KR20160022611A - Gnss-based ionosheric total electron content (tec) prediction techniques and system - Google Patents

Gnss-based ionosheric total electron content (tec) prediction techniques and system Download PDF

Info

Publication number
KR20160022611A
KR20160022611A KR1020140108393A KR20140108393A KR20160022611A KR 20160022611 A KR20160022611 A KR 20160022611A KR 1020140108393 A KR1020140108393 A KR 1020140108393A KR 20140108393 A KR20140108393 A KR 20140108393A KR 20160022611 A KR20160022611 A KR 20160022611A
Authority
KR
South Korea
Prior art keywords
gnss
total electron
ionosphere
tec
electron content
Prior art date
Application number
KR1020140108393A
Other languages
Korean (ko)
Inventor
이승우
Original Assignee
사단법인 한국기상학회
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 사단법인 한국기상학회 filed Critical 사단법인 한국기상학회
Priority to KR1020140108393A priority Critical patent/KR20160022611A/en
Publication of KR20160022611A publication Critical patent/KR20160022611A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/07Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
    • G01S19/072Ionosphere corrections

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

The present invention relates to a technique for predicting a total electron content of the ionosphere by using a GNSS and a system thereof. The technique calculates a total electron content of the ionosphere in real time or through post-processing by using a pseudo-distance and carrier data generated in a GNSS dual frequency receiver and predicts the total electron capacity through frequency analysis in accordance with a change of the ionosphere.

Description

GNSS 이용 전리층 총전자량 예측 기법 및 시스템 {GNSS-BASED IONOSHERIC TOTAL ELECTRON CONTENT (TEC) PREDICTION TECHNIQUES AND SYSTEM}{GNSS-BASED IONOSHERIC TOTAL ELECTRON CONTENT (TEC) PREDICTION TECHNIQUES AND SYSTEM}

본 발명은 전지구 위성항법 시스템 (GLOBAL NAVIGATION SATELLITE SYSTEM, GNSS)을 이용하여 실시간 또는 후처리 모드로 전리층의 총전자량 (Total Electron Content, TEC)을 예측하는 기법과 시스템에 대한 것이다.
The present invention relates to a technique and a system for predicting the total electron content (TEC) of the ionosphere in a real-time or post-processing mode using a global navigation system (GNSS).

글로벌 네비게이션 위성 시스템(Global Navigation Satellite System, GNSS)은 인공위성을 이용하여 지상물의 위치, 고도, 속도 등에 관한 정보를 제공하는 시스템을 말한다. GNSS는 지구 주위를 궤도 운동하고 있는 GNSS 위성 신호를 이용하므로 GNSS 신호가 지상의 사용자에게 수신되기 위해 전리층을 포함한 지구 대기권을 통과하면서 신호 지연량의 변화 등을 겪게 된다.The Global Navigation Satellite System (GNSS) is a system that provides information on the location, altitude, and speed of terrestrial objects using satellites. Because GNSS uses GNSS satellite signals orbiting the earth, GNSS signals pass through the Earth's atmosphere, including the ionosphere, to be received by terrestrial users, resulting in changes in the amount of signal delay.

전리층 통과 시에 발생하는 GNSS 신호 지연량은 전리층의 전자 밀도에 따른 굴절률과 반송파 주파수의 함수로 주어지며 이를 이용하여 이중 주파수 GNSS 신호를 이용할 경우 총 신호 지연량으로부터 총전자량을 계산할 수 있다.The amount of GNSS signal delay generated when passing through the ionosphere is given as a function of the refractive index and the carrier frequency depending on the electron density of the ionosphere and the total electron quantity can be calculated from the total signal delay amount using the dual frequency GNSS signal.

전리층의 총전자량은 전리층 내의 자유 전자의 분포에 의존하며 무선 통신 전반에 영향을 끼칠 수 있는데 특히GNSS 분야와 같은 위성 통신이나 핸드폰, 국제 장거리 통신 등에 직접적인 영향을 줄 수 있다. 전리층의 이상 및 교란 현상이 심각할 경우 통신 두절 현상까지 발생할 수 있다. 따라서 총전자량을 예보 또는 예측하는 일은 고품질의 무선 통신을 위해 필요한 부분이다.
The total amount of electrons in the ionosphere depends on the distribution of free electrons in the ionosphere and can affect overall radio communication, especially satellite communications such as GNSS, mobile phones, and international long distance communications. If ionospheric anomalies and disturbances are severe, communication disruption may occur. Therefore, forecasting or predicting the total electron quantity is a necessary part for high-quality wireless communication.

본 발명은 GNSS 이중 주파수 수신기에서 생성되는 의사거리 및 반송파 데이터를 이용하여 전리층의 총전자량을 실시간 또는 후처리로 산출하고 이를 전리층 변화에 따른 주파수 분석을 통해 총전자량을 예측하는 기법과 시스템 개발에 대한 것이다 .
The present invention relates to a method and system for predicting the total electron quantity of the ionosphere by calculating the total electron quantity of the ionosphere using real-time or post-processing using the pseudo range and carrier data generated from the GNSS dual frequency receiver and analyzing the frequency by analyzing the ionospheric variation Lt; / RTI >

본 발명은 전지구 위성항법 시스템 (GLOBAL NAVIGATION SATELLITE SYSTEM, GNSS)을 이용하여 실시간 또는 후처리 모드로 전리층의 총전자량 (Total Electron Content, TEC)을 예측하는 기법과 시스템에 대한 것이다.The present invention relates to a technique and a system for predicting the total electron content (TEC) of the ionosphere in a real-time or post-processing mode using a global navigation system (GNSS).

본 발명은 GNSS 이중 주파수 수신기에서 생성되는 의사거리 및 반송파 데이터를 이용하여 전리층의 총전자량을 실시간 또는 후처리로 산출하고 이를 전리층 변화에 따른 주파수 분석을 통해 총전자량을 예측하는 기법과 시스템 개발에 대한 것이다 . The present invention relates to a method and system for predicting the total electron quantity of the ionosphere by calculating the total electron quantity of the ionosphere using real-time or post-processing using the pseudo range and carrier data generated from the GNSS dual frequency receiver and analyzing the frequency by analyzing the ionospheric variation Lt; / RTI >

Claims (1)

GNSS 이용 전리층 총전자량 예측 기법 및 시스템 .Total Solar Energy Prediction Technique and System Using.
KR1020140108393A 2014-08-20 2014-08-20 Gnss-based ionosheric total electron content (tec) prediction techniques and system KR20160022611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140108393A KR20160022611A (en) 2014-08-20 2014-08-20 Gnss-based ionosheric total electron content (tec) prediction techniques and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140108393A KR20160022611A (en) 2014-08-20 2014-08-20 Gnss-based ionosheric total electron content (tec) prediction techniques and system

Publications (1)

Publication Number Publication Date
KR20160022611A true KR20160022611A (en) 2016-03-02

Family

ID=55582437

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140108393A KR20160022611A (en) 2014-08-20 2014-08-20 Gnss-based ionosheric total electron content (tec) prediction techniques and system

Country Status (1)

Country Link
KR (1) KR20160022611A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108627855A (en) * 2018-05-15 2018-10-09 淮海工学院 The sliding cubic curve detection method of center of typhoon ionized layer TEC exception
CN113671534A (en) * 2020-05-15 2021-11-19 华为技术有限公司 Positioning compensation method, vehicle-mounted unit, medium and system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108627855A (en) * 2018-05-15 2018-10-09 淮海工学院 The sliding cubic curve detection method of center of typhoon ionized layer TEC exception
CN108627855B (en) * 2018-05-15 2020-04-28 江苏海洋大学 Sliding cubic curve detection method for typhoon center ionized layer TEC abnormity
CN113671534A (en) * 2020-05-15 2021-11-19 华为技术有限公司 Positioning compensation method, vehicle-mounted unit, medium and system

Similar Documents

Publication Publication Date Title
Marques et al. Accuracy assessment of Precise Point Positioning with multi-constellation GNSS data under ionospheric scintillation effects
EP3115807B1 (en) Gnss receiver with an on-board capability to implement an optimal error correction mode
Gulyaeva International standard model of the Earth's inosphere and plasmasphere
US9612340B1 (en) Systems, methods, devices and subassemblies for creating and delivering crowd-sourced GNSS models
Bhuiyan et al. Implementation of a software-defined BeiDou receiver
Rose et al. The use of ionospheric tomography and elevation masks to reduce the overall error in single-frequency GPS timing applications
Kumar et al. GPS signal short-term propagation characteristics modeling in urban areas for precise navigation applications
KR20160022611A (en) Gnss-based ionosheric total electron content (tec) prediction techniques and system
Saleh et al. Evaluation of 5G cell densification for autonomous vehicles positioning in urban settings
Rajasekhar et al. Investigation of best satellite–receiver geometry to improve positioning accuracy using GPS and IRNSS combined constellation over Hyderabad region
Stephenson et al. Precision of network real time kinematic positioning for intelligent transport systems
Abba et al. Ionospheric effects on GPS signal in low-latitude region: a case study review of South East Asia and Africa
Hwang et al. TDOA-based ASF map generation to increase Loran positioning accuracy in Korea
Awange et al. The global positioning system
KR20200042150A (en) Apparatus and method of ionospheric scale factor determination for low earth orbiting satellites using galileo nequick model
Mei et al. GNSS vulnerability assessment method based on ARAIM user algorithm
Gaglione et al. NeQuick Galileo version model: Assessment of a proposed version in operational scenario
Ahmed et al. Tropospheric error correction in assisted GPS signals
Roberts et al. Temporal characteristics of triple-frequency GNSS scintillation during a visible aurora borealis event over the Faroe Islands amid a period of very low solar activity
KR20160022612A (en) Techniques and system for estimating vertical distribution of ionospheric free electron density using gnss and finite element method
Xiaochao et al. Multipath mitigation technique based on modifications to GNSS monitor station antennas field
Pasnikowski et al. Challenges for integrity in navigation of high precision
Hong et al. Accuracy comparison between GPS and BeiDou2/compass of dynamic differential positioning in the experiment of air-gun in reservoir
Bassma et al. A map-matching based approach to compute and modelize nlos and multipath errors for gnss positioning in hard areas
Tepić et al. Analysis of real-time kinematic samples error for sensor fusion applications

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid