KR20120114190A - Multiplex physical quantity measuring method and system using optical multiple fiber bragg grating - Google Patents

Multiplex physical quantity measuring method and system using optical multiple fiber bragg grating Download PDF

Info

Publication number
KR20120114190A
KR20120114190A KR1020120092616A KR20120092616A KR20120114190A KR 20120114190 A KR20120114190 A KR 20120114190A KR 1020120092616 A KR1020120092616 A KR 1020120092616A KR 20120092616 A KR20120092616 A KR 20120092616A KR 20120114190 A KR20120114190 A KR 20120114190A
Authority
KR
South Korea
Prior art keywords
optical fiber
fiber grating
physical quantity
light
sensor
Prior art date
Application number
KR1020120092616A
Other languages
Korean (ko)
Inventor
김재민
이종재
윤정방
Original Assignee
한국과학기술원
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원, 전남대학교산학협력단 filed Critical 한국과학기술원
Priority to KR1020120092616A priority Critical patent/KR20120114190A/en
Publication of KR20120114190A publication Critical patent/KR20120114190A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/165Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge by means of a grating deformed by the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/268Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light using optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/3206Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres at discrete locations in the fibre, e.g. using Bragg scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • G01L1/246Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre using integrated gratings, e.g. Bragg gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/0208Refractive index modulation gratings, e.g. Bragg gratings characterised by their structure, wavelength response
    • G02B6/02085Refractive index modulation gratings, e.g. Bragg gratings characterised by their structure, wavelength response characterised by the grating profile, e.g. chirped, apodised, tilted, helical
    • G02B6/02095Long period gratings, i.e. transmission gratings coupling light between core and cladding modes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/4133Refractometers, e.g. differential
    • G01N2021/4153Measuring the deflection of light in refractometers

Abstract

PURPOSE: A device and a system for measuring a multi-physical quantity using a plurality of optical fiber lattices are provided to easily measure variations in a physical quantity desired to measure because patterns of a reaction waveform being reflected in an optical fiber lattice sensor are differently formed. CONSTITUTION: A system for measuring a multi-physical quantity using a plurality of optical fiber lattices comprises an optical fiber sensor and a calculator(40). The optical fiber sensor unit comprises a plurality of optical fiber lattice sensors respectively generating waveform patterns different from each other with respect to incident lights. The optical fiber lattice sensor is aligned in a row along an optical transmission passage. The calculator detects a wavelength movement of the waveform patterns from the lights detected by respectively reacted by each optical fiber lattice sensor. The calculator calculates variations of physical quantity of a measurement object with respect to an environment where the optical fiber lattice sensor is installed. [Reference numerals] (10) Light source; (40) Calculator

Description

다수의 광섬유 격자를 이용한 다중 물리량 측정 방법 및 시스템{multiplex physical quantity measuring method and system using optical multiple Fiber Bragg Grating}Multiple physical quantity measuring method and system using optical multiple Fiber Bragg Grating}

본 발명은 광섬유 격자를 이용한 물리량 측정 방법 및 시스템에 관한 것으로서, 복수개의 광섬유 격자 센서 상호간의 입사광에 의한 반응 파형이 다르게 형성되어 측정대상 물리량의 변화를 센서별로 용이하게 측정할 수 있는 광섬유 격자를 이용한 물리량 측정 방법 및 시스템에 관한 것이다.The present invention relates to a method and system for measuring a physical quantity using an optical fiber grating, wherein a response waveform due to incident light between a plurality of optical fiber grating sensors is formed differently so that a change in the physical quantity to be measured can be easily measured for each sensor. It relates to a physical quantity measuring method and system.

광섬유격자는 온도 또는 스트레인(strain)의 크기가 변화되면 광섬유격자로부터 반사되는 광신호의 파장이 쉬프트 된다. 따라서, 광섬유격자로부터 반사된 광의 파장변화를 측정하여 그 파장의 변화량으로부터 어떤 크기의 외부 온도, 스트레인, 압력 등의 물리량이 가해졌는지를 측정하는 데 이용할 수 있다.As the optical fiber grating changes in temperature or strain, the wavelength of the optical signal reflected from the optical fiber grating is shifted. Therefore, the wavelength change of the light reflected from the optical fiber grating can be measured and used to determine what size of external temperature, strain, pressure, etc. has been applied from the amount of change in the wavelength.

이러한 광섬유격자는 구조물의 진단 등 각종 분야에서 센서로서 이용되고 있다.Such optical fiber gratings are used as sensors in various fields such as diagnosis of structures.

또한, 교량과 같은 구조물의 경우 진단 포인트가 다수인 경우 입사광에 대해 반사되는 중심파장이 상호 다른 광섬유 격자 센서를 상호 일열로 배열시켜 피크파장의 이동량을 검출하여 각 진단 포인트에 대한 스트레인과 같은 물리량의 변화를 측정하고 있다. Also, in the case of a structure such as a bridge, when a plurality of diagnostic points are used, the optical fiber grating sensors having different center wavelengths reflected by incident light are arranged in a row to detect a shift in peak wavelengths, and thus the amount of physical quantity such as strain for each diagnostic point is detected. The change is measured.

그런데, 입사광에 대한 반사광의 중심파장이 상호 다른 광섬유 격자 센서를 상호 일렬로 어레이시킨 경우 각 광섬유 격자 센서에 인가되는 응력이 상호 반대로 작용되어 쉬프트된 파장 중심이 상호 중첩되거나 중심파장의 위치가 역전되는 경우 이를 구별하여 확인하기가 어려운 문제점이 발생한다. 예를 들면 첫 번째 광섬유 격자 센서의 반사광의 중심파장과 두 번째 광섬유 격자센서의 반사광의 중심파장이 1nm만큼 차이가 있도록 제작된 경우 첫 번째 광섬유 격자센서에는 반사 파장이 길어지는 방향으로 파장이 쉬프트되게 응력이 작용하고, 두 번째 광섬유 격자센서에는 반사 파장이 짧아지는 방향으로 파장이 쉬프트되게 응력이 작용하여, 쉬프트된 파장 중심 각각이 상호 중첩되거나 중심파장의 위치가 역전되는 경우 피크검출방식에 의해서는 이를 구별할 수 없는 문제점이 있다.However, in the case of arranging optical fiber grating sensors having different center wavelengths of reflected light with respect to incident light, the stresses applied to the optical fiber grating sensors interact with each other so that the shifted wavelength centers overlap each other or the positions of the center wavelengths are reversed. In this case, it is difficult to identify the problem. For example, if the center wavelength of the reflected light of the first optical fiber grating sensor and the center wavelength of the reflected light of the second optical fiber grating sensor are manufactured to be different by 1 nm, the wavelength of the first optical fiber grating sensor is shifted in the direction in which the reflected wavelength is increased. When the stress is applied and the second optical fiber grating sensor is stressed so that the wavelength is shifted in the direction in which the reflected wavelength is shortened, each of the shifted wavelength centers overlaps each other or the position of the center wavelength is reversed. There is a problem that cannot be distinguished.

본 발명은 상기와 같은 문제점을 개선하기 위하여 창안된 것으로서, 다수의 광섬유 격자 센서 각각에 인가되는 물리량에 대한 응답 파형을 상호 구별가능하게 하여 측정 정밀도를 향상시킬 수 있는 광섬유 격자를 이용한 물리량 측정 방법 및 시스템을 제공하는데 그 목적이 있다.The present invention was devised to improve the above problems, and the physical quantity measurement method using an optical fiber grating which can improve the measurement accuracy by making it possible to distinguish the response waveform for the physical quantity applied to each of the plurality of optical fiber grating sensors and The purpose is to provide a system.

상기의 목적을 달성하기 위하여 본 발명에 따른 광섬유 격자를 이용한 물리량 측정 시스템은 입사된 광에 대해 상호 다른 파형 패턴을 각각 생성하는 복수개의 광섬유 격자센서가 광전송 경로를 따라 상호 일렬로 정렬된 광섬유 센서부와; 상기 광섬유 센서부로 송출되어 상기 광섬유 격자 센서 각각에 의해 반응되어 검출되는 광으로부터 상기 파형패턴 각각의 파장이동량을 검출하여 상기 광섬유 격자센서가 각각 설치된 환경에 대한 측정대상 물리량의 변화를 산출하는 산출기;를 구비한다.In order to achieve the above object, a physical quantity measurement system using an optical fiber grating according to the present invention includes a plurality of optical fiber grating sensors that generate different waveform patterns for incident light, respectively, in which optical fiber gratings are arranged in a line along an optical transmission path. Wow; A calculator for detecting the wavelength shift of each of the waveform patterns from the light transmitted to the optical fiber sensor and reacted by each of the optical fiber grating sensors to calculate a change in a physical quantity to be measured for an environment in which the optical fiber grating sensors are installed; It is provided.

바람직하게는 상기 산출기는 상기 광섬유 센서부에 광을 출사하는 광원과; 상기 광원에서 출사된 입력광을 상기 광섬유 센서부로 전송하고, 상기 광섬유 센서부의 상기 광섬유 격자 센서 각각으로부터 반사된 광을 상기 입력광과 분리되게 출력하는 광분배기와; 상기 광분배기에서 출력되는 광을 검출하고, 검출된 광으로부터 각 파형패턴의 파장 이동량을 분석하여 상기 측정대상 물리량의 변화를 산출하는 산출부;를 구비한다.Preferably the calculator comprises a light source for emitting light to the optical fiber sensor; An optical splitter which transmits the input light emitted from the light source to the optical fiber sensor unit and outputs the light reflected from each of the optical fiber grating sensors of the optical fiber sensor unit to be separated from the input light; And a calculating unit for detecting the light output from the optical splitter and analyzing the wavelength shift of each waveform pattern from the detected light to calculate a change in the physical quantity to be measured.

더욱 바람직하게는 상기 광섬유 격자센서 각각은 입력광에 대해 반사되는 파형패턴 상호간의 진폭 및 파장 폭이 상호 다르게 형성된다.More preferably, each of the optical fiber grating sensors is formed with different amplitudes and wavelength widths between the waveform patterns reflected on the input light.

또한, 상기 파형 패턴은 동일 환경조건에서 각각 중심파장이 상호 다르고, 중심파장에 대해 비대칭 형상을 갖는 것이 바람직하다.In addition, it is preferable that each of the waveform patterns have different center wavelengths under the same environmental conditions and have an asymmetric shape with respect to the center wavelength.

상기 광분배기는 써큘레이터가 적용될 수 있다.The optical splitter may be applied to a circulator.

또한, 상기의 목적을 달성하기 위하여 본 발명에 따른 광섬유 격자를 이용한 물리량 측정 방법은 가. 입사된 광에 대해 상호 다른 파형 패턴을 각각 생성하는 복수개의 광섬유 격자센서를 광전송 경로를 따라 상호 일열로 얼라인되게 배치하는 단계와; 나. 상기 광섬유 격자센서에 입력광을 전송하는 단계와; 다. 상기 광섬유 격자센서들로부터 반사되어 검출된 광으로부터 상기 파형패턴에 대응되는 파장이동량을 산출하여 상기 광섬유 격자센서가 각각 설치된 환경에 대한 측정대상 물리량의 변화를 산출하는 단계;를 포함한다.In addition, the physical quantity measurement method using the optical fiber grating according to the present invention to achieve the above object is a. Arranging a plurality of optical fiber grating sensors each generating a mutually different waveform pattern for incident light in a row along the optical transmission path; I. Transmitting input light to the optical fiber grating sensor; All. Computing a wavelength shift amount corresponding to the waveform pattern from the light reflected from the optical fiber grating sensors to calculate a change in the physical quantity to be measured for the environment in which the optical fiber grating sensor is installed.

본 발명에 따른 광섬유 격자를 이용한 물리량 측정 방법 및 시스템에 의하면, 각 광섬유 격자 센서에서 반사되는 반응 파형의 패턴이 상호 구별이 가능하게 다르게 형성되어 있어 측정하고자 하는 물리량의 변화를 용이하게 측정할 수 있는 장점을 제공한다.According to the method and system for measuring physical quantity using an optical fiber grating according to the present invention, since the pattern of the response waveform reflected from each optical fiber grating sensor is formed to be distinguishable from each other, it is possible to easily measure the change in physical quantity to be measured. Provide advantages.

도 1은 본 발명에 따른 광섬유 격자를 이용한 물리량 측정 시스템을 나타내 보인 도면이고,
도 2 내지 도 4는 도 1의 광섬유 격자 센서 각각에서 반사되는 파형패턴의 예를 확대해 보인 파형도이고,
도 5는 도 1의 광섬유 격자센서 각각이 외부로부터 인가되는 물리량의 변화에 따라 고유한 파형패턴이 이동되는 상황의 일 예를 나타내 보인 파형도이다.
1 is a view showing a physical quantity measurement system using an optical fiber grating according to the present invention,
2 to 4 are enlarged waveform diagrams showing examples of waveform patterns reflected from the optical fiber grating sensors of FIG. 1,
FIG. 5 is a waveform diagram illustrating an example in which a unique waveform pattern is moved according to a change in a physical quantity applied to each of the optical fiber grating sensors of FIG. 1.

이하, 첨부된 도면을 참조하면서 본 발명의 바람직한 실시 예에 따른 광섬유 격자를 이용한 물리량 측정 방법 및 시스템을 더욱 상세하게 설명한다.Hereinafter, a method and system for measuring physical quantity using an optical fiber grating according to an exemplary embodiment of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 광섬유 격자를 이용한 물리량 측정 시스템을 나타내 보인 도면이다.1 is a view showing a physical quantity measurement system using an optical fiber grating according to the present invention.

도 1을 참조하면, 측정 시스템은 광원(10), 써큘레이터(20), 다수의 광섬유 격자센서(31 내지 33) 및 산출부(40)를 구비한다.Referring to FIG. 1, the measurement system includes a light source 10, a circulator 20, a plurality of optical fiber grating sensors 31 to 33, and a calculator 40.

광섬유센서부는 입사된 광에 대해 상호 다른 파형(waveform) 패턴을 각각 생성하는 복수개의 광섬유 격자센서(31 내지 33)가 광전송 경로를 따라 상호 일렬로 정렬되어 있다.The optical fiber sensor unit has a plurality of optical fiber grating sensors 31 to 33 that respectively generate different waveform patterns with respect to incident light, and are arranged in a line along the optical transmission path.

도시된 예에서 광섬유 센서부는 제1광섬유격자 센서(31), 제2광섬유 격자센서(32) 및 제3광섬유 격자센서(33)가 직렬로 접속된 구조가 예시되어 있고, 적용되는 개수는 도시된 예로 한정하지 않음은 물론이다.In the illustrated example, the optical fiber sensor unit has a structure in which the first optical fiber grating sensor 31, the second optical fiber grating sensor 32, and the third optical fiber grating sensor 33 are connected in series, and the number applied is shown. Of course, not limited to.

광섬유 격자센서(31 내지 33) 각각은 광원(10)으로부터 입력되는 입력광에 대해 반사되는 파형패턴 상호간의 진폭(amplitude) 및 파장(wavelength)의 폭이 상호 다르게 형성된다.Each of the optical fiber grating sensors 31 to 33 is formed to have different amplitudes and wavelengths between waveform patterns reflected with respect to input light input from the light source 10.

여기서 각 광섬유 격자센서(31 내지 33)의 파형패턴은 동일 환경 예를 들면 동일 온도 및 외력이 인가되지 않은 상태에서 도 1의 제1광섬유격자 센서(31), 제2광섬유 격자센서(32) 및 제3광섬유 격자센서(33) 각각에서 입사광에 대응하여 반사되는 파형패턴이 확대 도시된 도 2 내지 도 4에 도시된 바와 같이 중심파장(λ1, λ2, λ3)이 상호 다르고, 진폭 및 파장폭이 다르게 형성된다.Here, the waveform patterns of the optical fiber grating sensors 31 to 33 are the first optical fiber grating sensor 31, the second optical fiber grating sensor 32 of FIG. 1 in the same environment, for example, without the same temperature and external force. As shown in FIGS. 2 to 4 in which the waveform patterns reflected by the third optical fiber grating sensors 33 corresponding to the incident light are enlarged, the center wavelengths λ1, λ2, and λ3 are different from each other, and the amplitude and the wavelength width are different from each other. It is formed differently.

즉, 각 파형패턴을 보면, 파장의 진폭은 큰 순서대로 보면, 제1광섬유격자 센서(31), 제3광섬유격자(33), 제2광섬유격자센서(32) 순서로 순차적으로 작고, 형태인식이 가능한 파장폭은 제2광섬유격자 센서(32), 제3광섬유격자(33), 제1광섬유격자센서(31) 순서로 순차적으로 좁게 형성된 형태로 되어 있다. 따라서, 각 파형패턴 상호간이 중첩되거나 위치 이동시 역전되어도 쉽게 분리 구별할 수 있다.That is, when looking at each waveform pattern, the amplitude of the wavelengths are sequentially small in the order of the first optical fiber lattice sensor 31, the third optical fiber lattice 33, and the second optical fiber lattice sensor 32. This possible wavelength width is formed in a narrow form sequentially in order of the second optical fiber lattice sensor 32, the third optical fiber lattice 33, and the first optical fiber lattice sensor 31. Therefore, even if the waveform patterns overlap each other or are reversed at the time of position movement, the waveform patterns can be easily distinguished.

각 광섬유 격자센서(31 내지 33)는 광섬유에 상호 이격되게 격자가 다수 형성된 구조로 되어 있다.Each of the optical fiber grating sensors 31 to 33 has a structure in which a plurality of gratings are formed to be spaced apart from each other in the optical fiber.

여기서, 격자는 광섬유의 일측에 자외선을 상호 이격되게 조사하여 형성된 것이 적용된다. 도면에서는 시각적으로 이해를 돕기위해 세로상으로 격자를 도식화하여 표기하였다. Here, the grating is applied to one side of the optical fiber formed by irradiating the ultraviolet light to be spaced apart from each other. In the drawings, the grid is illustrated vertically for better understanding.

이러한 광섬유격자 센서(31 내지 33)는 자외선을 조사하여 형성하는 방법 등 공지된 방법에 의해 형성하면 된다.The optical fiber grating sensors 31 to 33 may be formed by a known method such as a method of irradiating ultraviolet rays.

자외선을 조사하여 광섬유 격자를 형성시키는 방법은 통상적인 방법 즉, 레이저 광원(미도시)으로부터 출사된 광을 포커싱렌즈(미도시)를 통해 집속시킨 다음 목적하는 격자 간격에 대응되는 슬릿이 형성된 마스크(미도시)를 거쳐 광섬유에 조사하는 방식을 이용하면 된다.A method of forming an optical fiber grating by irradiating ultraviolet rays is a conventional method, that is, a mask formed by focusing light emitted from a laser light source (not shown) through a focusing lens (not shown), and then forming a slit corresponding to a desired grating spacing ( It is possible to use a method of irradiating the optical fiber through the (not shown).

이때, 각 광섬유격자 센서(31 내지 33) 각각은 입사광에 대한 반사광의 파형패턴이 상호 다르게 되도록 조사되는 자외선의 강도, 조사시간, 격자 간격, 격자 상호간의 간격 변동, 코어에 도핑소재 예를 들면 게르마늄(Ge)의 첨가량 조절과 같은 방법들을 적절하게 조합하여 제조하면 된다.In this case, each of the optical fiber grating sensors 31 to 33 has the intensity, irradiation time, lattice spacing, gap variation between the lattice, irradiated so that the waveform patterns of the reflected light with respect to the incident light are different from each other, the doping material such as germanium What is necessary is just to manufacture suitably combining methods, such as adjustment of the addition amount of (Ge).

바람직하게는 이러한 방법에 의해 제조되는 각 광섬유 격자센서(31 내지 33)의 동일환경 예를 들면 동일 온도 조건에서 입사광에 대한 반사되는 파형 패턴은 각각 중심파장이 상호 다르고, 파장패턴 상호간의 분별력을 더욱 높이기 위해 중심파장에 대해 좌우의 파형형상이 비대칭 형상을 갖게 형성되는 것이 바람직하다.Preferably, the reflected wave patterns of the optical fiber grating sensors 31 to 33 manufactured by this method in the same environment, for example, at the same temperature conditions, have different center wavelengths, and the discrimination power between the wavelength patterns is further increased. In order to increase, it is preferable that the left and right waveforms are formed to have an asymmetrical shape with respect to the center wavelength.

산출기는 광섬유 센서부로 송출되어 광섬유 격자 센서(31 내지 33) 각각에 의해 반응되어 검출되는 광으로부터 알고 있는 각 광섬유 격자 센서(31 내지 33) 고유의 파형패턴의 파장이동량을 검출하여 광섬유 격자센서(31 내지 33)가 각각 설치된 환경에 대한 측정대상 물리량 예를 들면 온도 또는 스트레인의 변화를 산출한다.The calculator detects the wavelength shift of the waveform pattern inherent in each optical fiber grating sensor 31 to 33 known from the light transmitted to the optical fiber sensor unit and reacted by each of the optical fiber grating sensors 31 to 33 to detect the wavelength shift of the optical fiber grating sensor 31. To 33) calculate the change of the physical quantity to be measured, for example, the temperature or the strain, with respect to the environment in which each is installed.

산출기는 광원(10), 써큘레이터(20), 산출부(40)로 되어 있다.The calculator includes a light source 10, a circulator 20, and a calculator 40.

광원(10)은 광섬유 센서부의 각 파형 패턴의 파장 대역을 커버할 수 있는 다 넓은 파장 대역의 광대역 광을 출사하는 것이 적용된다.The light source 10 is applied to emit broadband light of a wide wavelength band that can cover the wavelength band of each waveform pattern of the optical fiber sensor unit.

써큘레이터(20)는 광분배기로서 적용된 것으로서 광원(10)에서 출사된 입력광을 광섬유 센서부로 전송하고, 광섬유 센서부의 각 광섬유 격자 센서(31 내지 33) 각각으로부터 반사된 광을 입력광과 분리되게 출력한다.The circulator 20 is applied as an optical splitter to transmit the input light emitted from the light source 10 to the optical fiber sensor unit, and to separate light reflected from each of the optical fiber grating sensors 31 to 33 from the optical fiber sensor unit from the input light. Output

도시된 예와 다르게 광분배기로서 광커플러가 적용될 수 있음은 물론이다.Unlike the illustrated example, the optical coupler may be applied as the optical splitter.

산출부(40)는 광분배기로 적용된 써큘레이터(20)에서 출력되는 광을 검출하고, 검출된 광의 스펙트럼을 분석하여 각 파형패턴의 파장 이동량을 분석하여 측정대상 물리량 예를 들면, 온도 또는 스트레인의 변화를 산출한다.The calculation unit 40 detects the light output from the circulator 20 applied to the optical splitter, analyzes the spectrum of the detected light, analyzes the wavelength shift of each waveform pattern, and measures the physical quantity, for example, temperature or strain. Calculate the change.

산출부(40)는 각 파형패턴의 파장이동에 대응되는 온도 또는 스트레인 값이 미리 기록되어 있는 룩업테이블을 참조하여 검출된 광의 스펙트럼으로부터 물리량을 산출한다.The calculator 40 calculates a physical quantity from the spectrum of the detected light with reference to a lookup table in which a temperature or strain value corresponding to the wavelength shift of each waveform pattern is recorded in advance.

산출부(40)는 산출된 물리량을 기억장치에 저장하거나 표시장치를 통해 표시할 수 있도록 구축되고, 원격으로 송출하도록 구축되는 경우 무선으로 측정정보를 송출하도록 구축될 수 있음은 물론이다.The calculator 40 may be configured to store the calculated physical quantity in a storage device or to display the same through a display device, and may be constructed to transmit measurement information wirelessly when the remote controller is configured to transmit remotely.

이하에서는 이러한 광섬유 격자를 이용한 물리량 측정 시스템에 의한 측정과정을 설명한다.Hereinafter, a measurement process by the physical quantity measurement system using the optical fiber grating will be described.

먼저, 입사된 광에 대해 상호 다른 파형 패턴을 각각 생성하는 복수개의 광섬유 격자센서(31 내지 33)를 광전송 경로를 따라 상호 일렬로 정렬되게 배치한다. First, a plurality of optical fiber grating sensors 31 to 33, which respectively generate different waveform patterns with respect to incident light, are arranged in a line with each other along the optical transmission path.

여기서 각 광섬유 격자센서(31 내지 33)는 측정대상 위치에 대응되게 각각 배치되면 된다.Here, each of the optical fiber grating sensors 31 to 33 may be disposed to correspond to the measurement target position.

다음은 광원(10)으로부터 써큘레이터(20)를 통해 광전송경로를 따라 각 광섬유 격자센서(31 내지 33)에 광을 전송한다.Next, light is transmitted from the light source 10 to the optical fiber grating sensors 31 to 33 along the light transmission path through the circulator 20.

이후, 광섬유 격자센서들(31 내지 33)로부터 반사되어 검출된 광으로부터 미리 알고 있는 각 광섬유격자센서(31 내지 33)의 파형패턴으로 파장이동량을 산출하여 광섬유 격자센서(31 내지 33)가 각각 설치된 환경에 대한 측정대상 물리량의 변화를 산출한다.Subsequently, the wavelength shift amount is calculated based on the waveform pattern of each of the optical fiber grating sensors 31 to 33 known from the light reflected from the optical fiber grating sensors 31 to 33 and the optical fiber grating sensors 31 to 33 are installed. Calculate the change in the physical quantity to be measured for the environment.

즉, 도 5에 도시된 바와 같이 제1광섬유격자센서(31)는 외부환경에 의해 중심파장 위치가 파장이 증가되는 방향으로 이동되고, 제2광섬유격자센서(32)는 또 다른 외부환경에 의해 중심파장 위치가 파장이 감소되는 방향으로 이동되어 상호 중첩되거나 역전되더라도 피크, 파장폭이 상호 다른 파형에 의해 상호 구별이 가능하다. That is, as shown in FIG. 5, the first optical fiber lattice sensor 31 is moved in a direction in which the wavelength of the center wavelength is increased by the external environment, and the second optical fiber lattice sensor 32 is caused by another external environment. Even if the center wavelength location is moved in the direction of decreasing wavelength and overlapped or inverted, the waveform can be distinguished from each other by waveforms having different peaks and wavelength widths.

마찬가지로, 제3광섬유격자센서(33)가 외부환경에 의해 중심파장 위치가 제1광섬유격자센서(31)의 파형패턴 또는 제2광섬유격자센서(33)의 파장패턴과 중첩되거나 위치가 역전되더라도 상호 다른 파형패턴에 의해 상호 구별이 가능하다. Similarly, even if the third optical fiber lattice sensor 33 overlaps with the waveform pattern of the first optical fiber lattice sensor 31 or the wavelength pattern of the second optical fiber lattice sensor 33 or the position is reversed due to an external environment. Different waveform patterns can distinguish one another.

Claims (4)

입사된 광에 대해 상호 다른 파형 패턴을 각각 생성하는 복수개의 광섬유 격자센서가 광전송 경로를 따라 상호 일렬로 정렬된 광섬유 센서부와;
상기 광섬유 센서부로 송출되어 상기 광섬유 격자 센서 각각에 의해 반응되어 검출되는 광으로부터 상기 파형패턴 각각의 파장이동량을 검출하여 상기 광섬유 격자 센서가 각각 설치된 환경에 대한 측정대상 물리량의 변화를 산출하는 산출기;를 구비하고,
상기 산출기는
상기 광섬유 센서부에 광을 출사하는 광원과;
상기 광원에서 출사된 입력광을 상기 광섬유 센서부로 전송하고, 상기 광섬유 센서부의 상기 광섬유 격자 센서 각각으로부터 반사된 광을 상기 입력광과 분리되게 출력하는 광분배기와;
상기 광분배기에서 출력되는 광을 검출하고, 검출된 광으로부터 각 파형패턴의 파장 이동량을 분석하여 상기 측정대상 물리량의 변화를 산출하는 산출부;를 구비하며,
상기 광섬유 격자센서 각각은 입력광에 대해 반사되는 파형패턴 상호간의 진폭 및 파장 폭이 상호 다르게 형성된 것을 특징으로 하는 광섬유 격자를 이용한 물리량 측정 시스템.
A plurality of optical fiber grating sensors each generating mutually different waveform patterns with respect to incident light, the optical fiber sensor parts being aligned in a line with each other along an optical transmission path;
A calculator for detecting a wavelength shift of each of the waveform patterns from the light transmitted to the optical fiber sensor and reacted by each of the optical fiber grating sensors to calculate a change in a physical quantity to be measured for an environment in which the optical fiber grating sensors are installed; And
The calculator
A light source for emitting light to the optical fiber sensor;
An optical splitter which transmits the input light emitted from the light source to the optical fiber sensor unit and outputs the light reflected from each of the optical fiber grating sensors of the optical fiber sensor unit to be separated from the input light;
And a calculation unit for detecting the light output from the optical splitter and analyzing the wavelength shift of each waveform pattern from the detected light to calculate a change in the physical quantity to be measured.
The optical fiber grating sensor is a physical quantity measurement system using an optical fiber grating, characterized in that the amplitude and wavelength width between the wave patterns reflected to the input light are formed different from each other.
제1항에 있어서, 상기 파형 패턴은 동일 환경조건에서 각각 중심파장이 상호 다르고, 중심파장에 대해 비대칭 형상을 갖는 것을 특징으로 하는 광섬유 격자를 이용한 물리량 측정 시스템.The system of claim 1, wherein the waveform patterns have different center wavelengths under the same environmental conditions and have an asymmetric shape with respect to the center wavelength. 제1항에 있어서, 상기 광분배기는 써큘레이터인 것을 특징으로 하는 광섬유 격자를 이용한 물리량 측정 시스템.The physical quantity measurement system using an optical fiber grating according to claim 1, wherein the optical splitter is a circulator. 가. 입사된 광에 대해 상호 다른 파형 패턴을 각각 생성하는 복수개의 광섬유 격자센서를 광전송 경로를 따라 상호 일렬로 정렬되게 배치하는 단계와;
나. 상기 광섬유 격자센서에 입력광을 전송하는 단계와;
다. 상기 광섬유 격자센서들로부터 반사되어 검출된 광으로부터 상기 파형패턴에 대응되는 파장이동량을 산출하여 상기 광섬유 격자센서가 각각 설치된 환경에 대한 측정대상 물리량의 변화를 산출하는 단계;를 포함하고,
상기 광섬유 격자센서 각각은 입력광에 대해 반사되는 파형패턴 상호간의 진폭 및 파장 폭이 상호 다른 형상을 갖게 형성된 것을 특징으로 하는 광섬유 격자를 이용한 물리량 측정 방법.
end. Arranging a plurality of optical fiber grating sensors that respectively generate mutually different waveform patterns for incident light, aligned in a line with each other along an optical transmission path;
I. Transmitting input light to the optical fiber grating sensor;
All. Calculating a change in the physical quantity to be measured for an environment in which the optical fiber grating sensors are installed by calculating a wavelength shift corresponding to the waveform pattern from the light reflected from the optical fiber grating sensors;
The optical fiber grating sensor has a physical quantity measurement method using an optical fiber grating, characterized in that the amplitude and wavelength width between the wave patterns reflected to the input light are formed different from each other.
KR1020120092616A 2012-08-23 2012-08-23 Multiplex physical quantity measuring method and system using optical multiple fiber bragg grating KR20120114190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120092616A KR20120114190A (en) 2012-08-23 2012-08-23 Multiplex physical quantity measuring method and system using optical multiple fiber bragg grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120092616A KR20120114190A (en) 2012-08-23 2012-08-23 Multiplex physical quantity measuring method and system using optical multiple fiber bragg grating

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020090009946A Division KR20100090590A (en) 2009-02-06 2009-02-06 Multiplex physical quantity measuring method and system using optical multiple fiber bragg grating

Publications (1)

Publication Number Publication Date
KR20120114190A true KR20120114190A (en) 2012-10-16

Family

ID=47283497

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120092616A KR20120114190A (en) 2012-08-23 2012-08-23 Multiplex physical quantity measuring method and system using optical multiple fiber bragg grating

Country Status (1)

Country Link
KR (1) KR20120114190A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101481814B1 (en) * 2013-12-30 2015-01-21 주식회사 지엔큐 optical fiber sensor for detecting deformation
CN109282913A (en) * 2018-07-26 2019-01-29 孝感锐创机械科技有限公司 A kind of non-contact temperature measuring device based on bragg grating
KR102154350B1 (en) * 2019-03-28 2020-09-21 에스제이포토닉스 주식회사 optical fiber sensor for safety diagnosis of facility
GB2595196A (en) * 2015-03-06 2021-11-17 Silixa Ltd Method and apparatus for optical sensing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101481814B1 (en) * 2013-12-30 2015-01-21 주식회사 지엔큐 optical fiber sensor for detecting deformation
GB2595196A (en) * 2015-03-06 2021-11-17 Silixa Ltd Method and apparatus for optical sensing
GB2595196B (en) * 2015-03-06 2022-05-11 Silixa Ltd Method and apparatus for optical sensing
US11719560B2 (en) 2015-03-06 2023-08-08 Silixa Ltd. Method and apparatus for optical sensing
CN109282913A (en) * 2018-07-26 2019-01-29 孝感锐创机械科技有限公司 A kind of non-contact temperature measuring device based on bragg grating
KR102154350B1 (en) * 2019-03-28 2020-09-21 에스제이포토닉스 주식회사 optical fiber sensor for safety diagnosis of facility

Similar Documents

Publication Publication Date Title
US9062965B2 (en) Multi-point measuring apparatus and method of FBG sensor having multiple delaying fibers
KR20100090590A (en) Multiplex physical quantity measuring method and system using optical multiple fiber bragg grating
KR101280922B1 (en) Fiber optic sensor apparatus
JP5413931B2 (en) OPTICAL FIBER SENSOR HAVING OPTICAL MARKING PART FOR LOCATION OF OPTICAL FIBER, MEASURING METHOD OF OPTICAL FIBER SENSOR, AND OPTICAL FIBER SENSOR DEVICE
US8734011B2 (en) Distributed optical fiber temperature sensor based on optical fiber delay
JP2012500989A5 (en)
NO307584B1 (en) Interferometric sensor and its use in an optical interference measuring device
KR20120114190A (en) Multiplex physical quantity measuring method and system using optical multiple fiber bragg grating
US20140263985A1 (en) Optical sensor having fiduciary marks detected by rayleigh scattered light
JP6696748B2 (en) Optical encoder
WO2017090516A1 (en) Gas detection system
CN102636217A (en) Sensing device based on joint detection of Brillouin optical time domain analysis and Mach-Zehnder interference
WO2010140440A1 (en) Light sensing system and endoscopic system
JP2010054366A (en) Optical fiber sensor with optical marking section for identification of optical fiber position, and optical fiber sensor measurement method and optical fiber sensor device
JP2019511723A (en) Lattice scale of absolute formula
US9488786B2 (en) Fiber optic sensing apparatus including fiber gratings and method for sensing parameters involving different parameter modalities
TR201809273T4 (en) Fiber Bragg grid interrogator assembly and method for this.
JP2015526739A5 (en)
CN102183488B (en) Refractive index sensor based on blazed long-period fibre grating
KR101465788B1 (en) optical sening system having dual core
JP2012021921A (en) Light measurement system
JP2010104427A (en) Medical equipment
CA2997350C (en) Active error correction in an optical sensor system
JP7247446B2 (en) Multi-core optical fiber sensing system
CN106153088B (en) Bidirectional Array Fiber Bragg Grating Composite Sensing System

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application