되었는지 여부를 PCR로 확인한 결과를 나타낸 도이다(13-1 : 세포주).
도 4는 형질전환된 세포주에서 얻어진 총 단백질량과 목적 단백질량을 정량 분석한 결과를 나타낸 도이다(13_2, 13_4, 13_5, 13_6, 13_7, 13_8, 13_12, 13_14, 13_20, 13_22, 13_25 : 세포주).
도 5는 도 4의 결과로부터 선별한 7개의 세포주에서 재조합 단백질의 용적 생산성(volumetric productivity)을 측정한 결과를 나타낸 도이다(13-5, 13-6, 13-7, 13-8, 13-12, 13-14, 13-20 : 세포주).
도 6은 형질전환 벼 세포 배양을 통하여 인간 IgG Fc 절편 및 인간 베타-글루코세레브로시다제가 융합된 재조합 단백질을 생산하는 전체 과정을 나타낸 도이다.
1 is a diagram showing the structure of a recombinant vector comprising a fusion gene of a protein secretion signal sequence (RAmy1ASP), human beta-glucocerebrosidase (GCD), and a human IgG Fc fragment.
FIG. 2 is a diagram showing a backbone of the expression vector of FIG. 1; FIG.
FIG. 3 is a graph showing the results of PCR to determine whether the fusion polynucleotide was introduced into an expression vector and whether the expression vector was introduced into Agrobacterium (13-1: cell line).
FIG. 4 is a graph showing the results of quantitative analysis of total protein amount and target protein amount obtained from the transformed cell line (13_2, 13_4, 13_5, 13_6, 13_7, 13_8, 13_12, 13_14, 13_20, 13_22, 13_25: .
FIG. 5 is a graph showing the results of measurement of volumetric productivity of recombinant proteins in seven cell lines selected from the results of FIG. 4 (13-5, 13-6, 13-7, 13-8, 13-8, 12, 13-14, 13-20: cell line).
FIG. 6 is a diagram showing a whole process for producing a recombinant protein fused with human IgG Fc fragment and human beta-glucocerebrosidase through transgenic rice cell culture.

본 발명은 단백질 분비 신호 서열, 인간 베타-글루코세레브로시다제(human β-glucicerebrosidase; 이하 ‘GCD’라 한다) 및 인간 IgG Fc 절편(human IgG Fc fragment)이 융합된 폴리뉴클레오티드를 제공한다. The present invention provides a polynucleotide fused with a protein secretion signal sequence, human β-glucicerebrosidase (hereinafter referred to as "GCD"), and human IgG Fc fragment (human IgG Fc fragment).

상기 융합 폴리뉴클레오티드는 인간 IgG Fc 절편 및 단백질 분비 신호 서열이 융합되어 식물세포에서 재조합 단백질을 대량 생산을 가능하게 한다.The fusion polynucleotide fuses human IgG Fc fragment and protein secretion signal sequence to enable mass production of recombinant protein in plant cells.

본 발명의 “단백질 분비 신호 서열”은 재조합 단백질이 세포 밖으로 분비되게 하는 신호 서열이다. 이와 같은 신호 서열에 의하여 상기 재조합 단백질은 발현된 후 세포 밖으로 분비되므로, 세포를 파열하는 과정 없이 효율적으로 정제할 수 있으며 재조합 단백질을 코딩하는 유전자의 앞쪽에 위치할 수 있다. 상기 단백질 분비 신호 서열은 서열번호 1로 기재되는 서열인 Rice α-amylase 1A (RAmy1A)의 신호 펩티드(signal peptide) 유전자 서열을 포함할 수 있으나, 이에 한정되는 것은 아니다.The " protein secretion signal sequence " of the present invention is a signal sequence that causes the recombinant protein to be secreted out of the cell. Because the recombinant protein is secreted out of the cell after the expression of the signal sequence, the cell can be efficiently purified without rupturing the cell, and can be located in front of the gene encoding the recombinant protein. The protein secretion signal sequence may include a signal peptide gene sequence of Rice α-amylase 1A (RAmy1A), which is the sequence described in SEQ ID NO: 1, but is not limited thereto.

본 발명에서 “GCD”는 글루코스핑고지질 글루코세레브로시드(글루코실세라미드, GlcCer)를 가수분해하여 글루코스와 세라미드를 생산하는 막 결합 리소좀 효소이다. 본 발명의 GCD 서열은 서열번호 2로 기재되는 서열을 포함할 수 있으나, 이에 한정되는 것은 아니다.In the present invention, " GCD " is a membrane-bound lysosomal enzyme which hydrolyzes glucosin and glucocerebroside (glucocel ceramide, GlcCer) to produce glucose and ceramide. The GCD sequence of the present invention may include, but is not limited to, the sequence described in SEQ ID NO: 2.

본 발명의 인간 IgG Fc 절편에서 “Fc 절편”은 항체 분자의 기능적인 단편 중 하나이며, 상기 인간 IgG Fc 절편을 코딩하는 유전자는 당 업계에서 공지된 서열을 사용할 수 있다.
The " Fc fragment " in the human IgG Fc fragment of the present invention is one of the functional fragments of the antibody molecule, and the gene encoding the human IgG Fc fragment may be a sequence known in the art.

또한, 본 발명은 단백질 분비 신호 서열, GCD 및 인간 IgG Fc 절편이 융합된 폴리뉴클레오티드를 포함하는 벡터를 제공한다.The invention also provides a vector comprising a polynucleotide fused with a protein secretory signal sequence, a GCD and a human IgG Fc fragment.

본 발명에서 용어 "벡터"는 세포 내로 전달하는 DNA 단편(들), 핵산 분자를 지칭할 때 사용된다. 벡터는 DNA를 복제시키고, 숙주세포에서 독립적으로 재생산될 수 있다. 벡터는 목적한 코딩 서열과 특정 숙주 생물에서 작동가능하게 연결된 코딩 서열을 발현하는 데 필수적인 적정 핵산 서열을 포함하는 재조합 DNA 분자를 의미한다. 진핵세포에서 이용 가능한 프로모터, 인핸서(enhancer), 종결신호 및 폴리아데닐레이션(polyadenylation) 신호는 공지되어 있다.The term "vector" in the present invention is used to refer to a DNA fragment (s), a nucleic acid molecule, which is transferred into a cell. The vector replicates the DNA and can be independently regenerated in the host cell. Vector refers to a recombinant DNA molecule comprising a desired coding sequence and a suitable nucleic acid sequence necessary for expressing a coding sequence operably linked in a particular host organism. Promoters, enhancers, termination signals, and polyadenylation signals available in eukaryotic cells are known.

상기 벡터는 프로모터, 3' UTR(untranslated region)을 더 포함할 수 있다. The vector may further comprise a promoter, 3 'UTR (untranslated region).

본 발명에서 프로모터는 숙주에 천연, 동종, 외래 또는 이종일 수 있다. 외래는 전사 개시 영역이 도입되는 야생형 숙주에서는 발견되지 않는 전사 개시 영역을 의미한다. 프로모터는 원하는 결과에 따라 선택할 수 있으며 당업계에 공지된 적합한 식물 프로모터를 사용할 수 있다. 상기 식물 프로모터는, 콜리 플라워 모자이크 바이러스(Cauliflower Mosaic Virus)의 35S 프로모터, 오핀 신테타제(opine synthetase) 프로모터(nos, mas, ocs 등), 유비퀴틴 프로모터, 액틴 프로모터, 리불로스 바이포스페이트(RubP) 카르복실라제 소형 서브유닛 프로모터, 및 알코올 데하이드로게나제 프로모터, 다센 모자이크 바이러스(Dasheen mosaic virus), 콜레라 바이러스(예 ; 콜레라 바이러스 아데닌 메틸트랜스퍼라제 프로모터;Mitra et al., 1994, Plant Mol. Biol. 26:85), 토마토 스팟 윌트 바이러스(tomato spotted wilt virus), 담배 래틀 바이러스(tobacco rattle virus), 담배 괴사 바이러스, 담배 링 스팟 바이러스(tobacco ring spot virus), 토마토 링 스팟 바이러스, 오이 모자이크 바이러스, 땅콩 스텀프 바이러스(peanut stump virus), 알팔파 모자이크 바이러스, 사탕수수 바실리형 베드나바이러스(sugarcane baciliform badnavirus) 및 벼의 알파-아밀라아제 3D(Rice α- amylase 3D; RAmy3D) 등을 포함하지만, 이에 한정되는 것은 아니며, 바람직하게는 벼의 알파-아밀라아제 3D(Rice α-amylase 3D; RAmy3D) 프로모터일 수 있다. 상기 알파-아밀라아제는 벼의 알파-아밀라아제 3D, 벼의 알파-아밀라아제 3E 또는 벼의 알파-아밀라아제 1A일 수 있으나 이에 한정되는 것은 아니다.In the present invention, the promoter may be native, homologous, foreign or heterologous to the host. Outpatient means a transcription initiation region not found in a wild-type host into which a transcription initiation region is introduced. The promoter can be selected according to the desired result and suitable plant promoters known in the art can be used. The plant promoter may be a promoter of Cauliflower Mosaic Virus 35S promoter, opine synthetase promoter (nos, mas, ocs etc.), ubiquitin promoter, actin promoter, ribulose bisphosphate (RubP) carboxyl 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 85), tomato spotted wilt virus, tobacco rattle virus, tobacco necrotic virus, tobacco ring spot virus, tomato ring spot virus, cucumber mosaic virus, peanut stump virus peanut stump virus, alfalfa mosaic virus, sugarcane-like viral virus (sugarca amylase 3D (RAmy3D) promoter of rice, but is not limited thereto, and preferably includes a promoter of Rice alpha-amylase 3D (RAmy3D) promoter of rice, Lt; / RTI > The alpha-amylase may be alpha-amylase 3D of rice, alpha-amylase 3E of rice, or alpha-amylase IA of rice, but is not limited thereto.

본 발명에서 3' UTR 부위는 mRNA 상에서 정지코돈 이후에 단백질로 번역되지 않는 mRNA 영역을 의미한다.
In the present invention, the 3 'UTR region means an mRNA region that is not translated into a protein after the stop codon on the mRNA.

또한, 본 발명은 상기 벡터로 형질전환된 식물 형질전환세포를 제공한다.The present invention also provides a plant transformed cell transformed with said vector.

본 발명에서 식물 형질전환세포의 제조에 이용되는 식물은 쌍자엽 또는 단자엽 식물에 상관없이 어떤 식물도 가능하나, 바람직하게는 담배, 벼, 밀, 보리, 감자, 토마토, 상추, 옥수수 및 애기장대로 이루어진 군으로부터 선택되는 1종 이상의 식물일 수 있다.The plants used for the production of plant transformed cells according to the present invention may be any plants regardless of dicots or monocotyledons. Preferably, the plants are selected from tobacco, rice, wheat, barley, potatoes, tomatoes, lettuce, Lt; RTI ID = 0.0 > and / or < / RTI >

본 발명에서 식물 형질전환세포의 제조에 이용되는 식물세포는 어떤 식물세포도 가능하나, 배양 세포, 배양 조직, 배양 기관 또는 전체 식물을 포함할 수 있으며 바람직하게는 배양 세포, 배양 조직 또는 배양 기관이며, 더욱 바람직하게는 배양 세포의 어떤 형태도 가능하다.
The plant cells used in the production of plant transformed cells in the present invention may be any plant cells, but may include cultured cells, cultured tissues, culture or whole plants, and preferably cultured cells, cultured tissues or culture media , More preferably any form of cultured cells is possible.

또한, 본 발명은 상기 식물 형질전환세포에서 GCD및 인간 IgG Fc 융합 단백질의 대량 생산 방법을 제공한다. The present invention also provides a method for mass production of GCD and human IgG Fc fusion proteins in the plant transformed cells.

상기 대량 생산 방법은 The mass-

1) 단백질 분비 신호 서열, GCD 및 인간 IgG Fc 절편이 융합된 폴리뉴클레오티드를 포함하는 벡터를 제조하는 단계;1) preparing a vector comprising a protein secretory signal sequence, a GCD and a polynucleotide fused with a human IgG Fc fragment;

2) 상기 1)단계의 벡터로 형질전환된 식물 형질전환세포를 제조하는 단계; 및2) preparing a plant transformed cell transformed with the vector of step 1); And

3) 상기 2)단계의 식물 형질전환세포로부터 인간 IgG Fc 절편이 융합된 GCD를 얻는 단계; 를 포함한다. 3) obtaining a GCD in which the human IgG Fc fragment is fused from the plant transformed cells of step 2); .

본 발명의 대량 생산 방법을 이용하면, 단백질 분비 신호 서열에 의해 분비가 촉진되고 식물 세포 배양 시스템을 이용함에도 불구하고 인간 IgG Fc 절편 및 GCD가 융합된 재조합 단백질의 대량 생산 가능 및 정제를 용이하게 할 수 있다.
The mass production method of the present invention facilitates the secretion by the protein secretory signal sequence and facilitates the mass production and purification of the recombinant protein fused with human IgG Fc fragment and GCD despite the use of the plant cell culture system .

또한, 본 발명은 상기 방법에 의해 생산된 재조합 융합 단백질을 제공한다. The present invention also provides a recombinant fusion protein produced by the above method.

상기 재조합 융합 단백질은 GCD와 인간 IgG Fc 절편이 융합된 단백질이다. 상기 재조합 단백질은 통상의 현탁 세포에서 발현된 재조합 단백질 정제방법으로 정제하여 수득할 수 있으며, 재조합 단백질의 종류에 따라 정제방법을 달리하여 수득할 수 있다.The recombinant fusion protein is a fusion protein of GCD and human IgG Fc fragment. The recombinant protein can be obtained by purifying the recombinant protein expressed in a conventional suspension cell, and can be obtained by various purification methods depending on the kind of the recombinant protein.

본 발명에서 대량 생산된 재조합 단백질은 리소좀 축적 질환의 효소대체치료제로서 유용하게 사용될 수 있다.The mass-produced recombinant protein in the present invention can be usefully used as an enzyme replacement therapy for lysosomal accumulation diseases.

상기 재조합 단백질은 GCD의 N 말단에 단백질 분비 신호 서열의 C 말단이 융합되고 C 말단에는 IgG Fc 절편의 N말단이 융합된 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니다.
The recombinant protein may be characterized in that the C-terminal of the protein secretion signal sequence is fused to the N-terminus of GCD and the N-terminus of the IgG Fc fragment is fused to the C-terminus.

본 명세서에서 달리 정의되지 않은 용어들은 본 발명이 속하는 기술분야에서 통상적으로 사용되는 의미를 갖는 것이다.Terms not otherwise defined herein have meanings as commonly used in the art to which the present invention belongs.

이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기에 의해 한정되는 것은 아니다.
Hereinafter, the present invention will be described in detail with reference to examples. However, the following examples are illustrative of the present invention, and the content of the present invention is not limited by the following.

실시예 1 - 융합 단백질 발현을 위한 벡터의 구축Example 1 - Construction of a vector for fusion protein expression

단백질 분비 신호 서열, GCD 및 인간 IgG Fc 절편의 융합 유전자를 포함하는 재조합 벡터를 제조하였으며 이의 구조를 도 1에 간략하게 나타내었다. 발현 벡터의 백본으로는 pMYN409 벡터를 이용하였으며 이를 도 2에 나타내었다. pMYN409 벡터는 당고갈에 의해 유도되는 유도성 프로모터이다. A recombinant vector comprising a fusion protein of the protein secretory signal sequence, GCD and human IgG Fc fragment was prepared and its structure is shown in FIG. 1 briefly. As a backbone of the expression vector, the pMYN409 vector was used and it is shown in Fig. The pMYN409 vector is an inducible promoter induced by glucose deprivation.

보다 구체적으로, GCD 유전자의 N 말단 부분에는 Rice α- amylase 1A(RAmy1A)의 신호 서열 유전자를 넣어 단백질의 세포의 분비가 촉진되도록 하였으며, C 말단 부분에는 인간 IgG Fc 절편의 유전자를 overlapping PCR 기법을 이용해서 연결하여 식물 발현 벡터를 구축하였다. 인간 IgG Fc 절편의 융합은 GCD의 정제 및 분석을 용이하게 하고 GCD의 혈중 반감기 및 안정성을 높이고자 하는 목적으로 실시하였다. 상기 식물 발현 벡터를 이후 실험에 사용하였다.More specifically, the signal sequence gene of Rice α-amylase 1A (RAmy1A) was inserted in the N-terminal part of the GCD gene to promote the secretion of the protein, and the overlapping PCR of the human IgG Fc fragment was performed at the C- To construct a plant expression vector. Fusion of human IgG Fc fragments was performed for the purpose of facilitating purification and analysis of GCD and enhancing blood half-life and stability of GCD. The plant expression vector was used for further experiments.

클로닝에 사용된 프라이머는 하기의 표 1과 같다.The primers used for the cloning are shown in Table 1 below.

Figure pat00001
Figure pat00001

실시예 2 - 재조합 식물 형질전환세포의 제조 및 현탁배양Example 2 - Preparation of recombinant plant transformed cells and suspension culture

2.1 재조합 식물 형질전환세포의 제조 및 선별2.1 Preparation and Screening of Recombinant Plant Transformed Cells

벼(Oryza sativa L. cv Dongjin)의 씨를 70% 에탄올과 2% 락스로 처리한 후 캘러스 유도배지에 치상을 하였다. 단백질 분비 신호 서열, GCD 및 인간 IgG Fc 절편이 융합된 폴리뉴클레오티드로 형질전환 되어있는 아그로박테리움 투머파시엔스(agrobacterium tumefaciens)를 캘러스와 함께 공동배양을 하여 캘러스 형질전환을 하였고 이를 통해 재조합 식물 형질 전환 세포를 제조하였다. 융합된 폴리뉴클레오티드가 도입되었는지 PCR 기법으로 확인하였으며 이를 도 3에 나타내었다. The seeds of rice (Oryza sativa L. cv Dongjin) were treated with 70% ethanol and 2% lactose and placed on callus induction medium. Agrobacterium tumefaciens transformed with a polynucleotide fused with a protein secretion signal sequence, GCD, and a human IgG Fc fragment were co-cultured with callus to induce callus transformation, thereby transforming the recombinant plant Cells were prepared. It was confirmed by a PCR method that the fused polynucleotide was introduced and is shown in Fig.

융합 유전자의 도입을 확인하기 위하여 캘러스를 2,4-디클로로페녹시아세트산(2 ㎎/ℓ), 수크로오스(30 g/ℓ), MES(0.5 g/ℓ), L-프롤린(0.5 g/ℓ), L-글루타민(0.5 g/ℓ), 카사미노산(casamino acid) (0.3 g/ℓ), 마이오-이노시톨(myo-inositol) (0.01 g/ℓ), 하이그로마이신 B (40 ㎎/ℓ)가 첨가된 N6 배지에 옮겨 배양하였다. 이후, 하이그로마이신에 저항성이 있는 캘러스를 골라내는 방법으로 단백질 분비 신호 서열, GCD 및 IgG Fc 졀편이 융합된 폴리펩티드가 도입된 캘러스를 선별하였다.
(2 mg / L), sucrose (30 g / L), MES (0.5 g / L) and L-proline (0.5 g / L) in order to confirm the introduction of the fusion gene. L-glutamine (0.5 g / l), casamino acid (0.3 g / l), myo-inositol (0.01 g / l), hygromycin B (40 mg / Lt; RTI ID = 0.0 > N6 < / RTI > Thereafter, a callus into which a polypeptide having a fusion of a protein secretory signal sequence, GCD and IgG Fc fragment was introduced was selected by selecting a callus resistant to hygromycin.

2.2 현탁배양2.2 Suspension Culture

상기 실시예 2.1에서 얻은 형질전환 벼 세포의 생장 및 유지를 위해 N6 배지(Duchefa)를 사용하였다. 여기에 탄소원으로 30 g/ℓ 수크로오스, 생장조절제로 2.0 ㎎/ℓ 2,4-디클로로페녹시아세트산(2,4-D), 0.2 ㎎/ℓ 키네틴(kinetin), 0.1 ㎎/ℓ 지베렐린 산(gibberellic acid)을 첨가하였고, MES (0.5 g/ℓ), L-프롤린(0.5 g/ℓ), L-글루타민(0.5 g/ℓ), 카사미노산(casamino acid) (0.3 g/ℓ), 마이오-이노시톨(myo-inositol) (0.01 g/ℓ)를 첨가한 후 배지의 pH는 5.8로 조절하였다. 준비된 배지를 500㎖ Erlenmeyer 플라스크에 분주하여 121℃, 1기압에서 고압증기멸균하였다. 40 ㎎/ℓ 하이그로마이신을 0.22 ㎛ 멤브레인 필터(Millipore, USA)로 여과 멸균하였다. N6 배지에 현탁된 벼 세포는 shaking incubator에서 28℃, 120 rpm, 암조건에서 배양하였고, 계대배양은 9일 간격으로 실시하여 식물 형질전환세포를 배양하였다.
N6 medium (Duchefa) was used for the growth and maintenance of the transformed rice cells obtained in Example 2.1 above. (2,4-D), 0.2 mg / l kinetin, 0.1 mg / l gibberellic acid (gibberellic acid) as a growth regulator, (0.5 g / l), L-glutamine (0.5 g / l), casamino acid (0.3 g / l) After addition of myo-inositol (0.01 g / l), the pH of the medium was adjusted to 5.8. The prepared medium was dispensed into a 500 ml Erlenmeyer flask and autoclaved at 121 占 폚 and 1 atm. 40 mg / l hygromycin was filter sterilized with a 0.22 占 퐉 membrane filter (Millipore, USA). Rice cells suspended in N6 medium were cultured in shaking incubator at 28 ° C, 120 rpm, and dark, and subculture was carried out at intervals of 9 days to cultivate plant transformed cells.

실시예 3 - 인간 베타-글루코세레브로시다제(human β-glucocerebrosidase) 및 인간 IgG Fc 융합 재조합 단백질의 분석Example 3 - Analysis of human beta-glucocerebrosidase and human IgG Fc fusion recombinant protein

상기 실시예 2.2에서 얻은 배양액에서 하이그로마이신 B에 내성이 있는 캘러스를 선별하여 수크로오스가 없는 N6 배지에 7일간 치상한 뒤 회수하였다. 액화질소를 이용하여 세포를 파쇄하고 프로테아제 억제인자가 포함된 PBS 배지에 재현탁한 후 원심분리를 통해 상등액만 회수하였다. GCD 및 인간 IgG Fc 융합 재조합 단백질의 정량분석을 위하여 총 단백질양은 Bradford 분석법을, 목적 단백질양은 ezyme-linked immunosorbent assay(ELISA) 분석법을 사용하였다. Sandwich ELISA를 수행하기 위하여 1차 항원(primary antibody)으로는 Goat anti-human IgG (Fc) (KPL, USA)를 사용하였고, 2차 항원(secondary antibody)으로는 peroxidase-labeled goat anti-human IgG(KPL, USA)를 사용하였다. 기질은 ABTS peroxidase substrate(KPL, USA)로 사용하였고, 발색정도를 405 ㎚에서의 흡광도로 측정하였다. 표준물질로는 ImmunoPure® human IgG(Pierce, USA)를 사용하였다.The callus resistant to hygromycin B was selected from the culture broth obtained in Example 2.2, recovered in a sucrose-free N6 medium for 7 days, and then recovered. Cells were disrupted using liquefied nitrogen and resuspended in PBS medium containing protease inhibitor, followed by centrifugation to collect only the supernatant. For the quantitative analysis of GCD and human IgG Fc fusion recombinant proteins, Bradford assay was used for the total protein content and ezyme-linked immunosorbent assay (ELISA) for the target protein content. In order to perform the sandwich ELISA, goat anti-human IgG (Fc) (KPL, USA) was used as the primary antibody and secondary antibody was peroxidase-labeled goat anti-human IgG KPL, USA) was used. Substrates were used as ABTS peroxidase substrate (KPL, USA) and the degree of color development was measured by absorbance at 405 nm. ImmunoPure® human IgG (Pierce, USA) was used as a standard.

상기의 방법으로 여러 세포주에서 재조합 단백질의 정량 분석하여 총 단백질양 대비 목적 단백질양이 높은 세포주를 선별하였으며 그 결과를 도 4에 나타내었다. 또한 선정된 7가지 세포주의 용적 생산성(volumetric productivity)을 측정하여 그 결과를 도 5에 나타내었다. The recombinant proteins were quantitatively analyzed in various cell lines as described above, and cell lines having a high amount of the target protein were selected according to the total protein amount. The results are shown in FIG. The volumetric productivity of the seven selected cell lines was measured and the results are shown in FIG.

도 4 및 5에서 나타나는 바와 같이 식물 세포 배양 방법을 사용하였음에도 불구하고 단백질 분비 신호 서열 및 인간 IgG Fc 절편을 융합함으로써 GCD - 인간 IgG Fc 융합 재조합 단백질을 대량 생산할 수 있음을 확인하였다. 또한 인간 IgG Fc 절편을 융합으로 인해 목적 단백질의 정량, 정성 분석이 용이해짐을 확인하였다.As shown in FIGS. 4 and 5, although the plant cell culture method was used, it was confirmed that the recombinant protein of GCD-human IgG Fc could be mass produced by fusion of the protein secretory signal sequence and the human IgG Fc fragment. In addition, it was confirmed that quantification and qualitative analysis of the target protein were facilitated by fusion of the human IgG Fc fragment.

<110> INHA-INDUSTRY PARTNERSHIP INSTITUTE <120> Human IgG Fc-fusion human beta-glucocerebrosidase and preparation thereof <130> 1_155P <160> 2 <170> KopatentIn 2.0 <210> 1 <211> 93 <212> DNA <213> Oryza sativa <400> 1 atgcaggtgc tgaacaccat ggtgaacaaa cacttcttgt ccctttcggt cctcatcgtc 60 ctccttggcc tctcctccaa cttgacagcc ggg 93 <210> 2 <211> 2193 <212> DNA <213> Homo sapiens <400> 2 gcccgcccct gcatccctaa aagcttcggc tacagctcgg tggtgtgtgt ctgcaatgcc 60 acatactgtg actcctttga ccccccgacc tttcctgccc ttggtacctt cagccgctat 120 gagagtacac gcagtgggcg acggatggag ctgagtatgg ggcccatcca ggctaatcac 180 acgggcacag gcctgctact gaccctgcag ccagaacaga agttccagaa agtgaaggga 240 tttggagggg ccatgacaga tgctgctgct ctcaacatcc ttgccctgtc accccctgcc 300 caaaatttgc tacttaaatc gtacttctct gaagaaggaa tcggatataa catcatccgg 360 gtacccatgg ccagctgtga cttctccatc cgcacctaca cctatgcaga cacccctgat 420 gatttccagt tgcacaactt cagcctccca gaggaagata ccaagctcaa gatacccctg 480 attcaccgag ccctgcagtt ggcccagcgt cccgtttcac tccttgccag cccctggaca 540 tcacccactt ggctcaagac caatggagcg gtgaatggga aggggtcact caagggacag 600 cccggagaca tctaccacca gacctgggcc agatactttg tgaagttcct ggatgcctat 660 gctgagcaca agttacagtt ctgggcagtg acagctgaaa atgagccttc tgctgggctg 720 ttgagtggat accccttcca gtgcctgggc ttcacccctg aacatcagcg agacttcatt 780 gcccgtgacc taggtcctac cctcgccaac agtactcacc acaatgtccg cctactcatg 840 ctggatgacc aacgcttgct gctgccccac tgggcaaagg tggtactgac agacccagaa 900 gcagctaaat atgttcatgg cattgctgta cattggtacc tggactttct ggctccagcc 960 aaagccaccc taggggagac acaccgcctg ttccccaaca ccatgctctt tgcctcagag 1020 gcctgtgtgg gctccaagtt ctgggagcag agtgtgcggc taggctcctg ggatcgaggg 1080 atgcagtaca gccacagcat catcacgaac ctcctgtacc atgtggtcgg ctggaccgac 1140 tggaaccttg ccctgaaccc cgaaggagga cccaattggg tgcgtaactt tgtcgacagt 1200 cccatcattg tagacatcac caaggacacg ttttacaaac agcccatgtt ctaccacctt 1260 ggccacttca gcaagttcat tcctgagggc tcccagagag tggggctggt tgccagtcag 1320 aagaacgacc tggacgcagt ggcactgatg catcccgatg gctctgctgt tgtggtcgtg 1380 ctaaaccgct cctctaagga tgtgcctctt accatcaagg atcctgctgt gggcttcctg 1440 gagacaatct cacctggcta ctccattcac acctacctgt ggcatcgcca ggcagagccc 1500 aaatcttgtg acaaaactca cacatgccca ccgtgcccag cacctgaact cctgggggga 1560 ccgtcagtct tcctcttccc cccaaaaccc aaggacaccc tcatgatctc ccggacccct 1620 gaggtcacat gcgtggtggt ggacgtgagc cacgaagacc ctgaggtcaa gttcaactgg 1680 tacgtggacg gcgtggaggt gcataatgcc aagacaaagc cgcgggagga gcagtacaac 1740 agcacgtacc gggtggtcag cgtcctcacc gtcctgcacc aggactggct gaatggcaag 1800 gagtacaagt gcaaggtctc caacaaagcc ctcccagccc ccatcgagaa aaccatctcc 1860 aaagccaaag ggcagccccg agaaccacag gtgtacaccc tgcccccatc ccgggatgag 1920 ctgaccaaga accaggtcag cctgacctgc ctggtcaaag gcttctatcc cagcgacatc 1980 gccgtggagt gggagagcaa tgggcagccg gagaacaact acaagaccac gcctcccgtg 2040 ctggactccg acggctcctc cttcctctac agcaagctca ccgtggacaa gagcaggtgg 2100 cagcagggga acgtcttctc atgctccgtg atgcatgagg ctctgcacaa ccactacacg 2160 cagaagagcc tctccctgtc tccgggtaaa tga 2193 <110> INHA-INDUSTRY PARTNERSHIP INSTITUTE <120> Human IgG Fc-fusion human beta-glucocerebrosidase and preparation          the <130> 1_155P <160> 2 <170> Kopatentin 2.0 <210> 1 <211> 93 <212> DNA <213> Oryza sativa <400> 1 atgcaggtgc tgaacaccat ggtgaacaaa cacttcttgt ccctttcggt cctcatcgtc 60 ctccttggcc tctcctccaa cttgacagcc ggg 93 <210> 2 <211> 2193 <212> DNA <213> Homo sapiens <400> 2 gcccgcccct gcatccctaa aagcttcggc tacagctcgg tggtgtgtgt ctgcaatgcc 60 cctccgctat 120 ggagtacac gcagtgggcg acggatggag ctgagtatgg ggcccatcca ggctaatcac 180 acgggcacag gcctgctact gaccctgcag ccagaacaga agttccagaa agtgaaggga 240 tttggagggg ccatgacaga tgctgctgct ctcaacatcc ttgccctgtc accccctgcc 300 caaaatttgc tacttaaatc gtacttctct gaagaaggaa tcggatataa catcatccgg 360 gtacccatgg ccagctgtga cttctccatc cgcacctaca cctatgcaga cacccctgat 420 gatttccagt tgcacaactt cagcctccca gaggaagata ccaagctcaa gatacccctg 480 attcaccgag ccctgcagtt ggcccagcgt cccgtttcac tccttgccag cccctggaca 540 tcacccactt ggctcaagac caatggagcg gtgaatggga aggggtcact caagggacag 600 cccggagaca tctaccacca gacctgggcc agatactttg tgaagttcct ggatgcctat 660 gctgagcaca agttacagtt ctgggcagtg acagctgaaa atgagccttc tgctgggctg 720 ttgagtggat accccttcca gtgcctgggc ttcacccctg aacatcagcg agacttcatt 780 gcccgtgacc taggtcctac cctcgccaac agtactcacc acaatgtccg cctactcatg 840 ctggatgacc aacgcttgct gctgccccac tgggcaaagg tggtactgac agacccagaa 900 gcagctaaat atgttcatgg cattgctgta cattggtacc tggactttct ggctccagcc 960 aaagccaccc taggggagac acaccgcctg ttccccaaca ccatgctctt tgcctcagag 1020 gcctgtgtgg gctccaagtt ctgggagcag agtgtgcggc taggctcctg ggatcgaggg 1080 atgcagtaca gccacagcat catcacgaac ctcctgtacc atgtggtcgg ctggaccgac 1140 tggaaccttg ccctgaaccc cgaaggagga cccaattggg tgcgtaactt tgtcgacagt 1200 cccatcattg tagacatcac caaggacacg ttttacaaac agcccatgtt ctaccacctt 1260 ggccacttca gcaagttcat tcctgagggc tcccagagag tggggctggt tgccagtcag 1320 aagaacgacc tggacgcagt ggcactgatg catcccgatg gctctgctgt tgtggtcgtg 1380 ctaaaccgct cctctaagga tgtgcctctt accatcaagg atcctgctgt gggcttcctg 1440 gagacaatct cacctggcta ctccattcac acctacctgt ggcatcgcca ggcagagccc 1500 aaatcttgtg acaaaactca cacatgccca ccgtgcccag cacctgaact cctgggggga 1560 ccgtcagtct tcctcttccc cccaaaaccc aaggacaccc tcatgatctc ccggacccct 1620 gaggtcacat gcgtggtggt ggacgtgagc cacgaagacc ctgaggtcaa gttcaactgg 1680 tacgtggacg gcgtggaggt gcataatgcc aagacaaagc cgcgggagga gcagtacaac 1740 agcacgtacc gggtggtcag cgtcctcacc gtcctgcacc aggactggct gaatggcaag 1800 gagtacaagt gcaaggtctc caacaaagcc ctcccagccc ccatcgagaa aaccatctcc 1860 aaagccaaag ggcagccccg agaaccacag gtgtacaccc tgcccccatc ccgggatgag 1920 ctgaccaaga accaggtcag cctgacctgc ctggtcaaag gcttctatcc cagcgacatc 1980 gccgtggagt gggagagcaa tgggcagccg gagaacaact acaagaccac gcctcccgtg 2040 ctggactccg acggctcctc cttcctctac agcaagctca ccgtggacaa gagcaggtgg 2100 cagcagggga acgtcttctc atgctccgtg atgcatgagg ctctgcacaa ccactacacg 2160 cagaagagcc tctccctgtc tccgggtaaa tga 2193

Claims (9)

단백질 분비 신호 서열, 인간 베타-글루코세레브로시다제(human β-glucocerebrosidase) 및 인간 IgG Fc 절편이 융합된 폴리뉴클레오티드.
A protein secretion signal sequence, a polynucleotide fused with human beta-glucocerebrosidase and a human IgG Fc fragment.
제1항에 있어서, 상기 단백질 분비 신호 서열은 서열번호 1인 것을 특징으로 하는, 폴리뉴클레오티드.
2. The polynucleotide of claim 1, wherein the protein secretion signal sequence is SEQ ID NO:
제1항에 있어서, 상기 인간 베타-글루코세레브로시다제(human β-glucocerebrosidase)는 서열번호 2인 것을 특징으로 하는, 폴리뉴클레오티드.
2. A polynucleotide according to claim 1, wherein the human beta-glucocerebrosidase is SEQ ID NO: 2.
제1항의 폴리뉴클레오티드를 포함하는 벡터.
A vector comprising the polynucleotide of claim 1.
제4항의 벡터로 형질전환된 식물 형질전환세포.
A plant transformed cell transformed with the vector of claim 4.
제5항에 있어서 상기 식물은 담배, 벼, 밀, 보리, 감자, 토마토, 상추, 옥수수 및 애기장대로 이루어진 군으로부터 선택된 1종 이상의 식물인 것을 특징으로 하는, 식물 형질전환세포.
The plant transfected cell according to claim 5, wherein the plant is at least one plant selected from the group consisting of tobacco, rice, wheat, barley, potato, tomato, lettuce, corn and Arabidopsis.
1) 단백질 분비 신호 서열, 인간 베타-글루코세레브로시다제(human β-glucocerebrosidase) 및 인간 IgG Fc 절편이 융합된 폴리뉴클레오티드를 포함하는 벡터를 제조하는 단계;
2) 상기 1)단계의 벡터로 형질전환된 식물 형질전환세포를 제조하는 단계; 및
3) 상기 2)단계의 식물 형질전환세포로부터 인간 IgG Fc 절편이 융합된 인간 베타-글루코세레브로시다제(human β-glucocerebrosidase)를 얻는 단계;를 포함하는 인간 베타-글루코세레브로시다제(human β-glucocerebrosidase)의 대량 생산 방법.
1) preparing a vector comprising a protein secretion signal sequence, a polynucleotide fused with human beta-glucocerebrosidase and a human IgG Fc fragment;
2) preparing a plant transformed cell transformed with the vector of step 1); And
3) obtaining a human beta-glucocerebrosidase fused with a human IgG Fc fragment from the plant transformed cells of step 2), wherein the human beta-glucocerebrosidase is fused with human beta-glucocerebrosidase, beta-glucocerebrosidase).
제7항의 방법으로 생산된 인간 베타-글루코세레브로시다제(human β-glucocerebrosidase) 및 인간 IgG Fc 융합 재조합 단백질.
Human beta-glucocerebrosidase and human IgG Fc fusion recombinant protein produced by the method of claim 7.
제8항에 있어서 상기 인간 베타-글루코세레브로시다제(human β-glucocerebrosidase)의 N 말단에 단백질 분비 신호 서열의 C 말단이 융합되고 C 말단에는 IgG Fc 절편의 N말단이 융합된 것을 특징으로 하는, 재조합 단백질.9. The method according to claim 8, wherein the C-terminal of the protein secretion signal sequence is fused to the N-terminus of the human beta-glucocerebrosidase and the N-terminus of the IgG Fc fragment is fused to the C-terminus of the human beta-glucocerebrosidase , Recombinant protein.
KR1020150053313A 2015-04-15 2015-04-15 - Human IgG Fc-fusion human -glucocerebrosidase and preparation thereof KR20160123145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150053313A KR20160123145A (en) 2015-04-15 2015-04-15 - Human IgG Fc-fusion human -glucocerebrosidase and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150053313A KR20160123145A (en) 2015-04-15 2015-04-15 - Human IgG Fc-fusion human -glucocerebrosidase and preparation thereof

Publications (1)

Publication Number Publication Date
KR20160123145A true KR20160123145A (en) 2016-10-25

Family

ID=57446314

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150053313A KR20160123145A (en) 2015-04-15 2015-04-15 - Human IgG Fc-fusion human -glucocerebrosidase and preparation thereof

Country Status (1)

Country Link
KR (1) KR20160123145A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020059960A1 (en) * 2018-09-19 2020-03-26 주식회사 바이오앱 Recombinant vector comprising pig fc fragment and method for producing recombinant protein using same vector
CN111565747A (en) * 2018-09-19 2020-08-21 巴伊沃爱普有限公司 Antigen fused with porcine FC fragment, and vaccine composition comprising same
US10947278B2 (en) 2018-09-19 2021-03-16 Bioapplications Inc. Recombinant vector comprising porcine FC fragment and preparation method of recombinant protein using thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020059960A1 (en) * 2018-09-19 2020-03-26 주식회사 바이오앱 Recombinant vector comprising pig fc fragment and method for producing recombinant protein using same vector
KR20200033036A (en) * 2018-09-19 2020-03-27 주식회사 바이오앱 Recombinant vector comprising porcine Fc fragment and preparation method of recombinant proteins using thereof
CN111556898A (en) * 2018-09-19 2020-08-18 巴伊沃爱普有限公司 Recombinant vector containing porcine FC fragment and method for preparing recombinant protein by using recombinant vector
CN111565747A (en) * 2018-09-19 2020-08-21 巴伊沃爱普有限公司 Antigen fused with porcine FC fragment, and vaccine composition comprising same
JP2021502051A (en) * 2018-09-19 2021-01-28 バイオアプリケーションズ インコーポレイテッドBioapplications Inc. A recombinant vector containing a porcine FC fragment and a method for producing a recombinant protein using the vector.
US10947278B2 (en) 2018-09-19 2021-03-16 Bioapplications Inc. Recombinant vector comprising porcine FC fragment and preparation method of recombinant protein using thereof
CN111556898B (en) * 2018-09-19 2023-08-15 巴伊沃爱普有限公司 Recombinant vector comprising porcine FC fragment and method for preparing recombinant protein by using same
CN111565747B (en) * 2018-09-19 2023-08-15 巴伊沃爱普有限公司 Antigen fused to porcine FC fragment and vaccine composition comprising the same

Similar Documents

Publication Publication Date Title
JP6941664B2 (en) Modified IL-2 mutant that selectively activates regulatory T cells for the treatment of autoimmune diseases
KR102493543B1 (en) Molecules that selectively activate regulatory t cells for the treatment of autoimmune diseases
US20190049469A1 (en) Biomarker for use in treating anemia
CN107533040B (en) activin-ACTRII antagonists and uses for treating anemia
RU2441911C2 (en) Production of biologically active proteins
AU2021203571A1 (en) Treatment of cardiovascular disease using ActRII ligand traps
US20110305718A1 (en) Recombinant Protein Body-Inducing Polypeptides
CN106913865A (en) The method that disease and illness are treated using interleukin 10
CN108350057A (en) Use the external cell culture method for β-thalassemia of II type activin acceptor ligand traps
JP2006515177A (en) Pharmaceutical composition comprising Notch ligand protein and medical treatment
CN108129566A (en) Target high-affinity C- type single domain antibodies of mesothelin and preparation method and application
CN103687617A (en) Peptide carrier fusion proteins as allergy vaccines
Tottey et al. Plant-produced subunit vaccine candidates against yellow fever induce virus neutralizing antibodies and confer protection against viral challenge in animal models
KR20160123145A (en) - Human IgG Fc-fusion human -glucocerebrosidase and preparation thereof
KR101989551B1 (en) IL-1β INHIBITOR COMPOSITION AND USE THEREOF
CN101633698A (en) Immune fusion protein and gene encoding same and application thereof
KR20230039676A (en) Catalytically inactive angiotensin converting enzyme 2 (ACE2) mutations and uses thereof
CN102586313A (en) Preparation method of p75NTR-ED-Fc fusion protein and application of p75NTR-ED-Fc fusion protein in regeneration and functional recovery of injured central nerve
JP5008811B2 (en) Immunoadhesives to prevent rhinovirus infection
CN102858963A (en) Anti-trypanosomiasis vaccines and diagnostics
Demone et al. Scalable agroinfiltration-based production of SARS-CoV-2 antigens for use in diagnostic assays and subunit vaccines
CN101798351A (en) Recombinant expression of human TIM-1-Fc fusion protein
CN110343173B (en) High-functional-activity yellow fever virus humanized monoclonal antibody and application thereof
KR100941678B1 (en) Polypeptides or fusion proteins thereof having an inhibitory activity against metastasis of cancer cells
KR20100032028A (en) Polypeptides or fusion proteins thereof having an inhibitory activity against growth of cancer cells and preventive or treating activity against inflammatory diseases

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E601 Decision to refuse application