KR20100133394A - Method for removing mercury from hydrocarbon streams - Google Patents

Method for removing mercury from hydrocarbon streams Download PDF

Info

Publication number
KR20100133394A
KR20100133394A KR1020107021637A KR20107021637A KR20100133394A KR 20100133394 A KR20100133394 A KR 20100133394A KR 1020107021637 A KR1020107021637 A KR 1020107021637A KR 20107021637 A KR20107021637 A KR 20107021637A KR 20100133394 A KR20100133394 A KR 20100133394A
Authority
KR
South Korea
Prior art keywords
mercury
absorbent
oxide
copper
hydrocarbon stream
Prior art date
Application number
KR1020107021637A
Other languages
Korean (ko)
Inventor
페터 루돌프
미하엘 벤더
Original Assignee
바스프 에스이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 바스프 에스이 filed Critical 바스프 에스이
Publication of KR20100133394A publication Critical patent/KR20100133394A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/003Specific sorbent material, not covered by C10G25/02 or C10G25/03
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/11Purification; Separation; Use of additives by absorption, i.e. purification or separation of gaseous hydrocarbons with the aid of liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0233Compounds of Cu, Ag, Au
    • B01J20/0237Compounds of Cu
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/345Regenerating or reactivating using a particular desorbing compound or mixture
    • B01J20/3458Regenerating or reactivating using a particular desorbing compound or mixture in the gas phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3483Regenerating or reactivating by thermal treatment not covered by groups B01J20/3441 - B01J20/3475, e.g. by heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/868Chromium copper and chromium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/202Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/60Heavy metals or heavy metal compounds
    • B01D2257/602Mercury or mercury compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/56Use in the form of a bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper

Abstract

본 발명은 수은 포함 탄화수소 스트림으로부터 수은을 제거하는 방법으로서, 탄화수소 스트림은 지지체 물질 상에 구리를 포함하는 흡수제와 접촉하고, 탄화수소 스트림은 수소의 존재 하에서 흡수제와 접촉하는 것인 방법에 관한 것이다.The present invention relates to a method for removing mercury from a mercury containing hydrocarbon stream, wherein the hydrocarbon stream is contacted with an absorbent comprising copper on a support material and the hydrocarbon stream is contacted with an absorbent in the presence of hydrogen.

Description

탄화수소 스트림으로부터 수은을 제거하는 방법{METHOD FOR REMOVING MERCURY FROM HYDROCARBON STREAMS}How to remove mercury from hydrocarbon streams {METHOD FOR REMOVING MERCURY FROM HYDROCARBON STREAMS}

본 발명은 수은 포함 탄화수소 스트림으로부터 수은 및/또는 비소를 제거하는 방법에 관한 것이다.The present invention relates to a method for removing mercury and / or arsenic from a mercury-containing hydrocarbon stream.

수은은 화학 또는 석유화학 산업에서 얻어지거나 처리되는 수많은 물질 스트림 내에서 불순물로서 존재한다. 그러한 스트림은 종종 화석 원료, 예컨대 석유, 천연 가스 또는 석탄의 처리 또는 열적 이용에서, 그리고 폐기물의 이용에서 얻어지는 스트림이 있는데, 이는 그러한 원료 또는 폐기물이 원소 형태 또는 화학 결합 형태로 미량의 수은을 포함하기 때문이다. 불순물로서 수은을 포함하는 스트림은 또한 수은 또는 수은 포함 물질이 시약 또는 촉매로서 사용되는 공정에서 얻어지기도 한다. 언급될 수 있는 예로는 아말감 공정에 의한 염소의 생성에서 얻어지는 전기분해 수소가 있다. 수은의 높은 독성으로 인해, 대부분의 경우에는 관련 공정에서 얻어지는 스트림으로부터 그러한 금속 또는 그러한 금속을 포함하는 화합물을 분리 제거할 필요가 있다. 게다가 수은은 알루미늄 표면 상에서 산화물 층의 파괴와 함께 아말감을 형성함으로써 알루미늄을 포함하는 장치를 공격하는 성질을 가지므로, 알루미늄으로 제조된 장치 또는 용기를 통과하는 스트림에는 사실상 수은이 포함되지 말아야 한다. 또한, 예를 들어 석유화학 공정에서 사용된 바와 같은 귀금속 포함 촉매는 미량의 수은에 의해 오염되게 된다.Mercury is present as impurities in numerous material streams obtained or processed in the chemical or petrochemical industries. Such streams are often streams obtained from the treatment or thermal use of fossil raw materials such as petroleum, natural gas or coal, and from the use of waste, which contain such traces of mercury in elemental or chemical bond form. Because. Streams containing mercury as impurities may also be obtained in processes in which mercury or mercury containing materials are used as reagents or catalysts. Examples that may be mentioned are the electrolytic hydrogens obtained in the production of chlorine by the amalgam process. Due to the high toxicity of mercury, in most cases it is necessary to separate off such metals or compounds containing such metals from the stream obtained in the relevant process. In addition, mercury has the property of attacking devices containing aluminum by forming amalgams with the destruction of the oxide layer on the aluminum surface, so that the stream passing through a device or vessel made of aluminum should be virtually free of mercury. In addition, catalysts containing precious metals, such as used in petrochemical processes, for example, are contaminated by trace amounts of mercury.

문헌[Fuel Processing Technology 82 (2003), pp. 89-165]에서, J. H. Pavlish 등은 석탄 화력 발전소(coral-fired power station)에서 얻은 오프가스 스트림으로부터 수은을 제거하는 방법의 개관을 제공하고 있다. 문헌[Hydrocarbon Processing, 1999, p.61 ff.]에서, S. M. Wilhelm은 액체 탄화수소 스트림으로부터 수은을 제거하는 방법의 개관을 제공하고 있다. 올레핀 플랜트에서 수은 제거에 대한 개관은 Steve Coleman 등에 의해 제공된다: 문헌[Feedstock Contaminants in Ethylene Plants, 2005 Spring National Meeting Atlanta, GA April 10-14, 2005].Fuel Processing Technology 82 (2003), pp. 89-165, J. H. Pavlish et al. Provide an overview of the method of removing mercury from off-gas streams obtained from coal-fired power stations. In Hydrocarbon Processing, 1999, p. 61 ff., S. M. Wilhelm provides an overview of the method for removing mercury from liquid hydrocarbon streams. An overview of mercury removal in olefin plants is provided by Steve Coleman et al .: Feeded Contaminants in Ethylene Plants, 2005 Spring National Meeting Atlanta, GA April 10-14, 2005.

금속성 수은이 물질 스트림 내에 액체 형태로 존재하는 경우, 수은은 종종 경사 분리(decantation)에 의한 수은의 높은 표면 장력 또는 높은 비중을 활용하는 물리적 수단에 의해, 유착 필터(coalescence filter), 활성탄 코팅된 필터 등에 의해 제거된다. EP-A 0 761 830에는 미분된 수은이 유착에 의해 수집되어 분리 제거가 용이한 보다 큰 수은 액적을 형성하는, 간단한 순수 물리적 방법이 개시되어 있다. WO 2004/048624에는 전기흑연(electrographite)을 통과한 여과에 의해 수은을 제거하는 방법이 기술되어 있다.Where metallic mercury is present in the liquid stream in the material stream, mercury is often used as a coalescence filter, activated carbon coated filter, by physical means utilizing the high surface tension or high specific gravity of mercury by decantation. And the like. EP-A 0 761 830 discloses a simple pure physical process in which finely divided mercury is collected by coalescence to form larger mercury droplets that are easy to separate and remove. WO 2004/048624 describes a method for removing mercury by filtration through electrographite.

또한 수은의 제거는 종종 수은을 흡착제에 결합시키는 방법을 이용하여 수행되기도 한다. 이에 따라, DE-A 26 43 478에는 250 m2/g 이상의 비표면적을 갖는 활성탄 상에 수은을 흡착시킴으로써 액체로부터 그 수은을 분리하는 것이 기술되어 있다. 탄소계 흡착제는, 특히 US 3,755,989에 기술된 바와 같이 물질 스트림으로부터 수은을 제거하는데 사용된다. US 4,500,327에는 기체 스트림으로부터 수은을 제거하기 위한 황-함침된 활성탄이 기술되어 있는 반면, JP 52-53793에는 액체 스트림으로부터 수은을 제거하기 위한 요오드화물 포함 활성탄의 용도가 기술되어 있다. US 4,909,926 및 US 4,094,777에는 물질 스트림으로부터 수은을 제거하기 위한, 지지체 물질, 예컨대 산화알루미늄 상에 CuS 또는 CuO 또는 Ag2S를 포함하는 활성 조성물의 용도가 기술되어 있다. EP-A 0 385 742에는 8개 이하의 탄소 원자를 갖는 탄화수소를 포함하는 액체 탄화수소 스트림을 지지체 상에 존재하는 금속성 구리 또는 구리 화합물과 접촉시킴으로써 상기 스트림으로부터 수은을 제거하는 방법이 기술되어 있다.In addition, the removal of mercury is often carried out using a method of binding mercury to the adsorbent. Accordingly, DE-A 26 43 478 describes the separation of mercury from liquid by adsorbing mercury on activated carbon having a specific surface area of at least 250 m 2 / g. Carbon-based adsorbents are used to remove mercury from material streams, in particular as described in US Pat. No. 3,755,989. US 4,500,327 describes sulfur-impregnated activated carbon for removing mercury from gas streams, while JP 52-53793 describes the use of iodide containing activated carbon to remove mercury from liquid streams. US 4,909,926 and US 4,094,777 describe the use of active compositions comprising CuS or CuO or Ag 2 S on a support material, such as aluminum oxide, for removing mercury from a material stream. EP-A 0 385 742 describes a method for removing mercury from a stream of liquid hydrocarbon comprising a hydrocarbon having up to 8 carbon atoms with a metallic copper or copper compound present on the support.

고체 아말감의 형성은 또한 수은을 제거하는데 종종 이용된다. 이러한 목적에 가장 적당한 금속은 주기율표의 XI족의 금속(Cu, Ag, Au)이고, 이는 통상 금속이 지지체 상에 미세하게 분포되어 있는 흡수 조성물의 형태로 사용된다. 이에 따라, DE-A 21 02 039에는 수은 포함 기체가 다공성 산화알루미늄 지지체 상에 구리를 포함하는 조성물과 접촉하는, 기체로부터 수은을 제거하는 방법이 개시되어 있다. US 4,230,486에는 다공성 지지체, 예컨대 활성탄 또는 세라믹 지지체 상에 금속성 은을 포함하는 흡수제 상에 액체를 통과시킴으로써 그 액체로부터 수은을 제거하는 방법이 개시되어 있다. DE-A 42 21 207에는 은 코팅된 섬유 상에 알칼리 금속 수산화물 용액 또는 알칼리 금속 알콕시화물 용액을 통과시킴으로써 상기 용액으로부터 수은을 제거하는 방법이 교시되어 있다. DE-A 41 16 890에는 300∼1000 m2/g의 BET 표면적을 갖는 활성탄 지지체 상에 금속 또는 산화물 또는 황화물 형태로, 특히 Cu, Ag, Fe 및 Bi, 또는 그 외에 Au, Sn, Zn 및 Pd, 및 또한 언급된 금속들의 혼합물을 포함하는, 수은을 제거하기 위한 흡수제가 개시되어 있다.Formation of solid amalgam is also often used to remove mercury. The most suitable metal for this purpose is the metals of group XI (Cu, Ag, Au) of the periodic table, which is usually used in the form of an absorbent composition in which the metal is finely distributed on the support. Accordingly, DE-A 21 02 039 discloses a method for removing mercury from a gas in which the mercury containing gas is in contact with a composition comprising copper on a porous aluminum oxide support. US 4,230,486 discloses a method for removing mercury from a liquid by passing the liquid over an absorbent comprising metallic silver on a porous support such as activated carbon or a ceramic support. DE-A 42 21 207 teaches the removal of mercury from a solution by passing an alkali metal hydroxide solution or an alkali metal alkoxide solution onto the silver coated fibers. DE-A 41 16 890 discloses in the form of metals or oxides or sulfides on activated carbon supports having a BET surface area of 300 to 1000 m 2 / g, in particular Cu, Ag, Fe and Bi, or else Au, Sn, Zn and Pd Absorbents for removing mercury are disclosed, including also mixtures of the mentioned metals.

US 4,911,825에는 제1 단계에서 수소의 존재 하에 산화알루미늄 상에서 니켈 및 팔라듐을 포함하는 촉매와 탄화수소 스트림을 접촉시키고 제2 단계에서 지지체 상에서 황 또는 금속 황화물, 바람직하게는 황화구리, 또는 황화구리와 황화은의 조합물을 포함하는 흡수제와 접촉시킴으로써 그 탄화수소 스트림으로부터 수은 및 비소를 제거하는 것이 기술되어 있다. 그 공정은 또한 촉매와 흡수제의 혼합물 상에서 단일 단계로 수행될 수도 있다. FR-A 2 310 795에는 40∼250 m2/g의 BET 표면적을 갖는, 이산화규소, 산화알루미늄 또는 알루미노실리케이트로 이루어진 지지체 상에서 금속성 금, 은, 구리 또는 니켈을 포함하는 흡수제를 사용하여 기상 천연 가스 스트림으로부터 수은을 제거하는 것이 기술되어 있다. WO 91/15559에는 미세분말 산화물, 바람직하게는 산화니켈, 산화구리 및 산화코발트 중에서 선택된 산화물과 다공성 지지체 물질, 예컨대 산화알루미늄, 이산화규소, 제올라이트 또는 점토를 혼합시켜 제조된 흡수제와 액체 탄화수소 스트림을 접촉시키고 이어서 환원 처리함으로써 그 액체 탄화수소 스트림으로부터 수은을 제거하는 방법이 개시되어 있다.US 4,911,825 discloses contacting a hydrocarbon stream with a catalyst comprising nickel and palladium on aluminum oxide in the first step in the presence of hydrogen and in the second step the sulfur or metal sulfides, preferably copper sulfide, or copper sulfide and silver sulfide It is described to remove mercury and arsenic from the hydrocarbon stream by contacting with an absorbent comprising the combination. The process can also be carried out in a single step on a mixture of catalyst and absorbent. FR-A 2 310 795 has a gaseous nature using an absorbent comprising metallic gold, silver, copper or nickel on a support made of silicon dioxide, aluminum oxide or aluminosilicate having a BET surface area of 40 to 250 m 2 / g. The removal of mercury from gas streams is described. WO 91/15559 contacts a liquid hydrocarbon stream with an absorbent prepared by mixing a fine powder oxide, preferably an oxide selected from nickel oxide, copper oxide and cobalt oxide with a porous support material such as aluminum oxide, silicon dioxide, zeolite or clay. A method of removing mercury from the liquid hydrocarbon stream by means of a reduction followed by a reduction treatment is disclosed.

본 발명의 목적은 수은 포함 탄화수소 스트림으로부터 수은을 제거하는 향상된 방법을 제공하는 것이다.It is an object of the present invention to provide an improved method for removing mercury from a mercury containing hydrocarbon stream.

그 목적은 수은 포함 탄화수소 스트림으로부터 수은을 제거하는 방법으로서, 상기 탄화수소 스트림은 다공성 산화 지지체 물질 상에 구리를 포함하는 흡수제와 접촉시키고, 탄화수소 스트림은 수소의 존재 하에서 흡수제와 접촉시키는 것인 방법에 의해 실현된다.Its purpose is to remove mercury from a mercury-containing hydrocarbon stream, wherein the hydrocarbon stream is contacted with an absorbent comprising copper on the porous oxide support material, and the hydrocarbon stream is contacted with the absorbent in the presence of hydrogen. Is realized.

탄화수소 스트림으로부터의 수은의 훨씬 더 우수한 제거는 지지체 상에 구리를 포함하고 수소의 부재 하에서보다 수소화 촉매로서 효과적인 구리 포함 흡수제를 사용하여 수소의 존재 하에서 실현된다는 것이 밝혀졌다.It has been found that even better removal of mercury from hydrocarbon streams is realized in the presence of hydrogen using copper-containing absorbents that include copper on the support and are effective as hydrogenation catalysts than in the absence of hydrogen.

본 발명에 따라 사용된 흡수제는 다공성 지지체 물질 상에 구리, 바람직하게는 환원 형태의 구리를 포함한다. 본 발명에 따라 사용된 흡수제는 수소화 촉매로서 효과적이다. 적당한 다공성 지지체 물질는 비정질 및 결정질 알루미노실리케이트, 산화알루미늄, 이산화규소, 점토 및 금속 산화물이다. 적당한 점토는, 예를 들어 아타풀자이트(attapulgite), 카올린, 벤토나이트, 표토(Fuller's earth)이다. 적당한 금속 산화물은, 예를 들어 산화알루미늄 및 이산화규소, 및 또한 산화마그네슘, 이산화지르코늄, 이산화티탄, 산화아연, 산화크롬(III), 산화바륨 및 이들의 혼합물이다. 바람직한 산화알루미늄은 γ-산화알루미늄이다.The absorbent used according to the invention comprises copper, preferably in reduced form, on the porous support material. Absorbents used according to the invention are effective as hydrogenation catalysts. Suitable porous support materials are amorphous and crystalline aluminosilicates, aluminum oxide, silicon dioxide, clays and metal oxides. Suitable clays are, for example, attapulgite, kaolin, bentonite, Fuller's earth. Suitable metal oxides are, for example, aluminum oxide and silicon dioxide, and also magnesium oxide, zirconium dioxide, titanium dioxide, zinc oxide, chromium (III) oxide, barium oxide and mixtures thereof. Preferred aluminum oxide is γ-aluminum oxide.

본 발명의 방법에는 활성(환원) 형태의 모든 통상적인 구리 포함 수소화 촉매를 사용할 수 있다.All conventional copper containing hydrogenation catalysts in active (reduced) form can be used in the process of the present invention.

본 발명에 따라 사용된 구리 포함 수소화-활성 흡수제는 산화구리와 지지체 물질를 혼합시킨 후 바람직하게는 수소 스트림 내에서 환원에 의해 구리를 금속 형태로 전환함으로써 얻을 수 있다. 본 발명에 따라 사용된 흡수제는 또한 지지체 물질를 구리 염 수용액에 함침시키고, 건조하고, 적절한 경우 하소하고, 환원에 의해, 또한 환원제, 예컨대 히드라진을 사용할 수도 있지만 바람직하게는 수소 포함 기체 스트림에 의해, 구리를 금속 형태로 전환시킴으로써 생성될 수도 있다.The copper-comprising hydrogenated-active absorbent used according to the invention can be obtained by mixing copper oxide with the support material and preferably converting copper to the metal form by reduction in a hydrogen stream. The absorbent used according to the invention can also be impregnated with a support material in an aqueous copper salt solution, dried, calcined if appropriate, by reduction and also with a reducing agent such as hydrazine, but preferably with a hydrogen containing gas stream, It can also be produced by converting to a metal form.

본 발명에 따라 사용된 흡수제에서, 구리는 일반적으로 지지체 물질 상에 미세하게 분산되어 있는, 환원된 형태, 즉 금속 (원소) 형태로 존재한다. 일반적으로, 본 발명에 따라 사용된 흡수제는 산화 지지체 물질 상에 10∼50 중량%의 구리를 포함한다. 본 발명에 따라 사용된 흡수제가 얻어지는 것을 기초로 하는 적당한 조성물의 예는 산화구리, 산화아연 및 산화알루미늄을 포함하는 조성물, 또는 산화구리, 산화마그네슘, 산화바륨, 산화크롬(III), 산화아연 및 이산화규소를 포함하는 조성물이다. 10∼60 중량%의 산화구리, 0∼40 중량%의 산화아연, 0∼20 중량%의 산화알루미늄, 5∼25 중량%의 산화마그네슘, 10∼40 중량%의 이산화규소, 0∼5 중량%의 산화크롬(III) 및 0∼10 중량%의 산화바륨의 혼합물이 특히 바람직하다.In the absorbent used according to the invention, copper is generally present in reduced form, ie in the form of metals (elements), finely dispersed on the support material. In general, the absorbent used according to the invention comprises 10 to 50% by weight of copper on the oxidizing support material. Examples of suitable compositions based on obtaining the absorbent used according to the invention include compositions comprising copper oxide, zinc oxide and aluminum oxide, or copper oxide, magnesium oxide, barium oxide, chromium (III) oxide, zinc oxide and It is a composition containing silicon dioxide. 10 to 60 wt% copper oxide, 0 to 40 wt% zinc oxide, 0 to 20 wt% aluminum oxide, 5 to 25 wt% magnesium oxide, 10 to 40 wt% silicon dioxide, 0 to 5 wt% Particular preference is given to mixtures of chromium (III) oxide and 0-10% by weight of barium oxide.

수은이 본 발명에 따라 제거될 수 있는 탄화수소 스트림은 수은으로 오염될 수 있는 임의의 탄화수소 스트림이다. 이는 일반적으로 지방족, 방향족, 지환족 및/또는 1∼14개의 탄소 원자를 갖는 헤테로사이클 탄화수소를 포함한다. 본 발명에 따라 수은을 제거할 수 있는 탄화수소 혼합물의 예는 LNG(액화 천연 가스), LPG(액화 석유 가스), 나프타 및 케로센이다. 본 발명에 따라 정제될 수 있는 순수 탄화수소의 예는 에틸렌 및 프로필렌, 및 또한 지방족 탄화수소이다.The hydrocarbon stream from which mercury can be removed in accordance with the present invention is any hydrocarbon stream that can be contaminated with mercury. It generally includes aliphatic, aromatic, cycloaliphatic and / or heterocycle hydrocarbons having 1 to 14 carbon atoms. Examples of hydrocarbon mixtures capable of removing mercury in accordance with the present invention are LNG (liquefied natural gas), LPG (liquefied petroleum gas), naphtha and kerosene. Examples of pure hydrocarbons that can be purified according to the invention are ethylene and propylene, and also aliphatic hydrocarbons.

본 발명의 방법을 수행하기 이전의 탄화수소 또는 탄화수소 혼합물의 수은 함량은 100 ppm 이하일 수 있지만, 일반적으로 1 ppm 이하의 Hg이다. 수은은 일반적으로 유기수은 화합물의 형태로 존재한다.The mercury content of the hydrocarbons or hydrocarbon mixtures prior to carrying out the process of the invention may be up to 100 ppm, but is generally less than 1 ppm Hg. Mercury is generally present in the form of organic mercury compounds.

본 발명의 방법은 현탁(suspension) 방식 또는 고정층(fixed bed) 방식으로 수행될 수 있다. 고정층 방식으로 수행되는 경우, 상향류 또는 하향류 방식으로 수행될 수 있다. 수은 또는 비소를 포함하는 탄화수소 또는 탄화수소 혼합물은 기체 또는 액체 형태로 사용될 수 있다. 탄화수소 또는 탄화수소 혼합물은 바람직하게는 액체 형태로 사용된다. 수소는 기체 또는 액체 탄화수소 또는 탄화수소 혼합물과 함께 적당한 반응 용기 내로 도입되고 통상 병류로 고정층 내에 존재하는 미립자 흡수제 상에 걸쳐 통과된다. 이는 상향류 또는 하향류 방식으로 수행될 수 있다. 하지만, 수소, 및 탄화수소 또는 탄화수소 혼합물은 또한 역류로 흡수제 상에 걸쳐 통과될 수도 있다. 흡수제는 또한 탄화수소 또는 탄화수소 혼합물에서 현탁 상태로 존재할 수도 있다. 일반적으로, 그 방법은 30∼250℃, 바람직하게는 60∼180℃의 온도 및 1∼20 bar의 수소압에서 수행된다. 압력은 바람직하게는 탄화수소 또는 탄화수소 혼합물이 액체로서 존재하도록 선택된다. 도입된 수소의 양은 일반적으로 흡수제 1 kg 및 시간 당 10∼650 표준 I(standard I)의 공간 속도와 상응한다.The process of the invention can be carried out in a suspension or fixed bed manner. When performed in a fixed bed method, it may be performed in an upflow or downflow method. Hydrocarbons or hydrocarbon mixtures comprising mercury or arsenic can be used in gaseous or liquid form. Hydrocarbons or hydrocarbon mixtures are preferably used in liquid form. Hydrogen is introduced into a suitable reaction vessel together with gas or liquid hydrocarbons or hydrocarbon mixtures and is usually passed in cocurrent over the particulate absorbent present in the fixed bed. This can be done in an upflow or downflow manner. However, hydrogen, and hydrocarbons or hydrocarbon mixtures may also be passed over the absorbent phase in countercurrent. The absorbent may also be present in suspension in the hydrocarbon or hydrocarbon mixture. In general, the process is carried out at a temperature of 30 to 250 ° C., preferably of 60 to 180 ° C. and a hydrogen pressure of 1 to 20 bar. The pressure is preferably selected such that the hydrocarbon or hydrocarbon mixture is present as a liquid. The amount of hydrogen introduced generally corresponds to the space velocity of 1 kg of absorbent and 10-650 standard I per hour.

흡수제가 배출된 후에는, 일반적으로 180∼400℃, 예컨대 200∼220℃의 온도에서 불활성 기체 스트림 또는 수소 포함 기체 스트림 내에서 가열하고 기화된 수은을 응축시킴으로써 열적으로 재생시킬 수 있다.After the absorbent has been discharged, it can be thermally regenerated by heating in an inert gas stream or hydrogen containing gas stream and condensing vaporized mercury at a temperature generally between 180 and 400 ° C, such as between 200 and 220 ° C.

본 발명은 하기 실시예에 의해 예시된다.The invention is illustrated by the following examples.

비교 실시예 1Comparative Example 1

350 ppm의 Hg와 상응한, 500 ㎖의 옥탄 중의 디페닐수은(Ph2Hg)의 용액을 유리 플라스크 내에서 60℃로 가열하였다. 그 용액 내로, 교반하면서 1.5 표준 I/h의 수소를 통과시켰다. 이 용액에 3 × 5 mm 펠렛 형태의 40 중량%의 CuO, 40 중량%의 ZnO 및 20 중량%의 Al2O3을 포함하는 미환원된 수소화 촉매(흡수제 A) 5 g을 첨가하였다. 2시간 및 24시간 후에 용액으로부터 샘플을 취하고 샘플의 수은 함량을 측정하였다. 그 결과는 하기 표 1에 나타내었다.A solution of diphenylmercury (Ph 2 Hg) in 500 ml of octane, corresponding to 350 ppm Hg, was heated to 60 ° C. in a glass flask. Into that solution, 1.5 standard I / h of hydrogen was passed with stirring. To this solution was added 5 g of an unreduced hydrogenation catalyst (absorbent A) comprising 40 wt% CuO, 40 wt% ZnO and 20 wt% Al 2 O 3 in the form of 3 × 5 mm pellets. Samples were taken from the solution after 2 and 24 hours and the mercury content of the samples was measured. The results are shown in Table 1 below.

비교 실시예 2Comparative Example 2

350 ppm의 수은과 상응한, 500 ㎖의 옥탄 중의 디페닐수은의 용액을 유리 플라스크 내에서 60℃로 가열하였다. 이 용액에, 사전에 환원되고 180℃에서 H2에 의해 활성화된, 3 × 5 mm 펠렛 형태의 40 중량%의 CuO, 40 중량%의 ZnO 및 20 중량%의 Al2O3을 포함하는 촉매(흡수제 B) 5 g을 첨가하였다. 수소는 통과시키지 않았다. 용액을 교반하였다. 2시간 및 24시간 후에 용액으로부터 샘플을 취하고 이의 수은 함량을 측정하였다. 그 결과는 하기 표 1에 나타내었다.A solution of diphenylmercury in 500 ml octane, corresponding to 350 ppm mercury, was heated to 60 ° C. in a glass flask. In this solution a catalyst comprising 40 wt% CuO, 40 wt% ZnO and 20 wt% Al 2 O 3 in the form of 3 × 5 mm pellets, previously reduced and activated by H 2 at 180 ° C. 5 g of absorbent B) was added. Hydrogen was not passed through. The solution was stirred. Samples were taken from the solution after 2 and 24 hours and their mercury content was measured. The results are shown in Table 1 below.

실시예 1Example 1

비교 실시예 2의 절차를 반복하였지만, 1.5 표준 I/h의 수소를 통과시켰다. 일정한 간격으로 샘플을 취하고 이의 수은 함량을 측정하였다. 그 결과는 하기 표 1에 나타내었다.The procedure of Comparative Example 2 was repeated but passed through 1.5 standard I / h of hydrogen. Samples were taken at regular intervals and their mercury content was measured. The results are shown in Table 1 below.

실시예 2Example 2

실시예 1의 절차를 반복하였지만, 환원된 촉매를 미세분말 형태로 첨가하였다(흡수제 C). 일정한 간격으로 샘플을 취하고 이의 수은 함량을 측정하였다. 그 결과는 하기 표 1에 나타내었다.The procedure of Example 1 was repeated, but the reduced catalyst was added in the form of fine powder (absorbent C). Samples were taken at regular intervals and their mercury content was measured. The results are shown in Table 1 below.

Figure pct00001
Figure pct00001

실시예 3Example 3

실시예 1의 절차를 반복하였지만, 용액을 25℃에서 유지하였다. 일정한 간격으로 샘플을 취하고 이의 수은 함량을 측정하였다. 그 결과는 하기 표 2에 나타내었다.The procedure of Example 1 was repeated but the solution was kept at 25 ° C. Samples were taken at regular intervals and their mercury content was measured. The results are shown in Table 2 below.

실시예 4Example 4

실시예 1의 절차를 반복하였다. 이에 따라 온도는 60℃였다. 일정한 간격으로 샘플을 취하고 이의 수은 함량을 측정하였다. 그 결과는 하기 표 2에 나타내었다.The procedure of Example 1 was repeated. The temperature was 60 degreeC by this. Samples were taken at regular intervals and their mercury content was measured. The results are shown in Table 2 below.

실시예 5Example 5

실시예 1의 절차를 반복하였지만, 용액을 100℃로 가열하였다. 일정한 간격으로 샘플을 취하고 이의 수은 함량을 측정하였다. 그 결과는 하기 표 2에 나타내었다.The procedure of Example 1 was repeated but the solution was heated to 100 ° C. Samples were taken at regular intervals and their mercury content was measured. The results are shown in Table 2 below.

Figure pct00002
Figure pct00002

실시예 6Example 6

6 mm의 내부 직경 및 5 m의 총 길이를 갖는 모노라인(monoline) 반응기에서 실험을 수행하였다. 반응기는 모세관에 의해 서로 연결된 4개의 세그먼트를 포함하였다. 하향류 방식으로 반응기를 조작하였다. 반응기 세그먼트는 60℃에서 유지하였다. 반응기 유입구 전에 액체 탄화수소 공급물을 수소와 혼합하였다. 반응기 유출구를 저온 응축기에 의해 냉각시키고 기상을 액상으로부터 분리시켰다. 수은 함량을 측정하기 위해 액상을 사용하고 수은 가드 층(guard bed)을 통해 기상을 처리하였다.Experiments were performed in a monoline reactor with an internal diameter of 6 mm and a total length of 5 m. The reactor contained four segments connected to each other by capillaries. The reactor was operated in downflow mode. The reactor segment was maintained at 60 ° C. The liquid hydrocarbon feed was mixed with hydrogen before the reactor inlet. The reactor outlet was cooled by a cold condenser and the gas phase was separated from the liquid phase. Liquid phase was used to measure mercury content and gas phase was processed through a mercury guard bed.

3 × 5 mm 펠렛 형태의, 45 중량%의 CuO, 16 중량%의 MgO, 35 중량%의 SiO2, 0.9 중량%의 Cr2O3, 1.1 중량%의 BaO 및 0.6 중량%의 ZnO를 포함하는 촉매 80 g이 반응 내에 존재하였다. 2 mm의 직경을 갖는 유리구(glass sphere)가 각각의 개별 펠렛 사이에 존재하였다. 우선 180∼220℃에서 수소 스트림 내에서 촉매를 활성화시켰다. 이어서 수소 스트림 내에서 반응기를 60℃로 냉각시켰다. 반응기는 대기압에서 조작하였다.45 wt% CuO, 16 wt% MgO, 35 wt% SiO 2 , 0.9 wt% Cr 2 O 3 , 1.1 wt% BaO and 0.6 wt% ZnO in the form of 3 × 5 mm pellets 80 g of catalyst was present in the reaction. Glass spheres with a diameter of 2 mm were present between each individual pellet. The catalyst was first activated at 180-220 ° C. in a hydrogen stream. The reactor was then cooled to 60 ° C. in a hydrogen stream. The reactor was operated at atmospheric pressure.

공급물로서는 유기수은 화합물에 걸쳐 포화된 옥탄을 사용하였다. 실험의 일부에서, 유기수은 화합물로서 페닐수은 아세테이트 PhHgOAc를 사용하고, 실험의 또다른 일부에서는 유기수은 화합물로서 수은 아세테이트 Hg(OAc)2를 사용하였다. 각 경우에 상이한 수은 농도를 갖는 다수의 뱃치를 사용하였다. 100 표준 I/h의 수은 포함 옥탄 및 2 표준 I/h의 수소를 계량 첨가하였다. 실험의 결과는 하기 표 3에 요약하였다.As feed, saturated octane over organic mercury compounds was used. In some of the experiments, phenylmercury acetate PhHgOAc was used as the organic mercury compound, and in some of the experiments, mercury acetate Hg (OAc) 2 was used as the organic mercury compound. Multiple batches with different mercury concentrations in each case were used. 100 standard I / h of mercury-containing octane and 2 standard I / h of hydrogen were metered in. The results of the experiment are summarized in Table 3 below.

Figure pct00003
Figure pct00003

Claims (8)

수은 포함 탄화수소 스트림으로부터 수은을 제거하는 방법으로서, 탄화수소 스트림은 지지체 물질 상에 구리를 포함하는 흡수제와 접촉시키고, 탄화수소 스트림은 수소의 존재 하에서 흡수제와 접촉시키는 것인 방법.A method of removing mercury from a mercury-containing hydrocarbon stream, wherein the hydrocarbon stream is contacted with an absorbent comprising copper on the support material and the hydrocarbon stream is contacted with the absorbent in the presence of hydrogen. 제1항에 있어서, 구리는 다공성 산화 지지체 물질 상에 존재하는 것인 방법.The method of claim 1, wherein the copper is present on the porous oxide support material. 제1항 또는 제2항에 있어서, 흡수제는 10∼60 중량%의 구리를 포함하는 것인 방법.The method of claim 1 or 2, wherein the absorbent comprises 10 to 60 weight percent copper. 제1항 내지 제3항 중 어느 하나의 항에 있어서, 흡수제는 10∼60 중량%의 산화구리, 0∼40 중량%의 산화아연, 0∼20 중량%의 산화알루미늄, 5∼25 중량%의 산화마그네슘, 10∼40 중량%의 이산화규소, 0∼5 중량%의 산화크롬(III) 및 0∼10 중량%의 산화바륨을 포함하는 것인 방법.The absorbent according to any one of claims 1 to 3, wherein the absorbent is 10 to 60 wt% copper oxide, 0 to 40 wt% zinc oxide, 0 to 20 wt% aluminum oxide, 5 to 25 wt% Magnesium oxide, 10-40% by weight of silicon dioxide, 0-5% by weight of chromium (III) oxide and 0-10% by weight of barium oxide. 제1항 내지 제4항 중 어느 하나의 항에 있어서, 탄화수소 스트림은 액체 형태로 존재하는 것인 방법.The process of claim 1, wherein the hydrocarbon stream is in liquid form. 제1항 내지 제5항 중 어느 하나의 항에 있어서, 흡수제는 고정층(fixed bed)으로서 존재하는 것인 방법.The method of claim 1, wherein the absorbent is present as a fixed bed. 제6항에 있어서, 탄화수소 스트림은 상향류 방식 또는 하향류 방식으로 흡수제와 접촉하는 것인 방법.The method of claim 6, wherein the hydrocarbon stream is contacted with the absorbent in an upflow or downflow mode. 제5항에 있어서, 흡수제는 탄화수소 스트림 내에서 현탁(suspension) 상태로 존재하는 것인 방법.The method of claim 5 wherein the absorbent is present in suspension in the hydrocarbon stream.
KR1020107021637A 2008-03-10 2009-03-09 Method for removing mercury from hydrocarbon streams KR20100133394A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP08152517.2 2008-03-10
EP08152517 2008-03-10

Publications (1)

Publication Number Publication Date
KR20100133394A true KR20100133394A (en) 2010-12-21

Family

ID=40558912

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020107021637A KR20100133394A (en) 2008-03-10 2009-03-09 Method for removing mercury from hydrocarbon streams

Country Status (6)

Country Link
US (1) US20110005975A1 (en)
EP (1) EP2265695A1 (en)
JP (1) JP5455939B2 (en)
KR (1) KR20100133394A (en)
CN (1) CN101970614A (en)
WO (1) WO2009112440A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101472678A (en) * 2006-06-21 2009-07-01 巴斯夫欧洲公司 Absorption composition and process for removing mercury
CN102764655B (en) * 2011-12-23 2015-03-04 盐城工学院 Demercuration catalyst
US9006508B2 (en) * 2012-02-06 2015-04-14 Uop Llc Protected adsorbents for mercury removal and method of making and using same
JP6076854B2 (en) * 2013-08-07 2017-02-08 Jxエネルギー株式会社 Method for removing mercury from hydrocarbon oil
CN105148913B (en) * 2015-10-08 2017-11-07 宁波海越新材料有限公司 A kind of preparation method for the catalyst that MEK is prepared for sec-butyl alcohol
CN108249955B (en) * 2018-04-02 2020-12-29 中科京投环境科技江苏有限公司 Preparation method of composite ceramic material for removing mercury in waste water and sewage
WO2021242464A1 (en) * 2020-05-29 2021-12-02 Exxonmobil Chemical Patents Inc. Hydrocarbon pyrolysis of feeds containing mercury

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3227645A (en) * 1962-01-22 1966-01-04 Chevron Res Combined process for metal removal and hydrocracking of high boiling oils
US3755989A (en) * 1972-06-16 1973-09-04 Union Carbide Corp Removal of mercury from gas streams
IT1043119B (en) * 1975-10-03 1980-02-20 Tecneco Spa METHOD FOR REMOVAL OF METALLIC MER CURIO
DE2656803C2 (en) * 1975-12-18 1986-12-18 Institut Français du Pétrole, Rueil-Malmaison, Hauts-de-Seine Process for removing mercury from a gas or liquid
US4230486A (en) * 1978-04-28 1980-10-28 Olin Corporation Process for removal and recovery of mercury from liquids
AU559284B2 (en) * 1982-07-08 1987-03-05 Takeda Chemical Industries Ltd. Adsorption of mercury vapour
FR2628338B1 (en) * 1988-03-10 1991-01-04 Inst Francais Du Petrole PROCESS FOR THE REMOVAL OF MERCURY FROM HYDROCARBONS
US4909926A (en) * 1989-02-01 1990-03-20 Mobil Oil Corporation Method for removing mercury from hydrocarbon oil by high temperature reactive adsorption
JP2578514B2 (en) * 1989-03-03 1997-02-05 三井石油化学工業株式会社 Method for removing mercury from liquid hydrocarbon compounds
US5401392A (en) * 1989-03-16 1995-03-28 Institut Francais Du Petrole Process for eliminating mercury and possibly arsenic in hydrocarbons
FR2644472B1 (en) * 1989-03-16 1991-06-21 Inst Francais Du Petrole PROCESS FOR THE REMOVAL OF MERCURY AND POSSIBLY ARSENIC IN HYDROCARBONS
AU7671691A (en) * 1990-04-04 1991-10-30 Exxon Chemical Patents Inc. Mercury removal by dispersed-metal adsorbents
US5080799A (en) * 1990-05-23 1992-01-14 Mobil Oil Corporation Hg removal from wastewater by regenerative adsorption
FR2673191B1 (en) * 1991-02-27 1994-02-04 Institut Francais Petrole PROCESS FOR REMOVING MERCURY AND / OR ARSENIC FROM THE LOADS OF SOLVENT DEAROMATIZATION UNITS. .
DE4221207A1 (en) * 1992-06-27 1994-01-05 Huels Chemische Werke Ag Removal of mercury@ from liquids, e.g. alkali alkoxide solns. - by contacting liq. with fibres which are coated with a silver@ layer
FR2701270B1 (en) * 1993-02-08 1995-04-14 Inst Francais Du Petrole Process for removing mercury from hydrocarbons by passing over a presulfurized catalyst.
US5948726A (en) * 1994-12-07 1999-09-07 Project Earth Industries, Inc. Adsorbent and/or catalyst and binder system and method of making therefor
FR2764214B1 (en) * 1997-06-10 1999-07-16 Inst Francais Du Petrole CAPTATION PROCESS AND MASSES FOR THE REMOVAL OF MERCURY AND ARSENIC IN HYDROCARBON CUTS
JP2004167306A (en) * 2002-11-18 2004-06-17 Ict:Kk Exhaust gas cleaning catalyst and exhaust gas cleaning method
DE10255240A1 (en) * 2002-11-26 2004-06-09 Basf Ag Process for the removal of mercury from solutions contaminated with mercury
CN101472678A (en) * 2006-06-21 2009-07-01 巴斯夫欧洲公司 Absorption composition and process for removing mercury

Also Published As

Publication number Publication date
WO2009112440A1 (en) 2009-09-17
US20110005975A1 (en) 2011-01-13
JP5455939B2 (en) 2014-03-26
CN101970614A (en) 2011-02-09
EP2265695A1 (en) 2010-12-29
JP2011513565A (en) 2011-04-28

Similar Documents

Publication Publication Date Title
JP5455939B2 (en) Method for removing mercury from a hydrocarbon stream
EP0033424B1 (en) Removal of sulfur and/or sulfur compound from industrial process streams using metal alumina spinel
CA1323321C (en) Process for removal of mercury from a liquid hydrocarbon
JP7401505B2 (en) Adsorbent, and method for manufacturing and using the adsorbent
JP5198441B2 (en) Method for removing CO from a liquid propylene stream
JPH0328295A (en) Removal of mercury from liquid hydrocarbon compound
EP2346592A1 (en) Removal of heavy metals from hydrocarbon gases
WO2001039878A2 (en) Sulfur adsorbent for use with oil hydrogenation catalysts
US20090200207A1 (en) Absorption Composition and Process for Removing Mercury
JP2013177435A (en) Method for purifying benzene feedstock containing contaminating sulfur compound
EP1651565B1 (en) Processes and systems for making phosgene
KR20090086106A (en) Adsorption composition and process for removing co from streams
JPH03277693A (en) Removal of trace amount of chlorine from hydrocarbon-based oil
KR19980070486A (en) Adsorption Removal Method of Trace Metals in Hydrocarbon Fractions

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application