KR20150019190A - Method of Estimating Battery Stste-Of-Charge and Apparatus therefor the same - Google Patents

Method of Estimating Battery Stste-Of-Charge and Apparatus therefor the same Download PDF

Info

Publication number
KR20150019190A
KR20150019190A KR20130095709A KR20130095709A KR20150019190A KR 20150019190 A KR20150019190 A KR 20150019190A KR 20130095709 A KR20130095709 A KR 20130095709A KR 20130095709 A KR20130095709 A KR 20130095709A KR 20150019190 A KR20150019190 A KR 20150019190A
Authority
KR
South Korea
Prior art keywords
soc
battery
estimating
current
voltage
Prior art date
Application number
KR20130095709A
Other languages
Korean (ko)
Inventor
김태권
Original Assignee
현대모비스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대모비스 주식회사 filed Critical 현대모비스 주식회사
Priority to KR20130095709A priority Critical patent/KR20150019190A/en
Publication of KR20150019190A publication Critical patent/KR20150019190A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16528Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values using digital techniques or performing arithmetic operations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16542Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies for batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3828Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention relates to a method for estimating the state of charge (SOC) of a battery and a device for the same, which can estimate the accurate SOC of a battery by considering a real-time variable voltage, the steady state of the voltage, a temperature, etc. To achieve the objective of the present invention, the method for estimating the SOC of a battery according to an embodiment of the present invention comprises the steps of: measuring an instantaneous voltage, an instantaneous current, and a temperature; estimating an initial SOC (battery SOC); estimating a first SOC by integrating a current value inputted for a unit time based on the estimated initial SOC and dividing the integrated value by a total battery capacity value when the measured instantaneous current exceeds a first threshold, a current variation exceeds a second threshold range, or a voltage relaxation count is on; updating the internal resistance of a battery when the voltage relaxation count is off, the measured instantaneous current is less than or equal to the first threshold, and the current variation is less than or equal to the second threshold range, and estimating the open-circuit voltage (OCV) of the battery based on the updated internal resistance, the measured instantaneous voltage and instantaneous current; estimating a second SOC corresponding to the estimated OCV from a SOC-OCV table per temperature based on the measured temperature; and estimating a final SOC by combining the estimated first SOC and second SOC in a predetermined ratio.

Description

배터리 충전 상태 추정 방법 및 이를 위한 장치{Method of Estimating Battery Stste-Of-Charge and Apparatus therefor the same}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a method of estimating a state of charge of a battery,

본 발명은 배터리 충전 상태 추정 방법 및 이를 위한 장치에 대한 것으로, 실시간으로 가변되는 전압, 전압의 안정 상태, 온도 등을 고려하여 정확한 배터리 충전 상태(SOC)를 추정하기 위한 배터리 충전 상태 추정 방법 및 이를 위한 장치를 제공하고자 한다.
The present invention relates to a battery charging state estimation method and apparatus therefor, and more particularly, to a battery charging state estimation method for accurately estimating a battery charging state (SOC) in consideration of a voltage, a stable state of a voltage, And to provide a device for such use.

종래부터 엔진에 의한 구동이나 회생에 의하여 발전을 행하는 발전기와, 배터리로부터의 전력에 의하여 작동하여 구동륜을 구동하는 모터를 가지는 하이브리드 전기자동차나 이 하이브리드 자동차를 포함하는 전기자동차에는, 니켈수소전지나 리튬 이온 전지 등의 모터 구동용 2차 전지(즉, 배터리)가 사용되고 있다.Description of the Related Art [0002] Electric vehicles including a hybrid electric generator that performs power generation by driving or regeneration by an engine and a hybrid electric vehicle that operates by electric power from a battery to drive a drive wheel and a hybrid vehicle include a nickel- A secondary battery (i.e., battery) for driving a motor such as a battery is used.

상기한 배터리의 충전상태를 나타내는 양의 하나로서 SOC(state of charge)가 있고, 만충전 상태를 SOC가 100%라 나타내고, 한편 SOC가 O%인 경우는 충전량이 제로상태인 것을 나타낸다. When the SOC is 100% and the SOC is 0%, it indicates that the charged amount is in a zero state.

또 배터리는 개방전압(Vocv)과 SOC는 1대 1의 대응관계가 성립되어 있다. 따라서 배터리의 개방전압(Vocv)을 계측 또는 추정하여, Vocv-SOC 상관으로부터 개방전압(Vocv)과 대응하는 SOC를 구할 수 있다.Also, the battery has a correspondence relationship between the open-circuit voltage (Vocv) and the SOC of 1: 1. Therefore, the open-circuit voltage (Vocv) of the battery can be measured or estimated, and the SOC corresponding to the open-circuit voltage (Vocv) can be obtained from the Vocv-SOC correlation.

상기한 배터리의 충전상태(SOC)는, 차량의 주행상태(예를 들면, 발진, 통상주행, 가속, 감속 등)나 차량용 부하(스톱램프, 헤드램프, 와이퍼, 전동팬 등)에 의하여 변동하기 때문에, 배터리의 사용 중에 SOC를 추정할 필요가 있다. The state of charge (SOC) of the battery described above varies depending on the running state of the vehicle (e.g., oscillation, normal running, acceleration, deceleration) or the vehicle load (stop lamp, head lamp, wiper, Therefore, it is necessary to estimate the SOC during use of the battery.

종래의 배터리에 대한 SOC 추정장치로서는 배터리의 전류(충방전 전류)치를 적산하여, SOC를 추정하는 SOC 추정장치가 널리 이용되고 있다.As a conventional SOC estimating device for a battery, an SOC estimating device for estimating the SOC by integrating the current (charge / discharge current) value of the battery is widely used.

일 예로, 실측된 개방 전압을 통하여 Vocv 값을 구하여 초기 SOC를 추정하고, 차회부터 전압과 실측 전류로부터 내부 저항을 추정하여 이것으로부터 전류를 추정한 다음 전류 적산을 통해 SOC를 지속적으로 추정하는 방법이 있다.For example, a method of estimating the initial SOC by obtaining the Vocv value through the measured open-circuit voltage, estimating the internal resistance from the voltage and the measured current from the next time, estimating the current therefrom, and continuously estimating the SOC through current integration have.

이러한 방식은 전류 적산 방식이기는 하나, 이것은 실제 전류 센서에 의해 센싱된 실측 전류값으로 SOC 추정을 한 것은 아니다. Although this method is a current integration method, it does not estimate the SOC at a measured current value sensed by an actual current sensor.

또한, 배터리 내부 저항값으로 전류치를 추정하여 이 추정된 전류치를 토대로 전류 적산을 적용하였기에 정확한 내부 저항값을 구하지 못할 경우에는 잘못된 SOC 값을 추정할 수 있다.In addition, since the current value is estimated based on the battery internal resistance value and the current integration is applied based on the estimated current value, if the accurate internal resistance value can not be obtained, an incorrect SOC value can be estimated.

또한, 전류 변동이 큰 경우에만 온도 변수를 고려하기 때문에 실시간 온도에 따른 SOC를 추정하는 것이 불가능하다.In addition, since the temperature variable is considered only when the current fluctuation is large, it is impossible to estimate the SOC according to the real-time temperature.

본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 실시간으로 가변되는 전류 및 전압의 안정 상태를 모니터링하고, 이로부터 정확한 SOC를 추정하고자 한다.
SUMMARY OF THE INVENTION The present invention has been made in order to solve the above problems, and it is an object of the present invention to monitor the steady state of current and voltage which vary in real time, and to estimate an accurate SOC.

상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른 배터리 상태 추정 방법은 순간 전압, 순간 전류, 온도를 측정하고, 초기 SOC(배터리 충전 상태)를 추정하고, 상기 측정된 순간 전류가 제1 임계치를 초과하거나, 전류 변화량이 제2 임계치 범위를 초과하거나, 전압 이완 카운트가 온될 때 상기 추정된 초기 SOC에 근거하여 단위 시간 동안 입력된 전류 값을 적분하고, 이 적분 값을 전체 배터리 용량 값으로 나누어 제1 SOC를 추정하고, 상기 전압 이완 카운트가 오프되고, 상기 측정된 순간 전류가 상기 제1 임계치보다 작거나 같고, 전류 변화량이 상기 제2 임계치 범위보다 작거나 같을 때 배터리의 내부 저항을 갱신하고, 이 갱신된 내부 저항 및 상기 측정된 순간 전압, 순간 전류에 근거하여 배터리의 개방 전압(OCV)을 추정하고, 상기 측정된 온도에 근거하여 온도 별 SOC-OCV 테이블로부터 상기 추정된 개방 전압(OCV)에 상응하는 제2 SOC를 추정하고, 상기 추정된 제1 SOC 및 제2 SOC를 소정의 비율로 결합하여 최종 SOC를 추정하는 것을 포함하여 이루어진다.According to an aspect of the present invention, there is provided a battery state estimation method comprising: measuring an instantaneous voltage, an instantaneous current, and a temperature; estimating an initial SOC (battery charging state) Or integrates the current value inputted for a unit time based on the estimated initial SOC when the current change amount exceeds the second threshold value or when the voltage relaxation count is turned on and divides the integrated value by the total battery capacity value Estimates a first SOC, updates the internal resistance of the battery when the voltage relaxation count is off, the measured instantaneous current is less than or equal to the first threshold, and the current variation is less than or equal to the second threshold range , Estimating an open-circuit voltage (OCV) of the battery based on the updated internal resistance and the measured instantaneous voltage and instantaneous current, and based on the measured temperature Estimating a second SOC corresponding to the estimated open-circuit voltage (OCV) from the temperature-dependent SOC-OCV table, and combining the estimated first SOC and second SOC at a predetermined ratio to estimate a final SOC .

본 발명의 다양한 실시예에 따르면, 실시간으로 가변되는 전류 및 전압의 안정 상태를 모니터링하여 실시간으로 정확하게 SOC를 추정할 수 있는 효과가 있다. 또한, 전압 이완 카운트를 적용하여 가변적인 전류 범위에서 좀 더 정확하게 SOC를 추정할 수 있는 효과가 있다.According to various embodiments of the present invention, there is an effect of accurately estimating the SOC in real time by monitoring the stable state of the current and voltage which vary in real time. In addition, the voltage relaxation count is applied so that the SOC can be more accurately estimated in a variable current range.

도 1은 본 발명의 바람직한 일 실시예에 따라 SOC를 추정하기 위한 과정을 도시한 블록도이다.
도 2는 본 발명의 바람직한 실시예에 따르는 배터리의 동적 모델(a)과 정적 모델(b)의 예를 도시한 그래프 및 그와 관련된 회로도이다.
도 3은 본 발명의 바람직한 실시예에 따라 내삽법을 이용하여 만든 온도별 OCV별 SOC 테이블을 도시한 그래프이다.
도 4는 본 발명의 바람직한 실시예에 따라 전압 변동 및 전압 변동에 따라 제1 SOC 추정 연산 및 제2 SOC 추정 연산을 하기 위한 매핑 테이블이다.
도 5는 본 발명의 바람직한 실시예에 따라 SOC를 추정하는 과정을 도시한 흐름도이다.
1 is a block diagram illustrating a process for estimating an SOC according to a preferred embodiment of the present invention.
2 is a graph showing an example of a dynamic model (a) and a static model (b) of a battery and a related circuit diagram thereof according to a preferred embodiment of the present invention.
FIG. 3 is a graph illustrating an SOC table for each OCV by interpolation according to a preferred embodiment of the present invention.
4 is a mapping table for performing a first SOC estimation operation and a second SOC estimation operation according to a voltage variation and a voltage variation according to a preferred embodiment of the present invention.
5 is a flowchart illustrating a process of estimating an SOC according to a preferred embodiment of the present invention.

본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 한편, 본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성소자, 단계, 동작 및/또는 소자는 하나 이상의 다른 구성소자, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는다.BRIEF DESCRIPTION OF THE DRAWINGS The advantages and features of the present invention and the manner of achieving them will become apparent with reference to the embodiments described in detail below with reference to the accompanying drawings. The present invention may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Is provided to fully convey the scope of the invention to those skilled in the art, and the invention is only defined by the scope of the claims. It is to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. In the present specification, the singular form includes plural forms unless otherwise specified in the specification. As used herein, the terms " comprises, " and / or "comprising" refer to the presence or absence of one or more other components, steps, operations, and / Or additions.

본 발명은 차량용 배터리 팩의 SOC를 추정하는 알고리즘으로 배터리 충방전시 입력전류, 온도, 전압을 이용하여 SOC추정 연산에 적용 필터링하여 최종 SOC를 추정하는 것이다.The present invention is an algorithm for estimating the SOC of a battery pack for a vehicle, and uses the input current, temperature, and voltage at the time of charge / discharge of the battery to apply the SOC estimation calculation to estimate the final SOC.

도 1은 본 발명의 바람직한 일 실시예에 따라 SOC를 추정하기 위한 과정을 도시한 블록도이다.1 is a block diagram illustrating a process for estimating an SOC according to a preferred embodiment of the present invention.

도 1을 참조하면, 제어기(26)는 전류 센서로부터 입력된 순간 전류의 임계값, 순간 전류들의 변화값, 및 전압 이완 카운트를 이용하여 조건에 따라 제 1 SOC 추정 연산 또는 제 2 SOC 추정 연산을 선택적으로 적용하여 SOC를 추정한다.1, the controller 26 performs a first SOC estimation operation or a second SOC estimation operation according to a condition using a threshold value of an instantaneous current input from a current sensor, a change value of instantaneous currents, and a voltage relaxation count And selectively estimates the SOC.

상기 제1 SOC 추정 연산은 초기 SOC값을 기반으로 입력된 순간 전류를 시간으로 적산하여 배터리 팩의 SOC를 추정하는 것으로, 전압 이완 카운트가 적용되는 시점부터, 상기 순간 전류가 제1 임계치를 초과하는 때, 또는 전류의 변화량이 제2 임계치 범위를 초과하는 때 전류 적산으로 SOC를 추정한다.The first SOC estimation operation estimates the SOC of the battery pack by integrating the input instantaneous current based on the initial SOC value to calculate the SOC of the battery pack. When the instantaneous current exceeds the first threshold value , Or estimates SOC by current integration when the amount of change in current exceeds the second threshold range.

상기 제2 SOC 추정 연산은 상기 전압 이완 카운트가 오프되고, 임계 전류값(순간 전류가 상기 제1 임계치보다 작거나 같고, 순간 전류 변화량이 제2 임계치 범위보다 작거나 같고)을 만족하는 n번째에서 배터리 내부저항을 계산하여 OCV값을 계산하고, 온도 별 SOC 별 0CV 테이블을 이용하여 SOC를 추정한다.Wherein the second SOC estimation operation is performed in the second SOC estimation operation in which the voltage relaxation count is off and the threshold current value (the instantaneous current is less than or equal to the first threshold value and the instantaneous current change amount is less than or equal to the second threshold value) Calculate the OCV value by calculating the internal resistance of the battery, and estimate the SOC using the 0CV table for each SOC by temperature.

이를 위해 먼저, 제어기(26)는 온도 센서(21), 전압 센서(22), 전류 센서(23)들로부터 각각의 파라미터 입력 값을 수신한다.To this end, the controller 26 receives the respective parameter input values from the temperature sensor 21, the voltage sensor 22, and the current sensor 23.

제어기(26)는 상기 수신된 파라미터 입력 값에 근거하여 앞서 설명한 상기 제1 SOC 추정 연산과 상기 제2 SOC 추정 연산을 입력 조건에 따라 수행할 수 있도록 제어한다.The controller 26 controls the first SOC estimation operation and the second SOC estimation operation described above to be performed according to the input condition based on the received parameter input value.

상기 제1 SOC 추정은 하기 수학식 1과 같다.The first SOC estimation is expressed by Equation (1).

[수학식 1][Equation 1]

Figure pat00001
Figure pat00001

I는 입력 전류(A)를 지시하고, t는 시간(s)을 지시하고, C는 배터리 용량(Ah=3600As)을 지시한다.I indicates input current A, t indicates time s, and C indicates battery capacity (Ah = 3600 As).

즉, 단위 시간만큼 입력된 전류값을 적분하여 전체 배터리 용량으로 나눈 값이 단위 시간 동안 변동된 SOC 값을 나타내는 것이다. 따라서 n-1번째 SOC(n-1)에 순간 변화 SOC값을 더하면 n번째의 SOC 값이 추정된다.That is, a value obtained by integrating a current value input by a unit time and dividing by the total battery capacity represents an SOC value fluctuated during a unit time. Therefore, if the instantaneous change SOC value is added to the (n-1) th SOC (n-1), the nth SOC value is estimated.

도 2는 본 발명의 바람직한 실시예에 따르는 배터리의 동적 모델(a)과 정적 모델(b)의 예를 도시한 그래프 및 그와 관련된 회로도이다.2 is a graph showing an example of a dynamic model (a) and a static model (b) of a battery and a related circuit diagram thereof according to a preferred embodiment of the present invention.

도 2에서 Rs는 배터리 시리즈 저항으로서, 전극 집전체 저항 + 전해액 저항을 지시하고, Rp는 배터리 분극 저항을 지시한다.In Fig. 2, Rs denotes a battery series resistance, indicating electrode collector resistance + electrolyte resistance, and Rp indicates battery polarization resistance.

배터리에 충전 및 방전 전류가 인가 및 종료될 때 초기에 저항에 의한 IR 전압 상승 및 강하가 나타나고 전압이 정상상태에 이르기까지 일정 시간이 필요한데 이 시간을 고려한 전압 이완 카운트를 적용하여 전류 적산법으로 상기 수학식 1에 근거하여 제1 SOC 추정 연산에 의한 제1 SOC를 추정하는 것이다.When the charging and discharging currents are applied and terminated in the battery, the IR voltage rise and drop due to the resistance is initially detected and a certain time is required until the voltage reaches the steady state. The voltage relaxation count considering this time is applied, And estimates the first SOC by the first SOC estimation calculation based on Equation (1).

제2 SOC 추정 연산은 하기 수학식 2 및 이와 관련된 상세 설명에 따라 이루어진다.The second SOC estimation operation is performed according to the following equation (2) and the detailed description thereof.

옴에 법칙에 의하여 배터리 내부저항을 아래 수학식 2과 같이 계산한다.The internal resistance of the battery is calculated according to the Ohm's law as shown in Equation 2 below.

[수학식 2]&Quot; (2) "

Figure pat00002
Figure pat00002

상기 수학식 2에서 저항은 전류의 임계값을 만족할 경우 업데이트 된다.In Equation (2), the resistance is updated when the threshold value of the current is satisfied.

즉, 순간 전류 I(n)은 임계 전류1보다 작거나 같고, 순간 전류들의 변화량 △I는 임계 전류2 범위보다 작거나 같다.That is, the instantaneous current I (n) is less than or equal to the threshold current 1, and the change amount ΔI of the instantaneous currents is less than or equal to the threshold current 2 range.

상기 계산된 내부 저항 값을 이용하여 OCV값을 하기 수학식과 같이 계산한다.The OCV value is calculated according to the following equation using the calculated internal resistance value.

[수학식 3]&Quot; (3) "

ocv(n) = V(n)-I(n)*R
ocv (n) = V (n) - I (n) * R

상기 수학식에서 V(n)은 n 시간의 순간 전압을 지시하고, I(n)은 n시간의 순간 전류를 지시하고, R은 배터리 내부 저항을 지시한다.In the above equation, V (n) designates the instantaneous voltage of n time, I (n) designates the instantaneous current of n time, and R designates the battery internal resistance.

도 3은 본 발명의 바람직한 실시예에 따라 내삽법을 이용하여 만든 온도별 OCV별 SOC 테이블을 도시한 그래프이다.FIG. 3 is a graph illustrating an SOC table for each OCV by interpolation according to a preferred embodiment of the present invention.

도 3을 참조하면, 제어기(26)는 내삽법을 이용하여 만든 온도별 OCV별 SOC테이블을 근거로 계산된 OCV를 SOC로 환산하여 제2 SOC 추정 연산에 근거하여 제2 SOC를 추정한다.Referring to FIG. 3, the controller 26 estimates a second SOC based on the second SOC estimation operation by converting the OCV calculated on the basis of the SOC-specific OCV-by-temperature table created by the interpolation method into the SOC.

도 4는 본 발명의 바람직한 실시예에 따라 전압 변동 및 전압 변동에 따라 제1 SOC 추정 연산 및 제2 SOC 추정 연산을 하기 위한 매핑 테이블이다.4 is a mapping table for performing a first SOC estimation operation and a second SOC estimation operation according to a voltage variation and a voltage variation according to a preferred embodiment of the present invention.

도 4에서 전류 값에 따라 제1 SOC 추정 또는 제2 SOC 추정 연산을 하게 되는데, 이 전류 값의 최대값 또는 최소 값은 측정된 온도에 따라 가변될 수 있다.In FIG. 4, a first SOC estimation or a second SOC estimation operation is performed according to the current value. The maximum value or the minimum value of the current value may vary according to the measured temperature.

도 5는 본 발명의 바람직한 실시예에 따라 SOC를 추정하는 과정을 도시한 흐름도이다.5 is a flowchart illustrating a process of estimating an SOC according to a preferred embodiment of the present invention.

도 5를 참조하면, 먼저 전압 센서, 전류 센서, 온도 센서는 순간 전압과, 순간 전류, 온도를 측정한다. (S10)Referring to FIG. 5, a voltage sensor, a current sensor, and a temperature sensor measure an instantaneous voltage, an instantaneous current, and a temperature. (S10)

상기 측정된 순간 전압과, 순간 전류, 온도에 근거하여 초기 SOC를 계산한다. (S11) 상기 초기 SOC는 초기 전압 OCV별 SOC 테이블을 참고하여 계산한다. (S11)The initial SOC is calculated based on the measured instantaneous voltage, the instantaneous current, and the temperature. (S11) The initial SOC is calculated by referring to the SOC table for each initial voltage OCV. (S11)

만일, lIn-In -1l 가 임계 전류1보다 작거나 같고, lInl 임계 전류2보다 작거나 같고, lIn -1l가 임계전류2보다 작거나 같은지를 판단한다. (S12) 즉, 전류변화가 임계 전류1 범위보다 작거나 같고, 해당 전류들이 임계 전류2보다 작거나 같은 지를 판단하는 것이다.Ten thousand and one, lI n -I n -1 l is less than or equal to a critical current 1, lI l n less than or equal to the threshold current 2, n lI judges -1 l is less than or equal to the second critical current. (S12), that is, whether the current change is less than or equal to the threshold current 1 range and whether the currents are less than or equal to the threshold current 2.

만일, 상기 S12의 조건을 만족하는 경우 저항 R을 다음과 같이 갱신한다. (S13)If the condition of S12 is satisfied, the resistance R is updated as follows. (S13)

[수학식 4]&Quot; (4) "

R(저항)=(Vn-Vn -1)/(In-In -1)R (resistance) = (V n -V n -1 ) / (I n -I n -1 )

상기 S12에서 lIn-In -1l 가 상기 임계 전류1 범위를 초과하거나 lInl 가 상기 임계 전류2를 초과하는 경우, 또는 전압 이완 카운트가 온 되었을 때(S14), 제1 SOC 추정 연산을 이용하여 제`1 SOC를 추정한다. (S15)When in the above S12 is lI n -I n -1 l exceeds the critical current, or the first range lI l n exceeds the second threshold current, or voltage relaxation (S14), the first SOC estimation operation when the count on To estimate the first SOC. (S15)

상기 제1 SOC 추정 연산은 전류 적산 방식에 의하여 아래 수학식 5와 같이 이루어진다.The first SOC estimation operation is performed according to the following equation (5) by a current integration method.

[수학식 5]&Quot; (5) "

SOC(n)= SOC(n-1)+(In*시간)/배터리용량SOC (n) = SOC (n-1) + (I n * time) / battery capacity

상기 전압 이완 카운트가 오프되었을 때, 상기 S13에서 계산된 내부 저항 R을 이용하여 제2 SOC 추정 연산을 통해 제2 SOC를 추정한다. (S17)When the voltage relaxation count is off, the second SOC is estimated through a second SOC estimation operation using the internal resistance R calculated in S13. (S17)

상기 제1 SOC 추정 연산 및 제2 SOC 추정 연산을 이용하여 추정된 제1 SOC 및 제2 SOC를 상기 도 4에 근거하여 통합하여 최종 SOC를 추정한다.The first SOC and the second SOC estimated using the first SOC estimation operation and the second SOC estimation operation are integrated based on FIG. 4 to estimate the final SOC.

[수학식 6]&Quot; (6) "

최종 SOC = 0.9*SOC(n-1) + 0.1*SOC(n)Final SOC = 0.9 * SOC (n-1) + 0.1 * SOC (n)

도 7은 본 발명의 바람직한 실시예에 따라 배터리 팩에서 필요로 하는 전류값을 산출하여 배터리 충방전기 데이터와 본발명 SOC 알고리즘을 시뮬레이션한 데이터를 비교한 그래프이다.FIG. 7 is a graph illustrating current values required by a battery pack according to a preferred embodiment of the present invention, and comparing battery charge / discharge data with simulated SOC algorithm of the present invention.

도 7을 참조하면, 미국 환경 보호국 (Environmental Protection Agency)에서 제시한 UDDS (Urban Dynamometer Driving Sehedule)을 기준으로 배터리 팩에서 필요로 하는 전류값을 산출하여 배터리 충방전기 데이터와 본발명 SOC 알고리즘을 시뮬레이션한 데이터를 비교한 것으로, SOC 알고리즘을 적용하여 UDDS 패턴으로 시뮬레이션 진행한 결과 충방전기에서 나온 데이터 기준으로 SOC를 계산한 값과 오차가 3%이하 정도로 추정된다.Referring to FIG. 7, a current value required in a battery pack is calculated on the basis of UDDS (Urban Dynamometer Driving Sehedule) proposed by the US Environmental Protection Agency, and the battery charge / discharge data and the SOC algorithm of the present invention are simulated As a result of simulating the UDDS pattern by applying the SOC algorithm, it is estimated that the SOC is calculated based on the data from the charge / discharge device and the error is less than 3%.

이상에서 설명한 본 발명의 실시 예는 장치 및 방법을 통해서만 구현이 되는 것은 아니며, 본 발명의 실시예의 구성에 대응하는 기능을 실현하는 프로그램 또는 그 프로그램이 기록된 기록 매체를 통해 구현될 수도 있으며, 이러한 구현은 앞서 설명한 실시예의 기재로부터 본 발명이 속하는 기술분야의 전문가라면 쉽게 구현할 수 있는 것이다.The embodiments of the present invention described above are not only implemented by the apparatus and method but may be implemented through a program for realizing the function corresponding to the configuration of the embodiment of the present invention or a recording medium on which the program is recorded, The embodiments can be easily implemented by those skilled in the art from the description of the embodiments described above.

이상에서 설명한 본 발명은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하므로 전술한 실시 예 및 첨부된 도면에 의해 한정되는 것이 아니라, 다양한 변형이 이루어질 수 있도록 각 실시 예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수 있다.It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the invention. The present invention is not limited to the drawings, and all or some of the embodiments may be selectively combined so that various modifications may be made.

10 : BMA(배터리 모듈)
20 : BMS(배터리 관리 시스템)
21 : 온도 센서
22 : 전압 센서
23 : 전류 센서
24 : 제1 SOC 추정 연산부
25 : 제2 SOC 추정 연산부
26 : 제어기
10: BMA (battery module)
20: Battery Management System (BMS)
21: Temperature sensor
22: Voltage sensor
23: Current sensor
24: first SOC estimation operation section
25: second SOC estimation calculating section
26:

Claims (8)

순간 전압, 순간 전류, 온도를 측정하는 단계;
초기 SOC(배터리 충전 상태)를 추정하는 단계;
상기 측정된 순간 전류가 제1 임계치를 초과하거나, 전류 변화량이 제2 임계치 범위를 초과하거나, 전압 이완 카운트가 온될 때 상기 추정된 초기 SOC에 근거하여 단위 시간 동안 입력된 전류 값을 적분하고, 이 적분 값을 전체 배터리 용량 값으로 나누어 제1 SOC를 추정하는 단계;
상기 전압 이완 카운트가 오프되고, 상기 측정된 순간 전류가 상기 제1 임계치보다 작거나 같고, 전류 변화량이 상기 제2 임계치 범위보다 작거나 같을 때 배터리의 내부 저항을 갱신하고, 이 갱신된 내부 저항 및 상기 측정된 순간 전압, 순간 전류에 근거하여 배터리의 개방 전압(OCV)을 추정하는 단계;
상기 측정된 온도에 근거하여 온도 별 SOC-OCV 테이블로부터 상기 추정된 개방 전압(OCV)에 상응하는 제2 SOC를 추정하는 단계;
상기 추정된 제1 SOC 및 제2 SOC를 소정의 비율로 결합하여 최종 SOC를 추정하는 단계를 포함하여 이루어지는 것을 특징으로 하는 배터리 충전상태 추정 방법.
Measuring an instantaneous voltage, an instantaneous current, and a temperature;
Estimating an initial SOC (battery charging state);
Integrating a current value inputted for a unit time based on the estimated initial SOC when the measured instantaneous current exceeds a first threshold value, a current variation amount exceeds a second threshold value range, or a voltage relaxation count is turned on, Estimating a first SOC by dividing the integral value by the total battery capacity value;
Updating the internal resistance of the battery when the voltage relaxation count is off and the measured instantaneous current is less than or equal to the first threshold and the current variation is less than or equal to the second threshold range, Estimating an open circuit voltage (OCV) of the battery based on the measured instantaneous voltage and instantaneous current;
Estimating a second SOC corresponding to the estimated open-circuit voltage (OCV) from the temperature-dependent SOC-OCV table based on the measured temperature;
And estimating a final SOC by combining the estimated first SOC and second SOC at a predetermined ratio.
제 1 항에 있어서, 상기 개방 전압은
OCV(n)=V(n)-I(n)*R 의 식에 의해서 구해지며, 상기 V(n)은 n 시간의 순간 전압을 지시하고, 상기 I(n)은 n시간의 순간 전류를 지시하고, 상기 R은 상기 측정된 배터리 내부 저항을 지시하는 것을 특징으로 하는 배터리 충전상태 추정 방법.
The method of claim 1, wherein the open-
V (n) denotes an instantaneous voltage of n time, I (n) denotes an instantaneous current of n time, V (n) And R denotes the measured internal resistance of the battery.
제 1 항에 있어서, 상기 SOC는 초기 전압 OCV별 SOC 테이블을 참고하여 추정하는 것을 특징으로 하는 배터리 충전상태 추정 방법.The method of claim 1, wherein the SOC is estimated by referring to a SOC table for each initial voltage OCV. 제 1 항에 있어서, 상기 최종 SOC는 최종 SOC = 0.9*SOC(n-1) + 0.1*SOC(n)에 식에 의해서 구해지는 것을 특징으로 하는 배터리 충전상태 추정 방법.The method according to claim 1, wherein the final SOC is obtained by a formula in the final SOC = 0.9 * SOC (n-1) + 0.1 * SOC (n). 차량에 전원을 공급하기 위한 배터리 모듈;
순간 전압, 순간 전류, 온도를 측정하는 적어도 하나의 센서;
상기 배터리의 초기 SOC(배터리 충전 상태)를 추정하고, 상기 측정된 순간 전류가 제1 임계치를 초과하거나, 전류 변화량이 제2 임계치 범위를 초과하거나, 전압 이완 카운트가 온될 때 상기 추정된 초기 SOC에 근거하여 단위 시간 동안 입력된 전류 값을 적분하고, 이 적분 값을 전체 배터리 용량 값으로 나누어 제1 SOC를 추정하고, 상기 전압 이완 카운트가 오프되고, 상기 측정된 순간 전류가 상기 제1 임계치보다 작거나 같고, 전류 변화량이 제2 임계치 범위보다 작거나 같을 때 배터리의 내부 저항을 갱신하고, 이 갱신된 내부 저항 및 상기 측정된 순간 전압, 순간 전류에 근거하여 배터리의 개방 전압(OCV)을 추정하고, 상기 측정된 온도에 근거하여 온도 별 SOC-OCV 테이블로부터 상기 추정된 개방 전압(OCV)에 상응하는 제2 SOC를 추정하고, 상기 추정된 제1 SOC 및 제2 SOC를 소정의 비율로 결합하여 최종 SOC를 추정하는 배터리 모듈 시스템(Battery Management System)을 포함하여 구성되는 것을 특징으로 하는 배터리 충전상태 추정 장치.
A battery module for supplying power to the vehicle;
At least one sensor for measuring an instantaneous voltage, an instantaneous current, and a temperature;
Estimating an initial SOC (battery charge state) of the battery; estimating an initial SOC (battery charge state) of the battery when the measured instantaneous current exceeds a first threshold, a current change amount exceeds a second threshold value range, Estimates a first SOC by integrating a current value input for a unit time based on the integrated current value, dividing the integrated current value by the total battery capacity value, turns off the voltage relaxation count, and determines that the measured instantaneous current is smaller than the first threshold And updates the internal resistance of the battery when the current change amount is smaller than or equal to the second threshold value range and estimates the open-circuit voltage (OCV) of the battery based on the updated internal resistance and the measured instantaneous current and instantaneous current , Estimating a second SOC corresponding to the estimated open-circuit voltage (OCV) from the temperature-dependent SOC-OCV table based on the measured temperature, Battery charging state estimating device being configured to include a battery module system of claim 2 SOC (Battery Management System) for estimating a final SOC in combination at a predetermined ratio.
제 5 항에 있어서, 상기 개방 전압은
OCV(n)=V(n)-I(n)*R 의 식에 의해서 구해지며, 상기 V(n)은 n 시간의 순간 전압을 지시하고, 상기 I(n)은 n시간의 순간 전류를 지시하고, 상기 R은 상기 측정된 배터리 내부 저항을 지시하는 것을 특징으로 하는 배터리 충전상태 추정 장치.
6. The method of claim 5, wherein the open-
V (n) denotes an instantaneous voltage of n time, I (n) denotes an instantaneous current of n time, V (n) And R denotes the measured internal resistance of the battery.
제 5 항에 있어서, 상기 SOC는 초기 전압 OCV별 SOC 테이블을 참고하여 추정하는 것을 특징으로 하는 배터리 충전상태 추정 장치.6. The apparatus of claim 5, wherein the SOC is estimated by referring to an SOC table for each initial voltage OCV. 제 5 항에 있어서, 상기 최종 SOC는 최종 SOC = 0.9*SOC(n-1) + 0.1*SOC(n)에 식에 의해서 구해지는 것을 특징으로 하는 배터리 충전상태 추정 장치.
6. The apparatus for estimating charged state of a battery according to claim 5, wherein the final SOC is obtained by a formula in a final SOC = 0.9 * SOC (n-1) + 0.1 * SOC (n).
KR20130095709A 2013-08-13 2013-08-13 Method of Estimating Battery Stste-Of-Charge and Apparatus therefor the same KR20150019190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20130095709A KR20150019190A (en) 2013-08-13 2013-08-13 Method of Estimating Battery Stste-Of-Charge and Apparatus therefor the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20130095709A KR20150019190A (en) 2013-08-13 2013-08-13 Method of Estimating Battery Stste-Of-Charge and Apparatus therefor the same

Publications (1)

Publication Number Publication Date
KR20150019190A true KR20150019190A (en) 2015-02-25

Family

ID=52578373

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20130095709A KR20150019190A (en) 2013-08-13 2013-08-13 Method of Estimating Battery Stste-Of-Charge and Apparatus therefor the same

Country Status (1)

Country Link
KR (1) KR20150019190A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105891717A (en) * 2015-07-01 2016-08-24 乐视移动智能信息技术(北京)有限公司 Battery electric quantity obtaining method and device
CN106324506A (en) * 2015-06-17 2017-01-11 炬才微电子(深圳)有限公司 Embedded equipment battery test method, device and system
USD783689S1 (en) 2015-09-16 2017-04-11 Samsung Electronics Co., Ltd. Refrigerator
CN108963358A (en) * 2018-07-11 2018-12-07 湖南科霸汽车动力电池有限责任公司 The method for monitoring vehicle-mounted Ni-MH power cell packet internal resistance on-line
US10302704B2 (en) 2015-08-20 2019-05-28 Samsung Electronics Co., Ltd. Method and battery system predicting state of charge of a battery
KR20190072100A (en) * 2017-12-15 2019-06-25 현대자동차주식회사 Vehicle and controlling method thereof
KR20190080102A (en) * 2017-12-28 2019-07-08 광운대학교 산학협력단 A method of estimating state of charge of battery and an apparatus for managing of battery
CN111337838A (en) * 2020-03-04 2020-06-26 合肥国轩高科动力能源有限公司 Method for testing SOC-OCV (state of charge-Voltage control Circuit) of ternary lithium ion battery in charging process at low temperature
CN112158102A (en) * 2020-09-04 2021-01-01 开沃新能源汽车集团股份有限公司 Peak current control method of vehicle-mounted lithium battery system
US10916813B2 (en) 2017-01-02 2021-02-09 Lg Chem, Ltd. Battery management apparatus and method for calibrating a state of charge of a battery
WO2021085869A1 (en) * 2019-10-31 2021-05-06 주식회사 엘지에너지솔루션 Method for estimating battery state of charge and battery management system equipped with same
CN112912745A (en) * 2018-10-23 2021-06-04 标致雪铁龙汽车股份有限公司 Method for determining the state of charge and the state of ageing of an electrochemical cell from an open circuit voltage diagram
CN117572269A (en) * 2023-11-09 2024-02-20 东莞市科路得新能源科技有限公司 SOC measuring and calculating method and method for displaying value thereof
CN117572269B (en) * 2023-11-09 2024-05-31 东莞市科路得新能源科技有限公司 SOC measuring and calculating method and method for displaying value thereof

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106324506A (en) * 2015-06-17 2017-01-11 炬才微电子(深圳)有限公司 Embedded equipment battery test method, device and system
CN105891717A (en) * 2015-07-01 2016-08-24 乐视移动智能信息技术(北京)有限公司 Battery electric quantity obtaining method and device
US10302704B2 (en) 2015-08-20 2019-05-28 Samsung Electronics Co., Ltd. Method and battery system predicting state of charge of a battery
USD783689S1 (en) 2015-09-16 2017-04-11 Samsung Electronics Co., Ltd. Refrigerator
US10916813B2 (en) 2017-01-02 2021-02-09 Lg Chem, Ltd. Battery management apparatus and method for calibrating a state of charge of a battery
KR20190072100A (en) * 2017-12-15 2019-06-25 현대자동차주식회사 Vehicle and controlling method thereof
US11569678B2 (en) 2017-12-15 2023-01-31 Hyundai Motor Company System for estimating initial SOC of lithium battery of vehicle and control method thereof
KR20190080102A (en) * 2017-12-28 2019-07-08 광운대학교 산학협력단 A method of estimating state of charge of battery and an apparatus for managing of battery
CN108963358A (en) * 2018-07-11 2018-12-07 湖南科霸汽车动力电池有限责任公司 The method for monitoring vehicle-mounted Ni-MH power cell packet internal resistance on-line
CN108963358B (en) * 2018-07-11 2020-06-09 湖南科霸汽车动力电池有限责任公司 Method for monitoring internal resistance of vehicle-mounted nickel-hydrogen power battery pack on line
CN112912745A (en) * 2018-10-23 2021-06-04 标致雪铁龙汽车股份有限公司 Method for determining the state of charge and the state of ageing of an electrochemical cell from an open circuit voltage diagram
WO2021085869A1 (en) * 2019-10-31 2021-05-06 주식회사 엘지에너지솔루션 Method for estimating battery state of charge and battery management system equipped with same
EP3923006A4 (en) * 2019-10-31 2022-05-18 LG Energy Solution, Ltd. Method for estimating battery state of charge and battery management system equipped with same
CN111337838B (en) * 2020-03-04 2022-08-09 合肥国轩高科动力能源有限公司 Method for testing SOC-OCV (state of charge-Voltage control Circuit) of ternary lithium ion battery in charging process at low temperature
CN111337838A (en) * 2020-03-04 2020-06-26 合肥国轩高科动力能源有限公司 Method for testing SOC-OCV (state of charge-Voltage control Circuit) of ternary lithium ion battery in charging process at low temperature
CN112158102A (en) * 2020-09-04 2021-01-01 开沃新能源汽车集团股份有限公司 Peak current control method of vehicle-mounted lithium battery system
CN112158102B (en) * 2020-09-04 2024-03-19 开沃新能源汽车集团股份有限公司 Peak current control method of vehicle-mounted lithium battery system
CN117572269A (en) * 2023-11-09 2024-02-20 东莞市科路得新能源科技有限公司 SOC measuring and calculating method and method for displaying value thereof
CN117572269B (en) * 2023-11-09 2024-05-31 东莞市科路得新能源科技有限公司 SOC measuring and calculating method and method for displaying value thereof

Similar Documents

Publication Publication Date Title
KR20150019190A (en) Method of Estimating Battery Stste-Of-Charge and Apparatus therefor the same
CN107533109B (en) Battery control device and electric vehicle system
US10656210B2 (en) Secondary battery state detection device and secondary battery state detection method
US9440552B2 (en) Estimation and compensation of battery measurement
JP4763050B2 (en) Battery state estimation method and apparatus
KR102080632B1 (en) Battery management system and its operating method
EP1873542B1 (en) Apparatus and method for estimating charge of a battery
US10393814B2 (en) Secondary battery state detection device and secondary battery state detection method
US20150120225A1 (en) Apparatus and method for determining degradation of high-voltage vehicle battery
US10124696B2 (en) Estimation and compensation of battery measurement and asynchronization biases
US20150066262A1 (en) In-range current sensor fault detection
CN105759122B (en) System and method for on-line estimating internal resistance of battery
KR20160004077A (en) Method and apparatus for estimating state of battery
JP7112252B2 (en) A method for estimating the current and state of charge of a battery pack or cell without directly sensing the current under operating conditions
KR20150126208A (en) Battery and battery management apparatus
JP2016166864A (en) Power storage element managing device, power storage element management method, power storage element module, power storage element management program, and moving body
CN105388426A (en) Method and apparatus for estimating state of health (SOH) of battery
JP2015524048A (en) Estimating battery charge
KR20160080380A (en) Apparatus and method of measuring for a state of charge of a battery
JP2000306613A (en) Battery state monitoring device
JP6852469B2 (en) Battery controller, program
US20230039183A1 (en) Battery control apparatus and battery system
JP2023500449A (en) Fast charging method
JP2013096785A (en) Battery deterioration determination device and battery deterioration determination method
KR102255466B1 (en) Method and System for Battery SOC Estimation

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application