KR20150009094A - Clean Energy Farming System - Google Patents

Clean Energy Farming System Download PDF

Info

Publication number
KR20150009094A
KR20150009094A KR1020130082781A KR20130082781A KR20150009094A KR 20150009094 A KR20150009094 A KR 20150009094A KR 1020130082781 A KR1020130082781 A KR 1020130082781A KR 20130082781 A KR20130082781 A KR 20130082781A KR 20150009094 A KR20150009094 A KR 20150009094A
Authority
KR
South Korea
Prior art keywords
facility
crop
carbon dioxide
liquid
solid
Prior art date
Application number
KR1020130082781A
Other languages
Korean (ko)
Other versions
KR101533721B1 (en
Inventor
김창현
윤영만
김승환
황문석
윤성휘
오승용
Original Assignee
한경대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한경대학교 산학협력단 filed Critical 한경대학교 산학협력단
Priority to KR1020130082781A priority Critical patent/KR101533721B1/en
Publication of KR20150009094A publication Critical patent/KR20150009094A/en
Application granted granted Critical
Publication of KR101533721B1 publication Critical patent/KR101533721B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/246Air-conditioning systems
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/02Treatment of plants with carbon dioxide
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/18Greenhouses for treating plants with carbon dioxide or the like
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/247Watering arrangements
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G3/00Mixtures of one or more fertilisers with additives not having a specially fertilising activity
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G5/00Fertilisers characterised by their form
    • C05G5/20Liquid fertilisers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • C12P5/023Methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/59Biological synthesis; Biological purification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Ecology (AREA)
  • Microbiology (AREA)
  • Botany (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Forests & Forestry (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Cultivation Of Plants (AREA)
  • Treatment Of Sludge (AREA)

Abstract

The present invention relates to a clean energy farming system, wherein the clear energy farming system comprises: an anaerobic digestion plant for receiving crop byproducts from plant cultivation facilities, livestock excreta from livestock facilities, or food processing byproducts from food processing facilities, to anaerobically digest the crop byproducts, livestock excreta, or food processing byproducts; a solid-liquid separation apparatus for separating the slurry, which is generated in the anaerobic digestion plant, into solid and liquid; a composting apparatus for composting the solid separated through the solid-liquid separation apparatus; a liquefied fertilizer production apparatus for making the liquid, which is separated through the solid-liquid separation apparatus, into a liquefied fertilizer to supply the liquefied fertilizer to a crop cultivation facility; a bio-gas purification apparatus for purifying methane and carbon dioxide from bio-gas form the anaerobic digestion plant, and supplying the purified carbon dioxide to the crop cultivation facility; and a warming and cooling apparatus for receiving the methane as a fuel to warm or cool the crop cultivation facility. According to the present invention, the energy cost input to the facility can be reduced by separating the generated bio-gas into methane and carbon dioxide and using high-purity methane as a fuel for warming and cooling; the yield of crops can be increased by controlling the growth temperature through warming and cooling according to the season; and the crop photosynthesis can be increased by supplying the separated and purified carbon dioxide according to the growth stage, thereby increasing the crop production.

Description

청정에너지 농업시스템{Clean Energy Farming System}Clean Energy Farming System

본 발명은 지역단위 농산부산물을 활용한 맞춤형 청정에너지 농업시스템에 관한 것이다.The present invention relates to a customized clean energy agricultural system utilizing local by-product agricultural by-products.

과거에는 산유국의 정치적 불안, 군사적 충돌, 에너지 공급시설의 사고로 인한 일시적, 단기적 가격상승으로 인해, 고유가가 발생하였다.In the past, high oil prices occurred due to temporary short - term price increases due to political unrest in oil - producing countries, military conflicts, and accidents at energy supply facilities.

또한 최근에는 중국, 인도를 비롯한 신흥 경제개발 국가들의 높은 경제성장과 세계 경기회복으로 인한 에너지 수요의 급등으로 유가상승이 장기적이고 지속적으로 일어나고 있는 실정이다.Recently, oil prices have been rising for a long time due to the high economic growth of emerging economies such as China and India and the surge in energy demand due to the global economic recovery.

상기 시설채소재배의 경우, 냉난방 시설을 위해 많은 량의 에너지를 필요로 하고, 이러한 에너지는 90% 이상이 경유를 통해 확보되기 때문에, 고유가는 시설채소재배에 있어 소비되는 에너지 비용을 극대화하고 있다.In the case of the above-mentioned vegetable growing, a large amount of energy is required for the heating / cooling facility, and since more than 90% of this energy is secured through diesel, the high oil price maximizes the energy cost consumed in the cultivation of the facility vegetable.

청정에너지 농업은 지속가능한 농업에서 에너지 이용을 강조한 개념으로, 농업에너지 이용에 있어 화석 에너지의 절감 등을 위해 에너지 이용 효율화와 신재생에너지 등 대체에너지를 이용하는 농업이다. Clean Energy Agriculture is a concept emphasizing energy use in sustainable agriculture. It is an agriculture that uses alternative energy such as energy efficiency and renewable energy to reduce fossil energy in agricultural energy use.

현재 청정에너지농업에서 에너지 이용 효율화 기술로 시설하우스에서는 에너지 절감을 위하여 2중 보온커튼, 수막장치 등을 이용한 보온시설과 공기순환장치, 통풍장치 등을 이용한 환기시설 등을 통하여 난방과냉방에 들어가는 에너지를 절약하기 위한 기술이 있다. Currently, in the clean energy agriculture, energy efficiency efficiency technology is used. In the facility house, energy for heating and cooling is provided through a heat insulation facility using double heat insulation curtains and water film devices, a ventilation system using an air circulation system, There is a technology to save.

또한, 청정에너지농업에서 에너지 대체기술로는 지열, 공기열, 히트펌프, 농축산 바이오매스를 이용하는 바이오가스 및, 목재 펠릿 등이 있으며, 이들 에너지원은 경제성, 생산성, 환경성 측면에서 직접 또는 간접적으로 편익을 발생시키는 대체에너지로 평가되고 있다. In clean energy agriculture, alternative energy technologies include geothermal heat, air heat, heat pumps, biogas using agricultural and livestock biomass, and wood pellets. These energy sources benefit directly or indirectly from economic, productivity and environmental aspects. It is being evaluated as alternative energy to generate.

하지만, 지열, 공기열의 경우 그 효율이 낮으며, 목제펠릿 등의 경우 에너지의 저장을 통한 지속적인 사용이 불가하고, 대기오염 등의 2차 오염을 유발한다는 문제점이 있다. However, in the case of geothermal heat and air heat, the efficiency is low. In the case of wood pellets, etc., there is a problem that it is impossible to continuously use energy storage and secondary pollution such as air pollution.

또한 청정에너지농업에서 시설하우스의 소비전력을 대체하기 위하여 혐기소화를 통한 바이오가스의 이용에 관한 연구가 지속 되고 있으나 공정연구와 플랜트 운전 등에 국환 되어 있어 실질적으로 시설재배에 사용된 사례가 없다.In addition, the research on the use of biogas through anaerobic digestion has been continued to replace the power consumption of the facility house in clean energy agriculture, but there is no case actually used for the cultivation of the facility because it is dictated to process research and plant operation.

도 1은 종래의 에너지 생산이용시스템을 나타낸 것으로, 도 1을 참조하여 기존의 에너지 생산시스템을 간략히 설명하면 다음과 같다.FIG. 1 shows a conventional energy production utilization system. Referring to FIG. 1, an existing energy production system will be briefly described as follows.

종래의 에너지 생산이용시스템은 축산분뇨를 이용하여 생산하는 바이오가스를 통해 전력을 생산하고, 보일러를 통해 열에너지로 전환하는 기술을 중심으로 하고 있다.Conventional energy production utilization system is centered on technology to produce electricity through biogas produced using livestock manure, and to convert it into heat energy through boiler.

한편, 현재 재생에너지를 이용한 많은 시스템의 연구가 지속되고 있으나, 거의 대부분이 바이오가스를 생산하고 생산된 가스로 전력을 생산하여 사용하는 시스템을 활용하고 있다. 이러한 경우 발전기의 효율이 에너지 전환효율을 결정하며 실질적으로 33 ~ 35%의 전력생산효율을 보여 생산되는 바이오가스에 비하여 이용효율이 떨어지는 문제점이 있다. 또한, 지열이나 목재펠릿 등을 이용하는 경우 동절기 가온에너지로써의 사용은 가능하나 하절기의 이용이 불가하고 지하수를 이용한 수냉식 냉방장치 또한 계절의 한계성을 보인다. 또한, 바이오가스를 전력생산이 아닌 직접 연소하여 연소열을 이용하는 경우 겨울철 난방의 문제는 해결할 수 있으나 여름철엔 사용할 수 없다는 단점이 있다. Meanwhile, research on many systems using renewable energy is continuing, but most of them utilize a system that produces biogas and produces electricity using the produced gas. In this case, the efficiency of the generator determines the energy conversion efficiency, and the power generation efficiency is substantially 33 to 35%, which is lower than the utilization efficiency of the produced biogas. In addition, when using geothermal heat or wood pellets, it is possible to use it as warming energy in the winter season, but it is not possible to use it during the summer season, and water-cooled air conditioner using ground water also shows seasonal limitations. In addition, when the combustion gas is directly used for combustion of biogas rather than electricity, the problem of heating in the winter can be solved, but it can not be used in the summer.

이러한 이유로 시설재배농가의 소비에너지의 감축과 이를 대체하고, 년 중 지속적으로 에너지를 사용할 수 있는 고효율에너지 생산시스템인 청정에너지 시스템의 개발이 필요한 실정이다.For this reason, it is necessary to develop a clean energy system, which is a high efficiency energy production system that can reduce energy consumed by facility cultivators and replace them with renewable energy.

공개특허 특2001-0054083Patent Application Publication No. 2001-0054083 공개특허 특2003-0013366Patent Publication No. 2003-0013366

본 발명은 상기와 같은 과제를 해결하기 위한 것으로, 시설채소 총사용 에너지를 축산농가(양돈본가)에서 발생하는 분뇨(양돈분뇨)와 경종농가에서 발생하는 부산물, 식품가공장(김치) 부산물을 혐기소화공정을 통해 바이오가스를 생산하여 에너지원으로 사용하고, 이때 발생하는 이산화탄소와 소화액을 이용하여 수확량을 증대시킬 수 있는 맞춤형 “청정에너지 농업시스템”을 제공하는 것을 해결하고자 하는 과제로 한다.DISCLOSURE OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a method for anaerobic digestion of the total energy of facility vegetable by using manure (pig manure) generated from livestock farming This is to solve the problem of providing a customized "clean energy agricultural system" that can produce biogas through the process and use it as an energy source and increase the yield by using carbon dioxide and digestive juice generated at that time.

상기와 같은 과제를 해결하기 위하여 본 발명에서는 가축사육농가에서 발생하는 가축분뇨(돈분뇨)슬러리와 경종농가에서 발생하는 농산부산물 그리고 농산가공공정에서 발생하는 가공부산물을 원료로 사용하여 혐기소화공정을 통하여 바이오가스를 생산하고 생산된 바이오가스 중 메탄을 분리 정제하여 흡수식냉온수기를 가동하여 동절기에는 온수를 생산하고 하절기에는 냉수를 생산하여 냉난방의 에너지원으로 사용하고, 공조장치를 통하여 시설재배지에 냉풍과 온풍을 공급한다. 이 경우 시설재배지의 온도와 습도에 따라 냉냉방을 조절하는 제어장치를 포함한다.In order to solve the above problems, the present invention provides an anaerobic digestion process using livestock manure (slurry manure) slurry generated from livestock farming farms, agricultural by-products generated from seedling farms, and processing by- It produces biogas and separates and refines methane from the produced biogas to produce hot water in the winter season by operating the absorption type cold / hot water generator. It produces cold water in the summer and uses it as an energy source for heating and cooling. Provide warm air. In this case, it includes a control device for controlling the cooling and cooling according to the temperature and humidity of the plantation site.

또한, 바이오가스 중 이산화탄소(CO2)를 분리 정제하여 작물의 생육에 따라 시설재배지에 시비함으로써 작물의 생육을 좋게 한다. 이 경우 시설재배지의 온도와 습도, 조도 등을 값을 측정 장치를 통하여 공급받고 이를 기준으로 하여 이산화탄소 시비 시기와 시비량을 자동 제어하는 제어장치를 포함한다.In addition, carbon dioxide (CO 2 ) in the biogas is separated and purified and fertilized in the planting area according to the growth of the crop, thereby improving the growth of the crop. In this case, the system includes a controller for automatically controlling the time and amount of carbon dioxide fertilization based on the temperature, humidity, and illumination of the plantation plant through the measuring device.

한편, 혐기소화공정에서 발생되는 소화액은 고액분리를 통하여 고상과 액상으로 분리하고 고상은 퇴비화장치를 이용하여 퇴비를 생산하는데 사용하고 생산된 퇴비는 시설재배지 또는 농업용지에 시비하고, 액상은 액비화장치를 통하여 액비를 생산 시설재배지의 관비용액비로 사용하게 된다. 이 경우 시설재배지의 토양의 수분함량, 산도(pH)의 값을 공급받고 이를 기준으로 시비시기 및 시비량을 조절하는 제어장치를 포함한다. Meanwhile, the digestion liquid generated in the anaerobic digestion process is separated into a solid phase and a liquid phase through solid-liquid separation, and a solid phase is used to produce compost using a composting apparatus. The compost produced is fertilized on a facility or agricultural land, And the liquid fertilizer is used as the cost of the potted plant in the production facility. In this case, the system includes a control device for receiving the water content and pH value of the soil in the plantation area and controlling the fertilizing time and the amount of fertilizer on the basis thereof.

축산분뇨와 농산부산물을 혐기소화공정을 통하여 바이오가스를 생산하고 생산된 바이오가스를 통하여 동절기 난방과 하절기 냉방의 에너지원으로 사용하며, 이산화탄소화와 소화액을 이용하여 작물의 생육을 좋게 함으로써 작물 수량을 증대하여 농가 수익을 증대하고 냉난방에 소모되는 비용 절감하는 것이 청정에너지 농업시스템의 주된 내용이다.Livestock manure and agricultural byproducts are produced through anaerobic digestion process. Biogas is produced and used as energy source for winter heating and summer cooling through biogas produced. By using carbon dioxide and digesting liquid, the growth of crops is improved. Increasing the profit of farm households and reducing the cost of heating and cooling is the main content of the clean energy agricultural system.

상기와 같은 본 발명에 따르면, 생산되는 바이오가스의 메탄과 이산화탄소를 분리하여, 고순도의 메탄을 냉난방을 위한 연료로 사용함으로써 시설에 투입되는 에너지비용을 감소시키고, 계절별 냉난방을 통한 생육 온도의 조절을 통하여 작물의 수익을 증대하는 효과가 있으며, 분리 정제된 이산화탄소를 작물의 생육 시기에 따라 공급함으로써, 작물의 광합성량을 증대하여 작물의 생산량 증대를 이룰 수 있는 효과가 있다.According to the present invention, the methane and carbon dioxide of the produced biogas are separated, and the high-purity methane is used as the fuel for cooling and heating, thereby reducing the energy cost of the facility and controlling the growth temperature through seasonal cooling and heating And it is effective to increase the yield of crops by increasing the photosynthesis amount of the crops by supplying the separated and purified carbon dioxide according to the growing time of the crops.

또한 발생되는 혐기소화학액을 탈수장치를 통하여 고상은 퇴비화 액상은 고율 호기성액비화 장치를 통하여 시설재배지의 관주용 액비로 사용함으로써 작물수량증대 효과를 통한 농가수익증대 효과가 있다.In addition, the anaerobic chemical liquid is generated through the dehydrator, and the composting liquid is used as the liquid for the gardens of the plantation through a high aerobic liquefaction device.

또한 농가에서 발생하는 부산물의 처리를 공정을 통하여 재활용함으로써 환경오염 억제 및 농가환경 개선의 효과가 있다.In addition, by-product recycling of by-products from the farm is achieved through the process, thereby restraining environmental pollution and improving the farm environment.

도 1은 종래의 에너지 생산이용시스템을 설명하기 위한 개략적 도면이고,
도 2는 본 발명에 따른 청정에너지 농업시스템의 제1실시예를 설명하기 위한 도면이고,
도 3은 본 발명의 제1실시예에 적용되는 혐기소화플랜트를 개략적으로 나타낸 도면이고,
도 4는 본 발명에 따른 청정에너지 농업시스템의 제2실시예를 설명하기 위한 도면이고,
도 5는 본 발명에 따른 청정에너지 농업시스템의 제3실시예를 설명하기 위한 도면이고,
도 6은 본 발명에 따른 청정에너지 농업시스템의 제4실시예를 설명하기 위한 도면이다.
1 is a schematic view for explaining a conventional energy production utilization system,
2 is a view for explaining a first embodiment of a clean energy agricultural system according to the present invention,
FIG. 3 is a schematic view of an anaerobic digestion plant applied to the first embodiment of the present invention,
4 is a view for explaining a second embodiment of a clean energy agricultural system according to the present invention,
5 is a view for explaining a third embodiment of a clean energy agricultural system according to the present invention,
6 is a view for explaining a fourth embodiment of a clean energy agricultural system according to the present invention.

이하 첨부도면에 의거하여 본 발명을 상세히 설명한다.BEST MODE FOR CARRYING OUT THE INVENTION The present invention will now be described in detail with reference to the accompanying drawings.

도 2를 참조하여 본 발명에 따른 청정에너지 농업시스템의 제1실시예를 설명하면 다음과 같다.A first embodiment of a clean energy agricultural system according to the present invention will be described with reference to FIG.

상기 청정에너지 농업시스템은 작물재배시설(C), 축산시설(S), 식품가공시설(P), 혐기소화플랜트(100), 고액분리장치(200), 퇴비화시설(300), 액비생산시설(400), 바이오가스정제장치(500), 냉난방장치(600) 및, 공조장치(700)를 통해 이루어진다.The clean energy farming system includes a crop cultivation facility C, an animal husbandry facility S, a food processing facility P, an anaerobic digestion plant 100, a solid-liquid separator 200, a composting facility 300, 400, a biogas refining apparatus 500, a heating and cooling apparatus 600, and an air conditioning apparatus 700.

작물재배시설(C)은 작물을 재배하는 시설로서, 시설채소온실 등이 있다. 상기 재배 작물로는 채소와 같은 농산물, 화훼, 조경식물 등이 있으며, 작물재배시설(C)에서는 작물재배부산물이 발생한다. 그리고 이러한 작물재배부산물은 별도의 저장조에 저장된다.Crop cultivation facility (C) is a facility for cultivating crops. The cultivated crops include agricultural products such as vegetables, flowers, and landscape plants, and crop cultivation by-products occur in the crop cultivation facility (C). These crop byproducts are stored in a separate reservoir.

축산시설(S)은 가축을 기르는 시설로서, 축산 농가에서 운영된다. 상기 가축으로는 돼지, 소, 닭 등이 있으며, 축산시설(S)에서는 가축분뇨 슬러리가 발생한다. 예를 들어 양돈 농가에서는 양돈 슬러리가 발생한다. 그리고 이러한 가축 분뇨 슬러리는 별도의 저장조에 저장된다.The livestock facility (S) is a facility for raising livestock and is operated by livestock farmers. Examples of the livestock include pigs, cows, and chickens, and livestock manure slurry is generated in the livestock facility (S). For example, in pig farms, pig slurry occurs. This livestock manure slurry is stored in a separate reservoir.

식품가공시설(P)은 식품을 가공하는 시설로서, 식품 가공장 등이 있다. 상기 식품 가공장으로는 김치 가공장, 단무지 가공장, 나물 가공장 등이 있으며, 식품가공시설(P)에서는 식품가공부산물이 발생한다. 예를 들어 김치 가공장에서는 김치가공부산물이 발생한다. 그리고 이러한 식품가공부산물은 별도의 저장조에 저장된다. The food processing facility (P) is a food processing facility and has a food processing facility. Examples of the food processing field include a kimchi processing field, a radish processing field, and an herb processing field. In the food processing facility (P), food processing by-products occur. For example, in kimchi processing field, kimchi processing by-products occur. These food processing byproducts are stored in separate reservoirs.

한편 본 실시예는 상기 분쇄된 작물재배부산물, 축산시설(S)로부터의 가축분뇨 슬러리 및, 식품가공시설(P)로부터의 식품가공부산물을 혼합하는 혼합조를 구비한다. 또한 본 실시예는 작물재배시설(C)로부터의 작물재배부산물을 분쇄하는 분쇄기와, 식품가공시설(P)로부터의 식품가공부산물을 혼합조로 투입하는 투입장치를 갖춘다. Meanwhile, the present embodiment includes the crushed crop cultivation by-product, the livestock manure slurry from the livestock facility S, and a mixing tank for mixing food processing by-products from the food processing facility P. This embodiment also has a crusher for crushing crop by-products from the crop cultivation facility (C) and a feeder for feeding food processing by-products from the food processing facility (P) into the mixing tank.

혐기소화플랜트(100)는 상기 혼합조로부터 혼합물을 공급받아, 혼합물을 혐기소화한다. 여기서 혐기소화플랜트(100)는 시설재배농가의 작물재배시설(C)에서 작물부산물을 공급받거나, 축산시설에서 축산분뇨를 공급받거나, 식품가공시설(P)로부터 식품가공부산물을 공급받아, 이를 혐기소화한다.The anaerobic digestion plant 100 receives the mixture from the mixing tank and anaerobically digests the mixture. Herein, the anaerobic digestion plant 100 receives crop by-products from the crop cultivation facility C of the facility cultivator, receives livestock manure from the livestock facility, receives food processing by-products from the food processing facility P, do.

도 3을 참조하면, 혐기소화플랜트(100)는 유량 조정조, 혐기소화조, 탈황장치, 가스백, 잉여가스 제어장치 등을 통해 이루어져, 혐기 소화 작용을 한다. 본 실시예에서 상기 혐기소화조는 수평형 혐기소화조로 이루어진다. 이러한 혐기소화플랜트(100)는 널리 공지된 기술로서, 당업자라면 용이하게 실시할 수 있다.Referring to FIG. 3, the anaerobic digestion plant 100 is operated through a flow rate control tank, an anaerobic digestion tank, a desulfurizer, a gas bag, an excess gas control device, and the like, and performs anaerobic digestion. In the present embodiment, the anaerobic digestion tank is composed of a horizontal anaerobic digestion tank. Such an anaerobic digestion plant 100 is well known in the art and can be easily carried out by those skilled in the art.

한편 상기 혐기소화플랜트(100)는 혐기소화를 통해 바이오가스를 생산하며, 생산된 바이오가스는 별도의 바이오가스 저장조에 저장된다.Meanwhile, the anaerobic digestion plant 100 produces biogas through anaerobic digestion, and the produced biogas is stored in a separate biogas storage tank.

상기 바이오가스는 음식물 쓰레기, 축산분뇨와 같은 유기물이 혐기소화 과정에서 발생되는 가스를 말한다. 이러한 바이오가스는 메탄(CH4)이 50~70% 정도 차지하고, 이산화탄소(CO2)가 30~50% 정도를 차지하며, 기타 가스가 1% 미만을 차지한다. 이때 상기 기타 가스로는 수소, 일산화탄소, 암모니아, 황화수소와 같은 황화합물이 있다. 이때, 바이오가스는 유기물의 종류와 소화조건에 따라 조성에 차이가 발생할 수 있다. The biogas refers to a gas generated during anaerobic digestion of organic matter such as food waste and livestock manure. These biogas accounts for 50 to 70% of methane (CH4), about 30 to 50% of carbon dioxide (CO2), and less than 1% of other gases. The other gases include sulfur compounds such as hydrogen, carbon monoxide, ammonia, and hydrogen sulfide. At this time, the composition of the biogas may vary depending on the kinds of the organic substances and the digestion conditions.

또한 상기 혐기소화플랜트(100)로부터의 혐기소화액은 소화액 처리조에 저장되고, 상기 소화액 처리조의 혐기소화액은 직접 액비로 살포되거나, 별도로 제어되어 액비로 살포된다.Also, the anaerobic digestion liquid from the anaerobic digestion plant 100 is stored in the digester treatment tank, and the anaerobic digestion liquid in the digester treatment tank is directly sprayed with the solution, or separately controlled and sprayed with the solution.

고액분리장치(200)는 혐기소화플랜트(100)에서 발생된 혐기소화액을 고액분리하여, 고상의 물질은 퇴비화시설(300)로 공급하고, 액상의 물질은 액비생산시설(400)로 공급한다. 본 실시예에서 고액분리장치(200)는 고압탈수기, 필터프레스, 벨트프레스, 원심분리기 등이 사용될 수 있다.The solid-liquid separator 200 separates the anaerobic digestion liquid generated in the anaerobic digestion plant 100 by solid-liquid separation, supplies the solid material to the composting facility 300, and supplies the liquid material to the liquid production facility 400. In this embodiment, the solid-liquid separator 200 may be a high pressure dehydrator, a filter press, a belt press, a centrifugal separator, or the like.

퇴비화시설(300)은 고액분리장치(200)를 통해 분리된 고상 물질을 이용하여 퇴비를 생산한다. 이때 상기 고상 물질은 자체가 퇴비로 사용될 수도 있으며, 필요에 따라서는 퇴비에 필요한 필요 성분이 추가될 수도 있다. 본 실시예에서 퇴비화시설(300)로는 밀폐형 호기성 퇴비화 반응기가 적용된다. The composting facility 300 produces the compost using the solid material separated through the solid-liquid separator 200. At this time, the solid material may be used as a compost, and necessary ingredients may be added to the compost if necessary. In the present embodiment, a closed aerobic composting reactor is applied to the composting facility 300.

액비생산시설(400)는 고액분리장치(200)를 통해 분리된 액상 물질을 호기적으로 처리하여 액비를 생산하며, 생산된 액비를 작물재배시설(C)로 공급한다. 이때 상기 액상 물질은 자체가 액비로 사용될 수 있으며, 필요에 따라서는 액비에 필요판 필요 성분이 추가될 수도 있다. 본 실시예에서 액비생산시설(400)은 고율 호기성 액비화 반응기가 적용되며, 액비생산시설(400)는 생산된 액비를 저장하는 액비저장조를 더 갖출 수 있다. 여기서 액비는 관주용 액비로 제조될 수도 있다. 그리고 상기 액비는 별도로 제어되어 작물재배시설(C)로 공급된다.The liquid production facility 400 aerobically processes the liquid material separated through the solid-liquid separator 200 to produce liquid fertilizer, and supplies the produced liquid fertilizer to the plant C for cultivation. At this time, the liquid material itself can be used as a manure, and necessary components may be added to the manure if necessary. In this embodiment, the liquid production facility 400 is applied to a high-rate aerobic liquidation reactor, and the liquid production facility 400 may further include a liquid storage tank for storing the produced liquid. Here, the liquid may be produced as a liquid for household use. The liquid fertilizer is separately controlled and supplied to the crop growing facility (C).

바이오가스정제장치(500)는 혐기소화플랜트(100)에서 발생된 바이오가스로부터 메탄과 이산화탄소를 분리 정제하며, 분리 정제된 이산화탄소를 상기 작물재배시설(C)로 공급한다. 이러한 바이오가스정제장치(500)는 막분리법(Membrane Seperation)을 이용한 막분리식 정제장치가 적용된다.The biogas refining apparatus 500 separates and purifies methane and carbon dioxide from the biogas generated in the anaerobic digestion plant 100, and supplies the separated and purified carbon dioxide to the crop growing facility C. In this biogas purification apparatus 500, a membrane separation type purification apparatus using a membrane separation method is applied.

한편 바이오가스에서 메탄 및 이산화탄소를 분리하는 상기 바이오가스정제장치(500)는 널리 공지된 기술로서, 당업자라면 용이하게 실시할 수 있다.Meanwhile, the biogas purification apparatus 500 for separating methane and carbon dioxide from biogas is a well-known technology and can be easily carried out by those skilled in the art.

그리고 본 실시예에서 상기 바이오가스정제장치(500)로부터 정제된 이산화탄소는 이산화탄소 완충탱크로 이송되고, 작물재배시설(C)로의 공급이 제어된다. 이때 이산화탄소의 공급 제어는 온도, 습도, 조도에 따라 조절될 수 있다. In this embodiment, the carbon dioxide purified from the biogas purification apparatus 500 is transferred to the carbon dioxide buffer tank, and the supply to the crop cultivation facility C is controlled. At this time, the supply control of the carbon dioxide can be controlled according to temperature, humidity, and illumination.

냉난방장치(600)는 바이오가스정제장치(500)로부터 상기 메탄을 연료로 공급받아, 상기 작물재배시설(C)이 냉방 또는 난방되도록 한다. 이때 바이오가스정제장치(500)에서 정제된 메탄은 메탄 완충탱크로 이송된 후, 냉난방장치(600)로 공급된다. The heating and cooling apparatus 600 receives the methane as fuel from the biogas refining apparatus 500, and causes the crop cultivation facility C to be cooled or heated. At this time, the purified methane in the biogas refining apparatus 500 is transferred to the methane buffer tank and then supplied to the cooling / heating apparatus 600.

본 실시예에서 냉난방장치(600)는 흡수식 냉온수기 적용된다.In this embodiment, the cooling / heating apparatus 600 is an absorption type cold / hot water heater.

이러한 흡수식 냉온수기는 설치 면적이 작아 공간 활용도가 높고, 소음 및 진동이 작아 쾌적한 환경을 유지할 수 있으며, 냉난방에 필요한 냉수와 온수를 동시에 생산할 수 있어 유지관리가 편리하다. 또한 흡수식 냉온수기는 전기사용량을 낮추며, 프레온계 냉매를 사용하지 않아 환경보호에도 우수하다. 여기서 상기 흡수식 냉온수기는 널리 공지된 기술로서, 당업자라면 용이하게 실시할 수 있다.The absorption type cold / hot water heater has a small installation area, high space utilization, small noise and vibration, can maintain a pleasant environment, and can produce both cold water and hot water required for cooling and heating. In addition, the absorption type cold / hot water heater lowers electricity consumption and is excellent in environmental protection because it does not use freon refrigerant. Here, the absorption type cold / hot water heater is well known in the art and can be easily practiced by those skilled in the art.

한편 상기 흡수식 냉온수기는 메탄을 연료로 공급받아 동절기에는 온수를 발생시키고, 하절기에는 냉수를 발생시킨다.On the other hand, the absorption type cold / hot water generator generates hot water in the winter season and cold water in the summer season by supplying methane as fuel.

상기 공조장치(700)는 냉난방장치(600)와 연계되어, 작물재배시설(C) 내의 온도를 제어한다. 예를 들어 공조장치(700)가 흡수식 냉온수기와 연계될 시, 공조장치(700)는 흡수식 냉온수기로부터 생산되는 냉수 또는 온수를 이용하여 냉풍 또는 온풍을 발생시켜 작물재배시설 내(C)의 온도를 제어한다. 특히 공조장치(700)는 하절기 또는 동절기에 따라 작물재배시설(C)의 냉방 또는 난방 가동을 제어하여, 작물재배시설(C)의 냉난방을 제어한다.
The air conditioner 700 is associated with the cooling / heating unit 600 to control the temperature in the crop cultivation facility C. For example, when the air conditioner 700 is connected to the absorption type cold / hot water heater, the air conditioner 700 generates cold air or hot air by using cold water or hot water produced from the absorption type cold water heater and controls the temperature of the do. In particular, the air conditioning apparatus 700 controls the cooling or heating operation of the crop cultivation facility C to control the cooling and heating of the crop cultivation facility C according to the summer or winter season.

도 4을 참조하여 본 발명에 따른 청정에너지 농업시스템의 제2실시예를 설명한다.A second embodiment of a clean energy agricultural system according to the present invention will be described with reference to FIG.

상기 제2실시예는 제1실시예에서 액비량조절유닛(800) 및 이산화탄소량조절유닛(900)을 더 갖춘다.The second embodiment further includes a liquid amount adjusting unit 800 and a carbon dioxide amount adjusting unit 900 in the first embodiment.

액비량조절유닛(800)은 액비생산시설(400)로부터 시설재배농가의 작물재배시설(C)로 공급되는 액비량을 제어한다. 이때 작물재배시설(C)에는 분사노즐이 구비되며, 액비량조절유닛(800)은 밸브를 갖추고서 액비량을 제어하는 것이 바람직하다. 여기서 액비량조절유닛(800)은 시설재배지의 토양의 수분함량, 산도(pH)의 값에 따라 시비시기 및 시비량을 조절하는 제어장치에 의해 작동제어될 수도 있다.The liquid amount adjusting unit 800 controls the liquid amount supplied from the liquid production facility 400 to the crop growing facility C of the facility cultivator. At this time, it is preferable that the crop cultivation facility C is provided with a spray nozzle, and the liquid amount adjusting unit 800 is equipped with a valve to control the liquid amount. Here, the liquid amount adjusting unit 800 may be operated and controlled by a controller that adjusts the fertilizing time and the amount of fertilizing according to the value of the water content and pH of the soil of the facility cultivation area.

이산화탄소량조절유닛(900)은 바이오가스정제장치(500)로부터 상기 작물재배시설(C)로 공급되는 이산화탄소량을 제어한다. 이때 작물재배시설(C)에는 분사노즐이 구비되며, 이산화탄소량조절유닛(900)은 밸브를 갖추고서 이산화탄소량을 제어하는 것이 바람직하다. The carbon dioxide amount control unit 900 controls the amount of carbon dioxide supplied from the biogas purification unit 500 to the crop growing facility C. At this time, it is preferable that a spray nozzle is provided in the crop cultivation facility C, and the carbon dioxide amount control unit 900 is equipped with a valve to control the amount of carbon dioxide.

한편 식물은 광합성을 통하여 양분을 축적하고 이를 이용하여 생장한다.On the other hand, plants accumulate nutrients through photosynthesis and grow by using them.

상기 광합성이란 빛에너지를 이용하여 탄수화물과 같은 유기물을 합성하고 산소를 방출하는 과정으로서, 이산화탄소와 물을 필요로 한다. The photosynthesis is a process of synthesizing organic substances such as carbohydrates using light energy and releasing oxygen, which requires carbon dioxide and water.

상기 이산화탄소랑제어유닛(800)은 작물재배시설(C) 내로 이산화탄소를 공급하여 재배 작물이 광합성을 할 시 효율적으로 할 수 있도록 한다.
The carbon dioxide control unit 800 supplies carbon dioxide into the crop growing facility C to efficiently perform the photosynthesis of the cultivated crop.

도 5를 참조하여 본 발명에 따른 청정에너지 농업시스템의 제3실시예를 설명한다.A third embodiment of the clean energy agricultural system according to the present invention will be described with reference to FIG.

상기 제3실시예는 제2실시예에 가스농도측정센서(C1), 조도센서(C2) 및, 제어유닛(C3)을 더 갖춘다.The third embodiment is further equipped with the gas concentration measuring sensor C1, the illuminance sensor C2 and the control unit C3 in the second embodiment.

상기 가스농도측정센서(C1)는, 이산화탄소 농도 또는 산소 농도를 측정하는 것으로, 작물재배시설(C)에 설치되어, 작물재배시설(C) 내의 이산화탄소 농도 또는 산소 농도를 측정한다. 본 실시예에서 가스농도측정센서(C1)는 널리 알려진 공지기술로서, 통상의 기술자라면 용이하게 실시할 수 있다.The gas concentration measuring sensor C1 measures the carbon dioxide concentration or the oxygen concentration and is installed in the crop cultivation facility C to measure the carbon dioxide concentration or the oxygen concentration in the crop cultivation facility C. [ In the present embodiment, the gas concentration measuring sensor C1 is well-known publicly known technology and can be easily implemented by a person skilled in the art.

조도센서(C2)는 작물재배시설(C)에 설치되며, 주변의 조도를 감지한다.The light intensity sensor C2 is installed in the crop cultivation facility C and detects the illuminance of the surroundings.

제어유닛(C3)은 작물재배시설(C)에 설치되며, 가스농도측정센서(C1), 조도센서(C2) 및, 상기 이산화탄소량조절유닛(900)을 작동제어한다.The control unit C3 is installed in the crop growing facility C and controls the operation of the gas concentration measuring sensor C1, the illuminance sensor C2 and the carbon dioxide amount adjusting unit 900. [

즉 제어유닛(C3)은 가스농도측정센서(C1)로부터 이산화탄소 농도 또는 산소 농도에 따른 신호를 수신하고, 조도센서(C2)로부터 주변 밝기에 따른 조도신호를 수신하여, 일출시각, 낮 동안의 빛의 세기, 또는 일몰시각에 따라 작물재배시설(C)로 공급되는 이산화탄소량을 제어한다.That is, the control unit C3 receives a signal from the gas concentration measuring sensor C1 in accordance with the carbon dioxide concentration or the oxygen concentration, receives the illuminance signal from the illuminance sensor C2 in accordance with the ambient brightness, And the amount of carbon dioxide supplied to the crop cultivation facility C in accordance with the sunset time or the intensity of the sunset.

여기서 상기 제3실시예의 작용을 살펴보면 다음과 같다.Hereinafter, the operation of the third embodiment will be described.

상기 광합성 작용은 일정 정도까지는 이산화탄소의 농도가 높을수록 광합성량이 증가하지만, 그 이상은 일정하다. 따라서 작물재배시설(C)은 가장 광합성량이 많은 이산화탄소의 농도를 일정하게 유지할 필요가 있다.As the concentration of carbon dioxide increases to a certain extent, the amount of photosynthesis increases, but the above amount is constant. Therefore, it is necessary to keep the concentration of carbon dioxide with the highest amount of photosynthetic amount constant in the crop growing facility (C).

또한 상기 재배 작물은 낮에는 광합성 및 호흡 작용을 하고, 밤에는 호흡 작용만 한다.The cultivated crops also have photosynthesis and respiration during the day and respiration at night.

상기 호흡 작용은 산소를 흡수하고 이산화탄소를 방출하는 작용으로, 밤 동안에 호흡 작용이 이루어지면 아침에는 작물재배시설(C) 내부는 상대적으로 이산화탄소량이 증가한다. 하지만 이산화탄소는 상기에서 언급한 최대 광합성량을 얻을 수 있는 적정량이 아닐 수도 있다.The respiratory action absorbs oxygen and emits carbon dioxide. When respiration is performed during the night, the amount of carbon dioxide in the crop growing facility (C) increases in the morning. However, carbon dioxide may not be an appropriate amount to obtain the maximum amount of photosynthesis mentioned above.

그러나, 제어유닛(C3)은 조도센서(C2)로부터의 일출시각이라는 조도신호를 수신하고, 이에 따라 이산화탄소량조절유닛(900)을 제어하여 작물재배시설(C) 내로 이산화탄소 농도를 조절한다. 이때 제어유닛(C3)은 가스농도측정센서(C1)로부터의 이산화탄소 농도 신호에 따라 이산화탄소량조절유닛(900)를 제어하여 작물재배시설(C) 내의 이산화탄소 농도가 최적의 농도를 유지하도록 하도록 한다.However, the control unit C3 receives the illuminance signal called the sunrise time from the illuminance sensor C2, and accordingly controls the carbon dioxide amount control unit 900 to adjust the carbon dioxide concentration into the crop growing facility C. At this time, the control unit C3 controls the carbon dioxide amount adjusting unit 900 in accordance with the carbon dioxide concentration signal from the gas concentration measuring sensor C1 so that the carbon dioxide concentration in the crop growing facility C is maintained at the optimum concentration.

한편 상기 재배 작물은 밤에 호흡 작용을 하기 때문에, 작물재배시설(C) 내의 이산화탄소량이 증가한다. 따라서 제어유닛(C3)은 조도센서(C2)로부터 일몰시각이라는 조도신호를 수신하면 이산화탄소량조절유닛(900)을 폐쇄하여 작물재배시설(C) 내로 공급되는 이산화탄소를 차단한다.
On the other hand, since the cultivated crops are respiratory at night, the amount of carbon dioxide in the crop growing facility (C) increases. Therefore, when the control unit C3 receives the illuminance signal indicating the sunset time from the illuminance sensor C2, the control unit C3 closes the carbon dioxide amount regulating unit 900 and cuts off the carbon dioxide supplied into the crop growing facility C.

상술한 바와 같이 본 발명은 생산되는 바이오가스의 메탄과 이산화탄소를 분리하여, 고순도의 메탄을 냉난방을 위한 연료로 사용함으로써 시설에 투입되는 에너지비용을 감소시키고, 계절별 냉난방을 통한 생육 온도의 조절을 통하여 작물의 수익을 증대하는 효과가 있으며, 분리 정제된 이산화탄소를 작물의 생육 시기에 따라 공급함으로써, 작물의 광합성량을 증대하여 작물의 생산량 증대를 이룰 수 있는 효과가 있다.As described above, the present invention separates methane and carbon dioxide from produced biogas, and uses high purity methane as a fuel for cooling and heating, thereby reducing the energy cost of the facility and controlling the growth temperature through seasonal cooling and heating It has an effect of increasing the yield of the crop. Also, by supplying the separated and purified carbon dioxide according to the growth period of the crop, the amount of photosynthesis of the crop can be increased and the yield of the crop can be increased.

또한 발생되는 혐기소화학액을 탈수장치를 통하여 고상은 퇴비화 액상은 고율 호기성액비화 장치를 통하여 시설재배지의 관주용 액비로 사용함으로써 작물수량증대 효과를 통한 농가수익증대 효과가 있다.In addition, the anaerobic chemical liquid is generated through the dehydrator, and the composting liquid is used as the liquid for the gardens of the plantation through a high aerobic liquefaction device.

또한 농가에서 발생하는 부산물의 처리를 공정을 통하여 재활용함으로써 환경오염 억제 및 농가환경 개선의 효과가 있다.In addition, by-product recycling of by-products from the farm is achieved through the process, thereby restraining environmental pollution and improving the farm environment.

100; 혐기소화플랜트 200; 고액분리장치
300; 퇴비화시설 400; 액비생산시설
500; 바이오가스정제장치 600; 냉난방장치
700; 공조장치 800; 액비량조절유닛
900; 이산화탄소량조절유닛 C; 작물재배시설
C1; 가스농도측정센서 C2; 조도센서
C3; 제어유닛 S; 축산시설
P; 식품가공시설
100; Anaerobic digestion plant 200; Solid-liquid separator
300; Composting facility 400; Liquid production facility
500; A biogas purification device 600; Air-conditioning system
700; Air conditioning device 800; Liquid amount adjustment unit
900; A carbon dioxide regulating unit C; Crop planting facility
C1; A gas concentration measuring sensor C2; Illuminance sensor
C3; Control unit S; Livestock Facility
P; Food processing facility

Claims (6)

작물재배시설에서 작물부산물을 공급받거나, 축산시설에서 축산분뇨를 공급받거나, 식품가공시설에서 식품가공부산물을 공급받아, 작물부산물 또는 축산분뇨 또는 식품가공부산물을 혐기 소화하는 혐기소화플랜트;
혐기소화플랜트에서 발생된 슬러리를 고액분리하는 고액분리장치;
고액분리장치를 통해 분리된 고상 물질을 퇴비화하는 퇴비화시설;
고액분리장치를 통해 분리된 액상 물질을 액비화하여 작물재배시설로 공급하는 액비생산시설;
혐기소화플랜트로부터의 바이오가스에서 메탄과 이산화탄소를 정제하며, 정제된 이산화탄소를 상기 작물재배시설로 공급하는 바이오가스정제장치;
바이오가스정제장치로부터 상기 메탄을 연료로 공급받아, 상기 작물재배시설을 냉방 또는 난방하는 냉난방장치;
를 포함하는 것을 특징으로 하는 청정에너지 농업시스템.
An anaerobic digestion plant that receives crop by-products from a crop growing facility, receives livestock manure from an animal husbandry facility, receives food processing by-products from a food processing facility, and anaerobically digests crop by-products, livestock manure or food processing by-products;
A solid-liquid separator for solid-liquid separation of the slurry generated in the anaerobic digestion plant;
A composting facility for composting solid matter separated through a solid-liquid separator;
Liquid production facility that supplies liquid material separated through solid-liquid separator to livestock growing facility;
A biogas purification apparatus for purifying methane and carbon dioxide from biogas from an anaerobic digestion plant and supplying purified carbon dioxide to the crop growing facility;
A cooling and heating device that receives the methane from the biogas refining device as fuel and cools or heats the crop cultivation facility;
And a clean energy agricultural system.
제1항에 있어서,
상기 액비생산시설로부터 작물재배시설로 공급되는 액비량을 제어하는 액비량조절유닛 또는 바이오가스정제장치로부터 작물재배시설로 공급되는 이산화탄소량을 제어하는 이산화탄소량조절유닛을 보강구비하는 것을 특징으로 하는 청정에너지 농업시스템.
The method according to claim 1,
And a carbon dioxide amount adjusting unit for controlling the amount of carbon dioxide supplied to the crop cultivation facility from the liquid level adjusting unit or the biogas refining unit for controlling the amount of liquid supplied from the liquid production facility to the crop growing facility, Energy agriculture system.
제1항 또는 제2항에 있어서,
상기 냉난방장치와 연계되어 작물재배시설의 냉방 또는 난방 가동을 제어하는 공조장치를 더 포함하는 것을 특징으로 하는 청정에너지 농업시스템.
3. The method according to claim 1 or 2,
Further comprising an air conditioner connected to the cooling / heating unit to control the cooling or heating operation of the crop cultivation facility.
제3항에 있어서,
상기 냉난방장치는 흡수식 냉온수기를 이용하는 것을 특징으로 하는 청정에너지 농업시스템.
The method of claim 3,
Wherein the cooling / heating apparatus uses an absorption type cold / hot water generator.
제3항에 있어서,
상기 작물재배시설 내의 이산화탄소 농도를 측정하는 가스농도측정센서;
작물재배시설 주변의 조도를 측정하는 조도센서;
가스농도측정센서로부터 이산화탄소 농도에 따른 신호를 수신하고, 조도센서로부터 주변 밝기에 따른 조도신호를 수신하여, 상기 조도신호를 통해 일출을 확인하고 가스농도측정센서로부터 작물재배시설 내의 이산화탄소 농도를 확인하면, 이산화탄소량조절유닛를 제어하여 작물재배시설 내의 이산화탄소 농도가 일정 농도를 유지하도록 하고, 상기 조도센서로부터의 조도신호를 통해 일몰을 확인하면 이산화탄소량조절유닛을 폐쇄하여 작물재배시설 내로의 이산화탄소 공급을 차단하는 제어유닛;
을 더 포함하는 것을 특징으로 하는 청정에너지 농업시스템.
The method of claim 3,
A gas concentration measuring sensor for measuring the concentration of carbon dioxide in the crop growing facility;
An illuminance sensor for measuring the illuminance around the crop growing facility;
Receives a signal according to the carbon dioxide concentration from the gas concentration measuring sensor, receives an illuminance signal according to the ambient brightness from the illuminance sensor, confirms the sunrise through the illuminance signal, and confirms the carbon dioxide concentration in the crop growing facility from the gas concentration measuring sensor , The carbon dioxide amount control unit is controlled to maintain the concentration of carbon dioxide in the crop cultivation facility at a predetermined concentration, and if the sunset is confirmed through the illuminance signal from the illuminance sensor, the carbon dioxide amount control unit is closed to cut off the supply of carbon dioxide into the crop cultivation facility ;
Further comprising: a clean energy agricultural system.
제5항에 있어서,
상기 작물재배시설로부터의 작물부산물이 분쇄되고, 분쇄된 작물부산물이 축산시설로부터의 가축분뇨 및 식품가공시설로부터의 식품가공부산물과 혼합되어 혐기소화플랜트로 공급되는 것을 특징으로 하는 청정에너지 농업시스템.
6. The method of claim 5,
Wherein the byproducts of the crop from the crop growing facility are pulverized and the pulverized crop byproducts are mixed with the animal manure from the livestock facility and the food processing byproducts from the food processing facility and supplied to the anaerobic digestion plant.
KR1020130082781A 2013-07-15 2013-07-15 Clean Energy Farming System KR101533721B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130082781A KR101533721B1 (en) 2013-07-15 2013-07-15 Clean Energy Farming System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130082781A KR101533721B1 (en) 2013-07-15 2013-07-15 Clean Energy Farming System

Publications (2)

Publication Number Publication Date
KR20150009094A true KR20150009094A (en) 2015-01-26
KR101533721B1 KR101533721B1 (en) 2015-07-10

Family

ID=52572408

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130082781A KR101533721B1 (en) 2013-07-15 2013-07-15 Clean Energy Farming System

Country Status (1)

Country Link
KR (1) KR101533721B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102015537B1 (en) * 2019-05-14 2019-08-28 정경온 Manufacturing method of compost using livestock stamped out and compost manufactured by the method
KR20200073538A (en) * 2018-12-14 2020-06-24 대한민국(농촌진흥청장) carbon dioxide application system of greenhouse
WO2021006454A1 (en) * 2019-07-05 2021-01-14 엘지전자 주식회사 Wireless power transmitting/receiving device and display system comprising same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100828103B1 (en) * 2007-03-12 2008-06-10 순천대학교 산학협력단 System for automatic control of a greenhouse and method for management of a greenhouse by using the sensor of soil and atmospheric phenomena
KR101793236B1 (en) * 2009-11-17 2017-11-02 (주)동광이앤아이 Recycling system of organic waste
KR101194168B1 (en) * 2011-03-25 2012-10-24 주식회사 포스코 Heating method and heating plant for agricultural facility using biogas and regenerator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200073538A (en) * 2018-12-14 2020-06-24 대한민국(농촌진흥청장) carbon dioxide application system of greenhouse
KR102015537B1 (en) * 2019-05-14 2019-08-28 정경온 Manufacturing method of compost using livestock stamped out and compost manufactured by the method
WO2021006454A1 (en) * 2019-07-05 2021-01-14 엘지전자 주식회사 Wireless power transmitting/receiving device and display system comprising same

Also Published As

Publication number Publication date
KR101533721B1 (en) 2015-07-10

Similar Documents

Publication Publication Date Title
CN101920258B (en) Energy utilization system of organic wastes with zero emission of carbon dioxide
CN103194377B (en) Biogas engineering product and agricultural planting combined comprehensive utilization system
US10703683B2 (en) Facility for treating and recycling animal waste comprising methanisation, cultivation of microalgae and macrophytes, and vermiculture
CN101805061B (en) Organic sewage constructed wetland processing and high-yield non-food energy plant cultivating technology
CN103210713A (en) Method for improving soil fertility of greenhouse and preventing soil disease
US20080176303A1 (en) Farm Scale Ethanol Plant
US20120308989A1 (en) Conversion of aquatic plants to liquid methane, and associated systems and methods
CN104446683A (en) Comprehensive treatment technology for municipal domestic sludge
CN102268462A (en) Integrated utilization method of agricultural and pastoral waste
CN108605863A (en) A kind of livestock culture waste ecology synthesis utilizes system
Ošlaj et al. Biogas as a renewable energy source
CN104909847A (en) Method of converting livestock manures into microbial organic fertilizers
CN101855986A (en) Substrate for floating seedling cultivation
CN102388770A (en) Controllable automatic temperature-control ecological greenhouse
CN105272414A (en) Method for producing light seedling culture medium from agricultural and forestry residues
KR101533721B1 (en) Clean Energy Farming System
CN109122015A (en) A kind of efficient circulation eco-agricuhure system
Muxtoraliyevich BIOGAS IS AN ALTERNATIVE ENERGY SOURCE
CN101965780A (en) Stalk recycling method suitable for saline-alkali lands in near-rural areas
CN102870658A (en) Method for growing plants by using space waste and wastewater
CN109328537A (en) A kind of ecological farm village that waste material recycles
Erraji et al. Biogas and digestate production from food waste: a case study of dome digester in Morocco
CN203256265U (en) Comprehensive utilization system for combining biogas engineering products and agricultural planting
CN208317633U (en) A kind of energy saving and environment friendly quaternity Ecological Greenhouse
RU129096U1 (en) AGRICULTURAL RESOURCE SYSTEM OF AGRICULTURAL PRODUCTION

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
FPAY Annual fee payment

Payment date: 20180409

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190426

Year of fee payment: 5