KR20140146856A - METHOD FOR PREPARING CELLULOSE COMPLEX USING ENDO-β-1,4-GLUCANASE E, XYLANASE B AND MINI CELLULOSE BINDING PROTEIN A FROM CLOSTRIDIUM SP. - Google Patents

METHOD FOR PREPARING CELLULOSE COMPLEX USING ENDO-β-1,4-GLUCANASE E, XYLANASE B AND MINI CELLULOSE BINDING PROTEIN A FROM CLOSTRIDIUM SP. Download PDF

Info

Publication number
KR20140146856A
KR20140146856A KR1020130069697A KR20130069697A KR20140146856A KR 20140146856 A KR20140146856 A KR 20140146856A KR 1020130069697 A KR1020130069697 A KR 1020130069697A KR 20130069697 A KR20130069697 A KR 20130069697A KR 20140146856 A KR20140146856 A KR 20140146856A
Authority
KR
South Korea
Prior art keywords
endo
glucanase
binding protein
xylanase
chimeric
Prior art date
Application number
KR1020130069697A
Other languages
Korean (ko)
Inventor
한성옥
현정은
김영인
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to KR1020130069697A priority Critical patent/KR20140146856A/en
Publication of KR20140146856A publication Critical patent/KR20140146856A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/244Endo-1,3(4)-beta-glucanase (3.2.1.6)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/33Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Clostridium (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2477Hemicellulases not provided in a preceding group
    • C12N9/248Xylanases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/96Stabilising an enzyme by forming an adduct or a composition; Forming enzyme conjugates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01006Endo-1,3(4)-beta-glucanase (3.2.1.6)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to a method for preparing a fibrinogenase complex using endo-β-1,4-glucanase E, xylanase B, and mini cellulose binding protein A derived from Clostridium sp. microorganism. More specifically, the present invention relates to a method for preparing (i) a chimeric endo--β-1,4-glucanase E-mini cellulose binding protein A (cCelE-mCbpA) complex, (ii) a xylanase B- mini cellulose binding protein A (XynB-mCbpA) complex, and (iii) a chimeric endo--β-1,4-glucanase E- xylanase B- mini cellulose binding protein A (cCelE-XynB-mCbpA) complex by culturing a recombinant yeast having an ability to produce chimeric Endo��beta;��,4��lucanase E (cCelE), a recombinant yeast having an ability to produce xylanase B (XynB), and a recombinant yeast having an ability to produce mini cellulose binding protein A (miniCbpA). Also, the present invention relates to a method for manufacturing bioethanol using the same.

Description

클로스트리디움 속 미생물 유래의 엔도―베타―1,4―글루칸아제―이, 자일란네이즈―비 및 소형 셀룰로오즈 결합단백질―에이를 이용한 섬유소 분해효소 복합체의 제조방법{Method for Preparing Cellulose Complex Using Endo―β―1,4―glucanase E, Xylanase B and Mini Cellulose Binding Protein A from Clostridium sp.}[0001] The present invention relates to a method for producing a fibrinolytic enzyme complex using endo-beta-1,4-glucanase derived from Clostridium microorganism, xylanase-ratio and small cellulosic binding protein- -1,4-glucanase E, Xylanase B and Mini Cellulose Binding Protein A from Clostridium sp.

본 발명은 클로스트리디움 속 미생물 유래의 엔도-베타-1,4-글루칸아제-이, 자일란네이즈-비 및 소형 셀룰로오즈 결합단백질 에이를 이용한 섬유소 분해효소 복합체의 제조방법에 관한 것으로, 키메라 엔도-베타-1,4-글루칸아제-이(chimeric Endo―β―1,4―glucanase E; cCelE) 생성능을 가지는 재조합 효모, 자일란네이즈-비(xylanase B; XynB) 생성능을 가지는 재조합 효모 및 소형 셀룰로오즈 결합단백질 에이(mini cellulose binding protein A; miniCbpA) 생성능을 가지는 재조합 효모를 배양하여 (ⅰ)키메릭 엔도-베타-1,4-글루칸아제-이-소형 셀룰로오즈 결합단백질 에이(cCelE-mCbpA) 복합체, (ⅱ)자일란네이즈 비-소형 셀룰로오즈 결합단백질 에이(XynB-mCbpA) 복합체 및 (ⅲ) 키메릭 엔도-베타-1,4-글루칸아제-이-자일란네이즈 비-소형 셀룰로오즈 결합단백질 에이(cCelE-XynB-mCbpA) 복합체를 제조하는 방법 및 이를 이용한 바이오에탄올의 제조방법에 관한 것이다.
The present invention relates to a method for producing a fibrinolytic enzyme conjugate using endo-beta-1,4-glucanase derived from Clostridium genus microorganism, xylanase-bound and small cellulosic binding protein a, Recombinant yeast having the ability to produce chimeric Endo-β-1,4-glucanase E (cCelE), recombinant yeast having the ability to produce xylanase B (XynB) and small cellulosic binding protein (CCelE-mCbpA) complex, (ii) a chimeric endo-beta-1,4-glucanase-small cellulase binding protein a (cCelE-mCbpA) complex, (XynB-mCbpA) complex and (iii) chimeric endo-beta-1,4-glucanase-i-xylanase non-small cellulosic binding protein (cCelE-XynB-mCbpA) ) Complex How to tank and to a method of producing bioethanol using the same.

최근 원유가격의 급등과 에너지 고갈에 대한 우려가 심각해지면서 대체 에너지 생산에 관한 관심이 증폭되고 있다. 대체 에너지 중 수송용 연료의 경우 가장 활발하게 대두되고 있는 소재가 바로 바이오 에탄올이다. 이는 자동차의 최종 기술 목표인 전기자동차 또는 수소자동차의 개발단계까지 현재의 아직도 개발초기 단계여서 이의 완료까지 이를 대체할 수 있는 절충형의 대체에너지가 필요하다. 현재 바이오에탄올은 휘발유와 혼합하여 사용할 수 있어 바이오 디젤과 더불어 대표적인 재생자원 에너지이며 바이오 에탄올 연소 시 발생하는 이산화탄소는 교토의정서에서 규정한 온실가스 계산에서 예외 적용을 받아 온실가스 감축효과가 있다. 또한 보급에 별도의 인프라 (주유소 등) 구축이 필요한 다른 청정연료와는 달리 기존 인프라에서 보급이 가능해 조기 상용화가 용이하다. Concerns over skyrocketing oil prices and energy depletion have heightened interest in alternative energy production. Bioethanol is the most active source of alternative fuels for transportation. This is the initial stage of the development of the electric vehicle or the hydrogen vehicle, which is the final technical objective of the automobile, and it is still necessary to have an alternative energy to replace it. At present, bioethanol can be mixed with gasoline, so it is a representative renewable resource energy in addition to biodiesel. Carbon dioxide that is generated when bioethanol is burned is an exception in the calculation of greenhouse gas defined by the Kyoto Protocol. In addition, unlike other cleaner fuels that require separate infrastructures (such as gas stations) to be deployed, it can be easily deployed in existing infrastructure, making early commercialization easy.

현재 바이오 에탄올은 주로 사탕수수 및 옥수수로 대표되는 당질계 바이오매스, 목재와 같은 셀룰로오스계 바이오매스, 그리고 폐목자원, 잉여농산물 및 초본계 작물과 같은 리그노 셀룰로오스계 바이오매스로부터 생산될 수 있다. 전분질계의 사탕수수 및 옥수수는 현재 대표적인 바이오에탄올 생산의 재료로 실제 브라질의 경우 풍부한 사탕수수 재배지를 근간으로 하여 이를 활용하여 에탄올의 연료상업화에 성공하여 2004년에 이르러 전체 차량 연료 소비량의 약 30%를 바이오 에탄올로 대체하는 데 성공하였다. 미국의 경우 풍부한 옥수수를 활용한 바이오에탄올 생산의 상당한 상업화 기술을 축적하여 2017년까지 전체 수송용 에너지 수요의 20%를 바이오에탄올로 대체할 예정이다. At present, bioethanol can be produced from lignocellulosic biomass such as carbohydrate biomass, mainly sugarcane and corn, cellulosic biomass such as wood, and pulpwood resources, surplus agricultural products and herbaceous crops. Sugarcane and corn starch are currently the representative bioethanol production material. In fact, in Brazil, based on rich sugar cane production, it succeeded in commercialization of ethanol fuel, and by 2004, about 30% With bioethanol. The United States will accumulate substantial commercialization technologies for bioethanol production using abundant corn, replacing 20% of total transport energy demand by bioethanol by 2017.

기존에 사용되어 온 옥수수 등을 중심으로 한 당질계 바이오매스의 경우 2008년 초 곡물가격의 급등으로 인한 애그플레이션의 영향으로 원료수급 및 가격경쟁력의 측면에서 부정적인 평가를 받게 되어 최근 가장 많이 활용되고 있는 것이 목질계 또는 리그노 셀룰로오스계 바이오매스이다. 이들은 기존의 당질계와는 달리 원료수급이나 윤리적인 문제에 제한이 없어 이러한 재료를 사용하여 바이오에탄올을 생산하려는 여러 연구가 시도되고 있다. 그러나 이러한 원료들의 주요성분은 대부분이 셀룰로오스로 구성되어 있는데 이를 직접 에탄올 발효에 활용하기 위해서는 이들의 충분한 당화가 필요하다. 그러나 당화 공정을 거쳐도 대부분이 분해되지 않은 올리고머 또는 폴리머 형태로 남아있는 경우가 많다. In the case of carbohydrate-based biomass, which has been used for corn, which has been used in the past, it has been negatively evaluated in terms of raw material supply and price competitiveness due to aggravation due to surging grain prices in early 2008, Is lignocellulosic or lignocellulosic biomass. Unlike conventional carbohydrates, there are no limitations on raw material supply and ethical issues, and various studies have been made to produce bioethanol using these materials. However, most of these raw materials are composed of cellulose, and it is necessary to sufficiently saccharify them for direct ethanol fermentation. However, most of them remain in the form of undissolved oligomers or polymers even after glycosylation.

클로스트리디움 써모셀럼 (Clostridium thermocellum)은 혐기성, 호열성이며 셀룰로오스를 가수분해하고 에탄올을 생산하는 세균으로서, 다양한 섬유소 분해 효소(cellulase)를 생산하고 또한 효소복합체인 셀룰로좀(cellulosome)을 만들어내는 것으로 알려져 있다. 또한 매우 높은 온도에서 자랄 수 있는 박테리아의 특성과 결합되어 미생물은 셀룰로오스계 바이오매스 자원들로부터 산업적으로 수소와 에탄올을 생산하는 공정들을 개발하기 위한 대상 물질로서 뛰어난 장점들을 지니고 있다. 또한, 결정형 섬유소의 효과적인 분해에는 적어도 세가지의 섬유소 분해효소, 즉, 엔도글루칸아제(endoglucanase), 엑소글루칸아제(exoglucanase)(또는 셀로비오하이드롤라제 cellobiohydrolase) 및 베타-글루코시다제(β-glucosidase)가 동시에 필요하며, 이들의 상승작용으로 섬유소 분해능이 많이 증가한다고 보고되었다(Murashima, K. et al ., J Bacteriol, 184(18):5088, 2002; B Schwarz, Microbiol Biotechnol ., 56:634, 2001; Shoham, Y. et al ., Trends Microbiol ., 7(7):275, 1999). Clostridium thermosellum Thermocellum is an anaerobic, thermophilic bacterium that hydrolyzes cellulose and produces ethanol. It is known to produce a variety of cellulases and produce cellulosomes, which are enzyme complexes. Combined with the characteristics of bacteria that can grow at very high temperatures, microorganisms have significant advantages as a subject matter for developing processes that industrially produce hydrogen and ethanol from cellulosic biomass resources. In addition, the effective degradation of crystalline fibrin has at least three cellulolytic enzymes: endoglucanase, exoglucanase (or cellobiohydrolase), and beta-glucosidase ) Are required at the same time, and their synergistic action has been reported to increase the fibrinolytic ability greatly (Murashima, K. et al ., & lt ; / RTI & gt ; J Bacteriol , 184 (18): 5088,2002; B Schwarz, Microbiol Biotechnol . , 56: 634, 2001; Shoham, Y. et al ., Trends Microbiol ., 7 (7): 275, 1999).

한편, 클로스트리디움 셀룰로보란스 (clostridium cellulovorans)는 혐기중온성 세균으로서, 다양한 섬유소 분해 효소(cellulase)를 생산하고 또한 효소복합체인 셀룰로좀(cellulosome)을 만들어내는 것으로 알려져 있다. 이들 혐기성 세균에서 셀룰로좀 조합체 (dellulosomal complex)의 기본적인 구조는 하나의 cellulose binding module(CBM)을 가지고 있는 기본 골격 소단위체 (primary scaffolding subunit)가 주축이 되어 catalytic module을 가진 셀룰라아제 혹은 헤미셀룰라아제의 효소 소단위체 (enzyme Subunits)들이 합쳐져서 이루어진다. 이 구조를 이루기 위해 기본 골격 소단위체에 있는 9개의 코히즌 모듈(cohesin module)이 강력하게 각각의 효소 소단위체에 있는 도커린 모듈(dockerin module)에 단백질 간의 상호작용 (Protein-Protein interaction)에 의해 결합하게 된다. On the other hand, clostridium celluloborance Cellulovorans is an anaerobically bacterium that is known to produce a variety of cellulases and to produce cellulosomes as enzyme complexes. The basic structure of the dellulosomal complex in these anaerobic bacteria is that the primary scaffolding subunit with a cellulose binding module (CBM) is the main axis and the enzyme of the cellulase or hemicellulase with catalytic module And enzyme subunits are combined. In order to achieve this structure, nine cohesin modules in the basic skeletal subunit are strongly attached to the dockerin module in each enzyme subunit by protein-protein interaction Lt; / RTI >

이에 본 발명자들은 섬유소 분해능이 우수한 효소를 생산하기 위해 예의 노력한 결과, 클로스트리디움 속 균주로부터 유래한 엔도글루칸아제, 자일란네이즈 및 소형 셀룰로오즈 결합단백질 에이로 구성된 섬유소 분해효소 복합체가 효과적으로 바이오에탄올을 생성하는 것을 확인하고, 본 발명을 완성하게 되었다.
Accordingly, the present inventors have made intensive efforts to produce an enzyme having excellent fibrinolytic ability. As a result, the present inventors have found that a fibrinolytic enzyme complex composed of endoglucanase, xylanase and small cellulosic binding protein a derived from Clostridium sp. Strain effectively produces bioethanol And the present invention was completed.

본 발명의 목적은 클로스트리디움 속 미생물 유래의 키메릭 엔도-베타-1,4-글루칸아제-이, 자일란네이즈 비 및 소형 셀룰로오즈 결합단백질 에이가 결합하여 형성된 엔도-베타-1,4-글루칸아제-이-소형 셀룰로오즈 결합단백질 에이(cCelE-mCbpA) 복합체, 자일란네이즈 비-소형 셀룰로오즈 결합단백질 에이(XynB-mCbpA) 복합체 및 키메릭 엔도-베타-1,4-글루칸아제-이-자일란네이즈 비-소형 셀룰로오즈 결합단백질 에이(cCelE-XynB-mCbpA) 복합체의 제조방법 및 생성된 섬유소 분해효소 복합체를 이용한 바이오에탄올 제조방법을 제공하는 데 있다.
It is an object of the present invention to provide an endo-beta-1,4-glucanase which is formed by binding a chimeric endo-beta-1,4-glucanase derived from Clostridium microorganism to a xylanase ratio and a small- (XynB-mCbpA) complex and chimeric endo-beta-1,4-glucanase-i-xylanase non-xylose conjugate protein (cCelE-mCbpA) complex, the xylenese non-small cellulosic binding protein a (CCelE-XynB-mCbpA) complex and a method for producing bioethanol using the resulting cellulolytic enzyme complex.

상기 목적을 달성하기 위해, 본 발명은 (a) 키메릭 엔도-베타-1,4-글루칸아제-이(chimeric endo―β―1,4―glucanase E; cCelE)를 코딩하는 유전자 함유 재조합 벡터로 형질전환된 재조합 효모, 자일란네이즈-비(xylanase B; XynB)를 코딩하는 유전자 함유 재조합 벡터로 형질전환된 재조합 효모 및 소형 셀룰로오즈 결합단백질 에이(mini cellulose binding protein A; miniCbpA)를 코딩하는 유전자 함유 재조합 벡터로 형질전환된 재조합 효모를 배양하는 단계; (b) 각각의 재조합 효모에서 생성된 키메릭 엔도-베타-1,4-글루칸아제-이, 자일란네이즈 비 및 소형 셀룰로오즈 결합단백질 에이가 결합하여 (ⅰ)키메릭 엔도-베타-1,4-글루칸아제-이-소형 셀룰로오즈 결합단백질 에이(cCelE-mCbpA) 복합체, (ⅱ)자일란네이즈 비-소형 셀룰로오즈 결합단백질 에이(XynB-mCbpA) 복합체 및 (ⅲ) 키메릭 엔도-베타-1,4-글루칸아제-이-자일란네이즈 비-소형 셀룰로오즈 결합단백질 에이(cCelE-XynB-mCbpA) 복합체를 형성시키는 단계; 및 (d) 상기 형성된 섬유소 분해효소 복합체를 회수하는 단계.를 포함하는 섬유소 분해효소 복합체의 제조방법을 제공한다. To achieve the above object, the present invention provides a recombinant vector containing a gene encoding (a) chimeric endo-β-1,4-glucanase E (cCelE) A recombinant yeast transformed with a recombinant vector containing the gene encoding xylanase B (XynB), and a recombinant yeast containing a gene encoding a mini cellulose binding protein A (miniCbpA) Culturing the recombinant yeast transformed with the vector; (b) the chimeric endo-beta-1,4-glucanase produced from each recombinant yeast, the xylanase ratio and the small cellulosic binding protein a, are combined to form (i) chimeric endo- (XynB-mCbpA) complex and (iii) chimeric endo-beta-1,4-glucan complexes, (CCelE-XynB-mCbpA) complex with an agase-free xylenase non-small cellulosic binding protein a (cCelE-XynB-mCbpA) complex; And (d) recovering the formed fibrinolytic enzyme complex. The present invention also provides a method for producing the fibrinolytic enzyme complex.

본 발명은 또한, (a) 키메릭 엔도-베타-1,4-글루칸아제-이(cCelE)를 코딩하는 유전자 함유 재조합 벡터로 형질전환된 재조합 효모, 자일란네이즈-비(xylanase B)를 코딩하는 유전자 함유 재조합 벡터로 형질전환된 재조합 효모 및 소형 셀룰로오즈 결합단백질 에이(mini cellulose binding protein A; miniCbpA)를 코딩하는 유전자 함유 재조합 벡터로 형질전환된 재조합 효모를 배양하는 단계; (b) 상기 (a) 단계에서 배양된 재조합 효모에 바이오매스를 첨가하고 추가로 배양하여 에탄올을 생성시키는 단계; 및 (c) 생성된 에탄올을 회수하는 단계를 포함하는 바이오매스의 동시당화 발효에 의한 에탄올의 제조방법을 제공한다.
The present invention also relates to a recombinant vector comprising (a) a recombinant yeast transformed with a recombinant vector containing a gene encoding chimeric endo-beta-1,4-glucanase-1 (cCelE), a recombinant yeast encoding a xylanase B Culturing a recombinant yeast transformed with a gene-containing recombinant vector and a recombinant vector transformed with a recombinant vector containing a gene encoding a mini cellulose binding protein A (miniCbpA); (b) adding biomass to the recombinant yeast cultured in step (a) and further culturing to produce ethanol; And (c) recovering the produced ethanol. The present invention also provides a method for producing ethanol by simultaneous saccharification and fermentation of biomass.

본 발명의 방법으로 제조된 (ⅰ)키메릭 엔도-베타-1,4-글루칸아제-이-소형 셀룰로오즈 결합단백질 에이(cCelE-mCbpA) 복합체, (ⅱ)자일란네이즈 비-소형 셀룰로오즈 결합단백질 에이(XynB-mCbpA) 복합체 및 (ⅲ) 키메릭 엔도-베타-1,4-글루칸아제-이-자일란네이즈 비-소형 셀룰로오즈 결합단백질 에이(cCelE-XynB-mCbpA) 복합체는 셀룰로오스 및 자일로오스 분해능이 우수하여, 양조, 제빵, 알코올 생산, 사료 생산 및 생균제 개발 등에 유용하게 사용될 수 있고 특히 섬유소의 분해와 분해산물로부터 알코올을 생산하는 동시당화발효 융합공정(SSF, simulateous saccharification and fermentation 혹은 consolidated bioprocessing)에 사용할 수 있다.
(CCelE-mCbpA) complex prepared by the method of the present invention, (i) a chimeric endo-beta-1,4-glucanase-less cellulosic binding protein a (cCelE- XynB-mCbpA) complex and (iii) chimeric endo-beta-1,4-glucanase-i-xylanase non-small cellulosic binding protein a (cCelE-XynB-mCbpA) complexes have excellent ability to degrade cellulose and xylose (SSF), which can be used for brewing, baking, alcohol production, feed production, and probiotics development, and especially for the decomposition of cellulose and the production of alcohol from degradation products .

도 1은 pPsADHa 벡터의 모식도이다
도 2는 본 발명에서 제시된 키메릭 엔도-글루칸아제-이(chimeric endo―β―1,4―glucanase E; cCelE)를 코딩하는 유전자, 자일란네이즈-비(xylanase B)를 코딩하는 유전자, 소형 셀룰로오즈 결합단백질 에이(mini cellulose binding protein A; miniCbpA)를 코딩하는 유전자가 삽입된 재조합 벡터 pPsADHα의 모식도이다.
도 3은 본 발명에서 제시된 자일란네이즈-비(A)와 키메릭 엔도-글루칸아제-이(B) 유전자를 피키아 파스토리스(Pichia pastoris)에 재조합시킨 후 배양 농축하여, 효소분비 정도를 확인한 Halo 실험 데이타이다.
도 4는 본 발명에서 제시된 재조합 벡터 pPsADHα/cCelE, pPsADHα/XynB, pPsADHα/mCbpA가 삽입된 효모 효소분비를 확인하기 위하여, 콜로니와 배양 농축액의 Native-PAGA를 통한 Zymogram에서의 효소활성을 확인한 데이타이다.
도 5는 본 발명에서 형성된 자일란네이즈 비-소형 셀룰로오즈 결합단백질 에이(XynB-mCbpA) 복합체를 확인한 데이타이다.
도 6은 본 발명에서 발현한 섬유소 분해효소 복합체의 활성을 측정한 그래프이다.
도 7은 본 발명에서 발현한 섬유소 분해효소 복합체를 이용하여 바이오매스인 거대억새(Miscanthus sinensis)에서 에탄올 생성을 확인한 그림이다.
1 is a schematic diagram of a pPsADHa vector
FIG. 2 is a diagram showing a gene encoding chimeric endo-β-1,4-glucanase E (cCelE), a gene encoding xylanase B (xylanase B), a gene encoding small celluloses Is a schematic diagram of a recombinant vector pPsADHa into which a gene encoding a mini cellulose binding protein A (miniCbpA) is inserted.
FIG. 3 is a graph showing the results of recombinant expression of the chimeric endo-glucanase (B) gene and the xylanase-free (A) gene in the present invention after culturing in Pichia pastoris , Experimental data.
FIG. 4 is a data showing the enzyme activity in the Zymogram of the colonies and the culture concentrate through the Native-PAGA in order to confirm the yeast enzyme secretion in which the recombinant vectors pPsADHα / cCelE, pPsADHα / XynB and pPsADHα / mCbpA shown in the present invention were inserted .
FIG. 5 is a data showing the Xylenase non-small cellulosic binding protein (XynB-mCbpA) complex formed in the present invention.
FIG. 6 is a graph showing the activity of the fibrinolytic enzyme complex expressed in the present invention.
FIG. 7 is a graph showing the results obtained by using the fibrinolytic enzyme complex expressed in the present invention and comparing the biomass, Miscanthus The results are shown in Fig.

다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is well known and commonly used in the art.

본 발명은 일 관점에서, (a) 키메릭 엔도-베타-1,4-글루칸아제-이(chimeric endo―β―1,4―glucanase E; cCelE)를 코딩하는 유전자 함유 재조합 벡터로 형질전환된 재조합 효모, 자일란네이즈-비(xylanase B; XynB)를 코딩하는 유전자 함유 재조합 벡터로 형질전환된 재조합 효모 및 소형 셀룰로오즈 결합단백질 에이(mini cellulose binding protein A; miniCbpA)를 코딩하는 유전자 함유 재조합 벡터로 형질전환된 재조합 효모를 배양하는 단계; (b) 각각의 재조합 효모에서 생성된 키메릭 엔도-베타-1,4-글루칸아제-이, 자일란네이즈 비 및 소형 셀룰로오즈 결합단백질 에이가 결합하여 (ⅰ)키메릭 엔도-베타-1,4-글루칸아제-이-소형 셀룰로오즈 결합단백질 에이(cCelE-mCbpA) 복합체, (ⅱ)자일란네이즈 비-소형 셀룰로오즈 결합단백질 에이(XynB-mCbpA) 복합체 및 (ⅲ) 키메릭 엔도-베타-1,4-글루칸아제-이-자일란네이즈 비-소형 셀룰로오즈 결합단백질 에이(cCelE-XynB-mCbpA) 복합체를 형성시키는 단계; 및 (d) 상기 형성된 섬유소 분해효소 복합체를 회수하는 단계.를 포함하는 섬유소 분해효소 복합체의 제조방법에 관한 것이다. In one aspect, the present invention provides a recombinant vector containing a gene encoding a chimeric endo-β-1,4-glucanase E (cCelE) Containing recombinant vector encoding a recombinant yeast, a recombinant yeast transformed with a recombinant vector containing a gene encoding xylanase B (XynB) and a mini cellulose binding protein A (miniCbpA) Culturing the transformed recombinant yeast; (b) the chimeric endo-beta-1,4-glucanase produced from each recombinant yeast, the xylanase ratio and the small cellulosic binding protein a, are combined to form (i) chimeric endo- (XynB-mCbpA) complex and (iii) chimeric endo-beta-1,4-glucan complexes, (CCelE-XynB-mCbpA) complex with an agase-free xylenase non-small cellulosic binding protein a (cCelE-XynB-mCbpA) complex; And (d) recovering the formed fibrinolytic enzyme complex. The present invention also relates to a method for producing a fibrinolytic enzyme complex.

본 발명에 있어서, 상기 (a) 단계의 재조합 벡터는 키메릭 엔도-베타-1,4-글루칸아제-이를 코딩하는 유전자가 도입되어 있는 pPsADHα-cCelE, 자일란네이즈-비를 코딩하는 유전자가 도입되어 있는 pPsADHα-XynB 및 소형 셀룰로오즈 결합단백질 에이를 코딩하는 유전자가 도입되어 있는 pPsADHα-mCbpA인 것을 특징으로 할 수 있다. In the present invention, the recombinant vector of step (a) is introduced with a gene coding for pPsADHa-cCelE and xylanase-ratio in which a gene encoding chimeric endo-beta-1,4-glucanase has been introduced And pPsADH? -MCbpA into which a gene encoding a small cellulosic binding protein-a is introduced.

본 발명에 있어서, 상기 (a) 단계의 자일란네이즈 비(xylanase B; XynB)를 코딩하는 유전자 및 소형 셀룰로오즈 결합단백질 에이(mini cellulose binding protein A; miniCbpA)를 코딩하는 유전자는 클로스트리디움 셀룰로보란스(clostridium cellulovorans) 유래인 것을 특징으로 할 수 있다. In the present invention, the gene encoding the xylanase B (XynB) and the gene encoding the mini cellulose binding protein A (miniCbpA) in the step (a) may be selected from the group consisting of Clostridium celluloborance ( Clostridium cellulovorans ).

본 발명에 있어서, 상기 (a) 단계의 키메릭 엔도-베타-1,4-글루칸아제-이(cCelE)를 코딩하는 유전자는 클로스트리디움 서머셀럼(clostridium thermocellum)의 엔도-베타-1,4-글루칸아제-이(CelE)를 코딩하는 유전자와 클로스트리디움 셀룰로보란스(clostridium cellulovorans)의 엔도-베타-1,4-글루칸아제-비(endo―β―1,4―glucanase B; EngB)의 도커린 (dokerin) 부위를 코딩하는 유전자가 결합된 것을 특징으로 할 수 있다. In the present invention, the (a) step of the key chimeric endo-beta-1,4-glucan azepin-a gene encoding a (cCelE) is Endo of Clostridium Summer selreom (clostridium thermocellum) - beta-1,4 -Glucanase-1 < / RTI > (CelE) and clostridium celluloborance Endo of cellulovorans) - beta-1,4-glucan azepin-ratio (endo-β-1,4-glucanase B; Fig of EngB) can be characterized in that the gene coding for the keorin (dokerin) binding site.

본 발명에서 클로스트리디움 속 균주의 도커린 모듈이란 클로스트리디움 속의 셀룰로즈-결합 단백질의 일부분인 코히즌 모듈과의 상호작용으로 셀룰로좀을 형성하는 셀룰레이즈(cellulosomal cellulase) 단백질이 가지는 모듈을 의미한다.In the present invention, the doCarin module of Clostridium sp. Strain means a module of cellulosomal cellulase protein that forms cellulosome by interaction with Cohesion module, which is part of the cellulose-binding protein of Clostridium sp. do.

본 발명에서 소형 셀룰로오즈 결합단백질 에이A는(mCbpA)는 셀룰로좀 기본골격 소단위체를 만드는 셀룰로오즈에 결합하는 단백질을 의미하며, 본 발명에서 사용한 소형 셀룰로오즈 결합단백질 에이A는 mCbpA란 클로스트리디움 속의 셀룰로즈-결합 단백질의 하나인 셀룰로즈-결합 단백질-에이(CbpA) 중에서 하나의 셀룰로즈 결합 모듈 (Cellulose binding module; CBM)과 두 개의 코히즌 모듈(Cohesin module)을 가지는 소형 셀룰로즈-결합 단백질을 의미한다.In the present invention, the small cellulosic binding protein A (mCbpA) refers to a protein binding to cellulose which forms a cellulosic basic skeletal subunit. The small cellulosic binding protein A used in the present invention is mCbpA, which is cellulose of Clostridium Refers to a small cellulose-binding protein having a cellulose binding module (CBM) and two cohesin modules among cellulose-binding protein-a (CbpA), one of the binding proteins.

본 발명에서, "벡터 (vector)"는 적합한 숙주 내에서 DNA를 발현시킬 수 있는 적합한 조절 서열에 작동가능하게 연결된 DNA 서열을 함유하는 DNA 제조물을 의미한다. 벡터는 플라스미드, 파지 입자 또는 간단하게 잠재적 게놈 삽입물일 수 있다. 적당한 숙주로 형질전환되면, 벡터는 숙주 게놈과 무관하게 복제하고 기능할 수 있거나, 또는 일부 경우에 게놈 그 자체에 통합될 수 있다. 플라스미드가 현재 벡터의 가장 통상적으로 사용되는 형태이므로, 본 발명의 명세서에서 "플라스미드 (plasmid)" 및 "벡터 (vector)"는 때로 상호 교환적으로 사용된다. 본 발명의 목적상, 플라스미드 벡터를 이용하는 게 바람직하다. 이러한 목적에 사용될 수 있는 전형적인 플라스미드 벡터는 (a) 숙주세포당 수백 개의 플라스미드 벡터를 포함하도록 복제가 효율적으로 이루어지도록 하는 복제 개시점, (b) 플라스미드 벡터로 형질전환된 숙주세포가 선발될 수 있도록 하는 항생제 내성 유전자 및 (c) 외래 DNA 절편이 삽입될 수 있는 제한효소 절단부위를 포함하는 구조를 지니고 있다. 적절한 제한효소 절단부위가 존재하지 않을지라도, 통상의 방법에 따른 합성 올리고뉴클레오타이드 어댑터 (oligonucleotide adaptor) 또는 링커 (linker)를 사용하면 벡터와 외래 DNA를 용이하게 라이게이션 (ligation)할 수 있다. In the present invention, "vector" means a DNA product containing a DNA sequence operably linked to a suitable regulatory sequence capable of expressing the DNA in an appropriate host. The vector may be a plasmid, phage particle or simply a potential genome insert. Once transformed into the appropriate host, the vector may replicate and function independently of the host genome, or, in some cases, integrate into the genome itself. Because the plasmid is the most commonly used form of the current vector, the terms "plasmid" and "vector" are sometimes used interchangeably in the context of the present invention. For the purpose of the present invention, it is preferable to use a plasmid vector. Typical plasmid vectors that can be used for this purpose include (a) a cloning start point that allows replication to be efficiently made to include several hundred plasmid vectors per host cell, (b) a host cell transformed with the plasmid vector And (c) a restriction enzyme cleavage site into which the foreign DNA fragment can be inserted. Even if an appropriate restriction enzyme cleavage site is not present, using a synthetic oligonucleotide adapter or a linker according to a conventional method can easily ligate the vector and the foreign DNA.

라이게이션 후에, 벡터는 적절한 숙주세포로 형질전환되어야 한다. 형질전환은 Sambrook, et . al ., supra의 1.82 섹션에 기술된 칼슘 클로라이드 방법을 사용해서 용이하게 달성될 수 있다. 선택적으로, 전기천공법 (electroporation) [Neumann, et . al ., EMBO J., 1:841, 1982] 또한 이러한 세포들의 형질전환에 사용될 수 있다.After ligation, the vector should be transformed into the appropriate host cell. Transfection was carried out as described in Sambrook, et . al ., supra , using the calcium chloride method described in section 1.82. Alternatively, electroporation (Neumann, et . al ., EMBO J. , 1: 841, 1982], and can also be used for transformation of these cells.

핵산은 다른 핵산 서열과 기능적 관계로 배치될 때 "작동가능하게 연결(operably linked)"된다. 이것은 적절한 분자 (예를 들면, 전사 활성화 단백질)가 조절 서열(들)에 결합될 때 유전자 발현을 가능하게 하는 방식으로 연결된 유전자 및 조절 서열(들)일 수 있다. 예를 들면, 전서열 (pre-sequence) 또는 분비 리더 (leader)에 대한 DNA는 폴리펩타이드의 분비에 참여하는 전단백질로서 발현되는 경우 폴리펩타이드에 대한 DNA에 작동가능하게 연결되고; 프로모터 또는 인핸서는 서열의 전사에 영향을 끼치는 경우 코딩서열에 작동가능하게 연결되거나; 또는 리보좀 결합 부위는 서열의 전사에 영향을 끼치는 경우 코딩 서열에 작동가능하게 연결되거나; 또는 리보좀 결합 부위는 번역을 용이하게 하도록 배치되는 경우 코딩 서열에 작동가능하게 연결된다. 일반적으로, "작동가능하게 연결된"은 연결된 DNA 서열이 접촉하고, 또한 분비 리더의 경우 접촉하고 리딩 프레임 내에 존재하는 것을 의미한다. 그러나, 인핸서 (enhancer)는 접촉할 필요가 없다. 이들 서열의 연결은 편리한 제한 효소 부위에서 라이게이션 (연결)에 의해 수행된다. 그러한 부위가 존재하지 않는 경우, 통상의 방법에 따른 합성 올리고뉴클레오티드 어댑터 (oligonucleotide adaptor) 또는 링커 (linker)를 사용한다. A nucleic acid is "operably linked" when placed in a functional relationship with another nucleic acid sequence. This may be the gene and regulatory sequence (s) linked in such a way as to enable gene expression when a suitable molecule (e. G., Transcriptional activator protein) is attached to the regulatory sequence (s). For example, DNA for a pre-sequence or secretory leader is operably linked to DNA for a polypeptide when expressed as a whole protein participating in the secretion of the polypeptide; A promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; Or the ribosome binding site is operably linked to a coding sequence if it affects the transcription of the sequence; Or a ribosome binding site is operably linked to a coding sequence if positioned to facilitate translation. Generally, "operably linked" means that the linked DNA sequences are in contact and, in the case of a secretory leader, are in contact and present in the reading frame. However, the enhancer need not be in contact. The linkage of these sequences is carried out by ligation (linkage) at convenient restriction sites. If such a site does not exist, a synthetic oligonucleotide adapter or a linker according to a conventional method is used.

본 발명에서 효모를 숙주로서 사용하는 경우는, 발현벡터로서, 예를 들면 YEp13, YCp50, pRS계, pYEX계 벡터 등이 이용가능하다. 프로모터로서는, 예를 들면 GAL프로모터, AOD프로모터 등을 사용할 수 있다. 효모에의 재조합체 DNA의 도입방법으로는, 예를 들면 일렉트로포레이션법(Method Enzymol ., 194:182, 1990), 스페로플라스트법(Proc . Natl . Acad . Sci ., 84:1929, 1978), 아세트산리튬법(J. Bacteriol., 153:163, 1983) 등이 이용가능하다.When the yeast is used as a host in the present invention, for example, YEp13, YCp50, pRS-based, pYEX-based vectors and the like can be used as an expression vector. As the promoter, for example, GAL promoter, AOD promoter and the like can be used. As a method of introducing the recombinant DNA into yeast, for example, an electroporation method Enzymol . , 194: 182, 1990), the spiroplast method ( Proc . Natl . Acad . Sci . , 84: 1929, 1978) and the lithium acetate method ( J. Bacteriol. , 153: 163, 1983).

본 발명의 재조합 벡터는 그 자신이 숙주세포 속에서 자율복제 가능한 동시에, 프로모터, 키메릭 엔도-베타-1,4-글루칸아제-이, 자일란네이즈 비 또는 소형 셀룰로오즈 결합단백질 에이를 코딩하는 유전자를 함유하는 DNA 및 전사종결서열 등의 발형에 필요한 구성을 가진 것임이 바람직하다. 본 발명에서는 pPsADHα 벡터를 사용하였으나, 상기의 요건을 만족하는 벡터이면 어느 것이나 사용가능하다. The recombinant vector of the present invention can be autonomously replicated in the host cell itself and can also contain a gene encoding a promoter, chimeric endo-beta-1,4-glucanase, xylanase ratio or small cellulosic binding protein a A DNA and a transcription termination sequence which are necessary for expression. In the present invention, although the pPsADHa vector is used, any vector that satisfies the above requirements can be used.

본 발명에 따른 상기 재조합 효모는 통상의 방법에 따라 상기 유전자를 효모의 염색체(chromosome) 상에 삽입시키거나, 상기 재조합 벡터를 효모의 플라스미드(plasmid) 상에 도입시킴으로써 제조할 수 있다. The recombinant yeast according to the present invention can be prepared by inserting the gene on a chromosome of yeast according to a conventional method, or introducing the recombinant vector onto a plasmid of a yeast.

본 발명에서 상기 유전자를 숙주세포의 염색체상에 삽입하는 방법으로는 통상적으로 알려진 유전자조작방법을 사용할 수 있다. 예를 들어, 물리적인 방법으로서, microinjection(세포에 DNA를 직접 넣는 것), liposome, directed DNA uptake, receptor~mediated DNA transfer 또는 Ca++을 이용한 DNA 운반 방법 등이 있으며, 최근에는 바이러스(virus)를 이용한 유전자 운반 방법이 많이 사용되고 있다. 일례로는 레트로바이러스 벡터, 아데노바이러스 벡터, 아데노-연관 바이러스 벡터, 헤르페스 심플렉스 바이러스 벡터, 폭스바이러스 벡터 또는 렌티바이러스 벡터를 이용하는 방법 등이 있으며, 특히, 레트로바이러스는 유전자 전달 효율이 높고 gross deletion이나 숙주 DNA와 재정렬(rearrangement : 숙주 DNA 중 자기 DNA와 유사한 부위를 바꾸는 것으로 숙주 DNA 기능의 변화를 초래함)에 의한 결합 없이 넓은 범위의 세포들에서 사용할 수 있다. As a method for inserting the gene into the chromosome of the host cell, a commonly known gene manipulation method can be used in the present invention. For example, microinjection (direct insertion of DNA into cells), liposome, directed DNA uptake, receptor ~ mediated DNA transfer, or DNA transport using Ca ++ . Is widely used. Examples include retrovirus vectors, adenovirus vectors, adeno-associated viral vectors, herpes simplex virus vectors, poxvirus vectors, or lentiviral vectors. Particularly, retroviruses have a high gene transfer efficiency, gross deletion It can be used in a wide range of cells without binding by host DNA and rearrangement (resulting in alteration of host DNA function by altering the region of the host DNA similar to that of the host DNA).

본 발명에 있어서, 바람직하게는 피키아 파스토리스(Pichia pastoris)를 사용하였으나, 이에 한정되는 것은 아니며, Agrobacterium 속, Aspergillus 속, Acetobacter 속, Aminobacter 속, Agromonas 속, Acidphilium 속, Bulleromyces 속, Bullera 속, Brevundimonas 속, Cryptococcus 속, Chionosphaera 속, Candida 속, Cerinosterus 속, Escherichia 속, Exisophiala 속, Exobasidium 속, Fellomyces 속, Filobasidium 속, Geotrichum 속, Graphiola 속, Gluconobacter 속, Kockovaella 속, Curtzmanomyces 속, Lalaria 속, Leucospoidium 속, Legionella 속, Psedozyma 속, Paracoccus 속, Petromyc 속, Rhodotorula 속, Rhodosporidium 속, Rhizomonas 속, Rhodobium 속, Rhodoplanes 속, Rhodopseudomonas 속, Rhodobacter 속, Sporobolomyces 속, Spridobolus 속, Saitoella 속, Schizosaccharomyces 속, Sphingomonas 속, Sporotrichum 속, Sympodiomycopsis 속, Sterigmatosporidium 속, Tapharina 속, Tremella 속, Trichosporon 속, Tilletiaria 속, Tilletia 속, Tolyposporium 속, Tilletiposis 속, Ustilago 속, Udenlomyce 속, Xanthophilomyces 속, Xanthobacter 속, Paecilomyces 속, Acremonium 속, Hyhomonus 속, Rhizobium 속 등을 예시할 수 다. In the present invention, preferably, Pichia pastoris (Pichia pastoris) to but using, not limited to this, Agrobacterium genus, Aspergillus genus Acetobacter genus Aminobacter, A Agromonas in, Acidphilium genus Bulleromyces genus Bullera, A Brevundimonas genus, Cryptococcus genus, Chionosphaera genus, Candida genus, Cerinosterus genus, Escherichia genus, Exisophiala in, Exobasidium in, Fellomyces in, Filobasidium in, Geotrichum genus, Graphiola genus, Gluconobacter genus, Kockovaella in, Curtzmanomyces in, Lalaria in, Leucospoidium in , Legionella genus, Psedozyma in, Paracoccus genus, Petromyc genus, Rhodotorula genus, Rhodosporidium genus, Rhizomonas in, Rhodobium in, Rhodoplanes in, Rhodopseudomonas in, Rhodobacter genus, Sporobolomyces in, Spridobolus in, Saitoella in, Schizosaccharomyces genus, Sphingomonas genus, Sporotrichum Genus Sympodiomycopsis , Sterigmatosporidium , Tapharina , Tremella , Trichosporon , Tilletiaria , Tilletia , Tol it can be mentioned in yposporium, Tilletiposis genus, genus Ustilago, in Udenlomyce, Xanthophilomyces genus, genus Xanthobacter, genus Paecilomyces, genus Acremonium, Hyhomonus genus, genus Rhizobium and the like.

본 발명은 키메릭 엔도-베타-1,4-글루칸아제-이를 코딩하는 유전자, 자일란네이즈-비를 코딩하는 유전자 및 소형 셀룰로오즈 결합단백질 에이를 코딩하는 유전자는 하나의 효모에 형질전환시키거나 또는 각각 효모에 형질전환시킬 수 있으며, 본 발명에서는 각각에 효모에 형질전환시킨 것을 특징으로 하나, 이에 한정되지는 않는다. The present invention relates to a gene encoding a chimeric endo-beta-1,4-glucanase, a gene encoding a xylanase-ratio, and a gene encoding a small cellulase binding protein a, Yeast. In the present invention, yeast is transformed into yeast. However, the present invention is not limited thereto.

본 발명에서는 키메라 엔도-베타-1,4-글루칸아제-이 생성능을 가지는 재조합 효모, 자일란네이즈-비 생성능을 가지는 재조합 효모 및 소형 셀룰로오즈 결합단백질 에이 생성능을 가지는 재조합 효모를 제작하였으며, 상기 재조합 효모에서 형성된 엔도-베타-1,4-글루칸아제-이, 자일란네이즈-비 및 소형 셀룰로오즈 결합단백질 에이가 효모에서 세포외로 분비되어 보다 높은 셀룰오오즈 분해능을 가지는 셀룰로좀 형성을 위해 발현된 상기 단백질의 어셈블리를 통한 (ⅰ)키메릭 엔도-베타-1,4-글루칸아제-이-소형 셀룰로오즈 결합단백질 에이(cCelE-mCbpA) 복합체, (ⅱ)자일란네이즈 비-소형 셀룰로오즈 결합단백질 에이(XynB-mCbpA) 복합체 및 (ⅲ) 키메릭 엔도-베타-1,4-글루칸아제-이-자일란네이즈 비-소형 셀룰로오즈 결합단백질 에이(cCelE-XynB-mCbpA) 복합체를 형성하도록 하였다.In the present invention, a recombinant yeast having a chimeric endo-beta-1,4-glucanase-producing ability, a recombinant yeast having a xylanase-non-producing ability and a recombinant yeast having an ability to produce a small cellulase binding protein were prepared, The endo-beta-1,4-glucanase formed, the xylanase-bound and the small cellulosic binding protein a, is secreted extracellularly from yeast, resulting in the formation of cellulosomes with higher cellulolytic activity Small cellulosic binding protein a (cCelE-mCbpA) complex, (ii) xylanase non-small cellulosic binding protein a (XynB-mCbpA) complex through assembly of (i) chimeric endo- Complex and (iii) chimeric endo-beta-1,4-glucanase-i-xylanase non-small cellulosic binding protein a (cCelE-XynB-mCbpA) complex It was so.

본 발명의 일 실시예에서, (ⅰ) 키메라 엔도-베타-1,4-글루칸아제-이 (cCelE) 유전자가 도입되어 있는 pPsADHα/cCelE 재조합 벡터, (ⅱ) 자일란네이즈-비 (xylanase B)유전자가 도입되어 있는 pPsADHα/XynB 재조합 벡터 및 (ⅲ) 셀룰로오즈 분해효소 골격단백질 소형 셀룰로오즈 결합단백질 에이 (mini cellulose binding protein A; miniCbpA) 유전자가 도입되어 있는 pPsADHα/mCbpA 재조합 벡터를 제조하였으며(도 2), 효소활성대(halo)를 확인하기 위해 YPD한천배지와 YPD자일란을 효소반응의 기질로 사용하여 실험을 수행한 확인한 결과, 본 발명의 재조합된 자일란네이즈 비(도 3A) 및 엔도-베타-1,4-글루칸아제-이(도 3B)의 섬유소 분해효소 활성이 우수한 것을 확인할 수 있었다. In one embodiment of the present invention, there is provided a recombinant vector comprising (i) a pPsADHa / cCelE recombinant vector into which a chimeric endo-beta-1,4-glucanase- (cCelE) gene is introduced, (ii) a xylanase B gene (B), a pPsADHα / mCbpA recombinant vector having a pPsADHα / XynB recombinant vector introduced therein and (iii) a mini cellulose binding protein A (miniCbpA) gene introduced into a cellulolytic enzyme skeleton protein (FIG. 2) In order to confirm the enzyme activity (halo), experiments were conducted using YPD agar medium and YPD xylan as substrates for the enzyme reaction. As a result, the recombinant xylanase ratio (FIG. 3A) and endo-beta-1, It was confirmed that the activity of 4-glucanase (FIG. 3B) was excellent.

또한, 키메라 엔도-베타-1,4-글루칸아제-이 생성능을 가지는 재조합 효모, 자일란네이즈-비 생성능을 가지는 재조합 효모 및 소형 셀룰로오즈 결합단백질 에이 생성능을 가지는 재조합 효모의 배양액으로의 효소 분비를 확인하기 위해 실험을 수행한 결과, 키메라 엔도-베타-1,4-글루칸아제-이, 자일란네이즈-비, 소형 셀룰로오즈 결합단백질 에이 단백질 사이즈와 동일한 위치에서 효소활성을 보이는 것을 확인할 수 있었으며, 생성된 단백질이 어셈블리를 통해 (ⅰ)키메릭 엔도-베타-1,4-글루칸아제-이-소형 셀룰로오즈 결합단백질 에이(cCelE-mCbpA) 복합체(도 4 line 4) 및 (ⅱ)자일란네이즈 비-소형 셀룰로오즈 결합단백질 에이(XynB-mCbpA) 복합체(도 4 line 5)를 이루는 것을 확인할 수 있었다.In addition, confirmation of enzyme secretion into a culture medium of recombinant yeast having chimeric endo-beta-1,4-glucanase-producing ability, recombinant yeast having xylanase-non-producing ability and recombinant yeast having ability to produce small cellulase binding protein As a result, it was confirmed that the enzyme activity was observed at the same position as that of chimeric endo-beta-1,4-glucanase, xylanase-bound, small-cellulosic binding protein protein size, (CCelE-mCbpA) complex (Fig. 4 line 4) and (ii) the xylanase non-small cellulosic binding protein < RTI ID = 0.0 > (XynB-mCbpA) complex (line 5 in FIG. 4).

본 발명의 방법으로 키메릭 엔도-베타-1,4-글루칸아제-이-자일란네이즈 비-소형 셀룰로오즈 결합단백질 에이(cCelE-XynB-mCbpA) 복합체가 형성되었는지 확인하기 위하여, 복합체를 형성시킨 후, 미결합 단백질을 제거하고 복합체의 결합을 변형시켜 Native-PAGE로 확인한 결과, 도 5에 나타난 바와 같이, 키메릭 엔도-베타-1,4-글루칸아제-이-자일란네이즈 비-소형 셀룰로오즈 결합단백질 에이(cCelE-XynB-mCbpA)의 복합체가 형성된 것을 확인할 수 있었다 (도 5 non denature). 복합체 결합을 변형시켜 Native-PAGE로 확인한 경우에도, cCelE와 XynB 및 mCbpA를 1:1:1의 비율로 혼합한 시료에서 실제 cCelE, XynB 및 mCbpA를 모두 확인할 수 있었다 (도 5, denature).In order to confirm that the chimeric endo-beta-1,4-glucanase-i-xylanase non-small cellulosic binding protein a (cCelE-XynB-mCbpA) complex was formed by the method of the present invention, Unbound protein was removed and the binding of the complex was modified and confirmed by Native-PAGE. As a result, as shown in Fig. 5, the chimeric endo-beta-1,4-glucanase-i-xylanase non-small cellulase binding protein A (cCelE-XynB-mCbpA) was formed (FIG. 5, non denature). Even when the complex binding was modified and confirmed by Native-PAGE, the actual cCelE, XynB and mCbpA could be confirmed in a sample in which cCelE, XynB and mCbpA were mixed at a ratio of 1: 1: 1 (FIG. 5, denature).

본 발명의 키메릭 엔도-베타-1,4-글루칸아제-이-소형 셀룰로오즈 결합단백질 에이(cCelE-mCbpA) 복합체, 자일란네이즈 비-소형 셀룰로오즈 결합단백질 에이(XynB-mCbpA) 복합체 및 키메릭 엔도-베타-1,4-글루칸아제-이-자일란네이즈 비-소형 셀룰로오즈 결합단백질 에이(cCelE-XynB-mCbpA) 복합체의 효소활성을 특정하기 위하여 환원당 측정(reducing sugar assay)를 수행하였으며, 그 결과 세 가지 단백질이 결합된 경우 더 높은 활성을 가지는 것을 알 수 있었다 (도 6).(CCelE-mCbpA) complex, xylanase non-small cellulosic binding protein (XynB-mCbpA) complex and chimeric endo-beta-1,4-glucanase- A reducing sugar assay was performed to determine the enzyme activity of the beta-1, 4-glucanase-i-xylanase non-small cellulase binding protein a (cCelE-XynB-mCbpA) complex, It was found that the protein had higher activity when bound (FIG. 6).

본 발명은 다른 관점에서, (a) 키메릭 엔도-베타-1,4-글루칸아제-이(chimeric CelE)를 코딩하는 유전자 함유 재조합 벡터로 형질전환된 재조합 효모, 자일란네이즈-비(xylanase B)를 코딩하는 유전자 함유 재조합 벡터로 형질전환된 재조합 효모 및 소형 셀룰로오즈 결합단백질 에이(mini cellulose binding protein A; miniCbpA)를 코딩하는 유전자 함유 재조합 벡터로 형질전환된 재조합 효모를 배양하는 단계; (b) 상기 (a) 단계에서 배양된 재조합 효모에 바이오매스를 첨가하고 추가로 배양하여 에탄올을 생성시키는 단계; 및 (c) 생성된 에탄올을 회수하는 단계를 포함하는 바이오매스의 동시당화 발효에 의한 에탄올의 제조방법에 관한 것이다. In another aspect, the present invention relates to a recombinant yeast transformed with a recombinant vector containing a gene encoding chimeric endo-beta-1,4-glucanase CelE, xylanase B, Culturing the recombinant yeast transformed with the recombinant vector containing the gene encoding the mini-cellulose binding protein A (miniCbpA) and the recombinant yeast transformed with the recombinant vector containing the gene encoding the mini-cellulose binding protein A (miniCbpA); (b) adding biomass to the recombinant yeast cultured in step (a) and further culturing to produce ethanol; And (c) recovering the produced ethanol. The present invention also relates to a method for producing ethanol by simultaneous saccharification and fermentation of biomass.

본 발명에 있어서, 상기 바이오매스는 거대억새(Miscanthus gianteus)인 것을 특징으로 할 수 있으나, 이에 한정되는 것은 아니며, 섬유소로 이루어진 바이오매스는 에탄올 생산을 위한 기질로 다양하게 사용할 수 있다. In the present invention, the biomass is a large aquifer ( Miscanthus can be characterized in that the gianteus). However, not limited to this, the biomass made of a fiber may be variously used as a substrate for ethanol production.

본 발명의 일 실시예에서, 키메라 엔도-베타-1,4-글루칸아제-이 생성능을 가지는 재조합 효모, 자일란네이즈-비 생성능을 가지는 재조합 효모 및 소형 셀룰로오즈 결합단백질 에이 생성능을 가지는 재조합 효모를 배양하여 섬유소 효소 복합체가 형성된 배지에 거대억새(Miscanthus gianteus)를 첨가하여 배양한 결과, 대조군인 피키아 파스토리스(Pichia pastoris)와 소형 셀룰로오즈 결합단백질 에이 생성능을 가지는 재조합 효모보다 Pichia pastoris-pPsADHα-cCelE, Pichia pastoris-pPsADHα-XynB, Pichia pastoris-pPsADHα-mini-CbpA 동시에 배양하였을 때,에탄올 생산량이 증가한 것을 확인하였다 (도 7). In one embodiment of the present invention, a recombinant yeast having a chimeric endo-beta-1,4-glucanase-producing ability, a recombinant yeast having a xylanase-non-producing ability and a recombinant yeast having a small cellulase binding protein- giant Miscanthus (Miscanthus the medium is cellulose enzyme complex formed gianteus ) was added to the culture medium. As a result, it was found that Pichia pastoris , which is a control group, and Pichia pastoris were smaller than recombinant yeast having a small cellulase- pastoris -pPsADH? -cCelE, Pichia pastoris -pPsADH? -XynB, Pichia It was confirmed that the ethanol production was increased when the Pasteuris-pPsADHa-mini-CbpA was co-cultured (Fig. 7).

본 발명의 방법으로 바이오매스에서 에탄올을 생산하였을 때, 키메라 엔도-베타-1,4-글루칸아제-이 생성능을 가지는 재조합 효모, 자일란네이즈-비 생성능을 가지는 재조합 효모 및 소형 셀룰로오즈 결합단백질 에이 생성능을 가지는 재조합 효모를 동시에 배양하였을 경우, 재조합 효모에서 생산된 생성된 엔도-베타-1,4-글루칸아제-이, 자일란네이즈 비 및 소형 셀룰로오즈 결합단백질 에이가 결합하여(ⅰ)키메릭 엔도-베타-1,4-글루칸아제-이-소형 셀룰로오즈 결합단백질 에이(cCelE-mCbpA) 복합체, (ⅱ)자일란네이즈 비-소형 셀룰로오즈 결합단백질 에이(XynB-mCbpA) 복합체 및 (ⅲ) 키메릭 엔도-베타-1,4-글루칸아제-이-자일란네이즈 비-소형 셀룰로오즈 결합단백질 에이(cCelE-XynB-mCbpA) 복합체가 형성되었기 때문이라고 볼 수 있다.
When ethanol was produced from the biomass by the method of the present invention, recombinant yeast having chimera endo-beta-1,4-glucanase-producing ability, recombinant yeast having xylanase-non-producing ability and small cellulase binding protein- Beta-1,4-glucanase produced by the recombinant yeast, the xylanase ratio and the small cellulosic binding protein a, are combined to produce (i) a chimeric endo-beta-glucanase- (XynB-mCbpA) complex, and (iii) chimeric endo-beta-1-glucoside-1-glucanase-small cellulosic binding protein a (cCelE-mCbpA) complex, (CCelE-XynB-mCbpA) complex was formed on the surface of the 4-glucanase-i-xylanase non-small cellulase binding protein.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these examples are for illustrative purposes only and that the scope of the present invention is not construed as being limited by these examples.

키메릭Chimeric 엔도-베타-1,4- Endo-beta-1,4- 글루칸아제Glucanase -이, -this, 자일란네이즈Jilan Naths 비 및 소형  Rain and small 셀룰로오즈Cellulose 결합단백질 에이 유전자의 증폭 Amplification of this gene in binding protein

1-1 : 1-1: pPsADHapPsADHa 벡터 제작Vector production

키메릭 엔도-베터-1,4-글루칸아제-이, 자일란네이즈 비 및 소형셀루로오스 결합단백질 에이 유전자를 클로닝할 pPsADHa벡터를 하기의 방법으로 제조하였다. The pPsADHa vector for cloning the chimeric endo-bter-1, 4-glucanase-1, xylanase ratio and small cellulase binding protein A gene was prepared by the following method.

정방향 프라이머(forward primer; 서열번호 1)에 제한효소 HindⅢ 인식서열(AAGCTT)과 피키아 파스토리스(Pichia pastoris)의 ADH2 프로모터 유전자(서열번호 2)의 N-terminal 부분이, 역방향프라이머(reverse primer; 서열번호 3)에 pPICZa벡터 (INVITROGEN, cat. No. V195-20)에 있는 Alpha Factor 유전자(서열번호 4)의 N-terminal 부분 10bp 서열(GAAATCTCAT)과 피키아 파스토리스(Pichia pastoris)의 ADH2 프로모터 유전자의 C-terminal 부분이 삽입되도록 프라이머를 디자인하여 합성하였다 (바이오니아, 한국).
The N-terminal part of the ADH2 promoter gene (SEQ ID NO: 2) of the restriction enzyme HindIII recognition sequence (AAGCTT) and the Pichia pastoris was inserted into the forward primer (SEQ ID NO: 1) and the reverse primer SEQ ID NO: 3) of the N-terminal portion of the Alpha Factor gene (SEQ ID NO: 4) in the pPICZa vector (INVITROGEN, cat. No. V195-20) and the ADH2 promoter of Pichia pastoris A primer was designed and synthesized to insert the C-terminal portion of the gene (Bioneer, Korea).

pPsADHa primerpPsADHa primer

[서열번호 1] 5'-gcgcaagcttGATCCGAGGGAAAAACCCGGGGACTCAGTTTATCACGTACCGAG-3'[SEQ ID NO: 1] 5'-gcgcaagcttGATCCGAGGGAAAAACCCGGGGACTCAGTTTATCACGTACCGAG-3 '

[서열번호 3] 5'-gaaatctcatGATAATTTGGATGGATCGCCAGCACTTATGCAATTGGGT-3'
[SEQ ID NO: 3] 5'-gaaatctcatGATAATTTGGATGGATCGCCAGCACTTATGCAATTGGGT-3 '

또한, 다른 한 쌍의 프라이머를 제조하기 위해, 정방향 프라이머(forward primer, 서열번호 5)에 피키아 파스토리스의 ADH2 Promoter 유전자의 C-terminal 부분 10bp 서열(CCAAATTATC)과 pPICZa벡터에 있는 Alpha Factor 유전자의 N-terminal 부분이, 역방향프라이머(reverse primer; 서열번호 6)에 제한효소 EcoRI 인식서열(GAATTC)과 pPICZa벡터에 있는 Alpha Factor 유전자의 C-terminal 부분이 삽입되도록 프라이머를 디자인하여 합성하였다 (바이오니아, 한국).
Further, in order to prepare another pair of primers, the forward primer (SEQ ID NO: 5) contains the C-terminal portion 10bp sequence (CCAAATTATC) of the ADH2 Promoter gene of Pichia pastoris and the Alpha Factor gene in the pPICZa vector The primers were designed and designed so that the N-terminal part inserts the restriction enzyme EcoRI recognition sequence (GAATTC) and the C-terminal part of the Alpha Factor gene in the pPICZa vector into a reverse primer (SEQ ID NO: 6) Korea).

pPsADHa primerpPsADHa primer

[서열번호 5] 5'-ccaaattatcATGAGATTTCCTTCAATTTTTACTGCTGTTTTATTCGCAGCA TCCTCCGCAT-3' [SEQ ID NO: 5] 5'-ccaaattatcATGAGATTTCCTTCAATTTTTACTGCTGTTTTATTCGCAGCA TCCTCCGCAT-3 '

[서열번호 6] 5'-gcgcgaattcAGCTTCAGCCTCTCTTTTCTCGAGAGATACCCCTTCTTCTTT-3'
[SEQ ID NO: 6] 5'-gcgcgaattcAGCTTCAGCCTCTCTTTTCTCGAGAGATACCCCTTCTTCTTT-3 '

이후 상기 합성된 두쌍의 프라이머를 이용하여 PCR을 수행하였으며, 그 결과, 588bp의 피키아 파스토리스의 ADH2 Promoter 유전자와 267bp의 pPICZa벡터에 있는 Alpha Factor 유전자가 포함된 PCR 밴드를 확인하였다. 두 PCR 단편은 Overlap PCR 기법(Higuchi R et . al ., Nucleic Acids Res , 16(15):7351, 1988)을 이용하여 865bp의 하나의 단편으로 증폭시킨 다음, 클로닝된 최종 DNA 단편은 HindIII (TAKARA, cat.No.1060A)와 EcoRI (TAKARA, cat.No.1040A) 제한효소를 처리한 다음, pPICZa벡터에 삽입하여, 키메릭 pPsADHa 벡터를 제작하였다 (도 1).
PCR was performed using the two primers thus synthesized. As a result, PCR bands containing the 588 bp ADH2 Promoter gene of Pichia pastoris and the Alpha Factor gene in the 267 bp pPICZa vector were confirmed. Two PCR fragments Overlap PCR techniques (Higuchi R et. Al., Nucleic Acids Res. , 16 (15): 7351, 1988), and the final cloned DNA fragment was digested with Hind III (TAKARA, cat.No.1060A) and EcoR I (TAKARA, cat.No.1040A) restriction enzyme, and inserted into the pPICZa vector to prepare a chimeric pPsADHa vector (Fig. 1).

1-2 : 1-2: 키메릭Chimeric 엔도-베타-1,4- Endo-beta-1,4- 글루칸아제Glucanase -이 유전자의 증폭- amplification of this gene

섬유소 분해 효소 복합체 형성을 위한 섬유소 분해효소의 도커린 도메인의 유전자를 클로닝하기 위하여 클로스트리디움 셀룰로보란스의 지노믹디엔에이로부터 엔도-베타-1,4-글루칸아제-비 유전자의 도커린 부분의 염기서열(서열번호 7)이 연결된 클로스트리디움 써모셀롬으로부터 유래한 엔도-글루칸아제 CelE 유전자 (키메릭 엔도-글루칸아제 cCelE; 서열번호 8)가 삽입된 플라스미드 pADHa-cCelE 염기서열(한국 등록특허 제1120359호)을 참고로 하여 정방향 프라이머(forward primer)에는 키메릭 엔도-글루칸아제 cCelE 유전자의 C-terminal 부분과 제한효소 KpnI(GGTACC) 인식서열이, 역방향프라이머(reverse primer)에는 엔도-베타-1,4-글루칸아제-비 유전자의 도커린 부분의 N-terminal 부분과 제한효소 XbaI((TCTAGA) 인식서열이 삽입되도록 프라이머를 디자인하여 합성하였다 (바이오니아, 한국).
In order to clone the gene of the cytosolic domain of the fibrinolytic enzyme for the formation of the fibrinolytic enzyme complex, the base of the donor-beta-1,4-glucanase-non-gene of the clostridium celluloblastin genomic DNA The plasmid pADHa-cCelE sequence inserted with endo- glucanase CelE gene (chimeric endo-glucanase cCelE; SEQ ID NO: 8) derived from Clostridium thermoshell linked with the sequence (SEQ ID NO: 7) (Korean Patent No. 1120359 The C-terminal portion of the chimeric endo- glucanase cCelE gene and the restriction enzyme Kpn I (GGTACC) recognition sequence are used as a forward primer and the endo-beta-1 (GGTACC) recognition sequence is used as a reverse primer in the reverse primer , 4-glucan azepin-ratio of genes were synthesized by designing the primer so that the N-terminal portion and a restriction enzyme Xba I ((TCTAGA) recognition sequence is inserted into the keorin part (F Pioneer, South Korea).

cCelE primercCelE primer

[서열번호 9] 5'-atatggtaccTCGGGAACAAGCTTTTG-3'[SEQ ID NO: 9] 5'-atatggtaccTCGGGAACAAGCTTTTG-3 '

[서열번호 10] 5'-gctctagatcaatgatgatgatgatgatgTAAAAGCATTTTTTTAAGAA-3'
[SEQ ID NO: 10] 5'-gctctagatcaatgatgatgatgatgatgTAAAAGCATTTTTTTAAGAA-3 '

이후 상기 합성된 프라이머를 이용하여 PCR을 수행하였으며, 그 결과, 1317bp의 키메릭 엔도-베타-1,4-글루칸아제-이(cCelE) 유전자(서열번호 11)가 포함된 PCR 밴드를 확인하였다. 클로닝된 DNA 단편은 KpnI(TAKARA, cat.No.1068A)와 XbaI(TAKARA, cat.No.1093A) 제한효소를 처리한 다음, 상기 실시예 1-1에서 제조한 도 1의 pPaADHα벡터에 삽입하여, 키메릭 엔도-베타-1,4-글루칸아제-이를 코딩하는 유전자(cCelE)를 포함하는 재조합 벡터(도 2C)를 제작하였으며, 상기 클로닝된 pPaADHα-cCelE을 피키아 파스토리스(Pichia pastoris)(Korean Coleection for Type Culture, KCTC 7190)에 형질전환시켜, 키메릭 엔도-베타-1,4-글루칸아제-이 생산능을 가지는 재조합 미생물을 제조하였다.
PCR was then performed using the synthesized primers. As a result, a PCR band including a 1317 bp chimeric endo-beta-1,4-glucanase-ccelE gene (SEQ ID NO: 11) was confirmed. The cloned DNA fragment is Kpn I (TAKARA, cat.No.1068A) and Xba I (TAKARA, cat.No.1093A) treated with a restriction enzyme in the following, pPaADHα vector of Figure 1 prepared in Example 1-1 (Fig. 2C) containing the gene coding for chimeric endo-beta-1,4- glucanase ( cCelE ) was prepared, and the cloned pPaADH? -CCelE was transformed into Pichia pastoris was transformed in pastoris) (Korean Coleection for Type Culture , KCTC 7190), chimeric endo-beta-1,4-glucan kinase was prepared with the recombinant microorganism having a production capability.

1-3 : 1-3: 자일란네이즈Jilan Naths 비 유전자의 증폭 Amplification of non-genes

클로스트리디움 셀룰로보란스로부터 유래한 자일란네이즈-비(XynB)를 코딩하는 유전자(서열번호 12)를 클로닝하기 위하여 정방향 프라이머(forward primer)에는 자일란네이즈-비(XynB)의 N-termianl 부분과 제한효소 EcoRI(GAATTC) 인식서열이, 역방향프라이머(reverse primer)에는 자일란네이즈-비(XynB)의 C-termianl 부분과 제한효소 KpnI(GGTACC) 인식서열이 각각 삽입된 프라이머를 합성하였고(바이오니아, 한국), 이후, 상기 합성된 프라이머를 이용하여 PCR을 수행하였다.
In order to clone a gene (SEQ ID NO: 12) encoding a xylanase-negative (XynB) gene derived from Clostridium celluloborance, a forward primer has an N-termianl portion of the xylanase-ratio (XynB) enzyme EcoR I (GAATTC) recognition sequence, and the reverse primer (reverse primer), the xylan tyrosinase-ratio (XynB) C-termianl portion and a restriction enzyme Kpn I (GGTACC) was synthesized the recognition sequences are respectively inserted primers (Bioneer, Korea). Thereafter, PCR was carried out using the synthesized primers.

XynB primerXynB primer

[서열번호 13] 5'-gcgcgaattcGAAGATGCTCTATTAATAAGTAG-3'[SEQ ID NO: 13] 5'-gcgcgaattcGAAGATGCTCTATTAATAAGTAG-3 '

[서열번호 14] 5'-gcggtacctcaatgatgatgatgatgatgGAAACTAGTAATTTGTCCTA-3'
[SEQ ID NO: 14] 5'-gcggtacctcaatgatgatgatgatgatgGAAACTAGTAATTTGTCCTA-3 '

그 결과, 클로스트리디움 셀룰로보란스로부터 유래한 자일란네이즈-비를 코딩하는 유전자가 포함되어 있는 1821bp 크기의 PCR 밴드를 확인할 수 있었다. 클로닝된 DNA 단편은 EcoRI(TAKARA, cat.No.1040A) 와 KpnI(TAKARA, cat.No.1068A) 제한효소를 처리한 다음, 도 1의 pPaADHα벡터에 삽입하여, 자일란네이즈-비(XynB)를 코딩하는 유전자(XynB)를 포함하는 재조합 벡터(도 2B)를 제작하였으며, 상기 클로닝된 pPaADHα-XynB를 피키아 파스토리스(Pichia pastoris)에 형질전환시켜, 자일란네이즈-비(XynB) 생산능을 가지는 재조합 미생물을 제조하였다.
As a result, it was confirmed that a PCR band of 1821 bp size containing a gene encoding a xylanase-ratio derived from Clostridium celluloborance was confirmed. The cloned DNA fragments EcoR I (TAKARA, cat.No.1040A) and Kpn I (TAKARA, cat.No.1068A) treated with restriction enzymes, and then be inserted into the vector pPaADHα 1, xylan tyrosinase-ratio (XynB (Fig. 2B) containing the gene (XynB) coding for the gene coding for the xylenes (XynB) was prepared, and the cloned pPaADH [alpha] -XynB was transformed into Pichia pastoris , . ≪ / RTI >

1-4 : 소형 1-4: Small 셀룰로오즈Cellulose 결합단백질Binding protein 에이 유전자의 증폭 Amplification of this gene

클로스트리디움 유래의 셀룰로보란스의 기본 골격 소단위체 (primary scaffolding subunit)인 셀룰로오즈 결합단백질 에이(Cellulose-binding protein A) 중 셀룰로즈 결합 모듈(Cellulose binding module; CBM)과 두 개의 코히즌 모듈(Cohesin module)을 가진 소형 셀룰로즈-결합 단백질-에이(Mini-Cellulose-binding protein A) 유전자(서열번호 15)를 클로닝하기 위해 염기서열을 참고로 하여 정방향 프라이머(Forward primer)에는 제한효소 EcoRI(GAATT) 인식서열이, 역방향 프라이머(Reverse primer)에는 제한효소 NotI(GCGGCCGC) 인식서열이 각각 삽입된 프라이머를 합성하였다 (바이오니아, 한국).
Cellulose binding module (CBM) and two Cohesin modules (Cellulase-binding protein A) in cellulosic binding protein A, the primary scaffolding subunit of celluloblastine from Clostridium, (SEQ ID NO: 15) with the restriction enzyme EcoR I (GAATT) recognition in the forward primer with reference to the nucleotide sequence to clone the Mini-Cellulose-binding protein A gene And a restriction enzyme Not I (GCGGCCGC) recognition sequence was inserted into the reverse primer (Bioneer, Korea).

mCbp primermCbp primer

[서열번호 16] 5'-gcgcgaattcGCAGCGaCATCATCAAT-3'[SEQ ID NO: 16] 5'-gcgcgaattcGCAGCGaCATCATCAAT-3 '

[서열번호 17] 5'-gcgcggccgctcaatgatgatgatgatgatgTATAGGATCTCCAATATT-3'
[SEQ ID NO: 17] 5'-gcgcggccgctcaatgatgatgatgatgatgTATAGGATCTCCAATATT-3 '

그 결과 1647bp의 클로스트리디움 유래의 셀룰로보란스의 셀룰로즈-결합 단백질-에이 유전자의 일부인 mCbpA 유전자가 포함되어 있는 PCR 밴드를 확인할 수 있었다. 클로닝된 DNA 단편은 EcoRI과 NotI 제한효소를 처리한 다음, 도 1의 pPaADHα벡터에 삽입하여, 소형 셀룰로즈-결합 단백질-에이(Mini-Cellulose-binding protein A)를 코딩하는 유전자(mCbpA)를 포함하는 재조합 벡터(도 2A)를 제작하였으며, 상기 클로닝된 pPaADHα-mCbpA를 피키아 파스토리스(Pichia pastoris)에 형질전환시켜, 소형 셀룰로즈-결합 단백질-에이(Mini-Cellulose-binding protein A) 생산능을 가지는 재조합 미생물을 제조하였다.
As a result, it was confirmed that the PCR band containing the mCbpA gene, which is a part of the cellulose-binding protein-A gene of celluloblastine derived from clostridium of 1647 bp, was confirmed. The cloned DNA fragment was treated with EcoR I and Not I restriction enzyme and then inserted into the pPaADH alpha vector of FIG. 1 to obtain a gene ( mCbpA ) encoding a mini-cellulose-binding protein A (Fig. 2A) was prepared, and the cloned pPaADH? -MCbpA was transformed into Pichia pastoris to produce a mini-cellulose-binding protein A production ability . ≪ / RTI >

재조합 효소 단백질의 활성 측정Activity measurement of recombinant enzyme protein

2-1 : 2-1: 효소활성대Enzyme activity band (( halohalo ) 측정) Measure

상기 실시예 1에서 제조한 3종류의 재조합 효모에서 효소 단백질의 발현정도를 확인하기 위하여, cCelE, XynB, mini-CbpA 효소 단백질의 효소활성대(halo)를 측정하였다.In order to confirm the expression level of the enzyme protein in the three kinds of recombinant yeasts prepared in Example 1, the enzyme activity band (halo) of the cCelE, XynB and mini-CbpA enzyme proteins was measured.

효소활성대(halo)를 확인하기 위해 YPD한천배지와 YPD자일란을 효소반응의 기질로 사용하였다. 재조합 효모의 콜로니를 YPD 배지에 접종하여 24시간 동안 30℃에서 배양하고, YPD 액상 배지에서 5시간 동안 30℃에서 배양한 배양액을 농축하여 얻은 효소 단백질을 YPD 한천 배지와 YPD 자일란 배지에 올려 흡수시킨 후 50℃에서 24시간 반응시켰다. 0.25% 콩고레드(congo-red)로 5분간 염색 후 염화나트륨(NaCl)으로 여러 번 세척한 후 효소활성대(halo)를 확인하였다 (도 3). YPD agar medium and YPD xylan were used as substrates for the enzyme reaction to identify the enzyme activity (halo). The recombinant yeast colonies were inoculated on YPD medium, cultured for 24 hours at 30 ° C., cultured in YPD liquid medium for 5 hours at 30 ° C., and the resulting enzyme was concentrated and adsorbed on YPD agar medium and YPD xylan medium Followed by reaction at 50 ° C for 24 hours. After staining with 0.25% congo-red for 5 minutes and washing several times with sodium chloride (NaCl), the enzyme activity (halo) was confirmed (FIG. 3).

그 결과, 야생형 효모(wild type P. pastoris)에 비해 재조합 효모의 효소활성대가 넒은 것을 확인하였으며, 재조합 자일란네이즈-비(도 3A)와 키메릭 엔도-글루칸아제-이(도 3B)가 정상적으로 발현되는 것을 확인하였다.
As a result, it was confirmed that the recombinant yeast strain had a larger enzyme activity than the wild type P. pastoris , and that the recombinant xylanase-ratio (FIG. 3A) and chimeric endo-glucanase (FIG. 3B) .

2-2 : 2-2: 지모그람Zymogram (( ZymogramZymogram ) 방법) Way

효소 활성 및 효소의 복합체 형성 정도를 알아보기 위하여 지모그람(Zymogram) 방법을 수행하였다. 먼저, cCelE, XynB, mini-CbpA 효소 단백질이 배양액으로 분비되도록 재조합 효모를 30℃에서 5시간 동안 진탕배양하였으며, 그 후 배양액을 원심분리한 다음, 상등액을 농축하여(Millipore, amicon 10kDa cut off) cCelE, XynB, mini-CbpA 효소 단백질을 얻었다. Zymogram method was performed to investigate enzyme activity and enzyme complex formation. First, the recombinant yeast was shake-cultured at 30 ° C for 5 hours so that the cCelE, XynB, and mini-CbpA enzyme proteins were secreted into the culture medium. After the culture was centrifuged, the supernatant was concentrated (Millipore, amicon 10 kDa cut off) cCelE, XynB, mini-CbpA enzyme protein.

그 다음, Native-PAGE는 10% poly-acrylamide gel (Bio-Rad, cat. No. 161-0156)과 0.2% xylan (sigma aldrich, cat. No. X4252)과 CMC (carboxymethylcellulose) (sigma aldrich, cat. No. C4888)를 녹인 poly-acrylamide gel을 사용하여 상기에서 농축하여 분리한 효소 단백질을 전기영동하였으며, 기질이 첨가된 renature buffer(100mM Succiniate, 10mM CaCl2,1mM dTT)(sigma aldrich, cat. No. D9779)에 2시간 동안 1시간 마다 renature buffer를 갈아준 후 50℃에서 3시간 반응시켰다. 반응이 끝난 겔을 0.25% 콩고레드(congo-red)로 5분간 염색 후 염화나트륨(NaCl)으로 여러 번 세척한 후 효소활성대(halo)를 확인하였다.Native-PAGE was then incubated with 10% polyacrylamide gel (Bio-Rad, cat. No. 161-0156), 0.2% xylan (Sigma aldrich, cat. No. X4252) and CMC (carboxymethylcellulose . No. C4888) was dissolved the poly-acrylamide gel were concentrated in the electrophoretic separation of the enzyme protein by using, renature the substrate is added to buffer (100mM Succiniate, 10mM CaCl 2 , 1mM dTT) (sigma aldrich, cat. No. D9779) for 2 hours and then reacted at 50 ° C for 3 hours. After completion of the reaction, the gel was stained with 0.25% congo-red for 5 minutes, washed several times with sodium chloride (NaCl), and the enzyme activity (halo) was confirmed.

그 결과, 키메릭 엔도-글루칸아제-이(cCelE)와 소형 셀룰로즈-결합 단백질-에이(mini-CbpA)를 반응시킨 경우와 자일란네이즈-비(XynB)와 소형 셀룰로즈-결합 단백질-에이(mini-CbpA)를 반응시킨 경우에, 각각 키메릭 엔도-베타-1,4-글루칸아제-이-소형 셀룰로오즈 결합단백질 에이(cCelE-mCbpA) 복합체(도 4 line 4) 및 자일란네이즈 비-소형 셀룰로오즈 결합단백질 에이(XynB-mCbpA) 복합체가 형성된 것을 확인하였으며(도 4 line 5), 형성된 복합체의 xylan과 CMC(carboxymethylcellulose)의 분해활성 효과도 확인할 수 있었다. As a result, it was found that the reaction between the chimeric endo-glucanase (cCelE) and the small cellulose-binding protein-a (mini-CbpA) and the case of the xylenase- (CCelE-mCbpA) complex (line 4 in FIG. 4) and the xylanase non-small cellulase binding protein (CbpA) were reacted with the chimeric endo-beta-1,4-glucanase- (XynB-mCbpA) complex was formed (line 5 in FIG. 4), and the effect of xylan and CMC (carboxymethylcellulose) on the formed complex was confirmed.

또한, 키메릭 엔도-베타-1,4-글루칸아제-이-자일란네이즈 비-소형 셀룰로오즈 결합단백질 에이(cCelE-XynB-mCbpA) 복합체의 형성 여부를 확인하기 위하여, 복합체를 형성시킨 후, 미결합 단백질을 제거하고 복합체의 결합을 변형시켜 Native-PAGE로 확인한 결과, 도 5에 나타난 바와 같이, 키메릭 엔도-베타-1,4-글루칸아제-이-자일란네이즈 비-소형 셀룰로오즈 결합단백질 에이(cCel-XynB-mCbpA)의 복합체가 형성된 것을 확인할 수 있었다 (도 5 non denature). 복합체 결합을 변형시켜 Native-PAGE로 확인한 경우에도, cCelE와 XynB 및 mCbpA를 1:1:1의 비율로 혼합한 시료에서 실제 cCelE, XynB 및 mCbpA를 모두 확인할 수 있었다 (도 5, denature).
In order to confirm formation of a complex of chimeric endo-beta-1,4-glucanase-i-xylanase non-small cellulosic binding protein a (cCelE-XynB-mCbpA) complex, Protein was removed and the binding of the complex was modified and confirmed by Native-PAGE. As a result, as shown in Fig. 5, the chimeric endo-beta-1,4-glucanase-i-xylanase non- -XynB-mCbpA) was formed (Fig. 5, non denature). Even when the complex binding was modified and confirmed by Native-PAGE, the actual cCelE, XynB and mCbpA could be confirmed in a sample in which cCelE, XynB and mCbpA were mixed at a ratio of 1: 1: 1 (FIG. 5, denature).

2-3 : 환원당 측정(2-3: Measurement of reducing sugar ( reducing sugarsugar assayassay ))

키메릭 엔도-베타-1,4-글루칸아제-이-소형 셀룰로오즈 결합단백질 에이(cCelE-mCbpA) 복합체, 자일란네이즈 비-소형 셀룰로오즈 결합단백질 에이(XynB-mCbpA) 복합체 및 키메릭 엔도-베타-1,4-글루칸아제-이-자일란네이즈 비-소형 셀룰로오즈 결합단백질 에이(cCelE-XynB-mCbpA) 복합체의 효소활성을 특정하기 위하여 환원당 측정(reducing sugar assay)를 수행하였다. (XynB-mCbpA) complex and chymeric endo-beta-1-glucanase-beta-1, 4-glucanase-less cellulosic binding protein a (cCelE-mCbpA) complex, , A reducing sugar assay was performed to determine the enzyme activity of the 4-glucanase-i-xylanase non-small cellulase binding protein a (cCelE-XynB-mCbpA) complex.

자일란(xylan)과 카르복시메틸 셀룰로오스(carboxymethyl cellulose; CMC)가 각각 2% 포함된 기질(substrate)에 각각의 반응 효소액을 1:1의 비율로 혼합하고 2시간 효소 반응을 진행시킨 후 반응액을 DNS 방법을 이용하여 분해된 환원당을 측정하였으며,그 결과 세 가지 단백질이 결합된 경우 더 높은 활성을 가지는 것을 알 수 있었다 (도 6).
Each reaction enzyme solution was mixed at a ratio of 1: 1 to a substrate containing 2% of xylan and carboxymethyl cellulose (CMC), and the enzyme reaction was carried out for 2 hours. Method was used to measure the degraded reducing sugar. As a result, it was found that when the three proteins were bound, they had higher activity (FIG. 6).

재조합 효모를 이용한 바이오에탄올의 생산Production of bioethanol using recombinant yeast

Pichia pastoris-pPsADHα-cCelE, Pichia pastoris-pPsADHα-XynB, Pichia pastoris-pPsADHα-mini-CbpA를 YPD 배지에서 24시간 전배양 후, 48시간 진탕배양하고, 거대 억새(Miscanthus sinensis)((주)창해에탄올)가 기질로 첨가된 발효배지에서 추가로 배양하였다. 상기 발효배양액을 30℃, 100rpm에서 배양하며 일정한 시간별로 배양액을 채취하여 가스 크로마토그래피를 실시함으로 생산된 에탄올을 측정하였다. 상기 방법대로 실행결과 엔도글루칸아제와 자일란네이즈가 삽입된 Pichia pastoris-pPsADHα/cCelE, Pichia pastoris-pPsADHα/XynB, Pichia pastoris-pPsADHα/mini-CbpA에서의 에탄올 생산수율이 Pichia pastoris/pPsADHα 보다 높게 측정된 것을 확인할 수 있었다 (도 7).
Pichia pastoris -pPsADHa-cCelE, Pichia pastoris -pPsADHα-XynB and Pichia pastoris- pPsADHα-mini-CbpA were cultured in YPD medium for 24 hours, shaken for 48 hours, and grown in Miscanthus sinensis) ((Note) changhae ethanol) is cultured further in the fermentation medium as a substrate was added. The fermentation broth was cultured at 30 DEG C and 100 rpm, and the culture solution was collected for a predetermined time, and the produced ethanol was measured by gas chromatography. The execution result endo-glucan and xylan tyrosinase kinase insert, as the method Pichia pastoris -pPsADHα / cCelE, Pichia The yields of ethanol production in pastoris -pPsADHα / XynB, Pichia pastoris -pPsADHα / mini-CbpA were higher than those of Pichia pastoris / pPsADH? (Fig. 7).

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
While the present invention has been particularly shown and described with reference to specific embodiments thereof, those skilled in the art will appreciate that such specific embodiments are merely preferred embodiments and that the scope of the present invention is not limited thereby. something to do. It is therefore intended that the scope of the invention be defined by the claims appended hereto and their equivalents.

<110> Korea University Research and Business Foundation <120> Method for Preparing Cellulose Complex Using Endo-b-1,4-glucanase E, Xylanase B and Mini Cellulose Binding Protein A from Clostridium sp. <130> P12-B248 <160> 17 <170> KopatentIn 2.0 <210> 1 <211> 54 <212> DNA <213> Artificial Sequence <220> <223> pPsADHa forward primer <400> 1 gcgcaagctt gatccgaggg aaaaacccgg ggactcagtt tatcacgtac cgag 54 <210> 2 <211> 588 <212> DNA <213> Pichia pastoris ADH2 promoter <400> 2 gatccgaggg aaaaaccggg gactcagttt atcacgtacc gagaaattct tcgtttcagc 60 atcatcacca tgttgtccaa ttacagcccg aagcacagtc taatgctgaa ttttgataga 120 gctcatcgtg aacagccaga ttcgaagaaa ggggggatga gatccgggtt catctgcaag 180 agacacagaa aataaaaaac atacgatccg ttcagctacc tggcgcttaa ccaggaaaat 240 cactgctgga gtggccagca tgtcacgagg tggcagaatc cgataatgtg tgattgcgtg 300 tagcatcggc gcaagtcgaa tttcggtcat atccgtgtct ggatattatc cactattttt 360 taatttttca ggttggatgc gattgttccc tttacgtctg gacgatgcct gaagccccag 420 gtatatataa ggggctcgaa agtcctttga ccagctggtt gatttgactt tgtttgttcc 480 tttctttctt tcatctactc atcactcaat tgcattcgca atttcccatt aatacatatt 540 caacttgctc cacatattgc acccaattgc ataagtgctg cgatccat 588 <210> 3 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> pPsADHa reverse primer <400> 3 gaaatctcat gataatttgg atggatcgcc agcacttatg caattgggt 49 <210> 4 <211> 267 <212> DNA <213> Artificial Sequence <220> <223> pPICZa vector Alpha Factor gene <400> 4 atgagatttc cttcaatttt tactgctgtt ttattcgcag catcctccgc attagctgct 60 ccagtcaaca ctacaacaga agatgaaacg gcacaaattc cggctgaagc tgtcatcggt 120 tactcagatt tagaagggga tttcgatgtt gctgttttgc cattttccaa cagcacaaat 180 aacgggttat tgtttataaa tactactatt gccagcattg ctgctaaaga agaaggggta 240 tctctcgaga aaagagaggc tgaagct 267 <210> 5 <211> 62 <212> DNA <213> Artificial Sequence <220> <223> pPsADHa forward primer <400> 5 ccaaattatc atgagatttc cttcaatttt tactgctgtt ttattcgcag catcctccgc 60 at 62 <210> 6 <211> 52 <212> DNA <213> Artificial Sequence <220> <223> pPsADHa reverse primer <400> 6 gcgcgaattc agcttcagcc tctcttttct cgagagatac cccttcttct tt 52 <210> 7 <211> 159 <212> DNA <213> dockerin of endo-b-glucanase B <400> 7 gatgttaaca aagatggaaa ggtaaatgct atcgattatg cagtgcttaa atcaattctt 60 ttaggtacaa atactaacgt tgatttatca gtatcagaca tgaataagga tggtaaagta 120 aatgctttgg atttagctgt tcttaaaaaa atgctttta 159 <210> 8 <211> 1140 <212> DNA <213> endo-b-glucanase E <400> 8 tcgggaacaa agcttttgga tgcaagcgga aacgagcttg taatgagggg catgcgtgat 60 atttcagcaa tagatttggt taaagaaata aaaatcggat ggaatttggg aaatactttg 120 gatgctccta cagagactgc ctggggaaat ccaaggacaa ccaaggcaat gatagaaaag 180 gtaagggaaa tgggctttaa tgccgtcaga gtgcctgtta cctgggatac gcacatcgga 240 cctgctccgg actataaaat tgacgaagca tggctgaaca gagttgagga agtggtaaac 300 tatgttcttg actgcggtat gtacgcgatc ataaatcttc accatgacaa tacatggatt 360 atacctacat atgccaatga gcaaaggagt aaagaaaaac ttgtaaaagt ttgggaacaa 420 atagcaaccc gttttaaaga ttatgacgac catttgttgt ttgagacaat gaacgaaccg 480 agagaagtag gttcacctat ggaatggatg ggcggaacgt atgaaaaccg agatgtgata 540 aacagattta atttggcggt tgttaatacc atcagagcaa gcggcggaaa taacgataaa 600 agattcatac tggttccgac caatgcggca accggcctgg atgttgcatt aaacgacctt 660 gtcattccga acaatgacag cagagtcata gtatccatac atgcttattc accgtatttc 720 tttgctatgg atgtcaacgg aacttcatat tggggaagtg actatgacaa ggcttctctt 780 acaagtgaac ttgatgctat ttacaacaga tttgtgaaaa acggaagggc tgtaattatc 840 ggagaattcg gaaccattga caagaacaac ctgtcttcaa gggtggctca tgccgagcac 900 tatgcaagag aagcagtttc aagaggaatt gctgttttct ggtgggataa cggctattac 960 aatccgggtg atgcagagac ttatgcattg ctgaacagaa aaactctctc atggtattat 1020 cctgaaattg tccaggctct tatgagaggt gccggcgttg aacctttagt ttcaccgact 1080 cctacaccta cattaatgcc gaccccctcg cccacggtga cagcaaatat tttgtacggt 1140 1140 <210> 9 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> cCelE forward primer <400> 9 atatggtacc tcgggaacaa gcttttg 27 <210> 10 <211> 159 <212> DNA <213> Artificial Sequence <220> <223> cCelE reverse primer <400> 10 gatgttaaca aagatggaaa ggtaaatgct atcgattatg cagtgcttaa atcaattctt 60 ttaggtacaa atactaacgt tgatttatca gtatcagaca tgaataagga tggtaaagta 120 aatgctttgg atttagctgt tcttaaaaaa atgctttta 159 <210> 11 <211> 1298 <212> DNA <213> Artificial Sequence <220> <223> chimeric CelE <400> 11 cgggaacaaa gcttttggat gcaagcggaa acgagcttgt aatgaggggc atgcgtgata 60 tttcagcaat agatttggtt aaagaaataa aaatcggatg gaatttggga aatactttgg 120 atgctcctac agagactgcc tggggaaatc caaggacaac caaggcaatg atagaaaagg 180 taagggaaat gggctttaat gccgtcagag tgcctgttac ctgggatacg cacatcggac 240 ctgctccgga ctataaaatt gacgaagcat ggctgaacag agttgaggaa gtggtaaact 300 atgttcttga ctgcggtatg tacgcgatca taaatcttca ccatgacaat acatggatta 360 tacctacata tgccaatgag caaaggagta aagaaaaact tgtaaaagtt tgggaacaaa 420 tagcaacccg ttttaaagat tatgacgacc atttgttgtt tgagacaatg aacgaaccga 480 gagaagtagg ttcacctatg gaatggatgg gcggaacgta tgaaaaccga gatgtgataa 540 acagatttaa tttggcggtt gttaatacca tcagagcaag cggcggaaat aacgataaaa 600 gattcatact ggttccgacc aatgcggcaa ccggcctgga tgttgcatta aacgaccttg 660 tcattccgaa caatgacagc agagtcatag tatccataca tgcttattca ccgtatttct 720 ttgctatgga tgtcaacgga acttcatatt ggggaagtga ctatgacaag gcttctctta 780 caagtgaact tgatgctatt tacaacagat ttgtgaaaaa cggaagggct gtaattatcg 840 gagaattcgg aaccattgac aagaacaacc tgtcttcaag ggtggctcat gccgagcact 900 atgcaagaga agcagtttca agaggaattg ctgttttctg gtgggataac ggctattaca 960 atccgggtga tgcagagact tatgcattgc tgaacagaaa aactctctca tggtattatc 1020 ctgaaattgt ccaggctctt atgagaggtg ccggcgttga acctttagtt tcaccgactc 1080 ctacacctac attaatgccg accccctcgc ccacggtgac agcaaatatt ttgtacggtg 1140 atgttaacaa agatggaaag gtaaatgcta tcgattatgc agtgcttaaa tcaattcttt 1200 taggtacaaa tactaacgtt gatttatcag tatcagacat gaataaggat ggtaaagtaa 1260 atgctttgga tttagctgtt cttaaaaaaa tgctttta 1298 <210> 12 <211> 1734 <212> DNA <213> xylanase B <400> 12 gaagatgctc tattaataag tagcaccttc gaaggaggta cagatggttg gtcaactatg 60 ggtacaacta ctatttcacc aagtacttta agccatagcg gtaacggaag cctctacgtt 120 tctggtagag ctgcttcatg ggctggacca tgcaatataa gaacagacgt attgaaagca 180 ggaaatacat ataaccttag ttcctatgta atgtacaatg atgctagtgc tgcagatact 240 caacctatta gcttcatgtt aaagtacaca gattctacaa ataaagcttt ctatgtacct 300 atcgcaactg taactgtaaa caaaggtgaa tggacaaaaa tcgaaaatac cgcttataaa 360 atcccagcag aagcaactag tgcaatgatt tattgggaaa ctacaggtac aatgattaac 420 tactatgtcg acgacgttac agcatatggt ccaagcacat ttaatcctaa tgtaactgca 480 gctacaccac ttaaaaacgt atttggaaaa tactttgata taggttgcgc tgcgacacct 540 tctgaagtat ctttacaagt tgctaaagat cttgtaaaaa ctcactacaa caaccttact 600 ataggaaatg agcttaaacc agattatgta ttagataaag ctgcttgcca agcatccggt 660 aacaatgtaa accctcaagt taaattagac agtgcacgta gtcttttaaa atactgtgct 720 gagaacaata tagaagtaag aggccacgtt ttagtatggc atagtcaaac tccttcttgg 780 ttctttaaag aaaacttcag tgacactgga gctactgtat caaaagacgt catgaatcaa 840 cgtcttgaaa actatataaa gaatcttttt gcagcaatta acgcagagtt ccctacatta 900 aagatttatg catgggacgt tgtaaatgaa tgttacctag atggtggtaa tctacgtact 960 gcaggatttc ctgaaactgc tgggaaagaa gcatctgcat ggaatttagt ctatggtgat 1020 gactcataca tagacaatgc tttcacatat gcaagaaaat atgctccagc tggtgttaag 1080 ttattctaca acgactttaa cgaatatata caatcaaaac gtaacgcaat ctacactatg 1140 gcaatgagat taaaatctaa aggtattatc gatggtatcg gtatgcaatc tcacctagat 1200 atgggctttc ctgatacaaa tacttataaa gcagcactaa ctaaattcgg ttcaactggc 1260 ttagaagttc aagttacaga acttgatata actacaagtg atacaagtgc tacaggacta 1320 gcaaatcaag ctactaaata tgcagctatt atgcaaagta ttttagatgc aaaaaaagca 1380 ggtactgcta acattacaaa cgttgtattc tggggtatta ctgatggaac aagctggcgt 1440 gcaacaagat taccattgct attcgatgga aactactatc caaaaccagc tttcgattca 1500 gttgttaaat tagttcctac aagcgactac tatactcctg gttatgcctt aggtgatgta 1560 aacaatgacg gtaaaatcaa tgctctagat cttgcattag tgaaaaaagg tctattaagt 1620 gaatttacag atccagctgc aaaagtagct gcagatgtaa acaaagatgg taatactaat 1680 gctatcgacc ttgcattatt aaagaaatat cttctaggac aaattactag tttc 1734 <210> 13 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> XynB forward primer <400> 13 gcgcgaattc gaagatgctc tattaataag tag 33 <210> 14 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> XynB reverse primer <400> 14 gcggtacctc aatgatgatg atgatgatgg aaactagtaa tttgtccta 49 <210> 15 <211> 1646 <212> DNA <213> Mini-Cellulose-binding protein A <400> 15 cagcgacatc atcaatgtca gttgaatttt acaactctaa caaatcagca caaacaaact 60 caattacacc aataatcaaa attactaaca catctgacag tgatttaaat ttaaatgacg 120 taaaagttag atattattac acaagtgatg gtacacaagg acaaactttc tggtgtgacc 180 atgctggtgc attattagga aatagctatg ttgataacac tagcaaagtg acagcaaact 240 tcgttaaaga aacagcaagc ccaacatcaa cctatgatac atatgttgaa tttggatttg 300 caagcggagc agctactctt aaaaaaggac aatttataac tattcaagga agaataacaa 360 aatcagactg gtcaaactac actcaaacaa atgactattc atttgatgca agtagttcaa 420 caccagttgt aaatccaaaa gttacaggat atataggtgg agctaaagta cttggtacag 480 caccaggtcc agatgtacca tcttcaataa ttaatcctac ttctgcaaca tttgataaaa 540 atgtaactaa acaagcagat gttaaaacta ctatgacttt aaatggtaac acatttaaaa 600 caattacaga tgcaaacggt acagctctaa atgcaagcac tgattatagt gtttctggaa 660 atgatgtaac aataagcaaa gcttatttag caaaacaatc agtaggaaca actacattaa 720 actttaactt tagtgcagga aatcctcaaa aattagtaat tacagtagtt gacacaccag 780 ttgaagctgt aacagctaca attggaaaag tacaagtaaa tgctggagaa acggtagcag 840 taccagttaa cttaacaaaa gttccagcag ctggtttagc aacaattgaa ttaccattaa 900 cttttgattc tgcatcatta gaagtagtat caataactgc tggagatatc gtattaaatc 960 catcagtaaa cttctcttct acagtaagtg gaagcacaat aaaattatta ttcttagatg 1020 atacattagg aagccaatta atcactaagg atggagtttt tgcaacaata acatttaaag 1080 caaaagctat aactggaaca actgcaaaag taacttcagt taaattagct ggaacaccag 1140 tagttggtga tgcgcaatta caagaaaaac cttgtgcagt taacccagga acagtaacta 1200 tcaatccaat cgataataga atgcaaattt cagttggaac agcaacagta aaagctggag 1260 aaatagcagc agtgccagta acattaacaa gtgttccatc aactggaata gcaactgctg 1320 aagcacaagt aagttttgat gcaacattat tagaagtagc atcagtaact gctggagata 1380 tcgtattaaa tccaacagta aacttctctt atacagtaaa cggaaatgta ataaaattat 1440 tattcctaga tgatacatta ggaagccaat taattagtaa agatggagtt tttgtaacaa 1500 taaacttcaa agcaaaagct gtaacaagca cagtaacaac accagttaca gtatcaggaa 1560 cacctgtatt tgcagatggt acattagcag aagtacaatc taaaacagca gcaggtagcg 1620 ttacaataaa tattggagat cctata 1646 <210> 16 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> mCbp forward primer <400> 16 gcgcgaattc gcagcgacat catcaat 27 <210> 17 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> mCbp reverse primer <400> 17 gcgcggccgc tcaatgatga tgatgatgat gtataggatc tccaatatt 49 <110> Korea University Research and Business Foundation <120> Method for Preparing Cellulose Complex Using Endo-b-1,4-glucanase          E, Xylanase B and Mini Cellulose Binding Protein A from          Clostridium sp. <130> P12-B248 <160> 17 <170> Kopatentin 2.0 <210> 1 <211> 54 <212> DNA <213> Artificial Sequence <220> <223> pPsADHa forward primer <400> 1 gcgcaagctt gatccgaggg aaaaacccgg ggactcagtt tatcacgtac cgag 54 <210> 2 <211> 588 <212> DNA <213> Pichia pastoris ADH2 promoter <400> 2 gatccgaggg aaaaaccggg gactcagttt atcacgtacc gagaaattct tcgtttcagc 60 atcatcacca tgttgtccaa ttacagcccg aagcacagtc taatgctgaa ttttgataga 120 gctcatcgtg aacagccaga ttcgaagaaa ggggggatga gatccgggtt catctgcaag 180 agacacagaa aataaaaaac atacgatccg ttcagctacc tggcgcttaa ccaggaaaat 240 cactgctgga gtggccagca tgtcacgagg tggcagaatc cgataatgtg tgattgcgtg 300 tagcatcggc gcaagtcgaa tttcggtcat atccgtgtct ggatattatc cactattttt 360 taatttttca ggttggatgc gattgttccc tttacgtctg gacgatgcct gaagccccag 420 gtatatataa ggggctcgaa agtcctttga ccagctggtt gatttgactt tgtttgttcc 480 tttctttctt tcatctactc atcactcaat tgcattcgca atttcccatt aatacatatt 540 caacttgctc cacatattgc acccaattgc ataagtgctg cgatccat 588 <210> 3 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> pPsADHa reverse primer <400> 3 gaaatctcat gataatttgg atggatcgcc agcacttatg caattgggt 49 <210> 4 <211> 267 <212> DNA <213> Artificial Sequence <220> <223> pPICZa vector Alpha Factor gene <400> 4 atgagatttc cttcaatttt tactgctgtt ttattcgcag catcctccgc attagctgct 60 ccagtcaaca ctacaacaga agatgaaacg gcacaaattc cggctgaagc tgtcatcggt 120 tactcagatt tagaagggga tttcgatgtt gctgttttgc cattttccaa cagcacaaat 180 aacgggttat tgtttataaa tactactatt gccagcattg ctgctaaaga agaaggggta 240 tctctcgaga aaagagaggc tgaagct 267 <210> 5 <211> 62 <212> DNA <213> Artificial Sequence <220> <223> pPsADHa forward primer <400> 5 ccaaattatc atgagatttc cttcaatttt tactgctgtt ttattcgcag catcctccgc 60 at 62 <210> 6 <211> 52 <212> DNA <213> Artificial Sequence <220> <223> pPsADHa reverse primer <400> 6 gcgcgaattc agcttcagcc tctcttttct cgagagatac cccttcttct tt 52 <210> 7 <211> 159 <212> DNA <213> dockerin of endo-b-glucanase B <400> 7 gatgttaaca aagatggaaa ggtaaatgct atcgattatg cagtgcttaa atcaattctt 60 ttaggtacaa atactaacgt tgatttatca gtatcagaca tgaataagga tggtaaagta 120 aatgctttgg atttagctgt tcttaaaaaa atgctttta 159 <210> 8 <211> 1140 <212> DNA <213> endo-b-glucanase E <400> 8 tcgggaacaa agcttttgga tgcaagcgga aacgagcttg taatgagggg catgcgtgat 60 atttcagcaa tagatttggt taaagaaata aaaatcggat ggaatttggg aaatactttg 120 gatgctccta cagagactgc ctggggaaat ccaaggacaa ccaaggcaat gatagaaaag 180 gtaagggaaa tgggctttaa tgccgtcaga gtgcctgtta cctgggatac gcacatcgga 240 cctgctccgg actataaaat tgacgaagca tggctgaaca gagttgagga agtggtaaac 300 tatgttcttg actgcggtat gtacgcgatc ataaatcttc accatgacaa tacatggatt 360 atacctacat atgccaatga gcaaaggagt aaagaaaaac ttgtaaaagt ttgggaacaa 420 atagcaaccc gttttaaaga ttatgacgac catttgttgt ttgagacaat gaacgaaccg 480 agagaagtag gttcacctat ggaatggatg ggcggaacgt atgaaaaccg agatgtgata 540 aacagattta atttggcggt tgttaatacc atcagagcaa gcggcggaaa taacgataaa 600 agattcatac tggttccgac caatgcggca accggcctgg atgttgcatt aaacgacctt 660 gtcattccga acaatgacag cagagtcata gtatccatac atgcttattc accgtatttc 720 tttgctatgg atgtcaacgg aacttcatat tggggaagtg actatgacaa ggcttctctt 780 acaagtgaac ttgatgctat ttacaacaga tttgtgaaaa acggaagggc tgtaattatc 840 ggagaattcg gaaccattga caagaacaac ctgtcttcaa gggtggctca tgccgagcac 900 tatgcaagag aagcagtttc aagaggaatt gctgttttct ggtgggataa cggctattac 960 aatccgggtg atgcagagac ttatgcattg ctgaacagaa aaactctctc atggtattat 1020 cctgaaattg tccaggctct tatgagaggt gccggcgttg aacctttagt ttcaccgact 1080 cctacaccta cattaatgcc gaccccctcg cccacggtga cagcaaatat tttgtacggt 1140                                                                         1140 <210> 9 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> cCelE forward primer <400> 9 atatggtacc tcgggaacaa gcttttg 27 <210> 10 <211> 159 <212> DNA <213> Artificial Sequence <220> <223> cCelE reverse primer <400> 10 gatgttaaca aagatggaaa ggtaaatgct atcgattatg cagtgcttaa atcaattctt 60 ttaggtacaa atactaacgt tgatttatca gtatcagaca tgaataagga tggtaaagta 120 aatgctttgg atttagctgt tcttaaaaaa atgctttta 159 <210> 11 <211> 1298 <212> DNA <213> Artificial Sequence <220> <223> chimeric CelE <400> 11 cgggaacaaa gcttttggat gcaagcggaa acgagcttgt aatgaggggc atgcgtgata 60 tttcagcaat agatttggtt aaagaaataa aaatcggatg gaatttggga aatactttgg 120 atgctcctac agagactgcc tggggaaatc caaggacaac caaggcaatg atagaaaagg 180 taagggaaat gggctttaat gccgtcagag tgcctgttac ctgggatacg cacatcggac 240 ctgctccgga ctataaaatt gacgaagcat ggctgaacag agttgaggaa gtggtaaact 300 atgttcttga ctgcggtatg tacgcgatca taaatcttca ccatgacaat acatggatta 360 tacctacata tgccaatgag caaaggagta aagaaaaact tgtaaaagtt tgggaacaaa 420 tagcaacccg ttttaaagat tatgacgacc atttgttgtt tgagacaatg aacgaaccga 480 gagaagtagg ttcacctatg gaatggatgg gcggaacgta tgaaaaccga gatgtgataa 540 acagatttaa tttggcggtt gttaatacca tcagagcaag cggcggaaat aacgataaaa 600 gattcatact ggttccgacc aatgcggcaa ccggcctgga tgttgcatta aacgaccttg 660 tcattccgaa caatgacagc agagtcatag tatccataca tgcttattca ccgtatttct 720 ttgctatgga tgtcaacgga acttcatatt ggggaagtga ctatgacaag gcttctctta 780 caagtgaact tgatgctatt tacaacagat ttgtgaaaaa cggaagggct gtaattatcg 840 gagaattcgg aaccattgac aagaacaacc tgtcttcaag ggtggctcat gccgagcact 900 atgcaagaga agcagtttca agaggaattg ctgttttctg gtgggataac ggctattaca 960 atccgggtga tgcagagact tatgcattgc tgaacagaaa aactctctca tggtattatc 1020 ctgaaattgt ccaggctctt atgagaggtg ccggcgttga acctttagtt tcaccgactc 1080 ctacacctac attaatgccg accccctcgc ccacggtgac agcaaatatt ttgtacggtg 1140 atgttaacaa agatggaaag gtaaatgcta tcgattatgc agtgcttaaa tcaattcttt 1200 taggtacaaa tactaacgtt gatttatcag tatcagacat gaataaggat ggtaaagtaa 1260 atgctttgga tttagctgtt cttaaaaaaa tgctttta 1298 <210> 12 <211> 1734 <212> DNA <213> xylanase B <400> 12 gaagatgctc tattaataag tagcaccttc gaaggaggta cagatggttg gtcaactatg 60 ggtacaacta ctatttcacc aagtacttta agccatagcg gtaacggaag cctctacgtt 120 tctggtagag ctgcttcatg ggctggacca tgcaatataa gaacagacgt attgaaagca 180 ggaaatacat ataaccttag ttcctatgta atgtacaatg atgctagtgc tgcagatact 240 caacctatta gcttcatgtt aaagtacaca gattctacaa ataaagcttt ctatgtacct 300 atcgcaactg taactgtaaa caaaggtgaa tggacaaaaa tcgaaaatac cgcttataaa 360 atcccagcag aagcaactag tgcaatgatt tattgggaaa ctacaggtac aatgattaac 420 tactatgtcg acgacgttac agcatatggt ccaagcacat ttaatcctaa tgtaactgca 480 gctacaccac ttaaaaacgt atttggaaaa tactttgata taggttgcgc tgcgacacct 540 tctgaagtat ctttacaagt tgctaaagat cttgtaaaaa ctcactacaa caaccttact 600 ataggaaatg agcttaaacc agattatgta ttagataaag ctgcttgcca agcatccggt 660 aacaatgtaa accctcaagt taaattagac agtgcacgta gtcttttaaa atactgtgct 720 gagaacaata tagaagtaag aggccacgtt ttagtatggc atagtcaaac tccttcttgg 780 ttctttaaag aaaacttcag tgacactgga gctactgtat caaaagacgt catgaatcaa 840 cgtcttgaaa actatataaa gaatcttttt gcagcaatta acgcagagtt ccctacatta 900 aagatttatg catgggacgt tgtaaatgaa tgttacctag atggtggtaa tctacgtact 960 gcaggatttc ctgaaactgc tgggaaagaa gcatctgcat ggaatttagt ctatggtgat 1020 gactcataca tagacaatgc tttcacatat gcaagaaaat atgctccagc tggtgttaag 1080 ttattctaca acgactttaa cgaatatata caatcaaaac gtaacgcaat ctacactatg 1140 gcaatgagat taaaatctaa aggtattatc gatggtatcg gtatgcaatc tcacctagat 1200 atgggctttc ctgatacaaa tacttataaa gcagcactaa ctaaattcgg ttcaactggc 1260 ttagaagttc aagttacaga acttgatata actacaagtg atacaagtgc tacaggacta 1320 gcaaatcaag ctactaaata tgcagctatt atgcaaagta ttttagatgc aaaaaaagca 1380 ggtactgcta acattacaaa cgttgtattc tggggtatta ctgatggaac aagctggcgt 1440 gcaacaagat taccattgct attcgatgga aactactatc caaaaccagc tttcgattca 1500 gttgttaaat tagttcctac aagcgactac tatactcctg gttatgcctt aggtgatgta 1560 aacaatgacg gtaaaatcaa tgctctagat cttgcattag tgaaaaaagg tctattaagt 1620 gaatttacag atccagctgc aaaagtagct gcagatgtaa acaaagatgg taatactaat 1680 gctatcgacc ttgcattatt aaagaaatat cttctaggac aaattactag tttc 1734 <210> 13 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> XynB forward primer <400> 13 gcgcgaattc gaagatgctc tattaataag tag 33 <210> 14 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> XynB reverse primer <400> 14 gcggtacctc aatgatgatg atgatgatgg aaactagtaa tttgtccta 49 <210> 15 <211> 1646 <212> DNA <213> Mini-Cellulose-binding protein A <400> 15 cagcgacatc atcaatgtca gttgaatttt acaactctaa caaatcagca caaacaaact 60 caattacacc aataatcaaa attactaaca catctgacag tgatttaaat ttaaatgacg 120 taaaagttag atattattac acaagtgatg gtacacaagg acaaactttc tggtgtgacc 180 atgctggtgc attattagga aatagctatg ttgataacac tagcaaagtg acagcaaact 240 tcgttaaaga aacagcaagc ccaacatcaa cctatgatac atatgttgaa tttggatttg 300 caagcggagc agctactctt aaaaaaggac aatttataac tattcaagga agaataacaa 360 aatcagactg gtcaaactac actcaaacaa atgactattc atttgatgca agtagttcaa 420 caccagttgt aaatccaaaa gttacaggat atataggtgg agctaaagta cttggtacag 480 caccaggtcc agatgtacca tcttcaataa ttaatcctac ttctgcaaca tttgataaaa 540 atgtaactaa acaagcagat gttaaaacta ctatgacttt aaatggtaac acatttaaaa 600 caattacaga tgcaaacggt acagctctaa atgcaagcac tgattatagt gtttctggaa 660 atgatgtaac aataagcaaa gcttatttag caaaacaatc agtaggaaca actacattaa 720 actttaactt tagtgcagga aatcctcaaa aattagtaat tacagtagtt gacacaccag 780 ttgaagctgt aacagctaca attggaaaag tacaagtaaa tgctggagaa acggtagcag 840 taccagttaa cttaacaaaa gttccagcag ctggtttagc aacaattgaa ttaccattaa 900 cttttgattc tgcatcatta gaagtagtat caataactgc tggagatatc gtattaaatc 960 catcagtaaa cttctcttct acagtaagtg gaagcacaat aaaattatta ttcttagatg 1020 atacattagg aagccaatta atcactaagg atggagtttt tgcaacaata acatttaaag 1080 caaaagctat aactggaaca actgcaaaag taacttcagt taaattagct ggaacaccag 1140 tagttggtga tgcgcaatta caagaaaaac cttgtgcagt taacccagga acagtaacta 1200 tcaatccaat cgataataga atgcaaattt cagttggaac agcaacagta aaagctggag 1260 aaatagcagc agtgccagta acattaacaa gtgttccatc aactggaata gcaactgctg 1320 aagcacaagt aagttttgat gcaacattat tagaagtagc atcagtaact gctggagata 1380 tcgtattaaa tccaacagta aacttctctt atacagtaaa cggaaatgta ataaaattat 1440 tattcctaga tgatacatta ggaagccaat taattagtaa agatggagtt tttgtaacaa 1500 taaacttcaa agcaaaagct gtaacaagca cagtaacaac accagttaca gtatcaggaa 1560 cacctgtatt tgcagatggt acattagcag aagtacaatc taaaacagca gcaggtagcg 1620 ttacaataaa tattggagat cctata 1646 <210> 16 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> mCbp forward primer <400> 16 gcgcgaattc gcagcgacat catcaat 27 <210> 17 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> mCbp reverse primer <400> 17 gcgcggccgc tcaatgatga tgatgatgat gtataggatc tccaatatt 49

Claims (7)

다음의 단계를 포함하는 섬유소 분해효소 복합체의 제조방법:
(a) 키메릭 엔도-베타-1,4-글루칸아제-이(chimeric endo―β―1,4―glucanase E; cCelE)를 코딩하는 유전자 함유 재조합 벡터로 형질전환된 재조합 효모, 자일란네이즈-비(xylanase B; XynB)를 코딩하는 유전자 함유 재조합 벡터로 형질전환된 재조합 효모 및 소형 셀룰로오즈 결합단백질 에이(mini cellulose binding protein A; miniCbpA)를 코딩하는 유전자 함유 재조합 벡터로 형질전환된 재조합 효모를 배양하는 단계;
(b) 각각의 재조합 효모에서 생성된 키메릭 엔도-베타-1,4-글루칸아제-이, 자일란네이즈 비 및 소형 셀룰로오즈 결합단백질 에이가 결합하여 (ⅰ)키메릭 엔도-베타-1,4-글루칸아제-이-소형 셀룰로오즈 결합단백질 에이(cCelE-mCbpA) 복합체, (ⅱ)자일란네이즈 비-소형 셀룰로오즈 결합단백질 에이(XynB-mCbpA) 복합체 및 (ⅲ) 키메릭 엔도-베타-1,4-글루칸아제-이-자일란네이즈 비-소형 셀룰로오즈 결합단백질 에이(cCelE-XynB-mCbpA) 복합체를 형성시키는 단계; 및
(d) 상기 형성된 섬유소 분해효소 복합체를 회수하는 단계.
A method for producing a fibrinolytic enzyme complex comprising the steps of:
(a) a recombinant yeast transformed with a recombinant vector containing a gene encoding chimeric endo-β-1,4-glucanase E (cCelE), a xylanase- a recombinant yeast transformed with a gene containing a recombinant vector encoding xylanase B (XynB) and a recombinant vector transformed with a recombinant vector containing a gene encoding a mini cellulose binding protein A (miniCbpA) step;
(b) the chimeric endo-beta-1,4-glucanase produced from each recombinant yeast, the xylanase ratio and the small cellulosic binding protein a, are combined to form (i) chimeric endo- (XynB-mCbpA) complex and (iii) chimeric endo-beta-1,4-glucan complexes, (CCelE-XynB-mCbpA) complex with an agase-free xylenase non-small cellulosic binding protein a (cCelE-XynB-mCbpA) complex; And
(d) recovering the formed fibrinolytic enzyme complex.
제1항에 있어서, 상기 (a) 단계의 재조합 벡터는 키메릭 엔도-베타-1,4-글루칸아제-이를 코딩하는 유전자가 도입되어 있는 pPsADHα-cCelE, 자일란네이즈-비를 코딩하는 유전자가 도입되어 있는 pPsADHα-XynB 및 소형 셀룰로오즈 결합단백질 에이를 코딩하는 유전자가 도입되어 있는 pPsADHα-mCbpA인 것을 특징으로 하는 섬유소 분해효소 복합체의 제조방법.
The recombinant vector of claim 1, wherein the recombinant vector comprises a gene coding for chimeric endo-beta-1,4-glucanase, wherein the gene coding for pPsADH? -CCelE and xylanase- Wherein the pPsADH alpha -XynB and the small cellulosic binding protein a are introduced into the cell line.
제1항에 있어서, 상기 (a) 단계의 자일란네이즈 비를 코딩하는유전자 및 소형 셀룰로오즈 결합단백질 에이를 코딩하는 유전자는 클로스트리디움 셀룰로보란스(clostridium cellulovorans) 유래인 것을 특징으로 하는 섬유소 분해효소 복합체의 제조방법.
The method according to claim 1, wherein the gene encoding the xylanase ratio in step (a) and the gene encoding the small cellulase binding protein a are clostridium celluloborance cellulovorans . &lt; / RTI &gt;
제1항에 있어서, 상기 (a) 단계의 키메릭 엔도-베타-1,4-글루칸아제-이(cCelE)를 코딩하는 유전자는 클로스트리디움 서머셀럼(clostridium thermocellum)의 엔도-베타-1,4-글루칸아제-이를 코딩하는 유전자와 클로스트리디움 셀룰로보란스(clostridium cellulovorans)의 엔도-베타-1,4-글루칸아제-비(EngB)의 도커린 (dokerin) 부위를 코딩하는 유전자가 결합된 것을 특징으로 하는 섬유소 분해효소 복합체의 제조방법.
The method according to claim 1, wherein the gene coding for chimeric endo-beta-1,4-glucanase-1 (cCelE) in step (a) is endo-beta-1 of clostridium thermocellum , The gene encoding 4-glucanase and clostridium celluloborance (EngB ) of endo-beta-1,4-glucanase-cellulovorans is bound to a gene encoding a doxorubic region of endo-beta-1,4-glucanase-
제1항에 있어서, 상기 효모는 피키아 파스토리스(Pichia pastoris)인 것을 특징으로 하는 섬유소 분해효소 복합체의 제조방법.
The method according to claim 1, wherein the yeast is Pichia pastoris .
다음의 단계를 포함하는 바이오매스의 동시당화 발효에 의한 에탄올의 제조방법:
(a) 키메릭 엔도-베타-1,4-글루칸아제-이(chimeric endo―β―1,4―glucanase E; cCelE)를 코딩하는 유전자 함유 재조합 벡터로 형질전환된 재조합 효모, 자일란네이즈-비(xylanase B; XynB)를 코딩하는 유전자 함유 재조합 벡터로 형질전환된 재조합 효모 및 소형 셀룰로오즈 결합단백질 에이(mini cellulose binding protein A; miniCbpA)를 코딩하는 유전자 함유 재조합 벡터로 형질전환된 재조합 효모를 배양하는 단계;
(b) 상기 (a) 단계에서 배양된 재조합 효모에 바이오매스를 첨가하고 추가로 배양하여 에탄올을 생성시키는 단계; 및
(c) 생성된 에탄올을 회수하는 단계;
A process for the production of ethanol by simultaneous saccharification fermentation of biomass comprising the steps of:
(a) a recombinant yeast transformed with a recombinant vector containing a gene encoding chimeric endo-β-1,4-glucanase E (cCelE), a xylanase- a recombinant yeast transformed with a gene containing a recombinant vector encoding xylanase B (XynB) and a recombinant vector transformed with a recombinant vector containing a gene encoding a mini cellulose binding protein A (miniCbpA) step;
(b) adding biomass to the recombinant yeast cultured in step (a) and further culturing to produce ethanol; And
(c) recovering the produced ethanol;
제6항에 있어서, 상기 바이오매스는 거대억새(Miscanthus gianteus)인 것을 특징으로 하는 에탄올의 제조방법.7. The method of claim 6, wherein the biomass is selected from the group consisting of Miscanthus gianteus ). &lt; / RTI &gt;
KR1020130069697A 2013-06-18 2013-06-18 METHOD FOR PREPARING CELLULOSE COMPLEX USING ENDO-β-1,4-GLUCANASE E, XYLANASE B AND MINI CELLULOSE BINDING PROTEIN A FROM CLOSTRIDIUM SP. KR20140146856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130069697A KR20140146856A (en) 2013-06-18 2013-06-18 METHOD FOR PREPARING CELLULOSE COMPLEX USING ENDO-β-1,4-GLUCANASE E, XYLANASE B AND MINI CELLULOSE BINDING PROTEIN A FROM CLOSTRIDIUM SP.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130069697A KR20140146856A (en) 2013-06-18 2013-06-18 METHOD FOR PREPARING CELLULOSE COMPLEX USING ENDO-β-1,4-GLUCANASE E, XYLANASE B AND MINI CELLULOSE BINDING PROTEIN A FROM CLOSTRIDIUM SP.

Publications (1)

Publication Number Publication Date
KR20140146856A true KR20140146856A (en) 2014-12-29

Family

ID=52675896

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130069697A KR20140146856A (en) 2013-06-18 2013-06-18 METHOD FOR PREPARING CELLULOSE COMPLEX USING ENDO-β-1,4-GLUCANASE E, XYLANASE B AND MINI CELLULOSE BINDING PROTEIN A FROM CLOSTRIDIUM SP.

Country Status (1)

Country Link
KR (1) KR20140146856A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102154123B1 (en) * 2019-04-09 2020-09-10 고려대학교 산학협력단 Alginotytic enzyme complex and method for preparing thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102154123B1 (en) * 2019-04-09 2020-09-10 고려대학교 산학협력단 Alginotytic enzyme complex and method for preparing thereof

Similar Documents

Publication Publication Date Title
US11530428B2 (en) Nucleic acids encoding fungal cellobiohydrolases for expression in yeast
KR101120359B1 (en) A recombinant vector introduced with gene which effectively degrade cellulose, a transformant comprising the vector and a method for producing ethanol using the same
EP2046819B1 (en) Methods of increasing secretion of polypeptides having biological activity
US9512416B2 (en) Endoglucanase variants
CA2801577A1 (en) Yeast expressing saccharolytic enzymes for consolidated bioprocessing using starch and cellulose
CA2689910A1 (en) Compositions for degrading cellulosic material
WO2010148148A2 (en) β-GLUCOSIDASE VARIANTS
US8871479B2 (en) Cellulase Cel5H related reagents and their use in microorganisms
JP5771920B2 (en) Thermostable cellobiohydrolase and use thereof
KR101106061B1 (en) A recombinant vector and a transformant with an improved productivity of bio-ethanol
KR20140146856A (en) METHOD FOR PREPARING CELLULOSE COMPLEX USING ENDO-β-1,4-GLUCANASE E, XYLANASE B AND MINI CELLULOSE BINDING PROTEIN A FROM CLOSTRIDIUM SP.
JP5434689B2 (en) Cellulase complex and use thereof
KR20150028564A (en) A recombinant vector introduced with chimeric laccase gene which fused by dockerin module of endoglucanase B and a transformat Escherichia coli comprising the vector
KR101744190B1 (en) Recombinant cellulase cocktails, recombinant yeast complex strains, and use thereof
JP5810489B2 (en) Protein having cellulase activity and use thereof
EP2436698A1 (en) Cellulolytic Clostridium acetobutylicum
JP2012039966A (en) Protein having cellobiohydrolase activity with inactivated cellulose binding domain
AU2013255931A1 (en) Endoglucanases with improved properties
CN113430217B (en) Continuous endo-cellulase and coding gene and application thereof
CN108841810B (en) Multifunctional cellulase gene and application thereof
KR100969328B1 (en) Yeast transformant with improved productivity of bio-ethanol
EP3133156B1 (en) Hyperthermostable endoglucanase
JP6131764B2 (en) Artificial scaffold material and system for retaining proteins and use thereof
KR20140048904A (en) Cellulase fusion protein and method of degrading cellulosic material using the same
JP2013035812A (en) Protein for surface layer-presenting two or more species of proteins and use thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application