KR20140145560A - A method and an apparatus for encoding/decoding a scalable video signal - Google Patents

A method and an apparatus for encoding/decoding a scalable video signal Download PDF

Info

Publication number
KR20140145560A
KR20140145560A KR1020140071199A KR20140071199A KR20140145560A KR 20140145560 A KR20140145560 A KR 20140145560A KR 1020140071199 A KR1020140071199 A KR 1020140071199A KR 20140071199 A KR20140071199 A KR 20140071199A KR 20140145560 A KR20140145560 A KR 20140145560A
Authority
KR
South Korea
Prior art keywords
filter
adaptive
flag
sampling
layer
Prior art date
Application number
KR1020140071199A
Other languages
Korean (ko)
Other versions
KR102286856B1 (en
Inventor
이배근
김주영
Original Assignee
주식회사 케이티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 케이티 filed Critical 주식회사 케이티
Publication of KR20140145560A publication Critical patent/KR20140145560A/en
Application granted granted Critical
Publication of KR102286856B1 publication Critical patent/KR102286856B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/117Filters, e.g. for pre-processing or post-processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/132Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/30Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

A method for decoding a scalable video signal of the present invention includes the steps of: acquiring a filter coefficient of an up-sampling filter applied to a reference picture of a reference layer; creating an inter-layer reference picture by applying the acquired filter coefficient to the reference picture; and performing inter prediction with respect to a present block of a present layer based on the created inter-layer reference picture.

Description

스케일러블 비디오 신호 인코딩/디코딩 방법 및 장치{A METHOD AND AN APPARATUS FOR ENCODING/DECODING A SCALABLE VIDEO SIGNAL}[0001] METHOD AND APPARATUS FOR ENCODING / DECODING A SCALABLE VIDEO SIGNAL [0002]

본 발명은 스케일러블 비디오 신호 인코딩/디코딩 방법 및 장치에 관한 것이다.The present invention relates to a scalable video signal encoding / decoding method and apparatus.

최근 HD(High Definition) 영상 및 UHD(Ultra High Definition) 영상과 같은 고해상도, 고품질의 영상에 대한 수요가 다양한 응용 분야에서 증가하고 있다. 영상 데이터가 고해상도, 고품질이 될수록 기존의 영상 데이터에 비해 상대적으로 데이터량이 증가하기 때문에 기존의 유무선 광대역 회선과 같은 매체를 이용하여 영상 데이터를 전송하거나 기존의 저장 매체를 이용해 저장하는 경우, 전송 비용과 저장 비용이 증가하게 된다. 영상 데이터가 고해상도, 고품질화 됨에 따라 발생하는 이러한 문제들을 해결하기 위해서는 고효율의 영상 압축 기술들이 활용될 수 있다.Recently, the demand for high resolution and high quality images such as high definition (HD) image and ultra high definition (UHD) image is increasing in various applications. As the image data has high resolution and high quality, the amount of data increases relative to the existing image data. Therefore, when the image data is transmitted using a medium such as a wired / wireless broadband line or stored using an existing storage medium, The storage cost is increased. High-efficiency image compression techniques can be utilized to solve such problems as image data becomes high-resolution and high-quality.

영상 압축 기술로 현재 픽쳐의 이전 또는 이후 픽쳐로부터 현재 픽쳐에 포함된 화소값을 예측하는 화면 간 예측 기술, 현재 픽쳐 내의 화소 정보를 이용하여 현재 픽쳐에 포함된 화소값을 예측하는 화면 내 예측 기술, 출현 빈도가 높은 값에 짧은 부호를 할당하고 출현 빈도가 낮은 값에 긴 부호를 할당하는 엔트로피 부호화 기술 등 다양한 기술이 존재하고 이러한 영상 압축 기술을 이용해 영상 데이터를 효과적으로 압축하여 전송 또는 저장할 수 있다.An inter picture prediction technique for predicting a pixel value included in a current picture from a previous or a subsequent picture of a current picture by an image compression technique, an intra picture prediction technique for predicting a pixel value included in a current picture using pixel information in the current picture, There are various techniques such as an entropy encoding technique in which a short code is assigned to a value having a high appearance frequency and a long code is assigned to a value having a low appearance frequency. Image data can be effectively compressed and transmitted or stored using such an image compression technique.

한편, 고해상도 영상에 대한 수요가 증가함과 함께, 새로운 영상 서비스로서 입체 영상 컨텐츠에 대한 수요도 함께 증가하고 있다. 고해상도 및 초고해상도의 입체 영상 콘텐츠를 효과적으로 제공하기 위한 비디오 압축 기술에 대하여 논의가 진행되고 있다.On the other hand, demand for high-resolution images is increasing, and demand for stereoscopic image content as a new image service is also increasing. Video compression techniques are being discussed to effectively provide high resolution and ultra-high resolution stereoscopic content.

본 발명은 스케일러블 비디오 신호를 인코딩/디코딩에 있어서, 참조 레이어의 참조 픽쳐를 업샘플링하는 방법 및 장치를 제공하는 것을 목적으로 한다.It is an object of the present invention to provide a method and apparatus for up-sampling a reference picture of a reference layer in encoding / decoding a scalable video signal.

본 발명은 스케일러블 비디오 신호를 인코딩/디코딩함에 있어서, 인터레이어 참조 픽쳐를 이용하여 참조 픽쳐 리스트를 구성하는 방법 및 장치를 제공하는 것을 목적으로 한다.An object of the present invention is to provide a method and apparatus for constructing a reference picture list using an interlayer reference picture in encoding / decoding a scalable video signal.

본 발명은 스케일러블 비디오 신호를 인코딩/디코딩함에 있어서, 레이어 간 예측을 통해 현재 레이어의 텍스쳐 정보를 효과적으로 유도하는 방법 및 장치를 제공하는 것을 목적으로 한다.An object of the present invention is to provide a method and apparatus for effectively deriving texture information of a current layer through inter-layer prediction in encoding / decoding a scalable video signal.

본 발명에 따른 스케일러블 비디오 신호 디코딩 방법 및 장치는, 고정된 업샘플링 필터와 적응적 업샘플링 필터를 선택적으로 이용하여 참조 레이어의 참조 픽쳐를 업샘플링하는 것을 특징으로 한다.A scalable video signal decoding method and apparatus according to the present invention is characterized by upsampling a reference picture of a reference layer by selectively using a fixed up-sampling filter and an adaptive up-sampling filter.

본 발명에 따른 스케일러블 비디오 신호 디코딩 방법 및 장치는, 휘도 성분과 색차 성분 각각에 대해서 고정된 업샘플링 필터와 적응적 업샘플링 필터를 선택적으로 이용하는 것을 특징으로 한다.The scalable video signal decoding method and apparatus according to the present invention are characterized in that a fixed up-sampling filter and an adaptive up-sampling filter are selectively used for each of a luminance component and a chrominance component.

본 발명에 따른 스케일러블 비디오 신호 디코딩 방법 및 장치는, 휘도 성분과 색차 성분 Cb, Cr 각각에 대해서 고정된 업샘플링 필터와 적응적 업샘플링 필터를 선택적으로 이용하는 것을 특징으로 한다.The method and apparatus for scalable video signal decoding according to the present invention are characterized in that a fixed up-sampling filter and an adaptive up-sampling filter are selectively used for each of a luminance component and chrominance components Cb and Cr.

본 발명에 따른 스케일러블 비디오 신호 디코딩 방법 및 장치는, 참조 샘플의 위상 별로 적응적으로 적응적 업샘플링 필터의 필터 계수를 획득하는 것을 특징으로 한다.The scalable video signal decoding method and apparatus according to the present invention are characterized in that a filter coefficient of an adaptive up-sampling filter is adaptively obtained for each phase of a reference sample.

본 발명에 따른 스케일러블 비디오 신호 인코딩 방법 및 장치는, 고정된 업샘플링 필터와 적응적 업샘플링 필터를 선택적으로 이용하여 참조 레이어의 참조 픽쳐를 업샘플링하는 것을 특징으로 한다.A scalable video signal encoding method and apparatus according to the present invention is characterized by upsampling a reference picture of a reference layer by selectively using a fixed up-sampling filter and an adaptive up-sampling filter.

본 발명에 따른 스케일러블 비디오 신호 인코딩 방법 및 장치는, 휘도 성분과 색차 성분 각각에 대해서 고정된 업샘플링 필터와 적응적 업샘플링 필터를 선택적으로 이용하는 것을 특징으로 한다.A scalable video signal encoding method and apparatus according to the present invention is characterized in that a fixed up-sampling filter and an adaptive up-sampling filter are selectively used for each of a luminance component and a chrominance component.

본 발명에 따른 스케일러블 비디오 신호 인코딩 방법 및 장치는, 휘도 성분과 색차 성분 Cb, Cr 각각에 대해서 고정된 업샘플링 필터와 적응적 업샘플링 필터를 선택적으로 이용하는 것을 특징으로 한다.The scalable video signal encoding method and apparatus according to the present invention are characterized in that a fixed up-sampling filter and an adaptive up-sampling filter are selectively used for each of the luminance component and chrominance components Cb and Cr.

본 발명에 따른 스케일러블 비디오 신호 인코딩 방법 및 장치는, 참조 샘플의 위상 별로 적응적으로 적응적 업샘플링 필터의 필터 계수를 획득하는 것을 특징으로 한다.A scalable video signal encoding method and apparatus according to the present invention is characterized in that a filter coefficient of an adaptive up-sampling filter is adaptively obtained for each phase of a reference sample.

본 발명에 의하면, 영상의 특징을 반영한 적응적 업샘플링 필터를 선택적으로 이용함으로써, 참조 레이어의 참조 픽쳐를 효과적으로 업샘플링할 수 있다.According to the present invention, by selectively using an adaptive up-sampling filter that reflects characteristics of an image, the reference picture of the reference layer can be effectively upsampled.

또한, 본 발명에 의하면, 인터레이어 참조 픽쳐를 이용하여 참조 픽쳐 리스트를 효과적으로 구성할 수 있다.Further, according to the present invention, it is possible to effectively construct a reference picture list using an interlayer reference picture.

또한, 본 발명에 의하면, 레이어 간 예측을 통해 현재 레이어의 텍스쳐 정보를 효과적으로 유도할 수 있다.In addition, according to the present invention, texture information of a current layer can be effectively guided through inter-layer prediction.

도 1은 본 발명의 일실시예에 따른 부호화 장치를 개략적으로 도시한 블록도이다.
도 2는 본 발명의 일실시예에 따른 복호화 장치를 개략적으로 도시한 블록도이다.
도 3은 본 발명이 적용되는 일실시예로서, 참조 레이어의 참조 픽쳐를 이용하여 현재 레이어의 레이어 간 예측을 수행하는 과정을 도시한 순서도이다.
도 4는 본 발명이 적용되는 일실시예로서, 참조 픽쳐에 대해 적응적 업샘플링 필터를 선택적으로 이용하는 방법을 도시한 것이다.
도 5는 본 발명이 적용되는 일실시예로서, 휘도 성분과 색차 성분 각각에 대해 적응적 업샘플링 필터를 선택적으로 이용하는 방법을 도시한 것이다.
도 6은 본 발명이 적용되는 일실시예로서, 휘도 성분과 2개의 색차 성분(Cb, Cr) 각각에 대해 적응적 업샘플링 필터를 선택적으로 이용하는 방법을 도시한 것이다.
도 7은 본 발명이 적용되는 일실시예로서, 제1 적응적 성분 플래그에 기초하여 적응적 업샘플링 필터의 필터 계수를 획득하는 방법을 도시한 것이다.
도 8은 본 발명이 적용되는 일실실예로서, 제2 적응적 성분 플래그에 기초하여 적응적 업샘플링 필터의 필터 계수를 획득하는 방법을 도시한 것이다.
도 9는 본 발명이 적용되는 일실시예로서, 참조 샘플의 위상 별로 적응적으로 필터 계수를 획득하는 방법을 도시한 것이다.
1 is a block diagram schematically illustrating an encoding apparatus according to an embodiment of the present invention.
2 is a block diagram schematically illustrating a decoding apparatus according to an embodiment of the present invention.
3 is a flowchart illustrating a process of performing inter-layer prediction of a current layer using a reference picture of a reference layer according to an embodiment of the present invention.
FIG. 4 illustrates a method of selectively using an adaptive up-sampling filter for a reference picture according to an embodiment to which the present invention is applied.
FIG. 5 illustrates a method of selectively using an adaptive up-sampling filter for each of a luminance component and a chrominance component to which the present invention is applied.
FIG. 6 illustrates a method of selectively using an adaptive up-sampling filter for each of a luminance component and two chrominance components (Cb and Cr) to which the present invention is applied.
FIG. 7 illustrates a method of obtaining filter coefficients of an adaptive up-sampling filter based on a first adaptive component flag, according to an embodiment to which the present invention is applied.
Figure 8 illustrates a method of obtaining the filter coefficients of an adaptive up-sampling filter based on a second adaptive component flag, as an example of an application to which the present invention is applied.
FIG. 9 illustrates a method of adaptively acquiring filter coefficients for each phase of a reference sample according to an embodiment of the present invention. Referring to FIG.

이하 첨부된 도면을 참조로 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.  이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, terms and words used in the present specification and claims should not be construed as limited to ordinary or dictionary terms, and the inventor should appropriately interpret the concepts of the terms appropriately It should be construed in accordance with the meaning and concept consistent with the technical idea of the present invention based on the principle that it can be defined. Therefore, the embodiments described in this specification and the configurations shown in the drawings are merely the most preferred embodiments of the present invention and do not represent all the technical ideas of the present invention. Therefore, It is to be understood that equivalents and modifications are possible.

본 명세서에서 어떤 구성 요소가 다른 구성 요소에 “연결되어” 있다거나 “접속되어” 있다고 언급된 때에는, 그 다른 구성 요소에 직접적으로 연결되어 있거나 또는 접속되어 있는 것을 의미할 수도 있고, 중간에 다른 구성 요소가 존재하는 것을 의미할 수도 있다. 아울러, 본 명세서에서 특정 구성을 “포함”한다고 기술하는 내용은 해당 구성 이외의 구성을 배제하는 것이 아니며, 추가적인 구성이 본 발명의 실시 또는 본 발명의 기술적 사상의 범위에 포함될 수 있음을 의미한다.When an element is referred to herein as being "connected" or "connected" to another element, it may mean directly connected or connected to the other element, Element may be present. In addition, the content of " including " a specific configuration in this specification does not exclude a configuration other than the configuration, and means that additional configurations can be included in the scope of the present invention or the scope of the present invention.

제1, 제2 등의 용어는 다양한 구성들을 설명하는데 사용될 수 있지만, 상기 구성들은 상기 용어에 의해 한정되지 않는다. 상기 용어들은 하나의 구성을 다른 구성으로부터 구별하는 목적으로 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성은 제2 구성으로 명명될 수 있고, 유사하게 제2 구성도 제1 구성으로 명명될 수 있다.The terms first, second, etc. may be used to describe various configurations, but the configurations are not limited by the term. The terms are used for the purpose of distinguishing one configuration from another. For example, without departing from the scope of the present invention, the first configuration may be referred to as the second configuration, and similarly, the second configuration may be named as the first configuration.

또한, 본 발명의 실시예에 나타나는 구성부들은 서로 다른 특징적인 기능을 나타내기 위해 독립적으로 도시되는 것으로, 각 구성부들이 분리된 하드웨어나 하나의 소프트웨어 구성 단위로 이루어짐을 의미하지 않는다. 즉, 각 구성부는 설명의 편의상 각각의 구성부로 나열하여 포함한 것으로 각 구성부 중 적어도 두 개의 구성부가 하나의 구성부를 이루거나, 하나의 구성부가 복수 개의 구성부로 나뉘어져 기능을 수행할 수 있다. 각 구성부의 통합된 실시예 및 분리된 실시예도 본 발명의 본질에서 벗어나지 않는 한 본 발명의 권리 범위에 포함된다.In addition, the components shown in the embodiments of the present invention are shown independently to represent different characteristic functions, and do not mean that the components are composed of separate hardware or software constituent units. That is, each constituent unit is included in each constituent unit for convenience of explanation, and at least two constituent units of each constituent unit may form one constituent unit or one constituent unit may be divided into a plurality of constituent units to perform a function. The integrated embodiments and the separate embodiments of each component are also included in the scope of the present invention unless they depart from the essence of the present invention.

또한, 일부의 구성 요소는 본 발명에서 본질적인 기능을 수행하는 필수적인 구성 요소는 아니고 단지 성능을 향상시키기 위한 선택적 구성 요소일 수 있다. 본 발명은 단지 성능 향상을 위해 사용되는 구성 요소를 제외한 본 발명의 본질을 구현하는데 필수적인 구성부만을 포함하여 구현될 수 있고, 단지 성능 향상을 위해 사용되는 선택적 구성 요소를 제외한 필수 구성 요소만을 포함한 구조도 본 발명의 권리범위에 포함된다.In addition, some of the components are not essential components to perform essential functions in the present invention, but may be optional components only to improve performance. The present invention can be implemented only with components essential for realizing the essence of the present invention, except for the components used for the performance improvement, and can be implemented by only including the essential components except the optional components used for performance improvement Are also included in the scope of the present invention.

비트스트림 내 복수의 레이어(multi-layer)를 지원하는 비디오의 부호화 및 복호화를 스케일러블 비디오 코딩(scalable video coding)이라고 한다. 복수의 레이어 간에는 강한 연관성(correlation)이 존재하기 때문에 이런 연관성을 이용하여 예측을 수행하면 데이터의 중복 요소를 제거할 수 있고, 영상의 부호화 성능을 향상시킬 수 있다. 다른 레이어의 정보를 이용하여 현재 레이어의 예측을 수행하는 것을 이하에서는 레이어 간 예측(inter-layer prediction) 혹은 인터 레이어 예측이라고 표현한다. The coding and decoding of video supporting a plurality of layers (multi-layers) in a bitstream is referred to as scalable video coding. Since there is a strong correlation between a plurality of layers, it is possible to remove redundant elements of data and improve the coding performance of an image by performing prediction using such a relation. Hereinafter, prediction of the current layer using information of another layer is referred to as inter-layer prediction or inter-layer prediction.

복수의 레이어들은 해상도가 상이할 수 있으며, 여기서 해상도는 공간 해상도, 시간 해상도, 이미지 퀄러티 중 적어도 하나를 의미할 수 있다. 인터 레이어 예측 시 해상도의 조절을 위하여 레이어의 업샘플링(up-sampling) 또는 다운샘플링(down sampling)과 같은 리샘플링(resampling)이 수행될 수 있다.
The plurality of layers may have different resolutions, where the resolution may refer to at least one of spatial resolution, temporal resolution, and image quality. Resampling such as up-sampling or down-sampling of a layer may be performed to adjust the resolution in the inter-layer prediction.

도 1은 본 발명의 일 실시예에 따른 부호화 장치를 개략적으로 도시한 블록도이다.1 is a block diagram schematically illustrating an encoding apparatus according to an embodiment of the present invention.

본 발명에 따른 부호화 장치(100)는 상위 레이어에 대한 부호화부(100a)와 하위 레이어에 대한 부호화부(100b)를 포함한다.The encoding apparatus 100 according to the present invention includes an encoding unit 100a for an upper layer and an encoding unit 100b for a lower layer.

상위 레이어는 현재 레이어 또는 인핸스먼트 레이어(enhancement layer)로 표현될 수 있으며, 하위 레이어는 상위 레이어보다 해상도가 낮은 인핸스먼트 레이어, 베이스 레이어(base layer) 또는 참조 레이어(reference layer)로 표현될 수 있다. 상위 레이어와 하위 레이어는 공간적 해상도, 프레임 레이트에 따른 시간적 해상도 및 컬러 포맷 또는 양자화 크기에 따른 이미지 퀄리티 중 적어도 하나가 서로 다를 수 있다. 레이어 간 예측을 수행하기 위하여 해상도 변경이 필요한 경우 레이어의 업샘플링 또는 다운샘플링이 수행될 수 있다.The upper layer may be represented by a current layer or an enhancement layer and the lower layer may be represented by an enhancement layer, a base layer, or a reference layer having a resolution lower than that of the upper layer . The upper layer and the lower layer may have different spatial resolution, temporal resolution according to the frame rate, and image quality depending on the color format or the quantization size. Upsampling or downsampling of a layer may be performed when a resolution change is required to perform inter-layer prediction.

상위 레이어의 부호화부(100a)는 분할부(110), 예측부(120), 변환부(130), 양자화부(140), 재정렬부(150), 엔트로피 부호화부(160), 역양자화부(170), 역변환부(180), 필터부(190) 및 메모리(195)를 포함할 수 있다.The encoding unit 100a of the upper layer includes a decomposing unit 110, a predicting unit 120, a transforming unit 130, a quantizing unit 140, a rearranging unit 150, an entropy encoding unit 160, 170, an inverse transform unit 180, a filter unit 190, and a memory 195.

하위 레이어의 부호화부(100b)는 분할부(111), 예측부(125), 변환부(131), 양자화부(141), 재정렬부(151), 엔트로피 부호화부(161), 역양자화부(171), 역변환부(181), 필터부(191) 및 메모리(196)를 포함할 수 있다.The lower layer encoding unit 100b includes a partitioning unit 111, a predicting unit 125, a transforming unit 131, a quantizing unit 141, a reordering unit 151, an entropy coding unit 161, an inverse quantization unit 171, an inverse transform unit 181, a filter unit 191, and a memory 196.

부호화부는 이하의 본 발명의 실시예에서 설명하는 영상 부호화 방법에 의해 구현될 수 있으나, 일부의 구성부에서의 동작은 부호화 장치의 복잡도를 낮추기 위해 또는 빠른 실시간 부호화를 위해 수행되지 않을 수 있다. 예를 들어, 예측부에서 화면 내 예측을 수행함에 있어서, 실시간으로 부호화를 수행하기 위해 모든 화면 내 예측 모드 방법을 사용하여 최적의 화면 내 부호화 방법을 선택하는 방법을 사용하지 않고 일부의 제한적인 개수의 화면 내 예측 모드를 사용하여 그 중에서 하나의 화면 내 예측 모드를 최종 화면 내 예측 모드로 선택하는 방법이 사용될 수 있다. 또 다른 예로 화면 내 예측 또는 화면 간 예측을 수행함에 있어 사용되는 예측 블록의 형태를 제한적으로 사용하도록 하는 것도 가능하다. The encoding unit may be implemented by the image encoding method described in the embodiments of the present invention, but operations in some components may not be performed for lowering the complexity of the encoding apparatus or for fast real-time encoding. For example, in performing intra-picture prediction in the prediction unit, it is not necessary to use a method of selecting an optimal intra-picture coding method using all the intra-picture prediction mode methods in order to perform coding in real time, The intra-picture prediction mode may be used as the final intra-picture prediction mode. As another example, it is also possible to restrictively use the type of the prediction block used in intra-picture prediction or inter-picture prediction.

부호화 장치에서 처리되는 블록의 단위는 부호화를 수행하는 부호화 단위, 예측을 수행하는 예측 단위, 변환을 수행하는 변환 단위가 될 수 있다. 부호화 단위는 CU(Coding Unit), 예측 단위는 PU(Prediction Unit), 변환 단위는 TU(Transform Unit)라는 용어로 표현될 수 있다.The unit of the block processed by the encoding apparatus may be a coding unit for performing encoding, a prediction unit for performing prediction, and a conversion unit for performing conversion. The coding unit can be expressed by CU (Coding Unit), the prediction unit by PU (Prediction Unit), and the conversion unit by TU (Transform Unit).

분할부(110, 111)에서는 레이어 영상을 복수의 부호화 블록, 예측 블록 및 변환 블록의 조합으로 분할하고 소정의 기준(예를 들어, 비용 함수)으로 그 중 하나의 부호화 블록, 예측 블록 및 변환 블록의 조합을 선택하여 레이어를 분할할 수 있다. 예를 들어, 레이어 영상에서 부호화 단위를 분할하기 위해서는 쿼드 트리 구조(QuadTree Structure)와 같은 재귀적인 트리 구조를 사용할 수 있다. 이하, 본 발명의 실시예에서는 부호화 블록의 의미를 부호화를 하는 블록이라는 의미뿐만 아니라 복호화를 수행하는 블록이라는 의미로도 사용할 수 있다.In the division units 110 and 111, the layer image is divided into a plurality of encoding blocks, a prediction block, and a conversion block, and is divided into a coding block, a prediction block, Can be selected to divide the layer. For example, a recursive tree structure such as a quad tree structure can be used to divide an encoding unit in a layer image. Hereinafter, in the embodiment of the present invention, the meaning of a coding block may be used not only for a coding block but also for a block to perform decoding.

예측 블록은 화면 내 예측 또는 화면 간 예측과 같은 예측을 수행하는 단위가 될 수 있다. 화면 내 예측을 수행하는 블록은 2Nx2N, NxN과 같은 정사각형 형태의 블록일 수 있다. 화면 간 예측을 수행하는 블록으로는 2Nx2N, NxN과 같은 정사각형의 형태 또는 2NxN, Nx2N과 같은 직사각형의 형태 또는 비대칭 형태인 AMP (Asymmetric Motion Partitioning)를 사용한 예측 블록 분할 방법이 있다. 예측 블록의 형태에 따라 변환부(115)에서는 변환을 수행하는 방법이 달라질 수 있다.The prediction block may be a unit for performing prediction such as intra-picture prediction or inter-picture prediction. The block for intra prediction may be a square block such as 2Nx2N, NxN. As a block for performing inter picture prediction, there is a prediction block dividing method using AMP (Asymmetric Motion Partitioning), which is a square shape such as 2Nx2N or NxN or a rectangular shape or an asymmetric shape such as 2NxN and Nx2N. The method of performing the transform in the transform unit 115 may vary depending on the type of the prediction block.

부호화부(100a, 100b)의 예측부(120, 125)는 화면 내 예측(intra prediction)을 수행하는 화면 내 예측부(121, 126)와 화면 간 예측(inter prediction)을 수행하는 화면 간 예측부(122, 127)를 포함할 수 있다. 상위 레이어 부호화부(100a)의 예측부(120)는 하위 레이어의 정보를 이용하여 상위 레이어에 대한 예측을 수행하는 레이어 간 예측부(123)를 더 포함할 수 있다. The prediction units 120 and 125 of the encoding units 100a and 100b include intra prediction units 121 and 126 for performing intra prediction and inter prediction units for performing inter prediction, (122, 127). The predicting unit 120 of the upper layer encoding unit 100a may further include an inter-layer predicting unit 123 that performs prediction on an upper layer using information of a lower layer.

예측부(120, 125)는 예측 블록에 대해 화면 간 예측을 사용할 것인지 또는 화면 내 예측을 수행할 것인지를 결정할 수 있다. 화면 내 예측을 수행함에 있어서 예측 블록 단위로 화면 내 예측 모드를 결정하고, 결정된 화면 내 예측 모드에 기초하여 화면 내 예측을 수행하는 과정은 변환 블록 단위로 수행될 수도 있다. 생성된 예측 블록과 원본 블록 사이의 잔차값(잔차 블록)은 변환부(130, 131)로 입력될 수 있다. 또한, 예측을 위해 사용한 예측 모드 정보, 움직임 정보 등은 잔차값과 함께 엔트로피 부호화부(130)에서 부호화되어 복호화 장치에 전달될 수 있다.The prediction units 120 and 125 can determine whether to use inter-picture prediction or intra-picture prediction for the prediction block. The process of determining an intra prediction mode in units of prediction blocks in performing intra prediction and performing intra prediction on the basis of the determined intra prediction mode may be performed on a conversion block basis. The residual value (residual block) between the generated prediction block and the original block can be input to the conversion units 130 and 131. In addition, the prediction mode information, motion information, and the like used for prediction can be encoded by the entropy encoding unit 130 and transmitted to the decoding apparatus together with the residual value.

PCM(Pulse Coded Modulation) 부호화 모드를 사용할 경우, 예측부(120, 125)를 통해 예측을 수행하지 않고, 원본 블록을 그대로 부호화하여 복호화부에 전송하는 것도 가능하다.When the PCM (Pulse Coded Modulation) coding mode is used, it is also possible to directly encode the original block and transmit it to the decoding unit without performing the prediction through the prediction units 120 and 125.

화면 내 예측부(121, 126)에서는 현재 블록(예측 대상이 되는 블록)의 주변에 존재하는 참조 픽셀을 기초로 화면 내 예측된 블록을 생성할 수 있다. 화면 내 예측 방법에서 화면 내 예측 모드는 참조 픽셀을 예측 방향에 따라 사용하는 방향성 예측 모드와 예측 방향을 고려하지 않는 비방향성 모드를 가질 수 있다. 루마 정보를 예측하기 위한 모드와 색차 정보를 예측하기 위한 모드는 종류가 상이할 수 있다. 색차 정보를 예측하기 위해 루마 정보를 예측한 화면 내 예측 모드 또는 예측된 루마 정보를 활용할 수 있다. 만약, 참조 픽셀이 가용하지 않는 경우, 가용하지 않은 참조 픽셀을 다른 픽셀로 대체하고, 이를 사용하여 예측 블록을 생성할 수 있다.Intra prediction units 121 and 126 can generate a predicted block on the basis of reference pixels existing in the vicinity of the current block (block to be predicted). In the intra prediction method, the intra prediction mode may have a directional prediction mode using the reference pixel according to the prediction direction and a non-directional mode not considering the prediction direction. The mode for predicting luma information and the mode for predicting chrominance information may be different types. In order to predict the color difference information, an intra prediction mode in which luma information is predicted or predicted luma information can be utilized. If the reference pixel is not available, replace the unavailable reference pixel with another pixel and use it to create a prediction block.

예측 블록은 복수개의 변환 블록을 포함할 수 있는데, 화면 내 예측을 수행 시 예측 블록의 크기와 변환 블록의 크기가 동일할 경우, 예측 블록의 좌측에 존재하는 픽셀, 좌측 상단에 존재하는 픽셀, 상단에 존재하는 픽셀을 기초로 예측 블록에 대한 화면 내 예측을 수행할 수 있다. 하지만, 화면 내 예측을 수행 시 예측 블록의 크기와 변환 블록의 크기가 상이하여 예측 블록의 내부에 복수의 변환 블록이 포함되는 경우, 변환 블록에 인접한 주변 픽셀을 참조 픽셀로 이용하여 화면 내 예측을 수행할 수 있다. 여기서, 변환 블록에 인접한 주변 픽셀은 예측 블록에 인접한 주변 픽셀과 예측 블록 내에 이미 복호화된 픽셀 중 적어도 하나를 포함할 수 있다.The prediction block may include a plurality of transform blocks. When intra prediction is performed, if the size of the prediction block and the size of the transform block are the same, a pixel existing on the left side of the prediction block, In-picture prediction for the prediction block based on the pixels existing in the prediction block. However, when intra prediction is performed, when the size of the prediction block is different from the size of the transform block, when a plurality of transform blocks are included in the prediction block, the intra-picture prediction is performed using the neighboring pixels adjacent to the transform block as reference pixels. Can be performed. Here, the neighboring pixels adjacent to the transform block may include at least one of neighboring pixels adjacent to the prediction block and pixels already decoded in the prediction block.

화면 내 예측 방법은 화면 내 예측 모드에 따라 참조 화소에 MDIS(Mode Dependent Intra Smoothing) 필터를 적용한 후 예측 블록을 생성할 수 있다. 참조 픽셀에 적용되는 MDIS 필터의 종류는 상이할 수 있다. MDIS 필터는 화면 내 예측이 수행되어 화면 내 예측된 블록에 적용되는 추가의 필터로서 참조 픽셀과 예측을 수행 후 생성된 화면 내 예측된 블록에 존재하는 잔차를 줄이는데 사용될 수 있다. MDIS 필터링을 수행함에 있어 참조 픽셀과 화면 내 예측된 블록에 포함된 일부 열에 대한 필터링은 화면 내 예측 모드의 방향성에 따라 다른 필터링을 수행할 수 있다.The intra-picture prediction method can generate a prediction block after applying a mode dependent intra-smoothing (MDIS) filter to the reference picture according to the intra-picture prediction mode. The type of MDIS filter applied to the reference pixel may be different. The MDIS filter can be used to reduce residuals in intra-frame predicted blocks generated after performing intra-prediction and applied to reference pixels and prediction as additional filters applied to intra-frame predicted blocks. In performing MDIS filtering, the filtering of the reference pixel and some columns included in the intra prediction block can perform filtering according to the direction of the intra prediction mode.

화면 간 예측부(122, 127)는 현재 픽쳐의 이전 픽쳐 또는 이후 픽쳐 중 적어도 하나의 픽쳐에 포함된 블록의 정보를 참조하여 예측을 수행할 수 있다. 화면 간 예측부(122, 127)에는 참조 픽쳐 보간부, 움직임 예측부, 움직임 보상부가 포함될 수 있다.The inter-picture prediction units 122 and 127 can perform prediction by referring to information of a block included in at least one of a previous picture of a current picture or a following picture. The inter-picture prediction units 122 and 127 may include a reference picture interpolating unit, a motion predicting unit, and a motion compensating unit.

참조 픽쳐 보간부에서는 메모리(195, 196)로부터 참조 픽쳐 정보를 제공받고 참조 픽쳐에서 정수 화소 이하의 화소 정보를 생성할 수 있다. 루마 화소의 경우, 1/4 화소 단위로 정수 화소 이하의 화소 정보를 생성하기 위해 필터 계수를 달리하는 DCT 기반의 8탭 보간 필터(DCT-based Interpolation Filter)가 사용될 수 있다. 색차 신호의 경우 1/8 화소 단위로 정수 화소 이하의 화소 정보를 생성하기 위해 필터 계수를 달리하는 DCT 기반의 4탭 보간 필터(DCT-based Interpolation Filter)가 사용될 수 있다.In the reference picture interpolating unit, the reference picture information is supplied from the memories 195 and 196, and pixel information of an integer pixel or less can be generated in the reference picture. In the case of luma pixels, a DCT-based interpolation filter (DCT) based on a different filter coefficient may be used to generate pixel information of an integer number of pixels or less in units of quarter pixels. In the case of a color difference signal, a DCT-based 4-tap interpolation filter having a different filter coefficient may be used to generate pixel information of an integer number of pixels or less in units of 1/8 pixel.

화면 간 예측부(122, 127)는 참조 픽쳐 보간부에 의해 보간된 참조 픽쳐를 기초로 움직임 예측을 수행할 수 있다. 움직임 벡터를 산출하기 위한 방법으로 FBMA(Full search-based Block Matching Algorithm), TSS(Three Step Search), NTS(New Three-Step Search Algorithm) 등 다양한 방법이 사용될 수 있다. 움직임 벡터는 보간된 화소를 기초로 1/2 또는 1/4 화소 단위의 움직임 벡터 값을 가질 수 있다. 화면 간 예측부(122, 127)에서는 여러 가지 화면 간 예측 방법 중 하나의 화면 간 예측 방법을 적용하여 현재 블록에 대한 예측을 수행할 수 있다. The inter-picture prediction units 122 and 127 can perform motion prediction based on the reference pictures interpolated by the reference picture interpolating unit. Various methods such as Full Search-based Block Matching Algorithm (FBMA), Three Step Search (TSS), and New Three-Step Search Algorithm (NTS) can be used to calculate motion vectors. The motion vector may have a motion vector value of 1/2 or 1/4 pixel unit based on the interpolated pixel. The inter-picture prediction units 122 and 127 can perform prediction on the current block by applying one inter-picture prediction method among various inter-picture prediction methods.

화면 간 예측 방법으로는 예를 들어, 스킵(Skip) 방법, 머지(Merge) 방법, MVP(Motion Vector Predictor)를 이용하는 방법 등 다양한 방법이 사용될 수 있다. As the inter-picture prediction method, various methods such as a skip method, a merge method, and a method using a motion vector predictor (MVP) can be used.

화면 간 예측에 있어서 움직임 정보 즉, 참조 인덱스, 움직임 벡터, 레지듀얼 신호 등의 정보는 엔트로피 부호화되어 복호화부에 전달된다. 스킵 모드가 적용되는 경우에는 레지듀얼 신호가 생성되지 아니하므로, 레지듀얼 신호에 대한 변환 및 양자화 과정이 생략될 수 있다.In the inter-picture prediction, information such as motion information, such as reference indices, motion vectors, and residual signals, is entropy-encoded and transmitted to the decoding unit. When the skip mode is applied, a residual signal is not generated, so that the conversion and quantization process for the residual signal may be omitted.

레이어 간 예측부(123)는 하위 레이어의 정보를 이용하여 상위 레이어를 예측하는 레이어 간 예측을 수행한다. 레이어 간 예측부(123)는 하위 레이어의 텍스쳐 정보, 움직임 정보 등을 이용하여 레이어 간 예측(inter-layer prediction)을 수행할 수 있다. The inter-layer predicting unit 123 performs inter-layer prediction for predicting an upper layer using information of the lower layer. The inter-layer predicting unit 123 may perform inter-layer prediction using texture information and motion information of a lower layer.

레이어 간 예측은 하위 레이어의 픽쳐를 참조 픽쳐로 해서 하위 레이어(참조 레이어)의픽쳐에 대한 움직임 정보를 이용하여 상위 레이어의 현재 블록에 대한 예측을 수행할 수 있다. 레이어 간 예측에서 참조 픽쳐로 사용되는 참조 레이어의 픽쳐는 현재 레이어의 해상도에 맞게 샘플링된 픽쳐일 수 있다. 또한, 움직임 정보는 움직임 벡터 및 참조 인덱스를 포함할 수 있다. 이때, 참조 레이어의 픽쳐에 대한 움직임 벡터의 값은 (0,0)으로 설정될 수 있다.
Inter-layer prediction can predict a current block of an upper layer using motion information on a picture of a lower layer (reference layer) using a picture of a lower layer as a reference picture. A picture of a reference layer used as a reference picture in inter-layer prediction may be a picture sampled according to the resolution of the current layer. In addition, the motion information may include a motion vector and a reference index. At this time, the value of the motion vector for the picture of the reference layer can be set to (0, 0).

레이어 간 예측의 예로서, 하위 레이어의 픽쳐를 참조 픽쳐로 이용하는 예측 방법을 설명하였으나, 본 발명은 이에 한정되지 않는다. 레이어 간 예측부(123)는 레이어 간 텍스처 예측, 레이어 간 움직임 예측, 레이어 간 신택스 예측 및 레이어 간 차분 예측 등을 수행할 수도 있다.As an example of inter-layer prediction, a prediction method of using a picture of a lower layer as a reference picture has been described, but the present invention is not limited to this. The inter-layer predicting unit 123 may perform inter-layer texture prediction, inter-layer motion prediction, inter-layer syntax prediction, inter-layer difference prediction, and the like.

레이어 간 텍스처 예측은 참조 레이어의 텍스처를 기반으로 현재 레이어의 텍스처를 유도할 수 있다. 참조 레이어의 텍스처는 현재 레이어의 해상도에 맞춰 샘플링될 수 있으며, 레이어 간 예측부(123)는 샘플링된 참조 레이어의 텍스처를 기반으로 현재 레이어의 텍스처를 예측할 수 있다. Inter-layer texture prediction can derive the texture of the current layer based on the texture of the reference layer. The texture of the reference layer can be sampled according to the resolution of the current layer, and the inter-layer predicting unit 123 can predict the texture of the current layer based on the texture of the sampled reference layer.

레이어 간 움직임 예측은 참조 레이어의 움직임 벡터를 기반으로 현재 레이어의 움직임 벡터를 유도할 수 있다. 이때, 참조 레이어의 움직임 벡터는 현재 레이어의 해상도에 맞게 스케일링될 수 있다. 레이어 간 신택스 예측에서는 참조 레이어의 신택스를 기반으로 현재 레이어의 신택스가 예측될 수 있다. 예컨대, 레이어 간 예측부(123)는 참조 레이어의 신택스를 현재 레이어의 신택스로 이용할 수도 있다. 또한, 레이어 간 차분 예측에서는 참조 레이어의 복원 영상과 현재 레이어의 복원 영상 사이의 차분을 이용하여 현재 레이어의 픽쳐를 복원할 수 있다.The inter-layer motion prediction can derive the motion vector of the current layer based on the motion vector of the reference layer. At this time, the motion vector of the reference layer can be scaled according to the resolution of the current layer. In the inter-layer syntax prediction, the syntax of the current layer can be predicted based on the syntax of the reference layer. For example, the inter-layer predicting unit 123 may use the syntax of the reference layer as the syntax of the current layer. In the inter-layer difference prediction, the picture of the current layer can be restored by using the difference between the restored image of the reference layer and the restored image of the current layer.

예측부(120, 125)에서 생성된 예측 블록과 예측 블록의 복원 블록과 차이 값인 잔차값(Residual) 정보를 포함하는 잔차 블록이 생성되며, 잔차 블록은 변환부(130, 131)에 입력된다. A residual block including residue information which is a difference value between the prediction blocks generated by the prediction units 120 and 125 and the reconstruction blocks of the prediction blocks is generated and the residual blocks are input to the transform units 130 and 131. [

변환부(130, 131)에서는 잔차 블록을 DCT(Discrete Cosine Transform) 또는 DST(Discrete Sine Transform)와 같은 변환 방법을 사용하여 변환시킬 수 있다. 잔차 블록을 변환하기 위해 DCT를 적용할지 DST를 적용할지는 잔차 블록을 생성하기 위해 사용된 예측 블록의 화면 내 예측 모드 정보 및 예측 블록의 크기 정보를 기초로 결정할 수 있다. 즉, 변환부(130, 131)에서는 예측 블록의 크기 및 예측 방법에 따라 변환 방법을 다르게 적용할 수 있다.The transforming units 130 and 131 can transform the residual block using a transform method such as DCT (Discrete Cosine Transform) or DST (Discrete Sine Transform). Whether to apply the DCT or the DST to transform the residual block can be determined based on the intra prediction mode information and the prediction block size information of the prediction block used to generate the residual block. That is, the transforming units 130 and 131 can apply the transforming method differently according to the size of the prediction block and the prediction method.

양자화부(140, 141)는 변환부(130, 131)에서 주파수 영역으로 변환된 값들을 양자화할 수 있다. 블록에 따라 또는 영상의 중요도에 따라 양자화 계수는 변할 수 있다. 양자화부(140, 141)에서 산출된 값은 역양자화부(170, 17)와 재정렬부(150, 151)에 제공될 수 있다.The quantization units 140 and 141 may quantize the values converted into the frequency domain by the transform units 130 and 131. [ The quantization factor may vary depending on the block or the importance of the image. The values calculated by the quantization units 140 and 141 may be provided to the dequantization units 170 and 17 and the reordering units 150 and 151, respectively.

재정렬부(150, 151)는 양자화된 잔차 값에 대해 계수 값의 재정렬을 수행할 수 있다. 재정렬부(150, 151)는 계수 스캐닝(Coefficient Scanning) 방법을 통해 2차원의 블록 형태 계수를 1차원의 벡터 형태로 변경할 수 있다. 예를 들어, 재정렬부(150, 151)에서는 지그-재그 스캔(Zig-Zag Scan)방법을 이용하여 DC 계수부터 고주파수 영역의 계수까지 스캔하여 1차원 벡터 형태로 변경시킬 수 있다. 변환 블록의 크기 및 화면 내 예측 모드에 따라 지그-재그 스캔 방법이 아닌 2차원의 블록 형태 계수를 열 방향으로 스캔하는 수직 스캔 방법, 2차원의 블록 형태 계수를 행 방향으로 스캔하는 수평 스캔 방법이 사용될 수 있다. 즉, 변환 블록의 크기 및 화면 내 예측 모드에 따라 지그-재그 스캔, 수직 방향 스캔 및 수평 방향 스캔 중 어떠한 스캔 방법이 사용될지 여부를 결정할 수 있다.The reordering units 150 and 151 can reorder the coefficient values with respect to the quantized residual values. The reordering units 150 and 151 may change the two-dimensional block type coefficient to a one-dimensional vector form through a coefficient scanning method. For example, the rearrangement units 150 and 151 may scan a DC coefficient to a coefficient of a high frequency region using a Zig-Zag scan method, and change the DC coefficient to a one-dimensional vector form. A vertical scanning method of scanning a two-dimensional block type coefficient in a column direction instead of a jig-jag scanning method according to a size of a conversion block and an intra-picture prediction mode, and a horizontal scanning method of scanning a two- Can be used. That is, it is possible to determine whether any scan method among the jig-jag scan, the vertical scan and the horizontal scan is used according to the size of the conversion block and the intra prediction mode.

엔트로피 부호화부(160, 161)는 재정렬부(150, 151)에 의해 산출된 값들을 기초로 엔트피 부호화를 수행할 수 있다. 엔트로피 부호화는 예를 들어, 지수 골롬(Exponential Golomb), CAVLC(Context-Adaptive Variable Length Coding), CABAC(Context-Adaptive Binary Arithmetic Coding)와 같은 다양한 부호화 방법을 사용할 수 있다.The entropy encoding units 160 and 161 can perform entropy encoding based on the values calculated by the reordering units 150 and 151. [ For entropy encoding, various encoding methods such as Exponential Golomb, Context-Adaptive Variable Length Coding (CAVLC), and Context-Adaptive Binary Arithmetic Coding (CABAC) may be used.

엔트로피 부호화부(160, 161)는 재정렬부(150, 151) 및 예측부(120, 125)로부터 부호화 블록의 잔차값 계수 정보 및 블록 타입 정보, 예측 모드 정보, 분할 단위 정보, 예측 블록 정보 및 전송 단위 정보, 움직임 정보, 참조 프레임 정보, 블록의 보간 정보, 필터링 정보 등 다양한 정보를 제공받아 소정의 부호화 방법을 기초로 엔트로피 부호화를 수행할 수 있다. 또한, 엔트로피 부호화부(160, 161)에서는 재정렬부(150, 151)에서 입력된 부호화 단위의 계수값을 엔트로피 부호화할 수 있다. The entropy encoding units 160 and 161 receive the residual value coefficient information, the block type information, the prediction mode information, the division unit information, the prediction block information, and the transmission information of the encoding block from the reordering units 150 and 151 and the prediction units 120 and 125, And various information such as unit information, motion information, reference frame information, block interpolation information, filtering information, and the like, and performs entropy encoding based on a predetermined encoding method. In addition, the entropy encoding units 160 and 161 can entropy-encode the coefficient values of the encoding units input from the reordering units 150 and 151.

엔트로피 부호화부(160, 161)에서는 화면 내 예측 모드 정보에 대한 이진화를 수행하여 현재 블록의 화면 내 예측 모드 정보를 부호화할 수 있다. 엔트로피 부호화부(160, 161)에는 이러한 이진화 동작을 수행하기 위한 코드워드 매핑부가 포함될 수 있고, 화면 내 예측을 수행하는 예측 블록의 크기에 따라 이진화를 다르게 수행할 수 있다. 코드워드 매핑부에서는 코드워드 매핑 테이블이 이진화 동작을 통해 적응적으로 생성되거나 미리 저장되어 있을 수 있다. 또 다른 실시예로 엔트로피 부호화부(160, 161)에서 코드넘 매핑을 수행하는 코드넘 매핑부와 코드워드 매핑을 수행하는 코드워드 매핑부를 이용하여 현재 화면 내 예측 모드 정보를 표현할 수 있다. 코드넘 매핑부와 코드워드 매핑부에서는 코드넘 매핑 테이블과 코드워드 매핑 테이블이 생성되거나 저장되어 있을 수 있다.The entropy encoding units 160 and 161 may encode the intra-picture prediction mode information of the current block by performing binarization on the intra-picture prediction mode information. The entropy encoding units 160 and 161 may include a codeword mapping unit for performing such a binarization operation, and binarization may be performed differently depending on the size of a prediction block for performing intra prediction. In the codeword mapping unit, a codeword mapping table may be adaptively generated or stored in advance through a binarization operation. In another embodiment, the entropy encoding units 160 and 161 may represent the current intra prediction mode information using a codeword mapping unit that performs codeword mapping and a codeword mapping unit that performs codeword mapping. In the codeword mapping unit and the codeword mapping unit, a codeword mapping table and a codeword mapping table may be generated or stored.

역양자화부(170, 171) 및 역변환부(180, 181)에서는 양자화부(140, 141)에서 양자화된 값들을 역양자화하고 변환부(130, 131)에서 변환된 값들을 역변환 한다. 역양자화부(170, 171) 및 역변환부(180, 181)에서 생성된 잔차값(Residual)은 예측부(120, 125)에 포함된 움직임 추정부, 움직임 보상부 및 화면 내 예측부를 통해서 예측된 예측 블록과 합쳐져 복원 블록(Reconstructed Block)을 생성할 수 있다.The inverse quantization units 170 and 171 and the inverse transform units 180 and 181 dequantize the quantized values in the quantization units 140 and 141 and invert the converted values in the transform units 130 and 131. The residual values generated by the inverse quantization units 170 and 171 and the inverse transform units 180 and 181 are estimated through a motion estimation unit, a motion compensation unit, and an intra prediction unit included in the prediction units 120 and 125, It can be combined with the prediction block to generate a reconstructed block.

필터부(190, 191)는 디블록킹 필터, 오프셋 보정부 중 적어도 하나를 포함할 수 있다. The filter units 190 and 191 may include at least one of a deblocking filter and an offset correcting unit.

디블록킹 필터는 복원된 픽쳐에서 블록간의 경계로 인해 생긴 블록 왜곡을 제거할 수 있다. 디블록킹을 수행할지 여부를 판단하기 위해 블록에 포함된 몇 개의 열 또는 행에 포함된 픽셀을 기초로 현재 블록에 디블록킹 필터 적용할지 여부를 판단할 수 있다. 블록에 디블록킹 필터를 적용하는 경우 필요한 디블록킹 필터링 강도에 따라 강한 필터(Strong Filter) 또는 약한 필터(Weak Filter)를 적용할 수 있다. 또한, 디블록킹 필터를 적용함에 있어 수직 필터링 및 수평 필터링을 수행시 수평 방향 필터링 및 수직 방향 필터링이 병행처리가 되도록 할 수 있다.The deblocking filter can remove block distortion caused by the boundary between the blocks in the reconstructed picture. It may be determined whether to apply a deblocking filter to the current block based on pixels included in a few columns or rows included in the block to determine whether to perform deblocking. When a deblocking filter is applied to a block, a strong filter or a weak filter may be applied according to the deblocking filtering strength required. In applying the deblocking filter, horizontal filtering and vertical filtering may be performed concurrently when vertical filtering and horizontal filtering are performed.

오프셋 보정부는 디블록킹을 수행한 영상에 대해 픽셀 단위로 원본 영상과의 오프셋을 보정할 수 있다. 특정 픽쳐에 대한 오프셋 보정을 수행하기 위해 영상에 포함된 픽셀을 일정 영역으로 구분한 후 오프셋을 수행할 영역을 결정하고 해당 영역에 오프셋을 적용하는 방법 또는 각 픽셀의 에지 정보를 고려하여 오프셋을 적용하는 방법을 사용할 수 있다.The offset correction unit may correct the offset of the deblocked image with respect to the original image in units of pixels. In order to perform offset correction for a specific picture, pixels included in an image are divided into a predetermined area, and then an area to be offset is determined, and an offset is applied to the area, or an offset is applied considering edge information of each pixel Can be used.

필터부(190, 191)는 디블록킹 필터, 오프셋 보정을 모두 적용하지 않고 디블록킹 필터만 적용하거나 디블록킹 필터와 오프셋 보정을 둘 다 적용할 수도 있다.The filter units 190 and 191 may apply only the deblocking filter without applying both the deblocking filter and the offset correction, or both the deblocking filter and the offset correction.

메모리(195, 196)는 필터부(190, 191)를 통해 산출된 복원 블록 또는 픽쳐를 저장할 수 있고, 저장된 복원 블록 또는 픽쳐는 화면 간 예측을 수행 시 예측부(120, 125)에 제공될 수 있다.The memories 195 and 196 may store restored blocks or pictures calculated through the filter units 190 and 191 and the stored restored blocks or pictures may be provided to the predicting units 120 and 125 have.

하위 레이어의 엔트로피 부호화부(100b)에서 출력되는 정보와 상위 레이어의 엔트로피 부호화부(100a)에서 출력되는 정보는 MUX(197)에서 멀티플렉싱되어 비트스트림으로 출력될 수 있다.The information output from the entropy encoding unit 100b of the lower layer and the information output from the entropy encoding unit 100a of the upper layer can be multiplexed by the MUX 197 and output as a bitstream.

MUX(197)는 상위 레이어의 부호화부(100a) 또는 하위 레이어의 부호화부(100b)에 포함될 수도 있고, 부호화부(100)와는 별도의 독립적인 장치 또는 모듈로 구현될 수도 있다.
The MUX 197 may be included in the encoding unit 100a of the upper layer or the encoding unit 100b of the lower layer or may be implemented as an independent device or module separate from the encoding unit 100. [

도 2는 본 발명의 일 실시예에 따른 복호화 장치를 개략적으로 도시한 블록도이다.2 is a block diagram schematically illustrating a decoding apparatus according to an embodiment of the present invention.

도 2에 도시된 바와 같이, 복호화 장치(200)는 상위 레이어의 복호화부(200a)와 하위 레이어의 복호화부(200b)를 포함한다.As shown in FIG. 2, the decoding apparatus 200 includes a decoding unit 200a of an upper layer and a decoding unit 200b of a lower layer.

상위 레이어의 복호화부(200a)는 엔트로피 복호화부(210), 재정렬부(220), 역양자화부(230), 역변환부(240), 예측부(250), 필터부(260), 메모리(270)를 포함할 수 있다.The decryption unit 200a of the upper layer includes an entropy decoding unit 210, a reordering unit 220, an inverse quantization unit 230, an inverse transformation unit 240, a prediction unit 250, a filter unit 260, a memory 270 ).

하위 레이어의 복호화부(200b)는 엔트로피 디코딩부(211), 재정렬부(221), 역양자화부(231), 역변환부(241), 예측부(251), 필터부(261), 메모리(271)를 포함할 수 있다.The lower layer decoding unit 200b includes an entropy decoding unit 211, a rearrangement unit 221, an inverse quantization unit 231, an inverse transformation unit 241, a prediction unit 251, a filter unit 261, a memory 271 ).

부호화 장치로부터 복수의 레이어를 포함하는 비트스트림이 전송되면, DEMUX(280)는 레이어 별로 정보를 디멀티플렉싱하여 각 레이어별 복호화부(200a, 200b)로 전달할 수 있다. 입력된 비트스트림은 부호화 장치와 반대의 절차로 복호화 될 수 있다.When a bitstream including a plurality of layers is transmitted from the encoding apparatus, the DEMUX 280 demultiplexes information for each layer and transmits the demultiplexed information to the decoding units 200a and 200b for the respective layers. The input bitstream can be decoded in a procedure opposite to that of the encoding apparatus.

엔트로피 복호화부(210, 211)는 부호화 장치의 엔트로피 부호화부에서 엔트로피 부호화를 수행한 것과 반대의 절차로 엔트로피 복호화를 수행할 수 있다. 엔트로피 복호화부(210, 211)에서 복호화된 정보 중 예측 블록을 생성하기 위한 정보는 예측부(250, 251)로 제공되고 엔트로피 복호화부(210, 211)에서 엔트로피 복호화를 수행한 잔차값은 재정렬부(220, 221)로 입력될 수 있다.The entropy decoding units 210 and 211 may perform entropy decoding in a procedure opposite to that in which entropy encoding is performed in the entropy encoding unit of the encoding apparatus. The information for generating a prediction block from the information decoded by the entropy decoding units 210 and 211 is provided to the predictors 250 and 251 and the residual values obtained by performing entropy decoding in the entropy decoding units 210 and 211, (220, 221).

엔트로피 복호화부(210, 211)에서도 엔트로피 부호화부(160, 161)와 마찬가지로 CABAC 또는 CAVLC 중 적어도 하나의 방법을 사용할 수 있다.As with the entropy encoding units 160 and 161, the entropy decoding units 210 and 211 may use at least one of CABAC and CAVLC.

엔트로피 복호화부(210, 211)에서는 부호화 장치에서 수행된 화면 내 예측 및 화면 간 예측에 관련된 정보를 복호화할 수 있다. 엔트로피 복호화부(210, 211)에는 코드워드 매핑부가 포함되어 수신된 코드워드를 화면 내 예측 모드 번호로 생성하기 위한 코드워드 매핑 테이블을 포함될 수 있다. 코드워드 매핑 테이블은 미리 저장되어 있거나 적응적으로 생성될 수 있다. 코드넘 매핑 테이블을 사용할 경우, 코드넘 매핑을 수행하기 위한 코드넘 매핑부가 추가적으로 구비될 수 있다.The entropy decoding units 210 and 211 can decode information related to the intra-picture prediction and the inter-picture prediction performed by the coding apparatus. The entropy decoding units 210 and 211 may include a codeword mapping table for generating a codeword including the codeword mapping unit in the in-picture prediction mode number. The codeword mapping table may be pre-stored or adaptively generated. When using the code-mapped mapping table, a code-mapped mapping unit for performing code-mapped mapping may additionally be provided.

재정렬부(220, 221)는 엔트로피 복호화부(210, 211)에서 엔트로피 복호화된 비트스트림을 부호화부에서 재정렬한 방법을 기초로 재정렬을 수행할 수 있다. 1차원 벡터 형태로 표현된 계수들을 다시 2차원의 블록 형태의 계수로 복원하여 재정렬할 수 있다. 재정렬부(220, 221)에서는 부호화부에서 수행된 계수 스캐닝에 관련된 정보를 제공받고 해당 부호화부에서 수행된 스캐닝 순서에 기초하여 역으로 스캐닝하는 방법을 통해 재정렬을 수행할 수 있다. The reordering units 220 and 221 can perform reordering based on a method in which the entropy decoding units 210 and 211 rearrange the entropy-decoded bitstreams in the encoding unit. The coefficients represented by the one-dimensional vector form can be rearranged by restoring the coefficients of the two-dimensional block form again. The reordering units 220 and 221 can perform reordering by providing information related to the coefficient scanning performed by the encoding unit and performing a reverse scanning based on the scanning order performed by the encoding unit.

역양자화부(230, 231)는 부호화 장치에서 제공된 양자화 파라미터와 재정렬된 블록의 계수 값을 기초로 역양자화를 수행할 수 있다. The inverse quantization units 230 and 231 may perform inverse quantization based on the quantization parameters provided by the encoding apparatus and the coefficient values of the re-arranged blocks.

역변환부(240, 241)는 부호화 장치에서 수행한 양자화 결과에 대해 변환부(130, 131)에서 수행한 DCT 또는 DST에 대해 역 DCT 또는 역 DST를 수행할 수 있다. 역변환은 부호화 장치에서 결정된 전송 단위를 기초로 수행될 수 있다. 부호화 장치의 변환부에서는 DCT와 DST는 예측 방법, 현재 블록의 크기 및 예측 방향 등 복수의 정보에 따라 선택적으로 수행될 수 있고, 복호화 장치의 역변환부(240, 241)에서는 부호화 장치의 변환부에서 수행된 변환 정보를 기초로 역변환을 수행할 수 있다. 변환 수행 시 변환 블록이 아닌 부호화 블록을 기준으로 변환을 수행할 수 있다.The inverse transform units 240 and 241 may perform inverse DCT or inverse DST on the DCT or DST performed by the transform units 130 and 131 with respect to the quantization result performed by the encoding apparatus. The inverse transform can be performed based on the transmission unit determined by the encoding apparatus. In the transforming unit of the encoding apparatus, DCT and DST can be selectively performed according to a plurality of information such as a prediction method, a size and a prediction direction of a current block, and the inverse transforming units 240 and 241 of a decoding apparatus It is possible to perform an inverse conversion based on the performed conversion information. Conversion can be performed based on an encoding block rather than a conversion block.

예측부(250, 251)는 엔트로피 복호화부(210, 211)에서 제공된 예측 블록 생성 관련 정보와 메모리(270, 271)에서 제공된 이전에 복호화된 블록 또는 픽쳐 정보를 기초로 예측 블록을 생성할 수 있다.The prediction units 250 and 251 can generate prediction blocks based on the prediction block generation related information provided by the entropy decoding units 210 and 211 and the previously decoded blocks or picture information provided in the memories 270 and 271 .

예측부(250, 251)는 예측 단위 판별부, 화면 간 예측부 및 화면 내 예측부를 포함할 수 있다. The prediction units 250 and 251 may include a prediction unit determination unit, an inter-frame prediction unit, and an intra-frame prediction unit.

예측 단위 판별부는 엔트로피 복호화부에서 입력되는 예측 단위 정보, 화면 내 예측 방법의 예측 모드 정보, 화면 간 예측 방법의 움직임 예측 관련 정보 등 다양한 정보를 입력 받고 현재 부호화 블록에서 예측 블록을 구분하고, 예측 블록이 화면 간 예측을 수행하는지 아니면 화면 내 예측을 수행하는지 여부를 판별할 수 있다. The prediction unit determination unit receives various information such as prediction unit information input from the entropy decoding unit, prediction mode information of the intra prediction method, motion prediction related information of the inter picture prediction method, and separates prediction blocks in the current coding block. It is possible to determine whether the inter-picture prediction is performed or the intra-picture prediction is performed.

화면 간 예측부는 부호화 장치에서 제공된 현재 예측 블록의 화면 간 예측에 필요한 정보를 이용해 현재 예측 블록이 포함된 현재 픽쳐의 이전 픽쳐 또는 이후 픽쳐 중 적어도 하나의 픽쳐에 포함된 정보를 기초로 현재 예측 블록에 대한 화면 간 예측을 수행할 수 있다. 화면 간 예측을 수행하기 위해 부호화 블록을 기준으로 해당 부호화 블록에 포함된 예측 블록의 움직임 예측 방법이 스킵 모드(Skip Mode), 머지 모드(Merge 모드), MVP(motion vector predictor)를 이용하는 모드(AMVP Mode) 중 어떠한 방법인지 여부를 판단할 수 있다.The inter-picture prediction unit uses the information necessary for the inter-picture prediction of the current prediction block provided by the coding apparatus to predict the current picture based on the information included in at least one of the previous picture of the current picture or the following picture The inter-picture prediction can be performed. In order to perform inter-picture prediction, a motion prediction method of a prediction block included in a coded block based on a coded block is classified into a skip mode, a merge mode, a mode using an MVP (motion vector predictor) Mode) can be determined.

화면 내 예측부는 현재 픽쳐 내의 복원된 픽셀 정보를 기초로 예측 블록을 생성할 수 있다. 예측 블록이 화면 내 예측을 수행한 예측 블록인 경우, 부호화 장치에서 제공된 예측 블록의 화면 내 예측 모드 정보를 기초로 화면 내 예측을 수행할 수 있다. 화면 내 예측부는 현재 블록의 참조 픽셀에 필터링을 수행하는 MDIS 필터, 참조 픽셀을 보간하여 정수값 이하의 픽셀 단위의 참조 픽셀을 생성하는 참조 픽셀 보간부, 현재 블록의 예측 모드가 DC 모드일 경우 필터링을 통해서 예측 블록을 생성하는 DC 필터를 포함할 수 있다. The intra prediction unit can generate a prediction block based on the reconstructed pixel information in the current picture. If the prediction block is a prediction block in which intra prediction is performed, intra prediction can be performed based on intra prediction mode information of the prediction block provided by the encoder. The intra-picture prediction unit includes an MDIS filter that performs filtering on the reference pixels of the current block, a reference pixel interpolator that interpolates reference pixels to generate reference pixels of a pixel unit less than an integer value, Lt; RTI ID = 0.0 > DCF < / RTI >

상위 레이어 복호화부(200a)의 예측부(250)는 하위 레이어의 정보를 이용하여 상위 레이어를 예측하는 레이어 간 예측을 수행하는 레이어 간 예측부를 더 포함할 수 있다. The predicting unit 250 of the upper layer decoding unit 200a may further include an inter-layer predicting unit for performing inter-layer prediction for predicting an upper layer using information of a lower layer.

레이어 간 예측부는 화면 내 예측 모드 정보, 움직임 정보 등을 이용하여 인터 레이어 예측(inter-layer prediction) 을 수행할 수 있다. The inter-layer prediction unit may perform inter-layer prediction using intra-picture prediction mode information, motion information, and the like.

레이어 간 예측은 하위 레이어의 픽쳐를 참조 픽쳐로 해서 하위 레이어(참조 레이어) 픽쳐에 대한 움직임 정보를 이용하여 상위 레이어의 현재 블록에 대한 예측을 수행할 수 있다. Inter-layer prediction can predict a current block of an upper layer using motion information on a lower layer (reference layer) picture using a picture of a lower layer as a reference picture.

레이어 간 예측에서 참조 픽쳐로 사용되는 참조 레이어의 픽쳐는 현재 레이어의 해상도에 맞게 샘플링된 픽쳐일 수 있다. 또한, 움직임 정보는 움직임 벡터 및 참조 인덱스를 포함할 수 있다. 이때, 참조 레이어의 픽쳐에 대한 움직임 벡터의 값은 (0,0)으로 설정될 수 있다. A picture of a reference layer used as a reference picture in inter-layer prediction may be a picture sampled according to the resolution of the current layer. In addition, the motion information may include a motion vector and a reference index. At this time, the value of the motion vector for the picture of the reference layer can be set to (0, 0).

레이어 간 예측의 예로서, 하위 레이어의 픽쳐를 참조 픽쳐로 이용하는 예측 방법을 설명하였으나, 본 발명은 이에 한정되지 않는다. 레이어 간 예측부(123)는 레이어 간 텍스처 예측, 레이어 간 움직임 예측, 레이어 간 신택스 예측 및 레이어 간 차분 예측 등을 추가로 수행할 수도 있다.As an example of inter-layer prediction, a prediction method of using a picture of a lower layer as a reference picture has been described, but the present invention is not limited to this. The inter-layer predicting unit 123 may further perform inter-layer texture prediction, inter-layer motion prediction, inter-layer syntax prediction, and inter-layer difference prediction.

레이어 간 텍스처 예측은 참조 레이어의 텍스처를 기반으로 현재 레이어의 텍스처를 유도할 수 있다. 참조 레이어의 텍스처는 현재 레이어의 해상도에 맞춰 샘플링될 수 있으며, 레이어 간 예측부는 샘플링된 텍스처를 기반으로 현재 레이어의 텍스처를 예측할 수 있다. 레이어 간 움직임 예측은 참조 레이어의 움직임 벡터를 기반으로 현재 레이어의 움직임 벡터를 유도할 수 있다. 이때, 참조 레이어의 움직임 벡터는 현재 레이어의 해상도에 맞게 스케일링될 수 있다. 레이어 간 신택스 예측에서는 참조 레이어의 신택스를 기반으로 현재 레이어의 신택스가 예측될 수 있다. 예컨대, 레이어 간 예측부(123)는 참조 레이어의 신택스를 현재 레이어의 신택스로 이용할 수도 있다. 또한, 레이어 간 차분 예측에서는 참조 레이어의 복원 영상과 현재 레이어의 복원 영상 사이의 차분을 이용하여 현재 레이어의 픽쳐를 복원할 수 있다.Inter-layer texture prediction can derive the texture of the current layer based on the texture of the reference layer. The texture of the reference layer can be sampled to the resolution of the current layer, and the inter-layer prediction unit can predict the texture of the current layer based on the sampled texture. The inter-layer motion prediction can derive the motion vector of the current layer based on the motion vector of the reference layer. At this time, the motion vector of the reference layer can be scaled according to the resolution of the current layer. In the inter-layer syntax prediction, the syntax of the current layer can be predicted based on the syntax of the reference layer. For example, the inter-layer predicting unit 123 may use the syntax of the reference layer as the syntax of the current layer. In the inter-layer difference prediction, the picture of the current layer can be restored by using the difference between the restored image of the reference layer and the restored image of the current layer.

복원된 블록 또는 픽쳐는 필터부(260, 261)로 제공될 수 있다. 필터부(260, 261)는 디블록킹 필터, 오프셋 보정부를 포함할 수 있다.The reconstructed block or picture may be provided to the filter units 260 and 261. The filter units 260 and 261 may include a deblocking filter and an offset correction unit.

부호화 장치로부터 해당 블록 또는 픽쳐에 디블록킹 필터를 적용하였는지 여부에 대한 정보 및 디블록킹 필터를 적용하였을 경우, 강한 필터를 적용하였는지 또는 약한 필터를 적용하였는지에 대한 정보를 제공받을 수 있다. 복호화 장치의 디블록킹 필터에서는 부호화 장치에서 제공된 디블록킹 필터 관련 정보를 제공받고 복호화 장치에서 해당 블록에 대한 디블록킹 필터링을 수행할 수 있다. Information on whether or not a deblocking filter has been applied to the block or picture from the encoding device and information on whether a strong filter or a weak filter is applied can be provided when the deblocking filter is applied. In the deblocking filter of the decoding apparatus, the deblocking filter related information provided by the encoding apparatus is provided, and the decoding apparatus can perform deblocking filtering on the corresponding block.

오프셋 보정부는 부호화시 영상에 적용된 오프셋 보정의 종류 및 오프셋 값정보 등을 기초로 복원된 영상에 오프셋 보정을 수행할 수 있다.The offset correction unit may perform offset correction on the reconstructed image based on the type of offset correction applied to the image and the offset value information during encoding.

메모리(270, 271)는 복원된 픽쳐 또는 블록을 저장하여 참조 픽쳐 또는 참조 블록으로 사용할 수 있도록 할 수 있고 또한 복원된 픽쳐를 출력할 수 있다. The memories 270 and 271 can store the reconstructed picture or block to be used as a reference picture or a reference block, and can also output the reconstructed picture.

부호화 장치 및 복호화 장치는 두 개의 레이어가 아닌 세 개 이상의 레이어에 대한 인코딩을 수행할 수 있으며, 이 경우 상위 레이어에 대한 부호화부 및 상위 레이어에 대한 복호화부는 상위 레이어의 개수에 대응하여 복수 개로 마련될 수 있다.
The encoding apparatus and the decoding apparatus can perform encoding on three or more layers instead of two layers. In this case, the encoding unit for the upper layer and the decoding unit for the upper layer are provided in a plurality corresponding to the number of the upper layers .

멀티 레이어 구조를 지원하는 SVC(Scalable Video Coding) 에서는 레이어 간에 연관성이 존재한다. 이 연관성을 이용하여 예측을 수행하면 데이터의 중복 요소를 제거할 수 있고 영상의 부호화 성능을 향상시킬 수 있다. In SVC (Scalable Video Coding) which supports multi-layer structure, there is a relation between layers. By using this association, prediction can be performed to remove redundant elements of data and enhance the image coding performance.

따라서, 부호화/복호화 되는 현재 레이어(인핸스먼트 레이어)의 픽쳐(영상)를 예측할 경우, 현재 레이어의 정보를 이용한 인터 예측 혹은 인트라 예측뿐만 아니라, 다른 레이어의 정보를 이용한 인터 레이어 예측을 수행할 수 있다. Therefore, in the case of predicting a picture (video) of a current layer (enhancement layer) to be encoded / decoded, not only inter prediction or intra prediction using information of the current layer but also interlayer prediction using information of another layer can be performed .

인터 레이어 예측을 수행할 경우, 현재 레이어는 인터 레이어 예측을 위해 사용되는 참조 레이어(reference layer)의 디코딩된 픽쳐를 참조 픽쳐(reference picture)로 사용하여 현재 레이어의 예측 샘플을 생성할 수 있다. In performing inter-layer prediction, the current layer may generate a prediction sample of a current layer using a decoded picture of a reference layer used for inter-layer prediction as a reference picture.

이때, 현재 레이어와 참조 레이어는 공간 해상도, 시간 해상도, 이미지 퀄리티 중 적어도 하나가 서로 다를 수 있기 때문에(즉, 레이어 간 스케일러빌리티 차이 때문에), 디코딩된 참조 레이어의픽쳐는 현재 레이어의 스케일러빌리티에 맞게 리샘플링(resampling)이 수행된 다음 현재 레이어의 인터 레이어 예측을 위한 참조 픽쳐로 사용될 수 있다. 리샘플링은 현재 레이어의 픽쳐 크기에 맞게 참조 레이어 픽쳐의 샘플들을 업샘플링(up-sampling) 또는 다운 샘플링(down sampling)하는 것을 의미한다. At this time, since at least one of the spatial resolution, the temporal resolution, and the image quality may be different between the current layer and the reference layer (i.e., due to the inter-layer scalability difference), the picture of the decoded reference layer, After resampling is performed, it can be used as a reference picture for interlayer prediction of the current layer. Resampling means up-sampling or down-sampling of the samples of the reference layer picture in accordance with the picture size of the current layer.

본 명세서에서, 현재 레이어는 현재 부호화 혹은 복호화가 수행되는 레이어를 말하며, 인핸스먼트 레이어 또는 상위 레이어일 수 있다. 참조 레이어는 현재 레이어가 인터 레이어 예측을 위해 참조하는 레이어를 말하며, 베이스 레이어 또는 하위 레이어일 수 있다. 현재 레이어의 인터 레이어 예측을 위해 사용되는 참조 레이어의 픽쳐(즉, 참조 픽쳐)는 인터 레이어 참조 픽쳐 또는 레이어 간 참조 픽쳐로 지칭될 수 있다.
In this specification, a current layer refers to a layer on which encoding or decoding is currently performed, and may be an enhancement layer or an upper layer. A reference layer is a layer that the current layer refers to for interlayer prediction, and can be a base layer or a lower layer. A picture of a reference layer (i.e., a reference picture) used for inter-layer prediction of the current layer may be referred to as an inter-layer reference picture or a reference picture between layers.

도 3은 본 발명이 적용되는 일실시예로서, 참조 레이어의 참조 픽쳐를 이용하여 현재 레이어의 레이어 간 예측을 수행하는 과정을 도시한 순서도이다.3 is a flowchart illustrating a process of performing inter-layer prediction of a current layer using a reference picture of a reference layer according to an embodiment of the present invention.

도 3을 참조하면, 참조 레이어의 참조 픽쳐에 적용되는 업샘플링 필터의 필터 계수를 획득할 수 있다(S300).Referring to FIG. 3, the filter coefficient of the up-sampling filter applied to the reference picture of the reference layer can be obtained (S300).

여기서, 참조 레이어의 참조 픽쳐는 레이어 간 예측을 수행하는 현재 레이어의 현재 픽쳐에 대응하는 픽쳐를 의미할 수 있다. Here, the reference picture of the reference layer may refer to a picture corresponding to the current picture of the current layer performing inter-layer prediction.

구체적으로, 참조 레이어는 베이스 레이어 또는 현재 레이어보다 해상도가 낮은 다른 인핸스먼트 레이어를 의미할 수 있다. 참조 픽쳐는 현재 레이어의 현재 픽쳐와 동일 시간대에 위치한 픽쳐를 의미할 수 있다. 예를 들어, 상기 대응 픽쳐는 현재 레이어의 현재 픽쳐와 동일한 POC(picture order count) 정보를 갖는 픽쳐일 수 있다. Specifically, the reference layer may refer to a base layer or another enhancement layer having a lower resolution than the current layer. The reference picture may refer to a picture located in the same time zone as the current picture of the current layer. For example, the corresponding picture may be a picture having picture order count (POC) information that is the same as the current picture of the current layer.

또한, 업샘플링 필터의 필터 계수는 현재 레이어의 현재 샘플에 대응하는 참조 픽쳐 내 참조 샘플의 위상을 고려하여 획득될 수 있다. 여기서, 업샘플링 필터는 고정된 업샘플링 필터와 적응적 업샘플링 필터 중 어느 하나가 이용될 수 있다.Further, the filter coefficient of the up-sampling filter can be obtained in consideration of the phase of the reference sample in the reference picture corresponding to the current sample of the current layer. Here, the up-sampling filter may use either a fixed up-sampling filter or an adaptive up-sampling filter.

1. 고정된 업샘플링 필터1. Fixed Upsampling Filter

고정된 업샘플링 필터는 영상의 특징을 고려하지 아니하고, 기 결정된 필터 계수를 가진 업샘플링 필터를 의미할 수 있다. 고정된 업샘플링 필터로 tap 필터가 이용될 수 있으며, 이는 휘도 성분과 색차 성분에 대해서 각각 정의될 수 있다. 이하 표 1 내지 표 2를 참조하여 1/16 샘플 단위의 정확도를 가진 고정된 업샘플링 필터를 살펴 보기로 한다.The fixed up-sampling filter may refer to an up-sampling filter having a predetermined filter coefficient without considering the characteristics of the image. A tap filter can be used as the fixed up-sampling filter, which can be defined for the luminance component and the chrominance component, respectively. A fixed up-sampling filter having an accuracy of 1/16 sample units will be described with reference to Tables 1 to 2 below.

위상 p
Phase p
보간 필터 계수Interpolation filter coefficient
f[p, 0]f [p, 0] f[p, 1]f [p, 1] f[p, 2]f [p, 2] f[p, 3]f [p, 3] f[p, 4]f [p, 4] f[p, 5]f [p, 5] f[p, 6]f [p, 6] f[p, 7]f [p, 7] 00 00 00 00 6464 00 00 00 00 1One 00 1One -3-3 6363 44 -2-2 1One 00 22 -1-One 22 -5-5 6262 88 -3-3 1One 00 33 -1-One 33 -8-8 6060 1313 -4-4 1One 00 44 -1-One 44 -10-10 5858 1717 -5-5 1One 00 55 -1-One 44 -11-11 5252 2626 -8-8 33 -1-One 66 -1-One 33 -3-3 4747 3131 -10-10 44 -1-One 77 -1-One 44 -11-11 4545 3434 -10-10 44 -1-One 88 -1-One 44 -11-11 4040 4040 -11-11 44 -1-One 99 -1-One 44 -10-10 3434 4545 -11-11 44 -1-One 1010 -1-One 44 -10-10 3131 4747 -9-9 33 -1-One 1111 -1-One 33 -8-8 2626 5252 -11-11 44 -1-One 1212 00 1One -5-5 1717 5858 -10-10 44 -1-One 1313 00 1One -4-4 1313 6060 -8-8 33 -1-One 1414 00 1One -3-3 88 6262 -5-5 22 -1-One 1515 00 1One -2-2 44 6363 -3-3 1One 00

표 1은 휘도 성분에 대한 고정된 업샘플링 필터의 필터 계수를 정의한 테이블이다.Table 1 is a table defining the filter coefficients of the fixed up-sampling filter with respect to the luminance component.

상기 표 1에서 보듯이, 휘도 성분에 대한 업샘플링의 경우, 8-tap 필터가 적용된다. 즉, 현재 레이어의 현재 샘플에 대응하는 참조 레이어의 참조 샘플 및 상기 참조 샘플에 인접한 이웃 샘플을 이용하여 인터폴레이션을 수행할 수 있다. 여기서, 이웃 샘플은 인터폴레이션을 수행하는 방향에 따라 특정될 수 있다. 예를 들어, 수평 방향으로 인터폴레이션을 수행하는 경우, 상기 이웃 샘플은 참조 샘플을 기준으로 좌측으로 연속적인 3개의 샘플 및 우측으로 연속적인 4개의 샘플을 포함할 수 있다. 또는, 수직 방향으로 인터폴레이션을 수행하는 경우, 상기 이웃 샘플은 상기 참조 샘플을 기준으로 상단으로 연속적인 3개의 샘플 및 하단으로 연속적인 4개의 샘플을 포함할 수 있다.As shown in Table 1, in the case of upsampling on the luminance component, an 8-tap filter is applied. That is, interpolation can be performed using a reference sample of the reference layer corresponding to the current sample of the current layer and a neighboring sample adjacent to the reference sample. Here, the neighbor samples can be specified according to the direction in which the interpolation is performed. For example, when interpolation is performed in the horizontal direction, the neighboring sample may include three consecutive samples to the left and four consecutive samples to the right based on the reference sample. Alternatively, when interpolation is performed in the vertical direction, the neighboring sample may include three consecutive samples at the top and four consecutive samples at the bottom based on the reference sample.

그리고, 1/16 샘플 단위의 정확도로 인터폴레이션을 수행하므로, 총 16개의 위상이 존재한다. 이는 2배, 1.5배 등 다양한 배율의 해상도를 지원하기 위한 것이다. Since interpolation is performed with an accuracy of 1/16 sample units, there are a total of 16 phases. This is to support resolution of various magnifications such as 2 times and 1.5 times.

또한, 고정된 업샘플링 필터는 각 위상(p) 별로 상이한 필터 계수를 사용할 수 있다. 위상(p)이 0인 경우를 제외하고, 각각의 필터 계수의 크기는 0 내지 63의 범위에 속하도록 정의될 수 있다. 이는 6bits의 정밀도를 가지고 필터링을 수행함을 의미한다. 여기서, 위상(p)이 0이라 함은 1/n 샘플 단위로 인터폴레이션 하는 경우, n배수의 정수 샘플의 위치를 의미한다.In addition, the fixed up-sampling filter may use different filter coefficients for each phase (p). The size of each filter coefficient may be defined to fall within a range of 0 to 63, except when the phase p is zero. This means that the filtering is performed with a precision of 6 bits. Here, the phase (p) of 0 means the position of an integer multiple of n when interpolation is performed in 1 / n sample units.

위상 p
Phase p
보간 필터 계수Interpolation filter coefficient
f[p, 0]f [p, 0] f[p, 1]f [p, 1] f[p, 2]f [p, 2] f[p, 3]f [p, 3] 00 00 6464 00 00 1One -2-2 6262 44 00 22 -2-2 5858 1010 -2-2 33 -4-4 5656 1414 -2-2 44 -4-4 5454 1616 -2-2 55 -6-6 5252 2020 -2-2 66 -6-6 4646 2828 -4-4 77 -4-4 4242 3030 -4-4 88 -4-4 3636 3636 -4-4 99 -4-4 3030 4242 -4-4 1010 -4-4 2828 4646 -6-6 1111 -2-2 2020 5252 -6-6 1212 -2-2 1616 5454 -4-4 1313 -2-2 1414 5656 -4-4 1414 -2-2 1010 5858 -2-2 1515 00 44 6262 -2-2

표 2는 색차 성분에 대한 고정된 업샘플링 필터의 필터 계수를 정의한 테이블이다.Table 2 defines the filter coefficients of the fixed up-sampling filter for the chrominance components.

표 2에서 보듯이, 색차 성분에 대한 업샘플링의 경우, 휘도 성분과 달리 4-tap 필터가 적용될 수 있다. 즉, 현재 레이어의 현재 샘플에 대응하는 참조 레이어의 참조 샘플 및 상기 참조 샘플에 인접한 이웃 샘플을 이용하여 인터폴레이션을 수행할 수 있다. 여기서, 이웃 샘플은 인터폴레이션을 수행하는 방향에 따라 특정될 수 있다. 예를 들어, 수평 방향으로 인터폴레이션을 수행하는 경우, 상기 이웃 샘플은 참조 샘플을 기준으로 좌측으로 연속적인 1개의 샘플 및 우측으로 연속적인 2개의 샘플을 포함할 수 있다. 또는, 수직 방향으로 인터폴레이션을 수행하는 경우, 상기 이웃 샘플은 상기 참조 샘플을 기준으로 상단으로 연속적인 1개의 샘플 및 하단으로 연속적인 2개의 샘플을 포함할 수 있다.As shown in Table 2, in case of up-sampling for the chrominance components, a 4-tap filter can be applied unlike the luminance component. That is, interpolation can be performed using a reference sample of the reference layer corresponding to the current sample of the current layer and a neighboring sample adjacent to the reference sample. Here, the neighbor samples can be specified according to the direction in which the interpolation is performed. For example, when interpolation is performed in the horizontal direction, the neighboring sample may include one continuous sample to the left and two consecutive samples to the right based on the reference sample. Alternatively, when interpolation is performed in the vertical direction, the neighboring sample may include one continuous sample at the top and two consecutive samples at the bottom based on the reference sample.

한편, 휘도 성분과 마찬가지로 1/16 샘플 단위의 정확도로 인터폴레이션을 수행하므로 총 16개의 위상이 존재하며, 각 위상(p) 별로 상이한 필터 계수를 사용할 수 있다. 그리고, 위상(p)이 0인 경우를 제외하고 각각의 필터 계수의 크기는 0 내지 62의 범위에 속하도록 정의될 수 있다. 이 역시 6bits의 정밀도를 가지고 필터링을 수행함을 의미한다.On the other hand, as in the case of the luminance component, since interpolation is performed with an accuracy of 1/16 sample units, there are a total of 16 phases, and different filter coefficients can be used for each phase (p). And, the size of each filter coefficient can be defined to fall in the range of 0 to 62, except when the phase (p) is zero. This also means that filtering is performed with a precision of 6 bits.

앞서 휘도 성분에 대해서는 8-tap 필터가, 색차 성분에 대해서는 4-tap 필터가 각각 적용되는 경우를 예로 들어 살펴 보았으나, 이에 한정되지 아니하며, tap 필터의 차수는 코딩 효율을 고려하여 가변적으로 결정될 수 있음은 물론이다.The 8-tap filter is applied to the luminance component and the 4-tap filter is applied to the chrominance component. However, the present invention is not limited to this, and the order of the tap filter may be variably determined in consideration of the coding efficiency Of course it is.

2. 적응적 업샘플링 필터2. Adaptive up-sampling filter

고정된 필터 계수를 사용하지 아니하고, 영상의 특징을 고려하여 인코더에서 최적의 필터 계수를 결정하고, 이를 시그날링하여 디코더로 전송할 수 있다. 이와 같이 인코더에서 적응적으로 결정된 필터 계수를 이용하는 것이 적응적 업샘플링 필터이다. 픽쳐 단위로 영상의 특징이 다르기 때문에, 모든 경우에 고정된 업샘플링 필터를 사용하는 것보다 영상의 특징을 잘 표현할 수 있는 적응적 업샘플링 필터를 사용하면 코딩 효율을 향상시킬 수 있다.It is possible to determine the optimum filter coefficient in the encoder considering the feature of the image without using the fixed filter coefficient, signaling it to the decoder, and transmit it to the decoder. It is the adaptive up-sampling filter that uses adaptively determined filter coefficients in the encoder. Since the characteristics of the image are different in picture units, it is possible to improve the coding efficiency by using an adaptive up-sampling filter capable of expressing characteristics of the image better than using a fixed up-sampling filter in all cases.

(1) 필터 계수 코딩 방법(1) Filter coefficient coding method

인코더는 적응적 업샘플링 필터의 필터 계수를 결정하고, 이를 그대로 코딩할 수 있다. 이 경우, 디코더는 엔트로피 디코딩을 통해 비트스트림으로부터 필터 계수를 획득하고, 이를 참조 픽쳐에 적용하여 인터레이어 참조 픽쳐를 생성할 수 있다.The encoder may determine the filter coefficients of the adaptive up-sampling filter and code it as is. In this case, the decoder can obtain the filter coefficient from the bitstream through entropy decoding, and apply it to the reference picture to generate an interlayer reference picture.

결정된 필터 계수를 그대로 코딩하지 아니하고, 차분 코딩을 통해 필터 계수 코딩을 위해 필요한 비트수를 줄일 수도 있다. The determined filter coefficient may not be coded as it is, and the number of bits required for coding the filter coefficient may be reduced through differential coding.

예를 들어, 인코더는 적응적 업샘플링 필터를 위한 최적의 필터 계수를 위상(p) 별로 결정할 수 있다. i번째 위상(p)에 대한 필터 계수는 (i-1)번째 위상(p)에 대한 필터 계수와의 차분 계수로 코딩할 수 있다. 여기서, 1/n 샘플 단위로 인터폴레이션을 수행하는 경우에는 n개의 위상이 존재하므로, i는 1보다 크거나 같고 (n-1)보다 작거나 같은 자연수를 의미한다.For example, the encoder may determine an optimal filter coefficient for the adaptive up-sampling filter for each phase p. The filter coefficient for the i-th phase p may be coded by a difference coefficient with the filter coefficient for the (i-1) -th phase p. Here, when interpolation is performed in 1 / n sample units, since n phases exist, i means a natural number equal to or greater than 1 and less than or equal to (n-1).

이와 같이, i번째 위상(pi)에 대한 필터 계수를 (i-1)번째 위상(p(i-1))에 대한 필터 계수와의 차분으로 코딩한 경우, 디코더는 비트스트림으로부터 i번째 위상(pi)에 대한 차분 필터 계수를 획득하고, 이를 (i-1)번째 위상(p(i-1))에 대한 필터 계수와 더하여 i번째 위상(pi)에 대한 필터 계수를 유도할 수 있다.Thus, the i-th phase (p i) if the coded difference between the filter coefficients for the (i-1) th phase (p (i-1)) the filter coefficients for the decoder is the i-th phase from the bit stream (p i ) and derive a filter coefficient for the i th phase (p i ) by adding it to the filter coefficient for the (i-1) th phase p (i-1) have.

또는, 인코더는 i번째 위상(pi)에 대한 필터 계수를 결정하고, 이를 고정된 업샘플링 필터의 i번째 위상(pi)에 대한 필터 계수와의 차분 계수로 코딩할 수도 있다.Alternatively, the encoder may determine filter coefficients and encoding the difference to the coefficient of the filter coefficients for the i th phase of the up-sampling filter fixing them (p i) for the i-th phase (p i).

이 경우, 디코더는 비트스트림으로부터 i번째 위상(pi)에 대한 차분 필터 계수를 획득하고, 이를 고정된 업샘플링 필터의 i번째 위상(pi)에 대한 필터 계수와 더하여 i번째 위상(pi)에 대한 필터 계수를 유도할 수도 있다. In this case, the decoder i th phase (p i) i th phase obtaining the difference filter coefficients, and in addition the filter coefficients for the i th phase of the up-sampling filter fixing them (p i) for from a bitstream (p i ) May be derived.

다만, 앞서 살펴본 바와 같이, 차분 코딩 방식을 통해 필터 계수를 코딩하는 경우, 차분 필터 계수의 크기는 7을 초과하지 아니하도록 제한될 수 있다. 이는 차분 필터 계수를 3bits 이내로 코딩함으로써, 임시 버퍼의 오버플러우가 발생되지 아니하도록 하기 위함이다. 한편, 차분 필터 계수는 fixed length code 또는 truncated unary code 방식으로 엔트로피 코딩될 수 있다. However, as described above, when the filter coefficient is coded by the differential coding method, the size of the differential filter coefficient may be limited to not exceed 7. This is to prevent the overflow of the temporary buffer from occurring by coding the difference filter coefficient within 3 bits. Meanwhile, the differential filter coefficient can be entropy coded by a fixed length code or a truncated unary code scheme.

(2) 필터 계수의 전송 단위(2) Unit of transmission of filter coefficient

적응적 업샘플링 필터를 위한 별도의 신택스가 정의된 경우, 해당 신택스(예를 들어, adaptive parameter set)로부터 획득될 수도 있다. 또는, 인코더는 영상 시퀀스에 속하는 모든 픽쳐에 대해 공통적으로 적용 가능한 필터 계수를 결정하고, 이를 전송할 수 있다. 이 경우, 디코더는 시퀀스 레벨의 신택스(예를 들어, sequence parameter set)에서 적응적 업샘플링 필터의 필터 계수를 획득할 수 있다.또는, 인코더는 픽쳐 또는 슬라이스 단위로 적용되는 필터 계수를 결정하고, 이를 전송할 수도 있다. 이 경우, 디코더는 픽쳐 레벨의 신택스 또는 슬라이스 레벨의 신택스(예를 들어, picture parameter set, slice header, slice segment header)에서 필터 계수를 획득할 수도 있다. 이하, 도 4 내지 도 9를 참조하여 디코더에서 적응적 업샘플링 필터의 필터 계수를 획득하는 방법을 자세히 살펴 보도록 한다.If a separate syntax for the adaptive upsampling filter is defined, it may be obtained from the corresponding syntax (e.g., an adaptive parameter set). Alternatively, the encoder may determine and transmit filter coefficients that are commonly applicable to all pictures belonging to the video sequence. In this case, the decoder may obtain the filter coefficients of the adaptive up-sampling filter in a sequence level syntax (e.g., a sequence parameter set), or the encoder may determine filter coefficients applied in picture or slice units, It may be transmitted. In this case, the decoder may obtain a filter coefficient in a syntax of a picture level syntax or a slice level syntax (e.g., a picture parameter set, a slice header, and a slice segment header). Hereinafter, a method of acquiring the filter coefficient of the adaptive up-sampling filter in the decoder will be described in detail with reference to FIGS. 4 to 9. FIG.

도 3을 참조하면, S300단계에서 획득된 필터 계수를 참조 픽쳐에 적용하여 인터레이어 참조 픽쳐를 생성할 수 있다(S310).Referring to FIG. 3, an interlayer reference picture may be generated by applying the filter coefficient obtained in step S300 to a reference picture (S310).

구체적으로, 획득된 필터 계수를 이용하여 인터폴레이션을 수행함으로써, 참조 픽쳐를 업샘플링할 수 있다. 여기서, 인터폴레이션은 1차적으로 수평 방향으로 수행하고, 수평 방향의 인터폴레이션 후 생성된 샘플에 대해서 2차적으로 수직 방향으로 수행될 수 있다.Specifically, by performing the interpolation using the obtained filter coefficients, the reference picture can be upsampled. Here, the interpolation may be performed primarily in the horizontal direction and may be performed in the vertical direction with respect to the sample generated after the interpolation in the horizontal direction.

S310 단계에서 생성된 인터레이어 참조 픽쳐에 기초하여 현재 블록의 인터 예측을 수행할 수 있다(S320).The inter-prediction of the current block may be performed based on the inter-layer reference picture generated in step S310 (S320).

인터 예측을 위해 인터레이어 참조 픽쳐를 포함한 참조 픽쳐 리스트를 생성할 수 있다. It is possible to generate a reference picture list including an interlayer reference picture for inter prediction.

예를 들어, 현재 블록과 동일 레이어에 속한 참조 픽쳐 즉, 시간적 참조 픽쳐를 이용하여 참조 픽쳐 리스트를 구성하고, 상기 시간적 참조 픽쳐 뒤에 인터레이어 참조 픽쳐를 배열할 수 있다.For example, it is possible to construct a reference picture list by using a reference picture belonging to the same layer as the current block, that is, a temporal reference picture, and arrange an interlayer reference picture after the temporal reference picture.

또는, 인터레이어 참조 픽쳐는 시간적 참조 픽쳐들 사이에 추가될 수도 있다. 예를 들어, 인터레이어 참조 픽쳐는 시간적 참조 픽쳐로 구성된 참조 픽쳐 리스트에서 첫번째 시간적 참조 픽쳐 다음에 배열될 수 있다. 참조 픽쳐 리스트에서 첫번째 시간적 참조 픽쳐는 참조 인덱스 0을 갖는 참조 픽쳐를 의미할 수 있다. 이 경우, 첫번째 시간적 참조 픽쳐 다음에 배열된 인터레이어 참조 픽쳐에는 참조 인덱스 1이 할당될 수 있다.Alternatively, an interlayer reference picture may be added between temporal reference pictures. For example, the interlayer reference pictures may be arranged after the first temporal reference picture in the reference picture list composed of temporal reference pictures. The first temporal reference picture in the reference picture list may refer to a reference picture having a reference index 0. [ In this case, the reference index 1 may be assigned to the interlayer reference pictures arranged after the first temporal reference picture.

나아가, 현재 블록의 참조 인덱스를 이용하여 상기 생성된 참조 픽쳐 리스트에서 참조 픽쳐를 특정하고, 현재 블록의 모션 벡터를 이용하여 참조 픽쳐 내 참조 블록을 특정할 수 있다. 따라서, 현재 블록은 특정된 참조 블록을 이용하여 인터 예측을 수행할 수 있다. 다만, 현재 블록이 참조 픽쳐로 인터레이어 참조 픽쳐를 이용하는 경우, 현재 블록은 인터레이어 참조 픽쳐 내 동일 위치의 블록을 이용하여 레이어 간 예측을 수행할 수 있다. 이를 위해 현재 블록의 참조 인덱스가 참조 픽쳐 리스트에서 인터레이어 참조 픽쳐를 특정하는 경우에는 현재 블록의 모션 벡터는 (0,0)으로 설정될 수 있다.
Furthermore, a reference picture may be specified in the generated reference picture list using the reference index of the current block, and the reference block reference block may be specified using the motion vector of the current block. Therefore, the current block can perform inter prediction using the specified reference block. However, when the current block uses an inter-layer reference picture as a reference picture, the current block can perform inter-layer prediction using blocks in the same position in the inter-layer reference picture. For this purpose, when the reference index of the current block specifies an interlayer reference picture in the reference picture list, the motion vector of the current block can be set to (0, 0).

도 4는 본 발명이 적용되는 일실시예로서, 참조 픽쳐에 대해 적응적 업샘플링 필터를 선택적으로 이용하는 방법을 도시한 것이다.FIG. 4 illustrates a method of selectively using an adaptive up-sampling filter for a reference picture according to an embodiment to which the present invention is applied.

도 4에서 적응적 업샘플링 플래그(adaptive_upsampling_flag)는 고정된 업샘플링 필터를 사용할지, 아니면 적응적 업샘플링 필터를 사용할지 여부를 특정하는 정보를 의미할 수 있다. 도 4에서는 슬라이스 레벨에서 필터 계수를 획득하는 과정을 도시하나, 도 3에서 살펴 본 바와 같이 시퀀스 레벨, 픽쳐 레벨에서도 동일한 방식으로 획득될 수 있음은 물론이다.In FIG. 4, the adaptive upsampling flag (adaptive_upsampling_flag) may mean information specifying whether to use a fixed upsampling filter or an adaptive upsampling filter. FIG. 4 illustrates a process of acquiring filter coefficients at a slice level. However, it is needless to say that it is possible to acquire the filter coefficients at the sequence level and the picture level as shown in FIG.

도 4를 참조하면, 현재 슬라이스에 대한 적응적 업샘플링 플래그를 획득할 수 있다(S400). Referring to FIG. 4, an adaptive up-sampling flag for the current slice may be obtained (S400).

S400 단계에서 획득된 적응적 업샘플링 플래그가 적응적 업샘플링 필터를 사용함을 특정하는 경우, 적응적 업샘플링 필터의 필터 계수를 획득할 수 있다(S410).If the adaptive up-sampling flag obtained in step S400 specifies that the adaptive up-sampling filter is used, the filter coefficient of the adaptive up-sampling filter may be obtained (S410).

구체적으로, 적응적 업샘플링 필터의 필터 계수는 휘도 성분과 색차 성분에 대해서 각각 획득될 수 있다. 또한, 필터 계수는 각 위상(pi) 별로 획득될 수 있다. 각 위상(pi) 별로 휘도 성분에 대해서는 n-tap 필터의 필터 계수가, 색차 성분에 대해서는 m-tap 필터의 필터 계수가 각각 획득될 수 있다. 여기서, n 및 m은 1보다 큰 자연수를 의미한다.Specifically, the filter coefficients of the adaptive up-sampling filter can be obtained for the luminance component and the chrominance component, respectively. Further, the filter coefficients can be obtained for each phase p i . A filter coefficient of the n-tap filter may be obtained for each luminance component for each phase p i , and a filter coefficient of the m-tap filter may be obtained for each chrominance component. Here, n and m mean natural numbers greater than one.

또한, 고정된 업샘플링 필터와의 호환성을 위해 고정된 업샘플링 필터와 동일한 차수의 tap 필터가 이용될 수 있다. 예를 들어, 고정된 업샘플링 필터가 휘도 성분에 대해서 8-tap 필터이고, 색차 성분에 대해서 4-tap 필터인 경우에는, 도 4에 도시된 바와 같이 휘도 성분에 대해서는 8-tap 필터의 필터 계수가, 색차 성분에 대해서는 4-tap 필터의 필터 계수가 각각 획득될 수도 있다.In addition, a tap filter of the same order as the fixed up-sampling filter can be used for compatibility with the fixed up-sampling filter. For example, when a fixed up-sampling filter is an 8-tap filter for a luminance component and a 4-tap filter for a chrominance component, as shown in FIG. 4, And the filter coefficients of the 4-tap filter may be obtained for the chrominance components, respectively.

반면, S400 단계에서 획득된 적응적 업샘플링 플래그가 고정된 업샘플링 필터를 사용함을 특정하는 경우, 비트스트림으로부터 적응적 업샘플링 필터의 필터 계수를 획득하지 아니하고, 도 3에서 살펴 본 기 정의된 테이블로부터 필터 계수를 획득할 수 있다.On the other hand, when it is specified that the adaptive up-sampling flag obtained in step S400 uses the fixed up-sampling filter, the filter coefficient of the adaptive up-sampling filter is not obtained from the bit stream, Lt; / RTI >

이와 같이, 적응적 업샘플링 플래그를 이용함으로써, 참조 픽쳐에 대한 업샘플링 필터를 선택적으로 이용할 수 있다.
Thus, by using the adaptive up-sampling flag, the up-sampling filter for the reference picture can be selectively used.

도 5는 본 발명이 적용되는 일실시예로서, 휘도 성분과 색차 성분 각각에 대해 적응적 업샘플링 필터를 선택적으로 이용하는 방법을 도시한 것이다.FIG. 5 illustrates a method of selectively using an adaptive up-sampling filter for each of a luminance component and a chrominance component to which the present invention is applied.

먼저, 적응적 업샘플링 루마 플래그(adaptive_upsampling_luma_flag)를 획득할 수 있다(S500).First, an adaptive up-sampling luma flag (adaptive_upsampling_luma_flag) may be obtained (S500).

적응적 업샘플링 루마 플래그는 참조 픽쳐의 휘도 성분에 대해 고정된 업샘플링 필터를 사용할지, 아니면 적응적 업샘플링 필터를 사용할지 여부를 특정하는 정보를 의미할 수 있다.The adaptive upsampling luma flag may refer to information specifying whether to use a fixed upsampling filter or an adaptive upsampling filter for the luminance component of the reference picture.

S500 단계에서 획득된 적응적 업샘플링 루마 플래그가 적응적 업샘플링 필터가 사용됨을 특정하는 경우, 휘도 성분에 적용되는 필터 계수를 획득할 수 있다(S510). If the adaptive upsampling luma flag obtained in step S500 specifies that an adaptive upsampling filter is used, a filter coefficient applied to the luminance component may be obtained (S510).

여기서, 필터 계수는 각 위상(pi) 별로 획득될 수 있다. 각 위상(pi) 별로 휘도 성분에 대해서는 n-tap 필터의 필터 계수가 획득될 수 있다. 여기서, n은 1보다 큰 자연수를 의미한다.Here, the filter coefficients can be obtained for each phase p i . The filter coefficient of the n-tap filter can be obtained for each luminance component for each phase p i . Here, n means a natural number greater than 1.

또한, 고정된 업샘플링 필터와의 호환성을 위해 고정된 업샘플링 필터와 동일한 차수의 tap 필터가 이용될 수 있다. 예를 들어, 고정된 업샘플링 필터가 휘도 성분에 대해서 8-tap 필터인 경우에는, 도 5에 도시된 바와 같이 휘도 성분에 대해서는 8-tap 필터의 필터 계수가 획득될 수도 있다.In addition, a tap filter of the same order as the fixed up-sampling filter can be used for compatibility with the fixed up-sampling filter. For example, if the fixed up-sampling filter is an 8-tap filter for the luminance component, the filter coefficient of the 8-tap filter may be obtained for the luminance component as shown in Fig.

반대로, S500 단계에서 획득된 적응적 업샘플링 루마 플래그가 고정된 업샘플링 필터가 사용됨을 특정하는 경우, 도 3에서 살펴본 기 정의된 테이블로부터 필터 계수를 획득할 수 있다.Conversely, when the adaptive upsampling flag obtained in step S500 specifies that a fixed upsampling filter is used, the filter coefficient can be obtained from the predefined table shown in FIG.

한편, 적응적 업샘플링 크로마 플래그(adaptive_upsampling_chroma_flag)를 획득할 수 있다(S520).On the other hand, an adaptive upsampling chroma flag (adaptive_upsampling_chroma_flag) may be obtained (S520).

적응적 업샘플링 크로마 플래그는 참조 픽쳐의 색차 성분에 대해 고정된 업샘플링 필터를 사용할지, 아니면 적응적 업샘플링 필터를 사용할지 여부를 특정하는 정보를 의미할 수 있다.The adaptive upsampling chroma flag may refer to information specifying whether to use a fixed upsampling filter or an adaptive upsampling filter for the chrominance component of the reference picture.

S520 단계에서 획득된 적응적 업샘플링 크로마 플래그가 적응적 업샘플링 필터가 사용됨을 특정하는 경우, 색차 성분에 적용되는 필터 계수를 획득할 수 있다(S530). If the adaptive upsampling chroma flag obtained in step S520 specifies that the adaptive upsampling filter is used, a filter coefficient applied to the chrominance component may be obtained (S530).

여기서, 필터 계수는 각 위상(pi) 별로 획득될 수 있다. 각 위상(pi) 별로 색차 성분에 대한 m-tap 필터의 필터 계수가 획득될 수 있다. 여기서, m은 1보다 큰 자연수를 의미한다.Here, the filter coefficients can be obtained for each phase p i . A filter coefficient of an m-tap filter for a chrominance component can be obtained for each phase p i . Here, m means a natural number greater than one.

또한, 고정된 업샘플링 필터와의 호환성을 위해 고정된 업샘플링 필터와 동일한 차수의 tap 필터가 이용될 수 있다. 예를 들어, 고정된 업샘플링 필터가 색차 성분에 대해서 4-tap 필터인 경우에는, 도 5에 도시된 바와 같이 색차 성분에 대해서는 4-tap 필터의 필터 계수가 각각 획득될 수도 있다.In addition, a tap filter of the same order as the fixed up-sampling filter can be used for compatibility with the fixed up-sampling filter. For example, if the fixed up-sampling filter is a 4-tap filter for the chrominance components, the filter coefficients of the 4-tap filter may be obtained for the chrominance components as shown in FIG.

반대로, S520 단계에서 획득된 적응적 업샘플링 크로마 플래그가 고정된 업샘플링 필터가 사용됨을 특정하는 경우, 도 3에서 살펴본 기 정의된 테이블로부터 필터 계수를 획득할 수 있다.
In contrast, when the adaptive upsampling chroma flag obtained in step S520 specifies that a fixed upsampling filter is used, the filter coefficient can be obtained from the predefined table shown in FIG.

도 6은 본 발명이 적용되는 일실시예로서, 휘도 성분과 2개의 색차 성분(Cb, Cr) 각각에 대해 적응적 업샘플링 필터를 선택적으로 이용하는 방법을 도시한 것이다.FIG. 6 illustrates a method of selectively using an adaptive up-sampling filter for each of a luminance component and two chrominance components (Cb and Cr) to which the present invention is applied.

먼저, 적응적 업샘플링 루마 플래그(adaptive_upsampling_luma_flag)를 획득할 수 있다(S600).First, an adaptive up-sampling luma flag (adaptive_upsampling_luma_flag) may be obtained (S600).

적응적 업샘플링 루마 플래그는 참조 픽쳐의 휘도 성분에 대해 고정된 업샘플링 필터를 사용할지, 아니면 적응적 업샘플링 필터를 사용할지 여부를 특정하는 정보를 의미할 수 있다.The adaptive upsampling luma flag may refer to information specifying whether to use a fixed upsampling filter or an adaptive upsampling filter for the luminance component of the reference picture.

S600 단계에서 획득된 적응적 업샘플링 루마 플래그가 적응적 업샘플링 필터가 사용됨을 특정하는 경우, 휘도 성분에 적용되는 필터 계수를 획득할 수 있다(S610). If the adaptive upsampling luma flag obtained in step S600 specifies that an adaptive upsampling filter is used, a filter coefficient applied to the luminance component may be obtained (S610).

여기서, 필터 계수는 각 위상(pi) 별로 획득될 수 있다. 각 위상(pi) 별로 휘도 성분에 대해서는 n-tap 필터의 필터 계수가 획득될 수 있다. 여기서, n은 1보다 큰 자연수를 의미한다.Here, the filter coefficients can be obtained for each phase p i . The filter coefficient of the n-tap filter can be obtained for each luminance component for each phase p i . Here, n means a natural number greater than 1.

또한, 고정된 업샘플링 필터와의 호환성을 위해 고정된 업샘플링 필터와 동일한 차수의 tap 필터가 이용될 수 있다. 예를 들어, 고정된 업샘플링 필터가 휘도 성분에 대해서 8-tap 필터인 경우에는, 도 6에 도시된 바와 같이 휘도 성분에 대해서는 8-tap 필터의 필터 계수가 획득될 수도 있다.In addition, a tap filter of the same order as the fixed up-sampling filter can be used for compatibility with the fixed up-sampling filter. For example, if the fixed up-sampling filter is an 8-tap filter for the luminance component, the filter coefficient of the 8-tap filter may be obtained for the luminance component as shown in FIG.

반대로, S600 단계에서 획득된 적응적 업샘플링 루마 플래그가 고정된 업샘플링 필터가 사용됨을 특정하는 경우, 도 3에서 살펴본 기 정의된 테이블로부터 필터 계수를 획득할 수 있다.Conversely, when the adaptive upsampling flag obtained in step S600 specifies that a fixed upsampling filter is used, the filter coefficient can be obtained from the predefined table shown in FIG.

한편, 색차 성분 Cb, Cr 각 성분도 서로 특징이 다른 경우가 발생할 수 있다. 이에 색차 성분 전체에 대해 적응적 업샘플링 필터의 사용 여부를 결정하지 아니하고, Cb, Cr 각각에 대해서 적응적 업샘플링 필터의 사용 여부를 인코딩 단계에서 결정하여 시그날링할 수 있다.On the other hand, the chrominance components Cb and Cr may have different characteristics from each other. It is possible to determine whether to use the adaptive upsampling filter for each of Cb and Cr in the encoding step and to perform signaling without determining whether to use the adaptive upsampling filter for the entire chrominance components.

도 6을 참조하면, 현재 슬라이스에 대한 제1 적응적 업샘플링 크로마 플래그(adaptive_upsampling_Cb_flag)를 획득할 수 있다(S620).Referring to FIG. 6, a first adaptive upsampling chroma flag (adaptive_upsampling_Cb_flag) for the current slice may be obtained (S620).

제1 적응적 업샘플링 크로마 플래그는 참조 픽쳐의 색차 성분 Cb에 대해 고정된 업샘플링 필터를 사용할지, 아니면 적응적 업샘플링 필터를 사용할지 여부를 특정하는 정보를 의미할 수 있다.The first adaptive upsampling chroma flag may mean information specifying whether to use a fixed upsampling filter or an adaptive upsampling filter for the chrominance component Cb of the reference picture.

S620 단계에서 획득된 제1 적응적 업샘플링 크로마 플래그가 적응적 업샘플링 필터가 사용됨을 특정하는 경우, 색차 성분 Cb에 적용되는 필터 계수를 획득할 수 있다(S630). If the first adaptive upsampling chroma flag obtained in step S620 specifies that the adaptive upsampling filter is used, a filter coefficient applied to the chrominance component Cb may be obtained (S630).

여기서, 필터 계수는 각 위상(pi) 별로 획득될 수 있다. 각 위상(pi) 별로 색차 성분 Cb에 대한 m-tap 필터의 필터 계수가 각각 획득될 수 있다. 여기서, m은 1보다 큰 자연수를 의미한다.Here, the filter coefficients can be obtained for each phase p i . The filter coefficients of the m-tap filter for the chrominance component Cb can be obtained for each phase p i , respectively. Here, m means a natural number greater than one.

또한, 고정된 업샘플링 필터와의 호환성을 위해 고정된 업샘플링 필터와 동일한 차수의 tap 필터가 이용될 수 있다. 예를 들어, 고정된 업샘플링 필터가 색차 성분에 대해서 4-tap 필터인 경우에는, 도 6에 도시된 바와 같이 색차 성분 Cb에 대해서는 4-tap 필터의 필터 계수가 각각 획득될 수도 있다.In addition, a tap filter of the same order as the fixed up-sampling filter can be used for compatibility with the fixed up-sampling filter. For example, if the fixed up-sampling filter is a 4-tap filter for a chrominance component, the filter coefficients of the 4-tap filter may be obtained for the chrominance component Cb as shown in FIG.

반대로, S620 단계에서 획득된 제1 적응적 업샘플링 크로마 플래그가 고정된 업샘플링 필터가 사용됨을 특정하는 경우, 도 3에서 살펴본 기 정의된 테이블로부터 필터 계수를 획득할 수 있다.In contrast, when the first adaptive upsampling chroma flag obtained in step S620 specifies that a fixed upsampling filter is used, the filter coefficient can be obtained from the predefined table shown in FIG.

그런 다음, 현재 슬라이스에 대한 제2 적응적 업샘플링 크로마 플래그(adaptive_upsampling_Cr_flag)를 획득할 수 있다(S640).Then, a second adaptive upsampling chroma flag (adaptive_upsampling_Cr_flag) for the current slice may be obtained (S640).

제2 적응적 업샘플링 크로마 플래그는 참조 픽쳐의 색차 성분 Cr에 대해 고정된 업샘플링 필터를 사용할지, 아니면 적응적 업샘플링 필터를 사용할지 여부를 특정하는 정보를 의미할 수 있다.The second adaptive upsampling chroma flag may refer to information specifying whether to use a fixed upsampling filter or an adaptive upsampling filter for the chrominance component Cr of the reference picture.

S640 단계에서 획득된 제2 적응적 업샘플링 크로마 플래그가 적응적 업샘플링 필터가 사용됨을 특정하는 경우, 색차 성분 Cr에 적용되는 필터 계수를 획득할 수 있다(S650). If the second adaptive upsampling chroma flag obtained in step S640 specifies that the adaptive upsampling filter is used, a filter coefficient applied to the chrominance component Cr may be obtained (S650).

여기서, 필터 계수는 각 위상(pi) 별로 획득될 수 있다. 각 위상(pi) 별로 색차 성분 Cr에 대한 m-tap 필터의 필터 계수가 각각 획득될 수 있다. 여기서, m은 1보다 큰 자연수를 의미한다.Here, the filter coefficients can be obtained for each phase p i . The filter coefficients of the m-tap filter for the chrominance component Cr can be obtained for each phase p i , respectively. Here, m means a natural number greater than one.

또한, 고정된 업샘플링 필터와의 호환성을 위해 고정된 업샘플링 필터와 동일한 차수의 tap 필터가 이용될 수 있다. 예를 들어, 고정된 업샘플링 필터가 색차 성분 Cr에 대해서 4-tap 필터인 경우에는, 도 6에 도시된 바와 같이 색차 성분 Cr에 대해서는 4-tap 필터의 필터 계수가 각각 획득될 수도 있다.In addition, a tap filter of the same order as the fixed up-sampling filter can be used for compatibility with the fixed up-sampling filter. For example, when the fixed up-sampling filter is a 4-tap filter for the chrominance component Cr, the filter coefficients of the 4-tap filter may be obtained for the chrominance component Cr, respectively, as shown in FIG.

반대로, S640 단계에서 획득된 제2 적응적 업샘플링 크로마 플래그가 고정된 업샘플링 필터가 사용됨을 특정하는 경우, 도 3에서 살펴본 기 정의된 테이블로부터 필터 계수를 획득할 수 있다.
In contrast, when the second adaptive upsampling chroma flag obtained in step S640 specifies that a fixed upsampling filter is used, the filter coefficient can be obtained from the predefined table shown in FIG.

도 7은 본 발명이 적용되는 일실시예로서, 제1 적응적 성분 플래그에 기초하여 적응적 업샘플링 필터의 필터 계수를 획득하는 방법을 도시한 것이다.FIG. 7 illustrates a method of obtaining filter coefficients of an adaptive up-sampling filter based on a first adaptive component flag, according to an embodiment to which the present invention is applied.

도 5에서 살펴본 바와 같이, 참조 픽쳐의 휘도 성분과 색차 성분 각각에 대해서 적응적 업샘플링 필터가 사용되는지 여부를 특정하기 위해 2개의 플래그 즉, 적응적 업샘플링 루마 플래그와 적응적 업샘플링 크로마 플래그를 모두 코딩해야 한다.5, in order to specify whether an adaptive up-sampling filter is used for each of the luminance component and chrominance component of the reference picture, two flags, i.e., an adaptive up-sampling luma flag and an adaptive up- All should be coded.

이러한 코딩 부담을 줄이기 위해 제1 적응적 성분 플래그(adaptive_component_flag)를 이용할 수 있다. 제1 적응적 성분 플래그는 참조 픽쳐의 휘도 성분과 색차 성분 중 적어도 하나에 대해 적응적 업샘플링 필터가 사용되는지 여부를 특정하는 정보를 의미할 수 있다.A first adaptive component flag (adaptive_component_flag) may be used to reduce the coding burden. The first adaptive component flag may refer to information specifying whether an adaptive up-sampling filter is used for at least one of a luminance component and a chrominance component of the reference picture.

만일, 제1 적응적 성분 플래그가 휘도 성분과 색차 성분 중 적어도 하나에 대해 적응적 업샘플링 필터가 사용됨을 특정하는 경우에는 휘도 성분과 색차 성분 각각에 대해 적응적 업샘플링 루마 플래그와 적응적 업샘플링 크로마 플래그를 획득할 필요가 있다. If the first adaptive component flag specifies that an adaptive up-sampling filter is used for at least one of the luminance component and the chrominance component, an adaptive up-sampling luma flag and an adaptive up- It is necessary to acquire a chroma flag.

그러나, 제1 적응적 성분 플래그가 휘도 성분과 색차 성분 모두에 대해 적응적 업샘플링 필터가 사용되지 아니함을 특정하는 경우에는 휘도 성분과 색차 성분 각각에 대해 적응적 업샘플링 루마 플래그와 적응적 업샘플링 크로마 플래그를 획득할 필요가 없다.However, when the first adaptive component flag specifies that an adaptive up-sampling filter is not used for both the luminance component and the chrominance component, an adaptive up-sampling luma flag and an adaptive up- There is no need to acquire chroma flags.

도 7을 참조하면, 현재 슬라이스에 대한 제1 적응적 성분 플래그(adaptive_component_flag)를 획득할 수 있다(S700).Referring to FIG. 7, a first adaptive component flag (adaptive_component_flag) for the current slice may be obtained (S700).

제1 적응적 성분 플래그가 휘도 성분과 색차 성분 중 적어도 하나에 대해 적응적 업샘플링 필터가 사용됨을 특정하는 경우에는, 적응적 업샘플링 루마 플래그(adaptive_upsampling_luma_flag)를 획득할 수 있다(S710).If the first adaptive component flag specifies that an adaptive up-sampling filter is to be used for at least one of the luminance component and the chrominance component, an adaptive up-sampling luma flag (adaptive_upsampling_luma_flag) may be obtained (S710).

적응적 업샘플링 루마 플래그는 참조 픽쳐의 휘도 성분에 대해 고정된 업샘플링 필터를 사용할지, 아니면 적응적 업샘플링 필터를 사용할지 여부를 특정하는 정보를 의미할 수 있다.The adaptive upsampling luma flag may refer to information specifying whether to use a fixed upsampling filter or an adaptive upsampling filter for the luminance component of the reference picture.

S710 단계에서 획득된 적응적 업샘플링 루마 플래그가 적응적 업샘플링 필터가 사용됨을 특정하는 경우, 휘도 성분에 적용되는 필터 계수를 획득할 수 있다(S720). If the adaptive upsampling luma flag obtained in step S710 specifies that an adaptive upsampling filter is used, a filter coefficient applied to the luminance component may be obtained (S720).

여기서, 필터 계수는 각 위상(pi) 별로 획득될 수 있다. 각 위상(pi) 별로 휘도 성분에 대해서는 n-tap 필터의 필터 계수가 획득될 수 있다. 여기서, n은 1보다 큰 자연수를 의미한다.Here, the filter coefficients can be obtained for each phase p i . The filter coefficient of the n-tap filter can be obtained for each luminance component for each phase p i . Here, n means a natural number greater than 1.

또한, 고정된 업샘플링 필터와의 호환성을 위해 고정된 업샘플링 필터와 동일한 차수의 tap 필터가 이용될 수 있다. 예를 들어, 고정된 업샘플링 필터가 휘도 성분에 대해서 8-tap 필터인 경우에는, 도 7에 도시된 바와 같이 휘도 성분에 대해서는 8-tap 필터의 필터 계수가 획득될 수도 있다.In addition, a tap filter of the same order as the fixed up-sampling filter can be used for compatibility with the fixed up-sampling filter. For example, in the case where the fixed up-sampling filter is an 8-tap filter for the luminance component, the filter coefficient of the 8-tap filter may be obtained for the luminance component as shown in Fig.

반대로, S710 단계에서 획득된 적응적 업샘플링 루마 플래그가 고정된 업샘플링 필터가 사용됨을 특정하는 경우, 도 3에서 살펴본 기 정의된 테이블로부터 필터 계수를 획득할 수 있다.Conversely, when the adaptive upsampling flag obtained in step S710 specifies that a fixed upsampling filter is used, the filter coefficient can be obtained from the predefined table shown in FIG.

한편, 제1 적응적 성분 플래그가 휘도 성분과 색차 성분 중 적어도 하나에 대해 적응적 업샘플링 필터가 사용됨을 특정하는 경우에는 적응적 업샘플링 크로마 플래그(adaptive_upsampling_chroma_flag)를 획득할 수 있다(S730).On the other hand, if the first adaptive component flag specifies that an adaptive up-sampling filter is used for at least one of the luminance component and the chrominance component, the adaptive up-sampling chroma flag (adaptive_upsampling_chroma_flag) may be obtained (S730).

적응적 업샘플링 크로마 플래그는 참조 픽쳐의 색차 성분에 대해 고정된 업샘플링 필터를 사용할지, 아니면 적응적 업샘플링 필터를 사용할지 여부를 특정하는 정보를 의미할 수 있다.The adaptive upsampling chroma flag may refer to information specifying whether to use a fixed upsampling filter or an adaptive upsampling filter for the chrominance component of the reference picture.

S730 단계에서 획득된 적응적 업샘플링 크로마 플래그가 적응적 업샘플링 필터가 사용됨을 특정하는 경우, 색차 성분에 적용되는 필터 계수를 획득할 수 있다(S740). If the adaptive upsampling chroma flag obtained in step S730 specifies that the adaptive upsampling filter is used, a filter coefficient applied to the chrominance component may be obtained (S740).

여기서, 필터 계수는 각 위상(pi) 별로 획득될 수 있다. 각 위상(pi) 별로 색차 성분에 대한 m-tap 필터의 필터 계수가 각각 획득될 수 있다. 여기서, m은 1보다 큰 자연수를 의미한다.Here, the filter coefficients can be obtained for each phase p i . The filter coefficients of the m-tap filter for the chrominance components can be obtained for each phase p i , respectively. Here, m means a natural number greater than one.

또한, 고정된 업샘플링 필터와의 호환성을 위해 고정된 업샘플링 필터와 동일한 차수의 tap 필터가 이용될 수 있다. 예를 들어, 고정된 업샘플링 필터가 색차 성분에 대해서 4-tap 필터인 경우에는, 도 7에 도시된 바와 같이 색차 성분에 대해서는 4-tap 필터의 필터 계수가 각각 획득될 수도 있다. 또한, 도 7에는 도시되지 아니하였으나, 색차 성분에 대한 필터 계수를 색차 성분 Cb, Cr 각각에 대해서 획득될 수도 있음은 물론이다.In addition, a tap filter of the same order as the fixed up-sampling filter can be used for compatibility with the fixed up-sampling filter. For example, if the fixed up-sampling filter is a 4-tap filter for the chrominance components, the filter coefficients of the 4-tap filter may be obtained for the chrominance components as shown in FIG. Although not shown in FIG. 7, the filter coefficients for the chrominance components may be obtained for each of the chrominance components Cb and Cr.

반대로, S730 단계에서 획득된 적응적 업샘플링 크로마 플래그가 고정된 업샘플링 필터가 사용됨을 특정하는 경우, 도 3에서 살펴본 기 정의된 테이블로부터 필터 계수를 획득할 수 있다.
In contrast, when the adaptive upsampling chroma flag obtained in step S730 specifies that a fixed upsampling filter is used, the filter coefficient can be obtained from the predefined table shown in FIG.

도 8은 본 발명이 적용되는 일실실예로서, 제2 적응적 성분 플래그에 기초하여 적응적 업샘플링 필터의 필터 계수를 획득하는 방법을 도시한 것이다.Figure 8 illustrates a method of obtaining the filter coefficients of an adaptive up-sampling filter based on a second adaptive component flag, as an example of an application to which the present invention is applied.

도 6에서 살펴본 바와 같이, 참조 픽쳐의 휘도 성분과 색차 성분 Cb, Cr 각각에 대해서 적응적 업샘플링 필터가 사용되는지 여부를 특정하기 위해서는 3개의 플래그 즉, 적응적 업샘플링 루마 플래그, 제1 적응적 업샘플링 크로마 플래그 및 제2 적응적 업샘플링 크로마 플래그를 모두 코딩해야 한다.6, in order to specify whether the adaptive upsampling filter is used for each of the luminance component of the reference picture and the chrominance components Cb and Cr, three flags, i.e., an adaptive upsampling luma flag, a first adaptive Both the up-sampling chroma flag and the second adaptive up-sampling chroma flag must be coded.

이러한 코딩 부담을 줄이기 위해 제2 적응적 성분 플래그(adaptive_component_flag)를 이용할 수 있다. 제2 적응적 성분 플래그는 참조 픽쳐의 휘도 성분과 색차 성분 Cb, Cr 중 적어도 하나에 대해 적응적 업샘플링 필터가 사용되는지 여부를 특정하는 정보를 의미할 수 있다.A second adaptive component flag (adaptive_component_flag) may be used to reduce the coding burden. The second adaptive component flag may refer to information specifying whether the adaptive up-sampling filter is used for at least one of the luminance component of the reference picture and the chrominance components Cb and Cr.

만일, 제2 적응적 성분 플래그가 휘도 성분과 색차 성분 Cb, Cr 중 적어도 하나에 대해 적응적 업샘플링 필터가 사용됨을 특정하는 경우에는 휘도 성분과 색차 성분 Cb, Cr 각각에 대해 적응적 업샘플링 루마 플래그와 적응적 업샘플링 크로마 플래그를 획득할 필요가 있다. If the second adaptive component flag specifies that an adaptive up-sampling filter is to be used for at least one of the luminance component and the chrominance components Cb and Cr, an adaptive up-sampling luma Flag and an adaptive upsampling chroma flag.

그러나, 제2 적응적 성분 플래그가 휘도 성분과 색차 성분 Cb, Cr 모두에 대해 적응적 업샘플링 필터가 사용되지 아니함을 특정하는 경우에는 휘도 성분과 색차 성분 Cb, Cr 각각에 대해 적응적 업샘플링 루마 플래그, 제1 적응적 업샘플링 크로마 플래그 및 제2 적응적 업샘플링 크로마 플래그를 획득할 필요가 없다.However, when the second adaptive component flag specifies that the adaptive up-sampling filter is not used for both the luminance component and the chrominance components Cb and Cr, an adaptive up-sampling luma Flags, a first adaptive upsampling chroma flag, and a second adaptive upsampling chroma flag.

도 8을 참조하면, 현재 슬라이스에 대한 제2 적응적 성분 플래그(adaptive_component_flag)를 획득할 수 있다(S800).Referring to FIG. 8, a second adaptive component flag (adaptive_component_flag) for the current slice may be obtained (S800).

제2 적응적 성분 플래그가 휘도 성분과 색차 성분 Cb, Cr 중 적어도 하나에 대해 적응적 업샘플링 필터가 사용됨을 특정하는 경우에는, 적응적 업샘플링 루마 플래그(adaptive_upsampling_luma_flag)를 획득할 수 있다(S810).If the second adaptive component flag specifies that an adaptive up-sampling filter is used for at least one of the luminance component and the chrominance components Cb and Cr, an adaptive up-sampling luma flag (adaptive_upsampling_luma_flag) may be obtained (S810) .

적응적 업샘플링 루마 플래그는 참조 픽쳐의 휘도 성분에 대해 고정된 업샘플링 필터를 사용할지, 아니면 적응적 업샘플링 필터를 사용할지 여부를 특정하는 정보를 의미할 수 있다.The adaptive upsampling luma flag may refer to information specifying whether to use a fixed upsampling filter or an adaptive upsampling filter for the luminance component of the reference picture.

S810 단계에서 획득된 적응적 업샘플링 루마 플래그가 적응적 업샘플링 필터가 사용됨을 특정하는 경우, 휘도 성분에 적용되는 필터 계수를 획득할 수 있다(S820). If the adaptive upsampling luma flag obtained in step S810 specifies that the adaptive upsampling filter is used, a filter coefficient applied to the luminance component may be obtained (S820).

여기서, 필터 계수는 각 위상(pi) 별로 획득될 수 있다. 각 위상(pi) 별로 휘도 성분에 대해서는 n-tap 필터의 필터 계수가 획득될 수 있다. 여기서, n은 1보다 큰 자연수를 의미한다.Here, the filter coefficients can be obtained for each phase p i . The filter coefficient of the n-tap filter can be obtained for each luminance component for each phase p i . Here, n means a natural number greater than 1.

또한, 고정된 업샘플링 필터와의 호환성을 위해 고정된 업샘플링 필터와 동일한 차수의 tap 필터가 이용될 수 있다. 예를 들어, 고정된 업샘플링 필터가 휘도 성분에 대해서 8-tap 필터인 경우에는, 도 8에 도시된 바와 같이 휘도 성분에 대해서는 8-tap 필터의 필터 계수가 획득될 수도 있다.In addition, a tap filter of the same order as the fixed up-sampling filter can be used for compatibility with the fixed up-sampling filter. For example, when the fixed up-sampling filter is an 8-tap filter for the luminance component, the filter coefficient of the 8-tap filter may be obtained for the luminance component as shown in Fig.

반대로, S810 단계에서 획득된 적응적 업샘플링 루마 플래그가 고정된 업샘플링 필터가 사용됨을 특정하는 경우, 도 3에서 살펴본 기 정의된 테이블로부터 필터 계수를 획득할 수 있다.Conversely, when the adaptive upsampling flag obtained in step S810 specifies that a fixed upsampling filter is used, the filter coefficient can be obtained from the predefined table shown in FIG.

한편, 제2 적응적 성분 플래그가 휘도 성분과 색차 성분 Cb, Cr 중 적어도 하나에 대해 적응적 업샘플링 필터가 사용됨을 특정하는 경우에는 현재 슬라이스에 대한 제1 적응적 업샘플링 크로마 플래그(adaptive_upsampling_Cb_flag)를 획득할 수 있다(S830).On the other hand, when the second adaptive component flag specifies that the adaptive up-sampling filter is used for at least one of the luminance component and the chrominance components Cb and Cr, the first adaptive up-sampling chroma flag (adaptive_upsampling_Cb_flag) (S830).

제1 적응적 업샘플링 크로마 플래그는 참조 픽쳐의 색차 성분 Cb에 대해 고정된 업샘플링 필터를 사용할지, 아니면 적응적 업샘플링 필터를 사용할지 여부를 특정하는 정보를 의미할 수 있다.The first adaptive upsampling chroma flag may mean information specifying whether to use a fixed upsampling filter or an adaptive upsampling filter for the chrominance component Cb of the reference picture.

S830 단계에서 획득된 제1 적응적 업샘플링 크로마 플래그가 적응적 업샘플링 필터가 사용됨을 특정하는 경우, 색차 성분 Cb에 적용되는 필터 계수를 획득할 수 있다(S840). If the first adaptive upsampling chroma flag obtained in step S830 specifies that the adaptive upsampling filter is used, a filter coefficient applied to the chrominance component Cb may be obtained (S840).

여기서, 필터 계수는 각 위상(pi) 별로 획득될 수 있다. 각 위상(pi) 별로 색차 성분 Cb에 대한 m-tap 필터의 필터 계수가 각각 획득될 수 있다. 여기서, m은 1보다 큰 자연수를 의미한다.Here, the filter coefficients can be obtained for each phase p i . The filter coefficients of the m-tap filter for the chrominance component Cb can be obtained for each phase p i , respectively. Here, m means a natural number greater than one.

또한, 고정된 업샘플링 필터와의 호환성을 위해 고정된 업샘플링 필터와 동일한 차수의 tap 필터가 이용될 수 있다. 예를 들어, 고정된 업샘플링 필터가 색차 성분 Cb에 대해서 4-tap 필터인 경우에는, 도 8에 도시된 바와 같이 색차 성분 Cb에 대해서는 4-tap 필터의 필터 계수가 각각 획득될 수도 있다.In addition, a tap filter of the same order as the fixed up-sampling filter can be used for compatibility with the fixed up-sampling filter. For example, if the fixed up-sampling filter is a 4-tap filter for the chrominance component Cb, the filter coefficients of the 4-tap filter may be obtained for the chrominance component Cb as shown in FIG.

반대로, S830 단계에서 획득된 제1 적응적 업샘플링 크로마 플래그가 고정된 업샘플링 필터가 사용됨을 특정하는 경우, 도 3에서 살펴본 기 정의된 테이블로부터 필터 계수를 획득할 수 있다.In contrast, when the first adaptive upsampling chroma flag obtained in step S830 specifies that a fixed upsampling filter is used, the filter coefficient can be obtained from the predefined table shown in FIG.

또한, 제2 적응적 성분 플래그가 휘도 성분과 색차 성분 Cb, Cr 중 적어도 하나에 대해 적응적 업샘플링 필터가 사용됨을 특정하는 경우에는 현재 슬라이스에 대한 제2 적응적 업샘플링 크로마 플래그(adaptive_upsampling_Cr_flag)를 획득할 수 있다(S850).In addition, when the second adaptive component flag specifies that an adaptive up-sampling filter is used for at least one of the luminance component and the chrominance components Cb and Cr, a second adaptive up-sampling chroma flag (adaptive_upsampling_Cr_flag) (S850).

제2 적응적 업샘플링 크로마 플래그는 참조 픽쳐의 색차 성분 Cr에 대해 고정된 업샘플링 필터를 사용할지, 아니면 적응적 업샘플링 필터를 사용할지 여부를 특정하는 정보를 의미할 수 있다.The second adaptive upsampling chroma flag may refer to information specifying whether to use a fixed upsampling filter or an adaptive upsampling filter for the chrominance component Cr of the reference picture.

S850 단계에서 획득된 제2 적응적 업샘플링 크로마 플래그가 적응적 업샘플링 필터가 사용됨을 특정하는 경우, 색차 성분 Cr에 적용되는 필터 계수를 획득할 수 있다(S860). If the second adaptive upsampling chroma flag obtained in step S850 specifies that the adaptive upsampling filter is used, a filter coefficient applied to the chrominance component Cr may be obtained (S860).

여기서, 필터 계수는 각 위상(pi) 별로 획득될 수 있다. 각 위상(pi) 별로 색차 성분 Cr에 대한 m-tap 필터의 필터 계수가 각각 획득될 수 있다. 여기서, m은 1보다 큰 자연수를 의미한다.Here, the filter coefficients can be obtained for each phase p i . The filter coefficients of the m-tap filter for the chrominance component Cr can be obtained for each phase p i , respectively. Here, m means a natural number greater than one.

또한, 고정된 업샘플링 필터와의 호환성을 위해 고정된 업샘플링 필터와 동일한 차수의 tap 필터가 이용될 수 있다. 예를 들어, 고정된 업샘플링 필터가 색차 성분 Cr에 대해서 4-tap 필터인 경우에는, 도 8에 도시된 바와 같이 색차 성분 Cr에 대해서는 4-tap 필터의 필터 계수가 각각 획득될 수도 있다.In addition, a tap filter of the same order as the fixed up-sampling filter can be used for compatibility with the fixed up-sampling filter. For example, when the fixed up-sampling filter is a 4-tap filter for the chrominance component Cr, the filter coefficients of the 4-tap filter may be obtained for the chrominance component Cr, respectively, as shown in FIG.

반대로, S850 단계에서 획득된 제2 적응적 업샘플링 크로마 플래그가 고정된 업샘플링 필터가 사용됨을 특정하는 경우, 도 3에서 살펴본 기 정의된 테이블로부터 필터 계수를 획득할 수 있다.
In contrast, when the second adaptive upsampling chroma flag obtained in step S850 specifies that a fixed upsampling filter is used, the filter coefficient can be obtained from the predefined table shown in FIG.

도 9는 본 발명이 적용되는 일실시예로서, 참조 샘플의 위상 별로 적응적으로 필터 계수를 획득하는 방법을 도시한 것이다.FIG. 9 illustrates a method of adaptively acquiring filter coefficients for each phase of a reference sample according to an embodiment of the present invention. Referring to FIG.

도 9를 참조하면, 현재 슬라이스에 대한 적응적 업샘플링 플래그(adaptive_upsampling_flag)를 획득할 수 있다(S900). Referring to FIG. 9, an adaptive upsampling flag (adaptive_upsampling_flag) for the current slice may be obtained (S900).

앞서 살펴본 바와 같이, 적응적 업샘플링 플래그는 참조 픽쳐에 대해 고정된 업샘플링 필터를 사용할지, 아니면 적응적 업샘플링 필터를 사용할지 여부를 특정하는 정보를 의미할 수 있다. 다만, 슬라이스 레벨에서 필터 계수를 획득되는 것으로 한정되지 아니하며, 시퀀스 레벨, 픽쳐 레벨에서 획득될 수 있다.As discussed above, the adaptive upsampling flag may refer to information that specifies whether to use a fixed upsampling filter or an adaptive upsampling filter for the reference picture. However, the present invention is not limited to obtaining the filter coefficients at the slice level, and can be obtained at the sequence level and the picture level.

S900 단계에서 획득된 적응적 업샘플링 플래그가 적응적 업샘플링 필터가 사용됨을 특정하는 경우, 적응적 루마 위상 플래그(adaptive_luma_phase_flag)를 획득할 수 있다(S910). If the adaptive upsampling flag obtained in step S900 specifies that the adaptive upsampling filter is to be used, an adaptive luma phase flag (adaptive_luma_phase_flag) may be obtained (S910).

여기서, 적응적 루마 위상 플래그는 휘도 성분에 적용되는 i번째 위상에 대한 필터 계수가 존재하는지 여부를 특정하는 정보를 의미할 수 있다. 즉, 적응적 루마 위상 플래그에 기초하여 위상 별로 휘도 성분에 적용되는 필터 계수의 존부를 확인할 수 있다. Here, the adaptive luma phase flag may mean information specifying whether or not a filter coefficient for the i-th phase applied to the luminance component exists. That is, based on the adaptive luma phase flag, it is possible to identify the presence or absence of the filter coefficient applied to the luminance component on a phase-by-phase basis.

S910 단계에서 획득된 적응적 루마 위상 플래그가 i번째 위상에 대해 코딩된 필터 계수가 존재함을 특정하는 경우, 휘도 성분에 적용되는 필터 계수를 획득할 수 있다(S920).If the adaptive luma phase flag obtained in step S910 specifies that there is a coded filter coefficient for the i < th > phase, the filter coefficient applied to the luminance component may be obtained (S920).

구체적으로, 해당 i번째 위상에 대한 n-tap 필터의 필터 계수를 획득할 수 있다. 여기서, n은 1보다 큰 자연수를 의미한다.Specifically, the filter coefficient of the n-tap filter for the i-th phase can be obtained. Here, n means a natural number greater than 1.

또한, 고정된 업샘플링 필터와의 호환성을 위해 고정된 업샘플링 필터와 동일한 차수의 tap 필터가 이용될 수 있다. 예를 들어, 고정된 업샘플링 필터가 휘도 성분에 대해서 8-tap 필터인 경우에는, 도 9에 도시된 바와 같이 휘도 성분에 대해서는 8-tap 필터의 필터 계수가 획득될 수도 있다.In addition, a tap filter of the same order as the fixed up-sampling filter can be used for compatibility with the fixed up-sampling filter. For example, when the fixed up-sampling filter is an 8-tap filter for the luminance component, the filter coefficient of the 8-tap filter may be obtained for the luminance component as shown in Fig.

반대로, S910 단계에서 획득된 적응적 루마 위상 플래그가 i번째 위상에 대해 코딩된 필터 계수가 존재하지 아니함을 특정하는 경우, 해당 i번째 위상에 대한 필터 계수가 추출되지 아니한다.Conversely, if the adaptive luma phase flag obtained in step S910 specifies that there is no coded filter coefficient for the i-th phase, the filter coefficient for that i-th phase is not extracted.

또한, S900 단계에서 획득된 적응적 업샘플링 플래그가 적응적 업샘플링 필터가 사용됨을 특정하는 경우, 적응적 크로마 위상 플래그(adaptive_chroma_phase_flag)를 획득할 수 있다(S930). Also, if the adaptive upsampling flag obtained in step S900 specifies that the adaptive upsampling filter is used, an adaptive chroma phase flag (adaptive_chroma_phase_flag) may be obtained (S930).

여기서, 적응적 크로마 위상 플래그는 색차 성분에 적용되는 i번째 위상에 대한 필터 계수가 존재하는지 여부를 특정하는 정보를 의미할 수 있다. 즉, 적응적 크로마 위상 플래그에 기초하여 위상 별로 색차 성분에 적용되는 필터 계수의 존부를 확인할 수 있다. Here, the adaptive chroma phase flag may be information for specifying whether or not a filter coefficient for the i-th phase applied to the chrominance component exists. That is, the presence or absence of the filter coefficient applied to the chrominance component for each phase can be confirmed based on the adaptive chroma phase flag.

S930 단계에서 획득된 적응적 크로마 위상 플래그가 i번째 위상에 대해 코딩된 필터 계수가 존재함을 특정하는 경우, 색차 성분에 적용되는 필터 계수를 획득할 수 있다(S940).If the adaptive chroma phase flag obtained in step S930 specifies that there is a coded filter coefficient for the i-th phase, the filter coefficient applied to the chrominance component may be obtained (S940).

구체적으로, 해당 i번째 위상에 대한 m-tap 필터의 필터 계수가 획득될 수 있다. 여기서, m은 1보다 큰 자연수를 의미한다.Specifically, the filter coefficient of the m-tap filter for the i-th phase can be obtained. Here, m means a natural number greater than one.

또한, 고정된 업샘플링 필터와의 호환성을 위해 고정된 업샘플링 필터와 동일한 차수의 tap 필터가 이용될 수 있다. 예를 들어, 고정된 업샘플링 필터가 색차 성분에 대해서 4-tap 필터인 경우에는, 도 9에 도시된 바와 같이 색차 성분에 대해서는 4-tap 필터의 필터 계수가 각각 획득될 수도 있다.In addition, a tap filter of the same order as the fixed up-sampling filter can be used for compatibility with the fixed up-sampling filter. For example, if the fixed up-sampling filter is a 4-tap filter for a chrominance component, the filter coefficients of the 4-tap filter may be obtained for chrominance components as shown in FIG.

또한, 색차 성분 Cb, Cr 각각에 대해서 필터 계수가 획득될 수 있다. 다만, 이에 한정되지 아니하며, 색차 성분 Cb, Cr에 동일하게 적용되는 필터 계수를 획득할 수도 있다. Further, a filter coefficient can be obtained for each of the color difference components Cb and Cr. However, the present invention is not limited to this, and filter coefficients that are equally applicable to the chrominance components Cb and Cr may be obtained.

반면, S930 단계에서 획득된 적응적 크로마 위상 플래그가 i번째 위상에 대해 코딩된 필터 계수가 존재하지 아니함을 특정하는 경우, 해당 i번째 위상에 대한 필터 계수가 추출되지 아니한다.On the other hand, when the adaptive chroma phase flag obtained in step S930 specifies that there is no coded filter coefficient for the i-th phase, the filter coefficient for the i-th phase is not extracted.

한편, 앞서 살펴본 적응적 루마 위상 플래그 및 적응적 크로마 위상 플래그는 본 실시예에 한정되지 아니하며, 도 4 내지 도 8의 실시예에서도 동일한 방식으로 이용될 수 있다.On the other hand, the adaptive luma phase flag and the adaptive chroma phase flag as described above are not limited to this embodiment and can be used in the same manner in the embodiments of Figs.

Claims (15)

참조 레이어의 참조 픽쳐에 적용되는 업샘플링 필터의 필터 계수를 획득하는 단계; 여기서, 상기 업샘플링 필터는 고정된 업샘플링 필터와 적응적 업샘플링 필터 중 어느 하나임,
상기 획득된 필터 계수를 상기 참조 픽쳐에 적용하여 인터레이어 참조 픽쳐를 생성하는 단계; 및
상기 생성된 인터레이어 참조 픽쳐에 기초하여 현재 레이어의 현재 블록에 대해 인터 예측을 수행하는 단계;를 포함하는 것을 특징으로 하는 스케일러블 비디오 신호 디코딩 방법.
Obtaining a filter coefficient of an up-sampling filter applied to a reference picture of a reference layer; Here, the up-sampling filter is either a fixed up-sampling filter or an adaptive up-sampling filter,
Generating the inter-layer reference picture by applying the obtained filter coefficient to the reference picture; And
And performing inter-prediction on the current block of the current layer based on the generated inter-layer reference picture.
제1항에 있어서, 상기 필터 계수를 획득하는 단계는,
상기 현재 레이어의 현재 픽쳐에 대한 적응적 업샘플링 플래그를 획득하는 단계; 및
상기 적응적 업샘플링 플래그에 기초하여 상기 적응적 업샘플링 필터의 필터 계수를 획득하는 단계를 포함하되,
상기 적응적 업샘플링 플래그는 고정된 업샘플링 필터를 사용할지 또는 적응적 업샘플링 필터를 사용할지 여부를 특정하는 정보인 것을 특징으로 하는 스케일러블 비디오 신호 디코딩 방법.
2. The method of claim 1, wherein obtaining the filter coefficient comprises:
Obtaining an adaptive up-sampling flag for the current picture of the current layer; And
Sampling the filter coefficients of the adaptive up-sampling filter based on the adaptive up-sampling flag,
Wherein the adaptive upsampling flag is information specifying whether to use a fixed upsampling filter or an adaptive upsampling filter.
제2항에 있어서,
상기 적응적 업샘플링 플래그는 상기 참조 픽쳐의 휘도 성분과 색차 성분에 대해서 각각 획득되는 것을 특징으로 하는 스케일러블 비디오 신호 디코딩 방법.
3. The method of claim 2,
Wherein the adaptive upsampling flag is obtained for a luminance component and a chrominance component of the reference picture, respectively.
제3항에 있어서,
상기 휘도 성분과 색차 성분 각각에 대한 적응적 업샘플링 플래그는 적응적 성분 플래그에 기초하여 획득되되,
상기 적응적 성분 플래그는 상기 참조 픽쳐의 휘도 성분과 색차 성분 중 적어도 하나에 대해 적응적 업샘플링 필터가 사용되는지 여부를 특정하는 정보를 의미하는 것을 특징으로 하는 스케일러블 비디오 신호 디코딩 방법.
The method of claim 3,
An adaptive upsampling flag for each of the luminance component and chrominance component is obtained based on an adaptive component flag,
Wherein the adaptive component flag is information for specifying whether an adaptive up-sampling filter is used for at least one of a luminance component and a chrominance component of the reference picture.
제2항에 있어서, 상기 적응적 업샘플링 필터의 필터 계수를 획득하는 단계는,
상기 참조 픽쳐의 휘도 성분에 적용되는 i번째 위상에 대한 필터 계수가 존재하는지 여부를 특정하는 적응적 루마 위상 플래그를 획득하는 단계; 및
상기 적응적 루마 위상 플래그에 기초하여 상기 참조 픽쳐의 휘도 성분에 적용되는 i번째 위상에 대한 필터 계수를 획득하는 단계를 포함하는 것을 특징으로 하는 스케일러블 비디오 신호 디코딩 방법.
3. The method of claim 2, wherein obtaining the filter coefficients of the adaptive up-
Obtaining an adaptive luma phase flag that specifies whether there is a filter coefficient for an i-th phase applied to a luminance component of the reference picture; And
And obtaining a filter coefficient for an i-th phase applied to a luminance component of the reference picture based on the adaptive luma phase flag.
참조 레이어의 참조 픽쳐에 적용되는 업샘플링 필터의 필터 계수를 획득하는 엔트로피 복호화부; 및
상기 획득된 필터 계수를 상기 참조 픽쳐에 적용하여 인터레이어 참조 픽쳐를 생성하고, 상기 생성된 인터레이어 참조 픽쳐에 기초하여 현재 레이어의 현재 블록에 대해 인터 예측을 수행하는 예측부를 포함하되,
상기 업샘플링 필터는 고정된 업샘플링 필터와 적응적 업샘플링 필터 중 어느 하나인 것을 특징으로 하는 스케일러블 비디오 신호 디코딩 장치.
An entropy decoding unit for obtaining a filter coefficient of an up-sampling filter applied to a reference picture of a reference layer; And
And a prediction unit that applies the obtained filter coefficient to the reference picture to generate an inter-layer reference picture, and performs inter-prediction on the current block of the current layer based on the generated inter-layer reference picture,
Wherein the upsampling filter is one of a fixed upsampling filter and an adaptive upsampling filter.
제6항에 있어서, 상기 엔트로피 복호화부는,
상기 현재 레이어의 현재 픽쳐에 대한 적응적 업샘플링 플래그를 획득하고,
상기 획득된 적응적 업샘플링 플래그에 기초하여 상기 적응적 업샘플링 필터의 필터 계수를 획득하되,
상기 적응적 업샘플링 플래그는 고정된 업샘플링 필터를 사용할지 또는 적응적 업샘플링 필터를 사용할지 여부를 특정하는 정보인 것을 특징으로 하는 스케일러블 비디오 신호 디코딩 장치.
7. The apparatus of claim 6, wherein the entropy decoding unit comprises:
Acquiring an adaptive up-sampling flag for the current picture of the current layer,
Obtaining a filter coefficient of the adaptive up-sampling filter based on the obtained adaptive up-sampling flag,
Wherein the adaptive up-sampling flag is information specifying whether to use a fixed up-sampling filter or an adaptive up-sampling filter.
제7항에 있어서, 상기 엔트로피 복호화부는,
상기 참조 픽쳐의 휘도 성분과 색차 성분 각각에 대해서 상기 적응적 업샘플링 플래그를 획득하는 것을 특징으로 하는 스케일러블 비디오 신호 디코딩 장치.
8. The apparatus of claim 7, wherein the entropy decoding unit comprises:
And obtains the adaptive upsampling flag for each of a luminance component and a chrominance component of the reference picture.
제8항에 있어서, 상기 엔트로피 복호화부는,
적응적 성분 플래그에 기초하여 상기 휘도 성분과 색차 성분 각각에 대한 적응적 업샘플링 플래그를 획득하되,
상기 적응적 성분 플래그는 상기 참조 픽쳐의 휘도 성분과 색차 성분 중 적어도 하나에 대해 적응적 업샘플링 필터가 사용되는지 여부를 특정하는 정보를 의미하는 것을 특징으로 하는 스케일러블 비디오 신호 디코딩 장치.
The apparatus of claim 8, wherein the entropy decoding unit comprises:
An adaptive up-sampling flag for each of the luminance component and the chrominance component is obtained based on an adaptive component flag,
Wherein the adaptive component flag is information for specifying whether an adaptive up-sampling filter is used for at least one of a luminance component and a chrominance component of the reference picture.
제7항에 있어서, 상기 예측부는,
상기 참조 픽쳐의 휘도 성분에 적용되는 i번째 위상에 대한 필터 계수가 존재하는지 여부를 특정하는 적응적 루마 위상 플래그를 획득하고,
상기 적응적 루마 위상 플래그에 기초하여 상기 참조 픽쳐의 휘도 성분에 적용되는 i번째 위상에 대한 필터 계수를 획득하는 것을 특징으로 하는 스케일러블 비디오 신호 디코딩 장치.
8. The apparatus of claim 7,
Acquiring an adaptive luma phase flag that specifies whether a filter coefficient for an i-th phase applied to a luminance component of the reference picture exists,
And obtains a filter coefficient for an i-th phase applied to a luminance component of the reference picture based on the adaptive luma phase flag.
참조 레이어의 참조 픽쳐에 적용되는 업샘플링 필터의 필터 계수를 획득하는 단계; 여기서, 상기 업샘플링 필터는 고정된 업샘플링 필터와 적응적 업샘플링 필터 중 어느 하나임,
상기 획득된 필터 계수를 상기 참조 픽쳐에 적용하여 인터레이어 참조 픽쳐를 생성하는 단계; 및
상기 생성된 인터레이어 참조 픽쳐에 기초하여 현재 레이어의 현재 블록에 대해 인터 예측을 수행하는 단계;를 포함하는 것을 특징으로 하는 스케일러블 비디오 신호 인코 방법.
Obtaining a filter coefficient of an up-sampling filter applied to a reference picture of a reference layer; Here, the up-sampling filter is either a fixed up-sampling filter or an adaptive up-sampling filter,
Generating the inter-layer reference picture by applying the obtained filter coefficient to the reference picture; And
And performing inter-prediction on the current block of the current layer based on the generated inter-layer reference picture.
제11항에 있어서, 상기 필터 계수를 획득하는 단계는,
상기 현재 레이어의 현재 픽쳐에 대한 적응적 업샘플링 플래그를 획득하는 단계; 및
상기 적응적 업샘플링 플래그에 기초하여 상기 적응적 업샘플링 필터의 필터 계수를 획득하는 단계를 포함하되,
상기 적응적 업샘플링 플래그는 고정된 업샘플링 필터를 사용할지 또는 적응적 업샘플링 필터를 사용할지 여부를 특정하는 정보인 것을 특징으로 하는 스케일러블 비디오 신호 인코딩 방법.
12. The method of claim 11, wherein obtaining the filter coefficients comprises:
Obtaining an adaptive up-sampling flag for the current picture of the current layer; And
Sampling the filter coefficients of the adaptive up-sampling filter based on the adaptive up-sampling flag,
Wherein the adaptive upsampling flag is information specifying whether to use a fixed upsampling filter or an adaptive upsampling filter.
제12항에 있어서,
상기 적응적 업샘플링 플래그는 상기 참조 픽쳐의 휘도 성분과 색차 성분에 대해서 각각 획득되는 것을 특징으로 하는 스케일러블 비디오 신호 인코딩 방법.
13. The method of claim 12,
Wherein the adaptive upsampling flag is obtained for the luminance component and chrominance component of the reference picture, respectively.
제13항에 있어서,
상기 휘도 성분과 색차 성분 각각에 대한 적응적 업샘플링 플래그는 적응적 성분 플래그에 기초하여 획득되되,
상기 적응적 성분 플래그는 상기 참조 픽쳐의 휘도 성분과 색차 성분 중 적어도 하나에 대해 적응적 업샘플링 필터가 사용되는지 여부를 특정하는 정보를 의미하는 것을 특징으로 하는 스케일러블 비디오 신호 인코딩 방법.
14. The method of claim 13,
An adaptive upsampling flag for each of the luminance component and chrominance component is obtained based on an adaptive component flag,
Wherein the adaptive component flag is information for specifying whether an adaptive up-sampling filter is used for at least one of a luminance component and a chrominance component of the reference picture.
제12항에 있어서, 상기 적응적 업샘플링 필터의 필터 계수를 획득하는 단계는,
상기 참조 픽쳐의 휘도 성분에 적용되는 i번째 위상에 대한 필터 계수가 존재하는지 여부를 특정하는 적응적 루마 위상 플래그를 획득하는 단계; 및
상기 적응적 루마 위상 플래그에 기초하여 상기 참조 픽쳐의 휘도 성분에 적용되는 i번째 위상에 대한 필터 계수를 획득하는 단계를 포함하는 것을 특징으로 하는 스케일러블 비디오 신호 인코딩 방법.
13. The method of claim 12, wherein obtaining the filter coefficients of the adaptive up-
Obtaining an adaptive luma phase flag that specifies whether there is a filter coefficient for an i-th phase applied to a luminance component of the reference picture; And
And obtaining a filter coefficient for an i-th phase applied to a luminance component of the reference picture based on the adaptive luma phase flag.
KR1020140071199A 2013-06-12 2014-06-12 A method and an apparatus for encoding/decoding a scalable video signal KR102286856B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130067436 2013-06-12
KR1020130067436 2013-06-12

Publications (2)

Publication Number Publication Date
KR20140145560A true KR20140145560A (en) 2014-12-23
KR102286856B1 KR102286856B1 (en) 2021-08-06

Family

ID=52675294

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140071199A KR102286856B1 (en) 2013-06-12 2014-06-12 A method and an apparatus for encoding/decoding a scalable video signal

Country Status (1)

Country Link
KR (1) KR102286856B1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020080765A1 (en) * 2018-10-19 2020-04-23 Samsung Electronics Co., Ltd. Apparatuses and methods for performing artificial intelligence encoding and artificial intelligence decoding on image
US20200126185A1 (en) 2018-10-19 2020-04-23 Samsung Electronics Co., Ltd. Artificial intelligence (ai) encoding device and operating method thereof and ai decoding device and operating method thereof
US10817987B2 (en) 2018-10-19 2020-10-27 Samsung Electronics Co., Ltd. Method and apparatus for streaming data
US10819993B2 (en) 2018-10-19 2020-10-27 Samsung Electronics Co., Ltd. Methods and apparatuses for performing encoding and decoding on image
US10825204B2 (en) 2018-10-19 2020-11-03 Samsung Electronics Co., Ltd. Artificial intelligence encoding and artificial intelligence decoding methods and apparatuses using deep neural network
US10825205B2 (en) 2018-10-19 2020-11-03 Samsung Electronics Co., Ltd. Methods and apparatuses for performing artificial intelligence encoding and artificial intelligence decoding on image
US10950009B2 (en) 2018-10-19 2021-03-16 Samsung Electronics Co., Ltd. AI encoding apparatus and operation method of the same, and AI decoding apparatus and operation method of the same
CN112740687A (en) * 2018-10-19 2021-04-30 三星电子株式会社 Apparatus and method for performing artificial intelligence encoding and artificial intelligence decoding on image
US11182876B2 (en) 2020-02-24 2021-11-23 Samsung Electronics Co., Ltd. Apparatus and method for performing artificial intelligence encoding and artificial intelligence decoding on image by using pre-processing
US11405637B2 (en) 2019-10-29 2022-08-02 Samsung Electronics Co., Ltd. Image encoding method and apparatus and image decoding method and apparatus
US11616988B2 (en) 2018-10-19 2023-03-28 Samsung Electronics Co., Ltd. Method and device for evaluating subjective quality of video
US11720998B2 (en) 2019-11-08 2023-08-08 Samsung Electronics Co., Ltd. Artificial intelligence (AI) encoding apparatus and operating method thereof and AI decoding apparatus and operating method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110052203A (en) * 2009-11-12 2011-05-18 전자부품연구원 Method and apparatus for scalable video coding
KR20130002294A (en) * 2011-06-28 2013-01-07 삼성전자주식회사 Method and apparatus for interpolating image using non-symmetrical interpolation filter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110052203A (en) * 2009-11-12 2011-05-18 전자부품연구원 Method and apparatus for scalable video coding
KR20130002294A (en) * 2011-06-28 2013-01-07 삼성전자주식회사 Method and apparatus for interpolating image using non-symmetrical interpolation filter

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10950009B2 (en) 2018-10-19 2021-03-16 Samsung Electronics Co., Ltd. AI encoding apparatus and operation method of the same, and AI decoding apparatus and operation method of the same
US10817985B2 (en) 2018-10-19 2020-10-27 Samsung Electronics Co., Ltd. Apparatuses and methods for performing artificial intelligence encoding and artificial intelligence decoding on image
US10817989B2 (en) 2018-10-19 2020-10-27 Samsung Electronics Co., Ltd. Apparatuses and methods for performing artificial intelligence encoding and artificial intelligence decoding on image
US10817987B2 (en) 2018-10-19 2020-10-27 Samsung Electronics Co., Ltd. Method and apparatus for streaming data
WO2020080765A1 (en) * 2018-10-19 2020-04-23 Samsung Electronics Co., Ltd. Apparatuses and methods for performing artificial intelligence encoding and artificial intelligence decoding on image
US10819992B2 (en) 2018-10-19 2020-10-27 Samsung Electronics Co., Ltd. Methods and apparatuses for performing encoding and decoding on image
US10817988B2 (en) 2018-10-19 2020-10-27 Samsung Electronics Co., Ltd. Method and apparatus for streaming data
CN112740687A (en) * 2018-10-19 2021-04-30 三星电子株式会社 Apparatus and method for performing artificial intelligence encoding and artificial intelligence decoding on image
US10817986B2 (en) 2018-10-19 2020-10-27 Samsung Electronics Co., Ltd. Method and apparatus for streaming data
US11170534B2 (en) 2018-10-19 2021-11-09 Samsung Electronics Co., Ltd. Methods and apparatuses for performing artificial intelligence encoding and artificial intelligence decoding on image
US10825204B2 (en) 2018-10-19 2020-11-03 Samsung Electronics Co., Ltd. Artificial intelligence encoding and artificial intelligence decoding methods and apparatuses using deep neural network
US10825205B2 (en) 2018-10-19 2020-11-03 Samsung Electronics Co., Ltd. Methods and apparatuses for performing artificial intelligence encoding and artificial intelligence decoding on image
US10825206B2 (en) 2018-10-19 2020-11-03 Samsung Electronics Co., Ltd. Methods and apparatuses for performing artificial intelligence encoding and artificial intelligence decoding on image
US10825203B2 (en) 2018-10-19 2020-11-03 Samsung Electronics Co., Ltd. Methods and apparatuses for performing artificial intelligence encoding and artificial intelligence decoding on image
US10832447B2 (en) 2018-10-19 2020-11-10 Samsung Electronics Co., Ltd. Artificial intelligence encoding and artificial intelligence decoding methods and apparatuses using deep neural network
US10937197B2 (en) 2018-10-19 2021-03-02 Samsung Electronics Co., Ltd. Methods and apparatuses for performing artificial intelligence encoding and artificial intelligence decoding on image
US10819993B2 (en) 2018-10-19 2020-10-27 Samsung Electronics Co., Ltd. Methods and apparatuses for performing encoding and decoding on image
US20200126185A1 (en) 2018-10-19 2020-04-23 Samsung Electronics Co., Ltd. Artificial intelligence (ai) encoding device and operating method thereof and ai decoding device and operating method thereof
US10825139B2 (en) 2018-10-19 2020-11-03 Samsung Electronics Co., Ltd. Apparatuses and methods for performing artificial intelligence encoding and artificial intelligence decoding on image
US11170473B2 (en) 2018-10-19 2021-11-09 Samsung Electronics Co., Ltd. Method and apparatus for streaming data
US11170472B2 (en) 2018-10-19 2021-11-09 Samsung Electronics Co., Ltd. Method and apparatus for streaming data
US20210358083A1 (en) 2018-10-19 2021-11-18 Samsung Electronics Co., Ltd. Method and apparatus for streaming data
US11748847B2 (en) 2018-10-19 2023-09-05 Samsung Electronics Co., Ltd. Method and apparatus for streaming data
US11190782B2 (en) 2018-10-19 2021-11-30 Samsung Electronics Co., Ltd. Methods and apparatuses for performing encoding and decoding on image
US11200702B2 (en) 2018-10-19 2021-12-14 Samsung Electronics Co., Ltd. AI encoding apparatus and operation method of the same, and AI decoding apparatus and operation method of the same
US11288770B2 (en) 2018-10-19 2022-03-29 Samsung Electronics Co., Ltd. Apparatuses and methods for performing artificial intelligence encoding and artificial intelligence decoding on image
US11720997B2 (en) 2018-10-19 2023-08-08 Samsung Electronics Co.. Ltd. Artificial intelligence (AI) encoding device and operating method thereof and AI decoding device and operating method thereof
US11616988B2 (en) 2018-10-19 2023-03-28 Samsung Electronics Co., Ltd. Method and device for evaluating subjective quality of video
US11647210B2 (en) 2018-10-19 2023-05-09 Samsung Electronics Co., Ltd. Methods and apparatuses for performing encoding and decoding on image
US11663747B2 (en) 2018-10-19 2023-05-30 Samsung Electronics Co., Ltd. Methods and apparatuses for performing artificial intelligence encoding and artificial intelligence decoding on image
US11688038B2 (en) 2018-10-19 2023-06-27 Samsung Electronics Co., Ltd. Apparatuses and methods for performing artificial intelligence encoding and artificial intelligence decoding on image
US11405637B2 (en) 2019-10-29 2022-08-02 Samsung Electronics Co., Ltd. Image encoding method and apparatus and image decoding method and apparatus
US11720998B2 (en) 2019-11-08 2023-08-08 Samsung Electronics Co., Ltd. Artificial intelligence (AI) encoding apparatus and operating method thereof and AI decoding apparatus and operating method thereof
US11182876B2 (en) 2020-02-24 2021-11-23 Samsung Electronics Co., Ltd. Apparatus and method for performing artificial intelligence encoding and artificial intelligence decoding on image by using pre-processing

Also Published As

Publication number Publication date
KR102286856B1 (en) 2021-08-06

Similar Documents

Publication Publication Date Title
US10148949B2 (en) Scalable video signal encoding/decoding method and apparatus
KR102286856B1 (en) A method and an apparatus for encoding/decoding a scalable video signal
KR20150133680A (en) A method and an apparatus for encoding/decoding a scalable video signal
KR20150133682A (en) A method and an apparatus for encoding and decoding a scalable video signal
KR20150133683A (en) A method and an apparatus for encoding and decoding a scalable video signal
KR20150099496A (en) A method and an apparatus for encoding and decoding a scalable video signal
KR20150075041A (en) A method and an apparatus for encoding/decoding a multi-layer video signal
KR20150133681A (en) A method and an apparatus for encoding and decoding a scalable video signal
KR20140138544A (en) Method for deriving motion information in multi-layer structure and apparatus using the same
KR101652072B1 (en) A method and an apparatus for searching motion information of a multi-layer video
KR20150064677A (en) A method and an apparatus for encoding and decoding a multi-layer video signal
KR20150110294A (en) A method and an apparatus for encoding/decoding a multi-layer video signal
KR20150133684A (en) A method and an apparatus for encoding and decoding a scalable video signal
KR20150009468A (en) A method and an apparatus for encoding/decoding a scalable video signal
KR20150099495A (en) A method and an apparatus for encoding and decoding a scalable video signal
KR20150014872A (en) A method and an apparatus for encoding/decoding a scalable video signal
KR20150075031A (en) A method and an apparatus for encoding and decoding a multi-layer video signal
KR20150071653A (en) A method and an apparatus for encoding/decoding a multi-layer video signal
KR20150037659A (en) A method and an apparatus for encoding/decoding a multi-layer video signal
KR20150133685A (en) A method and an apparatus for encoding/decoding a multi-layer video signal
KR20140145559A (en) A method and an apparatus for encoding/decoding a scalable video signal
KR20150064675A (en) A method and an apparatus for encoding/decoding a multi-layer video signal
KR20150044394A (en) A method and an apparatus for encoding/decoding a multi-layer video signal
KR20150009470A (en) A method and an apparatus for encoding and decoding a scalable video signal
KR20150048077A (en) A method and an apparatus for encoding/decoding a multi-layer video signal

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant