KR20100131373A - Constant amplitude encoding method for code division multiplex communication system - Google Patents

Constant amplitude encoding method for code division multiplex communication system Download PDF

Info

Publication number
KR20100131373A
KR20100131373A KR1020100052669A KR20100052669A KR20100131373A KR 20100131373 A KR20100131373 A KR 20100131373A KR 1020100052669 A KR1020100052669 A KR 1020100052669A KR 20100052669 A KR20100052669 A KR 20100052669A KR 20100131373 A KR20100131373 A KR 20100131373A
Authority
KR
South Korea
Prior art keywords
constant amplitude
code
generated
bit code
equation
Prior art date
Application number
KR1020100052669A
Other languages
Korean (ko)
Other versions
KR101397986B1 (en
Inventor
박태준
정운철
손교훈
강호용
주성순
채종석
Original Assignee
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자통신연구원 filed Critical 한국전자통신연구원
Publication of KR20100131373A publication Critical patent/KR20100131373A/en
Application granted granted Critical
Publication of KR101397986B1 publication Critical patent/KR101397986B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/10Code generation
    • H04J13/12Generation of orthogonal codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/004Orthogonal
    • H04J13/0048Walsh

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

PURPOSE: A constant amplitude encoding method for a code division multiplex communication system are provided to produce various diffusion gains and transmission rates by generating a constant amplitude signal instead of a multi amplitude signal. CONSTITUTION: The n bit code equal to an input signal is generated to encode a constant amplitude of a transmission signal(S10). The generated n bit code is diffused by applying an orthogonal codeword set(S20). The additional information is added to show the output characteristic of the constant amplitude(S30). The orthogonal codeword set structure is generated by using a walsh-hadamard matrix.

Description

코드 분할 다중화 통신 시스템에서 전송 신호의 정진폭 부호화 방법 {CONSTANT AMPLITUDE ENCODING METHOD FOR CODE DIVISION MULTIPLEX COMMUNICATION SYSTEM}Constant amplitude coding method of transmission signal in code division multiplexing communication system {CONSTANT AMPLITUDE ENCODING METHOD FOR CODE DIVISION MULTIPLEX COMMUNICATION SYSTEM}

본 발명은 코드 분할 다중화 통신 시스템에서 전송 신호의 정진폭 부호화 방법에 관한 것으로, 보다 상세하게는 확산 이득을 높이면서도 정진폭 다중화로 전송량 증가나 고가의 RF회로를 사용하는 것을 피할 수 있으며, 다중경로 패이딩에 대한 강건성을 높일 수 있고, 단순한 코드의 활용으로 다양한 확산 이득과 전송률을 나타내는 효과를 내기 위한 기술에 관한 것이다. The present invention relates to a constant amplitude encoding method of a transmission signal in a code division multiplexing communication system. More particularly, the present invention relates to a constant amplitude multiplexing method, while increasing transmission rate and avoiding the use of expensive RF circuits. The present invention relates to a technique for increasing the robustness against fading and producing various spreading gains and transmission rates by using simple codes.

본 발명은 한국산업기술평가원의 IT원천기술개발사업의 일환으로 수행한 연구로부터 도출된 것이다[과제관리번호: 2008-F-052, 과제명: QoS 및 확장성지원 (S-MoRe) 센서네트워크 고도화 기술개발 (표준화연계)].The present invention is derived from the research conducted as part of the IT source technology development project of the Korea Institute of Industrial Technology Evaluation and Planning [Task Management No .: 2008-F-052, Title: QoS and Scalability Support (S-MoRe) Sensor Network Enhancement] Technology Development (Standardization)].

코드 분할 다중화 (Code Division Multiplex; CDM) 통신 시스템에서 전송 속도의 향상을 위해 복수의 신호를 다중화하는데, 일반적으로 복수의 신호를 다중화하면 다중진폭의 신호가 발생하게 된다. 그러나, 다중진폭의 신호는 종래에 알려진 바와 같은 많은 문제점이 있어 이를 정진폭으로 조정하기 위한 다양한 기술이 제안되고 있다.In a code division multiplex (CDM) communication system, multiple signals are multiplexed to improve transmission speed. In general, multiplexing multiple signals generates multiple amplitude signals. However, signals of multiple amplitudes have many problems as known in the art, and various techniques for adjusting them to constant amplitudes have been proposed.

따라서 본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위한 것으로, 송신 코드를 다중화하여도 정진폭을 유지할 수 있으며, 이로 인하여 확산 이득을 높이면서도 정진폭 다중화로 전송량 증가나 고가의 RF회로를 사용하는 것을 피할 수 있으며, 다중경로 패이딩에 대한 강건성을 높일 수 있고, 단순한 코드의 활용으로 다양한 확산 이득과 전송률을 나타내는 효과를 나타내는 방법으로서, 일반적으로 직교 코드만이 아닌 일반적인 송신 코드를 사용하여도 기존의 직교 코드를 사용하는 것과 동일한 효과를 낼 수 있는 코드 분할 다중화 통신 시스템에서 전송 신호의 정진폭 부호화 방법을 제공하기 위한 것이다. Therefore, the present invention is to solve the above problems of the prior art, it is possible to maintain a constant amplitude even when multiplexing the transmission code, thereby increasing the transmission gain while increasing the spreading gain, or use an expensive RF circuit using a constant amplitude multiplexing To improve the robustness against multipath fading, and to show various spreading gains and transmission rates by using simple codes. It is an object of the present invention to provide a constant amplitude encoding method of a transmission signal in a code division multiplexing communication system capable of producing the same effect as using a conventional orthogonal code.

상기한 목적을 달성하기 위한 본 발명의 일 실시예에 의한 코드 분할 다중화 통신 시스템에서 전송 신호의 정진폭 부호화 방법은, 입력신호와 동일한 n비트 코드를 발생하는 단계; 직교 코드 모듬 구조(orthogonal codeword set)를 적용하여 상기 발생된 n비트 코드를 확산하는 단계; 및 상기 n비트 코드를 확산된 결과에 잉여 정보를 추가하는 단계를 포함한다.In the code division multiplexing communication system according to an embodiment of the present invention for achieving the above object, a constant amplitude encoding method of a transmission signal comprises the steps of: generating an n-bit code equal to an input signal; Spreading the generated n-bit code by applying an orthogonal codeword set; And adding surplus information to a result of spreading the n-bit code.

본 발명에 의하면, 다중화에 의해 신호를 발생하더라도 다중진폭의 신호가 아니라 정신폭 신호를 발생할 수 있게 된다. 또한, 일반적인 코드를 사용하는 심벌에 대해 확산계수를 4배 증가시킬 수 있을 뿐만 아니라, 직교 코드 변환 절차를 거치지 않더라도 직교성을 부과한 직교코드를 사용하는 것과 동일한 효과를 얻을 수 있게 된다.According to the present invention, even if a signal is generated by multiplexing, it is possible to generate a mental amplitude signal rather than a multiple amplitude signal. In addition, the spreading factor can be increased by four times with respect to a symbol using a general code, and the same effect as using an orthogonal code with orthogonality can be obtained without undergoing an orthogonal code conversion procedure.

도 1은 본 발명의 일 실시예에 의한 전송 신호의 정진폭 부호화 과정의 흐름도이다.1 is a flowchart of a constant amplitude encoding process of a transmission signal according to an embodiment of the present invention.

이하, 첨부된 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 바람직한 실시예를 상세히 설명한다. 다만, 본 발명의 바람직한 실시예를 상세하게 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다. 또한, 유사한 기능 및 작용을 하는 부분에 대해서는 도면 전체에 걸쳐 동일한 부호를 사용한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. However, in describing the preferred embodiment of the present invention in detail, if it is determined that the detailed description of the related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted. In addition, the same reference numerals are used throughout the drawings for parts having similar functions and functions.

덧붙여, 명세서 전체에서, 어떤 부분이 다른 부분과 '연결'되어 있다고 할 때, 이는 '직접적으로 연결'되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고 '간접적으로 연결'되어 있는 경우도 포함한다. 또한, 어떤 구성요소를 '포함'한다는 것은, 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.
In addition, throughout the specification, when a part is 'connected' to another part, it is not only 'directly connected' but also 'indirectly connected' with another element in between. Include. In addition, the term 'comprising' of an element means that the element may further include other elements, not to exclude other elements unless specifically stated otherwise.

도 1은 본 발명의 일 실시예에 의한 전송 신호의 정진폭 부호화 과정의 흐름도이다. 1 is a flowchart of a constant amplitude encoding process of a transmission signal according to an embodiment of the present invention.

본 발명에 의한 전송 신호의 정진폭 부호화를 위해, 우선, 입력 신호와 동일한 n비트 코드를 발생한다(S10). 다시 말해, 종래기술에 따르면, 입력 신호 (b)에 대한 직교 코드 변환 절차를 거친 후, 직교 특성의 출력을 코드(s)로 사용하였으나, 본 발명에 의하면, 입력 신호에 대한 별도의 변환 절차를 거치지 않고 그대로 코드로 사용하게 된다.For constant amplitude encoding of the transmission signal according to the present invention, first, an n-bit code identical to the input signal is generated (S10). In other words, according to the prior art, after the orthogonal code conversion procedure for the input signal (b), the output of the orthogonal characteristic is used as the code (s), but according to the present invention, a separate conversion procedure for the input signal It will be used as it is without code.

구체적으로 예를 들면, 입력 신호가 수학식 1과 같은 3개의 4비트 입력 (b0 3, b1 3, b2 3)인 경우, 이와 동일한 수학식 2와 같은 3개의 4비트 코드(s0 4, s1 4, s2 4)를 발생한다.Specifically, for example, when the input signal is three four-bit inputs (b 0 3 , b 1 3 , b 2 3 ) as in Equation 1, three four-bit codes (s 0 as in Equation 2). 4 , s 1 4 , s 2 4 ).

[수학식 1][Equation 1]

b0 3=( b00, b01, b02, b03 )b 0 3 = (b 00 , b 01 , b 02 , b 03 )

b1 3=( b10, b11, b12, b13 )b 1 3 = (b 10 , b 11 , b 12 , b 13 )

b2 3=( b20, b21, b22, b23 )
b 2 3 = (b 20 , b 21 , b 22 , b 23 )

[수학식 2][Equation 2]

s0 4=( s00, s01, s02, s03 )s 0 4 = (s 00 , s 01 , s 02 , s 03 )

s1 4=( s10, s11, s12, s13 )s 1 4 = (s 10 , s 11 , s 12 , s 13 )

s2 4=( s20, s21, s22, s23 )
s 2 4 = (s 20 , s 21 , s 22 , s 23 )

이 경우, 하나의 심볼, 즉, 4비트 입력에 대해 4칩(chip)으로 대응되므로 확산 계수(Spreading factor)가 4가 된다. 즉, 수학식 2는 하나의 심볼에 대해 4칩의 형태로 확산된 결과이며, 별도의 변환 절차를 거치지 않았는 바 코드간 직교성은 없다.
In this case, the spreading factor becomes 4 since one symbol, that is, 4 chips corresponds to a 4-bit input. That is, Equation 2 is a result of spreading a single chip in the form of four chips, and there is no orthogonality between codes since no conversion procedure is performed.

이후, 왈시-하다마드(Walsh-Hadamard) 메트릭스를 이용하여 발생한 직교 코드 모듬 구조(orthogonal codeword set)를 적용하여 상기 발생된 n비트 코드를 확산한다(S20).Thereafter, the generated n-bit code is spread by applying an orthogonal codeword set generated using a Walsh-Hadamard matrix (S20).

구체적인 예를 들어 설명하면, 수학식 3과 같은 4x4 왈시-하다마드 메트릭스를 이용하여 수학식 4와 같은 직교 코드 모음을 생성할 수 있다. 본 발명에 의하면, 이와 같은 직교 코드 모음 구조를 이용하여 다중화시 정진폭을 유지함과 더불어, 확산 계수가 4배가 되고 직교성을 나타낼 수 있게 된다.
As a specific example, a set of orthogonal codes such as Equation 4 may be generated using a 4x4 Walsh-Hadamard matrix such as Equation 3. According to the present invention, by using the orthogonal code collection structure, the spreading factor is quadrupled and the orthogonality can be maintained while maintaining the constant amplitude during multiplexing.

[수학식 3]&Quot; (3) "

Figure pat00001

Figure pat00001

[수학식 4]&Quot; (4) "

a0 = ( 1 1 1 1 )a 0 = (1 1 1 1)

a1 = ( 1 -1 1 -1 )a 1 = (1 -1 1 -1)

a2 = ( 1 1 -1 -1 )a 2 = (1 1 -1 -1)

a3 = ( 1 -1 -1 1 )
a 3 = (1 -1 -1 1)

수학식 4와 같은 4x4 왈시-하다마드 직교 코드 모음 구조를 적용하여, 4칩으로 변환된 코드에 대해 심볼당 16칩으로 확산하는 예는 다음과 같다. 이때, 수학식 5는 왈시-하다마드 메트릭스에서 '1'의 자리는 4칩 코드로 대체하고, '0'의 자리는 '-1'이 곱해진 값의 4칩 코드로 대체한 것이다.
By applying a 4x4 Walsh-Hadamard orthogonal code collection structure as shown in Equation 4, an example of spreading 16-chip per symbol for a code converted to 4-chip is as follows. In this case, Equation 5 replaces the place of '1' with a 4-chip code in the Walsh-Hadamard matrix, and the place of '0' with a 4-chip code with a value of '-1'.

[수학식 5][Equation 5]

Figure pat00002

Figure pat00002

수학식 5와 같은 메트릭스로부터 수학식 6과 같은 직교 코드 모음이 만들어질 수 있다.
A set of orthogonal codes such as Equation 6 can be generated from the matrix such as Equation 5.

[수학식 6]&Quot; (6) "

a0 = ( s0 4 s0 4 s0 4 s0 4 )a 0 = (s 0 4 s 0 4 s 0 4 s 0 4 )

a1 = ( s1 4 -s1 4 s1 4 -s1 4 )a 1 = (s 1 4 -s 1 4 s 1 4 -s 1 4 )

a2 = ( s2 4 s2 4 -s2 4 -s2 4 ) a 2 = (s 2 4 s 2 4 -s 2 4 -s 2 4)

a3 = ( s3 4 -s3 4 -s3 4 s3 4 )
a 3 = (s 3 4 -s 3 4 -s 3 4 s 3 4 )

이후, 정진폭의 출력 특성을 나타내기 위해, 잉여 정보를 추가한다(S30).Thereafter, surplus information is added to represent the output characteristic of the constant amplitude (S30).

구체적인 예를 들어 설명하면, 전체 정보의 1/4에 해당하는 잉여 정보 (p0 4, p1 4, p2 4, p3 4)를 추가하는데, 정진폭의 출력 특성을 위한 잉여 정보는 수학식 7과 같은 조건을 만족해야 한다.
As a specific example, the redundant information (p 0 4 , p 1 4 , p 2 4 , p 3 4 ) corresponding to one-quarter of the total information is added. The condition as shown in Equation 7 must be satisfied.

[수학식 7][Equation 7]

p0 4 = not ( s0 4

Figure pat00003
s1 4
Figure pat00004
s2 4 )p 0 4 = not (s 0 4
Figure pat00003
s 1 4
Figure pat00004
s 2 4 )

p1 4 = not ( s0 4

Figure pat00005
(-s1 4)
Figure pat00006
s2 4 )p 1 4 = not (s 0 4
Figure pat00005
(-s 1 4 )
Figure pat00006
s 2 4 )

p2 4 = not ( s0 4

Figure pat00007
s1 4
Figure pat00008
(-s2 4) )p 2 4 = not (s 0 4
Figure pat00007
s 1 4
Figure pat00008
(-s 2 4 ))

p3 4 = not ( s0 4

Figure pat00009
(-s1 4)
Figure pat00010
(-s2 4) )
p 3 4 = not (s 0 4
Figure pat00009
(-s 1 4 )
Figure pat00010
(-s 2 4 ))

이를 만족하는 수학식 6에서의 s3 4 는 수학식 8과 같으며, 이를 보다 상세하게 표현하면 수학식 9와 같다.
S 3 4 in Equation 6 to satisfy this Is the same as Equation 8, which is more specifically expressed as Equation 9.

[수학식 8][Equation 8]

s3 4 = ( s0 4

Figure pat00011
s1 4
Figure pat00012
s2 4 )
s 3 4 = (s 0 4
Figure pat00011
s 1 4
Figure pat00012
s 2 4 )

[수학식 9][Equation 9]

s30=( s00

Figure pat00013
s10
Figure pat00014
s20 )s 30 = (s 00
Figure pat00013
s 10
Figure pat00014
s 20 )

s31=( s01

Figure pat00015
s11
Figure pat00016
s21 )s 31 = (s 01
Figure pat00015
s 11
Figure pat00016
s 21 )

s32=( s02

Figure pat00017
s12
Figure pat00018
s22 )s 32 = (s 02
Figure pat00017
s 12
Figure pat00018
s 22 )

s33=( s03

Figure pat00019
s13
Figure pat00020
s23 )
s 33 = (s 03
Figure pat00019
s 13
Figure pat00020
s 23 )

상술한 설명에서, s0, s1, s2 와 같은 4칩의 코드는 직교성이 없으나, a0, a1, a2 와 같이 변환된 16칩 코드는 서로 직교성을 나타낸다.
In the above description, codes of four chips such as s 0 , s 1 , and s 2 do not have orthogonality, but converted 16-chip codes such as a 0 , a 1 , and a 2 show orthogonality to each other.

본 발명에서는, 4x4 왈시-하다마드 메트릭스의 각 비트를 앞서 결정된 코드 열로 대체함으로써, 사용하는 코드 열의 특성과 정진폭 특성을 유지한다. 다시 말해, 코드 열이 4칩으로 확산된 직교코드를 적용한 결과 코드 열은 16칩으로 확산된 직교코드가 되며, 다중화의 경우에도 정진폭을 유지하게 된다.
In the present invention, by replacing each bit of the 4x4 Walsh-Hadamard matrix with a previously determined code sequence, the characteristics of the code sequence and the constant amplitude of the code string to be used are maintained. In other words, as a result of applying an orthogonal code in which the code string is spread to 4 chips, the code string is an orthogonal code spread to 16 chips and maintains a constant amplitude even in the multiplexing.

수학식 10은 4x4 왈시-하다마드 메트릭스가 코드열로 대체된 형태를 나타낸다.Equation 10 represents a form in which the 4x4 Walsh-Hadamard matrix is replaced with a code string.

[수학식 10][Equation 10]

Figure pat00021

Figure pat00021

상술한 과정을 거쳐 최종 출력되는 16칩열(16 chip sequence)은 수학식 11과 같으며, 이를 16칩에 대해 따로 나타내면 수학식 12와 같다.
The 16-chip sequence that is finally output through the above-described process is shown in Equation 11, which is expressed separately in Equation 12 for the 16 chips.

[수학식 11][Equation 11]

c16 = ( s0 4 + s1 4 + s2 4 + s3 4 | s0 4 - s1 4 + s2 4 - s3 4 | s0 4 + s1 4 - s2 4 - s3 4 | s0 4 - s1 4 - s2 4 + s3 4 )
c 16 = (s 0 4 + s 1 4 + s 2 4 + s 3 4 | s 0 4 -s 1 4 + s 2 4 -s 3 4 | s 0 4 + s 1 4 -s 2 4 -s 3 4 | s 0 4 -s 1 4 -s 2 4 + s 3 4 )

[수학식 12][Equation 12]

c0 = ( s00 + s10 + s20 + s30 )c 0 = (s 00 + s 10 + s 20 + s 30 )

c1 = ( s01 + s11 + s21 + s31 )c 1 = (s 01 + s 11 + s 21 + s 31 )

c2 = ( s02 + s12 + s22 + s32 )c 2 = (s 02 + s 12 + s 22 + s 32 )

c3 = ( s03 + s13 + s23 + s33 )c 3 = (s 03 + s 13 + s 23 + s 33 )

c4 = ( s00 - s10 + s20 - s30 )c 4 = (s 00 -s 10 + s 20 -s 30 )

c5 = ( s01 - s11 + s21 - s31 )c 5 = (s 01 -s 11 + s 21 -s 31 )

c6 = ( s02 - s12 + s22 - s32 )c 6 = (s 02 -s 12 + s 22 -s 32 )

c7 = ( s03 - s13 + s23 - s33 )c 7 = (s 03 -s 13 + s 23 -s 33 )

c8 = ( s00 + s10 - s20 - s30 )c 8 = (s 00 + s 10 -s 20 -s 30 )

c9 = ( s01 + s11 - s21 - s31 )c 9 = (s 01 + s 11 -s 21 -s 31 )

c10 = ( s02 + s12 - s22 - s32 )c 10 = (s 02 + s 12 -s 22 -s 32 )

c11 = ( s03 + s13 - s23 - s33 )c 11 = (s 03 + s 13 -s 23 -s 33 )

c12 = ( s00 - s10 - s20 + p30 )c 12 = (s 00 -s 10 -s 20 + p 30 )

c13 = ( s01 - s11 - s21 + p31 )c 13 = (s 01 -s 11 -s 21 + p 31 )

c14 = ( s02 - s12 - s22 + p32 )c 14 = (s 02 -s 12 -s 22 + p 32 )

c15 = ( s03 - s13 - s23 + p33 )
c 15 = (s 03 -s 13 -s 23 + p 33 )

본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 본 발명에 따른 구성요소를 치환, 변형 및 변경할 수 있다는 것이 명백할 것이다.The present invention is not limited by the above-described embodiment and the accompanying drawings. It will be apparent to those skilled in the art that the present invention may be substituted, modified, and changed in accordance with the present invention without departing from the spirit of the present invention.

Claims (9)

입력신호와 동일한 n비트 코드를 발생하는 단계;
직교 코드 모듬 구조(orthogonal codeword set)를 적용하여 상기 발생된 n비트 코드를 확산하는 단계; 및
상기 n비트 코드가 확산된 결과에 잉여 정보를 추가하는 단계를 포함하는 것을 특징으로 하는 정진폭 부호화 방법.
Generating an n-bit code equal to the input signal;
Spreading the generated n-bit code by applying an orthogonal codeword set; And
And adding surplus information to a result of spreading the n-bit code.
제 1 항에 있어서,
상기 직교 코드 모음 구조는 왈시-하다마드(Walsh-Hadamard) 메트릭스를 이용하여 발생되는 것을 특징으로 하는 정진폭 부호화 방법.
The method of claim 1,
The orthogonal code collection structure is generated using a Walsh-Hadamard matrix.
제 1 항에 있어서,
상기 n비트 코드를 발생하는 단계는,
(b0 3, b1 3, b2 3)으로 표현되는 입력신호를 입력받아 이와 동일한 n비트 코드(s0 4, s1 4, s2 4)를 발생하며,
상기 b0 3, b1 3, b2 3, s0 4, s1 4, s2 4는 각각 다음의 수학식
b0 3=( b00, b01, b02, b03 )
b1 3=( b10, b11, b12, b13 )
b2 3=( b20, b21, b22, b23 )
s0 4=( s00, s01, s02, s03 )
s1 4=( s10, s11, s12, s13 )
s2 4=( s20, s21, s22, s23 )
과 같이 표현되는 것을 특징으로 하는 정진폭 부호화 방법.
The method of claim 1,
Generating the n-bit code,
It receives the input signal represented by (b 0 3 , b 1 3 , b 2 3 ) and generates the same n-bit code (s 0 4 , s 1 4 , s 2 4 ),
B 0 3 , b 1 3 , b 2 3 , s 0 4 , s 1 4 , and s 2 4 are the following equations, respectively.
b 0 3 = (b 00 , b 01 , b 02 , b 03 )
b 1 3 = (b 10 , b 11 , b 12 , b 13 )
b 2 3 = (b 20 , b 21 , b 22 , b 23 )
s 0 4 = (s 00 , s 01 , s 02 , s 03 )
s 1 4 = (s 10 , s 11 , s 12 , s 13 )
s 2 4 = (s 20 , s 21 , s 22 , s 23 )
Constant amplitude coding method characterized in that expressed as follows.
제 3 항에 있어서,
상기 직교 코드 모음 구조는 4x4 왈시-하다마드 메트릭스
Figure pat00022

를 이용하여 발생되는 것을 특징으로 하는 정진폭 부호화 방법.
The method of claim 3, wherein
The orthogonal code set structure is a 4x4 Walsh-Hadamard matrix
Figure pat00022

A constant amplitude encoding method characterized in that it is generated using.
제 4 항에 있어서,
상기 직교 코드 모음 구조는, 다음의 수학식
a0 = ( 1 1 1 1 )
a1 = ( 1 -1 1 -1 )
a2 = ( 1 1 -1 -1 )
a3 = ( 1 -1 -1 1 )
로 표현되는 것을 특징으로 하는 정진폭 부호화 방법.
The method of claim 4, wherein
The orthogonal code collection structure is represented by the following equation
a 0 = (1 1 1 1)
a 1 = (1 -1 1 -1)
a 2 = (1 1 -1 -1)
a 3 = (1 -1 -1 1)
Constant amplitude coding method characterized in that.
제 5 항에 있어서,
상기 n비트 코드를 확산하는 단계에 의한 확산 결과는, 다음의 수학식
a0 = ( s0 4 s0 4 s0 4 s0 4 )
a1 = ( s1 4 -s1 4 s1 4 -s1 4 )
a2 = ( s2 4 s2 4 -s2 4 -s2 4 )
a3 = ( s3 4 -s3 4 -s3 4 s3 4 )
로 표현되는 것을 특징으로 하는 정진폭 부호화 방법.
The method of claim 5, wherein
The spreading result by spreading the n-bit code is represented by the following equation.
a 0 = (s 0 4 s 0 4 s 0 4 s 0 4 )
a 1 = (s 1 4 -s 1 4 s 1 4 -s 1 4 )
a 2 = (s 2 4 s 2 4 -s 2 4 -s 2 4)
a 3 = (s 3 4 -s 3 4 -s 3 4 s 3 4 )
Constant amplitude coding method characterized in that.
제 6 항에 있어서,
상기 잉여 정보를 추가하는 단계는, 다음의 수학식
p0 4 = not ( s0 4
Figure pat00023
s1 4
Figure pat00024
s2 4 )
p1 4 = not ( s0 4
Figure pat00025
(-s1 4)
Figure pat00026
s2 4 )
p2 4 = not ( s0 4
Figure pat00027
s1 4
Figure pat00028
(-s2 4) )
p3 4 = not ( s0 4
Figure pat00029
(-s1 4)
Figure pat00030
(-s2 4) )
조건을 만족하는 잉여 정보 (p0 4, p1 4, p2 4, p3 4)를 추가하는 것을 특징으로 하는 정진폭 부호화 방법.
The method according to claim 6,
Adding the surplus information, the following equation
p 0 4 = not (s 0 4
Figure pat00023
s 1 4
Figure pat00024
s 2 4 )
p 1 4 = not (s 0 4
Figure pat00025
(-s 1 4 )
Figure pat00026
s 2 4 )
p 2 4 = not (s 0 4
Figure pat00027
s 1 4
Figure pat00028
(-s 2 4 ))
p 3 4 = not (s 0 4
Figure pat00029
(-s 1 4 )
Figure pat00030
(-s 2 4 ))
A method of encoding constant amplitude, comprising adding surplus information (p 0 4 , p 1 4 , p 2 4 , p 3 4 ) satisfying a condition.
제 7 항에 있어서,
상기 s3 4 는, 다음의 수학식
s3 4 = ( s0 4
Figure pat00031
s1 4
Figure pat00032
s2 4 )
로 표현되는 것을 특징으로 하는 정진폭 부호화 방법.
The method of claim 7, wherein
S 3 4 Is the following equation
s 3 4 = (s 0 4
Figure pat00031
s 1 4
Figure pat00032
s 2 4 )
Constant amplitude coding method characterized in that.
제 8 항에 있어서,
상기 잉여 정보를 추가하는 단계에 의해 최종 출력되는 칩열은, 다음의 수학식
c16 = ( s0 4 + s1 4 + s2 4 + s3 4 | s0 4 - s1 4 + s2 4 - s3 4 | s0 4 + s1 4 - s2 4 - s3 4 | s0 4 - s1 4 - s2 4 + s3 4 )
로 표현되는 것을 특징으로 하는 정진폭 부호화 방법.
The method of claim 8,
The chip sequence finally output by adding the surplus information is represented by the following equation.
c 16 = (s 0 4 + s 1 4 + s 2 4 + s 3 4 | s 0 4 -s 1 4 + s 2 4 -s 3 4 | s 0 4 + s 1 4 -s 2 4 -s 3 4 | s 0 4 -s 1 4 -s 2 4 + s 3 4 )
Constant amplitude coding method characterized in that.
KR1020100052669A 2009-06-05 2010-06-04 Constant amplitude encoding method for code division multiplex communication system KR101397986B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20090049922 2009-06-05
KR1020090049922 2009-06-05

Publications (2)

Publication Number Publication Date
KR20100131373A true KR20100131373A (en) 2010-12-15
KR101397986B1 KR101397986B1 (en) 2014-05-27

Family

ID=43507434

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100052669A KR101397986B1 (en) 2009-06-05 2010-06-04 Constant amplitude encoding method for code division multiplex communication system

Country Status (1)

Country Link
KR (1) KR101397986B1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018089985A1 (en) * 2016-11-14 2018-05-17 Rampart Communications, LLC Reliable orthogonal spreading codes in wireless communications
US10735062B1 (en) 2019-09-04 2020-08-04 Rampart Communications, Inc. Communication system and method for achieving high data rates using modified nearly-equiangular tight frame (NETF) matrices
US10833749B1 (en) 2019-07-01 2020-11-10 Rampart Communications, Inc. Communication system and method using layered construction of arbitrary unitary matrices
US10873361B2 (en) 2019-05-17 2020-12-22 Rampart Communications, Inc. Communication system and methods using multiple-in-multiple-out (MIMO) antennas within unitary braid divisional multiplexing (UBDM)
US10917148B2 (en) 2019-07-01 2021-02-09 Rampart Communications, Inc. Systems, methods and apparatus for secure and efficient wireless communication of signals using a generalized approach within unitary braid division multiplexing
US10951442B2 (en) 2019-07-31 2021-03-16 Rampart Communications, Inc. Communication system and method using unitary braid divisional multiplexing (UBDM) with physical layer security
US10965352B1 (en) 2019-09-24 2021-03-30 Rampart Communications, Inc. Communication system and methods using very large multiple-in multiple-out (MIMO) antenna systems with extremely large class of fast unitary transformations
US11025470B2 (en) 2019-07-01 2021-06-01 Rampart Communications, Inc. Communication system and method using orthogonal frequency division multiplexing (OFDM) with non-linear transformation
US11050604B2 (en) 2019-07-01 2021-06-29 Rampart Communications, Inc. Systems, methods and apparatuses for modulation-agnostic unitary braid division multiplexing signal transformation
US11159220B2 (en) 2020-02-11 2021-10-26 Rampart Communications, Inc. Single input single output (SISO) physical layer key exchange
US11641269B2 (en) 2020-06-30 2023-05-02 Rampart Communications, Inc. Modulation-agnostic transformations using unitary braid divisional multiplexing (UBDM)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100602520B1 (en) * 2004-10-25 2006-07-19 전자부품연구원 Encoding method and devices to obtain constant amplitude transmission symbols in digital transmission scheme based on multi-code transmission architecture using block orthogonal extended transorthogonal codes
KR100776974B1 (en) 2006-07-26 2007-11-21 전자부품연구원 Modulator with constant-amplitude coded bi-orthogonal modulation and quadrature-quadrature phase shift keying modulation

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10020839B2 (en) 2016-11-14 2018-07-10 Rampart Communications, LLC Reliable orthogonal spreading codes in wireless communications
KR20190072662A (en) * 2016-11-14 2019-06-25 램파트 커뮤니케이션즈, 엘엘씨 Reliable orthogonal spreading codes in wireless communications
US10491262B2 (en) 2016-11-14 2019-11-26 Rampart Communications, Inc. Reliable orthogonal spreading codes in wireless communication
US11018715B2 (en) 2016-11-14 2021-05-25 Rampart Communications, Inc. Reliable orthogonal spreading codes in wireless communication
US10819387B2 (en) 2016-11-14 2020-10-27 Rampart Communications, Inc. Reliable orthogonal spreading codes in wireless communication
WO2018089985A1 (en) * 2016-11-14 2018-05-17 Rampart Communications, LLC Reliable orthogonal spreading codes in wireless communications
US10873361B2 (en) 2019-05-17 2020-12-22 Rampart Communications, Inc. Communication system and methods using multiple-in-multiple-out (MIMO) antennas within unitary braid divisional multiplexing (UBDM)
US11025470B2 (en) 2019-07-01 2021-06-01 Rampart Communications, Inc. Communication system and method using orthogonal frequency division multiplexing (OFDM) with non-linear transformation
US10917148B2 (en) 2019-07-01 2021-02-09 Rampart Communications, Inc. Systems, methods and apparatus for secure and efficient wireless communication of signals using a generalized approach within unitary braid division multiplexing
US10833749B1 (en) 2019-07-01 2020-11-10 Rampart Communications, Inc. Communication system and method using layered construction of arbitrary unitary matrices
US11050604B2 (en) 2019-07-01 2021-06-29 Rampart Communications, Inc. Systems, methods and apparatuses for modulation-agnostic unitary braid division multiplexing signal transformation
US11075681B2 (en) 2019-07-01 2021-07-27 Rampart Communications, Inc. Communication system and method using layered construction of arbitrary unitary matrices
US10951442B2 (en) 2019-07-31 2021-03-16 Rampart Communications, Inc. Communication system and method using unitary braid divisional multiplexing (UBDM) with physical layer security
US11394588B2 (en) 2019-07-31 2022-07-19 Rampart Communications, Inc. Communication system and method using unitary braid divisional multiplexing (UBDM) with physical layer security
US10735062B1 (en) 2019-09-04 2020-08-04 Rampart Communications, Inc. Communication system and method for achieving high data rates using modified nearly-equiangular tight frame (NETF) matrices
US11258487B2 (en) 2019-09-04 2022-02-22 Rampart Communications, Inc. Communication system and method for achieving high data rates using modified nearly-equiangular tight frame (NETF) matrices
US10965352B1 (en) 2019-09-24 2021-03-30 Rampart Communications, Inc. Communication system and methods using very large multiple-in multiple-out (MIMO) antenna systems with extremely large class of fast unitary transformations
US11336341B2 (en) 2019-09-24 2022-05-17 Rampart Communications, Inc. Communication system and methods using very large multiple-in multiple-out (MIMO) antenna systems with extremely large class of fast unitary transformations
US11838078B2 (en) 2019-09-24 2023-12-05 Rampart Communications, Inc. Communication system and methods using very large multiple-in multiple-out (MIMO) antenna systems with extremely large class of fast unitary transformations
US11159220B2 (en) 2020-02-11 2021-10-26 Rampart Communications, Inc. Single input single output (SISO) physical layer key exchange
US11476912B2 (en) 2020-02-11 2022-10-18 Rampart Communications, Inc. Single input single output (SISO) physical layer key exchange
US11716131B2 (en) 2020-02-11 2023-08-01 Rampart Communications, Inc. Single input single output (SISO) physical layer key exchange
US11641269B2 (en) 2020-06-30 2023-05-02 Rampart Communications, Inc. Modulation-agnostic transformations using unitary braid divisional multiplexing (UBDM)

Also Published As

Publication number Publication date
KR101397986B1 (en) 2014-05-27

Similar Documents

Publication Publication Date Title
KR20100131373A (en) Constant amplitude encoding method for code division multiplex communication system
KR100938365B1 (en) Wireless communication system, pilot sequence allocation apparatus, pilot sequence allocating method used for the system and apparatus, and mobile station used in the method
US20110274193A1 (en) Apparatus and method for generating scrambling codes in a radio communication system
CN1171676A (en) Direct sequence code division multiple access transmission method
EP1232620A1 (en) Variable rate spread spectrum communication method and apparatus
JP2004535094A5 (en)
AU2013302300B2 (en) System and method for analog to digital conversion
BRPI0415005B1 (en) SYSTEMS AND METHODS FOR MULTIPLEXING CONTROL DATA FOR MULTIPLE CHANNELS OF DATA IN A SINGLE CONTROL CHANNEL
WO2002082687A1 (en) Transmitter for a wireless communications system using multiple codes and multiple antennas
CN109417459A (en) The system and method communicated using SCMA
JP2013538493A (en) UCI processing method and apparatus and transmission method based on MIMO system
JP6797824B2 (en) Data transmission method, reception method and equipment
CN1780188A (en) Multi-rate radio communication system and dynamic code distributing method
CN1286851A (en) Device and method for generating quasi-orthogonal code and spreading channel signals in mobile communication system
ATE372002T1 (en) TRANSMISSION TO CDMA COMMUNICATION SYSTEM THROUGH A MIMO CHANNEL
JP2009147939A (en) Method of constituting orthogonal codes to be paired in cdma system
Kumar et al. Performance of EDW and MDW codes in spectral amplitude coded OCDMA system with SPD
KR20100135660A (en) Constant amplitude encoding apparatus and method for code division multiplex communication system
KR20090108619A (en) A device and method for bit­interweaving
KR100444845B1 (en) Coding method and apparatus for constant amplitude transmission in code select cdma communication system and device thereof
US20090310587A1 (en) Generic parallel spreading
KR100346213B1 (en) Apparatus and method for generating quaternary complex quasi-orthogonal code and spreading transmission signal using quaternary complex quasi-orthogonal code in cdma communication system
KR100984475B1 (en) Wireless communication system, pilot sequence allocation apparatus, pilot sequence allocating method used for the system and apparatus, and mobile station used in the method
KR20030093177A (en) Apparatus and Design Method of Binary Constant Amplitude CDMA (CA-CDMA) Communication System Using a New Pre-Coding Scheme of code rate 1.0
KR100612671B1 (en) Method for Reduction of PAPRPeak-to-Average Power Ratio Using Variable Code Set in Multi-carrier CDMA System

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170427

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee