KR20130104534A - Preparation method for gliadin nanoparticles by electrospray - Google Patents

Preparation method for gliadin nanoparticles by electrospray Download PDF

Info

Publication number
KR20130104534A
KR20130104534A KR1020120026102A KR20120026102A KR20130104534A KR 20130104534 A KR20130104534 A KR 20130104534A KR 1020120026102 A KR1020120026102 A KR 1020120026102A KR 20120026102 A KR20120026102 A KR 20120026102A KR 20130104534 A KR20130104534 A KR 20130104534A
Authority
KR
South Korea
Prior art keywords
gliadin
solution
gelatin
nanoparticles
weight
Prior art date
Application number
KR1020120026102A
Other languages
Korean (ko)
Other versions
KR101390212B1 (en
Inventor
정봉근
무하매드걸팜
구보람
김지은
이종민
Original Assignee
한양대학교 에리카산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 에리카산학협력단 filed Critical 한양대학교 에리카산학협력단
Priority to KR1020120026102A priority Critical patent/KR101390212B1/en
Publication of KR20130104534A publication Critical patent/KR20130104534A/en
Application granted granted Critical
Publication of KR101390212B1 publication Critical patent/KR101390212B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/6435Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent the peptide or protein in the drug conjugate being a connective tissue peptide, e.g. collagen, fibronectin or gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6925Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a microcapsule, nanocapsule, microbubble or nanobubble
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/26Nozzle-type reactors, i.e. the distribution of the initial reactants within the reactor is effected by their introduction or injection through nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/02Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants

Abstract

PURPOSE: A gliadin nanoparticle prepared by electrospray is provided to have an average particle size which is smaller than the particle size of gliadin particles prepared by desolvation and to increase zeta potential, thereby reducing aggregation of the nanoparticles. CONSTITUTION: A method for preparing gliadin nanoparticles comprises the steps of: dissolving gliadin in 65-80 (v/v)% ethanol solution to prepare a gliadin solution; and performing electrospray of the gliadin solution. The concentration of gliadin in the gliadin solution is 5-10 wt%. The flux and voltage difference of the gliadin solution during electrospray is 0.1-1 ml/hr and 12-18 kV, respectively. The diameter of a nozzle is 0.1-0.5 mm.

Description

전기분무건조를 이용한 글리아딘 나노입자의 제조방법{Preparation method for gliadin nanoparticles by electrospray}Preparation method for gliadin nanoparticles by electrospray using electrospray drying [

본 발명은 약물전달체로 사용가능한 글리아딘 나노입자, 또는 글리아딘 및 젤라틴 복합 나노입자의 제조방법, 이를 이용하여 제조된 나노입자, 및 이를 포함하는 약물전달체에 관한 것이다.
The present invention relates to a method for preparing gliadin nanoparticles or gliadin and gelatin composite nanoparticles usable as drug delivery materials, nanoparticles prepared therefrom, and drug delivery vehicles containing the same.

글리아딘은 밀 글루텐에서 분리된 식물성 천연 단백질로서, 중성 및 지용성 아미노산이 풍부한 단백질로 알려져 있다. 글리아딘의 중성 아미노산은 생체내 점막 조직과 수소결합을 촉진하고, 지용성 잔기는 생체 조직내에서 상호작용을 촉진하므로, 글리아딘 나노입자는 특유의 소수성과 제한된 용해성을 가지고, 생체부착(bioadhesion) 능력, 특히 점막층(mucos layer)에 부착될 수 있는 중합체로서, 생분해성 및 생체적합성을 가진 약물전달체로서 주목받고 있다.Glyadine is a vegetable natural protein isolated from wheat gluten, known as a protein rich in neutral and fat soluble amino acids. Since the neutral amino acid of gliadin promotes hydrogen bonding in vivo mucosal tissues and the lipid soluble moiety promotes the interaction in living tissues, the gliadin nanoparticle has a unique hydrophobicity and limited solubility, and bioadhesion ) Capability, particularly as a polymer that can be attached to the mucos layer, has attracted attention as a drug delivery vehicle having biodegradability and biocompatibility.

레티노인산의 조절된 방출을 위하여 평균입자크기가 500 nm보다 큰 글리아딘 나노입자가 제조된 바 있고, 또한 항헬리코박터 파이롤리 활성을 나타내는 암목시실린을 함유하는 글리아딘 입자가 제조된 적이 있으나 이들은 모두 탈용매(desolvation)법을 이용한 것이었다.Gliadin nanoparticles having an average particle size of greater than 500 nm have been prepared for regulated release of retinoic acid and gliadin particles containing scarcelycillin exhibiting anti-Helicobacter pylori activity have been produced, All using a desolvation method.

이러한 탈용매법은 약물삽입 효율이 낮고, 용액상태에서 제조된 나노입자를 분리하는데 어려움이 많으며, 제조과정에서 별도의 계면활성제가 소요되는 문제가 있었고, 제조된 나노입자가 중성을 나타내어 입자간의 응집이 발생하는 한계가 있었다.This desolvation method has a problem in that it is difficult to separate nanoparticles produced in a solution state and has a problem that a separate surfactant is required in the manufacturing process, and that the produced nanoparticles exhibit neutrality, There was a limit to occur.

한편 전기 분무는 어느 정도의 전기 전도도와 점도를 가지는 고분자 용액 등을 모세관에 주입시킨 후 정전기력을 부과하여 미세입자를 제조하는 방법으로 장치의 형태와 구조가 간단하여 제작이 용이하다. 발생된 입자들은 단분산 분포를 가질 수 있을 뿐 아니라 다양한 크기의 입자를 제조하기에 유용하여 최근에는 약물 전달 분야에서 약물을 함유한 입자 생성에 적용하려는 연구가 진행 되고 있다(Xie et al, Biomaterials, 27:3321(2006)).On the other hand, electrospray is a method of producing fine particles by injecting a polymer solution having a certain degree of electric conductivity and viscosity into a capillary and then applying an electrostatic force, so that the shape and structure of the device are simple and easy to manufacture. The generated particles are not only capable of having a monodisperse distribution but also are useful for producing particles of various sizes, and studies are currently under way to apply them to drug-containing particle production in the field of drug delivery (Xie et al, Biomaterials, 27: 3321 (2006)).

한국공개특허 제10-2010-0134368호는 전기분무건조를 이용하여 양이온성 고분자 및 음이온성 고분자의 복합입자를 제조하는 방법을 제공하고 있으나, 글리아딘 나노입자 또는 글리아딘 및 젤라틴 복합 나노입자를 제조하는 방법에 대해서는 개시하고 있지 않고, 제조된 입자의 크기도 마이크로 수준으로 세포내 섭취가 불가능한 크기의 입자를 제공하기 위한 기술이라는 한계가 있었다.
Korean Patent Laid-Open No. 10-2010-0134368 discloses a method for producing composite particles of a cationic polymer and an anionic polymer by using electrospray drying. However, a method of preparing composite particles of a cationic polymer and an anionic polymer by using electroless spray drying, And there is a limit to the technology for providing particles having a size such that the size of the produced particles can not be ingested intracellularly at a micro level.

본 발명은 전기분무를 통하여 평균입자크기가 나노크기로 작고 균일하며, 제타포텐셜이 높아 분산성이 우수하여 약물전달체로 유용한 글리아딘 나노입자, 또는 글리아딘 및 젤라틴 복합 나노입자를 제조하기 위한 방법을 제공하기 위한 것이다.
The present invention relates to a method for preparing gliadin nanoparticles or gliadin and gelatin composite nanoparticles which are useful as drug delivery materials because of their small and uniform nanoparticle size and high zeta potential, Method.

본 발명은 65 내지 80 (v/v)% 에탄올 수용액에 글리아딘을 용해시켜 글리아딘 용액을 제조하는 단계; 및 상기 글리아딘 용액을 전기분무하는 단계;를 포함하는 글리아딘 나노입자의 제조방법을 제공한다.The present invention relates to a process for preparing a gliadin solution by dissolving gliadin in an aqueous solution of 65 to 80 (v / v)% ethanol; And a step of electrospraying the gliadin solution.

본 발명의 글리아딘 나노입자의 제조방법에서, 상기 글리아딘 용액의 글리아딘 농도는 5 내지 10 중량%인 것이 바람직하다. 글리아딘 용액의 농도가 상기 하한치 미만인 경우 나노입자의 크기의 균일성이 저하되고, 상기 상한치를 초과하는 경우 구형의 입자를 형성하지 못하고 섬유상 네트워크를 형성하기 시작한다.In the method for producing the gliadin nanoparticles of the present invention, the gliadin concentration of the gliadin solution is preferably 5 to 10 wt%. When the concentration of the gliadin solution is less than the lower limit, the uniformity of the size of the nanoparticles is lowered. If the concentration exceeds the upper limit, the nanoparticles do not form spherical particles and begin to form a fibrous network.

본 발명의 글리아딘 나노입자의 제조방법은, 상기 전기분무에서 용액의 유속은 0.1 내지 1 ㎖/hr 이고, 전압차는 12 내지 18 kV일 수 있다. 이는 통상의 전기분무에 비해 유속이 매우 느리고, 높은 전압을 적용하는 것으로, 상기 범위를 벗어날 경우 본 발명에서 원하는 크기의 나노입자를 형성할 수 없다.In the method for producing the gliadin nanoparticles of the present invention, the flow rate of the solution in the electrospray may be 0.1 to 1 ml / hr and the voltage difference may be 12 to 18 kV. This is because the flow rate is very slow compared with the conventional electric spraying and a high voltage is applied. When the flow rate is out of the above range, the nanoparticles of the desired size can not be formed in the present invention.

본 발명의 글리아딘 나노입자의 제조방법은, 상기 전기분무에서 노즐의 직경이 0.1 내지 0.5 mm인 것을 특징으로 한다.The method for producing the gliadin nanoparticles of the present invention is characterized in that the diameter of the nozzle in the electrospray is 0.1 to 0.5 mm.

본 발명은 전기분무법에 의해 제조되어 제타포텐셜이 15 내지 30 mV이고, 평균입자크기가 200 내지 350 nm인 것을 특징으로 하는 글리아딘 나노입자를 제공한다. 본 발명의 글리아딘 나노입자는 종래 탈용매(desolvation)법으로 제조된 글리아딘 입자에 비하여 현저히 크기가 작고, 또한 제타포텔셜이 높아 제조된 나노입자가 응집되지 않고 잘 분산될 수 있다.The present invention provides a gliadin nanoparticle which is produced by an electrospray method and has a zeta potential of 15 to 30 mV and an average particle size of 200 to 350 nm. The gliadin nanoparticles of the present invention are significantly smaller in size than the gliadin particles prepared by the conventional desolvation method and have a high zeta potential so that the prepared nanoparticles can be dispersed well without aggregation.

본 발명은 65 내지 80 (v/v)% 에탄올 수용액에 글리아딘을 용해시켜 글리아딘 용액을 제조하는 단계; 80 내지 99 (v/v)% 아세트산 수용액에 젤라틴을 용해시켜 젤라틴 용액을 제하는 단계; 상기 글리아딘 용액과 젤라틴 용액을 혼합하여 혼합용액을 제조하는 단계; 및 상기 글리아딘 및 젤라틴 혼합용액을 전기분무하는 단계;를 포함하는 글리아딘 및 젤라틴 복합 나노입자의 제조방법을 제공한다.The present invention relates to a process for preparing a gliadin solution by dissolving gliadin in an aqueous solution of 65 to 80 (v / v)% ethanol; Dissolving gelatin in an aqueous solution of 80 to 99 (v / v)% acetic acid to prepare a gelatin solution; Mixing the gliadin solution and the gelatin solution to prepare a mixed solution; And electrospraying the mixed solution of the gliadin and the gelatin. The present invention also provides a method for producing the gliadin and gelatin composite nanoparticles.

본 발명의 글리아딘 및 젤라틴 복합 나노입자의 제조방법은, 상기 혼합용액의 글리아딘 및 젤라틴을 합한 고형분 100 중량부에 대하여 0.5 내지 5 중량부의 가교제를 더 첨가하는 것을 특징으로 한다.The method for producing the gliadin and gelatin composite nanoparticles of the present invention is characterized in that 0.5 to 5 parts by weight of a crosslinking agent is further added to 100 parts by weight of the solid content of the mixed solution of gliadin and gelatin.

본 발명의 글리아딘 및 젤라틴 복합 나노입자의 제조방법에서, 상기 글리아딘 용액의 글리아딘 농도는 5 내지 10 중량%이고, 젤라틴 용액의 젤라틴 농도는 0.1 내지 6 중량%인 것을 특징으로 한다.In the method for producing the gliadin and gelatin composite nanoparticles of the present invention, the gliadin concentration of the gliadin solution is 5 to 10 wt%, and the gelatin concentration of the gelatin solution is 0.1 to 6 wt% .

본 발명은 전기분무법에 의해 제조되어 제타포텐셜이 15 내지 30 mV이고, 평균입자크기가 300 내지 500 nm인 것을 특징으로 하는 글리아딘 및 젤라틴 복합 나노입자를 제공한다.The present invention provides a gliadin and gelatin composite nanoparticle which is produced by an electrospray method and has a zeta potential of 15 to 30 mV and an average particle size of 300 to 500 nm.

본 발명은 상기 글리아딘 나노입자 또는 상기 글리아딘 및 젤라틴 복합 나노입자; 및 약제학적 활성성분;을 포함하는 서방성 약물전달체를 제공한다.The present invention relates to the aforementioned gliadin nanoparticles or said gliadin and gelatin composite nanoparticles; And a pharmaceutically active ingredient.

본 발명에 있어서, '약제학적 활성성분'은 질병의 예방, 치료, 완화 또는 경감을 위해 사용되는 모든 생물학적, 화학적 물질을 포함하며, 다른 약물의 약리효과를 보조해 주는 물질 또한 본 발명의 '약제학적 활성성분'에 포함된다. 예를 들어, 항암제, 항염증제, 항균제, 항바이러스제, 호르몬제, 항산화제 등이 본 발명의 '약제학적 활성성분'으로 사용될 수 있다.In the present invention, 'pharmaceutically active ingredient' includes all biological and chemical substances used for prevention, treatment, alleviation or alleviation of disease, and a substance which assists the pharmacological effect of other drugs, Active ingredient ". For example, anticancer agents, anti-inflammatory agents, antimicrobial agents, antiviral agents, hormones, and antioxidants may be used as the 'pharmaceutically active ingredients' of the present invention.

또한, 전술한 성분 이외에 당 업계에 알려진 통상적인 첨가제, 예컨대 부형제, 안정화제, pH 조정제, 항산화제, 보존제, 결합제 또는 붕해제 등을 포함할 수 있다. 이때, 상기 전달체는 당 분야에 알려진 기타 첨가제, 용매 등을 추가적으로 포함할 수 있다.In addition to the above components, conventional additives known in the art can be included, such as excipients, stabilizers, pH adjusters, antioxidants, preservatives, binders or disintegrants. At this time, the carrier may further include other additives, solvents, and the like known in the art.

또한, 상기 약물전달체는 경구제 또는 비경구제의 형태로 제제화하여 사용할 수 있으며, 정맥, 근육 또는 피하 주사제로 제조할 수 있다.In addition, the drug delivery vehicle may be formulated in the form of oral or parenteral preparations, and may be manufactured into intravenous, muscular, or subcutaneous injections.

본 발명의 서방성 약물전달체에서, 상기 약제학적 활성성분은 사이클로포스파미드이고, 상기 서방성 약물전달체는 유방암 세포의 자연사를 유도하여 유방암의 치료에 사용될 수 있다.
In the sustained release drug delivery system of the present invention, the pharmacologically active ingredient is cyclophosphamide, and the sustained drug delivery system can be used for the treatment of breast cancer by inducing natural history of breast cancer cells.

본 발명의 전기분무를 통하여 제조된 글리아딘 나노입자, 또는 글리아딘 및 젤라틴 복합 나노입자는, 탈용매(desolvation)법으로 제조된 글리아딘 입자에 비해 평균입자크기가 작고, 제타포텐셜이 높아 나노입자의 응집을 줄일 수 있으면서 약물삽입 효율이 뛰어나 약물전달체로 사용하기에 적합하며, 본 발명의 나노입자를 약물전달체로 사용할 경우 기존 약물들의 낮은 용해도와 불안정성, 선택성 부족을 비롯한 비특이적 독성을 완화시킬 수 있다.
The gliadin nanoparticles or the gliadin and gelatin composite nanoparticles produced by the electrospray of the present invention have an average particle size smaller than that of the gliadin particles produced by the desolvation method and the zeta potential The nanoparticles of the present invention can be used as a drug delivery system. When the nanoparticles of the present invention are used as a drug delivery system, nonspecific toxicity including low solubility, instability, and selectivity of existing drugs can be alleviated .

도 1은 주입 펌프, 분무 노즐, 고전압 서플라이어 및 수집기로 구성된 전기분무장치의 개략도이다.
도 2의 A는 제조예 2의 7 중량% 글리아딘 용액을 이용하여 제조한 글리아딘 나노입자의 전자주사현미경 사진이고, 도 2의 B는 제조예 3의 7 중량% 글리아딘 용액 및 4 중량% 젤라틴 용액의 혼합용액을 이용하여 제조한 글리아딘 및 젤라틴 복합 나노입자의 전자주사현미경 사진이다.
도 3의 A는 제조예 2의 7 중량% 글리아딘 용액을 이용하여 제조한 글리아딘 나노입자의 투과전자현미경 사진이고, 도 3의 B는 제조예 3의 7 중량% 글리아딘 용액 및 4 중량% 젤라틴 용액의 혼합용액을 이용하여 제조한 글리아딘 및 젤라틴 복합 나노입자의 투과전자현미경 사진이다.
도 4의 A는 제조예 2의 14 중량% 글리아딘 용액을 이용하여 제조된 글리아딘 나노입자의 전자주사현미경 사진이고, 도 4의 B는 제조예 3의 7 중량% 글리아딘 용액 및 8 중량% 젤라틴 용액의 혼합용액을 이용하여 제조한 글리아딘 및 젤라틴 복합 나노입자의 전자주사현미경 사진이며, 도 4의 C는 제조예 3의 14 중량% 글리아딘 용액 및 8 중량% 젤라틴 용액의 혼합용액을 이용하여 제조한 글리아딘 젤라 틴 복합 나노입자의 전자주사현미경 사진이다.
도 5의 A는 제조예 2의 7 중량% 글리아딘 용액을 이용하여 제조한 글리아딘 나노입자, B는 제조예 3의 7 중량% 글리아딘 용액 및 4 중량% 젤라틴 용액의 혼합용액을 이용하여 제조한 글리아딘 및 젤라틴 복합 나노입자, 및 C는 제조예 3의 7 중량% 글리아딘 용액 및 8 중량% 젤라틴 용액의 혼합용액을 이용하여 제조한 글리아딘 및 젤라틴 복합 나노입자의 입자크기 분포를 나타낸 그래프이다.
도 6의 A는 제조예 2의 14 중량% 글리아딘 용액을 이용하여 제조한 글리아딘 나노입자, B는 제조예 3의 14 중량% 글리아딘 용액 및 4 중량% 젤라틴 용액의 혼합용액을 이용하여 제조한 글리아딘 및 젤라틴 복합 나노입자, 및 C는 제조예 3의 14 중량% 글리아딘 용액 및 8 중량% 젤라틴 용액의 혼합용액을 이용하여 제조한 글리 아딘 및 젤라틴 복합 나노입자의 입자크기 분포를 나타낸 그래프이다.
도 7은 제조예 3의 7 중량% 글리아딘 용액과 4 중량% 젤라틴 용액의 혼합용액으로부터 제조된 글리아딘 및 젤라틴 복합 나노입자에서 글리아딘과 젤라틴 사이에 교차결합에 의한 중합이 있는지를 확인하기 위한 X선 회절분석 그래프이다.
도 8은 제조예 2의 7 중량% 글리아딘 용액을 이용하여 제조된 글리아딘 나노입자와 제조예 3의 7 중량% 글리아딘 용액과 4 중량% 또는 8 중량%의 젤라틴 용액의 혼합용액을 이용하여 제조한 글리아딘 및 젤라틴 복합 나노입자의 약물 방출 패턴을 나타낸 그래프이다.
도 9는 MCF7 유방암 세포를 24시간 동안 배양한 후, 배지만 첨가한 대조군 1(도 9의 A), 배지에 사이클로포스파미드가 주입되지 않은 글리아딘 나노입자만 첨가한 대조군 2(도 9의 B), 배지에 사이클로포스파미드만 첨가한 대조군 3(도 9의 C), 및 배지에 사이클로포스파미드가 주입된 글리아딘 나노입자를 첨가한 실시예(도 9의 D)를 12 시간, 24 시간 및 48 시간 배양하면서, Annexin V 및 프로피듐 요오드로 각각 염색하여 세포 자연사 및 세포괴사를 확인한 사진이다.
도 10은 대조군 1 내지 3 및 실시예에서 Bcl-2 단백질의 발현량을 확인한 웨스턴 블랏 사진이다.
1 is a schematic diagram of an electrospray device consisting of an injection pump, a spray nozzle, a high voltage supplier and a collector.
2 is an electron micrograph of the gliadin nanoparticles prepared using the 7 wt% gliadin solution of Preparation Example 2, Fig. 2B is a 7 wt% gliadin solution of Preparation Example 3, and Fig. 4% by weight gelatin solution. The micrograph of the gliadin and gelatin composite nanoparticles is shown in Fig.
3 is a transmission electron micrograph of the gliadin nanoparticles prepared using the 7 wt% gliadin solution of Preparation Example 2, Fig. 3B is a 7 wt% gliadin solution of Preparation Example 3, and Fig. 4% by weight gelatin solution. The results are shown in Table 1. < tb >< TABLE > Columns = 2 < tb >
FIG. 4A is an electron micrograph of the gliadin nanoparticles prepared by using the 14% by weight gliadin solution of Preparation Example 2 , FIG. 4B is the 7% by weight glyandin solution of Preparation Example 3 and FIG. FIG. 4C is an electron micrograph of the gliadin and gelatin composite nanoparticles prepared using the mixed solution of 8 wt% gelatin solution , and FIG. 4C is a photograph of 14 wt% glyadin solution and 8 wt% gelatin solution of Preparation Example 3 Of a mixed solution of gliadin and gelatin nanoparticles .
FIG. 5A is a graph showing the results of measurement of the activity of the glialazine nanoparticles prepared using the 7% by weight gliadin solution of Preparation Example 2, B, the mixed solution of 7% by weight of the glyandin solution of Preparation Example 3 and 4% by weight of the gelatin solution , And C was a mixture of gliadin and gelatin composite nanoparticles prepared by using a mixed solution of 7 wt% of glyandin solution and 8 wt% of gelatin solution of Preparation Example 3 Particle size distribution.
FIG. 6A is a graph showing the results of measurement of the activity of the gliadin nanoparticles prepared by using the 14% by weight gliadin solution of Preparation Example 2 , and B being the mixed solution of 14% by weight of the glyandin solution of Preparation Example 3 and 4% by weight of the gelatin solution a gliadin and gelatin composite nanoparticles, and C is a particle of a glycidyl Adin and gelatin composite nanoparticles prepared using a mixture solution of 14% by weight of gliadin solution and 8% by weight of the preparation 3 gelatin solution prepared using FIG.
7 is a graph showing the cross-linking polymerization between gliadin and gelatin in the gliadin and gelatin composite nanoparticles prepared from the mixed solution of the 7 wt% gliadin solution and the 4 wt% gelatin solution of Production Example 3 X-ray diffraction analysis graph for confirmation.
FIG. 8 is a graph showing the results of measurement of the activity of the gliadin nanoparticles prepared by using the 7% by weight gliadin solution of Preparation Example 2, a mixed solution of 7% by weight of the glyandin solution of Preparation Example 3 and 4% by weight or 8% FIG. 2 is a graph showing drug release patterns of gliadin and gelatin composite nanoparticles prepared using the method of the present invention.
9 is a graph showing the results of a comparison between the control group 1 (Fig. 9A) in which MCF7 breast cancer cells were cultured for 24 hours, the control group 2 (Fig. 9A) in which only gliadin nanoparticles not containing cyclophosphamide B), a control group 3 (FIG. 9C) in which only cyclophosphamide was added to the medium, and an example (FIG. 9D) to which cyclophosphamide-impregnated gliadin nanoparticles were added (FIG. 9D) , 24 hours, and 48 hours, respectively, and stained with Annexin V and propidium iodine, respectively, to observe cellular apoptosis and cell necrosis.
10 is a Western blot photograph showing the expression levels of Bcl-2 protein in Control Groups 1 to 3 and Examples.

이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.
Hereinafter, the present invention will be described in detail by way of examples. However, the following examples are illustrative of the present invention, and the present invention is not limited to the following examples.

제조예1Preparation Example 1 : : 글리아딘의Gliadin 제조 Produce

밀가루에서 추출된 동결건조되고 분쇄된 글루텐을 이용하였다. 상기 글루텐과 다이클로로메탄을 1 : 10 중량비로 20 ℃에서 2시간 동안 2회 추출하여 탈지시켰다. 상기 추출물을 여과한 후 20 ℃에서 감압 건조하였다. 건조된 글루텐 분말(100g)은 70 (v/v)% 에탄올 수용액과 1 : 10 중량비로 혼합한 후 20 ℃에서 4시간 동안 부드럽게 교반하고, 현탁액을 4600 rpm에서 원심분리하였다. 글리아딘 은 상등액에 존재하므로, 상등액을 다시 동결건조하였다. 그러나 상기 상등액의 동결건조물에는 여전히 일부의 글루텐닌 단백질을 포함하고 있으므로, 증류수로 수회 세척하여 글루텐닌 단백질을 제거한 후 여과하고, 여과된 고형물에 0.05 M 아세트산을 처리하고, 이를 다시 동결건조하여 글리아딘 분말을 제조하였다.
Lyophilized and ground gluten extracted from wheat flour was used. The gluten and dichloromethane were extracted twice at 20 DEG C for 2 hours at a weight ratio of 1:10, followed by degreasing. The extract was filtered and dried under reduced pressure at 20 ° C. The dried gluten powder (100 g) was mixed with a 70 (v / v)% ethanol aqueous solution at a weight ratio of 1:10, gently stirred at 20 ° C for 4 hours, and the suspension was centrifuged at 4600 rpm. Gliadin was present in the supernatant, and the supernatant was again lyophilized. However, since the lyophilized product of the supernatant still contains some glutenin protein, it was washed several times with distilled water to remove glutenin protein, filtered, and the filtered solid was treated with 0.05 M acetic acid, Dean powder was prepared.

제조예2Production Example 2 : : 글리아딘Gliadin 나노입자의 제조 Preparation of Nanoparticles

제조예 1의 글리아딘 분말은 글리아딘은 수불용성이었고, 에탄올 수용액에 있어서도 65 (v/v)% 미만 또는 80 (v/v)% 초과의 알코올 수용액에서는 용해되지 않았다.The gliadin powder of Production Example 1 was insoluble in water in the aqueous alcohol solution of less than 65 (v / v)% or 80 (v / v)% in the aqueous ethanol solution.

상기 글리아딘 분말로부터 글리아딘 나노입자를 제조하기 위하여, 70 (v/v)% 에탄올 수용액에 상기 글리아딘 분말을 14 중량%가 되도록 혼합하고, 실온에서 2 시간 교반한 후, 2일 동안 숙성시켜 글리아딘 용액을 제조하였다. To prepare the gliadin nanoparticles from the gliadin powder, the gliadin powder was mixed in an aqueous 70% (v / v) ethanol solution to a concentration of 14% by weight, stirred at room temperature for 2 hours, Lt; / RTI > to prepare a gliadin solution.

상기 14 중량% 글리아딘 용액을 각각 2, 7 및 14 중량%의 글리아딘 농도로 희석하여 각각의 글리아딘 용액으로 도 1의 개략도에 나타낸 전기분무장치를 이용하여 전기분무시켰다. The 14 wt% gliadin solution was diluted to a gliadin concentration of 2, 7, and 14 wt%, respectively, and electrosprayed with each gliadin solution using the electrospray shown in the schematic diagram of Fig.

글리아딘 주입 펌프(Nano NC, 한국), 분무 노즐, 고전압 서플라이어 및 접지된 글리아딘 입자 수집기로 구성된 전기분무장치에서, 각각의 글리아딘 용액을 10 ㎖ 주사기에 충진한 후, 글리아딘 용액의 공급속도 0.5 ㎖/hr로 직경 32 GA(약0.0097 inch)이고, 고전압 서플라이어에 연결된 스테인레스 스틸 노즐에 주입하였다. 이때 노즐과 접지된 스테인레스 스틸판의 전위차는 12 내지 14 kV가 되도록 고전압 서플라이어에 전압을 인가하였다.
In an electrospray device composed of a gliadin injection pump (Nano NC, Korea), a spray nozzle, a high voltage supplier and a grounded gliadin particle collector, each gliadin solution was filled into a 10 ml syringe, The solution was fed into a stainless steel nozzle having a diameter of 32 GA (about 0.0097 inch) connected to a high voltage supply at a feed rate of 0.5 ml / hr. The voltage was applied to the high voltage supply so that the potential difference between the nozzle and the grounded stainless steel plate was 12 to 14 kV.

제조예3Production Example 3 : : 글리아딘Gliadin 및 젤라틴 복합 나노입자의 제조 And Gelatin Composite Nanoparticles

제조예 2와 동일하게 글리아딘 용액을 제조하고, 동일한 장치와 조건의 전기분무장치를 이용하였다.A gliadin solution was prepared in the same manner as in Production Example 2, and an electric atomizing apparatus with the same apparatus and conditions was used.

다만, 젤라틴을 4 중량% 및 8 중량%가 되도록 90 (v/v)%의 아세트산 수용액과 혼합하고, 실온에서 2 시간 교반한 후, 2일 동안 숙성시켜 젤라틴 용액을 제조하였다.However, gelatin was mixed with an aqueous solution of 90 (v / v) acetic acid so as to be 4% by weight and 8% by weight, stirred at room temperature for 2 hours and aged for 2 days to prepare a gelatin solution.

7 중량%의 글리아딘 용액 또는 14 중량%의 글리아딘 용액과, 4 중량%의 젤라틴 용액 또는 8 중량%의 젤라틴 용액을 1 : 1 중량비로 혼합하여 혼합용액을 제조하고, 혼합용액을 상기 제조예 2의 전기분무장치를 이용하여 동일조건에서 전기분무를 실시하였다. 다만 글리아딘 및 젤라틴 고형물의 합 100 중량부에 대하여 2 중량부에 해당하는 글루타르알데하이드를 첨가하여 25 ℃에서 60 분 중합이 이루어지도록 하였다.
7% by weight of gliadin solution or 14% by weight of gliadin solution and 4% by weight of gelatin solution or 8% by weight of gelatin solution were mixed at a weight ratio of 1: 1 to prepare a mixed solution, Electrospraying was carried out under the same conditions using the electrospraying apparatus of Production Example 2. 2 parts by weight of glutaraldehyde was added to 100 parts by weight of the sum of the glycidol and the gelatin solids, and polymerization was carried out at 25 DEG C for 60 minutes.

실험예1Experimental Example 1 : 형태적 특성 확인: Identification of morphological characteristics

제조예 2에서 제조된 글리아딘 나노입자들과, 제조예 3의 글리아딘 및 젤라틴 복합 나노입자의 형태를 전자주시현미경(SEM, TESCAN Model: VEGA/SBH Motorize)로 확인하였다. 상기 나노입자들은 터보 스퍼터 코터를 이용하여 플래티늄 코팅을 한 후 20 kV에서 SEM사진을 얻었다.The shapes of the gliadin nanoparticles prepared in Preparation Example 2 and the gliadin and gelatin composite nanoparticles of Preparation Example 3 were confirmed by an electron microscope (SEM, TESCAN Model: VEGA / SBH Motorize). The nanoparticles were platinum coated using a turbo-sputter coater and SEM images were obtained at 20 kV.

도 2의 A는 제조예 2의 7 중량% 글리아딘 용액을 이용하여 제조한 글리아딘 나노입자의 것이고, 도 2의 B는 제조예 3의 7 중량% 글리아딘 용액 및 4 중량% 젤라틴 용액의 혼합용액을 이용하여 제조한 글리아딘 및 젤라틴 복합 나노입자의 SEM 사진으로 구형의 나노입자가 형성되었음을 확인할 수 있다.
FIG. 2 (A) shows the results of the gliadin nanoparticles prepared using the 7% by weight gliadin solution of Preparation Example 2, FIG. 2 (B) shows the 7% by weight gliadin solution of Preparation Example 3 and 4% Spherical nanoparticles were formed by scanning electron microscopy (SEM) images of gliadin and gelatin composite nanoparticles prepared using a solution mixture.

또한 투과전자현미경(TEM, JEM-2100F)를 이용하여 전압 200 kV, 음전류 95 ㎂, 방출전류 126 ㎂에서 TEM사진을 얻었다.TEM images were also obtained using a transmission electron microscope (TEM, JEM-2100F) at a voltage of 200 kV, a negative current of 95, and an emission current of 126 ㎂.

도 3의 A는 제조예 2의 7 중량% 글리아딘 용액을 이용하여 제조한 글리아딘 나노입자의 것이고, 도 3의 B는 제조예 3의 7 중량% 글리아딘 용액 및 4 중량% 젤라틴 용액의 혼합용액을 이용하여 제조한 글리아딘 및 젤라틴 복합 나노입자의 TEM 사진으로 구형의 나노입자가 형성되었음을 SEM 사진에 비해 더 명확히 확인할 수 있고, 평균입자크기가 글리아딘 나노입자에서 더 작음을 확인할 수 있다.
Fig. 3 (A) shows the results of the gliadin nanoparticles prepared using the 7% by weight gliadin solution of Preparation Example 2, Fig. 3 (B) shows the 7% by weight gliadin solution of Preparation Example 3 and 4% The TEM images of the gliadin and gelatin composite nanoparticles prepared using the mixed solution showed that the spherical nanoparticles were formed more clearly than the SEM photographs and the average particle size was smaller in the gliadin nanoparticles can confirm.

또한 제조예 2의 2 중량% 글리아딘 용액을 이용하여 제조된 글리아딘 나노입자의 경우, 입자크기가 불균일하여, 글리아딘 용액의 농도가 낮으면 단분산성의 구형 나노입자를 얻기 어려움을 알 수 있었고, 제조예 2의 14 중량% 글리아딘 용액을 이용하여 제조된 글리아딘 나노입자의 경우, 입자끼리 뭉쳐 나노크기의 입자가 형성되지 못하고 마이크로 크기의 입자와 나노입자가 혼재되어 크기가 불균일함을 알 수 있었다(도 4의 A). Also, in the case of the gliadin nanoparticles prepared using the 2 wt% gliadin solution of Preparation Example 2, the particle size was uneven and it was difficult to obtain monodispersed spherical nanoparticles when the concentration of the gliadin solution was low In the case of the gliadin nanoparticles prepared by using the 14% by weight gliadin solution of Production Example 2 , the particles did not aggregate to form nano-sized particles, and micro-sized particles and nano-particles were mixed together, (Fig. 4A).

또한 Also 제조예Manufacturing example 3의 7 중량%  3, 7 wt% 글리아딘Gliadin 용액 및 8 중량% 젤라틴 용액의 혼합용액을 이용하여 제조한  Solution and a 8 wt% gelatin solution 글리아딘Gliadin 및 젤라틴 복합 나노입자는 구형 입자끼리 응집되어 불균일한 형태의 입자가 형성되었다(도 4의 B). And gelatin composite nanoparticles aggregated with each other to form non-uniformly shaped particles (Fig. 4B).

또한 14 중량% Further, 14 wt% 글리아딘Gliadin 용액 및 8 중량% 젤라틴 용액의 혼합용액을 이용하여 제조한  Solution and a 8 wt% gelatin solution 글리아딘Gliadin 및 젤라틴 복합 나노입자의 경우는, 형성된 나노입자의 크기가 균일하지 않음은 물론  And in the case of gelatin composite nanoparticles, the sizes of the formed nanoparticles are not uniform 섬유상Fibrous 네트워크를 형성하고 있었다(도 4의 C). Thereby forming a network (FIG. 4C).

실험예2Experimental Example 2 : 입자크기 분포 및 : Particle size distribution and 제타포텐셜Zeta potential 확인 Confirm

제조예 2의 7 중량% 글리아딘 용액을 이용하여 제조한 글리아딘 나노입자, 제조예 3의 7 중량% 글리아딘 용액 및 4 중량% 젤라틴 용액의 혼합용액을 이용하여 제조한 글리아딘 및 젤라틴 복합 나노입자, 및 제조예 3의 7 중량% 글리아딘 용액 및 8 중량% 젤라틴 용액의 혼합용액을 이용하여 제조한 글리아딘 및 젤라틴 복합 나노입자의 입자크기 분포와 제타포텐셜을 확인하였다.The gliadin nanoparticles prepared using the 7% by weight gliadin solution of Preparation Example 2, the 7% by weight gliadin solution of Preparation Example 3 and the 4% by weight gelatin solution, And the gelatin composite nano-particles, and the mixed solution of the 7 wt% glyadin solution and the 8 wt% gelatin solution of Preparation Example 3, the particle size distribution and zeta potential of the gliadin and gelatin composite nanoparticles were confirmed .

먼저 상기 나노입자들을 탈이온수에 분산시키고, 팁 소니케이터(Sonics, Vibrcell)를 이용하여 20% 진폭으로 3분 동안 초음파 처리하고, 동적 광분산 제타사이저 4(Malvern Instrument, France)를 이용하여 입자크기 분포와 제타포텐셜을 측정한 후 그 결과를 표 1 및 도 5에 나타내었다.The nanoparticles were first dispersed in deionized water, sonicated for 3 minutes at 20% amplitude using a tip sonicator (Sonics, Vibrcell), and analyzed by dynamic light scattering Zetasizer 4 (Malvern Instrument, France) The particle size distribution and the zeta potential were measured, and the results are shown in Table 1 and FIG.

구분division 평균 입자크기Average particle size 평균 제타포텐셜Average zeta potential 7중량% 글리아딘7% by weight gliadin 218.66±5.15218.66 ± 5.15 18.46±8.2918.46 ± 8.29 7중량% 글리아딘+4중량% 젤라틴7% by weight gliadin + 4% by weight gelatin 398.56±4.20398.56 + - 4.20 19.00±3.6219.00 ± 3.62 7중량% 글리아딘+8중량% 젤라틴7% by weight gliadin + 8% by weight gelatin 450.10±9.70450.10 + - 9.70 14.20±3.7214.20 ± 3.72

제조예 2의 7 중량% 글리아딘 용액을 이용하여 제조한 글리아딘 나노입자는 균일한 크기(218.66 nm)에 제타포텐셜이 18.46 mV로서 양전하를 띠고 있었고, 7 중량% 글리아딘에 4 중량% 젤라틴을 혼합한 혼합용액의 경우 평균 입자크기가 2 배 정도로 증가하고, 제타포텐셜은 유사하게 유지됨을 알 수 있었다. 그러나 7 중량%의 글리아딘에 젤라틴의 농도가 8 중량%로 증가된 혼합용액에서는 평균 입자크기가 증가된 반면에, 제타포텐셜은 오히려 감소하였다.The gliadin nanoparticles prepared using the 7 wt% gliadin solution of Preparation Example 2 had a positive charge with a uniform size (218.66 nm) at a zeta potential of 18.46 mV and a positive charge of 7 wt% % Gelatin mixed solution, the average particle size increased to about 2 times and the zeta potential remained similar. However, in the mixed solution in which the concentration of gelatin was increased to 7 wt% of gliadin by 8 wt%, the average particle size was increased, but the zeta potential was rather decreased.

또한 제조예 3의 14 중량%의 글리아딘에 각각 4 중량% 및 8 중량%의 젤라틴을 혼합한 혼합용액으로 제조한 글리아딘 및 젤라틴 나노입자는 그 입자크기가 각각 471.6±7.8 nm 및 516.1±14.8 nm 이었고, 제타포텐셜은 각각 19.3 mV와 21.8 mV로 높은 값을 나타내었다(도 6의 B 및 C).
The gliadin and gelatin nanoparticles prepared from the mixed solution of 4% by weight and 8% by weight of gelatin in 14% by weight of gliadin of Production Example 3, respectively, had particle sizes of 471.6 ± 7.8 nm and 516.1 14.8 nm, and the zeta potentials were as high as 19.3 mV and 21.8 mV, respectively (Figs. 6B and 6C) .

상기 결과로부터 나노입자의 평균입자크기는 글리아딘 용액의 농도에 비례하여 증가하다가 14 중량% 이상에서는 섬유상 구조가 됨을 알 수 있었고, 글리아딘 용액의 농도를 일정하게 할 경우 젤라틴 용액의 농도에 비례하여 평균입자크기가 증가하고, 글리아딘 용액의 농도가 7 중량%일 때 젤라틴 용액의 농도가 8 중량% 이상일 때 섬유상 네트워크가 형성됨을 알 수 있었다.
From the above results, it can be seen that the average particle size of the nanoparticles increases in proportion to the concentration of the gliadin solution, and that the fibrous structure becomes more than 14% by weight. When the concentration of the gliadin solution is constant, The average particle size increases proportionally, and when the concentration of the gliadin solution is 7 wt%, the fibrous network is formed when the concentration of the gelatin solution is 8 wt% or more.

실험예3Experimental Example 3 : : 글리아딘Gliadin 및 젤라틴의 교차결합 확인 And cross-linking of gelatin

제조예 3의 7 중량% 글리아딘 용액과 4 중량% 젤라틴 용액의 혼합용액으로 부터 제조된 글리아딘 및 젤라틴 복합 나노입자에서 글리아딘과 젤라틴 사이에 교차결합에 의한 중합이 있는지를 확인하기 위하여 X선 회절분석기(Rigaku Corporation, Japan)를 이용하여 X선 회절분석을 실시하여 그 결과를 도 7에 나타내었다.Confirmation of cross-linking polymerization between gliadin and gelatin in the gliadin and gelatin composite nanoparticles prepared from the mixed solution of 7% by weight of gliadin solution and 4% by weight of gelatin solution in Production Example 3 X-ray diffraction analysis was performed using an X-ray diffractometer (Rigaku Corporation, Japan), and the results are shown in Fig.

젤라틴은 18 degree에 주 피크가 나타났고, 글리아딘 입자는 12 및 18 degree에 주 피크가 나타났다. 글리아딘 및 젤라틴 복합 나노입자의 경우에는 12 degree에서 부 피크, 18 degree에서 주 피크가 함께 관찰되었고, 이는 젤라틴이 글리아딘의 표면에 결합되었기 때문으로 생각되었다.
Gelatin had main peaks at 18 degrees, and gliadin particles showed main peaks at 12 and 18 degrees. In the case of gliadin and gelatin composite nanoparticles, a peak at 12 degrees and a main peak at 18 degrees were observed together because gelatin was bound to the surface of gliadin.

실험예4Experimental Example 4 : 약물 방출 분석: Drug Release Analysis

제조예 2 및 3의 나노입자들의 약물 방출 패턴을 분석하기 위하여 항암제인 사이클로포스파미드를 이용하였다.Cyclophosphamide, an anticancer agent, was used to analyze drug release patterns of the nanoparticles of Production Examples 2 and 3.

약물이 주입된 나노입자는 The nanoparticles injected with the drug 글리아딘Gliadin 용액, 또는  Solution, or 글리아딘Gliadin 및 젤라틴  And gelatin 혼합용For mixing 액에 In the liquid 사이클로포스파미드를Cyclophosphamide 1  One mgmg /Of mlml 을 혼합하고, 이를 전기분무하여 제조하였다.Were mixed and prepared by electrospray.

사이클로포스파미드가 주입된 나노입자에서 용출되어 나오는 사이클로포스파미드는 사이클로포스파미드의 니트로소 유도체를 제조한 후 325 nm에서 흡광도를 측정하여 최초 주입된 사이클로포스파미드 량에 대한 시간에 따른 방출량을 백분율로 도 8에 나타내었다.The cyclophosphamide eluted from the nanoparticles injected with cyclophosphamide was prepared by measuring the absorbance at 325 nm after the production of the nitroso derivative of cyclophosphamide, and the amount of the released cyclophosphamide Is shown in FIG. 8 as a percentage.

제조예 2의 7 중량% 글리아딘 용액을 이용하여 제조된 글리아딘 나노입자와 제조예 3의 7 중량% 글리아딘 용액과 4 중량% 또는 8 중량%의 젤라틴 용액의 혼합용액을 이용하여 제조한 글리아딘 및 젤라틴 복합 나노입자 모두 2단계 방출패턴을 나타내었다.Using a 7% by weight gliadin solution of Preparation Example 3 and a 4% by weight or 8% by weight of gelatin solution mixed solution of the gliadin nanoparticles prepared using the 7% by weight gliadin solution of Preparation Example 2 Both of the prepared gliadin and gelatin composite nanoparticles exhibited a two - step emission pattern.

1단계에서 제조예 3의 7 중량% 글리아딘 용액과 8 중량%의 젤라틴 용액의 혼합용액을 이용하여 제조한 글리아딘 및 젤라틴 복합 나노입자는 1 시간 이내에 46%의 사이클로포스파미드를 용출시켰다. 그러나 제조예 2의 글리아딘 나노입자와 제조예 3의 7 중량% 글리아딘 용액과 4 중량%의 젤라틴 용액의 혼합용액을 이용하여 제조한 글리아딘 및 젤라틴 복합 나노입자는 1 시간 이내에 각각 25% 및 30%가 방출됨을 확인할 수 있었다. 이러한 1단계의 빠른 방출은 나노입자 표면에 부착된 사이클로포스파미드로 인한 것으로 판단되었고, 특히 젤라틴 함량이 높아질수록 1단계에서 빠른 방출이 이루어지는 것은 젤라틴의 높은 용해성에 기인한 것일 것으로 판단되었다.The gliadin and gelatin composite nanoparticles prepared by using the mixed solution of 7 wt% of glyandin solution and 8 wt% of gelatin solution of Preparation Example 3 in Step 1 were eluted with 46% cyclophosphamide within 1 hour . However, the gliadin and gelatin composite nanoparticles prepared by using the mixed solution of the gliadin nanoparticles of Production Example 2, the 7 wt% glyandin solution of Production Example 3 and the 4 wt% gelatin solution, 25% and 30%, respectively. The fast release of the first step was judged to be due to the cyclophosphamide attached to the surface of the nanoparticles. Especially, as the gelatin content was increased, the faster release in the first step was thought to be due to the high solubility of the gelatin.

1단계 빠른 방출 이후 2단계에서는 48시간까지 사이클로포스파미드가 서서히 방출됨을 알 수 있었고, 48시간째의 방출량은 7 중량% 글리아딘 용액을 이용하여 제조한 글리아딘 나노입자는 80%, 7 중량% 글리아딘 용액과 4 중량% 젤라틴 용액의 혼합용액을 이용하여 제조한 글리아딘 및 젤라틴 복합 나노입자의 경우는 90%, 7 중량% 글리아딘 용액과 8 중량% 젤라틴 용액의 혼합용액을 이용하여 제조한 글리아딘 및 젤라틴 복합 나노입자의 경우에는 95%로 나타났다.Cyclophosphamide was gradually released up to 48 hours in the second stage after the first stage of rapid release, and 80% of the gliadin nanoparticles prepared by using the 7% by weight gliadin solution was released at 48 hours. In the case of the gliadin and gelatin composite nanoparticles prepared by using the mixed solution of the 7 wt% gliadin solution and the 4 wt% gelatin solution, a mixture of 90%, 7 wt% gliadin solution and 8 wt% gelatin solution And 95% in the case of the gliadin and gelatin composite nanoparticles prepared using the solution.

상기 결과로부터 약물 방출 패턴은 나노입자 표면의 젖음성(wettability)에 영향을 받는 것으로, 소수성의 글리아딘 나노입자의 경우에는 약물의 서서히 방출되지만, 친수성의 젤라틴이 나노입자에 포함될수록 방출속도가 빨라지므로, 글리아딘 나노입자에 젤라틴의 첨가농도를 조절함으로써 약물의 방출속도를 조절할 수 있음을 알게 되었다. 다만 상기 7 중량% 글리아딘 용액과 8 중량% 젤라틴 용액의 혼합용액을 이용하여 제조한 글리아딘 및 젤라틴 복합 나노입자의 경우 생체내 과량 투여시 부작용이 발생하여 서방성을 필요로 하는 약물에는 적합하지 않은 것으로 판단되었다.
From the above results, the drug release pattern is affected by the wettability of the surface of the nanoparticles. In the case of the hydrophilic gliadin nanoparticles, the drug is gradually released. However, as the hydrophilic gelatin is included in the nanoparticles, Thus, it has been found that the release rate of the drug can be controlled by controlling the concentration of the gelatin added to the gliadin nanoparticles. However, in the case of the gliadin and gelatin composite nanoparticles prepared by using the mixed solution of the 7 wt% gliadin solution and the 8 wt% gelatin solution, adverse effects occurred in the in vivo administration, It was judged that it was not appropriate.

실험예5Experimental Example 5 : 유방암 세포의 자연사 확인: Identification of Natural History of Breast Cancer Cells

실험예 4에서 글리아딘 및 젤라틴 복합 나노입자의 경우에도 24시간째 약 88 내지 90%의 약물이 방출되는 조절된 방출효과를 나타내었으나, 유방암 세포 자연사 확인을 위해서는 항암제인 사이클로포스파미드를 주입시킨 제조예 2의 7 중량% 글리아딘 용액을 이용하여 제조된 글리아딘 나노입자를 이용하였다. 이는 글리아딘 나노입자가 24시간째 75%의 약물 방출을 나타내어 조절된 방출효과를 나타내고, 평균입자크기가 218.7 nm로서 세포내 섭취(endocytosis)가 가능할 수도 있다는 판단을 했기 때문이다.In Experimental Example 4, the gliadin and gelatin composite nanoparticles also exhibited a controlled release effect of about 88 to 90% of the drug released at 24 hours. However, in order to confirm the natural history of breast cancer cells, cyclophosphamide The gliadin nanoparticles prepared using the 7% by weight gliadin solution of the preparation example 2 were used. This is because the gliadin nanoparticles showed a controlled release effect with a drug release of 75% at 24 hours and an average particle size of 218.7 nm was considered to be capable of endocytosis.

글리아딘 나노입자의 유방암 세포의 자연사 조절 여부를 확인하기 위하여, MCF7 유방암 세포를 24시간 동안 배양한 후, 배지만 첨가한 대조군 1(도 9의 Control), 배지에 사이클로포스파미드가 주입되지 않은 글리아딘 나노입자만 첨가한 대조군 2(도 9의 NP), 배지에 사이클로포스파미드만 첨가한 대조군 3(도 9의 CPA), 및 배지에 사이클로포스파미드가 주입된 글리아딘 나노입자를 첨가한 실시예(도 9의 NP+CPA)를 12 시간, 24 시간 및 48 시간 배양하면서, Annexin V로 염색하여 자연사한 세포를 확인하였고(녹색 염색), 프로피듐 요오드로 염색하여 세포괴사를 확인하였다(적색 염색).In order to confirm the natural history of the gliadin nanoparticles in breast cancer cells, MCF7 breast cancer cells were cultured for 24 hours, and then treated with control 1 (Control in FIG. 9) in which the cells were not added with cyclophosphamide Control group 2 (NP in Fig. 9) in which only gliadin nanoparticles were added, Control group 3 (CPA in Fig. 9) in which only cyclophosphamide was added to the medium, and gliadin nanoparticles injected with cyclophosphamide (NP + CPA in FIG. 9) were cultured for 12 hours, 24 hours, and 48 hours. The cells were stained with Annexin V to identify cells that had died of the disease (green staining) and stained with propidium iodine (Red staining).

대조군 1 및 2의 경우는 자연사한 세포나 세포괴사를 확인할 수 없었다. 그러나 사이클로포스파미드 만을 단독으로 첨가한 대조군 3의 경우 24시간 배양에서 세포괴사가 발생함을 확인하였고, 사이클로포스파미드를 글리아딘 나노입자에 주입한 실시예의 경우에는 유방암 세포의 자연사를 확인할 수 있었다. 실시예는 대조군 3에 비해서도 사멸된 세포가 현저히 증가되었음을 알 수 있었다.
In the case of control 1 and 2, it was not possible to identify naturally occurring cells or cell necrosis. However, in the case of control group 3 in which only cyclophosphamide alone was added, it was confirmed that cell necrosis occurred in culture for 24 hours, and in the case of injecting cyclophosphamide into gliadin nanoparticles, the natural history of breast cancer cells was confirmed I could. It can be seen that the killed cells were significantly increased in the Example compared to the Control 3.

실시예의 사이클로포스파미드가 주입된 글리아딘 나노입자의 유방암 세포에 대한 자연사 효과를 확인하기 위하여 웨스턴 블랏을 실시하여 그 결과를 도 8에 나타내었다. 실시예의 사이클로포스파미드를 주입시킨 글리아딘 나노입자와 24 시간 배양한 유방암 세포에서 Bcl-2 단백질의 생성이 현저히 감소된 것을 확인할 수 있었고, 반면에 글리아딘 나노입자만 첨가하여 배양한 대조군 2의 경우 유방암 세포에서 Bcl -2 단백질이 감소하였다. Western blot analysis was performed to confirm the natural history of the cyclophosphamide-injected gliadin nanoparticles on the breast cancer cells. The results are shown in FIG. It was confirmed that the production of Bcl-2 protein was significantly reduced in the gliadin nanoparticles injected with the cyclophosphamide of the example and the breast cancer cells cultured for 24 hours, whereas the control group cultured with addition of the gliadin nanoparticles 2, Bcl- 2 protein decreased in breast cancer cells .

또한 실시예의 사이클로포스파미드를 주입시킨 글리아딘 나노입자와 배양한 경우에도 12시간까지는 세포 자연사를 발생시키지 않는 것으로 나타났고, 특히 대조군 3의 사이클로포스파미드만을 첨가하여 배양한 경우에는 24시간째까지 세포 자연사를 발생시키지 않음을 알 수 있었다. 이는 실시예의 사이클로포스파미드를 주입시킨 글리아딘 나노입자가 세포내 섭취를 통해 약물 방출의 조절을 향상시킬 수 있었기 때문인 것으로 판단되었다.Also, when cultured with the gliadin nanoparticles injected with the cyclophosphamide of the example, the cells did not develop apoptosis until 12 hours. In particular, when cultured with the addition of only the cyclophosphamide of the control 3, But not cell death. This was because the gliadin nanoparticles injected with the cyclophosphamide of the Example were able to improve the regulation of drug release through intracellular ingestion.

Claims (11)

65 내지 80 (v/v)% 에탄올 수용액에 글리아딘을 용해시켜 글리아딘 용액을 제조하는 단계; 및 상기 글리아딘 용액을 전기분무하는 단계;를 포함하는 글리아딘 나노입자의 제조방법.
Dissolving gliadin in an aqueous 65 to 80 (v / v)% ethanol solution to prepare a gliadin solution; And electrospraying the gliadin solution.
제 1 항에 있어서, 상기 글리아딘 용액의 글리아딘 농도는 5 내지 10 중량%인 것을 특징으로 하는 글리아딘 나노입자의 제조방법.
The method of claim 1, wherein the gliadine concentration of the gliadine solution is 5 to 10% by weight.
제 1 항 또는 제 2 항에 있어서, 상기 전기분무에서 용액의 유속은 0.1 내지 1 ㎖/hr 이고, 전압차는 12 내지 18 kV인 것을 특징으로 하는 글리아딘 나노입자의 제조방법.
The method according to claim 1 or 2, wherein the flow rate of the solution in the electrospray is 0.1 to 1 ml / hr, and the voltage difference is 12 to 18 kV.
제 3 항에 있어서, 상기 전기분무에서 노즐의 직경이 0.1 내지 0.5 mm인 것을 특징으로 하는 글리아딘 나노입자의 제조방법.
4. The method of claim 3, wherein the diameter of the nozzle in the electrospray is 0.1 to 0.5 mm.
전기분무법에 의해 제조되어 제타포텐셜이 15 내지 30 mV이고, 평균입자크기가 200 내지 350 nm인 것을 특징으로 하는 글리아딘 나노입자.
Gliadine nanoparticles prepared by electrospray method, zeta potential is 15 to 30 mV, average particle size is 200 to 350 nm.
65 내지 80 (v/v)% 에탄올 수용액에 글리아딘을 용해시켜 글리아딘 용액을 제조하는 단계; 80 내지 99 (v/v)% 아세트산 수용액에 젤라틴을 용해시켜 젤라틴 용액을 제하는 단계; 상기 글리아딘 용액과 젤라틴 용액을 혼합하여 혼합용액을 제조하는 단계; 및 상기 글리아딘 및 젤라틴 혼합용액을 전기분무하는 단계;를 포함하는 글리아딘 및 젤라틴 복합 나노입자의 제조방법.
Dissolving gliadin in an aqueous 65 to 80 (v / v)% ethanol solution to prepare a gliadin solution; Dissolving gelatin in an aqueous solution of 80 to 99 (v / v)% acetic acid to prepare a gelatin solution; Mixing the gliadin solution and the gelatin solution to prepare a mixed solution; And electrospraying the mixed solution of the gliadin and the gelatin. The method for producing the gliadin and gelatin composite nanoparticles according to claim 1,
제 6 항에 있어서, 상기 혼합용액의 글리아딘 및 젤라틴을 합한 고형분 100 중량부에 대하여 0.5 내지 5 중량부의 가교제를 더 첨가하는 것을 특징으로 하는 글리아딘 및 젤라틴 복합 나노입자의 제조방법.
The method according to claim 6, wherein 0.5 to 5 parts by weight of a crosslinking agent is further added to 100 parts by weight of a solid content of the mixed solution of gliadin and gelatin.
제 6 항 또는 제 7 항에 있어서, 상기 글리아딘 용액의 글리아딘 농도는 5 내지 10 중량%이고, 젤라틴 용액의 젤라틴 농도는 0.1 내지 6 중량%인 것을 특징으로 하는 글리아딘 및 젤라틴 복합 나노입자의 제조방법.
[7] The method according to claim 6 or 7, wherein the gliadin concentration of the gliadin solution is 5 to 10 wt% and the gelatin concentration of the gelatin solution is 0.1 to 6 wt%. A method for producing nanoparticles.
전기분무법에 의해 제조되어 제타포텐셜이 15 내지 30 mV이고, 평균입자크기가 300 내지 500 nm인 것을 특징으로 하는 글리아딘 및 젤라틴 복합 나노입자.
Wherein the zeta potential is 15 to 30 mV and the average particle size is 300 to 500 nm, which is produced by an electrospray method.
청구항 제5항의 글리아딘 나노입자 또는 제9항의 글리아딘 및 젤라틴 복합 나노입자; 및 약제학적 활성성분;을 포함하는 서방성 약물전달체.
Claim 5, the gliadin nanoparticles or claim 9 of the gliadin and gelatin composite nanoparticles; And a pharmaceutically active ingredient.
제 10 항에 있어서, 상기 약제학적 활성성분은 사이클로포스파미드이고, 유방암 환자 치료용인 것을 특징으로 하는 서방성 약물전달체.11. A sustained release drug delivery system according to claim 10, wherein said pharmaceutically active ingredient is cyclophosphamide and is for the treatment of breast cancer patients.
KR1020120026102A 2012-03-14 2012-03-14 Preparation method for gliadin nanoparticles by electrospray KR101390212B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120026102A KR101390212B1 (en) 2012-03-14 2012-03-14 Preparation method for gliadin nanoparticles by electrospray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120026102A KR101390212B1 (en) 2012-03-14 2012-03-14 Preparation method for gliadin nanoparticles by electrospray

Publications (2)

Publication Number Publication Date
KR20130104534A true KR20130104534A (en) 2013-09-25
KR101390212B1 KR101390212B1 (en) 2014-05-14

Family

ID=49453356

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120026102A KR101390212B1 (en) 2012-03-14 2012-03-14 Preparation method for gliadin nanoparticles by electrospray

Country Status (1)

Country Link
KR (1) KR101390212B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106265599A (en) * 2016-08-29 2017-01-04 苏州求是玉泉健康科技有限公司 The preparation technology of a kind of peoniflorin wheat gliadin nanoparticle and purposes
US11097509B2 (en) 2016-08-30 2021-08-24 Corning Incorporated Siloxane plasma polymers for sheet bonding
US11123954B2 (en) 2014-01-27 2021-09-21 Corning Incorporated Articles and methods for controlled bonding of thin sheets with carriers
US11167532B2 (en) 2015-05-19 2021-11-09 Corning Incorporated Articles and methods for bonding sheets with carriers
US11192340B2 (en) 2014-04-09 2021-12-07 Corning Incorporated Device modified substrate article and methods for making
US11331692B2 (en) 2017-12-15 2022-05-17 Corning Incorporated Methods for treating a substrate and method for making articles comprising bonded sheets
US11535553B2 (en) 2016-08-31 2022-12-27 Corning Incorporated Articles of controllably bonded sheets and methods for making same
US11905201B2 (en) 2015-06-26 2024-02-20 Corning Incorporated Methods and articles including a sheet and a carrier

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11123954B2 (en) 2014-01-27 2021-09-21 Corning Incorporated Articles and methods for controlled bonding of thin sheets with carriers
US11192340B2 (en) 2014-04-09 2021-12-07 Corning Incorporated Device modified substrate article and methods for making
US11167532B2 (en) 2015-05-19 2021-11-09 Corning Incorporated Articles and methods for bonding sheets with carriers
US11660841B2 (en) 2015-05-19 2023-05-30 Corning Incorporated Articles and methods for bonding sheets with carriers
US11905201B2 (en) 2015-06-26 2024-02-20 Corning Incorporated Methods and articles including a sheet and a carrier
CN106265599A (en) * 2016-08-29 2017-01-04 苏州求是玉泉健康科技有限公司 The preparation technology of a kind of peoniflorin wheat gliadin nanoparticle and purposes
US11097509B2 (en) 2016-08-30 2021-08-24 Corning Incorporated Siloxane plasma polymers for sheet bonding
US11535553B2 (en) 2016-08-31 2022-12-27 Corning Incorporated Articles of controllably bonded sheets and methods for making same
US11331692B2 (en) 2017-12-15 2022-05-17 Corning Incorporated Methods for treating a substrate and method for making articles comprising bonded sheets

Also Published As

Publication number Publication date
KR101390212B1 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
KR101390212B1 (en) Preparation method for gliadin nanoparticles by electrospray
Rodríguez‐Félix et al. Preparation and characterization of quercetin‐loaded zein nanoparticles by electrospraying and study of in vitro bioavailability
Zhang et al. Pullulan acetate nanoparticles prepared by solvent diffusion method for epirubicin chemotherapy
US20090214633A1 (en) Nanoparticles with lipid core and polymer shell structures for protein drug delivery prepared by nanoencapsulation
KR20060123384A (en) Drug-containing nanoparticle, process for producing the same and parenterally administered preparation from the nanoparticle
Midhun et al. Preparation of budesonide-loaded polycaprolactone nanobeads by electrospraying for controlled drug release
EP3142702B1 (en) Production of curcumin and piperine loaded double-layered biopolymer based nano delivery systems by using electrospray / coating method
Liu et al. Protein-bearing cubosomes prepared by liquid precursor dilution: inner ear delivery and pharmacokinetic study following intratympanic administration
Zhu et al. Topical application of zein-silk sericin nanoparticles loaded with curcumin for improved therapy of dermatitis
Chen et al. Chondroitin sulfate deposited on foxtail millet prolamin/caseinate nanoparticles to improve physicochemical properties and enhance cancer therapeutic effects
CN112451542B (en) Albumin/hyaluronic acid nano-composite-platinum prodrug and preparation method and application thereof
US20160287552A1 (en) Drug delivery system comprising gelatine nano-particles for slowly releasing hardly-water soluble substances and its preparation method
CN107126564A (en) A kind of albumin combination type Sorafenib nanometer formulation and preparation method thereof
CN111096950A (en) Curcumin double-layer emulsion with colon-targeted delivery function and preparation method and application thereof
CN107137350A (en) A kind of taxol polymer micelle and preparation method thereof
EP3843708A2 (en) Biopolymer based carrier system
Song et al. Hydrophobin HGFI improving the nanoparticle formation, stability and solubility of Curcumin
Zhongyu et al. Andrographolide-loaded silk fibroin nanoparticles
Shrestha et al. Versatile use of nanosponge in the pharmaceutical arena: a mini-review
CN102058530A (en) Ganoderma lucidum polysaccharide oral nanoemulsion and preparation method thereof
CN114344282A (en) Nanoparticle with three-layer composite structure formed by prolamin, sodium caseinate and polysaccharide and rapid preparation method thereof
Alfatama et al. Recent advances of electrospray technique for multiparticulate preparation: Drug delivery applications
Thakkar et al. Electrospray particles as drug delivery systems: concepts, strategies, and applications
Gokuladhas et al. Synthesis and characterization of biocompatible gold nanoparticles stabilized with hydrophilic polymer coated hesperetin drug for sustained drug delivery to treat hepatocellular carcinoma-derived cancer cells
Tang et al. Preparation and characterization of oleanolic acid nanoparticles

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee