KR20140075024A - Alkali metal diazabutadiene compounds and their use for alkali metal-containing film depositions - Google Patents

Alkali metal diazabutadiene compounds and their use for alkali metal-containing film depositions Download PDF

Info

Publication number
KR20140075024A
KR20140075024A KR1020120131403A KR20120131403A KR20140075024A KR 20140075024 A KR20140075024 A KR 20140075024A KR 1020120131403 A KR1020120131403 A KR 1020120131403A KR 20120131403 A KR20120131403 A KR 20120131403A KR 20140075024 A KR20140075024 A KR 20140075024A
Authority
KR
South Korea
Prior art keywords
cme
thf
acn
oet
iprn
Prior art date
Application number
KR1020120131403A
Other languages
Korean (ko)
Inventor
클레망 랑살로-마트라
고창희
줄리앙 가티노
Original Assignee
레르 리키드 쏘시에떼 아노님 뿌르 레?드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 레르 리키드 쏘시에떼 아노님 뿌르 레?드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 filed Critical 레르 리키드 쏘시에떼 아노님 뿌르 레?드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드
Priority to KR1020120131403A priority Critical patent/KR20140075024A/en
Publication of KR20140075024A publication Critical patent/KR20140075024A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/02Lithium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)

Abstract

Provided are an alkali metal diazabutadiene compound, a method of preparing the same, and a use of the alkali metal diazabutadiene compound for alkali metal-containing film deposition. The provided compound is represented by a chemical formula: M_n(DAD)_mL_x. In the chemical formula, M is an alkali metal, n is 1, 2 or 4, m is 1 or 2, x is 0,1,2,3 or 4, L is a monodentate, bidentate, tridentate or polydentate neutral coordinate ligand, and DAD is an 1,4-diazabuta1,3- diene ligand and its reduced derivative. The DAD ligand is directly coordinate bonded to the alkali metal. The provided compound can be used in deposition of an alkali metal-containing film such as a lithium, lithium nitride, carbonitride lithium film or any other lithium-containing film. The alkali metal-containing film can be deposited in thermal and/or plasma-enhanced CVD, ALD, pulse CVD, radical-containing deposition, supercritical fluid or any other deposition method by using the composition.

Description

알칼리 금속 디아자부타디엔 화합물 및 알칼리 금속-함유 필름 침착을 위한 그의 용도 {ALKALI METAL DIAZABUTADIENE COMPOUNDS AND THEIR USE FOR ALKALI METAL-CONTAINING FILM DEPOSITIONS}FIELD OF THE INVENTION [0001] The present invention relates to alkali metal diazabutadiene compounds and their use for alkali metal-containing film deposition. BACKGROUND OF THE INVENTION < RTI ID = 0.0 >

알칼리 금속 디아자부타디엔 화합물, 그의 합성, 및 알칼리 금속-함유 필름의 증착을 위한 그의 용도가 개시된다.Alkali metal diazabutadiene compounds, their synthesis, and their use for the deposition of alkali metal-containing films are disclosed.

리튬은 리튬 이온 배터리 및 광집적 회로에 있어서 결정적인 구성요소이다. 현재, 리튬 이온 배터리에서 가장 일반적인 음극 물질은 산화 리튬 코발트(LiCoO2), 산화 리튬 망간 (LiMnO2) 및 산화 리튬 니켈(LiNiO2)이다 [문헌 (Cho et al., Appl. Phys. Lett., 2003, 82, 3345-3347)]. 리튬은 또한 고체 상태 전해질, 예컨대 산질화 리튬 인 (Li3 + xPO4 - xNx, LiPON) [문헌 (Souquet et al., Solid State Ionics, 2002, 148, 375-379)] 및 티탄산 리튬 란탄((Li, La)xTiyOz, LTT)[문헌 (Stramare et al., Chem. Mater., 2003, 15, 3974-3990)]에 있어서도 중요한 원소이다. 전기-광학 스위치 및 광학 조절기에서는, 니오브산 리튬(LiNbO3)의 압전기 성질이 사용된다 [문헌 (Akiyama et al., Thin Solid Films, 2007, 515, 4975-4979)].Lithium is a critical component in lithium-ion batteries and optical integrated circuits. Currently, the most common cathode materials in lithium ion batteries are lithium cobalt oxide (LiCoO 2 ), lithium manganese oxide (LiMnO 2 ) and lithium nickel oxide (LiNiO 2 ) [Cho et al., Appl. Phys. Lett. 2003, 82, 3345-3347). Lithium may also be a solid state electrolyte such as lithium oxynitride (Li 3 + x PO 4 - x N x , LiPON) (Souquet et al., Solid State Ionics, 2002, 148, 375-379) Lanthanum (Li, La) x Ti y O z , LTT) (Stramare et al., Chem. Mater., 2003, 15, 3974-3990). In electro-optical switches and optical regulators, the piezoelectric properties of lithium niobate (LiNbO 3 ) are used (Akiyama et al., Thin Solid Films, 2007, 515, 4975-4979).

배터리 기술에서, 성능을 개선하기 위해 3-차원 구조가 나타나기 시작하였다. 배터리 내부의 높은 활성 표면적이 전력 밀도를 증가시킨다. 그러한 구조를 만드는 데 중요한 요인은 활성 물질을 복합 구조 내에 침착시킬 수 있는 박막 공정의 개발에 있다. In battery technology, a three-dimensional structure has begun to appear to improve performance. The high active surface area inside the battery increases the power density. An important factor in making such a structure is the development of a thin film process capable of depositing the active material into a composite structure.

원자층 침착 (ALD) 공정은 2종 이상의 화학 반응물의 교대되는 증기에 기판의 표면을 노출시킴으로써 고도로 일치하는 박막을 침착시키는 하나의 방법을 제공한다. 제1 유기금속 전구체의 증기는, 위에 원하는 필름이 침착되어야 하는 기판의 표면과 반응한다. 임의의 미반응 전구체 및 부산물은 진공, 비활성 기체 정화, 또는 그 양자를 이용하여 시스템으로부터 정화된다. 다음 단계에서, 제2 전구체의 증기 또는 반응 기체가 기판의 표면에 접착된 제1 유기금속 전구체와 반응하며, 임의의 과량의 미반응 제2 전구체/반응 기체 및 부산물 증기는 유사하게 제거된다. ALD 공정의 각 단계는 전형적으로 원소의 단일층을 원하는 필름에 침착시킨다. 이러한 순서의 단계를 반복함으로써, 원하는 두께를 갖는 원하는 필름이 수득될 수 있다. 증착 전구체로 사용하기 적합한 유기금속 화합물은 충분한 휘발성 및 열 안정성을 가져야 한다. 또한, 이들 전구체는 기판 표면 및 원하는 필름을 침착시키는 데 사용되는 다른 화학 반응물에 대하여 충분한 반응성을 가져야 한다.The atomic layer deposition (ALD) process provides one method of depositing highly conforming thin films by exposing the surface of the substrate to alternating vapors of two or more chemical reactants. The vapor of the first organometallic precursor reacts with the surface of the substrate onto which the desired film is to be deposited. Any unreacted precursors and byproducts are purified from the system using vacuum, inert gas purification, or both. In the next step, the vapor of the second precursor or the reactive gas reacts with the first organometallic precursor attached to the surface of the substrate, and any excess unreacted second precursor / reactive gas and byproduct vapor is similarly removed. Each step of the ALD process typically deposits a single layer of the element on the desired film. By repeating this sequence of steps, a desired film having a desired thickness can be obtained. Organometallic compounds suitable for use as deposition precursors should have sufficient volatility and thermal stability. In addition, these precursors should have sufficient reactivity to the substrate surface and other chemical reagents used to deposit the desired film.

알칼리 금속-함유 필름을 위한 새로운 증착 공정을 개발할 필요성은 분명하다. 안타깝게도 증착 공정에 사용되는 화합물의 성공적인 집적화는 어려운 것으로 입증되었다. The need to develop a new deposition process for alkali metal-containing films is evident. Unfortunately, successful integration of the compounds used in the deposition process has proven difficult.

알칼리 금속 할라이드 계의 화합물은 공지되어 있고 매우 높은 융점 및 매우 낮은 휘발성을 갖는다. 예를 들어, LiF는 842℃의 융점을 가지고, LiCl은 614℃의 융점을 가지며, LiBr은 550℃의 융점을 갖는다. 뿐만 아니라, 이들 화합물로부터 형성된 필름은 할라이드 불순물을 포함하는 것으로 알려져 있다.Alkali metal halide-based compounds are known and have a very high melting point and very low volatility. For example, LiF has a melting point of 842 占 폚, LiCl has a melting point of 614 占 폚, and LiBr has a melting point of 550 占 폚. In addition, films formed from these compounds are known to contain halide impurities.

알칼리 금속 화합물의 비-할라이드 공급원도 알려져 있다. 예를 들어, 알칼리 금속 알킬 화합물이 사용가능하며 (용액 중 알킬 리튬), 예컨대 Li(Me), Li(Et), Li(nBu) 및 Li(tBu)이다. 알칼리 금속 아미드, 예컨대 LiN(Me)2 및 LiN(Et)2, 및 금속 실릴아미드, 예컨대 LiN(SiMe3)2도 사용가능하다. 푸트코넨 등[문헌 (J. Mater. Chem. 2009, 19, 8767, 5)]은 ALD로 리튬-함유 필름을 침착하기 위해 다양한 리튬 공급원을 사용하였다 (Li(thd) (리튬 2,2,6,6-테트라메틸-3,5-헵타디오네이트), Li(OtBu) (리튬 tert-부틸알콕시드), LiCp (리튬 시클로펜타디에닐), Li(nBu) (리튬 n-부틸) 및 리튬 디시클로헥실아미드). 그러나 이들 화합물은 습기에 대하여 반응성이고/거나, 자연발화성이고/거나, 조악한 휘발성 또는 조악한 열 안정성을 나타낼 수 있다. Li(thd)는 예를 들어 대기 TGA에서 10.5%의 잔류물을 제공하는데, 이는 승화 온도에서 부분적 분해를 나타낸다(상기 문헌). 그의 조악한 열 안정성은 185-225℃의 한정된 ALD 공정 윈도우에 의해서도 확인되었다(상기 문헌).Non-halide sources of alkali metal compounds are also known. For example, alkali metal alkyl compounds are available (alkyl lithium in solution), such as Li (Me), Li (Et), Li (nBu) and Li (tBu). Alkali metal amides such as LiN (Me) 2 and LiN (Et) 2 , and metal silyl amides such as LiN (SiMe 3 ) 2 are also usable. (J. Mater. Chem. 2009, 19, 8767, 5) used various lithium sources to deposit lithium-containing films with ALD (Li (thd) , Li (n-butyl) and lithium dicyclopentadienyl), Li (OtBu) (lithium tert-butyl alkoxide), LiCp (lithium cyclopentadienyl) Lt; / RTI > However, these compounds may be reactive to moisture and / or spontaneously flammable and / or may exhibit poor volatility or poor thermal stability. Li (thd) provides, for example, 10.5% residue in atmospheric TGA, which exhibits partial decomposition at sublimation temperature (see above). His poor thermal stability was also confirmed by the limited ALD process window at 185-225 ° C (see above).

그러므로, 알칼리 금속-함유 필름의 증착 공정에 적합한 알칼리 금속-함유 화합물에 대한 필요가 여전히 존재한다.Therefore, there is still a need for alkali metal-containing compounds suitable for the deposition process of alkali metal-containing films.

표시법 및 명명법Notation and nomenclature

이하의 설명 및 청구항에 걸쳐 특정의 약어, 기호 및 용어가 사용되며, 다음을 포함한다:Certain abbreviations, symbols and terms are used throughout the following description and claims, including:

원소 주기율표로부터 원소의 표준 약자가 본원에도 사용된다. 원소는 이들 약자로 언급될 수 있음이 이해되어야 한다 (예, Li는 리튬을 의미하고, Na는 나트륨을 의미하며, K는 칼륨을 의미하고, C는 탄소를 의미하는 등).Standard abbreviations for elements from the Periodic Table of Elements are also used herein. It should be understood that elements may be referred to as these abbreviations (e.g., Li means lithium, Na means sodium, K means potassium, C means carbon, etc.).

본원에서 사용되는 부정관사("a" 또는 "an")는 단수 또는 복수를 의미한다.As used herein, the indefinite article ("a" or "an") means singular or plural.

본원에서 사용되는 바, R 기를 표현하는 맥락에서 사용될 경우 "독립적으로"라는 용어는, 그 R 기가 동일 또는 상이한 아래글자 또는 어깨글자를 포함하는 다른 R 기에 대하여 독립적으로 선택될 뿐만 아니라, 같은 R 기의 임의의 추가의 화학종에 대해서도 독립적으로 선택됨을 의미하는 것으로 이해되어야 한다. 예를 들어, x가 2 또는 3인 화학식 MR1 x(NR2R3)(4-x)에서, 2 또는 3개의 R1 기는 서로 또는 R2 또는 R3와 동일할 수도 있지만 반드시 같을 필요는 없다. 또한, 달리 명시되지 않는 한, R 기의 값은 상이한 화학식에서 사용될 경우 서로에 대하여 독립적인 것으로 이해되어야 한다.As used herein, the term "independently" when used in the context of representing an R group means that the R group is independently selected for other R groups including the same or different lower letters or superscripts, ≪ / RTI > are also independently selected for any additional species of < RTI ID = 0.0 > For example, in the formula MR 1 x (NR 2 R 3 ) (4-x) where x is 2 or 3, two or three R 1 groups may be the same as each other or R 2 or R 3 , none. Also, unless otherwise specified, the values of the R groups should be understood to be independent of each other when used in different formulas.

본원에서 사용되는 "알칼리 금속"이라는 용어는 H를 제외한 주기율표의 1족을, 더욱 특별하게는 Li, Na, K, Rb, Cs 및 Fr을 의미한다.As used herein, the term "alkali metal" means Group 1 of the Periodic Table except H, and more particularly Li, Na, K, Rb, Cs and Fr.

본원에서 사용되는 "알킬 기"라는 용어는 탄소와 수소 원자만을 함유하는 포화된 관능기를 의미한다. 또한, "알킬 기"라는 용어는 직쇄, 분지쇄, 또는 고리형 알킬 기를 의미한다. 직쇄 알킬 기의 예는 메틸 기, 에틸 기, 프로필 기, 부틸 기 등을 비제한적으로 포함한다. 분지쇄 알킬 기의 예는 t-부틸을 비제한적으로 포함한다. 고리형 알킬 기의 예는 시클로프로필 기, 시클로펜틸 기, 시클로헥실 기 등을 비제한적으로 포함한다.As used herein, the term "alkyl group" means a saturated functional group containing only carbon and hydrogen atoms. In addition, the term "alkyl group" means a straight, branched, or cyclic alkyl group. Examples of the straight chain alkyl group include, but are not limited to, a methyl group, an ethyl group, a propyl group, a butyl group and the like. Examples of branched chain alkyl groups include, but are not limited to, t-butyl. Examples of the cyclic alkyl group include, but are not limited to, a cyclopropyl group, a cyclopentyl group, a cyclohexyl group and the like.

본원에서 사용되는 "아릴 기"라는 용어는 페닐, 벤질, 톨릴, o-크실롤 등과 같은 방향족 분자로부터 유래된 리간드를 의미한다.The term "aryl group" as used herein means a ligand derived from an aromatic molecule such as phenyl, benzyl, tolyl, o-xylyl, and the like.

본원에서 사용되는 "Me"라는 약자는 메틸 기를 의미하고; "Et"라는 약자는 에틸 기를 의미하며; "Pr"라는 약자는 프로필 기를 의미하고; "iPr"라는 약자는 이소프로필 기를 의미하며; "Bu"라는 약자는 부틸 기를 의미하고; "tBu"라는 약자는 tert-부틸 기를 의미하며; "sBu"라는 약자는 sec-부틸 기를 의미하고; THF라는 약자는 테트라히드로푸란을 의미하며; "Cp"라는 약자는 시클로펜타디에닐을 의미한다.As used herein, the abbreviation "Me" means a methyl group; The abbreviation "Et" means an ethyl group; The abbreviation "Pr" means the profile group; the abbreviation "iPr" means isopropyl group; The abbreviation "Bu" means a butyl group; the abbreviation "tBu" means a tert-butyl group; The abbreviation "sBu" means a sec-butyl group; The abbreviation THF means tetrahydrofuran; The abbreviation "Cp" means cyclopentadienyl.

본원에서 사용되는 "DAD"라는 약자는 화학식 R1-N=CR3-CR4=N-R2[식 중, R1 내지 R4는 각각 H; C1-C6 직쇄, 분지쇄 또는 고리형 알킬 또는 아릴 기; C1-C6 직쇄, 분지쇄 또는 고리형 알킬실릴 기 (Si 원자 위에 1, 2 또는 3개의 알킬 기가 존재할 수 있음); C1-C6 직쇄, 분지쇄 또는 고리형 알킬아미노 기, 예컨대 NRR' (식 중, R 및 R'은 H 또는 C1-C6 직쇄, 분지쇄 또는 고리형 알킬 또는 아릴 기에서 독립적으로 선택됨); C1-C6 직쇄, 분지쇄 또는 고리형 플루오로알킬 기 (여기에서 치환기의 일부 또는 전부가 F이며, 즉 부분적으로 또는 전적으로 플루오르화됨); 또는 알콕시 치환기, 예컨대 OR(R은 H 또는 C1-C6 직쇄, 분지쇄 또는 고리형 알킬 또는 아릴 기에서 선택됨)에서 독립적으로 선택됨]의 일반적인 구조를 갖는 α-디이민인 1,4-디아자부타-1,3-디엔 리간드를 의미한다. 본원에서 사용되는 "R-DAD"는 R1 및 R2가 표시된 "R"이고 R3 및 R4는 H인 DAD 리간드를 의미한다 (예, iPr-DAD는 iPr-N=CH-CH=N-iPr임).As used herein, the abbreviation "DAD" means a compound of the formula R 1 -N═CR 3 -CR 4 ═NR 2 wherein R 1 to R 4 are each H; C 1 -C 6 straight chain, branched or cyclic alkyl or aryl groups; C 1 -C 6 straight chain, branched or cyclic alkylsilyl groups (1, 2 or 3 alkyl groups may be present on the Si atom); C 1 -C 6 straight chain, branched or cyclic alkylamino groups such as NRR 'wherein R and R' are independently selected from H or C 1 -C 6 straight chain, branched chain or cyclic alkyl or aryl groups ); C 1 -C 6 straight chain, branched or cyclic fluoroalkyl groups wherein some or all of the substituents are F, i.e. partially or fully fluorinated; Or an alkoxy substituent such as OR (R is selected from H or a C 1 -C 6 straight chain, branched chain or cyclic alkyl or aryl group). Zubuta-1,3-diene ligand. As used herein, "R-DAD" means a DAD ligand wherein R 1 and R 2 denote "R" and R 3 and R 4 denote H (eg, iPr-DAD is iPr-N═CH-CH═N -iPr).

DAD 리간드는 각각이 중심 원소(M)와 DAD 리간드 사이의 접착 방식을 결정하는, 3가지 산화 상태 중 하나에서 선택될 수 있다. X-선 형광 분광학 및/또는 X-선 결정 구조 결정 및/또는 자기 모멘트 측정이 산화 상태를 결정하기 위해 사용될 수 있다. 이해를 돕기 위해, DAD 리간드의 일반 구조를 3가지 상이한 산화 상태로 나타낸다: i) 중성, ii) 모노-음이온성, 및 iii) 디음이온성. 당업자는 디아자부타디엔 리간드에서 이중 결합의 위치가, 아래에 나타난 바와 같이 리간드의 산화 상태에 근거하여 변화함을 잘 인식할 것이다:The DAD ligand can be selected from one of three oxidation states, each of which determines the manner of attachment between the central element (M) and the DAD ligand. X-ray fluorescence spectroscopy and / or X-ray crystal structure determination and / or magnetic moment measurements can be used to determine the oxidation state. For ease of understanding, the general structure of the DAD ligand is shown in three different oxidation states: i) neutral, ii) mono-anionic, and iii) dianionic. Those skilled in the art will appreciate that the position of the double bond in the diazabutadiene ligand changes based on the oxidation state of the ligand as shown below:

Figure pat00001
Figure pat00002
Figure pat00003
Figure pat00001
Figure pat00002
Figure pat00003

i) 중성 DAD(0) ii) 모노-음이온성 DAD(-I) iii) 디-음이온성 DAD(- II ) i) neutral DAD (0) ii) mono-anionic DAD (-I) iii) di-anionic DAD ( -II )

Figure pat00004
Figure pat00004

iv) 중성 M 결합을 갖는 중성 DAD(0) iv) neutral DAD (0) with neutral M bonds

Figure pat00005
Figure pat00005

v) 모노-음이온성 M 결합을 갖는 모노-음이온성 DAD(-I) v) mono-anionic DAD (-I) with mono-anionic M bonds

Figure pat00006
Figure pat00006

vi) 디음이온성 M 결합을 갖는 디-음이온성 DAD(- II ) vi) Di-anionic DAD (- II ) with a dianionic M-

본원에서 R1-N-CR3=CR4-N-R2의 직쇄 형태로 기재되었을 지라도 (즉, 하나의 이중 결합을 가짐), 언급된 DAD 리간드는 중성, 모노-음이온성 또는 디-음이온성일 수 있다.Although the DAD ligands mentioned herein are described in the linear form of R 1 -N-CR 3 ═CR 4 -NR 2 (ie, have one double bond), the mentioned DAD ligands can be neutral, mono-anionic or di- have.

요약summary

알칼리 금속-함유 필름의 침착 방법이 개시된다. 필름은 적어도 1종의 알칼리 금속 디아자부타디엔 화합물을 적어도 하나의 기판이 내부에 배치된 반응기 내에 도입하고, 알칼리 금속 디아자부타디엔 화합물의 적어도 일부를 적어도 하나의 기판 위에 침착시켜 알칼리 금속-함유 필름을 형성함으로써 침착된다. 알칼리 금속 디아자부타디엔 화합물은 화학식 Mn(DAD)mLx[식 중, M은 알칼리 금속이고; n은 1, 2 또는 4이며; m은 1 또는 2이고; x는 0, 1, 2, 3 또는 4이며; L은 모노덴테이트, 비덴테이트, 트리덴테이트 또는 폴리덴테이트 중성 배위 리간드임]을 갖는다. A method of depositing an alkali metal-containing film is disclosed. The film is produced by introducing at least one alkali metal diazabutadiene compound into a reactor in which at least one substrate is disposed and depositing at least a portion of the alkali metal diazabutadiene compound on at least one substrate to form an alkali metal- Lt; / RTI > The alkali metal diazabutadiene compound has the formula M n (DAD) m L x wherein M is an alkali metal; n is 1, 2 or 4; m is 1 or 2; x is 0, 1, 2, 3 or 4; L is a monodentate, bidentate, tridentate or polydentate neutral coordination ligand.

개시된 방법은 다음과 같은 측면의 하나 이상을 더 포함할 수 있다:The disclosed method may further comprise one or more of the following aspects:

· Li2(DAD)L4인 알칼리 금속 디아자부타디엔 화합물· Alkali metal diazabutadiene compound of Li 2 (DAD) L 4

Figure pat00007
Figure pat00007

[식 중, R1, R2, R3 및 R4는 H; C1-C6 직쇄, 분지쇄 또는 고리형 알킬 기; C1-C6 직쇄, 분지쇄 또는 고리형 알킬실릴 기; C1-C6 직쇄, 분지쇄 또는 고리형 알킬아미노 기; C1-C6 직쇄, 분지쇄 또는 고리형 플루오로알킬 기; 및 OR(식 중, R은 H 또는 C1-C6 직쇄, 분지쇄 또는 고리형 알킬 또는 아릴 기에서 선택됨)로 이루어진 군에서 독립적으로 선택됨];Wherein R 1 , R 2 , R 3 and R 4 are H; C1-C6 straight chain, branched or cyclic alkyl groups; C1-C6 straight chain, branched or cyclic alkylsilyl groups; C1-C6 straight chain, branched or cyclic alkylamino group; C1-C6 straight chain, branched or cyclic fluoroalkyl groups; And OR, wherein R is selected from the group consisting of H or a C1-C6 straight chain, branched chain or cyclic alkyl or aryl group;

· Li4(DAD)2L2인 알칼리 금속 디아자부타디엔 화합물Alkali metal diazabutadiene compound having Li 4 (DAD) 2 L 2

Figure pat00008
Figure pat00008

[식 중, R1, R2, R3 및 R4는 H; C1-C6 직쇄, 분지쇄 또는 고리형 알킬 기; C1-C6 직쇄, 분지쇄 또는 고리형 알킬실릴 기; C1-C6 직쇄, 분지쇄 또는 고리형 알킬아미노 기; C1-C6 직쇄, 분지쇄 또는 고리형 플루오로알킬 기; 및 OR(식 중, R은 H 또는 C1-C6 직쇄, 분지쇄 또는 고리형 알킬 또는 아릴 기에서 선택됨)로 이루어진 군에서 독립적으로 선택됨];Wherein R 1 , R 2 , R 3 and R 4 are H; C1-C6 straight chain, branched or cyclic alkyl groups; C1-C6 straight chain, branched or cyclic alkylsilyl groups; C1-C6 straight chain, branched or cyclic alkylamino group; C1-C6 straight chain, branched or cyclic fluoroalkyl groups; And OR, wherein R is selected from the group consisting of H or a C1-C6 straight chain, branched chain or cyclic alkyl or aryl group;

· Li2(DAD)인 알칼리 금속 디아자부타디엔 화합물· Alkali metal diazabutadiene compound as Li 2 (DAD)

Figure pat00009
Figure pat00009

[식 중, R1, R2, R3 및 R4는 H; C1-C6 직쇄, 분지쇄 또는 고리형 알킬 기; C1-C6 직쇄, 분지쇄 또는 고리형 알킬실릴 기; C1-C6 직쇄, 분지쇄 또는 고리형 알킬아미노 기; C1-C6 직쇄, 분지쇄 또는 고리형 플루오로알킬 기; 및 OR(식 중, R은 H 또는 C1-C6 직쇄, 분지쇄 또는 고리형 알킬 또는 아릴 기에서 선택됨)로 이루어진 군에서 독립적으로 선택됨];Wherein R 1 , R 2 , R 3 and R 4 are H; C1-C6 straight chain, branched or cyclic alkyl groups; C1-C6 straight chain, branched or cyclic alkylsilyl groups; C1-C6 straight chain, branched or cyclic alkylamino group; C1-C6 straight chain, branched or cyclic fluoroalkyl groups; And OR, wherein R is selected from the group consisting of H or a C1-C6 straight chain, branched chain or cyclic alkyl or aryl group;

· Li(DAD)L2인 알칼리 금속 디아자부타디엔 화합물· Alkali metal diazabutadiene compound of Li (DAD) L 2

Figure pat00010
Figure pat00010

[식 중, R1, R2, R3 및 R4는 H; C1-C6 직쇄, 분지쇄 또는 고리형 알킬 기; C1-C6 직쇄, 분지쇄 또는 고리형 알킬실릴 기; C1-C6 직쇄, 분지쇄 또는 고리형 알킬아미노 기; C1-C6 직쇄, 분지쇄 또는 고리형 플루오로알킬 기; 및 OR(식 중, R은 H 또는 C1-C6 직쇄, 분지쇄 또는 고리형 알킬 또는 아릴 기에서 선택됨)로 이루어진 군에서 독립적으로 선택됨];Wherein R 1 , R 2 , R 3 and R 4 are H; C1-C6 straight chain, branched or cyclic alkyl groups; C1-C6 straight chain, branched or cyclic alkylsilyl groups; C1-C6 straight chain, branched or cyclic alkylamino group; C1-C6 straight chain, branched or cyclic fluoroalkyl groups; And OR, wherein R is selected from the group consisting of H or a C1-C6 straight chain, branched chain or cyclic alkyl or aryl group;

· Li(DAD)2인 알칼리 금속 디아자부타디엔 화합물Alkali metal diazabutadiene compounds such as Li (DAD) 2

Figure pat00011
Figure pat00011

[식 중, R1, R2, R3 및 R4는 H; C1-C6 직쇄, 분지쇄 또는 고리형 알킬 기; C1-C6 직쇄, 분지쇄 또는 고리형 알킬실릴 기; C1-C6 직쇄, 분지쇄 또는 고리형 알킬아미노 기; C1-C6 직쇄, 분지쇄 또는 고리형 플루오로알킬 기; 및 OR(식 중, R은 H 또는 C1-C6 직쇄, 분지쇄 또는 고리형 알킬 또는 아릴 기에서 선택됨)로 이루어진 군에서 독립적으로 선택됨];Wherein R 1 , R 2 , R 3 and R 4 are H; C1-C6 straight chain, branched or cyclic alkyl groups; C1-C6 straight chain, branched or cyclic alkylsilyl groups; C1-C6 straight chain, branched or cyclic alkylamino group; C1-C6 straight chain, branched or cyclic fluoroalkyl groups; And OR, wherein R is selected from the group consisting of H or a C1-C6 straight chain, branched chain or cyclic alkyl or aryl group;

. L은 THF, 디에틸에테르, 디메틸아미노에탄, 아세토니트릴, 글라임, 디글라임 및 폴리글라임으로 이루어진 군에서 선택됨;. L is selected from the group consisting of THF, diethyl ether, dimethylamino ethane, acetonitrile, glyme, diglyme and polyglyme;

· Li2(iPrN-CH=CH-NiPr)인 알칼리 금속 디아자부타디엔 화합물;An alkali metal diazabutadiene compound Li 2 (iPrN-CH = CH-NiPr);

· Li2(tBuN-CH=CH-NtBu)인 알칼리 금속 디아자부타디엔 화합물;An alkali metal diazabutadiene compound Li 2 (tBuN-CH = CH-NtBu);

· Na2(iPrN-CH=CH-NiPr)인 알칼리 금속 디아자부타디엔 화합물;An alkali metal diazabutadiene compound of Na 2 (iPrN-CH = CH-NiPr);

· Na2(tBuN-CH=CH-NtBu)인 알칼리 금속 디아자부타디엔 화합물;An alkali metal diazabutadiene compound Na 2 (tBuN-CH = CH-NtBu);

· K2(iPrN-CH=CH-NiPr)인 알칼리 금속 디아자부타디엔 화합물;An alkali metal diazabutadiene compound of K 2 (iPrN-CH = CH-NiPr);

· K2(tBuN-CH=CH-NtBu)인 알칼리 금속 디아자부타디엔 화합물;An alkali metal diazabutadiene compound with K 2 (tBuN-CH = CH-NtBu);

· 상기 방법이 약 20℃ 내지 약 600℃의 온도에서 수행됨;The method is carried out at a temperature of from about 20 캜 to about 600 캜;

· 상기 방법이 약 25℃ 내지 약 400℃의 온도에서 수행됨;The method is carried out at a temperature of from about 25 캜 to about 400 캜;

· 상기 방법이 약 0.1 Pa 내지 약 105 Pa의 압력에서 수행됨;The method is carried out at a pressure of from about 0.1 Pa to about 10 5 Pa;

· 상기 방법이 약 2.5 Pa 내지 약 103 Pa의 압력에서 수행됨;The method is carried out at a pressure of from about 2.5 Pa to about 10 3 Pa;

· 상기 방법이 화학적 증착 (CVD), 원자층 침착 (ALD), 플라스마 CVD, 플라스마 ALD, 펄스 CVD, 저압 CVD, 대기압-이하 CVD, 대기압 CVD, 고온-와이어 CVD, 고온-와이어 ALD, 및 초임계 유체 침착으로 이루어진 군에서 선택됨;At least one of the above methods may be used in combination with chemical vapor deposition (CVD), atomic layer deposition (ALD), plasma CVD, plasma ALD, pulse CVD, low pressure CVD, atmospheric pressure-below CVD, atmospheric pressure CVD, Fluid deposition;

· 알칼리 금속-함유 필름에, 니켈, 코발트, 망간, 티탄, 니오븀, 란탄, 인, 붕소 또는 이들의 혼합물에서 선택된, 다른 원소를 침착시킴;Depositing on the alkali metal-containing film another element selected from nickel, cobalt, manganese, titanium, niobium, lanthanum, phosphorus, boron or mixtures thereof;

· 알칼리 금속-함유 필름이 순수한 리튬 (Li), 질화 리튬 (LinNm), 탄화 리튬 (LinCm), 탄질화 리튬 (LinCmNp), 규소화 리튬 (LinSim), 산화 리튬 (LinOm), 산화 리튬 코발트 (LiCoO2 또는 LinComOp), 산화 리튬 망간 (LiMnO2 또는 LinMnmOp), 산화 리튬 니켈 (LiNiO2 또는 LinNimOp), 산질화 리튬 인 (Li3 + nPO4 - nNn, LiPON), 티탄산 리튬 란탄 ((Li,La)nTimOp, LTT), 니오브산 리튬 (LiNbO3 또는 LinNbmOp), 리튬 붕소 (LinBm) 필름(식 중, m, n, p는 1 이상 7 이하 범위의 정수임)으로 이루어진 군에서 선택됨;Alkali metal-pure lithium-containing film (Li), lithium nitride (Li n N m), carbide, lithium (Li n C m), carbo-lithium (Li n C m N p) , silicon digestion lithium (Li n Si m), lithium oxide (Li n O m), oxide, lithium cobalt (LiCoO 2 or Li n Co m O p), oxidation of lithium manganese (LiMnO 2 or Li n Mn m O p), lithium oxide nickel (LiNiO 2 or Li n Ni m O p), acid lithium nitride of (Li 3 + n PO 4 - n n n, LiPON), lithium titanate lanthanum ((Li, La) n Ti m O p, LTT), lithium niobate (LiNbO 3 Or Li n Nb m O p ), lithium boron (Li n B m ) film (wherein m, n, and p are integers ranging from 1 to 7 inclusive);

· 알칼리 금속 디아자부타디엔 화합물의 도입과 동시에 또는 교대로, 반응 기체를 반응기에 도입함;Simultaneously or alternatively with introduction of an alkali metal diazabutadiene compound, introducing a reactant gas into the reactor;

· 반응 기체가 환원제임;The reactive gas is a reducing agent;

· 환원제가 N2, H2; SiH4; Si2H6; Si3H8; NH3; (CH3)2SiH2; (C2H5)2SiH2; (CH3)SiH3; (C2H5)SiH3; 페닐 실란; N2H4; N(SiH3)3; N(CH3)H2; N(C2H5)H2; N(CH3)2H; N(C2H5)2H; N(CH3)3; N(C2H5)3; (SiMe3)2NH; (CH3)HNNH2; (CH3)2NNH2; 페닐 히드라진; B2H6; 9-보라비시클로[3,3,1]노난; 디히드로벤젠푸란; 피라졸린; 트리메틸알루미늄; 디메틸아연; 디에틸아연; 이들의 라디칼 화학종; 및 이들의 혼합물로 이루어진 군에서 선택됨;The reducing agent is N 2 , H 2 ; SiH 4 ; Si 2 H 6 ; Si 3 H 8 ; NH 3 ; (CH 3) 2 SiH 2; (C 2 H 5 ) 2 SiH 2 ; (CH 3) SiH 3; (C 2 H 5 ) SiH 3 ; Phenylsilane; N 2 H 4 ; N (SiH 3) 3; N (CH 3) H 2; N (C 2 H 5) H 2; N (CH 3) 2 H; N (C 2 H 5) 2 H; N (CH 3) 3; N (C 2 H 5) 3 ; (SiMe 3 ) 2 NH; (CH 3) HNNH 2; (CH 3) 2 NNH 2; Phenylhydrazine; B 2 H 6 ; 9-borabicyclo [3,3,1] nonane; Dihydrobenzene furan; Pyrazoline; Trimethyl aluminum; Dimethyl zinc; Diethylzinc; Their radical species; And mixtures thereof;

· 반응 기체가 산화제임; 그리고The reactive gas is an oxidant; And

· 산화제가 O2; O3; H2O; H2O2; NO; NO2; 카르복실산; 이들의 라디칼 화학종; 및 이들의 혼합물로 이루어진 군에서 선택됨., The oxidizing agent is O 2; O 3 ; H 2 O; H 2 O 2 ; NO; NO 2 ; Carboxylic acid; Their radical species; And mixtures thereof.

또한, 화학식 Mn(DAD)mLx[식 중, M은 알칼리 금속이고; n은 1, 2 또는 4이며; m은 1 또는 2이고; x는 0, 1, 2, 3 또는 4이며; L은 모노덴테이트, 비덴테이트, 트리덴테이트 또는 폴리덴테이트 중성 배위 리간드임]를 갖는 알칼리 금속 화합물이 개시된다. 개시된 화합물은 다음과 같은 측면의 하나 이상을 더 포함할 수 있다:Also, a compound of the formula M n (DAD) m L x wherein M is an alkali metal; n is 1, 2 or 4; m is 1 or 2; x is 0, 1, 2, 3 or 4; And L is a monodentate, bidentate, tridentate or polydentate neutral coordination ligand. The disclosed compounds may further comprise one or more of the following aspects:

· Li2(DAD)L4인 알칼리 금속 디아자부타디엔 화합물· Alkali metal diazabutadiene compound of Li 2 (DAD) L 4

Figure pat00012
Figure pat00012

[식 중, R1, R2, R3 및 R4는 H; C1-C6 직쇄, 분지쇄 또는 고리형 알킬 기; C1-C6 직쇄, 분지쇄 또는 고리형 알킬실릴 기; C1-C6 직쇄, 분지쇄 또는 고리형 알킬아미노 기; C1-C6 직쇄, 분지쇄 또는 고리형 플루오로알킬 기; 및 OR(식 중, R은 H 또는 C1-C6 직쇄, 분지쇄 또는 고리형 알킬 또는 아릴 기에서 선택됨)로 이루어진 군에서 독립적으로 선택됨];Wherein R 1 , R 2 , R 3 and R 4 are H; C1-C6 straight chain, branched or cyclic alkyl groups; C1-C6 straight chain, branched or cyclic alkylsilyl groups; C1-C6 straight chain, branched or cyclic alkylamino group; C1-C6 straight chain, branched or cyclic fluoroalkyl groups; And OR, wherein R is selected from the group consisting of H or a C1-C6 straight chain, branched chain or cyclic alkyl or aryl group;

· Li4(DAD)2L2인 알칼리 금속 디아자부타디엔 화합물Alkali metal diazabutadiene compound having Li 4 (DAD) 2 L 2

Figure pat00013
Figure pat00013

[식 중, R1, R2, R3 및 R4는 H; C1-C6 직쇄, 분지쇄 또는 고리형 알킬 기; C1-C6 직쇄, 분지쇄 또는 고리형 알킬실릴 기; C1-C6 직쇄, 분지쇄 또는 고리형 알킬아미노 기; C1-C6 직쇄, 분지쇄 또는 고리형 플루오로알킬 기; 및 OR(식 중, R은 H 또는 C1-C6 직쇄, 분지쇄 또는 고리형 알킬 또는 아릴 기에서 선택됨)로 이루어진 군에서 독립적으로 선택됨];Wherein R 1 , R 2 , R 3 and R 4 are H; C1-C6 straight chain, branched or cyclic alkyl groups; C1-C6 straight chain, branched or cyclic alkylsilyl groups; C1-C6 straight chain, branched or cyclic alkylamino group; C1-C6 straight chain, branched or cyclic fluoroalkyl groups; And OR, wherein R is selected from the group consisting of H or a C1-C6 straight chain, branched chain or cyclic alkyl or aryl group;

· Li2(DAD)인 알칼리 금속 디아자부타디엔 화합물· Alkali metal diazabutadiene compound as Li 2 (DAD)

Figure pat00014
Figure pat00014

[식 중, R1, R2, R3 및 R4는 H; C1-C6 직쇄, 분지쇄 또는 고리형 알킬 기; C1-C6 직쇄, 분지쇄 또는 고리형 알킬실릴 기; C1-C6 직쇄, 분지쇄 또는 고리형 알킬아미노 기; C1-C6 직쇄, 분지쇄 또는 고리형 플루오로알킬 기; 및 OR(식 중, R은 H 또는 C1-C6 직쇄, 분지쇄 또는 고리형 알킬 또는 아릴 기에서 선택됨)로 이루어진 군에서 독립적으로 선택됨];Wherein R 1 , R 2 , R 3 and R 4 are H; C1-C6 straight chain, branched or cyclic alkyl groups; C1-C6 straight chain, branched or cyclic alkylsilyl groups; C1-C6 straight chain, branched or cyclic alkylamino group; C1-C6 straight chain, branched or cyclic fluoroalkyl groups; And OR, wherein R is selected from the group consisting of H or a C1-C6 straight chain, branched chain or cyclic alkyl or aryl group;

· Li(DAD)L2인 알칼리 금속 디아자부타디엔 화합물· Alkali metal diazabutadiene compound of Li (DAD) L 2

Figure pat00015
Figure pat00015

[식 중, R1, R2, R3 및 R4는 H; C1-C6 직쇄, 분지쇄 또는 고리형 알킬 기; C1-C6 직쇄, 분지쇄 또는 고리형 알킬실릴 기; C1-C6 직쇄, 분지쇄 또는 고리형 알킬아미노 기; C1-C6 직쇄, 분지쇄 또는 고리형 플루오로알킬 기; 및 OR(식 중, R은 H 또는 C1-C6 직쇄, 분지쇄 또는 고리형 알킬 또는 아릴 기에서 선택됨)로 이루어진 군에서 독립적으로 선택됨];Wherein R 1 , R 2 , R 3 and R 4 are H; C1-C6 straight chain, branched or cyclic alkyl groups; C1-C6 straight chain, branched or cyclic alkylsilyl groups; C1-C6 straight chain, branched or cyclic alkylamino group; C1-C6 straight chain, branched or cyclic fluoroalkyl groups; And OR, wherein R is selected from the group consisting of H or a C1-C6 straight chain, branched chain or cyclic alkyl or aryl group;

· Li(DAD)2인 알칼리 금속 디아자부타디엔 화합물Alkali metal diazabutadiene compounds such as Li (DAD) 2

Figure pat00016
Figure pat00016

[식 중, R1, R2, R3 및 R4는 H; C1-C6 직쇄, 분지쇄 또는 고리형 알킬 기; C1-C6 직쇄, 분지쇄 또는 고리형 알킬실릴 기; C1-C6 직쇄, 분지쇄 또는 고리형 알킬아미노 기; C1-C6 직쇄, 분지쇄 또는 고리형 플루오로알킬 기; 및 OR(식 중, R은 H 또는 C1-C6 직쇄, 분지쇄 또는 고리형 알킬 또는 아릴 기에서 선택됨)로 이루어진 군에서 독립적으로 선택됨];Wherein R 1 , R 2 , R 3 and R 4 are H; C1-C6 straight chain, branched or cyclic alkyl groups; C1-C6 straight chain, branched or cyclic alkylsilyl groups; C1-C6 straight chain, branched or cyclic alkylamino group; C1-C6 straight chain, branched or cyclic fluoroalkyl groups; And OR, wherein R is selected from the group consisting of H or a C1-C6 straight chain, branched chain or cyclic alkyl or aryl group;

. L은 THF, 디에틸에테르, 디메틸아미노에탄, 아세토니트릴, 글라임, 디글라임 및 폴리글라임으로 이루어진 군에서 선택됨;. L is selected from the group consisting of THF, diethyl ether, dimethylamino ethane, acetonitrile, glyme, diglyme and polyglyme;

· Li2(iPrN-CH=CH-NiPr)인 알칼리 금속 디아자부타디엔 화합물;An alkali metal diazabutadiene compound Li 2 (iPrN-CH = CH-NiPr);

· Li2(tBuN-CH=CH-NtBu)인 알칼리 금속 디아자부타디엔 화합물;An alkali metal diazabutadiene compound Li 2 (tBuN-CH = CH-NtBu);

· Na2(iPrN-CH=CH-NiPr)인 알칼리 금속 디아자부타디엔 화합물;An alkali metal diazabutadiene compound of Na 2 (iPrN-CH = CH-NiPr);

· Na2(tBuN-CH=CH-NtBu)인 알칼리 금속 디아자부타디엔 화합물;An alkali metal diazabutadiene compound Na 2 (tBuN-CH = CH-NtBu);

· K2(iPrN-CH=CH-NiPr)인 알칼리 금속 디아자부타디엔 화합물;An alkali metal diazabutadiene compound of K 2 (iPrN-CH = CH-NiPr);

· K2(tBuN-CH=CH-NtBu)인 알칼리 금속 디아자부타디엔 화합물.· K 2 (tBuN-CH = CH-NtBu), an alkali metal diazabutadiene compound.

본 발명의 성질 및 목적을 더 잘 이해하기 위해, 첨부된 도면과 함께 주어진 이하의 상세한 설명을 참고해야 하며:
도 1은 Li2(tBu-DAD)의 대기압 및 진공 열중량 분석을 나타내는 그래프이다.
BRIEF DESCRIPTION OF THE DRAWINGS For a better understanding of the nature and objects of the present invention, reference should be made to the following detailed description taken in conjunction with the accompanying drawings, in which:
Figure 1 is a graph showing the atmospheric pressure and vacuum thermogravimetric analysis of Li 2 (tBu-DAD).

알칼리 금속-함유 필름의 증착을 위한 알칼리 금속 디아자부타디에닐 분자가 개시된다. 전술한 바와 같이, 디아자부타디에닐 (DAD) 리간드는 다양한 산화 상태 하에 사용될 수 있는 α-디이민 리간드이다. 개시된 알칼리 금속 디아자부타디엔 분자는 화학식 Mn(DAD)mLx[식 중, M은 알칼리 금속이고; n은 1, 2 또는 4이며; m은 1 또는 2이고; x는 0, 1, 2, 3 또는 4이며; L은 THF, 디에틸에테르, 디메틸아미노에탄, 아세토니트릴, 글라임, 디글라임, 폴리글라임 등에서 비제한적으로 선택된 모노덴테이트, 비덴테이트, 트리덴테이트 또는 폴리덴테이트 중성 배위 리간드임]를 갖는다. 바람직하게는, L은 THF이다.Disclosed are alkali metal diazabutadienyl molecules for the deposition of alkali metal-containing films. As noted above, diazabutadienyl (DAD) ligands are alpha -dimine ligands that can be used under various oxidation states. The disclosed alkali metal diazabutadiene molecule has the formula M n (DAD) m L x wherein M is an alkali metal; n is 1, 2 or 4; m is 1 or 2; x is 0, 1, 2, 3 or 4; L is a monodentate, bidentate, tridentate or polydentate neutral coordination ligand selected from, but not limited to, THF, diethyl ether, dimethylamino ethane, acetonitrile, glyme, diglyme, polyglyme, . Preferably, L is THF.

DAD 리간드는 화학식 R1-N=CR3-CR4=N-R2[식 중, R1 내지 R4는 각각 H; C1-C6 직쇄, 분지쇄 또는 고리형 알킬 또는 아릴 기; C1-C6 직쇄, 분지쇄 또는 고리형 알킬실릴 기 (Si 원자 위에 1, 2 또는 3개의 알킬 기가 존재할 수 있음); C1-C6 직쇄, 분지쇄 또는 고리형 알킬아미노 기, 예컨대 NRR' (식 중, R 및 R'은 H 또는 C1-C6 직쇄, 분지쇄 또는 고리형 알킬 또는 아릴 기에서 독립적으로 선택됨); C1-C6 직쇄, 분지쇄 또는 고리형 플루오로알킬 기 (여기에서 치환기의 일부 또는 전부가 F이며, 즉 부분적으로 또는 전적으로 플루오르화됨); 또는 알콕시 치환기, 예컨대 OR(R은 H 또는 C1-C6 직쇄, 분지쇄 또는 고리형 알킬 또는 아릴 기임)에서 독립적으로 선택됨]의 일반적인 구조를 갖는다. 바람직하게는 R1, R2, R3 및 R4는 각각 H 및 C1-C6 직쇄, 분지쇄 또는 고리형 알킬 기로 이루어진 군에서 독립적으로 선택된다. 바람직하게는 R1 및 R4는 Me, Et, nPr, iPr, nBu, secBu, tBu 및 iBu로 이루어진 군에서 독립적으로 선택된다. 바람직하게는 R2 및 R3는 H 또는 Me에서 독립적으로 선택된다.The DAD ligand has the formula R 1 -N═CR 3 -CR 4 ═NR 2 wherein R 1 to R 4 are each H; C 1 -C 6 straight chain, branched or cyclic alkyl or aryl groups; C 1 -C 6 straight chain, branched or cyclic alkylsilyl groups (1, 2 or 3 alkyl groups may be present on the Si atom); C 1 -C 6 straight chain, branched or cyclic alkylamino groups such as NRR 'wherein R and R' are independently selected from H or C 1 -C 6 straight chain, branched chain or cyclic alkyl or aryl groups ); C 1 -C 6 straight chain, branched or cyclic fluoroalkyl groups wherein some or all of the substituents are F, i.e. partially or fully fluorinated; Or an alkoxy substituent such as OR (R is H or a C 1 -C 6 straight chain, branched chain or cyclic alkyl or aryl group). Preferably R 1 , R 2 , R 3 and R 4 are each independently selected from the group consisting of H and C 1 -C 6 straight chain, branched chain or cyclic alkyl groups. Preferably R 1 and R 4 are independently selected from the group consisting of Me, Et, nPr, iPr, nBu, secBu, tBu and iBu. Preferably R < 2 > and R < 3 > are independently selected from H or Me.

알칼리 금속은 리튬일 수 있고, 이러한 경우 개시된 알칼리 금속 디아자부타디엔 분자는 하기 화학식 중 하나를 가질 수 있다:The alkali metal may be lithium, and in this case the disclosed alkali metal diazabutadiene molecule may have one of the following formulas:

A) Li2(DAD)L4 A) Li 2 (DAD) L 4

Figure pat00017
Figure pat00017

B) Li4(DAD)2L2 B) Li 4 (DAD) 2 L 2

Figure pat00018
Figure pat00018

C) Li2(DAD)C) Li 2 (DAD)

Figure pat00019
Figure pat00019

D) Li(DAD)L2 D) Li (DAD) L 2

Figure pat00020
Figure pat00020

E) Li(DAD)2 E) Li (DAD) 2

Figure pat00021
Figure pat00021

식 중, R1, R2, R3 및 R4는 각각 전술한 바와 같다. 당업자는 상기 화학식 A)-E)에서 Li 원자는 임의의 다른 알칼리 금속 원자로 대체될 수 있음을 잘 인식할 것이다. 화학식 A, B 및 C의 DAD 리간드는 디음이온성일 것으로 예상된다. 화학식 D의 DAD 리간드는 모노-음이온성일 것으로 예상된다. 화학식 E의 하나의 DAD 리간드는 모노음이온성이고 다른 것은 중성일 것으로 예상된다. X-선 형광 분광학 및/또는 X-선 결정 구조 결정 및/또는 자기 모멘트 측정이 상기 산화 상태를 확인하기 위해 사용될 수 있다. In the formulas, R 1 , R 2 , R 3 and R 4 are each as described above. Those skilled in the art will appreciate that in the above formula (A) -E) the Li atom can be replaced by any other alkali metal atom. The DAD ligands of formulas A, B, and C are expected to be dianionic. The DAD ligand of formula (D) is expected to be mono-anionic. One DAD ligand of formula E is expected to be monoanionic and the other neutral. X-ray fluorescence spectroscopy and / or X-ray crystal structure determination and / or magnetic moment measurements can be used to confirm the oxidation state.

화합물의 물리적 및 열적 성질은 사용된 R 치환기 및 중성 배위 리간드의 수에 따라 변하며, 이는 넓은 범위의 성질을 갖는 화합물의 개발을 가능하게 한다. 개시된 화합물에 대한 DAD 리간드 선택의 다양성은 질소 결합 위에 사용된 치환 기에 기초하여 다양한 성질을 갖는 다수의 화합물을 합성할 수 있게 한다. 상기 다양성은 또한 목표하는 공정(고온 또는 저온 침착, CVD 또는 ALD, 플라스마 또는 열적) 및 원하는 물질의 종류(금속, 질화물, 탄화물, 카보-질화물, 산화물, 터너리 (ternary))에 따라 알칼리 금속의 산화 상태를 조정할 수 있게 한다. 또한, 일부 경우에, 화합물의 호모렙틱 (homoleptic) 성질은 덜 복잡하고 비용이 적은 합성 방법을 가능하게 하며, 이를 이하에 더 상세히 설명한다. The physical and thermal properties of the compounds vary with the number of R substituents and neutral coordination ligands used, which allows the development of compounds with a wide range of properties. The diversity of DAD ligand selection for the disclosed compounds allows for the synthesis of multiple compounds of varying properties based on the substituents used on the nitrogen bond. The diversity may also be determined by the desired process (high or low temperature deposition, CVD or ALD, plasma or thermal) and the type of desired material (metal, nitride, carbide, carbo-nitride, oxide, ternary) Thereby making it possible to adjust the oxidation state. Also, in some cases, the homoleptic nature of the compounds allows for less complex and less costly synthesis methods, which are described in more detail below.

본 발명자들은 이들 화학식 Mn(DAD)mLx의 알칼리 금속-함유 화합물이 CVD, ALD, 및 전구체 화합물을 기판의 표면으로 가져오는 임의의 다른 침착 방법에서 알칼리 금속-함유 필름의 침착을 가능하게 할 것으로 생각하며, 그러한 침착은 다양한 에너지 공급원, 예컨대 열적, 직접 플라스마 원격 플라스마, 또는 "고온-와이어" ("catCVD"라고도 함) 방식으로 수행된다.We have found that alkali metal-containing compounds of these formula M n (DAD) m L x enable the deposition of alkali metal-containing films in CVD, ALD, and in any other deposition process that brings precursor compounds to the surface of the substrate , And such deposition is performed in a variety of energy sources, such as thermal, direct plasma remote plasma, or "hot-wire" (also referred to as "catCVD") methods.

화학식 (A)의 예시적인 리튬-함유 화합물은 다음 화합물을 비제한적으로 포함한다: Li2(MeN-CH=CH-NMe)(THF)4, Li2(EtN-CH=CH-NEt)(THF)4, Li2(nPrN-CH=CH-NnPr)(THF)4, Li2(iPrN-CH=CH-NiPr)(THF)4, Li2(nBuN-CH=CH-NnBu)(THF)4, Li2(tBuN-CH=CH-NtBu)(THF)4, Li2(iBuN-CH=CH-NiBu)(THF)4, Li2(sBuN-CH=CH-NsBu)(THF)4, Li2(nPrN-CH=CH-NiPr)(THF)4, Li2(nPrN-CH=CH-NtBu)(THF)4, Li2(iPrN-CH=CH-NtBu)(THF)4, Li2(MeN-CMe=CH-NMe)(THF)4, Li2(EtN-CMe=CH-NEt)(THF)4, Li2(nPrN-CMe=CH-NnPr)(THF)4, Li2(iPrN-CMe=CH-NiPr)(THF)4, Li2(nBuN-CMe=CH-NnBu)(THF)4, Li2(tBuN-CMe=CH-NtBu)(THF)4, Li2(iBuN-CMe=CH-NiBu)(THF)4, Li2(sBuN-CMe=CH-NsBu)(THF)4, Li2(iPrN-CMe=CH-NMe)(THF)4, Li2(iPrN-CMe=CH-NEt)(THF)4, Li2(iPrN-CMe=CH-NtBu)(THF)4, Li2(MeN-CMe=CMe-NMe)(THF)4, Li2(EtN-CMe=CMe-NEt)(THF)4, Li2(nPrN-CMe=CMe-NnPr)(THF)4, Li2(iPrN-CMe=CMe-NiPr)(THF)4, Li2(nBuN-CMe=CMe-NnBu)(THF)4, Li2(tBuN-CMe=CMe-NtBu)(THF)4, Li2(iBuN-CMe=CMe-NiBu)(THF)4, Li2(sBuN-CMe=CMe-NsBu)(THF)4, Li2(MeN-CMe=CMe-NEt)(THF)4, Li2(MeN-CMe=CMe-NiPr)(THF)4, Li2(EtN-CMe=CMe-NiPr)(THF)4, Li2(MeN-C(CF3)=CH-NMe)(THF)4, Li2(EtN-C(CF3)=CH-NEt)(THF)4, Li2(nPrN-C(CF3)=CH-NnPr)(THF)4, Li2(iPrN-C(CF3)=CH-NiPr)(THF)4, Li2(nBuN-C(CF3)=CH-NnBu)(THF)4, Li2(tBuN-C(CF3)=CH-NtBu)(THF)4, Li2(iBuN-C(CF3)=CH-NiBu)(THF)4, Li2(sBuN-C(CF3)=CH-NsBu)(THF)4, Li2(MeN-C(CF3)=C(CF3)-NMe)(THF)4, Li2(EtN-C(CF3)=C(CF3)-NEt)(THF)4, Li2(nPrN-C(CF3)=C(CF3)-NnPr)(THF)4, Li2(iPrN-C(CF3)=C(CF3)-NiPr)(THF)4, Li2(nBuN-C(CF3)=C(CF3)-NnBu)(THF)4, Li2(tBuN-C(CF3)=C(CF3)-NtBu)(THF)4, Li2(iBuN-C(CF3)=C(CF3)-NiBu)(THF)4, Li2(sBuN-C(CF3)=C(CF3)-NsBu)(THF)4, Li2(MeN-CH=CH-NMe)(OEt2)4, Li2(EtN-CH=CH-NEt)(OEt2)4, Li2(nPrN-CH=CH-NnPr)(OEt2)4, Li2(iPrN-CH=CH-NiPr)(OEt2)4, Li2(nBuN-CH=CH-NnBu)(OEt2)4, Li2(tBuN-CH=CH-NtBu)(OEt2)4, Li2(iBuN-CH=CH-NiBu)(OEt2)4, Li2(sBuN-CH=CH-NsBu)(OEt2)4, Li2(nPrN-CH=CH-NiPr)(OEt2)4, Li2(nPrN-CH=CH-NtBu)(OEt2)4, Li2(iPrN-CH=CH-NtBu)(OEt2)4, Li2(MeN-CMe=CH-NMe)(OEt2)4, Li2(EtN-CMe=CH-NEt)(OEt2)4, Li2(nPrN-CMe=CH-NnPr)(OEt2)4, Li2(iPrN-CMe=CH-NiPr)(OEt2)4, Li2(nBuN-CMe=CH-NnBu)(OEt2)4, Li2(tBuN-CMe=CH-NtBu)(OEt2)4, Li2(iBuN-CMe=CH-NiBu)(OEt2)4, Li2(sBuN-CMe=CH-NsBu)(OEt2)4, Li2(iPrN-CMe=CH-NMe)(OEt2)4, Li2(iPrN-CMe=CH-NEt)(OEt2)4, Li2(iPrN-CMe=CH-NtBu)(OEt2)4, Li2(MeN-CMe=CMe-NMe)(OEt2)4, Li2(EtN-CMe=CMe-NEt)(OEt2)4, Li2(nPrN-CMe=CMe-NnPr)(OEt2)4, Li2(iPrN-CMe=CMe-NiPr)(OEt2)4, Li2(nBuN-CMe=CMe-NnBu)(OEt2)4, Li2(tBuN-CMe=CMe-NtBu)(OEt2)4, Li2(iBuN-CMe=CMe-NiBu)(OEt2)4, Li2(sBuN-CMe=CMe-NsBu)(OEt2)4, Li2(MeN-CMe=CMe-NEt)(OEt2)4, Li2(MeN-CMe=CMe-NiPr)(OEt2)4, Li2(EtN-CMe=CMe-NiPr)(OEt2)4, Li2(MeN-C(CF3)=CH-NMe)(OEt2)4, Li2(EtN-C(CF3)=CH-NEt)(OEt2)4, Li2(nPrN-C(CF3)=CH-NnPr)(OEt2)4, Li2(iPrN-C(CF3)=CH-NiPr)(OEt2)4, Li2(nBuN-C(CF3)=CH-NnBu)(OEt2)4, Li2(tBuN-C(CF3)=CH-NtBu)(OEt2)4, Li2(iBuN-C(CF3)=CH-NiBu)(OEt2)4, Li2(sBuN-C(CF3)=CH-NsBu)(OEt2)4, Li2(MeN-C(CF3)=C(CF3)-NMe)(OEt2)4, Li2(EtN-C(CF3)=C(CF3)-NEt)(OEt2)4, Li2(nPrN-C(CF3)=C(CF3)-NnPr)(OEt2)4, Li2(iPrN-C(CF3)=C(CF3)-NiPr)(OEt2)4, Li2(nBuN-C(CF3)=C(CF3)-NnBu)(OEt2)4, Li2(tBuN-C(CF3)=C(CF3)-NtBu)(OEt2)4, Li2(iBuN-C(CF3)=C(CF3)-NiBu)(OEt2)4, Li2(sBuN-C(CF3)=C(CF3)-NsBu)(OEt2)4, Li2(MeN-CH=CH-NMe)(ACN)4, Li2(EtN-CH=CH-NEt)(ACN)4, Li2(nPrN-CH=CH-NnPr)(ACN)4, Li2(iPrN-CH=CH-NiPr)(ACN)4, Li2(nBuN-CH=CH-NnBu)(ACN)4, Li2(tBuN-CH=CH-NtBu)(ACN)4, Li2(iBuN-CH=CH-NiBu)(ACN)4, Li2(sBuN-CH=CH-NsBu)(ACN)4, Li2(nPrN-CH=CH-NiPr)(ACN)4, Li2(nPrN-CH=CH-NtBu)(ACN)4, Li2(iPrN-CH=CH-NtBu)(ACN)4, Li2(MeN-CMe=CH-NMe)(ACN)4, Li2(EtN-CMe=CH-NEt)(ACN)4, Li2(nPrN-CMe=CH-NnPr)(ACN)4, Li2(iPrN-CMe=CH-NiPr)(ACN)4, Li2(nBuN-CMe=CH-NnBu)(ACN)4, Li2(tBuN-CMe=CH-NtBu)(ACN)4, Li2(iBuN-CMe=CH-NiBu)(ACN)4, Li2(sBuN-CMe=CH-NsBu)(ACN)4, Li2(iPrN-CMe=CH-NMe)(ACN)4, Li2(iPrN-CMe=CH-NEt)(ACN)4, Li2(iPrN-CMe=CH-NtBu)(ACN)4, Li2(MeN-CMe=CMe-NMe)(ACN)4, Li2(EtN-CMe=CMe-NEt)(ACN)4, Li2(nPrN-CMe=CMe-NnPr)(ACN)4, Li2(iPrN-CMe=CMe-NiPr)(ACN)4, Li2(nBuN-CMe=CMe-NnBu)(ACN)4, Li2(tBuN-CMe=CMe-NtBu)(ACN)4, Li2(iBuN-CMe=CMe-NiBu)(ACN)4, Li2(sBuN-CMe=CMe-NsBu)(ACN)4, Li2(MeN-CMe=CMe-NEt)(ACN)4, Li2(MeN-CMe=CMe-NiPr)(ACN)4, Li2(EtN-CMe=CMe-NiPr)(ACN)4, Li2(MeN-C(CF3)=CH-NMe)(ACN)4, Li2(EtN-C(CF3)=CH-NEt)(ACN)4, Li2(nPrN-C(CF3)=CH-NnPr)(ACN)4, Li2(iPrN-C(CF3)=CH-NiPr)(ACN)4, Li2(nBuN-C(CF3)=CH-NnBu)(ACN)4, Li2(tBuN-C(CF3)=CH-NtBu)(ACN)4, Li2(iBuN-C(CF3)=CH-NiBu)(ACN)4, Li2(sBuN-C(CF3)=CH-NsBu)(ACN)4, Li2(MeN-C(CF3)=C(CF3)-NMe)(ACN)4, Li2(EtN-C(CF3)=C(CF3)-NEt)(ACN)4, Li2(nPrN-C(CF3)=C(CF3)-NnPr)(ACN)4, Li2(iPrN-C(CF3)=C(CF3)-NiPr)(ACN)4, Li2(nBuN-C(CF3)=C(CF3)-NnBu)(ACN)4, Li2(tBuN-C(CF3)=C(CF3)-NtBu)(ACN)4, Li2(iBuN-C(CF3)=C(CF3)-NiBu)(ACN)4, 및 Li2(sBuN-C(CF3)=C(CF3)-NsBu)(ACN)4. 전술한 바와 같이, 화학식 A의 DAD 리간드는 디음이온성일 것으로 예상된다. X-선 형광 분광학 및/또는 X-선 결정 구조 결정 및/또는 자기 모멘트 측정이 이들 산화 상태를 확인하기 위해 사용될 수 있다.Exemplary lithium-containing compounds of formula (A) include, but are not limited to, Li 2 (MeN-CH═CH-NMe) (THF) 4 , Li 2 (EtN-CH═CH- ) 4, Li 2 (nPrN- CH = CH-NnPr) (THF) 4, Li 2 (iPrN-CH = CH-NiPr) (THF) 4, Li 2 (nBuN-CH = CH-NnBu) (THF) 4 , Li 2 (tBuN-CH = CH-NtBu) (THF) 4, Li 2 (iBuN-CH = CH-NiBu) (THF) 4, Li 2 (sBuN-CH = CH-NsBu) (THF) 4, Li 2 (nPrN-CH = CH- NiPr) (THF) 4, Li 2 (nPrN-CH = CH-NtBu) (THF) 4, Li 2 (iPrN-CH = CH-NtBu) (THF) 4, Li 2 ( MeN-CMe = CH-NMe) (THF) 4, Li 2 (EtN-CMe = CH-NEt) (THF) 4, Li 2 (nPrN-CMe = CH-NnPr) (THF) 4, Li 2 (iPrN- CMe = CH-NiPr) (THF ) 4, Li 2 (nBuN-CMe = CH-NnBu) (THF) 4, Li 2 (tBuN-CMe = CH-NtBu) (THF) 4, Li 2 (iBuN-CMe = CH-NiBu) (THF) 4 , Li 2 (sBuN-CMe = CH-NsBu) (THF) 4, Li 2 (iPrN-CMe = CH-NMe) (THF) 4, Li 2 (iPrN-CMe = CH- NEt) (THF) 4, Li 2 (iPrN-CMe = CH-NtBu) (THF) 4, Li 2 (MeN-CMe = CMe-NMe) (THF) 4, Li 2 (EtN-CMe = CMe-NEt) (THF) 4, Li 2 ( nPrN-CMe = CMe-NnPr) (THF) 4, Li 2 (iPrN-CMe = CMe-NiPr) (THF) 4, Li 2 (nBuN-CMe = CMe-NnBu) (THF ) 4, Li 2 (tBuN- CMe = CMe- NtBu) (THF) 4, Li 2 (iBuN-CMe = CMe-NiBu) (THF) 4, Li 2 (sBuN-CMe = CMe-NsBu) (THF) 4, Li 2 (MeN-CMe = CMe-NEt) (THF) 4, Li 2 ( MeN-CMe = CMe-NiPr) (THF) 4, Li 2 (EtN-CMe = CMe-NiPr) (THF) 4, Li 2 (MeN-C (CF 3) = CH- NMe) (THF) 4, Li 2 (EtN-C (CF 3) = CH-NEt) (THF) 4, Li 2 (nPrN-C (CF 3) = CH-NnPr) (THF) 4, Li 2 ( iPrN-C (CF 3) = CH-NiPr) (THF) 4, Li 2 (nBuN-C (CF 3) = CH-NnBu) (THF) 4, Li 2 (tBuN-C (CF 3) = CH- NtBu) (THF) 4, Li 2 (iBuN-C (CF 3) = CH-NiBu) (THF) 4, Li 2 (sBuN-C (CF 3) = CH-NsBu) (THF) 4, Li 2 ( MeN-C (CF 3) = C (CF 3) -NMe) (THF) 4, Li 2 (EtN-C (CF 3) = C (CF 3) -NEt) (THF) 4, Li 2 (nPrN- C (CF 3) = C ( CF 3) -NnPr) (THF) 4, Li 2 (iPrN-C (CF 3) = C (CF 3) -NiPr) (THF) 4, Li 2 (nBuN-C ( CF 3) = C (CF 3 ) -NnBu) (THF) 4, Li 2 (tBuN-C (CF 3) = C (CF 3) -NtBu) (THF) 4, Li 2 (iBuN-C (CF 3 ) = C (CF 3) -NiBu ) (THF) 4, Li 2 (sBuN-C (CF 3) = C (CF 3) -NsBu) (THF) 4, Li 2 (MeN-CH = CH-NMe) (OEt 2) 4, Li 2 (EtN-CH = CH-NEt) (OEt 2) 4, Li 2 (nPrN-CH = CH-NnPr) (OEt 2) 4, Li 2 (iPrN-CH = CH-NiPr ) (OEt 2) 4, Li 2 (nBuN-CH = CH-NnBu) (OEt 2) 4, Li 2 (tBuN-CH = CH -NtBu) (OEt 2) 4, Li 2 (iBuN-CH = CH-NiBu) (OEt 2) 4, Li 2 (sBuN-CH = CH-NsBu) (OEt 2) 4 , Li 2 (nPrN-CH = CH-NiPr) (OEt 2) 4, Li 2 (nPrN-CH = CH-NtBu) (OEt 2) 4, Li 2 (iPrN-CH = CH-NtBu) (OEt 2) 4, Li 2 (MeN-CMe = CH-NMe) (OEt 2) 4, Li 2 (EtN-CMe = CH-NEt) (OEt 2) 4, Li 2 (nPrN-CMe = CH-NnPr) (OEt 2 ) 4, Li 2 (iPrN- CMe = CH-NiPr) (OEt 2) 4, Li 2 (nBuN-CMe = CH-NnBu) (OEt 2) 4, Li 2 (tBuN-CMe = CH-NtBu) (OEt 2 ) 4 , Li 2 (iBuN-CMe = CH-NiBu) (OEt 2 ) 4 , Li 2 (sBuN-CMe = CH-NsBu) (OEt 2 ) 4 , Li 2 OEt 2) 4, Li 2 ( iPrN-CMe = CH-NEt) (OEt 2) 4, Li 2 (iPrN-CMe = CH-NtBu) (OEt 2) 4, Li 2 (MeN-CMe = CMe-NMe) (OEt 2) 4, Li 2 (EtN-CMe = CMe-NEt) (OEt 2) 4, Li 2 (nPrN-CMe = CMe-NnPr) (OEt 2) 4, Li 2 (iPrN-CMe = CMe-NiPr ) (OEt 2) 4, Li 2 (nBuN-CMe = CMe-NnBu) (OEt 2) 4, Li 2 (tBuN-CMe = CMe-NtBu) (OEt 2) 4, Li 2 (iBuN-CMe = CMe- NiBu) (OEt 2) 4, Li 2 (sBuN-CMe = CMe-NsBu) (OEt 2) 4, Li 2 (MeN-CMe = CMe-NEt) (OEt 2) 4, Li 2 (MeN-CMe = CMe -NiPr) (OEt 2) 4, Li 2 (EtN-CMe = CMe-NiPr) (OEt 2) 4, L i 2 (MeN-C (CF 3) = CH-NMe) (OEt 2) 4, Li 2 (EtN-C (CF 3) = CH-NEt) (OEt 2) 4, Li 2 (nPrN-C (CF 3) = CH-NnPr) ( OEt 2) 4, Li 2 (iPrN-C (CF 3) = CH-NiPr) (OEt 2) 4, Li 2 (nBuN-C (CF 3) = CH-NnBu) ( OEt 2) 4, Li 2 ( tBuN-C (CF 3) = CH-NtBu) (OEt 2) 4, Li 2 (iBuN-C (CF 3) = CH-NiBu) (OEt 2) 4, Li 2 ( sBuN-C (CF 3) = CH-NsBu) (OEt 2) 4, Li 2 (MeN-C (CF 3) = C (CF 3) -NMe) (OEt 2) 4, Li 2 (EtN-C ( CF 3) = C (CF 3 ) -NEt) (OEt 2) 4, Li 2 (nPrN-C (CF 3) = C (CF 3) -NnPr) (OEt 2) 4, Li 2 (iPrN-C ( CF 3) = C (CF 3 ) -NiPr) (OEt 2) 4, Li 2 (nBuN-C (CF 3) = C (CF 3) -NnBu) (OEt 2) 4, Li 2 (tBuN-C ( CF 3) = C (CF 3 ) -NtBu) (OEt 2) 4, Li 2 (iBuN-C (CF 3) = C (CF 3) -NiBu) (OEt 2) 4, Li 2 (sBuN-C ( CF 3) = C (CF 3 ) -NsBu) (OEt 2) 4, Li 2 (MeN-CH = CH-NMe) (ACN) 4, Li 2 (EtN-CH = CH-NEt) (ACN) 4, Li 2 (nPrN-CH = CH -NnPr) (ACN) 4, Li 2 (iPrN-CH = CH-NiPr) (ACN) 4, Li 2 (nBuN-CH = CH-NnBu) (ACN) 4, Li 2 (tBuN-CH = CH-NtBu ) (ACN) 4, Li 2 (iBuN-CH = CH-NiBu) (ACN) 4, Li 2 (sBuN-CH = CH-NsBu) (ACN) 4, Li 2 (nPrN -CH = CH-NiPr) (ACN) 4 , Li 2 (nPrN-CH = CH-NtBu ) (ACN) 4, Li 2 (iPrN-CH = CH-NtBu) (ACN) 4, Li 2 (MeN-CMe = CH-NMe) (ACN) 4, Li 2 (EtN-CMe = CH-NEt) ( ACN) 4, Li 2 (nPrN -CMe = CH-NnPr) (ACN) 4, Li 2 (iPrN-CMe = CH-NiPr) (ACN) 4, Li 2 (nBuN-CMe = CH-NnBu) (ACN) 4, Li 2 (tBuN-CMe = CH-NtBu) (ACN) 4, Li 2 (iBuN-CMe = CH-NiBu) (ACN) 4, Li 2 (sBuN-CMe = CH-NsBu) (ACN) 4, Li 2 (iPrN-CMe = CH -NMe) (ACN) 4, Li 2 (iPrN-CMe = CH-NEt) (ACN) 4, Li 2 (iPrN-CMe = CH-NtBu) (ACN) 4, Li 2 (MeN-CMe = CMe-NMe ) (ACN) 4, Li 2 (EtN-CMe = CMe-NEt) (ACN) 4, Li 2 (nPrN-CMe = CMe-NnPr) (ACN) 4, Li 2 (iPrN -CMe = CMe-NiPr) (ACN ) 4, Li 2 (nBuN-CMe = CMe-NnBu) (ACN) 4, Li 2 (tBuN-CMe = CMe-NtBu) (ACN) 4, Li 2 (iBuN-CMe = CMe-NiBu) (ACN) 4, Li 2 (sBuN-CMe = CMe-NsBu) (ACN) 4, Li 2 (MeN-CMe = CMe-NEt) (ACN) 4, Li 2 (MeN-CMe = CMe -NiPr) (ACN) 4, Li 2 (EtN-CMe = CMe-NiPr) (ACN) 4, Li 2 (MeN-C (CF 3) = CH-NMe) (ACN) 4, Li 2 (EtN-C (CF 3) = CH-NEt ) (ACN) 4, Li 2 (nPrN-C (CF 3) = CH-NnPr) (ACN) 4, Li 2 (iPrN-C (CF 3) = CH-NiPr) ( ACN) 4, Li 2 (nBuN -C (CF 3) = CH-NnBu) (ACN) 4, Li 2 (tBuN-C (CF 3) = CH-NtBu) (ACN) 4, Li 2 (iBuN -C (CF 3) = CH- NiBu) (ACN) 4, Li 2 (sBuN-C (CF 3) = CH-NsBu) (ACN) 4, Li 2 (MeN-C (CF 3) = C (CF 3) -NMe) (ACN) 4 , Li 2 (EtN-C (CF 3) = C (CF 3) -NEt) (ACN) 4, Li 2 (nPrN-C (CF 3) = C (CF 3) -NnPr) (ACN) 4, Li 2 (iPrN-C (CF 3) = C (CF 3) -NiPr) (ACN) 4, Li 2 (nBuN-C (CF 3) = C (CF 3) -NnBu ) (ACN) 4, Li 2 (tBuN-C (CF 3) = C (CF 3) -NtBu) (ACN) 4, Li 2 (iBuN-C (CF 3) = C (CF 3) -NiBu) ( ACN) 4 , and Li 2 (sBuN-C (CF 3 ) = C (CF 3 ) -NsBu) (ACN) 4 . As mentioned above, the DAD ligand of formula A is expected to be dianionic. X-ray fluorescence spectroscopy and / or X-ray crystal structure determination and / or magnetic moment measurements can be used to confirm these oxidation states.

화학식 (A)의 예시적인 나트륨-함유 화합물은 다음 화합물을 비제한적으로 포함한다: Na2(MeN-CH=CH-NMe)(THF)4, Na2(EtN-CH=CH-NEt)(THF)4, Na2(nPrN-CH=CH-NnPr)(THF)4, Na2(iPrN-CH=CH-NiPr)(THF)4, Na2(nBuN-CH=CH-NnBu)(THF)4, Na2(tBuN-CH=CH-NtBu)(THF)4, Na2(iBuN-CH=CH-NiBu)(THF)4, Na2(sBuN-CH=CH-NsBu)(THF)4, Na2(nPrN-CH=CH-NiPr)(THF)4, Na2(nPrN-CH=CH-NtBu)(THF)4, Na2(iPrN-CH=CH-NtBu)(THF)4, Na2(MeN-CMe=CH-NMe)(THF)4, Na2(EtN-CMe=CH-NEt)(THF)4, Na2(nPrN-CMe=CH-NnPr)(THF)4, Na2(iPrN-CMe=CH-NiPr)(THF)4, Na2(nBuN-CMe=CH-NnBu)(THF)4, Na2(tBuN-CMe=CH-NtBu)(THF)4, Na2(iBuN-CMe=CH-NiBu)(THF)4, Na2(sBuN-CMe=CH-NsBu)(THF)4, Na2(iPrN-CMe=CH-NMe)(THF)4, Na2(iPrN-CMe=CH-NEt)(THF)4, Na2(iPrN-CMe=CH-NtBu)(THF)4, Na2(MeN-CMe=CMe-NMe)(THF)4, Na2(EtN-CMe=CMe-NEt)(THF)4, Na2(nPrN-CMe=CMe-NnPr)(THF)4, Na2(iPrN-CMe=CMe-NiPr)(THF)4, Na2(nBuN-CMe=CMe-NnBu)(THF)4, Na2(tBuN-CMe=CMe-NtBu)(THF)4, Na2(iBuN-CMe=CMe-NiBu)(THF)4, Na2(sBuN-CMe=CMe-NsBu)(THF)4, Na2(MeN-CMe=CMe-NEt)(THF)4, Na2(MeN-CMe=CMe-NiPr)(THF)4, Na2(EtN-CMe=CMe-NiPr)(THF)4, Na2(MeN-C(CF3)=CH-NMe)(THF)4, Na2(EtN-C(CF3)=CH-NEt)(THF)4, Na2(nPrN-C(CF3)=CH-NnPr)(THF)4, Na2(iPrN-C(CF3)=CH-NiPr)(THF)4, Na2(nBuN-C(CF3)=CH-NnBu)(THF)4, Na2(tBuN-C(CF3)=CH-NtBu)(THF)4, Na2(iBuN-C(CF3)=CH-NiBu)(THF)4, Na2(sBuN-C(CF3)=CH-NsBu)(THF)4, Na2(MeN-C(CF3)=C(CF3)-NMe)(THF)4, Na2(EtN-C(CF3)=C(CF3)-NEt)(THF)4, Na2(nPrN-C(CF3)=C(CF3)-NnPr)(THF)4, Na2(iPrN-C(CF3)=C(CF3)-NiPr)(THF)4, Na2(nBuN-C(CF3)=C(CF3)-NnBu)(THF)4, Na2(tBuN-C(CF3)=C(CF3)-NtBu)(THF)4, Na2(iBuN-C(CF3)=C(CF3)-NiBu)(THF)4, Na2(sBuN-C(CF3)=C(CF3)-NsBu)(THF)4, Na2(MeN-CH=CH-NMe)(OEt2)4, Na2(EtN-CH=CH-NEt)(OEt2)4, Na2(nPrN-CH=CH-NnPr)(OEt2)4, Na2(iPrN-CH=CH-NiPr)(OEt2)4, Na2(nBuN-CH=CH-NnBu)(OEt2)4, Na2(tBuN-CH=CH-NtBu)(OEt2)4, Na2(iBuN-CH=CH-NiBu)(OEt2)4, Na2(sBuN-CH=CH-NsBu)(OEt2)4, Na2(nPrN-CH=CH-NiPr)(OEt2)4, Na2(nPrN-CH=CH-NtBu)(OEt2)4, Na2(iPrN-CH=CH-NtBu)(OEt2)4, Na2(MeN-CMe=CH-NMe)(OEt2)4, Na2(EtN-CMe=CH-NEt)(OEt2)4, Na2(nPrN-CMe=CH-NnPr)(OEt2)4, Na2(iPrN-CMe=CH-NiPr)(OEt2)4, Na2(nBuN-CMe=CH-NnBu)(OEt2)4, Na2(tBuN-CMe=CH-NtBu)(OEt2)4, Na2(iBuN-CMe=CH-NiBu)(OEt2)4, Na2(sBuN-CMe=CH-NsBu)(OEt2)4, Na2(iPrN-CMe=CH-NMe)(OEt2)4, Na2(iPrN-CMe=CH-NEt)(OEt2)4, Na2(iPrN-CMe=CH-NtBu)(OEt2)4, Na2(MeN-CMe=CMe-NMe)(OEt2)4, Na2(EtN-CMe=CMe-NEt)(OEt2)4, Na2(nPrN-CMe=CMe-NnPr)(OEt2)4, Na2(iPrN-CMe=CMe-NiPr)(OEt2)4, Na2(nBuN-CMe=CMe-NnBu)(OEt2)4, Na2(tBuN-CMe=CMe-NtBu)(OEt2)4, Na2(iBuN-CMe=CMe-NiBu)(OEt2)4, Na2(sBuN-CMe=CMe-NsBu)(OEt2)4, Na2(MeN-CMe=CMe-NEt)(OEt2)4, Na2(MeN-CMe=CMe-NiPr)(OEt2)4, Na2(EtN-CMe=CMe-NiPr)(OEt2)4, Na2(MeN-C(CF3)=CH-NMe)(OEt2)4, Na2(EtN-C(CF3)=CH-NEt)(OEt2)4, Na2(nPrN-C(CF3)=CH-NnPr)(OEt2)4, Na2(iPrN-C(CF3)=CH-NiPr)(OEt2)4, Na2(nBuN-C(CF3)=CH-NnBu)(OEt2)4, Na2(tBuN-C(CF3)=CH-NtBu)(OEt2)4, Na2(iBuN-C(CF3)=CH-NiBu)(OEt2)4, Na2(sBuN-C(CF3)=CH-NsBu)(OEt2)4, Na2(MeN-C(CF3)=C(CF3)-NMe)(OEt2)4, Na2(EtN-C(CF3)=C(CF3)-NEt)(OEt2)4, Na2(nPrN-C(CF3)=C(CF3)-NnPr)(OEt2)4, Na2(iPrN-C(CF3)=C(CF3)-NiPr)(OEt2)4, Na2(nBuN-C(CF3)=C(CF3)-NnBu)(OEt2)4, Na2(tBuN-C(CF3)=C(CF3)-NtBu)(OEt2)4, Na2(iBuN-C(CF3)=C(CF3)-NiBu)(OEt2)4, Na2(sBuN-C(CF3)=C(CF3)-NsBu)(OEt2)4, Na2(MeN-CH=CH-NMe)(ACN)4, Na2(EtN-CH=CH-NEt)(ACN)4, Na2(nPrN-CH=CH-NnPr)(ACN)4, Na2(iPrN-CH=CH-NiPr)(ACN)4, Na2(nBuN-CH=CH-NnBu)(ACN)4, Na2(tBuN-CH=CH-NtBu)(ACN)4, Na2(iBuN-CH=CH-NiBu)(ACN)4, Na2(sBuN-CH=CH-NsBu)(ACN)4, Na2(nPrN-CH=CH-NiPr)(ACN)4, Na2(nPrN-CH=CH-NtBu)(ACN)4, Na2(iPrN-CH=CH-NtBu)(ACN)4, Na2(MeN-CMe=CH-NMe)(ACN)4, Na2(EtN-CMe=CH-NEt)(ACN)4, Na2(nPrN-CMe=CH-NnPr)(ACN)4, Na2(iPrN-CMe=CH-NiPr)(ACN)4, Na2(nBuN-CMe=CH-NnBu)(ACN)4, Na2(tBuN-CMe=CH-NtBu)(ACN)4, Na2(iBuN-CMe=CH-NiBu)(ACN)4, Na2(sBuN-CMe=CH-NsBu)(ACN)4, Na2(iPrN-CMe=CH-NMe)(ACN)4, Na2(iPrN-CMe=CH-NEt)(ACN)4, Na2(iPrN-CMe=CH-NtBu)(ACN)4, Na2(MeN-CMe=CMe-NMe)(ACN)4, Na2(EtN-CMe=CMe-NEt)(ACN)4, Na2(nPrN-CMe=CMe-NnPr)(ACN)4, Na2(iPrN-CMe=CMe-NiPr)(ACN)4, Na2(nBuN-CMe=CMe-NnBu)(ACN)4, Na2(tBuN-CMe=CMe-NtBu)(ACN)4, Na2(iBuN-CMe=CMe-NiBu)(ACN)4, Na2(sBuN-CMe=CMe-NsBu)(ACN)4, Na2(MeN-CMe=CMe-NEt)(ACN)4, Na2(MeN-CMe=CMe-NiPr)(ACN)4, Na2(EtN-CMe=CMe-NiPr)(ACN)4, Na2(MeN-C(CF3)=CH-NMe)(ACN)4, Na2(EtN-C(CF3)=CH-NEt)(ACN)4, Na2(nPrN-C(CF3)=CH-NnPr)(ACN)4, Na2(iPrN-C(CF3)=CH-NiPr)(ACN)4, Na2(nBuN-C(CF3)=CH-NnBu)(ACN)4, Na2(tBuN-C(CF3)=CH-NtBu)(ACN)4, Na2(iBuN-C(CF3)=CH-NiBu)(ACN)4, Na2(sBuN-C(CF3)=CH-NsBu)(ACN)4, Na2(MeN-C(CF3)=C(CF3)-NMe)(ACN)4, Na2(EtN-C(CF3)=C(CF3)-NEt)(ACN)4, Na2(nPrN-C(CF3)=C(CF3)-NnPr)(ACN)4, Na2(iPrN-C(CF3)=C(CF3)-NiPr)(ACN)4, Na2(nBuN-C(CF3)=C(CF3)-NnBu)(ACN)4, Na2(tBuN-C(CF3)=C(CF3)-NtBu)(ACN)4, Na2(iBuN-C(CF3)=C(CF3)-NiBu)(ACN)4, 및 Na2(sBuN-C(CF3)=C(CF3)-NsBu)(ACN)4. 전술한 바와 같이, 화학식 A의 DAD 리간드는 디음이온성일 것으로 예상된다. X-선 형광 분광학 및/또는 X-선 결정 구조 결정 및/또는 자기 모멘트 측정이 이들 산화 상태를 확인하기 위해 사용될 수 있다.Formula (A) an exemplary sodium-containing compounds include the following compounds but are not limited to: Na 2 (MeN-CH = CH-NMe) (THF) 4, Na 2 (EtN-CH = CH-NEt) (THF ) 4, Na 2 (nPrN- CH = CH-NnPr) (THF) 4, Na 2 (iPrN-CH = CH-NiPr) (THF) 4, Na 2 (nBuN-CH = CH-NnBu) (THF) 4 , Na 2 (tBuN-CH = CH-NtBu) (THF) 4, Na 2 (iBuN-CH = CH-NiBu) (THF) 4, Na 2 (sBuN-CH = CH-NsBu) (THF) 4, Na 2 (nPrN-CH = CH- NiPr) (THF) 4, Na 2 (nPrN-CH = CH-NtBu) (THF) 4, Na 2 (iPrN-CH = CH-NtBu) (THF) 4, Na 2 ( MeN-CMe = CH-NMe) (THF) 4, Na 2 (EtN-CMe = CH-NEt) (THF) 4, Na 2 (nPrN-CMe = CH-NnPr) (THF) 4, Na 2 (iPrN- CMe = CH-NiPr) (THF ) 4, Na 2 (nBuN-CMe = CH-NnBu) (THF) 4, Na 2 (tBuN-CMe = CH-NtBu) (THF) 4, Na 2 (iBuN-CMe = CH-NiBu) (THF) 4 , Na 2 (sBuN-CMe = CH-NsBu) (THF) 4, Na 2 (iPrN-CMe = CH-NMe) (THF) 4, Na 2 (iPrN-CMe = CH- NEt) (THF) 4, Na 2 (iPrN-CMe = CH-NtBu) (THF) 4, Na 2 (MeN-CMe = CMe-NMe) (THF) 4, Na 2 (EtN-CMe = CMe-NEt) (THF) 4, Na 2 ( nPrN-CMe = CMe-NnPr) (THF) 4, Na 2 (iPrN-CMe = CMe-NiPr) (THF) 4, Na 2 (nBuN-CMe = CMe-NnBu) (THF ) 4, Na 2 (tBuN- CMe = C Me-NtBu) (THF) 4 , Na 2 (iBuN-CMe = CMe-NiBu) (THF) 4, Na 2 (sBuN-CMe = CMe-NsBu) (THF) 4, Na 2 (MeN-CMe = CMe- NEt) (THF) 4, Na 2 (MeN-CMe = CMe-NiPr) (THF) 4, Na 2 (EtN-CMe = CMe-NiPr) (THF) 4, Na 2 (MeN-C (CF 3) = CH-NMe) (THF) 4 , Na 2 (EtN-C (CF 3) = CH-NEt) (THF) 4, Na 2 (nPrN-C (CF 3) = CH-NnPr) (THF) 4, Na 2 (iPrN-C (CF 3 ) = CH-NiPr) (THF) 4, Na 2 (nBuN-C (CF 3) = CH-NnBu) (THF) 4, Na 2 (tBuN-C (CF 3) = CH-NtBu) (THF) 4 , Na 2 (iBuN-C (CF 3) = CH-NiBu) (THF) 4, Na 2 (sBuN-C (CF 3) = CH-NsBu) (THF) 4, Na 2 (MeN-C (CF 3 ) = C (CF 3) -NMe) (THF) 4, Na 2 (EtN-C (CF 3) = C (CF 3) -NEt) (THF) 4, Na 2 ( nPrN-C (CF 3) = C (CF 3) -NnPr) (THF) 4, Na 2 (iPrN-C (CF 3) = C (CF 3) -NiPr) (THF) 4, Na 2 (nBuN- C (CF 3) = C ( CF 3) -NnBu) (THF) 4, Na 2 (tBuN-C (CF 3) = C (CF 3) -NtBu) (THF) 4, Na 2 (iBuN-C ( CF 3) = C (CF 3 ) -NiBu) (THF) 4, Na 2 (sBuN-C (CF 3) = C (CF 3) -NsBu) (THF) 4, Na 2 (MeN-CH = CH- NMe) (OEt 2) 4, Na 2 (EtN-CH = CH-NEt) (OEt 2) 4, Na 2 (nPrN-CH = CH-NnPr) (OEt 2) 4, Na 2 (iPrN-CH = CH -NiPr) (OEt 2) 4, Na 2 (nBuN-CH = CH-NnBu) (OEt 2) 4 , Na 2 (tBuN-CH = CH-NtBu) (OEt 2) 4, Na 2 (iBuN-CH = CH-NiBu) (OEt 2) 4, Na 2 (sBuN-CH = CH-NsBu) (OEt 2) 4, Na 2 (nPrN-CH = CH-NiPr) (OEt 2) 4, Na 2 (nPrN-CH = CH-NtBu) (OEt 2) 4, Na 2 (iPrN-CH = CH-NtBu) (OEt 2 ) 4 , Na 2 (MeN-CMe = CH-NMe) (OEt 2 ) 4 , Na 2 (EtN-CMe = CH-NEt) (OEt 2 ) 4 , Na 2 (nPrN- 2 ) 4 , Na 2 (iPrN-CMe = CH-NiPr) (OEt 2 ) 4 , Na 2 (nBuN-CMe = CH-NnBu) (OEt 2 ) 4 , Na 2 (tBuN- OEt 2) 4, Na 2 ( iBuN-CMe = CH-NiBu) (OEt 2) 4, Na 2 (sBuN-CMe = CH-NsBu) (OEt 2) 4, Na 2 (iPrN-CMe = CH-NMe) (OEt 2) 4, Na 2 (iPrN-CMe = CH-NEt) (OEt 2) 4, Na 2 (iPrN-CMe = CH-NtBu) (OEt 2) 4, Na 2 (MeN-CMe = CMe-NMe ) (OEt 2) 4, Na 2 (EtN-CMe = CMe-NEt) (OEt 2) 4, Na 2 (nPrN-CMe = CMe-NnPr) (OEt 2) 4, Na 2 (iPrN-CMe = CMe- NiPr) (OEt 2) 4, Na 2 (nBuN-CMe = CMe-NnBu) (OEt 2) 4, Na 2 (tBuN-CMe = CMe-NtBu) (OEt 2) 4, Na 2 (iBuN-CMe = CMe -NiBu) (OEt 2) 4, Na 2 (sBuN-CMe = CMe-NsBu) (OEt 2) 4, Na 2 (MeN-CMe = CMe-NEt) (OEt 2) 4, Na 2 (MeN-CMe = CMe-NiPr) (OEt 2) 4, Na 2 (EtN-CMe = CMe-NiPr) (OEt 2) 4 , Na 2 (MeN-C ( CF 3) = CH-NMe) (OEt 2) 4, Na 2 (EtN-C (CF 3) = CH-NEt) (OEt 2) 4, Na 2 (nPrN-C ( CF 3) = CH-NnPr) (OEt 2) 4, Na 2 (iPrN-C (CF 3) = CH-NiPr) (OEt 2) 4, Na 2 (nBuN-C (CF 3) = CH-NnBu) (OEt 2) 4, Na 2 (tBuN-C (CF 3) = CH-NtBu) (OEt 2) 4, Na 2 (iBuN-C (CF 3) = CH-NiBu) (OEt 2) 4, Na 2 (sBuN-C (CF 3) = CH-NsBu) (OEt 2) 4, Na 2 (MeN-C (CF 3) = C (CF 3) -NMe) (OEt 2) 4, Na 2 (EtN-C (CF 3) = C (CF 3) -NEt) (OEt 2) 4, Na 2 (nPrN-C (CF 3) = C (CF 3) -NnPr) (OEt 2) 4, Na 2 (iPrN-C (CF 3) = C (CF 3) -NiPr) (OEt 2) 4, Na 2 (nBuN-C (CF 3) = C (CF 3) -NnBu) (OEt 2) 4, Na 2 (tBuN-C (CF 3) = C (CF 3) -NtBu) (OEt 2) 4, Na 2 (iBuN-C (CF 3) = C (CF 3) -NiBu) (OEt 2) 4, Na 2 (sBuN-C (CF 3) = C (CF 3) -NsBu) (OEt 2) 4, Na 2 (MeN-CH = CH-NMe) (ACN) 4, Na 2 (EtN-CH = CH-NEt) (ACN) 4 , Na 2 (nPrN-CH = CH-NnPr) (ACN) 4, Na 2 (iPrN-CH = CH-NiPr) (ACN) 4, Na 2 (nBuN-CH = CH-NnBu) (ACN) 4, Na 2 (tBuN-CH = CH- NtBu) (ACN) 4, Na 2 (iBuN-CH = CH-NiBu) (ACN) 4, Na 2 (sBuN-CH = CH-NsBu) (ACN) 4, Na 2 ( nPrN-CH = CH-NiPr) (ACN) 4, Na 2 (nPrN-CH = CH-N tBu) (ACN) 4, Na 2 (iPrN-CH = CH-NtBu) (ACN) 4, Na 2 (MeN-CMe = CH-NMe) (ACN) 4, Na 2 (EtN-CMe = CH-NEt) (ACN) 4, Na 2 ( nPrN-CMe = CH-NnPr) (ACN) 4, Na 2 (iPrN-CMe = CH-NiPr) (ACN) 4, Na 2 (nBuN-CMe = CH-NnBu) (ACN ) 4, Na 2 (tBuN- CMe = CH-NtBu) (ACN) 4, Na 2 (iBuN-CMe = CH-NiBu) (ACN) 4, Na 2 (sBuN-CMe = CH-NsBu) (ACN) 4 , Na 2 (iPrN-CMe = CH-NMe) (ACN) 4, Na 2 (iPrN-CMe = CH-NEt) (ACN) 4, Na 2 (iPrN-CMe = CH-NtBu) (ACN) 4, Na 2 (MeN-CMe = CMe- NMe) (ACN) 4, Na 2 (EtN-CMe = CMe-NEt) (ACN) 4, Na 2 (nPrN-CMe = CMe-NnPr) (ACN) 4, Na 2 ( iPrN-CMe = CMe-NiPr) (ACN) 4, Na 2 (nBuN-CMe = CMe-NnBu) (ACN) 4, Na 2 (tBuN-CMe = CMe-NtBu) (ACN) 4, Na 2 (iBuN- CMe = CMe-NiBu) (ACN ) 4, Na 2 (sBuN-CMe = CMe-NsBu) (ACN) 4, Na 2 (MeN-CMe = CMe-NEt) (ACN) 4, Na 2 (MeN-CMe = CMe-NiPr) (ACN) 4 , Na 2 (EtN-CMe = CMe-NiPr) (ACN) 4, Na 2 (MeN-C (CF 3) = CH-NMe) (ACN) 4, Na 2 (EtN- C (CF 3) = CH- NEt) (ACN) 4, Na 2 (nPrN-C (CF 3) = CH-NnPr) (ACN) 4, Na 2 (iPrN-C (CF 3) = CH-NiPr) (ACN) 4, Na 2 ( nBuN-C (CF 3) = CH-NnBu) (ACN) 4, Na 2 (tBuN-C (CF 3) = CH-NtBu) (ACN) 4, Na 2 (i BuN-C (CF 3) = CH-NiBu) (ACN) 4, Na 2 (sBuN-C (CF 3) = CH-NsBu) (ACN) 4, Na 2 (MeN-C (CF 3) = C ( CF 3) -NMe) (ACN) 4, Na 2 (EtN-C (CF 3) = C (CF 3) -NEt) (ACN) 4, Na 2 (nPrN-C (CF 3) = C (CF 3 ) -NnPr) (ACN) 4, Na 2 (iPrN-C (CF 3) = C (CF 3) -NiPr) (ACN) 4, Na 2 (nBuN-C (CF 3) = C (CF 3) - NnBu) (ACN) 4, Na 2 (tBuN-C (CF 3) = C (CF 3) -NtBu) (ACN) 4, Na 2 (iBuN-C (CF 3) = C (CF 3) -NiBu) (ACN) 4, and Na 2 (sBuN-C (CF 3) = C (CF 3) -NsBu) (ACN) 4. As mentioned above, the DAD ligand of formula A is expected to be dianionic. X-ray fluorescence spectroscopy and / or X-ray crystal structure determination and / or magnetic moment measurements can be used to confirm these oxidation states.

화학식 (A)의 예시적인 칼륨-함유 화합물은 다음 화합물을 비제한적으로 포함한다:Exemplary potassium-containing compounds of formula (A) include, but are not limited to, the following compounds:

K2(MeN-CH=CH-NMe)(THF)4, K2(EtN-CH=CH-NEt)(THF)4, K2(nPrN-CH=CH-NnPr)(THF)4, K2(iPrN-CH=CH-NiPr)(THF)4, K2(nBuN-CH=CH-NnBu)(THF)4, K2(tBuN-CH=CH-NtBu)(THF)4, K2(iBuN-CH=CH-NiBu)(THF)4, K2(sBuN-CH=CH-NsBu)(THF)4, K2(nPrN-CH=CH-NiPr)(THF)4, K2(nPrN-CH=CH-NtBu)(THF)4, K2(iPrN-CH=CH-NtBu)(THF)4, K2(MeN-CMe=CH-NMe)(THF)4, K2(EtN-CMe=CH-NEt)(THF)4, K2(nPrN-CMe=CH-NnPr)(THF)4, K2(iPrN-CMe=CH-NiPr)(THF)4, K2(nBuN-CMe=CH-NnBu)(THF)4, K2(tBuN-CMe=CH-NtBu)(THF)4, K2(iBuN-CMe=CH-NiBu)(THF)4, K2(sBuN-CMe=CH-NsBu)(THF)4, K2(iPrN-CMe=CH-NMe)(THF)4, K2(iPrN-CMe=CH-NEt)(THF)4, K2(iPrN-CMe=CH-NtBu)(THF)4, K2(MeN-CMe=CMe-NMe)(THF)4, K2(EtN-CMe=CMe-NEt)(THF)4, K2(nPrN-CMe=CMe-NnPr)(THF)4, K2(iPrN-CMe=CMe-NiPr)(THF)4, K2(nBuN-CMe=CMe-NnBu)(THF)4, K2(tBuN-CMe=CMe-NtBu)(THF)4, K2(iBuN-CMe=CMe-NiBu)(THF)4, K2(sBuN-CMe=CMe-NsBu)(THF)4, K2(MeN-CMe=CMe-NEt)(THF)4, K2(MeN-CMe=CMe-NiPr)(THF)4, K2(EtN-CMe=CMe-NiPr)(THF)4, K2(MeN-C(CF3)=CH-NMe)(THF)4, K2(EtN-C(CF3)=CH-NEt)(THF)4, K2(nPrN-C(CF3)=CH-NnPr)(THF)4, K2(iPrN-C(CF3)=CH-NiPr)(THF)4, K2(nBuN-C(CF3)=CH-NnBu)(THF)4, K2(tBuN-C(CF3)=CH-NtBu)(THF)4, K2(iBuN-C(CF3)=CH-NiBu)(THF)4, K2(sBuN-C(CF3)=CH-NsBu)(THF)4, K2(MeN-C(CF3)=C(CF3)-NMe)(THF)4, K2(EtN-C(CF3)=C(CF3)-NEt)(THF)4, K2(nPrN-C(CF3)=C(CF3)-NnPr)(THF)4, K2(iPrN-C(CF3)=C(CF3)-NiPr)(THF)4, K2(nBuN-C(CF3)=C(CF3)-NnBu)(THF)4, K2(tBuN-C(CF3)=C(CF3)-NtBu)(THF)4, K2(iBuN-C(CF3)=C(CF3)-NiBu)(THF)4, K2(sBuN-C(CF3)=C(CF3)-NsBu)(THF)4, K2(MeN-CH=CH-NMe)(OEt2)4, K2(EtN-CH=CH-NEt)(OEt2)4, K2(nPrN-CH=CH-NnPr)(OEt2)4, K2(iPrN-CH=CH-NiPr)(OEt2)4, K2(nBuN-CH=CH-NnBu)(OEt2)4, K2(tBuN-CH=CH-NtBu)(OEt2)4, K2(iBuN-CH=CH-NiBu)(OEt2)4, K2(sBuN-CH=CH-NsBu)(OEt2)4, K2(nPrN-CH=CH-NiPr)(OEt2)4, K2(nPrN-CH=CH-NtBu)(OEt2)4, K2(iPrN-CH=CH-NtBu)(OEt2)4, K2(MeN-CMe=CH-NMe)(OEt2)4, K2(EtN-CMe=CH-NEt)(OEt2)4, K2(nPrN-CMe=CH-NnPr)(OEt2)4, K2(iPrN-CMe=CH-NiPr)(OEt2)4, K2(nBuN-CMe=CH-NnBu)(OEt2)4, K2(tBuN-CMe=CH-NtBu)(OEt2)4, K2(iBuN-CMe=CH-NiBu)(OEt2)4, K2(sBuN-CMe=CH-NsBu)(OEt2)4, K2(iPrN-CMe=CH-NMe)(OEt2)4, K2(iPrN-CMe=CH-NEt)(OEt2)4, K2(iPrN-CMe=CH-NtBu)(OEt2)4, K2(MeN-CMe=CMe-NMe)(OEt2)4, K2(EtN-CMe=CMe-NEt)(OEt2)4, K2(nPrN-CMe=CMe-NnPr)(OEt2)4, K2(iPrN-CMe=CMe-NiPr)(OEt2)4, K2(nBuN-CMe=CMe-NnBu)(OEt2)4, K2(tBuN-CMe=CMe-NtBu)(OEt2)4, K2(iBuN-CMe=CMe-NiBu)(OEt2)4, K2(sBuN-CMe=CMe-NsBu)(OEt2)4, K2(MeN-CMe=CMe-NEt)(OEt2)4, K2(MeN-CMe=CMe-NiPr)(OEt2)4, K2(EtN-CMe=CMe-NiPr)(OEt2)4, K2(MeN-C(CF3)=CH-NMe)(OEt2)4, K2(EtN-C(CF3)=CH-NEt)(OEt2)4, K2(nPrN-C(CF3)=CH-NnPr)(OEt2)4, K2(iPrN-C(CF3)=CH-NiPr)(OEt2)4, K2(nBuN-C(CF3)=CH-NnBu)(OEt2)4, K2(tBuN-C(CF3)=CH-NtBu)(OEt2)4, K2(iBuN-C(CF3)=CH-NiBu)(OEt2)4, K2(sBuN-C(CF3)=CH-NsBu)(OEt2)4, K2(MeN-C(CF3)=C(CF3)-NMe)(OEt2)4, K2(EtN-C(CF3)=C(CF3)-NEt)(OEt2)4, K2(nPrN-C(CF3)=C(CF3)-NnPr)(OEt2)4, K2(iPrN-C(CF3)=C(CF3)-NiPr)(OEt2)4, K2(nBuN-C(CF3)=C(CF3)-NnBu)(OEt2)4, K2(tBuN-C(CF3)=C(CF3)-NtBu)(OEt2)4, K2(iBuN-C(CF3)=C(CF3)-NiBu)(OEt2)4, K2(sBuN-C(CF3)=C(CF3)-NsBu)(OEt2)4, K2(MeN-CH=CH-NMe)(ACN)4, K2(EtN-CH=CH-NEt)(ACN)4, K2(nPrN-CH=CH-NnPr)(ACN)4, K2(iPrN-CH=CH-NiPr)(ACN)4, K2(nBuN-CH=CH-NnBu)(ACN)4, K2(tBuN-CH=CH-NtBu)(ACN)4, K2(iBuN-CH=CH-NiBu)(ACN)4, K2(sBuN-CH=CH-NsBu)(ACN)4, K2(nPrN-CH=CH-NiPr)(ACN)4, K2(nPrN-CH=CH-NtBu)(ACN)4, K2(iPrN-CH=CH-NtBu)(ACN)4, K2(MeN-CMe=CH-NMe)(ACN)4, K2(EtN-CMe=CH-NEt)(ACN)4, K2(nPrN-CMe=CH-NnPr)(ACN)4, K2(iPrN-CMe=CH-NiPr)(ACN)4, K2(nBuN-CMe=CH-NnBu)(ACN)4, K2(tBuN-CMe=CH-NtBu)(ACN)4, K2(iBuN-CMe=CH-NiBu)(ACN)4, K2(sBuN-CMe=CH-NsBu)(ACN)4, K2(iPrN-CMe=CH-NMe)(ACN)4, K2(iPrN-CMe=CH-NEt)(ACN)4, K2(iPrN-CMe=CH-NtBu)(ACN)4, K2(MeN-CMe=CMe-NMe)(ACN)4, K2(EtN-CMe=CMe-NEt)(ACN)4, K2(nPrN-CMe=CMe-NnPr)(ACN)4, K2(iPrN-CMe=CMe-NiPr)(ACN)4, K2(nBuN-CMe=CMe-NnBu)(ACN)4, K2(tBuN-CMe=CMe-NtBu)(ACN)4, K2(iBuN-CMe=CMe-NiBu)(ACN)4, K2(sBuN-CMe=CMe-NsBu)(ACN)4, K2(MeN-CMe=CMe-NEt)(ACN)4, K2(MeN-CMe=CMe-NiPr)(ACN)4, K2(EtN-CMe=CMe-NiPr)(ACN)4, K2(MeN-C(CF3)=CH-NMe)(ACN)4, K2(EtN-C(CF3)=CH-NEt)(ACN)4, K2(nPrN-C(CF3)=CH-NnPr)(ACN)4, K2(iPrN-C(CF3)=CH-NiPr)(ACN)4, K2(nBuN-C(CF3)=CH-NnBu)(ACN)4, K2(tBuN-C(CF3)=CH-NtBu)(ACN)4, K2(iBuN-C(CF3)=CH-NiBu)(ACN)4, K2(sBuN-C(CF3)=CH-NsBu)(ACN)4, K2(MeN-C(CF3)=C(CF3)-NMe)(ACN)4, K2(EtN-C(CF3)=C(CF3)-NEt)(ACN)4, K2(nPrN-C(CF3)=C(CF3)-NnPr)(ACN)4, K2(iPrN-C(CF3)=C(CF3)-NiPr)(ACN)4, K2(nBuN-C(CF3)=C(CF3)-NnBu)(ACN)4, K2(tBuN-C(CF3)=C(CF3)-NtBu)(ACN)4, K2(iBuN-C(CF3)=C(CF3)-NiBu)(ACN)4, 및 K2(sBuN-C(CF3)=C(CF3)-NsBu)(ACN)4. 전술한 바와 같이, 화학식 A의 DAD 리간드는 디음이온성일 것으로 예상된다. X-선 형광 분광학 및/또는 X-선 결정 구조 결정 및/또는 자기 모멘트 측정이 이들 산화 상태를 확인하기 위해 사용될 수 있다. K 2 (MeN-CH = CH -NMe) (THF) 4, K 2 (EtN-CH = CH-NEt) (THF) 4, K 2 (nPrN-CH = CH-NnPr) (THF) 4, K 2 (iPrN-CH = CH-NiPr ) (THF) 4, K 2 (nBuN-CH = CH-NnBu) (THF) 4, K 2 (tBuN-CH = CH-NtBu) (THF) 4, K 2 (iBuN -CH = CH-NiBu) (THF ) 4, K 2 (sBuN-CH = CH-NsBu) (THF) 4, K 2 (nPrN-CH = CH-NiPr) (THF) 4, K 2 (nPrN-CH = CH-NtBu) (THF) 4, K 2 (iPrN-CH = CH-NtBu) (THF) 4, K 2 (MeN-CMe = CH-NMe) (THF) 4, K 2 (EtN-CMe = CH -NEt) (THF) 4, K 2 (nPrN-CMe = CH-NnPr) (THF) 4, K 2 (iPrN-CMe = CH-NiPr) (THF) 4, K 2 (nBuN-CMe = CH-NnBu ) (THF) 4, K 2 (tBuN-CMe = CH-NtBu) (THF) 4, K 2 (iBuN-CMe = CH-NiBu) (THF) 4, K 2 (sBuN-CMe = CH-NsBu) ( THF) 4, K 2 (iPrN -CMe = CH-NMe) (THF) 4, K 2 (iPrN-CMe = CH-NEt) (THF) 4, K 2 (iPrN-CMe = CH-NtBu) (THF) 4, K 2 (MeN-CMe = CMe-NMe) (THF) 4, K 2 (EtN-CMe = CMe-NEt) (THF) 4, K 2 (nPrN-CMe = CMe-NnPr) (THF) 4, K 2 (iPrN-CMe = CMe -NiPr) (THF) 4, K 2 (nBuN-CMe = CMe-NnBu) (THF) 4, K 2 (tBuN-CMe = CMe-NtBu) (THF) 4, K 2 (iBuN-CMe = CMe-NiBu ) (THF) 4, K 2 (sBuN-CMe = CMe-NsBu) (THF) 4, K 2 (MeN-CMe = CMe-NEt) (THF) 4, K 2 (MeN -CMe = CMe-NiPr) (THF ) 4, K 2 (EtN- CMe = CMe-NiPr) (THF) 4, K 2 (MeN-C (CF 3) = CH-NMe) (THF) 4, K 2 (EtN-C (CF 3) = CH-NEt) (THF) 4 , K 2 (nPrN-C (CF 3) = CH-NnPr) (THF) 4, K 2 (iPrN-C (CF 3) = CH-NiPr) (THF) 4, K 2 (nBuN-C (CF 3 ) = CH-NnBu) (THF) 4, K 2 (tBuN-C (CF 3) = CH-NtBu) (THF) 4, K 2 (iBuN-C (CF 3) = CH-NiBu) (THF) 4 , K 2 (sBuN-C (CF 3) = CH-NsBu) (THF) 4, K 2 (MeN-C (CF 3) = C (CF 3) -NMe) (THF ) 4, K 2 (EtN- C (CF 3) = C (CF 3) -NEt) (THF) 4, K 2 (nPrN-C (CF 3) = C (CF 3) -NnPr) (THF) 4 , K 2 (iPrN-C ( CF 3) = C (CF 3) -NiPr) (THF) 4, K 2 (nBuN-C (CF 3) = C (CF 3) -NnBu) (THF) 4, K 2 (tBuN-C (CF 3 ) = C (CF 3) -NtBu) (THF) 4, K 2 (iBuN-C (CF 3) = C (CF 3) -NiBu) (THF) 4, K 2 ( sBuN-C (CF 3) = C (CF 3) -NsBu) (THF) 4, K 2 (MeN-CH = CH-NMe) (OEt 2) 4, K 2 (EtN-CH = CH-NEt) ( OEt 2) 4, K 2 ( nPrN-CH = CH-NnPr) (OEt 2) 4, K 2 (iPrN-CH = CH-NiPr) (OEt 2) 4, K 2 (nBuN-CH = CH-NnBu) (OEt 2) 4, K 2 (tBuN-CH = CH-NtBu) (OEt 2) 4, K 2 (iBuN-CH = CH-NiBu) (OEt 2) 4, K 2 (sBuN-CH = CH-NsBu ) (OEt 2) 4, K 2 (nPrN-CH = CH-NiPr) (OEt 2) 4, K 2 (nPrN-CH = CH-NtBu) (OEt 2 ) 4, K 2 (iPrN- CH = CH-NtBu) (OEt 2) 4, K 2 (MeN-CMe = CH-NMe) (OEt 2) 4, K 2 (EtN-CMe = CH-NEt) (OEt 2 ) 4 , K 2 (nPrN-CMe = CH-NnPr) (OEt 2 ) 4 , K 2 (iPrN-CMe = CH-NiPr) (OEt 2 ) 4 , K 2 OEt 2) 4, K 2 ( tBuN-CMe = CH-NtBu) (OEt 2) 4, K 2 (iBuN-CMe = CH-NiBu) (OEt 2) 4, K 2 (sBuN-CMe = CH-NsBu) (OEt 2) 4, K 2 (iPrN-CMe = CH-NMe) (OEt 2) 4, K 2 (iPrN-CMe = CH-NEt) (OEt 2) 4, K 2 (iPrN-CMe = CH-NtBu ) (OEt 2) 4, K 2 (MeN-CMe = CMe-NMe) (OEt 2) 4, K 2 (EtN-CMe = CMe-NEt) (OEt 2) 4, K 2 (nPrN-CMe = CMe- NnPr) (OEt 2) 4, K 2 (iPrN-CMe = CMe-NiPr) (OEt 2) 4, K 2 (nBuN-CMe = CMe-NnBu) (OEt 2) 4, K 2 (tBuN-CMe = CMe -NtBu) (OEt 2) 4, K 2 (iBuN-CMe = CMe-NiBu) (OEt 2) 4, K 2 (sBuN-CMe = CMe-NsBu) (OEt 2) 4, K 2 (MeN-CMe = CMe-NEt) (OEt 2) 4, K 2 (MeN-CMe = CMe-NiPr) (OEt 2) 4, K 2 (EtN-CMe = CMe-NiPr) (OEt 2) 4, K 2 (MeN-C (CF 3) = CH-NMe ) (OEt 2) 4, K 2 (EtN-C (CF 3) = CH-NEt) (OEt 2) 4, K 2 (nPrN-C (CF 3) = CH-NnPr ) (OEt 2) 4, K 2 (iPrN-C (CF 3) = CH-NiPr) (OEt 2) 4, K 2 (nBuN-C (CF 3) = CH-NnBu) (OEt 2) 4 , K 2 (tBuN-C ( CF 3) = CH-NtBu) (OEt 2) 4, K 2 (iBuN-C (CF 3) = CH-NiBu) (OEt 2) 4, K 2 (sBuN-C ( CF 3) = CH-NsBu) (OEt 2) 4, K 2 (MeN-C (CF 3) = C (CF 3) -NMe) (OEt 2) 4, K 2 (EtN-C (CF 3) = C (CF 3) -NEt) ( OEt 2) 4, K 2 (nPrN-C (CF 3) = C (CF 3) -NnPr) (OEt 2) 4, K 2 (iPrN-C (CF 3) = C (CF 3) -NiPr) ( OEt 2) 4, K 2 (nBuN-C (CF 3) = C (CF 3) -NnBu) (OEt 2) 4, K 2 (tBuN-C (CF 3) = C (CF 3) -NtBu) ( OEt 2) 4, K 2 (iBuN-C (CF 3) = C (CF 3) -NiBu) (OEt 2) 4, K 2 (sBuN-C (CF 3) = C (CF 3) -NsBu) ( OEt 2) 4, K 2 (MeN-CH = CH-NMe) (ACN) 4, K 2 (EtN-CH = CH-NEt) (ACN) 4, K 2 (nPrN -CH = CH-NnPr) (ACN ) 4, K 2 (iPrN-CH = CH-NiPr) (ACN) 4, K 2 (nBuN-CH = CH-NnBu) (ACN) 4, K 2 (tBuN-CH = CH-NtBu) (ACN) 4, K 2 (iBuN-CH = CH-NiBu) (ACN) 4, K 2 (sBuN-CH = CH-NsBu) (ACN) 4, K 2 (nPrN-CH = CH -NiPr) (ACN) 4, K 2 (nPrN-CH = CH-NtBu) (ACN) 4, K 2 (iPrN-CH = CH-NtBu) (ACN) 4, K 2 (MeN-CMe = CH-NMe ) (ACN) 4, K 2 (EtN-CMe = CH-NEt) (ACN) 4, K 2 (nPrN-CMe = CH-NnPr) (ACN) 4, K 2 (iPrN-CMe = CH-NiPr) ( ACN) 4, K 2 (nBuN -CMe = CH-NnBu) (ACN) 4, K 2 (tBuN-CMe = CH-NtB u) (ACN) 4, K 2 (iBuN-CMe = CH-NiBu) (ACN) 4, K 2 (sBuN-CMe = CH-NsBu) (ACN) 4, K 2 (iPrN-CMe = CH-NMe) (ACN) 4, K 2 ( iPrN-CMe = CH-NEt) (ACN) 4, K 2 (iPrN-CMe = CH-NtBu) (ACN) 4, K 2 (MeN-CMe = CMe-NMe) (ACN ) 4, K 2 (EtN- CMe = CMe-NEt) (ACN) 4, K 2 (nPrN-CMe = CMe-NnPr) (ACN) 4, K 2 (iPrN-CMe = CMe-NiPr) (ACN) 4 , K 2 (nBuN-CMe = CMe-NnBu) (ACN) 4, K 2 (tBuN-CMe = CMe-NtBu) (ACN) 4, K 2 (iBuN-CMe = CMe-NiBu) (ACN) 4, K 2 (sBuN-CMe = CMe- NsBu) (ACN) 4, K 2 (MeN-CMe = CMe-NEt) (ACN) 4, K 2 (MeN-CMe = CMe-NiPr) (ACN) 4, K 2 ( EtN-CMe = CMe-NiPr) (ACN) 4, K 2 (MeN-C (CF 3) = CH-NMe) (ACN) 4, K 2 (EtN-C (CF 3) = CH-NEt) (ACN ) 4, K 2 (nPrN- C (CF 3) = CH-NnPr) (ACN) 4, K 2 (iPrN-C (CF 3) = CH-NiPr) (ACN) 4, K 2 (nBuN-C ( CF 3) = CH-NnBu) (ACN) 4, K 2 (tBuN-C (CF 3) = CH-NtBu) (ACN) 4, K 2 (iBuN-C (CF 3) = CH-NiBu) (ACN ) 4, K 2 (sBuN- C (CF 3) = CH-NsBu) (ACN) 4, K 2 (MeN-C (CF 3) = C (CF 3) -NMe) (ACN) 4, K 2 ( EtN-C (CF 3) = C (CF 3) -NEt) (ACN) 4, K 2 (nPrN-C (CF 3) = C (CF 3) -NnPr) (ACN) 4, K 2 (iPrN- C (CF 3) = C ( CF 3) -NiPr) (ACN) 4, K 2 (nBuN-C (CF 3) = C (CF 3) -NnBu) (ACN) 4, K 2 (tBuN-C (CF 3) = C (CF 3) -NtBu) (ACN) 4, K 2 (iBuN-C (CF 3) = C (CF 3) -NiBu) (ACN) 4, and K 2 (sBuN-C (CF 3) = C (CF 3) -NsBu) (ACN) 4. As mentioned above, the DAD ligand of formula A is expected to be dianionic. X-ray fluorescence spectroscopy and / or X-ray crystal structure determination and / or magnetic moment measurements can be used to confirm these oxidation states.

화학식 (B)의 예시적인 리튬-함유 화합물은 다음 화합물을 비제한적으로 포함한다:Exemplary lithium-containing compounds of formula (B) include, but are not limited to, the following compounds:

Li4(MeN-CH=CH-NMe)2(THF)2, Li4(EtN-CH=CH-NEt)2(THF)2, Li4(nPrN-CH=CH-NnPr)2(THF)2, Li4(iPrN-CH=CH-NiPr)2(THF)2, Li4(nBuN-CH=CH-NnBu)2(THF)2, Li4(tBuN-CH=CH-NtBu)2(THF)2, Li4(iBuN-CH=CH-NiBu)2(THF)2, Li4(sBuN-CH=CH-NsBu)2(THF)2, Li4(nPrN-CH=CH-NiPr)2(THF)2, Li4(nPrN-CH=CH-NtBu)2(THF)2, Li4(iPrN-CH=CH-NtBu)2(THF)2, Li4(MeN-CMe=CH-NMe)2(THF)2, Li4(EtN-CMe=CH-NEt)2(THF)2, Li4(nPrN-CMe=CH-NnPr)2(THF)2, Li4(iPrN-CMe=CH-NiPr)2(THF)2, Li4(nBuN-CMe=CH-NnBu)2(THF)2, Li4(tBuN-CMe=CH-NtBu)2(THF)2, Li4(iBuN-CMe=CH-NiBu)2(THF)2, Li4(sBuN-CMe=CH-NsBu)2(THF)2, Li4(iPrN-CMe=CH-NMe)2(THF)2, Li4(iPrN-CMe=CH-NEt)2(THF)2, Li4(iPrN-CMe=CH-NtBu)2(THF)2, Li4(MeN-CMe=CMe-NMe)2(THF)2, Li4(EtN-CMe=CMe-NEt)2(THF)2, Li4(nPrN-CMe=CMe-NnPr)2(THF)2, Li4(iPrN-CMe=CMe-NiPr)2(THF)2, Li4(nBuN-CMe=CMe-NnBu)2(THF)2, Li4(tBuN-CMe=CMe-NtBu)2(THF)2, Li4(iBuN-CMe=CMe-NiBu)2(THF)2, Li4(sBuN-CMe=CMe-NsBu)2(THF)2, Li4(MeN-CMe=CMe-NEt)2(THF)2, Li4(MeN-CMe=CMe-NiPr)2(THF)2, Li4(EtN-CMe=CMe-NiPr)2(THF)2, Li4(MeN-C(CF3)=CH-NMe)2(THF)2, Li4(EtN-C(CF3)=CH-NEt)2(THF)2, Li4(nPrN-C(CF3)=CH-NnPr)2(THF)2, Li4(iPrN-C(CF3)=CH-NiPr)2(THF)2, Li4(nBuN-C(CF3)=CH-NnBu)2(THF)2, Li4(tBuN-C(CF3)=CH-NtBu)2(THF)2, Li4(iBuN-C(CF3)=CH-NiBu)2(THF)2, Li4(sBuN-C(CF3)=CH-NsBu)2(THF)2, Li4(MeN-C(CF3)=C(CF3)-NMe)2(THF)2, Li4(EtN-C(CF3)=C(CF3)-NEt)2(THF)2, Li4(nPrN-C(CF3)=C(CF3)-NnPr)2(THF)2, Li4(iPrN-C(CF3)=C(CF3)-NiPr)2(THF)2, Li4(nBuN-C(CF3)=C(CF3)-NnBu)2(THF)2, Li4(tBuN-C(CF3)=C(CF3)-NtBu)2(THF)2, Li4(iBuN-C(CF3)=C(CF3)-NiBu)2(THF)2, Li4(sBuN-C(CF3)=C(CF3)-NsBu)2(THF)2, Li4(MeN-CH=CH-NMe)2(OEt2)2, Li4(EtN-CH=CH-NEt)2(OEt2)2, Li4(nPrN-CH=CH-NnPr)2(OEt2)2, Li4(iPrN-CH=CH-NiPr)2(OEt2)2, Li4(nBuN-CH=CH-NnBu)2(OEt2)2, Li4(tBuN-CH=CH-NtBu)2(OEt2)2, Li4(iBuN-CH=CH-NiBu)2(OEt2)2, Li4(sBuN-CH=CH-NsBu)2(OEt2)2, Li4(nPrN-CH=CH-NiPr)2(OEt2)2, Li4(nPrN-CH=CH-NtBu)2(OEt2)2, Li4(iPrN-CH=CH-NtBu)2(OEt2)2, Li4(MeN-CMe=CH-NMe)2(OEt2)2, Li4(EtN-CMe=CH-NEt)2(OEt2)2, Li4(nPrN-CMe=CH-NnPr)2(OEt2)2, Li4(iPrN-CMe=CH-NiPr)2(OEt2)2, Li4(nBuN-CMe=CH-NnBu)2(OEt2)2, Li4(tBuN-CMe=CH-NtBu)2(OEt2)2, Li4(iBuN-CMe=CH-NiBu)2(OEt2)2, Li4(sBuN-CMe=CH-NsBu)2(OEt2)2, Li4(iPrN-CMe=CH-NMe)2(OEt2)2, Li4(iPrN-CMe=CH-NEt)2(OEt2)2, Li4(iPrN-CMe=CH-NtBu)2(OEt2)2, Li4(MeN-CMe=CMe-NMe)2(OEt2)2, Li4(EtN-CMe=CMe-NEt)2(OEt2)2, Li4(nPrN-CMe=CMe-NnPr)2(OEt2)2, Li4(iPrN-CMe=CMe-NiPr)2(OEt2)2, Li4(nBuN-CMe=CMe-NnBu)2(OEt2)2, Li4(tBuN-CMe=CMe-NtBu)2(OEt2)2, Li4(iBuN-CMe=CMe-NiBu)2(OEt2)2, Li4(sBuN-CMe=CMe-NsBu)2(OEt2)2, Li4(MeN-CMe=CMe-NEt)2(OEt2)2, Li4(MeN-CMe=CMe-NiPr)2(OEt2)2, Li4(EtN-CMe=CMe-NiPr)2(OEt2)2, Li4(MeN-C(CF3)=CH-NMe)2(OEt2)2, Li4(EtN-C(CF3)=CH-NEt)2(OEt2)2, Li4(nPrN-C(CF3)=CH-NnPr)2(OEt2)2, Li4(iPrN-C(CF3)=CH-NiPr)2(OEt2)2, Li4(nBuN-C(CF3)=CH-NnBu)2(OEt2)2, Li4(tBuN-C(CF3)=CH-NtBu)2(OEt2)2, Li4(iBuN-C(CF3)=CH-NiBu)2(OEt2)2, Li4(sBuN-C(CF3)=CH-NsBu)2(OEt2)2, Li4(MeN-C(CF3)=C(CF3)-NMe)2(OEt2)2, Li4(EtN-C(CF3)=C(CF3)-NEt)2(OEt2)2, Li4(nPrN-C(CF3)=C(CF3)-NnPr)2(OEt2)2, Li4(iPrN-C(CF3)=C(CF3)-NiPr)2(OEt2)2, Li4(nBuN-C(CF3)=C(CF3)-NnBu)2(OEt2)2, Li4(tBuN-C(CF3)=C(CF3)-NtBu)2(OEt2)2, Li4(iBuN-C(CF3)=C(CF3)-NiBu)2(OEt2)2, Li4(sBuN-C(CF3)=C(CF3)-NsBu)2(OEt2)2, Li4(MeN-CH=CH-NMe)2(ACN)2, Li4(EtN-CH=CH-NEt)2(ACN)2, Li4(nPrN-CH=CH-NnPr)2(ACN)2, Li4(iPrN-CH=CH-NiPr)2(ACN)2, Li4(nBuN-CH=CH-NnBu)2(ACN)2, Li4(tBuN-CH=CH-NtBu)2(ACN)2, Li4(iBuN-CH=CH-NiBu)2(ACN)2, Li4(sBuN-CH=CH-NsBu)2(ACN)2, Li4(nPrN-CH=CH-NiPr)2(ACN)2, Li4(nPrN-CH=CH-NtBu)2(ACN)2, Li4(iPrN-CH=CH-NtBu)2(ACN)2, Li4(MeN-CMe=CH-NMe)2(ACN)2, Li4(EtN-CMe=CH-NEt)2(ACN)2, Li4(nPrN-CMe=CH-NnPr)2(ACN)2, Li4(iPrN-CMe=CH-NiPr)2(ACN)2, Li4(nBuN-CMe=CH-NnBu)2(ACN)2, Li4(tBuN-CMe=CH-NtBu)2(ACN)2, Li4(iBuN-CMe=CH-NiBu)2(ACN)2, Li4(sBuN-CMe=CH-NsBu)2(ACN)2, Li4(iPrN-CMe=CH-NMe)2(ACN)2, Li4(iPrN-CMe=CH-NEt)2(ACN)2, Li4(iPrN-CMe=CH-NtBu)2(ACN)2, Li4(MeN-CMe=CMe-NMe)2(ACN)2, Li4(EtN-CMe=CMe-NEt)2(ACN)2, Li4(nPrN-CMe=CMe-NnPr)2(ACN)2, Li4(iPrN-CMe=CMe-NiPr)2(ACN)2, Li4(nBuN-CMe=CMe-NnBu)2(ACN)2, Li4(tBuN-CMe=CMe-NtBu)2(ACN)2, Li4(iBuN-CMe=CMe-NiBu)2(ACN)2, Li4(sBuN-CMe=CMe-NsBu)2(ACN)2, Li4(MeN-CMe=CMe-NEt)2(ACN)2, Li4(MeN-CMe=CMe-NiPr)2(ACN)2, Li4(EtN-CMe=CMe-NiPr)2(ACN)2, Li4(MeN-C(CF3)=CH-NMe)2(ACN)2, Li4(EtN-C(CF3)=CH-NEt)2(ACN)2, Li4(nPrN-C(CF3)=CH-NnPr)2(ACN)2, Li4(iPrN-C(CF3)=CH-NiPr)2(ACN)2, Li4(nBuN-C(CF3)=CH-NnBu)2(ACN)2, Li4(tBuN-C(CF3)=CH-NtBu)2(ACN)2, Li4(iBuN-C(CF3)=CH-NiBu)2(ACN)2, Li4(sBuN-C(CF3)=CH-NsBu)2(ACN)2, Li4(MeN-C(CF3)=C(CF3)-NMe)2(ACN)2, Li4(EtN-C(CF3)=C(CF3)-NEt)2(ACN)2, Li4(nPrN-C(CF3)=C(CF3)-NnPr)2(ACN)2, Li4(iPrN-C(CF3)=C(CF3)-NiPr)2(ACN)2, Li4(nBuN-C(CF3)=C(CF3)-NnBu)2(ACN)2, Li4(tBuN-C(CF3)=C(CF3)-NtBu)2(ACN)2, Li4(iBuN-C(CF3)=C(CF3)-NiBu)2(ACN)2, 및 Li4(sBuN-C(CF3)=C(CF3)-NsBu)2(ACN)2. 전술한 바와 같이, 화학식 B의 DAD 리간드는 디음이온성일 것으로 예상된다. X-선 형광 분광학 및/또는 X-선 결정 구조 결정 및/또는 자기 모멘트 측정이 이들 산화 상태를 확인하기 위해 사용될 수 있다. Li 4 (MeN-CH = CH -NMe) 2 (THF) 2, Li 4 (EtN-CH = CH-NEt) 2 (THF) 2, Li 4 (nPrN-CH = CH-NnPr) 2 (THF) 2 , Li 4 (iPrN-CH = CH-NiPr) 2 (THF) 2, Li 4 (nBuN-CH = CH-NnBu) 2 (THF) 2, Li 4 (tBuN-CH = CH-NtBu) 2 (THF) 2, Li 4 (iBuN-CH = CH-NiBu) 2 (THF) 2, Li 4 (sBuN-CH = CH-NsBu) 2 (THF) 2, Li 4 (nPrN-CH = CH-NiPr) 2 (THF ) 2, Li 4 (nPrN- CH = CH-NtBu) 2 (THF) 2, Li 4 (iPrN-CH = CH-NtBu) 2 (THF) 2, Li 4 (MeN-CMe = CH-NMe) 2 ( THF) 2, Li 4 (EtN -CMe = CH-NEt) 2 (THF) 2, Li 4 (nPrN-CMe = CH-NnPr) 2 (THF) 2, Li 4 (iPrN-CMe = CH-NiPr) 2 (THF) 2, Li 4 ( nBuN-CMe = CH-NnBu) 2 (THF) 2, Li 4 (tBuN-CMe = CH-NtBu) 2 (THF) 2, Li 4 (iBuN-CMe = CH-NiBu) 2 (THF) 2, Li 4 (sBuN-CMe = CH-NsBu) 2 (THF) 2, Li 4 (iPrN-CMe = CH-NMe) 2 (THF) 2, Li 4 (iPrN-CMe = CH-NEt ) 2 (THF) 2, Li 4 (iPrN-CMe = CH-NtBu) 2 (THF) 2, Li 4 (MeN-CMe = CMe-NMe) 2 (THF) 2, Li 4 (EtN-CMe = CMe- NEt) 2 (THF) 2, Li 4 (nPrN-CMe = CMe-NnPr) 2 (THF) 2, Li 4 (iPrN-CMe = CMe-NiPr) 2 (THF) 2, Li 4 (nBuN-CMe = CMe -NnBu) 2 (THF) 2, Li 4 (tBuN-CMe = CMe-NtBu) 2 (THF) 2, Li 4 (iBuN- CMe = CMe-NiBu) 2 ( THF) 2, Li 4 (sBuN-CMe = CMe-NsBu) 2 (THF) 2, Li 4 (MeN-CMe = CMe-NEt) 2 (THF) 2, Li 4 (MeN -CMe = CMe-NiPr) 2 ( THF) 2, Li 4 (EtN-CMe = CMe-NiPr) 2 (THF) 2, Li 4 (MeN-C (CF 3) = CH-NMe) 2 (THF) 2 , Li 4 (EtN-C ( CF 3) = CH-NEt) 2 (THF) 2, Li 4 (nPrN-C (CF 3) = CH-NnPr) 2 (THF) 2, Li 4 (iPrN-C ( CF 3) = CH-NiPr) 2 (THF) 2, Li 4 (nBuN-C (CF 3) = CH-NnBu) 2 (THF) 2, Li 4 (tBuN-C (CF 3) = CH-NtBu) 2 (THF) 2, Li 4 (iBuN-C (CF 3) = CH-NiBu) 2 (THF) 2, Li 4 (sBuN-C (CF 3) = CH-NsBu) 2 (THF) 2, Li 4 (MeN-C (CF 3) = C (CF 3) -NMe) 2 (THF) 2, Li 4 (EtN-C (CF 3) = C (CF 3) -NEt) 2 (THF) 2, Li 4 (nPrN-C (CF 3) = C (CF 3) -NnPr) 2 (THF) 2, Li 4 (iPrN-C (CF 3) = C (CF 3) -NiPr) 2 (THF) 2, Li 4 (nBuN-C (CF 3) = C (CF 3) -NnBu) 2 (THF) 2, Li 4 (tBuN-C (CF 3) = C (CF 3) -NtBu) 2 (THF) 2, Li 4 (iBuN-C (CF 3) = C (CF 3) -NiBu) 2 (THF) 2, Li 4 (sBuN-C (CF 3) = C (CF 3) -NsBu) 2 (THF) 2, Li 4 (MeN-CH = CH-NMe ) 2 (OEt 2) 2, Li 4 (EtN-CH = CH-NEt) 2 (OEt 2) 2, Li 4 (nPrN-CH = CH-NnPr) 2 (OEt 2) 2 , Li 4 (iPrN-CH = CH-NiPr) 2 (OEt 2) 2, Li 4 (nBuN-CH = CH-NnBu) 2 (OEt 2) 2, Li 4 (tBuN-CH = CH-NtBu) 2 (OEt 2) 2, Li 4 (iBuN-CH = CH -NiBu) 2 (OEt 2) 2 , Li 4 (sBuN-CH = CH-NsBu) 2 (OEt 2) 2, Li 4 (nPrN-CH = CH-NiPr) 2 (OEt 2) 2, Li 4 (nPrN -CH = CH-NtBu) 2 ( OEt 2) 2, Li 4 (iPrN-CH = CH-NtBu) 2 (OEt 2) 2, Li 4 (MeN-CMe = CH-NMe) 2 (OEt 2) 2, Li 4 (EtN-CMe = CH -NEt) 2 (OEt 2) 2, Li 4 (nPrN-CMe = CH-NnPr) 2 (OEt 2) 2, Li 4 (iPrN-CMe = CH-NiPr) 2 (OEt 2) 2, Li 4 (nBuN -CMe = CH-NnBu) 2 (OEt 2) 2, Li 4 (tBuN-CMe = CH-NtBu) 2 (OEt 2) 2, Li 4 (iBuN-CMe = CH-NiBu ) 2 (OEt 2) 2, Li 4 (sBuN-CMe = CH-NsBu) 2 (OEt 2) 2, Li 4 (iPrN-CMe = CH-NMe) 2 (OEt 2) 2, Li 4 (iPrN-CMe = CH-NEt) 2 (OEt 2) 2, Li 4 (iPrN-CMe = CH-NtBu) 2 (OEt 2) 2, Li 4 (MeN-CMe = CMe-NMe) 2 (OEt 2) 2, Li 4 (EtN-CMe = CMe-NEt ) 2 (OEt 2) 2, Li 4 (nPrN-CMe = CMe-NnPr) 2 (OEt 2) 2, Li 4 (iPrN-CMe = CMe-NiPr) 2 (OEt 2) 2, Li 4 (nBuN-CMe = CMe-NnBu) 2 (OEt 2) 2, Li 4 (tBuN-CMe = CMe-NtBu) 2 (OEt 2) 2, Li 4 (iBuN-CMe = CMe-NiBu) 2 (OEt 2) 2, Li 4 (sBuN-CMe = CMe-Ns Bu) 2 (OEt 2) 2 , Li 4 (MeN-CMe = CMe-NEt) 2 (OEt 2) 2, Li 4 (MeN-CMe = CMe-NiPr) 2 (OEt 2) 2, Li 4 (EtN- CMe = CMe-NiPr) 2 ( OEt 2) 2, Li 4 (MeN-C (CF 3) = CH-NMe) 2 (OEt 2) 2, Li 4 (EtN-C (CF 3) = CH-NEt) 2 (OEt 2) 2, Li 4 (nPrN-C (CF 3) = CH-NnPr) 2 (OEt 2) 2, Li 4 (iPrN-C (CF 3) = CH-NiPr) 2 (OEt 2) 2 , Li 4 (nBuN-C ( CF 3) = CH-NnBu) 2 (OEt 2) 2, Li 4 (tBuN-C (CF 3) = CH-NtBu) 2 (OEt 2) 2, Li 4 (iBuN- C (CF 3) = CH- NiBu) 2 (OEt 2) 2, Li 4 (sBuN-C (CF 3) = CH-NsBu) 2 (OEt 2) 2, Li 4 (MeN-C (CF 3) = C (CF 3) -NMe) 2 (OEt 2) 2, Li 4 (EtN-C (CF 3) = C (CF 3) -NEt) 2 (OEt 2) 2, Li 4 (nPrN-C (CF 3 ) = C (CF 3) -NnPr ) 2 (OEt 2) 2, Li 4 (iPrN-C (CF 3) = C (CF 3) -NiPr) 2 (OEt 2) 2, Li 4 (nBuN-C ( CF 3) = C (CF 3 ) -NnBu) 2 (OEt 2) 2, Li 4 (tBuN-C (CF 3) = C (CF 3) -NtBu) 2 (OEt 2) 2, Li 4 (iBuN- C (CF 3) = C ( CF 3) -NiBu) 2 (OEt 2) 2, Li 4 (sBuN-C (CF 3) = C (CF 3) -NsBu) 2 (OEt 2) 2, Li 4 ( MeN-CH = CH-NMe) 2 (ACN) 2, Li 4 (EtN-CH = CH-NEt) 2 (ACN) 2, Li 4 (nPrN-CH = CH-NnPr) 2 (ACN) 2, Li 4 (iPrN-CH = CH-NiP r) 2 (ACN) 2, Li 4 (nBuN-CH = CH-NnBu) 2 (ACN) 2, Li 4 (tBuN-CH = CH-NtBu) 2 (ACN) 2, Li 4 (iBuN-CH = CH -NiBu) 2 (ACN) 2, Li 4 (sBuN-CH = CH-NsBu) 2 (ACN) 2, Li 4 (nPrN-CH = CH-NiPr) 2 (ACN) 2, Li 4 (nPrN-CH = CH-NtBu) 2 (ACN) 2, Li 4 (iPrN-CH = CH-NtBu) 2 (ACN) 2, Li 4 (MeN-CMe = CH-NMe) 2 (ACN) 2, Li 4 (EtN-CMe = CH-NEt) 2 (ACN ) 2, Li 4 (nPrN-CMe = CH-NnPr) 2 (ACN) 2, Li 4 (iPrN-CMe = CH-NiPr) 2 (ACN) 2, Li 4 (nBuN- CMe = CH-NnBu) 2 ( ACN) 2, Li 4 (tBuN-CMe = CH-NtBu) 2 (ACN) 2, Li 4 (iBuN-CMe = CH-NiBu) 2 (ACN) 2, Li 4 (sBuN -CMe = CH-NsBu) 2 ( ACN) 2, Li 4 (iPrN-CMe = CH-NMe) 2 (ACN) 2, Li 4 (iPrN-CMe = CH-NEt) 2 (ACN) 2, Li 4 ( iPrN-CMe = CH-NtBu) 2 (ACN) 2, Li 4 (MeN-CMe = CMe-NMe) 2 (ACN) 2, Li 4 (EtN-CMe = CMe-NEt) 2 (ACN) 2, Li 4 (nPrN-CMe = CMe-NnPr ) 2 (ACN) 2, Li 4 (iPrN-CMe = CMe-NiPr) 2 (ACN) 2, Li 4 (nBuN-CMe = CMe-NnBu) 2 (ACN) 2, Li 4 (tBuN-CMe = CMe- NtBu) 2 (ACN) 2, Li 4 (iBuN-CMe = CMe-NiBu) 2 (ACN) 2, Li 4 (sBuN-CMe = CMe-NsBu) 2 (ACN) 2, Li 4 (MeN-CMe = CMe -NEt) 2 (ACN) 2, Li 4 (MeN-CMe = CMe-NiPr) 2 (ACN) 2, Li 4 (EtN-CMe = CMe-NiPr) 2 (ACN) 2, Li 4 (MeN-C (CF 3) = CH-NMe) 2 (ACN) 2, Li 4 (EtN-C (CF 3) = CH-NEt ) 2 (ACN) 2, Li 4 (nPrN-C (CF 3) = CH-NnPr) 2 (ACN) 2, Li 4 (iPrN-C (CF 3) = CH-NiPr ) 2 (ACN) 2, Li 4 (nBuN-C (CF 3) = CH-NnBu) 2 (ACN) 2, Li 4 (tBuN-C (CF 3) = CH-NtBu) 2 (ACN) 2, Li 4 (iBuN-C (CF 3 ) = CH-NiBu) 2 (ACN) 2, Li 4 (sBuN-C (CF 3) = CH-NsBu) 2 (ACN) 2, Li 4 (MeN-C (CF 3 ) = C (CF 3) -NMe ) 2 (ACN) 2, Li 4 (EtN-C (CF 3) = C (CF 3) -NEt) 2 (ACN) 2, Li 4 (nPrN-C (CF 3 ) = C (CF 3) -NnPr ) 2 (ACN) 2, Li 4 (iPrN-C (CF 3) = C (CF 3) -NiPr) 2 (ACN) 2, Li 4 (nBuN-C (CF 3 ) = C (CF 3) -NnBu ) 2 (ACN) 2, Li 4 (tBuN-C (CF 3) = C (CF 3) -NtBu) 2 (ACN) 2, Li 4 (iBuN-C (CF 3 ) = C (CF 3 ) -NiBu) 2 (ACN) 2 , and Li 4 (sBuN-C (CF 3 ) = C (CF 3 ) -NsBu) 2 (ACN) 2 . As noted above, the DAD ligand of Formula B is expected to be dianionic. X-ray fluorescence spectroscopy and / or X-ray crystal structure determination and / or magnetic moment measurements can be used to confirm these oxidation states.

화학식 (B)의 예시적인 나트륨-함유 화합물은 다음 화합물을 비제한적으로 포함한다:Exemplary sodium-containing compounds of formula (B) include, but are not limited to, the following compounds:

Na4(MeN-CH=CH-NMe)2(THF)2, Na4(EtN-CH=CH-NEt)2(THF)2, Na4(nPrN-CH=CH-NnPr)2(THF)2, Na4(iPrN-CH=CH-NiPr)2(THF)2, Na4(nBuN-CH=CH-NnBu)2(THF)2, Na4(tBuN-CH=CH-NtBu)2(THF)2, Na4(iBuN-CH=CH-NiBu)2(THF)2, Na4(sBuN-CH=CH-NsBu)2(THF)2, Na4(nPrN-CH=CH-NiPr)2(THF)2, Na4(nPrN-CH=CH-NtBu)2(THF)2, Na4(iPrN-CH=CH-NtBu)2(THF)2, Na4(MeN-CMe=CH-NMe)2(THF)2, Na4(EtN-CMe=CH-NEt)2(THF)2, Na4(nPrN-CMe=CH-NnPr)2(THF)2, Na4(iPrN-CMe=CH-NiPr)2(THF)2, Na4(nBuN-CMe=CH-NnBu)2(THF)2, Na4(tBuN-CMe=CH-NtBu)2(THF)2, Na4(iBuN-CMe=CH-NiBu)2(THF)2, Na4(sBuN-CMe=CH-NsBu)2(THF)2, Na4(iPrN-CMe=CH-NMe)2(THF)2, Na4(iPrN-CMe=CH-NEt)2(THF)2, Na4(iPrN-CMe=CH-NtBu)2(THF)2, Na4(MeN-CMe=CMe-NMe)2(THF)2, Na4(EtN-CMe=CMe-NEt)2(THF)2, Na4(nPrN-CMe=CMe-NnPr)2(THF)2, Na4(iPrN-CMe=CMe-NiPr)2(THF)2, Na4(nBuN-CMe=CMe-NnBu)2(THF)2, Na4(tBuN-CMe=CMe-NtBu)2(THF)2, Na4(iBuN-CMe=CMe-NiBu)2(THF)2, Na4(sBuN-CMe=CMe-NsBu)2(THF)2, Na4(MeN-CMe=CMe-NEt)2(THF)2, Na4(MeN-CMe=CMe-NiPr)2(THF)2, Na4(EtN-CMe=CMe-NiPr)2(THF)2, Na4(MeN-C(CF3)=CH-NMe)2(THF)2, Na4(EtN-C(CF3)=CH-NEt)2(THF)2, Na4(nPrN-C(CF3)=CH-NnPr)2(THF)2, Na4(iPrN-C(CF3)=CH-NiPr)2(THF)2, Na4(nBuN-C(CF3)=CH-NnBu)2(THF)2, Na4(tBuN-C(CF3)=CH-NtBu)2(THF)2, Na4(iBuN-C(CF3)=CH-NiBu)2(THF)2, Na4(sBuN-C(CF3)=CH-NsBu)2(THF)2, Na4(MeN-C(CF3)=C(CF3)-NMe)2(THF)2, Na4(EtN-C(CF3)=C(CF3)-NEt)2(THF)2, Na4(nPrN-C(CF3)=C(CF3)-NnPr)2(THF)2, Na4(iPrN-C(CF3)=C(CF3)-NiPr)2(THF)2, Na4(nBuN-C(CF3)=C(CF3)-NnBu)2(THF)2, Na4(tBuN-C(CF3)=C(CF3)-NtBu)2(THF)2, Na4(iBuN-C(CF3)=C(CF3)-NiBu)2(THF)2, Na4(sBuN-C(CF3)=C(CF3)-NsBu)2(THF)2, Na4(MeN-CH=CH-NMe)2(OEt2)2, Na4(EtN-CH=CH-NEt)2(OEt2)2, Na4(nPrN-CH=CH-NnPr)2(OEt2)2, Na4(iPrN-CH=CH-NiPr)2(OEt2)2, Na4(nBuN-CH=CH-NnBu)2(OEt2)2, Na4(tBuN-CH=CH-NtBu)2(OEt2)2, Na4(iBuN-CH=CH-NiBu)2(OEt2)2, Na4(sBuN-CH=CH-NsBu)2(OEt2)2, Na4(nPrN-CH=CH-NiPr)2(OEt2)2, Na4(nPrN-CH=CH-NtBu)2(OEt2)2, Na4(iPrN-CH=CH-NtBu)2(OEt2)2, Na4(MeN-CMe=CH-NMe)2(OEt2)2, Na4(EtN-CMe=CH-NEt)2(OEt2)2, Na4(nPrN-CMe=CH-NnPr)2(OEt2)2, Na4(iPrN-CMe=CH-NiPr)2(OEt2)2, Na4(nBuN-CMe=CH-NnBu)2(OEt2)2, Na4(tBuN-CMe=CH-NtBu)2(OEt2)2, Na4(iBuN-CMe=CH-NiBu)2(OEt2)2, Na4(sBuN-CMe=CH-NsBu)2(OEt2)2, Na4(iPrN-CMe=CH-NMe)2(OEt2)2, Na4(iPrN-CMe=CH-NEt)2(OEt2)2, Na4(iPrN-CMe=CH-NtBu)2(OEt2)2, Na4(MeN-CMe=CMe-NMe)2(OEt2)2, Na4(EtN-CMe=CMe-NEt)2(OEt2)2, Na4(nPrN-CMe=CMe-NnPr)2(OEt2)2, Na4(iPrN-CMe=CMe-NiPr)2(OEt2)2, Na4(nBuN-CMe=CMe-NnBu)2(OEt2)2, Na4(tBuN-CMe=CMe-NtBu)2(OEt2)2, Na4(iBuN-CMe=CMe-NiBu)2(OEt2)2, Na4(sBuN-CMe=CMe-NsBu)2(OEt2)2, Na4(MeN-CMe=CMe-NEt)2(OEt2)2, Na4(MeN-CMe=CMe-NiPr)2(OEt2)2, Na4(EtN-CMe=CMe-NiPr)2(OEt2)2, Na4(MeN-C(CF3)=CH-NMe)2(OEt2)2, Na4(EtN-C(CF3)=CH-NEt)2(OEt2)2, Na4(nPrN-C(CF3)=CH-NnPr)2(OEt2)2, Na4(iPrN-C(CF3)=CH-NiPr)2(OEt2)2, Na4(nBuN-C(CF3)=CH-NnBu)2(OEt2)2, Na4(tBuN-C(CF3)=CH-NtBu)2(OEt2)2, Na4(iBuN-C(CF3)=CH-NiBu)2(OEt2)2, Na4(sBuN-C(CF3)=CH-NsBu)2(OEt2)2, Na4(MeN-C(CF3)=C(CF3)-NMe)2(OEt2)2, Na4(EtN-C(CF3)=C(CF3)-NEt)2(OEt2)2, Na4(nPrN-C(CF3)=C(CF3)-NnPr)2(OEt2)2, Na4(iPrN-C(CF3)=C(CF3)-NiPr)2(OEt2)2, Na4(nBuN-C(CF3)=C(CF3)-NnBu)2(OEt2)2, Na4(tBuN-C(CF3)=C(CF3)-NtBu)2(OEt2)2, Na4(iBuN-C(CF3)=C(CF3)-NiBu)2(OEt2)2, Na4(sBuN-C(CF3)=C(CF3)-NsBu)2(OEt2)2, Na4(MeN-CH=CH-NMe)2(ACN)2, Na4(EtN-CH=CH-NEt)2(ACN)2, Na4(nPrN-CH=CH-NnPr)2(ACN)2, Na4(iPrN-CH=CH-NiPr)2(ACN)2, Na4(nBuN-CH=CH-NnBu)2(ACN)2, Na4(tBuN-CH=CH-NtBu)2(ACN)2, Na4(iBuN-CH=CH-NiBu)2(ACN)2, Na4(sBuN-CH=CH-NsBu)2(ACN)2, Na4(nPrN-CH=CH-NiPr)2(ACN)2, Na4(nPrN-CH=CH-NtBu)2(ACN)2, Na4(iPrN-CH=CH-NtBu)2(ACN)2, Na4(MeN-CMe=CH-NMe)2(ACN)2, Na4(EtN-CMe=CH-NEt)2(ACN)2, Na4(nPrN-CMe=CH-NnPr)2(ACN)2, Na4(iPrN-CMe=CH-NiPr)2(ACN)2, Na4(nBuN-CMe=CH-NnBu)2(ACN)2, Na4(tBuN-CMe=CH-NtBu)2(ACN)2, Na4(iBuN-CMe=CH-NiBu)2(ACN)2, Na4(sBuN-CMe=CH-NsBu)2(ACN)2, Na4(iPrN-CMe=CH-NMe)2(ACN)2, Na4(iPrN-CMe=CH-NEt)2(ACN)2, Na4(iPrN-CMe=CH-NtBu)2(ACN)2, Na4(MeN-CMe=CMe-NMe)2(ACN)2, Na4(EtN-CMe=CMe-NEt)2(ACN)2, Na4(nPrN-CMe=CMe-NnPr)2(ACN)2, Na4(iPrN-CMe=CMe-NiPr)2(ACN)2, Na4(nBuN-CMe=CMe-NnBu)2(ACN)2, Na4(tBuN-CMe=CMe-NtBu)2(ACN)2, Na4(iBuN-CMe=CMe-NiBu)2(ACN)2, Na4(sBuN-CMe=CMe-NsBu)2(ACN)2, Na4(MeN-CMe=CMe-NEt)2(ACN)2, Na4(MeN-CMe=CMe-NiPr)2(ACN)2, Na4(EtN-CMe=CMe-NiPr)2(ACN)2, Na4(MeN-C(CF3)=CH-NMe)2(ACN)2, Na4(EtN-C(CF3)=CH-NEt)2(ACN)2, Na4(nPrN-C(CF3)=CH-NnPr)2(ACN)2, Na4(iPrN-C(CF3)=CH-NiPr)2(ACN)2, Na4(nBuN-C(CF3)=CH-NnBu)2(ACN)2, Na4(tBuN-C(CF3)=CH-NtBu)2(ACN)2, Na4(iBuN-C(CF3)=CH-NiBu)2(ACN)2, Na4(sBuN-C(CF3)=CH-NsBu)2(ACN)2, Na4(MeN-C(CF3)=C(CF3)-NMe)2(ACN)2, Na4(EtN-C(CF3)=C(CF3)-NEt)2(ACN)2, Na4(nPrN-C(CF3)=C(CF3)-NnPr)2(ACN)2, Na4(iPrN-C(CF3)=C(CF3)-NiPr)2(ACN)2, Na4(nBuN-C(CF3)=C(CF3)-NnBu)2(ACN)2, Na4(tBuN-C(CF3)=C(CF3)-NtBu)2(ACN)2, Na4(iBuN-C(CF3)=C(CF3)-NiBu)2(ACN)2, 및 Na4(sBuN-C(CF3)=C(CF3)-NsBu)2(ACN)2. 전술한 바와 같이, 화학식 B의 DAD 리간드는 디음이온성일 것으로 예상된다. X-선 형광 분광학 및/또는 X-선 결정 구조 결정 및/또는 자기 모멘트 측정이 이들 산화 상태를 확인하기 위해 사용될 수 있다. Na 4 (MeN-CH = CH -NMe) 2 (THF) 2, Na 4 (EtN-CH = CH-NEt) 2 (THF) 2, Na 4 (nPrN-CH = CH-NnPr) 2 (THF) 2 , Na 4 (iPrN-CH = CH-NiPr) 2 (THF) 2, Na 4 (nBuN-CH = CH-NnBu) 2 (THF) 2, Na 4 (tBuN-CH = CH-NtBu) 2 (THF) 2, Na 4 (iBuN-CH = CH-NiBu) 2 (THF) 2, Na 4 (sBuN-CH = CH-NsBu) 2 (THF) 2, Na 4 (nPrN-CH = CH-NiPr) 2 (THF ) 2, Na 4 (nPrN- CH = CH-NtBu) 2 (THF) 2, Na 4 (iPrN-CH = CH-NtBu) 2 (THF) 2, Na 4 (MeN-CMe = CH-NMe) 2 ( THF) 2, Na 4 (EtN -CMe = CH-NEt) 2 (THF) 2, Na 4 (nPrN-CMe = CH-NnPr) 2 (THF) 2, Na 4 (iPrN-CMe = CH-NiPr) 2 (THF) 2, Na 4 ( nBuN-CMe = CH-NnBu) 2 (THF) 2, Na 4 (tBuN-CMe = CH-NtBu) 2 (THF) 2, Na 4 (iBuN-CMe = CH-NiBu) 2 (THF) 2, Na 4 (sBuN-CMe = CH-NsBu) 2 (THF) 2, Na 4 (iPrN-CMe = CH-NMe) 2 (THF) 2, Na 4 (iPrN-CMe = CH-NEt ) 2 (THF) 2, Na 4 (iPrN-CMe = CH-NtBu) 2 (THF) 2, Na 4 (MeN-CMe = CMe-NMe) 2 (THF) 2, Na 4 (EtN-CMe = CMe- NEt) 2 (THF) 2, Na 4 (nPrN-CMe = CMe-NnPr) 2 (THF) 2, Na 4 (iPrN-CMe = CMe-NiPr) 2 (THF) 2, Na 4 (nBuN-CMe = CMe -NnBu) 2 (THF) 2, Na 4 (tBuN-CMe = CMe-NtBu) 2 (THF) 2, Na 4 (iBuN- CMe = CMe-NiBu) 2 ( THF) 2, Na 4 (sBuN-CMe = CMe-NsBu) 2 (THF) 2, Na 4 (MeN-CMe = CMe-NEt) 2 (THF) 2, Na 4 (MeN -CMe = CMe-NiPr) 2 ( THF) 2, Na 4 (EtN-CMe = CMe-NiPr) 2 (THF) 2, Na 4 (MeN-C (CF 3) = CH-NMe) 2 (THF) 2 , Na 4 (EtN-C ( CF 3) = CH-NEt) 2 (THF) 2, Na 4 (nPrN-C (CF 3) = CH-NnPr) 2 (THF) 2, Na 4 (iPrN-C ( CF 3) = CH-NiPr) 2 (THF) 2, Na 4 (nBuN-C (CF 3) = CH-NnBu) 2 (THF) 2, Na 4 (tBuN-C (CF 3) = CH-NtBu) 2 (THF) 2, Na 4 (iBuN-C (CF 3) = CH-NiBu) 2 (THF) 2, Na 4 (sBuN-C (CF 3) = CH-NsBu) 2 (THF) 2, Na 4 (MeN-C (CF 3) = C (CF 3) -NMe) 2 (THF) 2, Na 4 (EtN-C (CF 3) = C (CF 3) -NEt) 2 (THF) 2, Na 4 (nPrN-C (CF 3) = C (CF 3) -NnPr) 2 (THF) 2, Na 4 (iPrN-C (CF 3) = C (CF 3) -NiPr) 2 (THF) 2, Na 4 (nBuN-C (CF 3) = C (CF 3) -NnBu) 2 (THF) 2, Na 4 (tBuN-C (CF 3) = C (CF 3) -NtBu) 2 (THF) 2, Na 4 (iBuN-C (CF 3) = C (CF 3) -NiBu) 2 (THF) 2, Na 4 (sBuN-C (CF 3) = C (CF 3) -NsBu) 2 (THF) 2, Na 4 (MeN-CH = CH-NMe ) 2 (OEt 2) 2, Na 4 (EtN-CH = CH-NEt) 2 (OEt 2) 2, Na 4 (nPrN-CH = CH-NnPr) 2 (OEt 2) 2 , Na 4 (iPrN-CH = CH-NiPr) 2 (OEt 2) 2, Na 4 (nBuN-CH = CH-NnBu) 2 (OEt 2) 2, Na 4 (tBuN-CH = CH-NtBu) 2 (OEt 2) 2, Na 4 (iBuN-CH = CH -NiBu) 2 (OEt 2) 2 , Na 4 (sBuN-CH = CH-NsBu) 2 (OEt 2) 2, Na 4 (nPrN-CH = CH-NiPr) 2 (OEt 2) 2, Na 4 (nPrN -CH = CH-NtBu) 2 ( OEt 2) 2, Na 4 (iPrN-CH = CH-NtBu) 2 (OEt 2) 2, Na 4 (MeN-CMe = CH-NMe) 2 (OEt 2) 2, Na 4 (EtN-CMe = CH -NEt) 2 (OEt 2) 2, Na 4 (nPrN-CMe = CH-NnPr) 2 (OEt 2) 2, Na 4 (iPrN-CMe = CH-NiPr) 2 (OEt 2) 2, Na 4 (nBuN -CMe = CH-NnBu) 2 (OEt 2) 2, Na 4 (tBuN-CMe = CH-NtBu) 2 (OEt 2) 2, Na 4 (iBuN-CMe = CH-NiBu ) 2 (OEt 2) 2, Na 4 (sBuN-CMe = CH-NsBu) 2 (OEt 2) 2, Na 4 (iPrN-CMe = CH-NMe) 2 (OEt 2) 2, Na 4 (iPrN-CMe = CH-NEt) 2 (OEt 2) 2, Na 4 (iPrN-CMe = CH-NtBu) 2 (OEt 2) 2, Na 4 (MeN-CMe = CMe-NMe) 2 (OEt 2) 2, Na 4 (EtN-CMe = CMe-NEt ) 2 (OEt 2) 2, Na 4 (nPrN-CMe = CMe-NnPr) 2 (OEt 2) 2, Na 4 (iPrN-CMe = CMe-NiPr) 2 (OEt 2) 2, Na 4 (nBuN-CMe = CMe-NnBu) 2 (OEt 2) 2, Na 4 (tBuN-CMe = CMe-NtBu) 2 (OEt 2) 2, Na 4 (iBuN-CMe = CMe-NiBu) 2 (OEt 2) 2, Na 4 (sBuN-CMe = CMe-Ns Bu) 2 (OEt 2) 2 , Na 4 (MeN-CMe = CMe-NEt) 2 (OEt 2) 2, Na 4 (MeN-CMe = CMe-NiPr) 2 (OEt 2) 2, Na 4 (EtN- CMe = CMe-NiPr) 2 ( OEt 2) 2, Na 4 (MeN-C (CF 3) = CH-NMe) 2 (OEt 2) 2, Na 4 (EtN-C (CF 3) = CH-NEt) 2 (OEt 2) 2, Na 4 (nPrN-C (CF 3) = CH-NnPr) 2 (OEt 2) 2, Na 4 (iPrN-C (CF 3) = CH-NiPr) 2 (OEt 2) 2 , Na 4 (nBuN-C ( CF 3) = CH-NnBu) 2 (OEt 2) 2, Na 4 (tBuN-C (CF 3) = CH-NtBu) 2 (OEt 2) 2, Na 4 (iBuN- C (CF 3) = CH- NiBu) 2 (OEt 2) 2, Na 4 (sBuN-C (CF 3) = CH-NsBu) 2 (OEt 2) 2, Na 4 (MeN-C (CF 3) = C (CF 3) -NMe) 2 (OEt 2) 2, Na 4 (EtN-C (CF 3) = C (CF 3) -NEt) 2 (OEt 2) 2, Na 4 (nPrN-C (CF 3 ) = C (CF 3) -NnPr ) 2 (OEt 2) 2, Na 4 (iPrN-C (CF 3) = C (CF 3) -NiPr) 2 (OEt 2) 2, Na 4 (nBuN-C ( CF 3) = C (CF 3 ) -NnBu) 2 (OEt 2) 2, Na 4 (tBuN-C (CF 3) = C (CF 3) -NtBu) 2 (OEt 2) 2, Na 4 (iBuN- C (CF 3) = C ( CF 3) -NiBu) 2 (OEt 2) 2, Na 4 (sBuN-C (CF 3) = C (CF 3) -NsBu) 2 (OEt 2) 2, Na 4 ( MeN-CH = CH-NMe) 2 (ACN) 2, Na 4 (EtN-CH = CH-NEt) 2 (ACN) 2, Na 4 (nPrN-CH = CH-NnPr) 2 (ACN) 2, Na 4 (iPrN-CH = CH-NiP r) 2 (ACN) 2, Na 4 (nBuN-CH = CH-NnBu) 2 (ACN) 2, Na 4 (tBuN-CH = CH-NtBu) 2 (ACN) 2, Na 4 (iBuN-CH = CH -NiBu) 2 (ACN) 2, Na 4 (sBuN-CH = CH-NsBu) 2 (ACN) 2, Na 4 (nPrN-CH = CH-NiPr) 2 (ACN) 2, Na 4 (nPrN-CH = CH-NtBu) 2 (ACN) 2, Na 4 (iPrN-CH = CH-NtBu) 2 (ACN) 2, Na 4 (MeN-CMe = CH-NMe) 2 (ACN) 2, Na 4 (EtN-CMe = CH-NEt) 2 (ACN ) 2, Na 4 (nPrN-CMe = CH-NnPr) 2 (ACN) 2, Na 4 (iPrN-CMe = CH-NiPr) 2 (ACN) 2, Na 4 (nBuN- CMe = CH-NnBu) 2 ( ACN) 2, Na 4 (tBuN-CMe = CH-NtBu) 2 (ACN) 2, Na 4 (iBuN-CMe = CH-NiBu) 2 (ACN) 2, Na 4 (sBuN -CMe = CH-NsBu) 2 ( ACN) 2, Na 4 (iPrN-CMe = CH-NMe) 2 (ACN) 2, Na 4 (iPrN-CMe = CH-NEt) 2 (ACN) 2, Na 4 ( iPrN-CMe = CH-NtBu) 2 (ACN) 2, Na 4 (MeN-CMe = CMe-NMe) 2 (ACN) 2, Na 4 (EtN-CMe = CMe-NEt) 2 (ACN) 2, Na 4 (nPrN-CMe = CMe-NnPr ) 2 (ACN) 2, Na 4 (iPrN-CMe = CMe-NiPr) 2 (ACN) 2, Na 4 (nBuN-CMe = CMe-NnBu) 2 (ACN) 2, Na 4 (tBuN-CMe = CMe- NtBu) 2 (ACN) 2, Na 4 (iBuN-CMe = CMe-NiBu) 2 (ACN) 2, Na 4 (sBuN-CMe = CMe-NsBu) 2 (ACN) 2, Na 4 (MeN-CMe = CMe-NEt) 2 (ACN) 2 , Na 4 (MeN-CMe = CMe-NiPr) 2 (ACN) 2, Na 4 (EtN-CMe = CMe-NiPr) 2 (ACN) 2, Na 4 (MeN-C (CF 3) = CH-NMe) 2 (ACN) 2, Na 4 (EtN-C (CF 3) = CH-NEt ) 2 (ACN) 2, Na 4 (nPrN-C (CF 3) = CH-NnPr) 2 (ACN) 2, Na 4 (iPrN-C (CF 3) = CH-NiPr ) 2 (ACN) 2, Na 4 (nBuN-C (CF 3) = CH-NnBu) 2 (ACN) 2, Na 4 (tBuN-C (CF 3) = CH-NtBu) 2 (ACN) 2, Na 4 (iBuN-C (CF 3 ) = CH-NiBu) 2 (ACN) 2, Na 4 (sBuN-C (CF 3) = CH-NsBu) 2 (ACN) 2, Na 4 (MeN-C (CF 3 ) = C (CF 3) -NMe ) 2 (ACN) 2, Na 4 (EtN-C (CF 3) = C (CF 3) -NEt) 2 (ACN) 2, Na 4 (nPrN-C (CF 3 ) = C (CF 3) -NnPr ) 2 (ACN) 2, Na 4 (iPrN-C (CF 3) = C (CF 3) -NiPr) 2 (ACN) 2, Na 4 (nBuN-C (CF 3 ) = C (CF 3) -NnBu ) 2 (ACN) 2, Na 4 (tBuN-C (CF 3) = C (CF 3) -NtBu) 2 (ACN) 2, Na 4 (iBuN-C (CF 3 ) = C (CF 3 ) -NiBu) 2 (ACN) 2 , and Na 4 (sBuN-C (CF 3 ) = C (CF 3 ) -NsBu) 2 (ACN) 2 . As noted above, the DAD ligand of Formula B is expected to be dianionic. X-ray fluorescence spectroscopy and / or X-ray crystal structure determination and / or magnetic moment measurements can be used to confirm these oxidation states.

화학식 (B)의 예시적인 칼륨-함유 화합물은 다음 화합물을 비제한적으로 포함한다: K4(MeN-CH=CH-NMe)2(THF)2, K4(EtN-CH=CH-NEt)2(THF)2, K4(nPrN-CH=CH-NnPr)2(THF)2, K4(iPrN-CH=CH-NiPr)2(THF)2, K4(nBuN-CH=CH-NnBu)2(THF)2, K4(tBuN-CH=CH-NtBu)2(THF)2, K4(iBuN-CH=CH-NiBu)2(THF)2, K4(sBuN-CH=CH-NsBu)2(THF)2, K4(nPrN-CH=CH-NiPr)2(THF)2, K4(nPrN-CH=CH-NtBu)2(THF)2, K4(iPrN-CH=CH-NtBu)2(THF)2, K4(MeN-CMe=CH-NMe)2(THF)2, K4(EtN-CMe=CH-NEt)2(THF)2, K4(nPrN-CMe=CH-NnPr)2(THF)2, K4(iPrN-CMe=CH-NiPr)2(THF)2, K4(nBuN-CMe=CH-NnBu)2(THF)2, K4(tBuN-CMe=CH-NtBu)2(THF)2, K4(iBuN-CMe=CH-NiBu)2(THF)2, K4(sBuN-CMe=CH-NsBu)2(THF)2, K4(iPrN-CMe=CH-NMe)2(THF)2, K4(iPrN-CMe=CH-NEt)2(THF)2, K4(iPrN-CMe=CH-NtBu)2(THF)2, K4(MeN-CMe=CMe-NMe)2(THF)2, K4(EtN-CMe=CMe-NEt)2(THF)2, K4(nPrN-CMe=CMe-NnPr)2(THF)2, K4(iPrN-CMe=CMe-NiPr)2(THF)2, K4(nBuN-CMe=CMe-NnBu)2(THF)2, K4(tBuN-CMe=CMe-NtBu)2(THF)2, K4(iBuN-CMe=CMe-NiBu)2(THF)2, K4(sBuN-CMe=CMe-NsBu)2(THF)2, K4(MeN-CMe=CMe-NEt)2(THF)2, K4(MeN-CMe=CMe-NiPr)2(THF)2, K4(EtN-CMe=CMe-NiPr)2(THF)2, K4(MeN-C(CF3)=CH-NMe)2(THF)2, K4(EtN-C(CF3)=CH-NEt)2(THF)2, K4(nPrN-C(CF3)=CH-NnPr)2(THF)2, K4(iPrN-C(CF3)=CH-NiPr)2(THF)2, K4(nBuN-C(CF3)=CH-NnBu)2(THF)2, K4(tBuN-C(CF3)=CH-NtBu)2(THF)2, K4(iBuN-C(CF3)=CH-NiBu)2(THF)2, K4(sBuN-C(CF3)=CH-NsBu)2(THF)2, K4(MeN-C(CF3)=C(CF3)-NMe)2(THF)2, K4(EtN-C(CF3)=C(CF3)-NEt)2(THF)2, K4(nPrN-C(CF3)=C(CF3)-NnPr)2(THF)2, K4(iPrN-C(CF3)=C(CF3)-NiPr)2(THF)2, K4(nBuN-C(CF3)=C(CF3)-NnBu)2(THF)2, K4(tBuN-C(CF3)=C(CF3)-NtBu)2(THF)2, K4(iBuN-C(CF3)=C(CF3)-NiBu)2(THF)2, K4(sBuN-C(CF3)=C(CF3)-NsBu)2(THF)2, K4(MeN-CH=CH-NMe)2(OEt2)2, K4(EtN-CH=CH-NEt)2(OEt2)2, K4(nPrN-CH=CH-NnPr)2(OEt2)2, K4(iPrN-CH=CH-NiPr)2(OEt2)2, K4(nBuN-CH=CH-NnBu)2(OEt2)2, K4(tBuN-CH=CH-NtBu)2(OEt2)2, K4(iBuN-CH=CH-NiBu)2(OEt2)2, K4(sBuN-CH=CH-NsBu)2(OEt2)2, K4(nPrN-CH=CH-NiPr)2(OEt2)2, K4(nPrN-CH=CH-NtBu)2(OEt2)2, K4(iPrN-CH=CH-NtBu)2(OEt2)2, K4(MeN-CMe=CH-NMe)2(OEt2)2, K4(EtN-CMe=CH-NEt)2(OEt2)2, K4(nPrN-CMe=CH-NnPr)2(OEt2)2, K4(iPrN-CMe=CH-NiPr)2(OEt2)2, K4(nBuN-CMe=CH-NnBu)2(OEt2)2, K4(tBuN-CMe=CH-NtBu)2(OEt2)2, K4(iBuN-CMe=CH-NiBu)2(OEt2)2, K4(sBuN-CMe=CH-NsBu)2(OEt2)2, K4(iPrN-CMe=CH-NMe)2(OEt2)2, K4(iPrN-CMe=CH-NEt)2(OEt2)2, K4(iPrN-CMe=CH-NtBu)2(OEt2)2, K4(MeN-CMe=CMe-NMe)2(OEt2)2, K4(EtN-CMe=CMe-NEt)2(OEt2)2, K4(nPrN-CMe=CMe-NnPr)2(OEt2)2, K4(iPrN-CMe=CMe-NiPr)2(OEt2)2, K4(nBuN-CMe=CMe-NnBu)2(OEt2)2, K4(tBuN-CMe=CMe-NtBu)2(OEt2)2, K4(iBuN-CMe=CMe-NiBu)2(OEt2)2, K4(sBuN-CMe=CMe-NsBu)2(OEt2)2, K4(MeN-CMe=CMe-NEt)2(OEt2)2, K4(MeN-CMe=CMe-NiPr)2(OEt2)2, K4(EtN-CMe=CMe-NiPr)2(OEt2)2, K4(MeN-C(CF3)=CH-NMe)2(OEt2)2, K4(EtN-C(CF3)=CH-NEt)2(OEt2)2, K4(nPrN-C(CF3)=CH-NnPr)2(OEt2)2, K4(iPrN-C(CF3)=CH-NiPr)2(OEt2)2, K4(nBuN-C(CF3)=CH-NnBu)2(OEt2)2, K4(tBuN-C(CF3)=CH-NtBu)2(OEt2)2, K4(iBuN-C(CF3)=CH-NiBu)2(OEt2)2, K4(sBuN-C(CF3)=CH-NsBu)2(OEt2)2, K4(MeN-C(CF3)=C(CF3)-NMe)2(OEt2)2, K4(EtN-C(CF3)=C(CF3)-NEt)2(OEt2)2, K4(nPrN-C(CF3)=C(CF3)-NnPr)2(OEt2)2, K4(iPrN-C(CF3)=C(CF3)-NiPr)2(OEt2)2, K4(nBuN-C(CF3)=C(CF3)-NnBu)2(OEt2)2, K4(tBuN-C(CF3)=C(CF3)-NtBu)2(OEt2)2, K4(iBuN-C(CF3)=C(CF3)-NiBu)2(OEt2)2, K4(sBuN-C(CF3)=C(CF3)-NsBu)2(OEt2)2, K4(MeN-CH=CH-NMe)2(ACN)2, K4(EtN-CH=CH-NEt)2(ACN)2, K4(nPrN-CH=CH-NnPr)2(ACN)2, K4(iPrN-CH=CH-NiPr)2(ACN)2, K4(nBuN-CH=CH-NnBu)2(ACN)2, K4(tBuN-CH=CH-NtBu)2(ACN)2, K4(iBuN-CH=CH-NiBu)2(ACN)2, K4(sBuN-CH=CH-NsBu)2(ACN)2, K4(nPrN-CH=CH-NiPr)2(ACN)2, K4(nPrN-CH=CH-NtBu)2(ACN)2, K4(iPrN-CH=CH-NtBu)2(ACN)2, K4(MeN-CMe=CH-NMe)2(ACN)2, K4(EtN-CMe=CH-NEt)2(ACN)2, K4(nPrN-CMe=CH-NnPr)2(ACN)2, K4(iPrN-CMe=CH-NiPr)2(ACN)2, K4(nBuN-CMe=CH-NnBu)2(ACN)2, K4(tBuN-CMe=CH-NtBu)2(ACN)2, K4(iBuN-CMe=CH-NiBu)2(ACN)2, K4(sBuN-CMe=CH-NsBu)2(ACN)2, K4(iPrN-CMe=CH-NMe)2(ACN)2, K4(iPrN-CMe=CH-NEt)2(ACN)2, K4(iPrN-CMe=CH-NtBu)2(ACN)2, K4(MeN-CMe=CMe-NMe)2(ACN)2, K4(EtN-CMe=CMe-NEt)2(ACN)2, K4(nPrN-CMe=CMe-NnPr)2(ACN)2, K4(iPrN-CMe=CMe-NiPr)2(ACN)2, K4(nBuN-CMe=CMe-NnBu)2(ACN)2, K4(tBuN-CMe=CMe-NtBu)2(ACN)2, K4(iBuN-CMe=CMe-NiBu)2(ACN)2, K4(sBuN-CMe=CMe-NsBu)2(ACN)2, K4(MeN-CMe=CMe-NEt)2(ACN)2, K4(MeN-CMe=CMe-NiPr)2(ACN)2, K4(EtN-CMe=CMe-NiPr)2(ACN)2, K4(MeN-C(CF3)=CH-NMe)2(ACN)2, K4(EtN-C(CF3)=CH-NEt)2(ACN)2, K4(nPrN-C(CF3)=CH-NnPr)2(ACN)2, K4(iPrN-C(CF3)=CH-NiPr)2(ACN)2, K4(nBuN-C(CF3)=CH-NnBu)2(ACN)2, K4(tBuN-C(CF3)=CH-NtBu)2(ACN)2, K4(iBuN-C(CF3)=CH-NiBu)2(ACN)2, K4(sBuN-C(CF3)=CH-NsBu)2(ACN)2, K4(MeN-C(CF3)=C(CF3)-NMe)2(ACN)2, K4(EtN-C(CF3)=C(CF3)-NEt)2(ACN)2, K4(nPrN-C(CF3)=C(CF3)-NnPr)2(ACN)2, K4(iPrN-C(CF3)=C(CF3)-NiPr)2(ACN)2, K4(nBuN-C(CF3)=C(CF3)-NnBu)2(ACN)2, K4(tBuN-C(CF3)=C(CF3)-NtBu)2(ACN)2, K4(iBuN-C(CF3)=C(CF3)-NiBu)2(ACN)2, 및 K4(sBuN-C(CF3)=C(CF3)-NsBu)2(ACN)2. 전술한 바와 같이, 화학식 B의 DAD 리간드는 디음이온성일 것으로 예상된다. X-선 형광 분광학 및/또는 X-선 결정 구조 결정 및/또는 자기 모멘트 측정이 이들 산화 상태를 확인하기 위해 사용될 수 있다.Exemplary potassium of formula (B) - containing compounds include the following compounds but are not limited to: K 4 (MeN-CH = CH-NMe) 2 (THF) 2, K 4 (EtN-CH = CH-NEt) 2 (THF) 2, K 4 ( nPrN-CH = CH-NnPr) 2 (THF) 2, K 4 (iPrN-CH = CH-NiPr) 2 (THF) 2, K 4 (nBuN-CH = CH-NnBu) 2 (THF) 2, K 4 (tBuN-CH = CH-NtBu) 2 (THF) 2, K 4 (iBuN-CH = CH-NiBu) 2 (THF) 2, K 4 (sBuN-CH = CH-NsBu ) 2 (THF) 2, K 4 (nPrN-CH = CH-NiPr) 2 (THF) 2, K 4 (nPrN-CH = CH-NtBu) 2 (THF) 2, K 4 (iPrN-CH = CH- NtBu) 2 (THF) 2, K 4 (MeN-CMe = CH-NMe) 2 (THF) 2, K 4 (EtN-CMe = CH-NEt) 2 (THF) 2, K 4 (nPrN-CMe = CH -NnPr) 2 (THF) 2, K 4 (iPrN-CMe = CH-NiPr) 2 (THF) 2, K 4 (nBuN-CMe = CH-NnBu) 2 (THF) 2, K 4 (tBuN-CMe = CH-NtBu) 2 (THF) 2, K 4 (iBuN-CMe = CH-NiBu) 2 (THF) 2, K 4 (sBuN-CMe = CH-NsBu) 2 (THF) 2, K 4 (iPrN-CMe = CH-NMe) 2 (THF ) 2, K 4 (iPrN-CMe = CH-NEt) 2 (THF) 2, K 4 (iPrN-CMe = CH-NtBu) 2 (THF) 2, K 4 (MeN- CMe = CMe-NMe) 2 ( THF) 2, K 4 (EtN-CMe = CMe-NEt) 2 (THF) 2, K 4 (nPrN-CMe = CMe-NnPr) 2 (THF) 2, K 4 (iPrN -CMe = CMe-NiPr) 2 (THF) 2 , K 4 (nBuN-CMe = CMe- NnBu) 2 (THF) 2, K 4 (tBuN-CMe = CMe-NtBu) 2 (THF) 2, K 4 (iBuN-CMe = CMe-NiBu) 2 (THF) 2, K 4 (sBuN-CMe = CMe -NsBu) 2 (THF) 2, K 4 (MeN-CMe = CMe-NEt) 2 (THF) 2, K 4 (MeN-CMe = CMe-NiPr) 2 (THF) 2 , K 4 (EtN-CMe = CMe-NiPr) 2 (THF) 2, K 4 (MeN-C (CF 3) = CH-NMe) 2 (THF) 2, K 4 (EtN-C (CF 3) = CH-NEt) 2 (THF) 2, K 4 (nPrN-C (CF 3) = CH-NnPr) 2 (THF) 2, K 4 (iPrN-C (CF 3) = CH-NiPr) 2 (THF) 2, K 4 (nBuN-C (CF 3) = CH-NnBu) 2 (THF) 2, K 4 (tBuN-C (CF 3) = CH-NtBu) 2 (THF) 2, K 4 (iBuN-C (CF 3) = CH-NiBu ) 2 (THF) 2, K 4 (sBuN-C (CF 3) = CH-NsBu) 2 (THF) 2, K 4 (MeN-C (CF 3) = C (CF 3) -NMe) 2 (THF) 2, K 4 (EtN-C (CF 3) = C (CF 3) -NEt) 2 (THF) 2, K 4 (nPrN-C (CF 3) = C (CF 3) -NnPr) 2 (THF) 2, K 4 (iPrN-C (CF 3) = C (CF 3) -NiPr) 2 (THF) 2, K 4 (nBuN-C (CF 3) = C (CF 3) -NnBu) 2 (THF) 2, K 4 (tBuN-C (CF 3) = C (CF 3) -NtBu) 2 (THF) 2, K 4 (iBuN-C (CF 3) = C (CF 3) -NiBu) 2 (THF) 2, K 4 (sBuN-C (CF 3) = C (CF 3) -NsBu) 2 (THF) 2, K 4 (MeN-CH = CH-NMe) 2 (OEt 2 ) 2 , K 4 (EtN-CH = CH-NEt) 2 (OEt 2 ) 2 , K 4 (nPrN-CH = CH-NnPr ) 2 (OEt 2) 2, K 4 (iPrN-CH = CH-NiPr) 2 (OEt 2) 2, K 4 (nBuN-CH = CH-NnBu) 2 (OEt 2) 2, K 4 (tBuN-CH = CH-NtBu) 2 (OEt 2) 2, K 4 (iBuN-CH = CH-NiBu) 2 (OEt 2) 2, K 4 (sBuN-CH = CH-NsBu) 2 (OEt 2) 2, K 4 (nPrN-CH = CH-NiPr) 2 (OEt 2) 2, K 4 (nPrN-CH = CH-NtBu) 2 (OEt 2) 2, K 4 (iPrN-CH = CH -NtBu) 2 (OEt 2) 2 , K 4 (MeN-CMe = CH-NMe) 2 (OEt 2) 2, K 4 (EtN-CMe = CH-NEt) 2 (OEt 2) 2, K 4 (nPrN -CMe = CH-NnPr) 2 ( OEt 2) 2, K 4 (iPrN-CMe = CH-NiPr) 2 (OEt 2) 2, K 4 (nBuN-CMe = CH-NnBu) 2 (OEt 2) 2, K 4 (tBuN-CMe = CH -NtBu) 2 (OEt 2) 2, K 4 (iBuN-CMe = CH-NiBu) 2 (OEt 2) 2, K 4 (sBuN-CMe = CH-NsBu) 2 (OEt 2) 2, K 4 (iPrN -CMe = CH-NMe) 2 (OEt 2) 2, K 4 (iPrN-CMe = CH-NEt) 2 (OEt 2) 2, K 4 (iPrN-CMe = CH-NtBu ) 2 (OEt 2) 2, K 4 (MeN-CMe = CMe-NMe) 2 (OEt 2) 2, K 4 (EtN-CMe = CMe-NEt) 2 (OEt 2) 2, K 4 (nPrN-CMe = CMe-NnPr) 2 (OEt 2) 2, K 4 (iPrN-CMe = CMe-NiPr) 2 (OEt 2) 2, K 4 (nBuN-CMe = CMe-NnBu) 2 (OEt 2) 2, K 4 (tBuN-CMe = CMe-NtBu ) 2 (OEt 2) 2, K 4 (iBuN-CMe = CMe-NiBu) 2 (O Et 2) 2, K 4 ( sBuN-CMe = CMe-NsBu) 2 (OEt 2) 2, K 4 (MeN-CMe = CMe-NEt) 2 (OEt 2) 2, K 4 (MeN-CMe = CMe- NiPr) 2 (OEt 2) 2 , K 4 (EtN-CMe = CMe-NiPr) 2 (OEt 2) 2, K 4 (MeN-C (CF 3) = CH-NMe) 2 (OEt 2) 2, K 4 (EtN-C (CF 3 ) = CH-NEt) 2 (OEt 2) 2, K 4 (nPrN-C (CF 3) = CH-NnPr) 2 (OEt 2) 2, K 4 (iPrN-C ( CF 3) = CH-NiPr) 2 (OEt 2) 2, K 4 (nBuN-C (CF 3) = CH-NnBu) 2 (OEt 2) 2, K 4 (tBuN-C (CF 3) = CH- NtBu) 2 (OEt 2) 2 , K 4 (iBuN-C (CF 3) = CH-NiBu) 2 (OEt 2) 2, K 4 (sBuN-C (CF 3) = CH-NsBu) 2 (OEt 2 ) 2, K 4 (MeN- C (CF 3) = C (CF 3) -NMe) 2 (OEt 2) 2, K 4 (EtN-C (CF 3) = C (CF 3) -NEt) 2 ( OEt 2) 2, K 4 ( nPrN-C (CF 3) = C (CF 3) -NnPr) 2 (OEt 2) 2, K 4 (iPrN-C (CF 3) = C (CF 3) -NiPr) 2 (OEt 2) 2, K 4 (nBuN-C (CF 3) = C (CF 3) -NnBu) 2 (OEt 2) 2, K 4 (tBuN-C (CF 3) = C (CF 3) - NtBu) 2 (OEt 2) 2 , K 4 (iBuN-C (CF 3) = C (CF 3) -NiBu) 2 (OEt 2) 2, K 4 (sBuN-C (CF 3) = C (CF 3 ) -NsBu) 2 (OEt 2) 2, K 4 (MeN-CH = CH-NMe) 2 (ACN) 2, K 4 (EtN-CH = CH-NEt) 2 (ACN) 2, K 4 (nPrN- CH = CH-NnPr) 2 ( ACN) 2, K 4 (iPrN-C H = CH-NiPr) 2 ( ACN) 2, K 4 (nBuN-CH = CH-NnBu) 2 (ACN) 2, K 4 (tBuN-CH = CH-NtBu) 2 (ACN) 2, K 4 (iBuN -CH = CH-NiBu) 2 ( ACN) 2, K 4 (sBuN-CH = CH-NsBu) 2 (ACN) 2, K 4 (nPrN-CH = CH-NiPr) 2 (ACN) 2, K 4 ( nPrN-CH = CH-NtBu) 2 (ACN) 2, K 4 (iPrN-CH = CH-NtBu) 2 (ACN) 2, K 4 (MeN-CMe = CH-NMe) 2 (ACN) 2, K 4 (EtN-CMe = CH-NEt ) 2 (ACN) 2, K 4 (nPrN-CMe = CH-NnPr) 2 (ACN) 2, K 4 (iPrN-CMe = CH-NiPr) 2 (ACN) 2, K 4 (nBuN-CMe = CH- NnBu) 2 (ACN) 2, K 4 (tBuN-CMe = CH-NtBu) 2 (ACN) 2, K 4 (iBuN-CMe = CH-NiBu) 2 (ACN) 2, K 4 (sBuN-CMe = CH -NsBu) 2 (ACN) 2, K 4 (iPrN-CMe = CH-NMe) 2 (ACN) 2, K 4 (iPrN-CMe = CH-NEt) 2 (ACN) 2 , K 4 (iPrN-CMe = CH-NtBu) 2 (ACN) 2, K 4 (MeN-CMe = CMe-NMe) 2 (ACN) 2, K 4 (EtN-CMe = CMe-NEt) 2 (ACN) 2, K 4 (nPrN-CMe = CMe-NnPr) 2 (ACN) 2, K 4 (iPrN-CMe = CMe-NiPr) 2 (ACN) 2, K 4 (nBuN-CMe = CMe-NnBu) 2 (ACN ) 2, K 4 (tBuN- CMe = CMe-NtBu) 2 (ACN) 2, K 4 (iBuN-CMe = CMe-NiBu) 2 (ACN) 2, K 4 (sBuN-CMe = CMe-NsBu) 2 ( ACN) 2, K 4 (MeN -CMe = CMe-NEt) 2 (ACN) 2, K 4 (MeN-CMe = CMe-NiPr) 2 (ACN) 2, K 4 (Et N-CMe = CMe-NiPr) 2 (ACN) 2, K 4 (MeN-C (CF 3) = CH-NMe) 2 (ACN) 2, K 4 (EtN-C (CF 3) = CH-NEt) 2 (ACN) 2, K 4 (nPrN-C (CF 3) = CH-NnPr) 2 (ACN) 2, K 4 (iPrN-C (CF 3) = CH-NiPr) 2 (ACN) 2, K 4 (nBuN-C (CF 3) = CH-NnBu) 2 (ACN) 2, K 4 (tBuN-C (CF 3) = CH-NtBu) 2 (ACN) 2, K 4 (iBuN-C (CF 3) = CH-NiBu) 2 (ACN ) 2, K 4 (sBuN-C (CF 3) = CH-NsBu) 2 (ACN) 2, K 4 (MeN-C (CF 3) = C (CF 3) -NMe ) 2 (ACN) 2, K 4 (EtN-C (CF 3) = C (CF 3) -NEt) 2 (ACN) 2, K 4 (nPrN-C (CF 3) = C (CF 3) -NnPr ) 2 (ACN) 2, K 4 (iPrN-C (CF 3) = C (CF 3) -NiPr) 2 (ACN) 2, K 4 (nBuN-C (CF 3) = C (CF 3) -NnBu ) 2 (ACN) 2, K 4 (tBuN-C (CF 3) = C (CF 3) -NtBu) 2 (ACN) 2, K 4 (iBuN-C (CF 3) = C (CF 3) -NiBu ) 2 (ACN) 2 , and K 4 (sBuN-C (CF 3 ) = C (CF 3 ) -NsBu) 2 (ACN) 2 . As noted above, the DAD ligand of Formula B is expected to be dianionic. X-ray fluorescence spectroscopy and / or X-ray crystal structure determination and / or magnetic moment measurements can be used to confirm these oxidation states.

화학식 (C)의 예시적인 리튬-함유 화합물은 다음 화합물을 비제한적으로 포함한다: Li2(MeN-CH=CH-NMe), Li2(EtN-CH=CH-NEt), Li2(nPrN-CH=CH-NnPr), Li2(iPrN-CH=CH-NiPr), Li2(nBuN-CH=CH-NnBu), Li2(tBuN-CH=CH-NtBu), Li2(iBuN-CH=CH-NiBu), Li2(sBuN-CH=CH-NsBu), Li2(nPrN-CH=CH-NiPr), Li2(nPrN-CH=CH-NtBu), Li2(iPrN-CH=CH-NtBu), Li2(MeN-CMe=CH-NMe), Li2(EtN-CMe=CH-NEt), Li2(nPrN-CMe=CH-NnPr), Li2(iPrN-CMe=CH-NiPr), Li2(nBuN-CMe=CH-NnBu), Li2(tBuN-CMe=CH-NtBu), Li2(iBuN-CMe=CH-NiBu), Li2(sBuN-CMe=CH-NsBu), Li2(iPrN-CMe=CH-NMe), Li2(iPrN-CMe=CH-NEt), Li2(iPrN-CMe=CH-NtBu), Li2(MeN-CMe=CMe-NMe), Li2(EtN-CMe=CMe-NEt), Li2(nPrN-CMe=CMe-NnPr), Li2(iPrN-CMe=CMe-NiPr), Li2(nBuN-CMe=CMe-NnBu), Li2(tBuN-CMe=CMe-NtBu), Li2(iBuN-CMe=CMe-NiBu), Li2(sBuN-CMe=CMe-NsBu), Li2(MeN-CMe=CMe-NEt), Li2(MeN-CMe=CMe-NiPr), Li2(EtN-CMe=CMe-NiPr), Li2(MeN-C(CF3)=CH-NMe), Li2(EtN-C(CF3)=CH-NEt), Li2(nPrN-C(CF3)=CH-NnPr), Li2(iPrN-C(CF3)=CH-NiPr), Li2(nBuN-C(CF3)=CH-NnBu), Li2(tBuN-C(CF3)=CH-NtBu), Li2(iBuN-C(CF3)=CH-NiBu), Li2(sBuN-C(CF3)=CH-NsBu), Li2(MeN-C(CF3)=C(CF3)-NMe), Li2(EtN-C(CF3)=C(CF3)-NEt), Li2(nPrN-C(CF3)=C(CF3)-NnPr), Li2(iPrN-C(CF3)=C(CF3)-NiPr), Li2(nBuN-C(CF3)=C(CF3)-NnBu), Li2(tBuN-C(CF3)=C(CF3)-NtBu), Li2(iBuN-C(CF3)=C(CF3)-NiBu), 및 Li2(sBuN-C(CF3)=C(CF3)-NsBu). 전술한 바와 같이, 화학식 C의 DAD 리간드는 디음이온성일 것으로 예상된다. X-선 형광 분광학 및/또는 X-선 결정 구조 결정 및/또는 자기 모멘트 측정이 이들 산화 상태를 확인하기 위해 사용될 수 있다.Formula (C) in the illustrative lithium-containing compounds include the following compounds but are not limited to: Li 2 (MeN-CH = CH-NMe), Li 2 (EtN-CH = CH-NEt), Li 2 (nPrN- CH = CH-NnPr), Li 2 (iPrN-CH = CH-NiPr), Li 2 (nBuN-CH = CH-NnBu), Li 2 (tBuN-CH = CH-NtBu), Li 2 (iBuN-CH = CH-NiBu), Li 2 ( sBuN-CH = CH-NsBu), Li 2 (nPrN-CH = CH-NiPr), Li 2 (nPrN-CH = CH-NtBu), Li 2 (iPrN-CH = CH- NtBu), Li 2 (MeN- CMe = CH-NMe), Li 2 (EtN-CMe = CH-NEt), Li 2 (nPrN-CMe = CH-NnPr), Li 2 (iPrN-CMe = CH-NiPr) , Li 2 (nBuN-CMe = CH-NnBu), Li 2 (tBuN-CMe = CH-NtBu), Li 2 (iBuN-CMe = CH-NiBu), Li 2 (sBuN-CMe = CH-NsBu), Li 2 (iPrN-CMe = CH- NMe), Li 2 (iPrN-CMe = CH-NEt), Li 2 (iPrN-CMe = CH-NtBu), Li 2 (MeN-CMe = CMe-NMe), Li 2 ( EtN-CMe = CMe-NEt) , Li 2 (nPrN-CMe = CMe-NnPr), Li 2 (iPrN-CMe = CMe-NiPr), Li 2 (nBuN-CMe = CMe-NnBu), Li 2 (tBuN- CMe = CMe-NtBu), Li 2 (iBuN-CMe = CMe-NiBu), Li 2 (sBuN-CMe = CMe-NsBu), Li 2 (MeN-CMe = CMe-NEt), Li 2 (MeN-CMe = CMe-NiPr), Li 2 ( EtN-CMe = CMe-NiPr), Li 2 (MeN-C (CF 3) = CH-NMe), Li 2 (EtN-C (CF 3) = CH-NEt), Li 2 (nPrN-C (CF 3 ) = CH-NnPr ), Li 2 (iPrN-C (CF 3) = CH-NiPr), Li 2 (nBuN-C (CF 3) = CH-NnBu), Li 2 (tBuN-C (CF 3) = CH-NtBu), Li 2 (iBuN-C (CF 3) = CH-NiBu), Li 2 (sBuN-C (CF 3) = CH-NsBu), Li 2 (MeN-C (CF 3) = C (CF 3) -NMe ), Li 2 (EtN-C (CF 3) = C (CF 3) -NEt), Li 2 (nPrN-C (CF 3) = C (CF 3) -NnPr), Li 2 (iPrN-C (CF 3) = C (CF 3) -NiPr), Li 2 (nBuN-C (CF 3) = C (CF 3) -NnBu), Li 2 (tBuN-C (CF 3) = C (CF 3) -NtBu ), Li 2 (iBuN-C (CF 3) = C (CF 3) -NiBu), and Li 2 (sBuN-C (CF 3) = C (CF 3) -NsBu). As mentioned above, the DAD ligand of formula C is expected to be dianionic. X-ray fluorescence spectroscopy and / or X-ray crystal structure determination and / or magnetic moment measurements can be used to confirm these oxidation states.

화학식 (C)의 예시적인 나트륨-함유 화합물은 다음 화합물을 비제한적으로 포함한다: Na2(MeN-CH=CH-NMe), Na2(EtN-CH=CH-NEt), Na2(nPrN-CH=CH-NnPr), Na2(iPrN-CH=CH-NiPr), Na2(nBuN-CH=CH-NnBu), Na2(tBuN-CH=CH-NtBu), Na2(iBuN-CH=CH-NiBu), Na2(sBuN-CH=CH-NsBu), Na2(nPrN-CH=CH-NiPr), Na2(nPrN-CH=CH-NtBu), Na2(iPrN-CH=CH-NtBu), Na2(MeN-CMe=CH-NMe), Na2(EtN-CMe=CH-NEt), Na2(nPrN-CMe=CH-NnPr), Na2(iPrN-CMe=CH-NiPr), Na2(nBuN-CMe=CH-NnBu), Na2(tBuN-CMe=CH-NtBu), Na2(iBuN-CMe=CH-NiBu), Na2(sBuN-CMe=CH-NsBu), Na2(iPrN-CMe=CH-NMe), Na2(iPrN-CMe=CH-NEt), Na2(iPrN-CMe=CH-NtBu), Na2(MeN-CMe=CMe-NMe), Na2(EtN-CMe=CMe-NEt), Na2(nPrN-CMe=CMe-NnPr), Na2(iPrN-CMe=CMe-NiPr), Na2(nBuN-CMe=CMe-NnBu), Na2(tBuN-CMe=CMe-NtBu), Na2(iBuN-CMe=CMe-NiBu), Na2(sBuN-CMe=CMe-NsBu), Na2(MeN-CMe=CMe-NEt), Na2(MeN-CMe=CMe-NiPr), Na2(EtN-CMe=CMe-NiPr), Na2(MeN-C(CF3)=CH-NMe), Na2(EtN-C(CF3)=CH-NEt), Na2(nPrN-C(CF3)=CH-NnPr), Na2(iPrN-C(CF3)=CH-NiPr), Na2(nBuN-C(CF3)=CH-NnBu), Na2(tBuN-C(CF3)=CH-NtBu), Na2(iBuN-C(CF3)=CH-NiBu), Na2(sBuN-C(CF3)=CH-NsBu), Na2(MeN-C(CF3)=C(CF3)-NMe), Na2(EtN-C(CF3)=C(CF3)-NEt), Na2(nPrN-C(CF3)=C(CF3)-NnPr), Na2(iPrN-C(CF3)=C(CF3)-NiPr), Na2(nBuN-C(CF3)=C(CF3)-NnBu), Na2(tBuN-C(CF3)=C(CF3)-NtBu), Na2(iBuN-C(CF3)=C(CF3)-NiBu), 및 Na2(sBuN-C(CF3)=C(CF3)-NsBu). 전술한 바와 같이, 화학식 C의 DAD 리간드는 디음이온성일 것으로 예상된다. X-선 형광 분광학 및/또는 X-선 결정 구조 결정 및/또는 자기 모멘트 측정이 이들 산화 상태를 확인하기 위해 사용될 수 있다.Exemplary sodium of formula (C) - containing compounds include the following compounds but are not limited to: Na 2 (MeN-CH = CH-NMe), Na 2 (EtN-CH = CH-NEt), Na 2 (nPrN- CH = CH-NnPr), Na 2 (iPrN-CH = CH-NiPr), Na 2 (nBuN-CH = CH-NnBu), Na 2 (tBuN-CH = CH-NtBu), Na 2 (iBuN-CH = CH-NiBu), Na 2 ( sBuN-CH = CH-NsBu), Na 2 (nPrN-CH = CH-NiPr), Na 2 (nPrN-CH = CH-NtBu), Na 2 (iPrN-CH = CH- NtBu), Na 2 (MeN- CMe = CH-NMe), Na 2 (EtN-CMe = CH-NEt), Na 2 (nPrN-CMe = CH-NnPr), Na 2 (iPrN-CMe = CH-NiPr) , Na 2 (nBuN-CMe = CH-NnBu), Na 2 (tBuN-CMe = CH-NtBu), Na 2 (iBuN-CMe = CH-NiBu), Na 2 (sBuN-CMe = CH-NsBu), Na 2 (iPrN-CMe = CH- NMe), Na 2 (iPrN-CMe = CH-NEt), Na 2 (iPrN-CMe = CH-NtBu), Na 2 (MeN-CMe = CMe-NMe), Na 2 ( EtN-CMe = CMe-NEt) , Na 2 (nPrN-CMe = CMe-NnPr), Na 2 (iPrN-CMe = CMe-NiPr), Na 2 (nBuN-CMe = CMe-NnBu), Na 2 (tBuN- CMe = CMe-NtBu), Na 2 (iBuN-CMe = CMe-NiBu), Na 2 (sBuN-CMe = CMe-NsBu), Na 2 (MeN-CMe = CMe-NEt), Na 2 (MeN-CMe = CMe-NiPr), Na 2 ( EtN-CMe = CMe-NiPr), Na 2 (MeN-C (CF 3) = CH-NMe), Na 2 (EtN-C (CF 3) = CH-NEt), Na 2 (nPrN-C (CF 3 ) = CH-N nPr), Na 2 (iPrN- C (CF 3) = CH-NiPr), Na 2 (nBuN-C (CF 3) = CH-NnBu), Na 2 (tBuN-C (CF 3) = CH-NtBu) , Na 2 (iBuN-C ( CF 3) = CH-NiBu), Na 2 (sBuN-C (CF 3) = CH-NsBu), Na 2 (MeN-C (CF 3) = C (CF 3) - NMe), Na 2 (EtN- C (CF 3) = C (CF 3) -NEt), Na 2 (nPrN-C (CF 3) = C (CF 3) -NnPr), Na 2 (iPrN-C ( CF 3) = C (CF 3 ) -NiPr), Na 2 (nBuN-C (CF 3) = C (CF 3) -NnBu), Na 2 (tBuN-C (CF 3) = C (CF 3) - NtBu), Na 2 (iBuN- C (CF 3) = C (CF 3) -NiBu), and Na 2 (sBuN-C (CF 3) = C (CF 3) -NsBu). As mentioned above, the DAD ligand of formula C is expected to be dianionic. X-ray fluorescence spectroscopy and / or X-ray crystal structure determination and / or magnetic moment measurements can be used to confirm these oxidation states.

화학식 (C)의 예시적인 칼륨-함유 화합물은 다음 화합물을 비제한적으로 포함한다: K2(MeN-CH=CH-NMe), K2(EtN-CH=CH-NEt), K2(nPrN-CH=CH-NnPr), K2(iPrN-CH=CH-NiPr), K2(nBuN-CH=CH-NnBu), K2(tBuN-CH=CH-NtBu), K2(iBuN-CH=CH-NiBu), K2(sBuN-CH=CH-NsBu), K2(nPrN-CH=CH-NiPr), K2(nPrN-CH=CH-NtBu), K2(iPrN-CH=CH-NtBu), K2(MeN-CMe=CH-NMe), K2(EtN-CMe=CH-NEt), K2(nPrN-CMe=CH-NnPr), K2(iPrN-CMe=CH-NiPr), K2(nBuN-CMe=CH-NnBu), K2(tBuN-CMe=CH-NtBu), K2(iBuN-CMe=CH-NiBu), K2(sBuN-CMe=CH-NsBu), K2(iPrN-CMe=CH-NMe), K2(iPrN-CMe=CH-NEt), K2(iPrN-CMe=CH-NtBu), K2(MeN-CMe=CMe-NMe), K2(EtN-CMe=CMe-NEt), K2(nPrN-CMe=CMe-NnPr), K2(iPrN-CMe=CMe-NiPr), K2(nBuN-CMe=CMe-NnBu), K2(tBuN-CMe=CMe-NtBu), K2(iBuN-CMe=CMe-NiBu), K2(sBuN-CMe=CMe-NsBu), K2(MeN-CMe=CMe-NEt), K2(MeN-CMe=CMe-NiPr), K2(EtN-CMe=CMe-NiPr), K2(MeN-C(CF3)=CH-NMe), K2(EtN-C(CF3)=CH-NEt), K2(nPrN-C(CF3)=CH-NnPr), K2(iPrN-C(CF3)=CH-NiPr), K2(nBuN-C(CF3)=CH-NnBu), K2(tBuN-C(CF3)=CH-NtBu), K2(iBuN-C(CF3)=CH-NiBu), K2(sBuN-C(CF3)=CH-NsBu), K2(MeN-C(CF3)=C(CF3)-NMe), K2(EtN-C(CF3)=C(CF3)-NEt), K2(nPrN-C(CF3)=C(CF3)-NnPr), K2(iPrN-C(CF3)=C(CF3)-NiPr), K2(nBuN-C(CF3)=C(CF3)-NnBu), K2(tBuN-C(CF3)=C(CF3)-NtBu), K2(iBuN-C(CF3)=C(CF3)-NiBu), 및 K2(sBuN-C(CF3)=C(CF3)-NsBu). 전술한 바와 같이, 화학식 C의 DAD 리간드는 디음이온성일 것으로 예상된다. X-선 형광 분광학 및/또는 X-선 결정 구조 결정 및/또는 자기 모멘트 측정이 이들 산화 상태를 확인하기 위해 사용될 수 있다.Exemplary potassium-containing compounds of formula (C) include, but are not limited to, K 2 (MeN-CH═CH-NMe), K 2 (EtN-CH═CH-NEt), K 2 (nPrN- CH = CH-NnPr), K 2 (iPrN-CH = CH-NiPr), K 2 (nBuN-CH = CH-NnBu), K 2 (tBuN-CH = CH-NtBu), K 2 (iBuN-CH = CH-NiBu), K 2 ( sBuN-CH = CH-NsBu), K 2 (nPrN-CH = CH-NiPr), K 2 (nPrN-CH = CH-NtBu), K 2 (iPrN-CH = CH- NtBu), K 2 (MeN- CMe = CH-NMe), K 2 (EtN-CMe = CH-NEt), K 2 (nPrN-CMe = CH-NnPr), K 2 (iPrN-CMe = CH-NiPr) , K 2 (nBuN-CMe = CH-NnBu), K 2 (tBuN-CMe = CH-NtBu), K 2 (iBuN-CMe = CH-NiBu), K 2 (sBuN-CMe = CH-NsBu), K 2 (iPrN-CMe = CH- NMe), K 2 (iPrN-CMe = CH-NEt), K 2 (iPrN-CMe = CH-NtBu), K 2 (MeN-CMe = CMe-NMe), K 2 ( EtN-CMe = CMe-NEt) , K 2 (nPrN-CMe = CMe-NnPr), K 2 (iPrN-CMe = CMe-NiPr), K 2 (nBuN-CMe = CMe-NnBu), K 2 (tBuN- CMe = CMe-NtBu), K 2 (iBuN-CMe = CMe-NiBu), K 2 (sBuN-CMe = CMe-NsBu), K 2 (MeN-CMe = CMe-NEt), K 2 (MeN-CMe = CMe-NiPr), K 2 ( EtN-CMe = CMe-NiPr), K 2 (MeN-C (CF 3) = CH-NMe), K 2 (EtN-C (CF 3) = CH-NEt), K 2 (nPrN-C (CF 3 ) = CH-NnPr), K 2 (iPrN-C (CF 3) = CH-NiPr), K 2 (nBuN-C (CF 3) = CH-NnBu), K 2 (tBuN-C (CF 3) = CH-NtBu), K 2 (iBuN-C (CF 3) = CH-NiBu), K 2 (sBuN -C (CF 3) = CH- NsBu), K 2 (MeN-C (CF 3) = C (CF 3) -NMe), K 2 (EtN-C (CF 3) = C (CF 3) -NEt ), K 2 (nPrN-C (CF 3) = C (CF 3) -NnPr), K 2 (iPrN-C (CF 3) = C (CF 3) -NiPr), K 2 (nBuN-C (CF 3) = C (CF 3) -NnBu), K 2 (tBuN-C (CF 3) = C (CF 3) -NtBu), K 2 (iBuN-C (CF 3) = C (CF 3) -NiBu ), and K 2 (sBuN-C (CF 3) = C (CF 3) -NsBu). As mentioned above, the DAD ligand of formula C is expected to be dianionic. X-ray fluorescence spectroscopy and / or X-ray crystal structure determination and / or magnetic moment measurements can be used to confirm these oxidation states.

화학식 (D)의 예시적인 리튬-함유 화합물은 다음 화합물을 비제한적으로 포함한다: Li(MeN-CH=CH-NMe)(THF)2, Li(EtN-CH=CH-NEt)(THF)2, Li(nPrN-CH=CH-NnPr)(THF)2, Li(iPrN-CH=CH-NiPr)(THF)2, Li(nBuN-CH=CH-NnBu)(THF)2, Li(tBuN-CH=CH-NtBu)(THF)2, Li(iBuN-CH=CH-NiBu)(THF)2, Li(sBuN-CH=CH-NsBu)(THF)2, Li(nPrN-CH=CH-NiPr)(THF)2, Li(nPrN-CH=CH-NtBu)(THF)2, Li(iPrN-CH=CH-NtBu)(THF)2, Li(MeN-CMe=CH-NMe)(THF)2, Li(EtN-CMe=CH-NEt)(THF)2, Li(nPrN-CMe=CH-NnPr)(THF)2, Li(iPrN-CMe=CH-NiPr)(THF)2, Li(nBuN-CMe=CH-NnBu)(THF)2, Li(tBuN-CMe=CH-NtBu)(THF)2, Li(iBuN-CMe=CH-NiBu)(THF)2, Li(sBuN-CMe=CH-NsBu)(THF)2, Li(iPrN-CMe=CH-NMe)(THF)2, Li(iPrN-CMe=CH-NEt)(THF)2, Li(iPrN-CMe=CH-NtBu)(THF)2, Li(MeN-CMe=CMe-NMe)(THF)2, Li(EtN-CMe=CMe-NEt)(THF)2, Li(nPrN-CMe=CMe-NnPr)(THF)2, Li(iPrN-CMe=CMe-NiPr)(THF)2, Li(nBuN-CMe=CMe-NnBu)(THF)2, Li(tBuN-CMe=CMe-NtBu)(THF)2, Li(iBuN-CMe=CMe-NiBu)(THF)2, Li(sBuN-CMe=CMe-NsBu)(THF)2, Li(MeN-CMe=CMe-NEt)(THF)2, Li(MeN-CMe=CMe-NiPr)(THF)2, Li(EtN-CMe=CMe-NiPr)(THF)2, Li(EtN-C(CF3)=CH-NEt)(THF)2, Li(MeN-C(CF3)=CH-NMe)(THF)2, Li(nPrN-C(CF3)=CH-NnPr)(THF)2, Li(iPrN-C(CF3)=CH-NiPr)(THF)2, Li(nBuN-C(CF3)=CH-NnBu)(THF)2, Li(tBuN-C(CF3)=CH-NtBu)(THF)2, Li(iBuN-C(CF3)=CH-NiBu)(THF)2, Li(sBuN-C(CF3)=CH-NsBu)(THF)2, Li(MeN-C(CF3)=C(CF3)-NMe)(THF)2, Li(EtN-C(CF3)=C(CF3)-NEt)(THF)2, Li(nPrN-C(CF3)=C(CF3)-NnPr)(THF)2, Li(iPrN-C(CF3)=C(CF3)-NiPr)(THF)2, Li(nBuN-C(CF3)=C(CF3)-NnBu)(THF)2, Li(tBuN-C(CF3)=C(CF3)-NtBu)(THF)2, Li(iBuN-C(CF3)=C(CF3)-NiBu)(THF)2, Li(sBuN-C(CF3)=C(CF3)-NsBu)(THF)2, Li(MeN-CH=CH-NMe)(OEt2)2, Li(EtN-CH=CH-NEt)(OEt2)2, Li(nPrN-CH=CH-NnPr)(OEt2)2, Li(iPrN-CH=CH-NiPr)(OEt2)2, Li(nBuN-CH=CH-NnBu)(OEt2)2, Li(tBuN-CH=CH-NtBu)(OEt2)2, Li(iBuN-CH=CH-NiBu)(OEt2)2, Li(sBuN-CH=CH-NsBu)(OEt2)2, Li(nPrN-CH=CH-NiPr)(OEt2)2, Li(nPrN-CH=CH-NtBu)(OEt2)2, Li(iPrN-CH=CH-NtBu)(OEt2)2, Li(MeN-Me=CH-NMe)(OEt2)2, Li(EtN-CMe=CH-NEt)(OEt2)2, Li(nPrN-CMe=CH-NnPr)(OEt2)2, Li(iPrN-CMe=CH-NiPr)(OEt2)2, Li(nBuN-CMe=CH-NnBu)(OEt2)2, Li(tBuN-CMe=CH-NtBu)(OEt2)2, Li(iBuN-CMe=CH-NiBu)(OEt2)2, Li(sBuN-CMe=CH-NsBu)(OEt2)2, Li(iPrN-CMe=CH-NMe)(OEt2)2, Li(iPrN-CMe=CH-NEt)(OEt2)2, Li(iPrN-CMe=CH-NtBu)(OEt2)2, Li(MeN-CMe=CMe-NMe)(OEt2)2, Li(EtN-CMe=CMe-NEt)(OEt2)2, Li(nPrN-CMe=CMe-NnPr)(OEt2)2, Li(iPrN-CMe=CMe-NiPr)(OEt2)2, Li(nBuN-CMe=CMe-NnBu)(OEt2)2, Li(tBuN-CMe=CMe-NtBu)(OEt2)2, Li(iBuN-CMe=CMe-NiBu)(OEt2)2, Li(sBuN-CMe=CMe-NsBu)(OEt2)2, Li(MeN-CMe=CMe-NEt)(OEt2)2, Li(MeN-CMe=CMe-NiPr)(OEt2)2, Li(EtN-CMe=CMe-NiPr)(OEt2)2, Li(MeN-C(CF3)=CH-NMe)(OEt2)2, Li(EtN-C(CF3)=CH-NEt)(OEt2)2, Li(nPrN-C(CF3)=CH-NnPr)(OEt2)2, Li(iPrN-C(CF3)=CH-NiPr)(OEt2)2, Li(nBuN-C(CF3)=CH-NnBu)(OEt2)2, Li(tBuN-C(CF3)=CH-NtBu)(OEt2)2, Li(iBuN-C(CF3)=CH-NiBu)(OEt2)2, Li(sBuN-C(CF3)=CH-NsBu)(OEt2)2, Li(MeN-C(CF3)=C(CF3)-NMe)(OEt2)2, Li(EtN-C(CF3)=C(CF3)-NEt)(OEt2)2, Li(nPrN-C(CF3)=C(CF3)-NnPr)(OEt2)2, Li(iPrN-C(CF3)=C(CF3)-NiPr)(OEt2)2, Li(nBuN-C(CF3)=C(CF3)-NnBu)(OEt2)2, Li(tBuN-C(CF3)=C(CF3)-tBu)(OEt2)2, Li(iBuN-C(CF3)=C(CF3)-NiBu)(OEt2)2, Li(sBuN-C(CF3)=C(CF3)-NsBu)(OEt2)2, Li(MeN-H=CH-NMe)(ACN)2, Li(EtN-CH=CH-NEt)(ACN)2, Li(nPrN-CH=CH-NnPr)(ACN)2, Li(iPrN-CH=CH-NiPr)(ACN)2, Li(nBuN-CH=CH-NnBu)(ACN)2, Li(tBuN-CH=CH-NtBu)(ACN)2, Li(iBuN-CH=CH-NiBu)(ACN)2, Li(sBuN-CH=CH-NsBu)(ACN)2, Li(nPrN-CH=CH-NiPr)(ACN)2, Li(nPrN-CH=CH-NtBu)(ACN)2, Li(iPrN-CH=CH-NtBu)(ACN)2, Li(MeN-CMe=CH-NMe)(ACN)2, Li(EtN-CMe=CH-NEt)(ACN)2, Li(nPrN-CMe=CH-NnPr)(ACN)2, Li(iPrN-CMe=CH-NiPr)(ACN)2, Li(nBuN-CMe=CH-NnBu)(ACN)2, Li(tBuN-CMe=CH-NtBu)(ACN)2, Li(iBuN-CMe=CH-NiBu)(ACN)2, Li(sBuN-CMe=CH-NsBu)(ACN)2, Li(iPrN-CMe=CH-NMe)(ACN)2, Li(iPrN-CMe=CH-NEt)(ACN)2, Li(iPrN-CMe=CH-NtBu)(ACN)2, Li(MeN-CMe=CMe-NMe)(ACN)2, Li(EtN-CMe=CMe-NEt)(ACN)2, Li(nPrN-CMe=CMe-NnPr)(ACN)2, Li(iPrN-CMe=CMe-NiPr)(ACN)2, Li(nBuN-CMe=CMe-NnBu)(ACN)2, Li(tBuN-CMe=CMe-NtBu)(ACN)2, Li(iBuN-CMe=CMe-NiBu)(ACN)2, Li(sBuN-CMe=CMe-NsBu)(ACN)2, Li(MeN-CMe=CMe-NEt)(ACN)2, Li(MeN-CMe=CMe-NiPr)(ACN)2, Li(EtN-CMe=CMe-NiPr)(ACN)2, Li(EtN-C(CF3)=CH-NEt)(ACN)2, Li(MeN-C(CF3)=CH-NMe)(ACN)2, Li(nPrN-C(CF3)=CH-NnPr)(ACN)2, Li(iPrN-C(CF3)=CH-NiPr)(ACN)2, Li(nBuN-C(CF3)=CH-NnBu)(ACN)2, Li(tBuN-C(CF3)=CH-NtBu)(ACN)2, Li(iBuN-C(CF3)=CH-NiBu)(ACN)2, Li(sBuN-C(CF3)=CH-NsBu)(ACN)2, Li(MeN-C(CF3)=C(CF3)-NMe)(ACN)2, Li(EtN-C(CF3)=C(CF3)-NEt)(ACN)2, Li(nPrN-C(CF3)=C(CF3)-NnPr)(ACN)2, Li(iPrN-C(CF3)=C(CF3)-NiPr)(ACN)2, Li(nBuN-C(CF3)=C(CF3)-NnBu)(ACN)2, Li(tBuN-C(CF3)=C(CF3)-NtBu)(ACN)2, Li(iBuN-C(CF3)=C(CF3)-NiBu)(ACN)2, 및 Li(sBuN-C(CF3)=C(CF3)-NsBu)(ACN)2. 전술한 바와 같이, 화학식 D의 DAD 리간드는 모노음이온성일 것으로 예상된다. X-선 형광 분광학 및/또는 X-선 결정 구조 결정 및/또는 자기 모멘트 측정이 이들 산화 상태를 확인하기 위해 사용될 수 있다.Exemplary lithium of formula (D) - containing compounds include the following compounds but are not limited to: Li (MeN-CH = CH -NMe) (THF) 2, Li (EtN-CH = CH-NEt) (THF) 2 , Li (nPrN-CH = CH -NnPr) (THF) 2, Li (iPrN-CH = CH-NiPr) (THF) 2, Li (nBuN-CH = CH-NnBu) (THF) 2, Li (tBuN- CH = CH-NtBu) (THF ) 2, Li (iBuN-CH = CH-NiBu) (THF) 2, Li (sBuN-CH = CH-NsBu) (THF) 2, Li (nPrN-CH = CH-NiPr ) (THF) 2, Li ( nPrN-CH = CH-NtBu) (THF) 2, Li (iPrN-CH = CH-NtBu) (THF) 2, Li (MeN-CMe = CH-NMe) (THF) 2 , Li (EtN-CMe = CH -NEt) (THF) 2, Li (nPrN-CMe = CH-NnPr) (THF) 2, Li (iPrN-CMe = CH-NiPr) (THF) 2, Li (nBuN- CMe = CH-NnBu) (THF ) 2, Li (tBuN-CMe = CH-NtBu) (THF) 2, Li (iBuN-CMe = CH-NiBu) (THF) 2, Li (sBuN-CMe = CH-NsBu ) (THF) 2, Li ( iPrN-CMe = CH-NMe) (THF) 2, Li (iPrN-CMe = CH-NEt) (THF) 2, Li (iPrN-CMe = CH-NtBu) (THF) 2 , Li (MeN-CMe = CMe -NMe) (THF) 2, Li (EtN-CMe = CMe-NEt) (THF) 2, Li (nPrN-CMe = CMe-NnPr) (THF) 2, Li (iPrN- CMe = CMe-NiPr) (THF ) 2, Li (nBuN-CMe = CMe-NnBu) (THF) 2, Li (tBuN-CMe = CMe-NtBu) (THF) 2, Li (iBuN-CMe = CMe-NiBu ) (THF) 2 , Li (sBuN-CMe = CMe-NsBu) (THF) 2 , Li (MeN- CMe = CMe-NEt) (THF ) 2, Li (MeN-CMe = CMe-NiPr) (THF) 2, Li (EtN-CMe = CMe-NiPr) (THF) 2, Li (EtN-C (CF 3) = CH-NEt) (THF) 2, Li (MeN-C (CF 3) = CH-NMe) (THF) 2, Li (nPrN-C (CF 3) = CH-NnPr) (THF) 2, Li ( iPrN-C (CF 3) = CH-NiPr) (THF) 2, Li (nBuN-C (CF 3) = CH-NnBu) (THF) 2, Li (tBuN-C (CF 3) = CH-NtBu) (THF) 2, Li (iBuN -C (CF 3) = CH-NiBu) (THF) 2, Li (sBuN-C (CF 3) = CH-NsBu) (THF) 2, Li (MeN-C (CF 3) = C (CF 3) -NMe) (THF) 2, Li (EtN-C (CF 3) = C (CF 3) -NEt) (THF) 2, Li (nPrN-C (CF 3) = C (CF 3) -NnPr) (THF ) 2, Li (iPrN-C (CF 3) = C (CF 3) -NiPr) (THF) 2, Li (nBuN-C (CF 3) = C (CF 3) -NnBu) (THF) 2, Li (tBuN-C (CF 3) = C (CF 3) -NtBu) (THF) 2, Li (iBuN-C (CF 3) = C (CF 3) -NiBu) ( THF) 2, Li (sBuN- C (CF 3) = C (CF 3) -NsBu) (THF) 2, Li (MeN-CH = CH-NMe) (OEt 2) 2, Li (EtN-CH = CH -NEt) (OEt 2) 2, Li (nPrN-CH = CH-NnPr) (OEt 2) 2, Li (iPrN-CH = CH-NiPr) (OEt 2) 2, Li (nBuN-CH = CH-NnBu ) (OEt 2) 2, Li (tBuN-CH = CH-NtBu) (OEt 2) 2, Li (iBuN-CH = CH-NiBu) (OEt 2) 2, Li (sBuN-CH = CH-NsBu) ( OEt 2) 2, Li (nPrN -CH = CH-NiPr) (OEt 2) 2, Li (nPrN-CH = CH-NtBu) (OEt 2) 2, Li (iPrN-CH = CH-NtBu ) (OEt 2) 2, Li (MeN-Me = CH-NMe) (OEt 2) 2, Li (EtN-CMe = CH-NEt) (OEt 2) 2, Li (nPrN -CMe = CH-NnPr) (OEt 2) 2, Li (iPrN-CMe = CH-NiPr) (OEt 2) 2, Li (nBuN-CMe = CH-NnBu) (OEt 2) 2, Li (tBuN-CMe = CH-NtBu) (OEt 2 ) 2, Li (iBuN-CMe = CH-NiBu) (OEt 2) 2, Li (sBuN-CMe = CH-NsBu) (OEt 2) 2, Li (iPrN-CMe = CH -NMe) (OEt 2) 2, Li (iPrN-CH = CMe-NEt) (OEt 2) 2, Li (iPrN-CH = CMe-NtBu) (OEt 2) 2, Li (MeN-CMe = CMe-NMe ) (OEt 2) 2, Li (EtN-CMe = CMe-NEt) (OEt 2) 2, Li (nPrN-CMe = CMe-NnPr) (OEt 2) 2, Li (iPrN-CMe = CMe-NiPr) ( OEt 2) 2, Li (nBuN -CMe = CMe-NnBu) (OEt 2) 2, Li (tBuN-CMe = CMe-NtBu) (OEt 2) 2, Li (iBuN-CMe = CMe-NiBu) (OEt 2 ) 2, Li (sBuN-CMe = CMe-NsBu) (OEt 2) 2, Li (MeN-CMe = CMe-NEt) (OEt 2) 2, Li (MeN-CMe = CMe-NiPr) (OEt 2) 2 , Li (EtN-CMe = CMe -NiPr) (OEt 2) 2, Li (MeN-C (CF 3) = CH-NMe) (OEt 2) 2, Li (EtN-C (CF 3) = CH-NEt ) (OEt 2) 2, Li (nPrN-C (CF 3) = CH-NnPr) (OEt 2) 2, Li (iPrN-C (CF 3) = CH-NiPr) (OEt 2) 2, Li (nBuN -C (CF 3) = CH- NnBu) (OEt 2) 2, Li (tBuN-C (CF 3) = CH-NtBu) (OEt 2) 2, Li (iBuN-C (CF 3) = CH-NiBu ) (OEt 2) 2, Li (sBuN-C (CF 3) = CH-NsBu) (OEt 2) 2, Li (MeN-C (CF 3) = C (CF 3) -NMe) (OEt 2) 2 , Li (EtN-C (CF 3) = C (CF 3) -NEt) (OEt 2) 2, Li (nPrN-C (CF 3) = C (CF 3) -NnPr) (OEt 2) 2, Li (iPrN-C (CF 3) = C (CF 3) -NiPr) (OEt 2) 2, Li (nBuN-C (CF 3) = C (CF 3) -NnBu) (OEt 2) 2, Li (tBuN -C (CF 3) = C ( CF 3) -tBu) (OEt 2) 2, Li (iBuN-C (CF 3) = C (CF 3) -NiBu) (OEt 2) 2, Li (sBuN-C (CF 3) = C (CF 3) -NsBu) (OEt 2) 2, Li (MeN-H = CH-NMe) (ACN) 2, Li (EtN-CH = CH-NEt) (ACN) 2, Li (nPrN-CH = CH-NnPr ) (ACN) 2, Li (iPrN-CH = CH-NiPr) (ACN) 2, Li (nBuN-CH = CH-NnBu) (ACN) 2, Li (tBuN-CH = CH-NtBu) (ACN) 2 , Li (iBuN-CH = CH-NiBu) (ACN) 2, Li (sBuN-CH = CH-NsBu) (ACN) 2, Li (nPrN-CH = CH-NiPr) ( ACN) 2, Li (nPrN- CH = CH-NtBu) (ACN) 2, Li (iPrN-CH = CH-NtBu) (ACN) 2, Li (MeN-CMe = CH-NMe) (ACN) 2, Li (EtN-CMe = CH-NEt ) (ACN) 2, Li (nPrN-CMe = CH-NnPr) (ACN) 2, Li (iPrN-CMe = CH-NiPr) (ACN) 2, Li (nBuN-CMe = CH-NnBu) (ACN) 2 , Li (tBuN-CMe = CH-NtBu) (ACN) 2, Li (iBuN-CMe = CH-NiBu) (ACN) 2, Li (sBuN-CMe = CH-NsBu) ( ACN) 2, Li (iPrN-CMe NMe-CH =) (ACN) 2, Li (iPrN-CH = CMe-NEt) (AC N) 2, Li (iPrN- CMe = CH-NtBu) (ACN) 2, Li (MeN-CMe = CMe-NMe) (ACN) 2, Li (EtN-CMe = CMe-NEt) (ACN) 2, Li (nPrN-CMe = CMe-NnPr ) (ACN) 2, Li (iPrN-CMe = CMe-NiPr) (ACN) 2, Li (nBuN-CMe = CMe-NnBu) (ACN) 2, Li (tBuN-CMe = CMe-NtBu) (ACN) 2 , Li (iBuN-CMe = CMe-NiBu) (ACN) 2, Li (sBuN-CMe = CMe-NsBu) (ACN) 2, Li (MeN-CMe = CMe-NEt) ( ACN) 2, Li (MeN- CMe = CMe-NiPr) (ACN) 2, Li (EtN-CMe = CMe-NiPr) (ACN) 2, Li (EtN-C (CF 3) = CH-NEt) (ACN ) 2, Li (MeN-C (CF 3) = CH-NMe) (ACN) 2, Li (nPrN-C (CF 3) = CH-NnPr) (ACN) 2, Li (iPrN-C (CF 3) = CH-NiPr) (ACN) 2, Li (nBuN-C (CF 3) = CH-NnBu) (ACN) 2, Li (tBuN-C (CF 3) = CH-NtBu) (ACN) 2, Li ( iBuN-C (CF 3) = CH-NiBu) (ACN) 2, Li (sBuN-C (CF 3) = CH-NsBu) (ACN) 2, Li (MeN-C (CF 3) = C (CF 3 ) -NMe) (ACN) 2, Li (EtN-C (CF 3) = C (CF 3) -NEt) (ACN) 2, Li (nPrN-C (CF 3) = C (CF 3) -NnPr) (ACN) 2, Li (iPrN -C (CF 3) = C (CF 3) -NiPr) (ACN) 2, Li (nBuN-C (CF 3) = C (CF 3) -NnBu) (ACN) 2 , Li (tBuN-C (CF 3) = C (CF 3) -NtBu) (ACN) 2, Li (iBuN-C (CF 3) = C (CF 3) -NiBu) (ACN) 2, and Li ( sBuN-C (CF 3) = C (CF 3) -NsBu) (ACN) 2. As mentioned above, the DAD ligand of formula (D) is expected to be monoanionic. X-ray fluorescence spectroscopy and / or X-ray crystal structure determination and / or magnetic moment measurements can be used to confirm these oxidation states.

화학식 (D)의 예시적인 나트륨-함유 화합물은 다음 화합물을 비제한적으로 포함한다: Na(MeN-CH=CH-NMe)(THF)2, Na(EtN-CH=CH-NEt)(THF)2, Na(nPrN-CH=CH-NnPr)(THF)2, Na(iPrN-CH=CH-NiPr)(THF)2, Na(nBuN-CH=CH-NnBu)(THF)2, Na(tBuN-CH=CH-NtBu)(THF)2, Na(iBuN-CH=CH-NiBu)(THF)2, Na(sBuN-CH=CH-NsBu)(THF)2, Na(nPrN-CH=CH-NiPr)(THF)2, Na(nPrN-CH=CH-NtBu)(THF)2, Na(iPrN-CH=CH-NtBu)(THF)2, Na(MeN-CMe=CH-NMe)(THF)2, Na(EtN-CMe=CH-NEt)(THF)2, Na(nPrN-CMe=CH-NnPr)(THF)2, Na(iPrN-CMe=CH-NiPr)(THF)2, Na(nBuN-CMe=CH-NnBu)(THF)2, Na(tBuN-CMe=CH-NtBu)(THF)2, Na(iBuN-CMe=CH-NiBu)(THF)2, Na(sBuN-CMe=CH-NsBu)(THF)2, Na(iPrN-CMe=CH-NMe)(THF)2, Na(iPrN-CMe=CH-NEt)(THF)2, Na(iPrN-CMe=CH-NtBu)(THF)2, Na(MeN-CMe=CMe-NMe)(THF)2, Na(EtN-CMe=CMe-NEt)(THF)2, Na(nPrN-CMe=CMe-NnPr)(THF)2, Na(iPrN-CMe=CMe-NiPr)(THF)2, Na(nBuN-CMe=CMe-NnBu)(THF)2, Na(tBuN-CMe=CMe-NtBu)(THF)2, Na(iBuN-CMe=CMe-NiBu)(THF)2, Na(sBuN-CMe=CMe-NsBu)(THF)2, Na(MeN-CMe=CMe-NEt)(THF)2, Na(MeN-CMe=CMe-NiPr)(THF)2, Na(EtN-CMe=CMe-NiPr)(THF)2, Na(EtN-C(CF3)=CH-NEt)(THF)2, Na(MeN-C(CF3)=CH-NMe)(THF)2, Na(nPrN-C(CF3)=CH-NnPr)(THF)2, Na(iPrN-C(CF3)=CH-NiPr)(THF)2, Na(nBuN-C(CF3)=CH-NnBu)(THF)2, Na(tBuN-C(CF3)=CH-NtBu)(THF)2, Na(iBuN-C(CF3)=CH-NiBu)(THF)2, Na(sBuN-C(CF3)=CH-NsBu)(THF)2, Na(MeN-C(CF3)=C(CF3)-NMe)(THF)2, Na(EtN-C(CF3)=C(CF3)-NEt)(THF)2, Na(nPrN-C(CF3)=C(CF3)-NnPr)(THF)2, Na(iPrN-C(CF3)=C(CF3)-NiPr)(THF)2, Na(nBuN-C(CF3)=C(CF3)-NnBu)(THF)2, Na(tBuN-C(CF3)=C(CF3)-NtBu)(THF)2, Na(iBuN-C(CF3)=C(CF3)-NiBu)(THF)2, Na(sBuN-C(CF3)=C(CF3)-NsBu)(THF)2, Na(MeN-CH=CH-NMe)(OEt2)2, Na(EtN-CH=CH-NEt)(OEt2)2, Na(nPrN-CH=CH-NnPr)(OEt2)2, Na(iPrN-CH=CH-NiPr)(OEt2)2, Na(nBuN-CH=CH-NnBu)(OEt2)2, Na(tBuN-CH=CH-NtBu)(OEt2)2, Na(iBuN-CH=CH-NiBu)(OEt2)2, Na(sBuN-CH=CH-NsBu)(OEt2)2, Na(nPrN-CH=CH-NiPr)(OEt2)2, Na(nPrN-CH=CH-NtBu)(OEt2)2, Na(iPrN-CH=CH-NtBu)(OEt2)2, Na(MeN-Me=CH-NMe)(OEt2)2, Na(EtN-CMe=CH-NEt)(OEt2)2, Na(nPrN-CMe=CH-NnPr)(OEt2)2, Na(iPrN-CMe=CH-NiPr)(OEt2)2, Na(nBuN-CMe=CH-NnBu)(OEt2)2, Na(tBuN-CMe=CH-NtBu)(OEt2)2, Na(iBuN-CMe=CH-NiBu)(OEt2)2, Na(sBuN-CMe=CH-NsBu)(OEt2)2, Na(iPrN-CMe=CH-NMe)(OEt2)2, Na(iPrN-CMe=CH-NEt)(OEt2)2, Na(iPrN-CMe=CH-NtBu)(OEt2)2, Na(MeN-CMe=CMe-NMe)(OEt2)2, Na(EtN-CMe=CMe-NEt)(OEt2)2, Na(nPrN-CMe=CMe-NnPr)(OEt2)2, Na(iPrN-CMe=CMe-NiPr)(OEt2)2, Na(nBuN-CMe=CMe-NnBu)(OEt2)2, Na(tBuN-CMe=CMe-NtBu)(OEt2)2, Na(iBuN-CMe=CMe-NiBu)(OEt2)2, Na(sBuN-CMe=CMe-NsBu)(OEt2)2, Na(MeN-CMe=CMe-NEt)(OEt2)2, Na(MeN-CMe=CMe-NiPr)(OEt2)2, Na(EtN-CMe=CMe-NiPr)(OEt2)2, Na(MeN-C(CF3)=CH-NMe)(OEt2)2, Na(EtN-C(CF3)=CH-NEt)(OEt2)2, Na(nPrN-C(CF3)=CH-NnPr)(OEt2)2, Na(iPrN-C(CF3)=CH-NiPr)(OEt2)2, Na(nBuN-C(CF3)=CH-NnBu)(OEt2)2, Na(tBuN-C(CF3)=CH-NtBu)(OEt2)2, Na(iBuN-C(CF3)=CH-NiBu)(OEt2)2, Na(sBuN-C(CF3)=CH-NsBu)(OEt2)2, Na(MeN-C(CF3)=C(CF3)-NMe)(OEt2)2, Na(EtN-C(CF3)=C(CF3)-NEt)(OEt2)2, Na(nPrN-C(CF3)=C(CF3)-NnPr)(OEt2)2, Na(iPrN-C(CF3)=C(CF3)-NiPr)(OEt2)2, Na(nBuN-C(CF3)=C(CF3)-NnBu)(OEt2)2, Na(tBuN-C(CF3)=C(CF3)-tBu)(OEt2)2, Na(iBuN-C(CF3)=C(CF3)-NiBu)(OEt2)2, Na(sBuN-C(CF3)=C(CF3)-NsBu)(OEt2)2, Na(MeN-H=CH-NMe)(ACN)2, Na(EtN-CH=CH-NEt)(ACN)2, Na(nPrN-CH=CH-NnPr)(ACN)2, Na(iPrN-CH=CH-NiPr)(ACN)2, Na(nBuN-CH=CH-NnBu)(ACN)2, Na(tBuN-CH=CH-NtBu)(ACN)2, Na(iBuN-CH=CH-NiBu)(ACN)2, Na(sBuN-CH=CH-NsBu)(ACN)2, Na(nPrN-CH=CH-NiPr)(ACN)2, Na(nPrN-CH=CH-NtBu)(ACN)2, Na(iPrN-CH=CH-NtBu)(ACN)2, Na(MeN-CMe=CH-NMe)(ACN)2, Na(EtN-CMe=CH-NEt)(ACN)2, Na(nPrN-CMe=CH-NnPr)(ACN)2, Na(iPrN-CMe=CH-NiPr)(ACN)2, Na(nBuN-CMe=CH-NnBu)(ACN)2, Na(tBuN-CMe=CH-NtBu)(ACN)2, Na(iBuN-CMe=CH-NiBu)(ACN)2, Na(sBuN-CMe=CH-NsBu)(ACN)2, Na(iPrN-CMe=CH-NMe)(ACN)2, Na(iPrN-CMe=CH-NEt)(ACN)2, Na(iPrN-CMe=CH-NtBu)(ACN)2, Na(MeN-CMe=CMe-NMe)(ACN)2, Na(EtN-CMe=CMe-NEt)(ACN)2, Na(nPrN-CMe=CMe-NnPr)(ACN)2, Na(iPrN-CMe=CMe-NiPr)(ACN)2, Na(nBuN-CMe=CMe-NnBu)(ACN)2, Na(tBuN-CMe=CMe-NtBu)(ACN)2, Na(iBuN-CMe=CMe-NiBu)(ACN)2, Na(sBuN-CMe=CMe-NsBu)(ACN)2, Na(MeN-CMe=CMe-NEt)(ACN)2, Na(MeN-CMe=CMe-NiPr)(ACN)2, Na(EtN-CMe=CMe-NiPr)(ACN)2, Na(EtN-C(CF3)=CH-NEt)(ACN)2, Na(MeN-C(CF3)=CH-NMe)(ACN)2, Na(nPrN-C(CF3)=CH-NnPr)(ACN)2, Na(iPrN-C(CF3)=CH-NiPr)(ACN)2, Na(nBuN-C(CF3)=CH-NnBu)(ACN)2, Na(tBuN-C(CF3)=CH-NtBu)(ACN)2, Na(iBuN-C(CF3)=CH-NiBu)(ACN)2, Na(sBuN-C(CF3)=CH-NsBu)(ACN)2, Na(MeN-C(CF3)=C(CF3)-NMe)(ACN)2, Na(EtN-C(CF3)=C(CF3)-NEt)(ACN)2, Na(nPrN-C(CF3)=C(CF3)-NnPr)(ACN)2, Na(iPrN-C(CF3)=C(CF3)-NiPr)(ACN)2, Na(nBuN-C(CF3)=C(CF3)-NnBu)(ACN)2, Na(tBuN-C(CF3)=C(CF3)-NtBu)(ACN)2, Na(iBuN-C(CF3)=C(CF3)-NiBu)(ACN)2, 및 Na(sBuN-C(CF3)=C(CF3)-NsBu)(ACN)2. 전술한 바와 같이, 화학식 D의 DAD 리간드는 모노음이온성일 것으로 예상된다. X-선 형광 분광학 및/또는 X-선 결정 구조 결정 및/또는 자기 모멘트 측정이 이들 산화 상태를 확인하기 위해 사용될 수 있다.Exemplary sodium of formula (D) - containing compounds include the following compounds but are not limited to: Na (MeN-CH = CH -NMe) (THF) 2, Na (EtN-CH = CH-NEt) (THF) 2 , Na (nPrN-CH = CH -NnPr) (THF) 2, Na (iPrN-CH = CH-NiPr) (THF) 2, Na (nBuN-CH = CH-NnBu) (THF) 2, Na (tBuN- CH = CH-NtBu) (THF ) 2, Na (iBuN-CH = CH-NiBu) (THF) 2, Na (sBuN-CH = CH-NsBu) (THF) 2, Na (nPrN-CH = CH-NiPr ) (THF) 2, Na ( nPrN-CH = CH-NtBu) (THF) 2, Na (iPrN-CH = CH-NtBu) (THF) 2, Na (MeN-CMe = CH-NMe) (THF) 2 , Na (EtN-CMe = CH -NEt) (THF) 2, Na (nPrN-CMe = CH-NnPr) (THF) 2, Na (iPrN-CMe = CH-NiPr) (THF) 2, Na (nBuN- CMe = CH-NnBu) (THF ) 2, Na (tBuN-CMe = CH-NtBu) (THF) 2, Na (iBuN-CMe = CH-NiBu) (THF) 2, Na (sBuN-CMe = CH-NsBu ) (THF) 2, Na ( iPrN-CMe = CH-NMe) (THF) 2, Na (iPrN-CMe = CH-NEt) (THF) 2, Na (iPrN-CMe = CH-NtBu) (THF) 2 , Na (MeN-CMe = CMe -NMe) (THF) 2, Na (EtN-CMe = CMe-NEt) (THF) 2, Na (nPrN-CMe = CMe-NnPr) (THF) 2, Na (iPrN- CMe = CMe-NiPr) (THF ) 2, Na (nBuN-CMe = CMe-NnBu) (THF) 2, Na (tBuN-CMe = CMe-NtBu) (THF) 2, Na (iBuN-CMe = CMe-NiBu ) (THF) 2 , Na (sBuN-CMe = CMe-NsBu) (THF) 2 , Na eN-CMe = CMe-NEt) (THF) 2, Na (MeN-CMe = CMe-NiPr) (THF) 2, Na (EtN-CMe = CMe-NiPr) (THF) 2, Na (EtN-C (CF 3) = CH-NEt) ( THF) 2, Na (MeN-C (CF 3) = CH-NMe) (THF) 2, Na (nPrN-C (CF 3) = CH-NnPr) (THF) 2, Na (iPrN-C (CF 3 ) = CH-NiPr) (THF) 2, Na (nBuN-C (CF 3) = CH-NnBu) (THF) 2, Na (tBuN-C (CF 3) = CH- NtBu) (THF) 2, Na (iBuN-C (CF 3) = CH-NiBu) (THF) 2, Na (sBuN-C (CF 3) = CH-NsBu) (THF) 2, Na (MeN-C (CF 3) = C (CF 3) -NMe) (THF) 2, Na (EtN-C (CF 3) = C (CF 3) -NEt) (THF) 2, Na (nPrN-C (CF 3) = C (CF 3) -NnPr) (THF) 2, Na (iPrN-C (CF 3) = C (CF 3) -NiPr) (THF) 2, Na (nBuN-C (CF 3) = C (CF 3) -NnBu) (THF) 2 , Na (tBuN-C (CF 3) = C (CF 3) -NtBu) (THF) 2, Na (iBuN-C (CF 3) = C (CF 3) -NiBu ) (THF) 2, Na ( sBuN-C (CF 3) = C (CF 3) -NsBu) (THF) 2, Na (MeN-CH = CH-NMe) (OEt 2) 2, Na (EtN-CH = CH-NEt) (OEt 2 ) 2, Na (nPrN-CH = CH-NnPr) (OEt 2) 2, Na (iPrN-CH = CH-NiPr) (OEt 2) 2, Na (nBuN-CH = CH -NnBu) (OEt 2) 2, Na (tBuN-CH = CH-NtBu) (OEt 2) 2, Na (iBuN-CH = CH-NiBu) (OEt 2) 2, Na (sBuN-CH = CH-NsBu ) (OEt 2) 2, Na (nPrN-CH = CH-NiPr) (OEt 2) 2, Na (nPrN-CH = CH-NtBu) (OEt 2) 2, Na (iPrN-CH = CH- NtBu) (OEt 2) 2, Na (MeN-Me = CH-NMe) (OEt 2) 2, Na (EtN-CMe = CH-NEt) (OEt 2) 2, Na ( nPrN-CMe = CH-NnPr) (OEt 2) 2, Na (iPrN-CMe = CH-NiPr) (OEt 2) 2, Na (nBuN-CMe = CH-NnBu) (OEt 2) 2, Na (tBuN- CMe = CH-NtBu) (OEt 2) 2, Na (iBuN-CMe = CH-NiBu) (OEt 2) 2, Na (sBuN-CMe = CH-NsBu) (OEt 2) 2, Na (iPrN-CMe = NMe-CH) (OEt 2) 2, Na (iPrN-CH = CMe-NEt) (OEt 2) 2, Na (iPrN-CH = CMe-NtBu) (OEt 2) 2, Na (MeN-CMe = CMe- NMe) (OEt 2) 2, Na (EtN-CMe = CMe-NEt) (OEt 2) 2, Na (nPrN-CMe = CMe-NnPr) (OEt 2) 2, Na (iPrN-CMe = CMe-NiPr) (OEt 2) 2, Na ( nBuN-CMe = CMe-NnBu) (OEt 2) 2, Na (tBuN-CMe = CMe-NtBu) (OEt 2) 2, Na (iBuN-CMe = CMe-NiBu) (OEt 2) 2, Na (sBuN- CMe = CMe-NsBu) (OEt 2) 2, Na (MeN-CMe = CMe-NEt) (OEt 2) 2, Na (MeN-CMe = CMe-NiPr) (OEt 2) 2, Na (EtN-CMe = CMe-NiPr) (OEt 2) 2, Na (MeN-C (CF 3) = CH-NMe) (OEt 2) 2, Na (EtN-C (CF 3) = CH- NEt) (OEt 2) 2, Na (nPrN-C (CF 3) = CH-NnPr) (OEt 2) 2, Na (iPrN-C (CF 3) = CH-NiPr) (OEt 2) 2, Na ( nBuN-C (CF 3) = CH-NnBu) (OEt 2) 2, Na (tBuN-C (CF 3) = CH-NtBu) (OEt 2) 2, Na (iBuN-C (CF 3) = CH- N (OEt 2 ) 2 , Na (sBuN-C (CF 3 ) = CH-NsBu) (OEt 2 ) 2 , Na (MeN-C (CF 3 ) = C (CF 3 ) -NMe) (OEt 2 ) 2, Na (EtN-C ( CF 3) = C (CF 3) -NEt) (OEt 2) 2, Na (nPrN-C (CF 3) = C (CF 3) -NnPr) (OEt 2) 2, Na (iPrN-C (CF 3 ) = C (CF 3) -NiPr) (OEt 2) 2, Na (nBuN-C (CF 3) = C (CF 3) -NnBu) (OEt 2) 2, Na ( tBuN-C (CF 3) = C (CF 3) -tBu) (OEt 2) 2, Na (iBuN-C (CF 3) = C (CF 3) -NiBu) (OEt 2) 2, Na (sBuN- C (CF 3) = C ( CF 3) -NsBu) (OEt 2) 2, Na (MeN-H = CH-NMe) (ACN) 2, Na (EtN-CH = CH-NEt) (ACN) 2, Na (nPrN-CH = CH- NnPr) (ACN) 2, Na (iPrN-CH = CH-NiPr) (ACN) 2, Na (nBuN-CH = CH-NnBu) (ACN) 2, Na (tBuN-CH = CH-NtBu) (ACN) 2, Na (iBuN-CH = CH-NiBu) (ACN) 2, Na (sBuN-CH = CH-NsBu) (ACN) 2, Na (nPrN-CH = CH-NiPr) (ACN) 2, Na (nPrN -CH = CH-NtBu) (ACN) 2, Na (iPrN-CH = CH-NtBu) (ACN) 2, Na (MeN-CMe = CH-NMe) (ACN) 2, Na (EtN-CMe = CH- NEt) (ACN) 2, Na (nPrN-CMe = CH-NnPr) (ACN) 2, Na (iPrN-CMe = CH-NiPr) (ACN) 2, Na (nBuN-CMe = CH-NnBu) (ACN) 2, Na (tBuN-CMe = CH-NtBu) (ACN) 2, Na (iBuN-CMe = CH-NiBu) (ACN) 2, Na (sBuN-CMe = CH-NsBu) (ACN) 2, Na (iPrN-CMe NMe-CH =) (ACN) 2, Na (iPrN-CH = CMe-NEt) (ACN) 2, Na (iPrN -CMe = CH-NtBu) (ACN) 2, Na (MeN-CMe = CMe-NMe) (ACN) 2, Na (EtN-CMe = CMe-NEt) (ACN) 2, Na (nPrN-CMe = CMe- NnPr) (ACN) 2, Na (iPrN-CMe = CMe-NiPr) (ACN) 2, Na (nBuN-CMe = CMe-NnBu) (ACN) 2, Na (tBuN-CMe = CMe-NtBu) (ACN) 2, Na (iBuN-CMe = CMe-NiBu) (ACN) 2, Na (sBuN-CMe = CMe-NsBu) (ACN) 2, Na (MeN-CMe = CMe-NEt) (ACN) 2, Na (MeN -CMe = CMe-NiPr) (ACN) 2, Na (EtN-CMe = CMe-NiPr) (ACN) 2, Na (EtN-C (CF 3) = CH-NEt) ( ACN) 2, Na (MeN- C (CF 3) = CH-NMe) (ACN) 2, Na (nPrN-C (CF 3) = CH-NnPr) (ACN) 2, Na (iPrN-C (CF 3 ) = CH-NiPr) (ACN ) 2, Na (nBuN-C (CF 3) = CH-NnBu) (ACN) 2, Na (tBuN-C (CF 3) = CH-NtBu) (ACN) 2, Na (iBuN-C (CF 3) = CH-NiBu) (ACN) 2, Na (sBuN-C (CF 3) = CH-NsBu) (ACN) 2, Na (MeN-C (CF 3) = C (CF 3) -NMe) (ACN) 2 , Na (EtN-C (CF 3) = C (CF 3) -NEt) (ACN) 2, Na (nPrN-C (CF 3) = C (CF 3) -NnPr ) (ACN) 2, Na ( iPrN-C (CF 3) = C (CF 3) -NiPr) (ACN) 2, Na (nBuN-C (CF 3) = C (CF 3) -NnBu) (ACN) 2, Na (tBuN-C ( CF 3) = C (CF 3) -NtBu) (ACN) 2, Na (iBuN-C (CF 3) = C (CF 3) -NiBu) (ACN) 2, and Na (sBuN-C (CF 3) = C (CF 3) -NsBu) (ACN) 2. As mentioned above, the DAD ligand of formula (D) is expected to be monoanionic. X-ray fluorescence spectroscopy and / or X-ray crystal structure determination and / or magnetic moment measurements can be used to confirm these oxidation states.

화학식 (D)의 예시적인 칼륨-함유 화합물은 다음 화합물을 비제한적으로 포함한다: K(MeN-CH=CH-NMe)(THF)2, K(EtN-CH=CH-NEt)(THF)2, K(nPrN-CH=CH-NnPr)(THF)2, K(iPrN-CH=CH-NiPr)(THF)2, K(nBuN-CH=CH-NnBu)(THF)2, K(tBuN-CH=CH-NtBu)(THF)2, K(iBuN-CH=CH-NiBu)(THF)2, K(sBuN-CH=CH-NsBu)(THF)2, K(nPrN-CH=CH-NiPr)(THF)2, K(nPrN-CH=CH-NtBu)(THF)2, K(iPrN-CH=CH-NtBu)(THF)2, K(MeN-CMe=CH-NMe)(THF)2, K(EtN-CMe=CH-NEt)(THF)2, K(nPrN-CMe=CH-NnPr)(THF)2, K(iPrN-CMe=CH-NiPr)(THF)2, K(nBuN-CMe=CH-NnBu)(THF)2, K(tBuN-CMe=CH-NtBu)(THF)2, K(iBuN-CMe=CH-NiBu)(THF)2, K(sBuN-CMe=CH-NsBu)(THF)2, K(iPrN-CMe=CH-NMe)(THF)2, K(iPrN-CMe=CH-NEt)(THF)2, K(iPrN-CMe=CH-NtBu)(THF)2, K(MeN-CMe=CMe-NMe)(THF)2, K(EtN-CMe=CMe-NEt)(THF)2, K(nPrN-CMe=CMe-NnPr)(THF)2, K(iPrN-CMe=CMe-NiPr)(THF)2, K(nBuN-CMe=CMe-NnBu)(THF)2, K(tBuN-CMe=CMe-NtBu)(THF)2, K(iBuN-CMe=CMe-NiBu)(THF)2, K(sBuN-CMe=CMe-NsBu)(THF)2, K(MeN-CMe=CMe-NEt)(THF)2, K(MeN-CMe=CMe-NiPr)(THF)2, K(EtN-CMe=CMe-NiPr)(THF)2, K(EtN-C(CF3)=CH-NEt)(THF)2, K(MeN-C(CF3)=CH-NMe)(THF)2, K(nPrN-C(CF3)=CH-NnPr)(THF)2, K(iPrN-C(CF3)=CH-NiPr)(THF)2, K(nBuN-C(CF3)=CH-NnBu)(THF)2, K(tBuN-C(CF3)=CH-NtBu)(THF)2, K(iBuN-C(CF3)=CH-NiBu)(THF)2, K(sBuN-C(CF3)=CH-NsBu)(THF)2, K(MeN-C(CF3)=C(CF3)-NMe)(THF)2, K(EtN-C(CF3)=C(CF3)-NEt)(THF)2, K(nPrN-C(CF3)=C(CF3)-NnPr)(THF)2, K(iPrN-C(CF3)=C(CF3)-NiPr)(THF)2, K(nBuN-C(CF3)=C(CF3)-NnBu)(THF)2, K(tBuN-C(CF3)=C(CF3)-NtBu)(THF)2, K(iBuN-C(CF3)=C(CF3)-NiBu)(THF)2, K(sBuN-C(CF3)=C(CF3)-NsBu)(THF)2, K(MeN-CH=CH-NMe)(OEt2)2, K(EtN-CH=CH-NEt)(OEt2)2, K(nPrN-CH=CH-NnPr)(OEt2)2, K(iPrN-CH=CH-NiPr)(OEt2)2, K(nBuN-CH=CH-NnBu)(OEt2)2, K(tBuN-CH=CH-NtBu)(OEt2)2, K(iBuN-CH=CH-NiBu)(OEt2)2, K(sBuN-CH=CH-NsBu)(OEt2)2, K(nPrN-CH=CH-NiPr)(OEt2)2, K(nPrN-CH=CH-NtBu)(OEt2)2, K(iPrN-CH=CH-NtBu)(OEt2)2, K(MeN-Me=CH-NMe)(OEt2)2, K(EtN-CMe=CH-NEt)(OEt2)2, K(nPrN-CMe=CH-NnPr)(OEt2)2, K(iPrN-CMe=CH-NiPr)(OEt2)2, K(nBuN-CMe=CH-NnBu)(OEt2)2, K(tBuN-CMe=CH-NtBu)(OEt2)2, K(iBuN-CMe=CH-NiBu)(OEt2)2, K(sBuN-CMe=CH-NsBu)(OEt2)2, K(iPrN-CMe=CH-NMe)(OEt2)2, K(iPrN-CMe=CH-NEt)(OEt2)2, K(iPrN-CMe=CH-NtBu)(OEt2)2, K(MeN-CMe=CMe-NMe)(OEt2)2, K(EtN-CMe=CMe-NEt)(OEt2)2, K(nPrN-CMe=CMe-NnPr)(OEt2)2, K(iPrN-CMe=CMe-NiPr)(OEt2)2, K(nBuN-CMe=CMe-NnBu)(OEt2)2, K(tBuN-CMe=CMe-NtBu)(OEt2)2, K(iBuN-CMe=CMe-NiBu)(OEt2)2, K(sBuN-CMe=CMe-NsBu)(OEt2)2, K(MeN-CMe=CMe-NEt)(OEt2)2, K(MeN-CMe=CMe-NiPr)(OEt2)2, K(EtN-CMe=CMe-NiPr)(OEt2)2, K(MeN-C(CF3)=CH-NMe)(OEt2)2, K(EtN-C(CF3)=CH-NEt)(OEt2)2, K(nPrN-C(CF3)=CH-NnPr)(OEt2)2, K(iPrN-C(CF3)=CH-NiPr)(OEt2)2, K(nBuN-C(CF3)=CH-NnBu)(OEt2)2, K(tBuN-C(CF3)=CH-NtBu)(OEt2)2, K(iBuN-C(CF3)=CH-NiBu)(OEt2)2, K(sBuN-C(CF3)=CH-NsBu)(OEt2)2, K(MeN-C(CF3)=C(CF3)-NMe)(OEt2)2, K(EtN-C(CF3)=C(CF3)-NEt)(OEt2)2, K(nPrN-C(CF3)=C(CF3)-NnPr)(OEt2)2, K(iPrN-C(CF3)=C(CF3)-NiPr)(OEt2)2, K(nBuN-C(CF3)=C(CF3)-NnBu)(OEt2)2, K(tBuN-C(CF3)=C(CF3)-tBu)(OEt2)2, K(iBuN-C(CF3)=C(CF3)-NiBu)(OEt2)2, K(sBuN-C(CF3)=C(CF3)-NsBu)(OEt2)2, K(MeN-H=CH-NMe)(ACN)2, K(EtN-CH=CH-NEt)(ACN)2, K(nPrN-CH=CH-NnPr)(ACN)2, K(iPrN-CH=CH-NiPr)(ACN)2, K(nBuN-CH=CH-NnBu)(ACN)2, K(tBuN-CH=CH-NtBu)(ACN)2, K(iBuN-CH=CH-NiBu)(ACN)2, K(sBuN-CH=CH-NsBu)(ACN)2, K(nPrN-CH=CH-NiPr)(ACN)2, K(nPrN-CH=CH-NtBu)(ACN)2, K(iPrN-CH=CH-NtBu)(ACN)2, K(MeN-CMe=CH-NMe)(ACN)2, K(EtN-CMe=CH-NEt)(ACN)2, K(nPrN-CMe=CH-NnPr)(ACN)2, K(iPrN-CMe=CH-NiPr)(ACN)2, K(nBuN-CMe=CH-NnBu)(ACN)2, K(tBuN-CMe=CH-NtBu)(ACN)2, K(iBuN-CMe=CH-NiBu)(ACN)2, K(sBuN-CMe=CH-NsBu)(ACN)2, K(iPrN-CMe=CH-NMe)(ACN)2, K(iPrN-CMe=CH-NEt)(ACN)2, K(iPrN-CMe=CH-NtBu)(ACN)2, K(MeN-CMe=CMe-NMe)(ACN)2, K(EtN-CMe=CMe-NEt)(ACN)2, K(nPrN-CMe=CMe-NnPr)(ACN)2, K(iPrN-CMe=CMe-NiPr)(ACN)2, K(nBuN-CMe=CMe-NnBu)(ACN)2, K(tBuN-CMe=CMe-NtBu)(ACN)2, K(iBuN-CMe=CMe-NiBu)(ACN)2, K(sBuN-CMe=CMe-NsBu)(ACN)2, K(MeN-CMe=CMe-NEt)(ACN)2, K(MeN-CMe=CMe-NiPr)(ACN)2, K(EtN-CMe=CMe-NiPr)(ACN)2, K(EtN-C(CF3)=CH-NEt)(ACN)2, K(MeN-C(CF3)=CH-NMe)(ACN)2, K(nPrN-C(CF3)=CH-NnPr)(ACN)2, K(iPrN-C(CF3)=CH-NiPr)(ACN)2, K(nBuN-C(CF3)=CH-NnBu)(ACN)2, K(tBuN-C(CF3)=CH-NtBu)(ACN)2, K(iBuN-C(CF3)=CH-NiBu)(ACN)2, K(sBuN-C(CF3)=CH-NsBu)(ACN)2, K(MeN-C(CF3)=C(CF3)-NMe)(ACN)2, K(EtN-C(CF3)=C(CF3)-NEt)(ACN)2, K(nPrN-C(CF3)=C(CF3)-NnPr)(ACN)2, K(iPrN-C(CF3)=C(CF3)-NiPr)(ACN)2, K(nBuN-C(CF3)=C(CF3)-NnBu)(ACN)2, K(tBuN-C(CF3)=C(CF3)-NtBu)(ACN)2, K(iBuN-C(CF3)=C(CF3)-NiBu)(ACN)2, 및 K(sBuN-C(CF3)=C(CF3)-NsBu)(ACN)2. 전술한 바와 같이, 화학식 D의 DAD 리간드는 모노음이온성일 것으로 예상된다. X-선 형광 분광학 및/또는 X-선 결정 구조 결정 및/또는 자기 모멘트 측정이 이들 산화 상태를 확인하기 위해 사용될 수 있다.Exemplary potassium of formula (D) - containing compounds include the following compounds but are not limited to: K (MeN-CH = CH -NMe) (THF) 2, K (EtN-CH = CH-NEt) (THF) 2 , K (nPrN-CH = CH -NnPr) (THF) 2, K (iPrN-CH = CH-NiPr) (THF) 2, K (nBuN-CH = CH-NnBu) (THF) 2, K (tBuN- CH = CH-NtBu) (THF ) 2, K (iBuN-CH = CH-NiBu) (THF) 2, K (sBuN-CH = CH-NsBu) (THF) 2, K (nPrN-CH = CH-NiPr ) (THF) 2, K ( nPrN-CH = CH-NtBu) (THF) 2, K (iPrN-CH = CH-NtBu) (THF) 2, K (MeN-CMe = CH-NMe) (THF) 2 , K (EtN-CMe = CH -NEt) (THF) 2, K (nPrN-CMe = CH-NnPr) (THF) 2, K (iPrN-CMe = CH-NiPr) (THF) 2, K (nBuN- CMe = CH-NnBu) (THF ) 2, K (tBuN-CMe = CH-NtBu) (THF) 2, K (iBuN-CMe = CH-NiBu) (THF) 2, K (sBuN-CMe = CH-NsBu ) (THF) 2, K ( iPrN-CMe = CH-NMe) (THF) 2, K (iPrN-CMe = CH-NEt) (THF) 2, K (iPrN-CMe = CH-NtBu) (THF) 2 , K (MeN-CMe = CMe -NMe) (THF) 2, K (EtN-CMe = CMe-NEt) (THF) 2, K (nPrN-CMe = CMe-NnPr) (THF) 2, K (iPrN- CMe = CMe-NiPr) (THF ) 2, K (nBuN-CMe = CMe-NnBu) (THF) 2, K (tBuN-CMe = CMe-NtBu) (THF) 2, K (iBuN-CMe = CMe-NiBu ) (THF) 2, K ( sBuN-CMe = CMe-NsBu) (THF) 2, K (MeN-CMe = CMe-NEt) (THF) 2, K (MeN-CMe = CMe-NiPr) (THF) 2, K (EtN-CMe = CMe-NiPr) (THF) 2, K (EtN-C (CF 3) = CH-NEt) (THF) 2, K (MeN-C ( CF 3) = CH-NMe) (THF) 2, K (nPrN-C (CF 3) = CH-NnPr) (THF) 2, K (iPrN-C (CF 3) = CH-NiPr) (THF) 2 , K (nBuN-C (CF 3) = CH-NnBu) (THF) 2, K (tBuN-C (CF 3) = CH-NtBu) (THF) 2, K (iBuN-C (CF 3) = CH -NiBu) (THF) 2, K (sBuN-C (CF 3) = CH-NsBu) (THF) 2, K (MeN-C (CF 3) = C (CF 3) -NMe) (THF) 2, K (EtN-C (CF 3 ) = C (CF 3) -NEt) (THF) 2, K (nPrN-C (CF 3) = C (CF 3) -NnPr) (THF) 2, K (iPrN- C (CF 3) = C ( CF 3) -NiPr) (THF) 2, K (nBuN-C (CF 3) = C (CF 3) -NnBu) (THF) 2, K (tBuN-C (CF 3 ) = C (CF 3) -NtBu ) (THF) 2, K (iBuN-C (CF 3) = C (CF 3) -NiBu) (THF) 2, K (sBuN-C (CF 3) = C ( CF 3) -NsBu) (THF) 2, K (MeN-CH = CH-NMe) (OEt 2) 2, K (EtN-CH = CH-NEt) (OEt 2) 2, K (nPrN-CH = CH -NnPr) (OEt 2) 2, K (iPrN-CH = CH-NiPr) (OEt 2) 2, K (nBuN-CH = CH-NnBu) (OEt 2) 2, K (tBuN-CH = CH-NtBu ) (OEt 2) 2, K (iBuN-CH = CH-NiBu) (OEt 2) 2, K (sBuN-CH = CH-NsBu) (OEt 2) 2, K (nPrN-CH = CH-NiPr) ( OEt 2) 2, K (nPrN -CH = CH-NtBu) (OEt 2) 2, K (iPrN-CH = CH-NtBu) (OEt 2) 2, K (MeN-Me = CH-NMe) (OEt 2 ) 2 , K (EtN-CMe = CH-NEt ) (OEt 2) 2, K (nPrN-CMe = CH-NnPr) (OEt 2) 2, K (iPrN-CMe = CH-NiPr) (OEt 2) 2, K (nBuN -CMe = CH-NnBu) (OEt 2) 2, K (tBuN-CMe = CH-NtBu) (OEt 2) 2, K (iBuN-CMe = CH-NiBu) (OEt 2) 2, K (sBuN-CMe = CH-NsBu) (OEt 2 ) 2, K (iPrN-CMe = CH-NMe) (OEt 2) 2, K (iPrN-CMe = CH-NEt) (OEt 2) 2, K (iPrN-CMe = CH -NtBu) (OEt 2) 2, K (MeN-CMe = CMe-NMe) (OEt 2) 2, K (EtN-CMe = CMe-NEt) (OEt 2) 2, K (nPrN-CMe = CMe-NnPr (OEt 2 ) 2 , K (tBuN-CMe = CMe-NtBu) (OEt 2 ) 2 , K (iPrN-CMe = CMe-NiPr) (OEt 2 ) 2 , K (nBuN-CMe = CMe-NnBu) OEt 2) 2, K (iBuN -CMe = CMe-NiBu) (OEt 2) 2, K (sBuN-CMe = CMe-NsBu) (OEt 2) 2, K (MeN-CMe = CMe-NEt) (OEt 2 ) 2, K (MeN-CMe = CMe-NiPr) (OEt 2) 2, K (EtN-CMe = CMe-NiPr) (OEt 2) 2, K (MeN-C (CF 3) = CH-NMe) ( OEt 2) 2, K (EtN -C (CF 3) = CH-NEt) (OEt 2) 2, K (nPrN-C (CF 3) = CH-NnPr) (OEt 2) 2, K (iPrN-C (CF 3) = CH-NiPr ) (OEt 2) 2, K (nBuN-C (CF 3) = CH-NnBu) (OEt 2) 2, K (tBuN-C (CF 3) = CH-NtBu) ( OEt 2) 2, K (iBuN -C (CF 3) = CH-NiBu) (OEt 2) 2, K (sBuN-C (CF 3) = CH-NsBu) (OEt 2) 2, K (MeN-C (CF 3) = C (CF 3) -NMe) (OEt 2) 2 , K (EtN-C (CF 3) = C (CF 3) -NEt) (OEt 2) 2, K (nPrN-C (CF 3) = C (CF 3) -NnPr) (OEt 2) 2, K (iPrN-C (CF 3) = C (CF 3) -NiPr) (OEt 2) 2, K (nBuN-C (CF 3) = C (CF 3) -NnBu) (OEt 2) 2, K (tBuN -C (CF 3) = C ( CF 3) -tBu) (OEt 2) 2, K (iBuN-C (CF 3) = C (CF 3) -NiBu) (OEt 2) 2, K (sBuN-C (CF 3) = C (CF 3) -NsBu) (OEt 2) 2, K (MeN-H = CH-NMe) (ACN) 2, K (EtN-CH = CH-NEt) (ACN) 2, K (nPrN-CH = CH-NnPr ) (ACN) 2, K (iPrN-CH = CH-NiPr) (ACN) 2, K (nBuN-CH = CH-NnBu) (ACN) 2, K (tBuN-CH = CH-NtBu) (ACN) 2 , K (iBuN-CH = CH-NiBu) (ACN) 2, K (sBuN-CH = CH-NsBu) (ACN) 2, K (nPrN-CH = CH-NiPr) ( ACN) 2, K (nPrN- CH = CH-NtBu) (ACN) 2, K (iPrN-CH = CH-NtBu) (ACN) 2, K (MeN-CMe = CH-NMe) (ACN) 2, K (EtN-CMe = CH-NEt ) (ACN) 2, K (nPrN-CMe = CH-NnPr) (ACN) 2, K (iPrN-CMe = CH-NiPr) (ACN) 2, K (nBuN-CMe = CH-NnBu) (ACN) 2 , K (tBuN-CMe = CH-NtBu) (ACN) 2, K (iBuN-CMe = CH-NiBu) (ACN) 2, K (sBuN-CMe = CH-NsBu) ( ACN) 2, K (iPrN- CMe = CH-NMe) (ACN) 2, K (iPrN-CMe = CH-NEt) (ACN) 2, K (iPrN-CMe = CH-NtBu) (ACN) 2, K (MeN-CMe = CMe-NMe ) (ACN) 2, K (EtN-CMe = CMe-NEt) (ACN) 2, K (nPrN-CMe = CMe-NnPr) (ACN) 2 , K (iPrN-CMe = CMe -NiPr) (ACN) 2, K (nBuN-CMe = CMe-NnBu) (ACN) 2, K (tBuN-CMe = CMe-NtBu) (ACN) 2, K (iBuN- CMe = CMe-NiBu) (ACN ) 2, K (sBuN-CMe = CMe-NsBu) (ACN) 2, K (MeN-CMe = CMe-NEt) (ACN) 2, K (MeN-CMe = CMe-NiPr ) (ACN) 2, K ( EtN-CMe = CMe-NiPr) (ACN) 2, K (EtN-C (CF 3) = CH-NEt) (ACN) 2, K (MeN-C (CF 3) = CH-NMe) (ACN) 2 , K (nPrN-C (CF 3) = CH-NnPr) (ACN) 2, K (iPrN-C (CF 3) = CH-NiPr) (ACN) 2, K (nBuN -C (CF 3) = CH- NnBu) (ACN) 2, K (tBuN-C (CF 3) = CH-NtBu) (ACN) 2, K (iBuN-C (CF 3) = CH-NiBu) ( ACN) 2, K (sBuN- C (CF 3) = CH-NsBu) (ACN) 2, K (MeN-C (CF 3) = C (CF 3) -NMe) (ACN) 2, K (EtN- C (CF 3) = C ( CF 3) -NEt) (ACN) 2, K (nPrN-C (CF 3) = C (CF 3) -NnPr) (ACN) 2, K (iPrN-C (CF 3 ) = C (CF 3) -NiPr ) (ACN) 2, K = (nBuN-C (CF 3) = C (CF 3) -NnBu) (ACN) 2, K (tBuN-C (CF 3) C ( CF 3) -NtBu) (ACN) 2, K (iBuN-C (CF 3) = C (CF 3) -NiBu) (ACN) 2, and K (sBuN-C (CF 3 ) = C (CF 3) -NsBu) (ACN) 2 . As mentioned above, the DAD ligand of formula (D) is expected to be monoanionic. X-ray fluorescence spectroscopy and / or X-ray crystal structure determination and / or magnetic moment measurements can be used to confirm these oxidation states.

화학식 (E)의 예시적인 리튬-함유 화합물은 다음 화합물을 비제한적으로 포함한다: Li(MeN-CH=CH-NMe)(MeN-CH=CH-NMe), Li(EtN-CH=CH-NEt)(EtN-CH=CH-NEt), Li(nPrN-CH=CH-NnPr)(nPrN-CH=CH-NnPr), Li(iPrN-CH=CH-NiPr)(iPrN-CH=CH-NiPr), Li(nBuN-CH=CH-NnBu)(nBuN-CH=CH-NnBu), Li(tBuN-CH=CH-NtBu)(tBuN-CH=CH-NtBu), Li(iBuN-CH=CH-NiBu)(iBuN-CH=CH-NiBu), 및 Li(sBuN-CH=CH-NsBu)(sBuN-CH=CH-NsBu). 전술한 바와 같이, 화학식 E의 DAD 리간드 중 하나는 모노음이온성이고 다른 것은 중성일 것으로 예상된다. X-선 형광 분광학 및/또는 X-선 결정 구조 결정 및/또는 자기 모멘트 측정이 이들 산화 상태를 확인하기 위해 사용될 수 있다.Exemplary lithium-containing compounds of formula (E) include, but are not limited to, Li (MeN-CH = CH-NMe) CH 2 -NPr) (iPrN-CH = CH-NiPr) (nPrN-CH = CH-NnPr) CH = CH-NtBu), Li (iBuN-CH = CH-NBu), Li (nBuN-CH = CH- ) (iBuN-CH = CH-NiBu), and Li (sBuN-CH = CH-NsBu) (sBuN-CH = CH-NsBu). As indicated above, one of the DAD ligands of formula E is expected to be monoanionic and the other neutral. X-ray fluorescence spectroscopy and / or X-ray crystal structure determination and / or magnetic moment measurements can be used to confirm these oxidation states.

화학식 (E)의 예시적인 나트륨-함유 화합물은 다음 화합물을 비제한적으로 포함한다: Na(MeN-CH=CH-NMe)(MeN-CH=CH-NMe), Na(EtN-CH=CH-NEt)(EtN-CH=CH-NEt), Na(nPrN-CH=CH-NnPr)(nPrN-CH=CH-NnPr), Na(iPrN-CH=CH-NiPr)(iPrN-CH=CH-NiPr), Na(nBuN-CH=CH-NnBu)(nBuN-CH=CH-NnBu), Na(tBuN-CH=CH-NtBu)(tBuN-CH=CH-NtBu), Na(iBuN-CH=CH-NiBu)(iBuN-CH=CH-NiBu), 및 Na(sBuN-CH=CH-NsBu)(sBuN-CH=CH-NsBu). 전술한 바와 같이, 화학식 E의 DAD 리간드 중 하나는 모노음이온성이고 다른 것은 중성일 것으로 예상된다. X-선 형광 분광학 및/또는 X-선 결정 구조 결정 및/또는 자기 모멘트 측정이 이들 산화 상태를 확인하기 위해 사용될 수 있다.Exemplary sodium-containing compounds of formula (E) include but are not limited to Na (MeN-CH = CH-NMe) (MeN-CH = CH-NMe), Na CHNPr) (NaPrN-CH = CH-NiPr) (NaPrN-CH = CH-NiPr) CH = CH-NtBu), Na (iBuN-CH = CH-NBu) (NaBuN-CH = CH- ) (iBuN-CH = CH-NiBu), and Na (sBuN-CH = CH-NsBu) (sBuN-CH = CH-NsBu). As indicated above, one of the DAD ligands of formula E is expected to be monoanionic and the other neutral. X-ray fluorescence spectroscopy and / or X-ray crystal structure determination and / or magnetic moment measurements can be used to confirm these oxidation states.

화학식 (E)의 예시적인 칼륨-함유 화합물은 다음 화합물을 비제한적으로 포함한다: K(MeN-CH=CH-NMe)(MeN-CH=CH-NMe), K(EtN-CH=CH-NEt)(EtN-CH=CH-NEt), K(nPrN-CH=CH-NnPr)(nPrN-CH=CH-NnPr), K(iPrN-CH=CH-NiPr)(iPrN-CH=CH-NiPr), K(nBuN-CH=CH-NnBu)(nBuN-CH=CH-NnBu), K(tBuN-CH=CH-NtBu)(tBuN-CH=CH-NtBu), K(iBuN-CH=CH-NiBu)(iBuN-CH=CH-NiBu), 및 K(sBuN-CH=CH-NsBu)(sBuN-CH=CH-NsBu). 전술한 바와 같이, 화학식 E의 DAD 리간드 중 하나는 모노음이온성이고 다른 것은 중성일 것으로 예상된다. X-선 형광 분광학 및/또는 X-선 결정 구조 결정 및/또는 자기 모멘트 측정이 이들 산화 상태를 확인하기 위해 사용될 수 있다.Exemplary potassium-containing compounds of formula (E) include, but are not limited to, K (MeN-CH = CH-NMe) CHRPNPr), K (iPrN-CH = CH-NiPr) (iPrN-CH = CH-NiPr) , K (nBuN-CH = CH-NnBu) (nBuN-CH = CH-NnBu), K (tBuN-CH = CH-NtBu) ) (iBuN-CH = CH-NiBu), and K (sBuN-CH = CH-NsBu) (sBuN-CH = CH-NsBu). As indicated above, one of the DAD ligands of formula E is expected to be monoanionic and the other neutral. X-ray fluorescence spectroscopy and / or X-ray crystal structure determination and / or magnetic moment measurements can be used to confirm these oxidation states.

바람직하게는 리튬-함유 화합물은 Li2(iPrN-CH=CH-NiPr), Li2(tBu-CH=CH-NtBu), Li2(iPrN-CMe=CMe-NiPr), 또는 Li2(tBu-CMe=CMe-NtBu)이다.Preferably a lithium-containing compound is Li 2 (iPrN-CH = CH -NiPr), Li 2 (tBu-CH = CH-NtBu), Li 2 (iPrN-CMe = CMe-NiPr), or Li 2 (tBu- CMe = CMe-NtBu).

바람직하게는 나트륨-함유 화합물은 Na2(iPrN-CH=CH-NiPr), Na2(tBu-CH=CH-NtBu), Na2(iPrN-CMe=CMe-NiPr), 또는 Na2(tBu-CMe=CMe-NtBu)이다.Preferably a sodium-containing compound is Na 2 (iPrN-CH = CH -NiPr), Na 2 (tBu-CH = CH-NtBu), Na 2 (iPrN-CMe = CMe-NiPr), or Na 2 (tBu- CMe = CMe-NtBu).

바람직하게는 칼륨-함유 화합물은 K2(iPrN-CH=CH-NiPr), K2(tBu-CH=CH-NtBu), K2(iPrN-CMe=CMe-NiPr), 또는 K2(tBu-CMe=CMe-NtBu)이다.Preferably potassium-containing compound is K 2 (iPrN-CH = CH -NiPr), K 2 (tBu-CH = CH-NtBu), K 2 (iPrN-CMe = CMe-NiPr), or K 2 (tBu- CMe = CMe-NtBu).

본 발명자들은 화학식 Mn(DAD)mLx의 알칼리 금속-함유 화합물은 하나의 DAD 리간드에 대하여 1개 초과의 M 원자를 함유할 수 있기 때문에 높은 효율을 가질 것으로 생각한다. 또한 본 발명자들은 화학식 Mn(DAD)mLx의 알칼리 금속-함유 화합물이 알칼리 금속과 리간드 사이에 다수의 배위 결합으로 인하여 높은 열 안정성 또한 가질 것으로 생각한다. 그러므로, 본 발명자들은 화학식 Mn(DAD)mLx의 알칼리 금속-함유 화합물이, CVD, ALD 또는 전구체 화합물의 증기를 기판의 표면으로 가져오는 임의의 다른 침착 방법에서 알칼리 금속-함유 필름의 침착을 가능하게 할 것으로 생각하며, 그러한 침착은 다양한 에너지 공급원, 예컨대 열적, 직접 플라스마 원격 플라스마, 또는 "고온-와이어" (고온-와이어 CVD는 "catCVD"라고도 함) 방식으로 수행된다.We believe that alkali metal-containing compounds of the formula M n (DAD) m L x will have high efficiency because they can contain more than one M atom per DAD ligand. We also believe that alkali metal-containing compounds of the formula M n (DAD) m L x will also have high thermal stability due to multiple coordination bonds between the alkali metal and the ligand. Therefore, the present inventors have found that alkali metal-containing compounds of the formula M n (DAD) m L x can be used for the deposition of alkali metal-containing films in any other deposition process that brings the vapor of CVD, ALD or precursor compounds to the surface of the substrate Such deposition being performed in a variety of energy sources, such as thermal, direct plasma remote plasma, or "hot-wire" (also referred to as "catCVD" for high temperature-wire CVD).

화학식 Mn(DAD)mLx를 갖는 알칼리 금속-함유 화합물은 문헌[J. Am. Chem. Soc. 1998, 120, 12714-12719; Angew. Chem., Int. Ed. Engl. 34 (1995) 673]에 이미 기재된 것과 같이 m 몰의 1,4-디아자부타-1,3-디엔 리간드를 상응하는 n 몰의 순수한 알칼리 금속과, 적절한 용매 L 중 반응시킴으로써 합성될 수 있으며, 여기에서 L은 예를 들어 THF, 디에틸 에테르 (OEt2), 아세토니트릴 (ACN), 글라임 또는 디글라임이다. 디아자부타디엔 리간드 외에, 모든 다른 반응물은 시판된다.Alkali metal-containing compounds having the formula M n (DAD) m L x are described in J. Am. Am. Chem. Soc. 1998, 120, 12714-12719; Angew. Chem., Int. Ed. Engl. Diazabuta-l, 3-diene ligand with the corresponding n moles of a pure alkali metal, in an appropriate solvent L, as previously described in < RTI ID = 0.0 & Where L is for example THF, diethyl ether (OEt 2 ), acetonitrile (ACN), glyme or diglyme. In addition to the diazabutadiene ligand, all other reactants are commercially available.

다양한 종류의 1,4-디아자부타-1,3-디엔 리간드가 문헌[H. Tom Dieck Z. Naturforsch. 36b, 814-822, 1981]에 발표된 방법에 따라 제조될 수 있다. 더욱 특별하게는, 디아자부타디엔 리간드는 1 몰당량의 관련 글리옥살(O=CH-CH=O, O=CH-CMe=O, O=C(CF3)CH=O 등)을 2 몰당량 이상의 아민(RNH2)과 반응시켜 관련 디아자부타디엔(RN=CH-CH=NR, RN=CH-CMe=NR, RN=C(CF3)CH=NR 등)을 제조함으로써 합성될 수 있다. 비대칭 리간드의 경우, 본 발명자들은 1 몰당량의 제1 아민(RNH2)을 사용하여 중간체(RN=CH-CH=O, RN=CH-CMe=O, RN=C(CF3)CH=O 등)를 생성하고, 이것이 1 몰당량 이상의 제2 아민(R'NH2)과 반응하여 비대칭 디아자부타디엔(RN=CH-CH=NR', RN=CH-CMe=NR', RN=C(CF3)CH=NR' 등)을 생성할 수 있는 것으로 생각한다.Various types of 1,4-diazabuta-1,3-diene ligands have been reported in [H. Tom Dieck Z. Naturforsch. 36b, 814-822, 1981). More particularly, diaza butadiene ligands related glyoxal of 1 molar equivalent (O = CH-CH = O , O = CH-CMe = O, O = C (CF 3) CH = O , etc.) to 2 molar equivalents is reacted with one amine (RNH 2) can be synthesized by preparing the relevant diaza butadiene (RN = CH-CH = NR , RN = CH-CMe = NR, RN = C (CF 3) CH = NR , etc.). For the asymmetric ligand, the inventors have found that using a first amine (RNH 2) of one molar equivalent of intermediate (RN = CH-CH = O , RN = CH-CMe = O, RN = C (CF 3) CH = O generate, and so on), this is reacted with one molar equivalent or more second amine (R'NH 2) asymmetrical diaza butadiene (RN = CH-CH = NR ', RN = CH-CMe = NR', and RN = C ( CF 3 ) CH = NR 'and the like.

증착 공정을 이용하여 기판 위에 알칼리 금속-함유 층을 형성하기 위한 방법이 또한 개시된다. 상기 방법은 반도체, 광전지, LCD-TFT, 평면 패널형 장치, 또는 연료 전지 및 임의의 기타 에너지 저장 관련된 장치의 제작에 유용할 수 있다.A method for forming an alkali metal-containing layer on a substrate using a deposition process is also disclosed. The method may be useful for the fabrication of semiconductors, photovoltaic cells, LCD-TFTs, flat panel devices, or fuel cells and any other energy storage related devices.

알칼리 금속-함유 필름은 전술한 것과 같은 적어도 1종의 개시된 알칼리 금속 디아자부타디엔 화합물의 증기를, 적어도 하나의 기판이 내부에 배치된 반응기 내에 도입함으로써 침착될 수 있다. 개시된 알칼리 금속 디아자부타디엔 화합물의 적어도 일부가 적어도 하나의 기판 위에 침착되어 알칼리 금속-함유 필름을 형성한다.The alkali metal-containing film can be deposited by introducing the vapor of at least one disclosed alkali metal diazabutadiene compound as described above into a reactor in which at least one substrate is disposed. At least a portion of the disclosed alkali metal diazabutadiene compound is deposited on at least one substrate to form an alkali metal-containing film.

개시된 알칼리 금속 디아자부타디엔 화합물은 당업자에게 공지된 임의의 침착 방법을 이용하여 알칼리 금속-함유 박막을 침착시키는 데 사용될 수 있다. 적합한 침착 방법의 예는 통상의 화학적 증착 (CVD) 또는 원자층 침착 (ALD), 또는 플라스마 [플라스마 향상된 화학적 증착 (PECVD) 또는 플라스마 향상된 원자층 침착 (PEALD)], 조절된 도입 체계 [펄스화된 화학적 증착 (PCVD)], 조절된 반응 압력 [저압 화학적 증착 (LPCVD), 대기압 이하 화학적 증착 (SACVD), 또는 대기압 화학적 증착 (APCVD)], 고온-와이어 화학적 증착 (HWCVD, catCVD라고도 알려짐, 여기에서는 고온의 와이어가 증착 공정을 위한 촉매로 기능함), 고온-와이어 원자층 침착 (HWALD), 또는 초임계 유체 포함된 침착과 같은 기술을 이용하는, 증기 피복에 관련된 다른 유형의 침착, 또는 이들의 조합을 비제한적으로 포함한다. 하나의 별법에서, 특히 신속한 성장, 일치성, 공정-배향 및 1-방향 필름이 요구되는 경우에는 열적 CVD 침착이 바람직하다. 또 다른 별법에서, 특히 문제가 되는 표면 (예, 홈, 구멍, 바이어스) 위에 침착된 필름의 우수한 일치성이 요구되는 경우에는 열적 ALD 침착 공정이 바람직하다.The disclosed alkali metal diazabutadiene compounds can be used to deposit alkali metal-containing thin films using any deposition method known to those skilled in the art. Examples of suitable deposition methods include conventional chemical vapor deposition (CVD) or atomic layer deposition (ALD), or plasma (plasma enhanced chemical vapor deposition (PECVD) or plasma enhanced atomic layer deposition (PEALD) Chemical vapor deposition (PCVD)], controlled reaction pressure (LPCVD, SACVD, or atmospheric pressure chemical vapor deposition (APCVD), high temperature-wire chemical vapor deposition (HWCVD, also known as catCVD Other types of deposits associated with vapor deposition, utilizing techniques such as high temperature wire serving as a catalyst for the deposition process, high temperature-wire atomic layer deposition (HWALD), or deposition involving supercritical fluids, or combinations thereof , ≪ / RTI > In one alternative, thermal CVD deposition is preferred, particularly where rapid growth, conformity, process-orientation and 1-way film are required. In another alternative, a thermal ALD deposition process is preferred, particularly where excellent consistency of the deposited film on the surface in question (e.g., grooves, holes, vias) is desired.

개시된 알칼리 금속 디아자부타디엔 화합물은 무용매 형태로 또는 적합한 용매, 예컨대 에틸 벤젠, 크실렌, 메시틸렌, 데칸, 도데칸과의 배합물로 공급되어 전구체 혼합물을 형성할 수 있다. 개시된 화합물은 용매 중 다양한 농도로 존재할 수 있다.The disclosed alkali metal diazabutadiene compounds may be supplied in the form of a solvent or in a suitable solvent such as a combination with ethylbenzene, xylene, mesitylene, decane, dodecane to form a precursor mixture. The disclosed compounds may be present in various concentrations in a solvent.

1종 이상의 무용매 화합물 또는 전구체 혼합물을 통상의 방법, 예컨대 관 및/또는 유동 미터에 의해 증기 형태로 반응기 내에 도입한다. 무용매 화합물 또는 전구체 혼합물의 증기 형태는 상기 무용매 화합물 또는 전구체 혼합물을 통상의 증기화 단계, 예컨대 직접 증기화, 증류를 통해, 버블링에 의해, 또는 PCT 공개 WO2009/087609(Xu 등)에 개시된 것과 같은 승화기를 이용하여 증기화함으로써 생성될 수 있다. 무용매 화합물 또는 전구체 혼합물은 액체 상태로 증기화기에 공급되어, 거기에서 증기화된 다음 반응기 내로 도입될 수 있다. 그렇지 않으면, 상기 무용매 화합물 또는 전구체 혼합물은 담체 기체를 무용매 화합물 또는 전구체 혼합물이 담기 용기 내에 통과시키거나 담체 기체를 상기 무용매 화합물 또는 전구체 혼합물 내에 버블링함으로써 증기화될 수 있다. 담체 기체는 Ar, He, N2 및 이들의 혼합물을 비제한적으로 포함할 수 있다. 담체 기체를 이용한 버블링은 또한 상기 무용매 화합물 또는 전구체 혼합물에 존재하는 임의의 용존 산소를 제거할 수 있다. 담체 기체 및 화합물을 그 후 반응기 내에 증기로 도입한다.One or more non-solvent compounds or mixtures of precursors are introduced into the reactor in the form of a vapor by conventional methods, such as tubes and / or flow meters. The vapor form of the non-solvent compound or precursor mixture can be prepared by a conventional vaporization step, such as by direct vaporization, by distillation, by bubbling, by the bubbling of the solventless compound or precursor mixture, ≪ / RTI > using a sublimator such as < RTI ID = 0.0 > The solventless compound or mixture of precursors may be fed to the vaporizer in a liquid state, where it may be vaporized and then introduced into the reactor. Alternatively, the non-solvent compound or precursor mixture may be vaporized by passing the carrier gas through a vessel containing the solventless compound or mixture of precursors, or by bubbling the carrier gas into the solventless compound or precursor mixture. The carrier gas may include, but is not limited to, Ar, He, N 2, and mixtures thereof. Bubbling with a carrier gas may also remove any dissolved oxygen present in the solvent-free compound or precursor mixture. The carrier gas and the compound are then introduced into the reactor as a vapor.

필요하다면, 무용매 화합물 또는 전구체 혼합물의 용기를, 상기 무용매 화합물 또는 전구체 혼합물을 그의 액체 상으로 존재하며 충분한 증기압을 갖게 하는 온도로 가열할 수 있다. 용기는 예를 들어 대략 0℃ 내지 대략 200℃ 범위의 온도로 유지될 수 있다. 당업자는 용기의 온도가 증기화된 전구체의 양을 조절하기 위하여 알려진 방식으로 조절될 수 있음을 잘 인식하고 있다.If necessary, the container of the non-solvent compound or mixture of precursors may be heated to a temperature such that the solvent-free compound or precursor mixture is present in its liquid phase and has a sufficient vapor pressure. The vessel may be maintained at a temperature in the range, for example, from about 0 ° C to about 200 ° C. Those skilled in the art are well aware that the temperature of the vessel can be adjusted in a known manner to control the amount of vaporized precursor.

반응기는 침착 방법이 그 안에서 수행되는 장치 내 임의의 구획 또는 쳄버, 예컨대 비제한적으로 평행판 형태의 반응기, 저온-벽 형태의 반응기, 고온-벽 형태의 반응기, 단일-웨이퍼 반응기, 다수-웨이퍼 반응기, 또는 전구체가 반응하여 층을 형성하게 하기 적합한 조건 하에 다른 형태의 침착 시스템일 수 있다.The reactor may be any zone or chamber within the apparatus in which the deposition method is performed, such as, but not limited to, a reactor in the form of a parallel plate, a low temperature-wall reactor, a hot- , Or it may be another type of deposition system under conditions suitable for allowing the precursor to react to form a layer.

일반적으로, 반응기는 그 위에 박막이 침착될 하나 이상의 기판을 함유한다. 하나 이상의 기판은 반도체, 광전지, 평면 패널, LCD-TFT 또는 연료 전지 및 임의의 기타 에너지 저장 관련된 장치의 제작에 사용되는 임의의 적합한 기판일 수 있다. 적합한 기판의 예는 구리 기판, 텅스텐 기판, 니켈 기판, 티탄 기판, 규소 기판, 실리카 기판, 금속 질화물 기판, 질화 규소 기판, 금속 산화물 기판, 산화 규소 기판, 산질화 규소 기판, 리튬 기판, 또는 이들의 조합을 비제한적으로 포함한다. 별법으로, 비활성 금속(예, 백금, 팔라듐, 로듐 또는 금)을 포함하는 기판이 사용될 수 있다. 또 다른 별법에서, 기판은 폴리올레핀 또는 플루오르화 중합체 기판과 같은 중합체 기판일 수 있다. 기판은 종전의 제작 단계로부터 이미 그 위에 침착된 다양한 물질로 된 하나 이상의 층을 가질 수도 있다.Generally, the reactor contains one or more substrates onto which a thin film is to be deposited. The one or more substrates may be any suitable substrate used in the fabrication of semiconductors, photovoltaic, flat panel, LCD-TFT or fuel cells and any other energy storage related devices. Examples of suitable substrates include copper, tungsten, nickel, titanium, silicon, silica, metal nitride, silicon nitride, metal oxide, silicon oxide, silicon oxynitride, lithium, Combinations thereof. Alternatively, a substrate comprising an inert metal (e.g., platinum, palladium, rhodium, or gold) may be used. In yet another alternative, the substrate may be a polymer substrate, such as a polyolefin or a fluorinated polymer substrate. The substrate may have one or more layers of various materials already deposited thereon from a previous fabrication step.

반응기 내 온도 및 압력은 알칼리 금속 디아자부타디엔 화합물의 적어도 일부를 기판 위에 증착하기 적합한 조건으로 유지된다. 달리 말하면, 증기화된 화합물을 쳄버 내에 도입한 후, 쳄버 내 조건은 증기화된 화합물의 적어도 일부가 기판 위에 침착되어 알칼리 금속-함유 필름을 형성하도록 한다. 예를 들어, 반응기 내 압력은 침착 파라미터에 따라 요구되는 바, 약 0.1 Pa 내지 약 105 Pa, 더욱 바람직하게는 약 2.5 Pa 내지 약 103 Pa로 유지될 수 있다. 마찬가지로, 반응기 내 온도는 약 20℃ 내지 약 600℃, 바람직하게는 약 25℃ 내지 약 400℃로 유지될 수 있다.The temperature and pressure in the reactor are maintained under conditions suitable for depositing at least a portion of the alkali metal diazabutadiene compound onto the substrate. In other words, after introduction of the vaporized compound into the chamber, the conditions in the chamber allow at least a portion of the vaporized compound to deposit on the substrate to form an alkali metal-containing film. For example, the pressure in the reactor may be maintained at from about 0.1 Pa to about 10 5 Pa, more preferably from about 2.5 Pa to about 10 3 Pa, as required depending on the deposition parameters. Likewise, the temperature in the reactor can be maintained between about 20 째 C and about 600 째 C, preferably between about 25 째 C and about 400 째 C.

반응기의 온도는 기판 홀더의 온도를 조절하고/거나 반응기 벽의 온도를 조절함으로써 조절될 수 있다. 기판 및 반응기 벽을 가열하는 데 사용되는 장치가 당 분야에 공지되어 있다. 반응기 벽은 충분한 성장 속도로 원하는 물리적 상태 및 조성을 갖는 원하는 필름을 수득하기 충분한 온도로 가열될 수 있다. 반응기 벽이 가열될 수 있는 비제한적인 예시적 온도 범위는 대략 20℃ 내지 대략 600℃를 포함한다. 플라스마 침착 공정이 사용될 경우, 침착 온도는 대략 20℃ 내지 대략 350℃의 범위일 수 있다. 별법으로 열적 공정이 수행될 경우, 침착 온도는 대략 25℃ 내지 대략 600℃의 범위일 수 있다.The temperature of the reactor can be adjusted by adjusting the temperature of the substrate holder and / or by controlling the temperature of the reactor wall. Devices used to heat the substrate and reactor walls are known in the art. The reactor wall may be heated to a temperature sufficient to obtain the desired film with the desired physical state and composition at a sufficient growth rate. A non-limiting exemplary temperature range in which the reactor wall can be heated includes from about 20 占 폚 to about 600 占 폚. When a plasma deposition process is used, the deposition temperature may range from about 20 캜 to about 350 캜. Alternatively, when a thermal process is performed, the deposition temperature may range from about 25 [deg.] C to about 600 [deg.] C.

개시된 화합물과 더불어, 반응 기체가 또한 반응기 내에 도입될 수 있다. 반응 기체는 O2; O3; H2O; H2O2 중 1종과 같은 산화제; O· 또는 OH·와 같은 산소-함유 라디칼; NO; NO2; 포름산, 아세트산, 프로피온산과 같은 카르복실산; NO, NO2, 또는 카르복실산의 라디칼 화학종; 및 이들의 혼합물일 수 있다. 바람직하게는, 산화제는 O2, O3, H2O, H2O2, O· 또는 OH·와 같은 그의 산소-함유 라디칼; 및 이들의 혼합물로 이루어진 군에서 선택된다.In addition to the disclosed compounds, a reactive gas may also be introduced into the reactor. The reaction gas is O 2 ; O 3 ; H 2 O; An oxidizing agent such as one of H 2 O 2 ; O-containing radicals such as O. or OH; NO; NO 2 ; Carboxylic acids such as formic acid, acetic acid, and propionic acid; NO, NO 2, or a radical species of the carboxylic acid; And mixtures thereof. Preferably, the oxidant is an oxygen-containing radical such as O 2 , O 3 , H 2 O, H 2 O 2 , O. And mixtures thereof.

별법으로, 반응 기체는 H2, NH3, SiH4, Si2H6, Si3H8, (CH3)2SiH2; (C2H5)2SiH2; (CH3)SiH3; (C2H5)SiH3; 페닐 실란; N2H4; N(SiH3)3; N(CH3)H2; N(C2H5)H2; N(CH3)2H; N(C2H5)2H; N(CH3)3; N(C2H5)3; (SiMe3)2NH; (CH3)HNNH2; (CH3)2NNH2; 페닐 히드라진; N-함유 분자, B2H6, 9-보라비시클로[3,3,1]노난, 디히드로벤젠푸란, 피라졸린, 트리메틸알루미늄, 디메틸아연, 디에틸아연, 이들의 라디칼 화학종; 및 이들의 혼합물의 1종과 같은 환원제일 수 있다. 바람직하게는, 환원제는 H2, NH3, SiH4, Si2H6, Si3H8, SiH2Me2, SiH2Et2, N(SiH3)3, 그의 수소 라디칼, 또는 이들의 혼합물이다.Alternatively, the reactive gas may include H 2 , NH 3 , SiH 4 , Si 2 H 6 , Si 3 H 8 , (CH 3 ) 2 SiH 2 ; (C 2 H 5 ) 2 SiH 2 ; (CH 3) SiH 3; (C 2 H 5 ) SiH 3 ; Phenylsilane; N 2 H 4 ; N (SiH 3) 3; N (CH 3) H 2; N (C 2 H 5) H 2; N (CH 3) 2 H; N (C 2 H 5) 2 H; N (CH 3) 3; N (C 2 H 5) 3 ; (SiMe 3 ) 2 NH; (CH 3) HNNH 2; (CH 3) 2 NNH 2; Phenylhydrazine; N-containing molecules, B 2 H 6 , 9-borabicyclo [3,3,1] nonane, dihydrobenzenefuran, pyrazoline, trimethylaluminum, dimethylzinc, diethylzinc, the radical species thereof; And one kind of a mixture thereof. Preferably, the reducing agent is selected from the group consisting of H 2 , NH 3 , SiH 4 , Si 2 H 6 , Si 3 H 8 , SiH 2 Me 2 , SiH 2 Et 2 , N (SiH 3 ) 3 , to be.

반응 기체는, 상기 반응 기체를 그의 라디칼 형태로 분해시키기 위해 플라스마로 처리될 수 있다. 플라스마로 처리되는 경우 N2가 환원제로 또한 사용될 수 있다. 예를 들어, 플라스마는 약 10 W 내지 약 500 W, 바람직하게는 약 30 W 내지 약 200 W 범위의 전력을 이용하여 생성될 수 있다. 플라스마는 반응기 자체 내에서 생성되거나 존재할 수 있다. 별법으로, 플라스마는 일반적으로 반응기로부터 분리된 위치에, 예를 들어 멀리 위치한 플라스마 시스템에 있을 수 있다. 당업자는 그러한 플라스마 처리에 적합한 방법 및 장치를 잘 인식할 것이다.The reactive gas may be treated with a plasma to decompose the reactive gas into its radical form. When treated with plasma, N 2 can also be used as a reducing agent. For example, the plasma may be generated using a power in the range of about 10 W to about 500 W, preferably about 30 W to about 200 W. The plasma may be generated or exist within the reactor itself. Alternatively, the plasma may be located in a location that is generally separate from the reactor, for example, in a remotely located plasma system. Those skilled in the art will recognize methods and apparatus suitable for such plasma processing.

쳄버 내 증착 조건은 알칼리 금속 디아자부타디엔 화합물 및/또는 반응 기체가 기판 위에 알칼리 금속-함유 필름을 형성하게 한다. 일부 실시양태에서, 본 발명자들은 반응 기체를 플라스마-처리하는 것이, 개시된 화합물과 반응하는 데 필요한 에너지를 상기 반응 기체에 공급할 수 있다고 생각한다.The deposition conditions in the chamber allow the alkali metal diazabutadiene compound and / or the reactive gas to form an alkali metal-containing film on the substrate. In some embodiments, the inventors contemplate that plasma-treating the reactive gas can supply the reactive gas with the energy needed to react with the disclosed compound.

어떤 종류의 필름이 침착되기를 원하는지에 따라, 제2 전구체 화합물이 반응기 내에 도입될 수 있다. 제2 전구체 화합물은 규소, 니켈, 코발트, 망간, 구리, 프라세오디뮴, 루테늄, 티탄, 탄탈룸, 비스무트, 지르코늄, 하프늄, 납, 니오븀, 마그네슘, 알루미늄, 란탄, 인, 붕소 또는 이들의 혼합물과 같은 또 하나의 원소의 공급원을 포함한다. 제2 전구체 화합물이 사용될 경우, 기판 위에 침착된 수득되는 필름은 적어도 2종의 상이한 원소를 함유할 수 있다.Depending on what kind of film is desired to be deposited, a second precursor compound can be introduced into the reactor. The second precursor compound may also be another one such as silicon, nickel, cobalt, manganese, copper, praseodymium, ruthenium, titanium, tantalum, bismuth, zirconium, hafnium, lead, niobium, magnesium, aluminum, lanthanum, phosphorus, boron, Lt; / RTI > When a second precursor compound is used, the resultant film deposited on the substrate may contain at least two different elements.

알칼리 금속 디아자부타디엔 화합물 및 반응 기체는 동시에 (화학적 증착), 순차적으로 (원자층 침착) 또는 이들의 다양한 조합으로 반응기 내에 도입될 수 있다. 반응기는 화합물의 도입과 반응 기체의 도입 사이에 비활성 기체로 정화될 수 있다. 그렇지 않으면, 반응 기체 및 화합물을 함께 혼합하여 반응 기체/화합물 혼합물을 형성한 다음, 이를 혼합물 형태로 반응기에 도입할 수도 있다. 또 다른 예는 반응 기체를 연속적으로 도입하는 것과 적어도 1종의 알칼리 금속 디아자부타디엔 화합물을 펄스로 도입하는 것이다 (펄스화된 화학적 증착).The alkali metal diazabutadiene compound and the reactive gas may be introduced into the reactor simultaneously (chemical vapor deposition), sequentially (atomic layer deposition), or various combinations thereof. The reactor can be purged with an inert gas between the introduction of the compound and the introduction of the reaction gas. Otherwise, the reaction gas and the compound may be mixed together to form a reaction gas / compound mixture, which may then be introduced into the reactor in the form of a mixture. Another example is the continuous introduction of the reactive gas and the introduction of at least one alkali metal diazabutadiene compound as a pulse (pulsed chemical vapor deposition).

증기화된 화합물 및 반응 기체는 반응기 내에 순차적으로 또는 동시에 (예, 펄스화된 CVD) 펄스화될 수 있다. 화합물의 각 펄스는 약 0.01초 내지 약 10초, 그렇지 않으면 약 0.1초 내지 약 3초, 그렇지 않으면 약 0.1초 내지 약 2초 범위의 시간 동안 지속될 수 있다. 또 다른 실시양태에서, 반응 기체는 반응기 내로 펄스화될 수도 있다. 그러한 실시양태에서, 각 기체의 펄스는 약 0.01초 내지 약 10초, 그렇지 않으면 약 0.1초 내지 약 3초, 그렇지 않으면 약 0.1초 내지 약 2초 범위의 시간 동안 지속될 수 있다. The vaporized compound and the reactive gas may be pulsed in the reactor sequentially or simultaneously (e.g., pulsed CVD). Each pulse of the compound may last for a time ranging from about 0.01 seconds to about 10 seconds, alternatively from about 0.1 seconds to about 3 seconds, and alternatively from about 0.1 seconds to about 2 seconds. In another embodiment, the reactive gas may be pulsed into the reactor. In such an embodiment, the pulse of each gas may last for a time ranging from about 0.01 seconds to about 10 seconds, alternatively from about 0.1 seconds to about 3 seconds, and alternatively from about 0.1 seconds to about 2 seconds.

특정 공정 파라미터에 따라, 침착은 다양한 시간 동안에 일어날 수 있다. 일반적으로, 침착은 필요한 성질을 갖는 필름을 제조하기 위해 원하거나 필요한 만큼 계속되도록 허용될 수 있다. 전형적인 필름 두께는 특정 침착 공정에 따라 수 옹스트롬 내지 수백 마이크로미터에서 변할 수 있다. 침착 공정은 또한 원하는 두께를 갖는 원하는 필름을 수득하는 데 필요한 횟수 만큼 수행될 수 있다.Depending on the specific process parameters, deposition can take place over various time periods. In general, deposition may be allowed to continue as long as desired or necessary to produce a film having the required properties. Typical film thicknesses may vary from several angstroms to hundreds of micrometers depending on the particular deposition process. The deposition process may also be performed a number of times necessary to obtain the desired film having the desired thickness.

하나의 비제한적 예시적인 CVD 유형의 공정에서, 개시된 알칼리 금속 디아자부타디엔 화합물 및 반응 기체의 증기 상은 반응기 내에 동시에 도입된다. 이 둘은 알칼리 금속 디아자부타디엔 화합물의 적어도 일부가 기판 위에 침착되기 적합한 조건 하에 반응하여 알칼리 금속-함유 박막을 제공한다. 상기 예시적 CVD 공정에서 반응 기체를 플라스마로 처리할 경우, 예시적 CVD 공정은 예시적 PECVD 공정이 된다. 반응 기체는 쳄버 내에 도입되기 전 또는 후에 플라스마로 처리될 수 있다.In one non-limiting exemplary CVD-type process, the vapor phase of the disclosed alkali metal diazabutadiene compound and reactive gas is simultaneously introduced into the reactor. Both of which react under conditions suitable for at least a portion of the alkali metal diazabutadiene compound to be deposited on the substrate to provide an alkali metal-containing thin film. When the reactive gas is treated with a plasma in the exemplary CVD process, the exemplary CVD process becomes an exemplary PECVD process. The reactive gas may be treated with a plasma before or after introduction into the chamber.

하나의 비제한적 예시적인 ALD 유형의 공정에서, 개시된 알칼리 금속 디아자부타디엔 화합물의 증기 상이 반응기 내에 도입되고, 여기에서 조건은 상기 화합물이 기판과 반응하기 적합하다. 과량의 화합물은 그 후 반응기를 정화 및/또는 비움으로써 반응기로부터 제거될 수 있다. 산화제(예를 들어 O3)가 반응기 내에 도입되고, 여기에서 이는 상기 침착된 화합물과 자가-제어 방식으로 반응한다. 임의의 과량의 산화제는 반응기를 정화 및/또는 비움으로써 반응기로부터 제거된다. 원하는 필름이 알칼리 금속 산화물 필름일 경우, 상기 2-단계 공정은 원하는 필름 두께를 제공할 수 있거나, 필요한 두께를 갖는 필름이 수득될 때까지 반복될 수 있다. 당업자는 원하는 필름 두께가 수득되는 필름의 종류, 및 반도체, 광전지, LCD-TFT, 또는 평면 패널형 장치 내에서 그의 위치에 의존할 것임을 잘 인식할 것이다.In one non-limiting exemplary ALD type of process, the vapor phase of the disclosed alkali metal diazabutadiene compound is introduced into the reactor, wherein the conditions are suitable for the compound to react with the substrate. Excess compounds may then be removed from the reactor by purifying and / or emptying the reactor. Oxidant (for example O 3) is introduced into the reactor, where it deposits the compounds and self-reacts in a controlled manner. Any excess oxidant is removed from the reactor by purifying and / or emptying the reactor. If the desired film is an alkali metal oxide film, the two-step process may provide the desired film thickness, or it may be repeated until a film having the required thickness is obtained. Those skilled in the art will appreciate that the desired film thickness will depend upon the type of film being obtained and its location within a semiconductor, photovoltaic, LCD-TFT, or flat panel device.

별법으로, 원하는 필름이 2종의 원소를 함유할 경우, 상기 2-단계 공정에 이어 제2 전구체의 증기가 반응기에 도입될 수 있다. 제2 전구체는 침착되는 필름 중 원하는 제2 원소에 기초하여 선택될 것이다. 제2 전구체는 반응기 내에 도입되고, 여기에서 조건은 제2 전구체가 상기 침착된 알칼리 금속 산화물 층과 반응하기 적합하다. 임의의 과량의 제2 전구체는 반응기를 정화 및/또는 비움으로써 반응기로부터 제거된다. 다시 한 번, 산화제가 반응기 내에 도입되어 상기 침착된 제2 전구체와 반응한다. 과량의 산화제는 반응기를 정화 및/또는 비움으로써 반응기로부터 제거된다. 원하는 필름 두께가 수득된 경우, 공정은 종료될 수 있다. 그러나, 더 두꺼운 필름이 요구될 경우, 전체 4-단계 공정이 반복될 수 있다. 알칼리 금속 디아자부타디엔 화합물, 제2 전구체 및 반응 기체의 공급을 교대함으로써, 원하는 조성 및 두께를 갖는 필름이 침착될 수 있다. 당업자는 원하는 필름 두께가, 수득되는 필름의 종류 및 그의 반도체, 광전지, LCD-TFT, 또는 평면 패널형 장치에서의 위치에 의존할 것임을 잘 인식할 것이다.Alternatively, if the desired film contains two elements, the vapor of the second precursor may be introduced into the reactor following the two-step process. The second precursor will be selected based on the desired second element in the deposited film. A second precursor is introduced into the reactor wherein the conditions are suitable for the second precursor to react with the deposited alkali metal oxide layer. Any excess second precursor is removed from the reactor by purging and / or emptying the reactor. Once again, an oxidant is introduced into the reactor to react with the deposited second precursor. Excess oxidant is removed from the reactor by purifying and / or emptying the reactor. If the desired film thickness is obtained, the process can be terminated. However, if a thicker film is desired, the entire four-step process can be repeated. By alternating the feeding of the alkali metal diazabutadiene compound, the second precursor and the reaction gas, a film having a desired composition and thickness can be deposited. Those skilled in the art will appreciate that the desired film thickness will depend on the type of film obtained and its location in semiconductor, photovoltaic, LCD-TFT, or flat panel-like devices.

상기 예시적 ALD 공정에서 반응 기체가 플라스마로 처리될 경우, 상기 예시적인 ALD 공정은 예시적 PEALD 공정이 된다. 반응 기체는 쳄버 내에 도입되기 전 또는 후에 플라스마로 처리될 수 있다.In the exemplary ALD process, when the reactive gas is treated with a plasma, the exemplary ALD process becomes an exemplary PEALD process. The reactive gas may be treated with a plasma before or after introduction into the chamber.

전술한 공정으로부터 수득되는 리튬-함유 필름은 양극, 전해질 또는 음극으로 사용될 수 있다. 양극으로 사용하기 적합한 예시적인 리튬-함유 필름은 LixTiO2, Li4Ti5O12, LiTi, LiHf 및 LiZr을 포함한다. 전해질로 사용하기 적합한 예시적인 리튬-함유 필름은 LiMO3 (식 중, M은 Nb 또는 Ta), 예컨대 니오브산 리튬 (LiNbO3 또는 LinNbmOp) 또는 LLTO ((Li,La)nTimOp), 또는 인산 리튬 기재 필름, 예컨대 산질화 리튬 인(Li3 + nPO4 - nNn, LiPON)(식 중, m, n 및 p는 1 이상 7 이하 범위의 정수임)을 포함한다. 음극으로 사용하기 적합한 예시적인 리튬-함유 필름은 산화 리튬 코발트 (LiCoO2 또는 LinComOp), 산화 리튬 니켈 (LiNiO2 또는 LinNimOp), 또는 LiMPO4(식 중 M = Co, Fe 또는 Mn이고, m, n 및 p는 1 이상 7 이하 범위의 정수임)를 포함한다. 다른 예시적인 리튬-함유 필름은 순수한 리튬 (Li), 질화 리튬 (LinNm), 탄화 리튬 (LinCm), 황화 리튬 (LinSm), 탄질화 리튬 (LinCmNp), 규소화 리튬 (LinSim), 산화 리튬 (LinOm), 산화 리튬 망간 (LiMnO2 또는 LinMnmOp), 티탄산 리튬 란탄 (LTT) 또는 리튬 붕소 (LinBm) 필름(식 중, m, n 및 p는 1 이상 7 이하 범위의 정수임)을 포함한다.The lithium-containing film obtained from the above-described process can be used as a cathode, an electrolyte or a cathode. Exemplary lithium-containing films suitable for use as an anode include Li x TiO 2 , Li 4 Ti 5 O 12 , LiTi, LiHf and LiZr. Exemplary lithium-containing films suitable for use as an electrolyte include LiMO 3 (where M is Nb or Ta) such as lithium niobate (LiNbO 3 or Li n Nb m O p ) or LLTO ((Li, La) n Ti including n N n, LiPON) (wherein, m, n and p is an integer of 1 to 7 range) - m O p), or lithium phosphate substrate film, for example, oxynitride lithium in (Li 3 + n PO 4 do. Exemplary lithium-containing films suitable for use as cathodes include lithium cobalt oxide (LiCoO 2 or Li n Co m O p ), lithium nickel oxide (LiNiO 2 or Li n Ni m O p ), or LiMPO 4 where M = Co, Fe or Mn, and m, n and p are integers ranging from 1 to 7 inclusive). Other exemplary lithium-containing film is a pure lithium (Li), lithium nitride (Li n N m), carbide, lithium (Li n C m), sulfide, lithium (Li n S m), carbo-lithium (Li n C m N p), silicon digestion lithium (Li n Si m), lithium oxide (Li n O m), oxide, lithium manganese (LiMnO 2 or the Li n Mn m O p), lithium titanate lanthanum (LTT) or lithium boron (Li n B m ) film (wherein m, n and p are integers ranging from 1 to 7 inclusive).

전술한 공정으로부터 수득되는 나트륨-함유 필름은 순수한 나트륨 (Na), 질화 나트륨 (NanNm), 산화 나트륨 (NanOm) 또는 황화 나트륨 (NanSm) [식 중, m, n 및 p는 1 이상 3 이하 범위의 정수임) 필름을 포함할 수 있다.The sodium-containing film obtained from the above-mentioned process may be any one of pure sodium (Na), sodium nitride (Na n N m ), sodium oxide (Na n O m ) or sodium sulfide (Na n S m ) And p is an integer ranging from 1 to 3 inclusive).

전술한 공정으로부터 수득되는 칼륨-함유 필름은 순수한 칼륨 (K), 질화 칼륨 (KnNm), 산화 칼륨 (KnOm), 또는 황화 칼륨 (KnSm) (식 중, m, n 및 p는 1 이상 3 이하 범위의 정수임) 필름을 포함할 수 있다.The potassium-containing film obtained from the above-mentioned process may be a pure potassium (K), potassium nitrate (K n N m ), potassium oxide (K n O m ), or potassium sulfide (K n S m ) n and p are integers ranging from 1 to 3 inclusive) film.

당업자는 적절한 알칼리 금속 디아자부타디엔 화합물, 선택적인 제2 전구체, 및 반응 기체 화학종의 현명한 선택에 의해 원하는 필름 조성물이 수득될 수 있음을 잘 인식할 것이다.Those skilled in the art will appreciate that the desired film composition can be obtained by the careful selection of suitable alkali metal diazabutadiene compounds, optional second precursors, and reactive gas species.

원하는 필름 두께를 수득하면, 필름에 대하여 열 어닐링, 로-어닐링, 급속 열 어닐링, UV 또는 e-빔 경화, 및/또는 플라스마 기체 노출과 같은 추가의 공정을 실시할 수 있다. 당업자는 상기 추가의 공정 단계를 수행하는 데 사용되는 시스템 및 방법을 잘 인식하고 있다. 예를 들어, 알칼리 금속-함유 필름을 대략 200℃ 내지 대략 1000℃ 범위의 온도에서 대략 0.1초 내지 대략 7,200초 범위의 시간 동안 비활성 대기, H-함유 대기, N-함유 대기, O-함유 대기, 또는 이들의 조합 하에 노출시킬 수 있다. 가장 바람직하게는, 상기 온도는 H-함유 대기 하에 3600초 동안 400℃이다. 수득되는 필름은 보다 적은 불순물을 함유할 수 있으므로, 향상된 밀도를 가짐으로써 개선된 누출 전류의 결과를 가져올 수 있다. 어닐링 단계는 침착 공정이 수행된 것과 같은 반응 쳄버에서 수행될 수 있다. 그렇지 않으면, 기판을 반응 쳄버로부터 꺼내어, 어닐링/플래시 어닐링 공정을 별도의 장치에서 수행할 수 있다. 상기 후-처리 방법 중 임의의 것, 특히 열 어닐링은 알칼리 금속-함유 필름 중 임의의 탄소 및 질소 오염을 효과적으로 감소시킬 것이 기대된다. 이는 다시 필름의 저항률을 개선할 것으로 기대된다. Once the desired film thickness is obtained, the film may be subjected to additional processes such as thermal annealing, low-annealing, rapid thermal annealing, UV or e-beam curing, and / or plasma gas exposure. Those skilled in the art are well aware of the systems and methods used to carry out these additional processing steps. For example, the alkali metal-containing film may be treated with an inert atmosphere, an H-containing atmosphere, an N-containing atmosphere, an O-containing atmosphere, or a mixture thereof, for a period of time ranging from about 0.1 seconds to about 7,200 seconds at a temperature ranging from about 200 & Or a combination thereof. Most preferably, the temperature is 400 DEG C for 3600 seconds under an H-containing atmosphere. The resultant film may contain less impurities and thus may have an improved density resulting in improved leakage current. The annealing step may be performed in a reaction chamber such that the deposition process is performed. Otherwise, the substrate may be removed from the reaction chamber and the annealing / flash annealing process may be performed in a separate apparatus. It is expected that any of the above post-treatment methods, particularly thermal annealing, will effectively reduce any carbon and nitrogen contamination of the alkali metal-containing film. This is expected to improve the resistivity of the film again.

어닐링 후, 개시된 공정 중 임의의 것에 의해 침착된 알칼리 금속-함유 필름은 침착된 필름의 유형에 따라 실온에서 벌크 저항률을 갖는다. 예를 들어, 20℃에서 Li의 벌크 저항률은 대략 9.28 x 10-8 ohm.m인 한편, Na의 벌크 저항률은 대략 4.8 x 10-8 ohm.m이며 K의 벌크 저항률은 대략 7.5 x 10-8 ohm.m이다. 벌크 저항률은 부피 저항률이라고도 알려져 있다. 당업자는 벌크 저항률이 실온에서 전형적으로 대략 50 nm 두께를 갖는 알칼리 금속 필름 위에서 측정됨을 잘 인식할 것이다. 벌크 저항률은 전형적으로 전자 이송 메카니즘에서의 변화로 인하여 더 얇은 필름의 경우에 증가한다. 벌크 저항률은 또한 더 높은 온도에서 증가한다.After annealing, the alkali metal-containing film deposited by any of the disclosed processes has a bulk resistivity at room temperature depending on the type of deposited film. For example, at 20 캜, the bulk resistivity of Li is approximately 9.28 x 10 -8 ohm.m, while the bulk resistivity of Na is approximately 4.8 x 10 -8 ohm.m and the bulk resistivity of K is approximately 7.5 x 10 -8 ohm.m. Bulk resistivity is also known as bulk resistivity. Those skilled in the art will appreciate that the bulk resistivity is measured at room temperature, typically on alkali metal films having a thickness of approximately 50 nm. The bulk resistivity typically increases in the case of thinner films due to changes in the electron transport mechanism. Bulk resistivity also increases at higher temperatures.

실시예Example

이하의 비제한적인 실시예가 본 발명의 실시양태를 더욱 설명하기 위해 제공된다. 그러나 실시예는 모든 포괄적인 의도이지 여기에 기재된 본 발명의 범위를 제한하고자 함이 아니다.The following non-limiting examples are provided to further illustrate embodiments of the invention. It is to be understood, however, that the < RTI ID = 0.0 > embodiment < / RTI > is intended to be exhaustive and not to limit the scope of the invention described herein.

실시예Example 1:  One: LiLi 22 (( tBuNtBuN -- CHCH == CHCH -- NtBuNtBu )의 열적 특성) Thermal properties

Li2(tBuN-CH=CH-NtBu)를 알려진 방법에 따라 제조하였다 [문헌 (J. Am. Chem. Soc. 1998, 120, 12714-12719); 및 (Angew. Chem., Int. Ed. Engl. 34 (1995) 673)]. 비활성 대기 중에 놓여진 열-중량측정 기구를 사용하여 Li2(tBuN-CH=CH-NtBu)의 열적 성질을 평가하였다. 도 1에 나타나듯이, 잔류물의 양은 진공 조건 하에 ~7%였고, 상기 화합물을 사용하는 리튬-함유 필름의 ALD 또는 CVD 침착을 진행하기에 충분한 증발 성질을 나타냈다.Li 2 (tBuN-CH = CH-NtBu) was prepared according to known methods (J. Am. Chem. Soc. 1998, 120, 12714-12719); And Angew. Chem., Int. Ed. Engl. 34 (1995) 673). The thermal properties of Li 2 (tBuN-CH = CH-NtBu) were evaluated using a heat-weighing instrument placed in an inert atmosphere. As shown in Figure 1, the amount of residue was ~ 7% under vacuum conditions and exhibited sufficient evaporation properties to proceed with ALD or CVD deposition of the lithium-containing film using the compound.

실시예Example 2:  2: LiLi 22 (( tBuNtBuN -- CHCH == CHCH -- NtBuNtBu )을 사용하는 ) To use LiLi 22 OO 33 박막의 예상 침착 Anticipated deposition of thin films

실시예 1에 기재된 것과 같이 Li2(tBuN-CH=CH-NtBu)를 합성하였다. 상기 분자를 사용하여 Li2O3 필름을 수득할 것이 예상되며, 하기 실시예는, 다른 것들 중에서도, 그러한 필름을 침착시키기 위한 하나의 방법을 기재한다.Li 2 (tBuN-CH = CH-NtBu) was synthesized as described in Example 1. It is anticipated that Li 2 O 3 films will be obtained using these molecules, and the following examples describe, among other things, one method for depositing such films.

리튬 분자를 금속 용기에 넣을 것이다. 충분한 증기를 제공하기 위해 가열된 금속 용기 내에 질소를 유동시킴으로써 Li2(tBuN-CH=CH-NtBu)의 증기를 반응 로로 운반할 것이다. 오존을 상기 침착 시스템 내에 도입하여 ALD 체계로 웨이퍼의 표면에서 리튬 증기와 반응시킬 것이다 (리튬 분자의 증기의 도입은 충분히 긴 비활성 기체 정화에 의해 분리됨). 오존(O3)은 선택되는 분자로 생각되며, 임의의 종류의 산화제가 선택될 수 있다. Li2O3 필름은 필경 90℃만큼 낮은 온도로부터 수득될 것이다. 분석 결과는, 리튬 분자의 증기의 도입 시간을 연장할 경우 ALD 방식에 전형적인 포화 성질이 적절한 온도 범위에서 수득될 것임을 보여줄 것이다.The lithium molecule will be placed in a metal container. The vapor of Li 2 (tBuN-CH = CH-NtBu) will be carried into the reactor by flowing nitrogen into the heated metal vessel to provide sufficient vapor. Ozone will be introduced into the deposition system to react with the lithium vapor at the surface of the wafer with an ALD system. (The introduction of the vapor of lithium molecules is separated by a sufficiently long inert gas purge.) Ozone (O 3 ) is considered to be the chosen molecule, and any kind of oxidant can be selected. Li 2 O 3 films will be obtained from temperatures as low as 90 ° C. The analytical results will show that typical saturation properties in the ALD scheme will be obtained in the appropriate temperature range when the introduction time of the vapor of the lithium molecule is extended.

본 발명의 성질을 설명하기 위해 본원에 기재되고 예시된 세부사항, 물질, 단계 및 부품의 배열에 있어서 다수의 추가적 변화가, 첨부된 청구항에 표현된 바 본 발명의 원리 및 범위 내에서 당업자에 의해 실시될 수 있다. 즉, 본 발명은 위에 주어진 실시예의 특정 실시양태 및/또는 첨부 도면에 국한되는 것으로 의도되지 않는다.Numerous additional variations on the details, materials, steps and arrangements of parts set forth and illustrated herein to describe the nature of the invention are set forth by the skilled person within the principles and scope of the invention as expressed in the appended claims. . That is, the present invention is not intended to be limited to the particular embodiments of the above given embodiments and / or the attached drawings.

Claims (14)

- 화학식 Mn(DAD)mLx[식 중, M은 알칼리 금속이고; n은 1, 2 또는 4이며; m은 1 또는 2이고; x는 0, 1, 2, 3 또는 4이며; L은 모노덴테이트, 비덴테이트, 트리덴테이트 또는 폴리덴테이트 중성 배위 리간드임]을 갖는 적어도 1종의 알칼리 금속 디아자부타디엔 화합물을 적어도 하나의 기판이 내부에 배치된 반응기 내에 도입하고;
- 알칼리 금속 디아자부타디엔 화합물의 적어도 일부를 적어도 하나의 기판 위에 침착시켜 알칼리 금속-함유 필름을 형성하는 것을 포함하는, 알칼리 금속-함유 필름의 침착 방법.
- a formula M n (DAD) m L x wherein M is an alkali metal; n is 1, 2 or 4; m is 1 or 2; x is 0, 1, 2, 3 or 4; Wherein L is a monodentate, bidentate, tridentate or polydentate neutral coordination ligand, in a reactor in which at least one substrate is disposed;
- depositing at least a portion of an alkali metal diazabutadiene compound on at least one substrate to form an alkali metal-containing film.
제1항에 있어서, M이 Li이고, 알칼리 금속 디아자부타디엔 화합물이 다음 화합물로 이루어지는 군에서 선택되는 방법:
A) Li2(DAD)L4
Figure pat00022

B) Li4(DAD)2L2
Figure pat00023

C) Li2(DAD)
Figure pat00024

D) Li(DAD)L2
Figure pat00025

E) Li(DAD)2
Figure pat00026

(식 중, R1, R2, R3 및 R4는 각각 H; C1-C6 직쇄, 분지쇄 또는 고리형 알킬 기; C1-C6 직쇄, 분지쇄 또는 고리형 알킬실릴 기; C1-C6 직쇄, 분지쇄 또는 고리형 알킬아미노 기; C1-C6 직쇄, 분지쇄 또는 고리형 플루오로알킬 기; 및 OR(식 중, R은 H 또는 C1-C6 직쇄, 분지쇄 또는 고리형 알킬 또는 아릴 기에서 선택됨)로 이루어진 군에서 독립적으로 선택됨)
The method according to claim 1, wherein M is Li and the alkali metal diazabutadiene compound is selected from the group consisting of the following compounds:
A) Li 2 (DAD) L 4
Figure pat00022

B) Li 4 (DAD) 2 L 2
Figure pat00023

C) Li 2 (DAD)
Figure pat00024

D) Li (DAD) L 2
Figure pat00025

E) Li (DAD) 2
Figure pat00026

Wherein R 1 , R 2 , R 3 and R 4 are each independently selected from the group consisting of H, a C 1 -C 6 linear, branched or cyclic alkyl group, a C 1 -C 6 linear, branched or cyclic alkylsilyl group, Branched or cyclic alkylamino group, a C1-C6 straight chain, branched chain or cyclic fluoroalkyl group, and OR wherein R is H or a C1-C6 straight chain, branched chain or cyclic alkyl or aryl group, Selected < / RTI >
제1항 또는 제2항에 있어서, L이 THF, 디에틸에테르, 디메틸아미노에탄, 아세토니트릴, 글라임, 디글라임 및 폴리글라임으로 이루어진 군에서 선택되는 방법.3. The process according to claim 1 or 2, wherein L is selected from the group consisting of THF, diethyl ether, dimethylaminoethane, acetonitrile, glyme, diglyme and polyglyme. 제1항 또는 제2항에 있어서, 알칼리 금속 디아자부타디엔 화합물이 Li2(iPrN-CH=CH-NiPr) 또는 Li2(tBuN-CH=CH-NtBu)인 방법.The method according to claim 1 or 2 wherein the alkali metal-diaza-butadiene compound is Li 2 (iPrN-CH = CH -NiPr) or Li 2 (tBuN-CH = CH -NtBu). 제1항 또는 제2항에 있어서, 약 20℃ 내지 약 600℃, 바람직하게는 약 25℃ 내지 약 400℃의 온도에서 수행되는 방법.The process according to any one of claims 1 to 3, which is carried out at a temperature of from about 20 캜 to about 600 캜, preferably from about 25 캜 to about 400 캜. 제1항 또는 제2항에 있어서, 약 0.1 Pa 내지 약 105 Pa, 바람직하게는 약 2.5 Pa 내지 약 103 Pa의 압력에서 수행되는 방법.A process according to any one of the preceding claims, wherein the process is carried out at a pressure of from about 0.1 Pa to about 10 5 Pa, preferably from about 2.5 Pa to about 10 3 Pa. 제1항 또는 제2항에 있어서, 화학적 증착 (CVD), 원자층 침착 (ALD), 플라스마 CVD, 플라스마 ALD, 펄스 CVD, 저압 CVD, 대기압-이하 CVD, 대기압 CVD, 고온-와이어 CVD, 고온-와이어 ALD, 및 초임계 유체 침착으로 이루어진 군에서 선택되는 방법.3. The method of claim 1 or 2, further comprising at least one of chemical vapor deposition (CVD), atomic layer deposition (ALD), plasma CVD, plasma ALD, pulse CVD, low pressure CVD, Wire ALD, and supercritical fluid deposition. 제1항 또는 제2항에 있어서, 알칼리 금속-함유 필름에, 니켈, 코발트, 망간, 티탄, 니오븀, 란탄, 인, 붕소 또는 이들의 혼합물에서 선택된 다른 원소를 침착시키는 것을 더 포함하는 방법.3. The method of claim 1 or 2, further comprising depositing on the alkali metal-containing film another element selected from nickel, cobalt, manganese, titanium, niobium, lanthanum, phosphorus, boron or mixtures thereof. 제1항 또는 제2항에 있어서, 알칼리 금속-함유 필름이 순수한 리튬 (Li), 질화 리튬 (LinNm), 탄화 리튬 (LinCm), 탄질화 리튬 (LinCmNp), 규소화 리튬 (LinSim), 산화 리튬 (LinOm), 산화 리튬 코발트 (LiCoO2 또는 LinComOp), 산화 리튬 망간 (LiMnO2 또는 LinMnmOp), 산화 리튬 니켈 (LiNiO2 또는 LinNimOp), 산질화 리튬 인 (Li3 + nPO4 - nNn, LiPON), 티탄산 리튬 란탄 ((Li,La)nTimOp, LTT), 니오브산 리튬 (LiNbO3 또는 LinNbmOp), 리튬 붕소 (LinBm) 필름(식 중, m, n, p는 1 이상 7 이하 범위의 정수임)으로 이루어진 군에서 선택되는 방법.The method of claim 1 or 2, wherein the alkali metal-lithium pure-containing film (Li), lithium nitride (Li n N m), carbide, lithium (Li n C m), carbo-lithium (Li n C m N p ), Lithium silicate (Li n Si m ), lithium oxide (Li n O m ), lithium cobalt oxide (LiCoO 2 or Li n Co m O p ), lithium manganese oxide (LiMnO 2 or Li n Mn m O p ) oxide, lithium nickel (LiNiO 2 or Li n Ni m O p), acid lithium nitride (Li 3 + n PO 4 - n n n, LiPON), lithium titanate lanthanum ((Li, La) n Ti m O p, LTT), lithium niobate (LiNbO 3 or Li n Nb m O p ), lithium boron (Li n B m ) film (where m, n and p are integers in the range of 1 to 7) How to do it. 제1항 또는 제2항에 있어서, 알칼리 금속 디아자부타디엔 화합물의 도입과 동시에 또는 교대로, 반응 기체를 반응기에 도입하는 것을 더 포함하는 방법.3. The method according to claim 1 or 2, further comprising introducing a reactive gas into the reactor simultaneously or alternatively with the introduction of the alkali metal diazabutadiene compound. 제10항에 있어서, 반응 기체가 환원제인 방법.11. The method of claim 10 wherein the reactive gas is a reducing agent. 제11항에 있어서, 환원제가 N2, H2; SiH4; Si2H6; Si3H8; NH3; (CH3)2SiH2; (C2H5)2SiH2; (CH3)SiH3; (C2H5)SiH3; 페닐 실란; N2H4; N(SiH3)3; N(CH3)H2; N(C2H5)H2; N(CH3)2H; N(C2H5)2H; N(CH3)3; N(C2H5)3; (SiMe3)2NH; (CH3)HNNH2; (CH3)2NNH2; 페닐 히드라진; B2H6; 9-보라비시클로[3,3,1]노난; 디히드로벤젠푸란; 피라졸린; 트리메틸알루미늄; 디메틸아연; 디에틸아연; 이들의 라디칼 화학종; 및 이들의 혼합물로 이루어진 군에서 선택되는 방법.The method of claim 11 wherein the reducing agent is N 2, H 2; SiH 4 ; Si 2 H 6 ; Si 3 H 8 ; NH 3 ; (CH 3) 2 SiH 2; (C 2 H 5 ) 2 SiH 2 ; (CH 3) SiH 3; (C 2 H 5 ) SiH 3 ; Phenylsilane; N 2 H 4 ; N (SiH 3) 3; N (CH 3) H 2; N (C 2 H 5) H 2; N (CH 3) 2 H; N (C 2 H 5) 2 H; N (CH 3) 3; N (C 2 H 5) 3 ; (SiMe 3 ) 2 NH; (CH 3) HNNH 2; (CH 3) 2 NNH 2; Phenylhydrazine; B 2 H 6 ; 9-borabicyclo [3,3,1] nonane; Dihydrobenzene furan; Pyrazoline; Trimethyl aluminum; Dimethyl zinc; Diethylzinc; Their radical species; And mixtures thereof. 제10항에 있어서, 반응 기체가 산화제인 방법.11. The process of claim 10, wherein the reaction gas is an oxidizing agent. 제13항에 있어서, 산화제가 O2; O3; H2O; H2O2; NO; NO2; 카르복실산; 이들의 라디칼 화학종; 및 이들의 혼합물로 이루어진 군에서 선택되는 방법.The method of claim 13, wherein the oxidizing agent is O 2; O 3 ; H 2 O; H 2 O 2 ; NO; NO 2 ; Carboxylic acid; Their radical species; And mixtures thereof.
KR1020120131403A 2012-11-20 2012-11-20 Alkali metal diazabutadiene compounds and their use for alkali metal-containing film depositions KR20140075024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120131403A KR20140075024A (en) 2012-11-20 2012-11-20 Alkali metal diazabutadiene compounds and their use for alkali metal-containing film depositions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120131403A KR20140075024A (en) 2012-11-20 2012-11-20 Alkali metal diazabutadiene compounds and their use for alkali metal-containing film depositions

Publications (1)

Publication Number Publication Date
KR20140075024A true KR20140075024A (en) 2014-06-19

Family

ID=51127828

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120131403A KR20140075024A (en) 2012-11-20 2012-11-20 Alkali metal diazabutadiene compounds and their use for alkali metal-containing film depositions

Country Status (1)

Country Link
KR (1) KR20140075024A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170005358A1 (en) * 2015-07-02 2017-01-05 Panasonic Intellectual Property Management Co., Ltd. Method for producing oxynitride film by atomic layer deposition process
KR20220124283A (en) * 2014-08-14 2022-09-13 레르 리키드 쏘시에떼 아노님 뿌르 레뜌드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 Group 6 film forming compositions for vapor deposition of group 6 transition metal-containing films

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220124283A (en) * 2014-08-14 2022-09-13 레르 리키드 쏘시에떼 아노님 뿌르 레뜌드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 Group 6 film forming compositions for vapor deposition of group 6 transition metal-containing films
US20170005358A1 (en) * 2015-07-02 2017-01-05 Panasonic Intellectual Property Management Co., Ltd. Method for producing oxynitride film by atomic layer deposition process
US9809490B2 (en) * 2015-07-02 2017-11-07 Panasonic Intellectual Property Management Co., Ltd. Method for producing oxynitride film by atomic layer deposition process

Similar Documents

Publication Publication Date Title
US10914001B2 (en) Volatile dihydropyrazinly and dihydropyrazine metal complexes
KR20140085461A (en) Nickel bis diazabutadiene precursors, their synthesis, and their use for nickel containing film depositions
US20140235054A1 (en) Tungsten diazabutadiene precursors, their synthesis, and their use for tungsten containing film depositions
US20120145953A1 (en) LITHIUM PRECURSORS FOR LixMyOz MATERIALS FOR BATTERIES
US20170152144A1 (en) Niobium-nitride film forming compositions and vapor deposition of niobium-nitride films
US8691985B2 (en) Heteroleptic pyrrolecarbaldimine precursors
EP2451989A2 (en) Bis-ketoiminate copper precursors for deposition of copper-containing films
US20170018425A1 (en) Heteroleptic diazadienyl group 4 transition metal-containing compounds for vapor deposition of group 4 transition metal-containing films
US20240102161A1 (en) Lithium precursors for deposition of lithium-containing layers, islets or clusters
WO2021127467A1 (en) Group v element-containing film forming compositions and vapor deposition of group v element-containing film
US9790591B2 (en) Titanium-containing film forming compositions for vapor deposition of titanium-containing films
KR20140075024A (en) Alkali metal diazabutadiene compounds and their use for alkali metal-containing film depositions
US20230313375A1 (en) Method of forming dielectric films, new precursors and their use in the semi-conductor manufacturing
WO2016094711A2 (en) Organosilane precursors for ald/cvd silicon-containing film applications and methods of using the same
US8431719B1 (en) Heteroleptic pyrrolecarbaldimine precursors
US9738971B2 (en) Vapor deposition methods to form group 8-containing films
EP3922600A1 (en) Compound and method for producing lithium-containing film
WO2024059203A1 (en) Novel chelating and sterically encumbered ligands and their corresponding organometallic complexes for deposition of metal-containing films
JP2023107274A (en) Compound, method for forming metal-containing film, and method for producing compound
KR20230032607A (en) Niobium precursor compound for thin film deposition and method of forming thin film containing niobium using the same
KR20160062675A (en) Nickel Bis beta-ketoiminate precusor and the method for nickel containing film deposition

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination