KR20100122175A - A high-affinity phosphate transporter gene ospt2 isolated from rice and transgenic plants expressing the said gene - Google Patents

A high-affinity phosphate transporter gene ospt2 isolated from rice and transgenic plants expressing the said gene Download PDF

Info

Publication number
KR20100122175A
KR20100122175A KR1020090041087A KR20090041087A KR20100122175A KR 20100122175 A KR20100122175 A KR 20100122175A KR 1020090041087 A KR1020090041087 A KR 1020090041087A KR 20090041087 A KR20090041087 A KR 20090041087A KR 20100122175 A KR20100122175 A KR 20100122175A
Authority
KR
South Korea
Prior art keywords
gene
ospt2
plant
ala
rice
Prior art date
Application number
KR1020090041087A
Other languages
Korean (ko)
Inventor
김도훈
윤대진
남재성
이재헌
정영수
김경태
이기환
허연재
양원태
이명철
Original Assignee
동아대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동아대학교 산학협력단 filed Critical 동아대학교 산학협력단
Priority to KR1020090041087A priority Critical patent/KR20100122175A/en
Publication of KR20100122175A publication Critical patent/KR20100122175A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8237Externally regulated expression systems
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE: A high affinity phosphate transporter gene OsPT2(Oryza sativa phosphate transporter 2) isolated from rice plant is provided to enhance growth of plant. CONSTITUTION: An OsPT2 gene comprises a nucleotide sequence encoding a polypeptide having an amino acid sequence of sequence number 2. The gene isolated from rice plant. The gene is expressed under phosphate depletion. A method for manufacturing a plant transformed by OsPT2 gene comprises: a step of constructing a recombinant vector having OsPT2 gene; a step of transforming the plant with a recombinant vector; and a step of redifferentiating the transformed plant.

Description

벼에서 분리된 고친화성 인산 운반체 유전자 OsPT2 및 이 유전자로 형질전환된 식물{A high-affinity phosphate transporter gene OsPT2 isolated from rice and transgenic plants expressing the said gene}A high-affinity phosphate transporter gene OsPT2 isolated from rice and transgenic plants expressing the said gene}

본 발명은 벼에서 분리된 고친화성 인산 운반체 유전자 OsPT2, 이 유전자를 포함하는 재조합 벡터, 이 재조합 벡터로 형질전환된 식물 및 이 형질전환된 식물의 제조방법에 관한 것이다.The present invention relates to a high-affinity phosphate carrier gene OsPT2 isolated from rice, a recombinant vector comprising the gene, a plant transformed with the recombinant vector, and a method for producing the transformed plant.

인산은 식물이 필요로 하는 필수 영양소 중의 하나로서 에너지 전달, 신호전달, 대사산물의 생합성, 광합성 그리고 호흡 등의 식물세포 내에서 물질 대사과정에 중요한 기능을 할 뿐 아니라 DNA와 RNA의 중요한 구성성분으로 질소와 함께 식물체가 가장 많이 필요로 하는 영양원소이다. 식물체의 성장에 필요한 많은 양의 인산은 주로 비료의 형태로 식물체에게 공급되고 있으나 대부분의 인산은 토양에서 식물이 이용할 수 없는 유기물 또는 금속이온들과 결합한 형태로 고정화 된다. 따라서 실제 식물이 이용할 수 있는 유효인산의 양은 토양 속에 극히 적은 양으로 존재하고 있다. 특히 산성 토양의 경우, 과다하게 축적된 알루미늄 이온에 의한 인 산의 고정화로 토양의 인산 유효성을 더욱 낮추고 있다. 매년 전체 영농비용의 상당부분이 토양의 유효인산 농도를 증가시키기 위한 비료 구입비용으로 사용되고 있다.Phosphoric acid is one of the essential nutrients that plants need and plays an important role in metabolic processes in plant cells such as energy transfer, signal transduction, biosynthesis of metabolites, photosynthesis and respiration, as well as important components of DNA and RNA. Along with nitrogen, plants are the most needed nutrients. The large amount of phosphoric acid required for plant growth is supplied to plants mainly in the form of fertilizers, but most of the phosphoric acid is immobilized in the form of organic matter or metal ions that are not available to plants in the soil. Thus, the amount of available phosphate available to plants is present in the soil in very small amounts. In the case of acidic soils in particular, the phosphoric acid is immobilized by excessively accumulated aluminum ions, which lowers the phosphoric acid effectiveness of the soil. Each year, a significant portion of the total farming costs are spent on fertilizer purchases to increase the effective phosphate concentration in the soil.

또한, 농업 환경오염원 중에서 비료의 과다 사용으로 인한 토양의 산성화와 염의 직접 등의 토양오염은 작물의 생육에 나쁜 영향을 미칠 뿐 아니라 지표수에 침투하여 수자원의 주 오염원인 부영양화를 초래한다. 농업 환경오염은 농업 생산의 질적 저하를 가져올 뿐 만 아니라 환경파괴에 의한 국민건강을 위협하므로 오염원의 제거는 매운 중요한 문제이다. 이러한 문제는 투입되는 화학비료의 양을 줄임으로서 해결할 수 있다. 현재 화학 비료를 대처하기 위한 여러 가지 유기질 비료가 개발되어 사용되고 있으나 화학비료를 대체하기에는 아직 많은 문제점이 있다. 따라서 보다 근원적인 문제 해결방안은 식물의 토양인산의 이용성을 향상시킴으로서 비료의 사용량을 줄이는 것이다.In addition, soil pollution such as acidification of soil and direct salt use due to excessive use of fertilizer among agricultural environmental pollution sources not only adversely affects the growth of crops, but also penetrates surface water and causes eutrophication, which is the main source of water resources. Agro-environmental pollution not only brings qualitative deterioration of agricultural production, but also threatens public health due to environmental destruction, so eliminating pollutants is a very important issue. This problem can be solved by reducing the amount of chemical fertilizer added. Various organic fertilizers have been developed and used to cope with chemical fertilizers, but there are still many problems to replace chemical fertilizers. Thus, a more fundamental solution is to reduce the use of fertilizers by improving the availability of soil phosphates in plants.

본 발명의 목적은 생명공학적 방법을 이용하여 인산이용 능력이 향상된 새로운 작물의 개발을 위해서 반드시 필요한 유전자원인 새로운 고친화성 인산 운반체 유전자를 벼에서 분리하고 그 기능을 규명하는 것이다. 또한 이의 유전자를 식물체에 대량 발현함으로써 인산 이용성이 증가된 형질전환 식물체를 만드는 것이다.An object of the present invention is to isolate a new high-affinity phosphate carrier gene, a gene source essential for the development of new crops with improved phosphate availability, using biotechnological methods from rice and to identify its function. In addition, by expressing its genes in plants in large quantities, the transgenic plants have increased phosphorus availability.

본 발명은 한 관점으로서, 벼에서 분리된 고친화성 인산운반체 유전자 OsPT2(Oryza sativa phosphate transporter 2)에 관한 것이다.The present invention relates to a highly affinity phosphate transporter gene OsPT2 ( Oryza sativa phosphate transporter 2 ) isolated from rice.

본 발명의 고친화성 인산운반체 유전자 OsPT2는 기존에 밝혀지지 않은 새로운 유전자로, 전체 1626bp의 염기서열(서열번호: 1 및 도 1)을 가지고 있으며, 541 아미노산(서열번호: 2 및 도 2)을 암호화하고 있다(실시예 1 참조).OsPT2, a high-affinity phosphate carrier gene of the present invention, is a new gene that has not been previously identified, and has a total sequence of 1626 bp (SEQ ID NOs: 1 and 1) and encodes 541 amino acids (SEQ ID NOs: 2 and 2). (See Example 1).

본 발명의 고친환성 인산운반체 유전자 OsPT2는 인산 또는 질소 결핍 조건에서 발현양이 증가되고, 인산 결핍 조건 하에서 뿌리에서 발현양이 증가된다(실시예 2 참조).The high-affinity phosphate carrier gene OsPT2 of the present invention has an increased expression level under phosphoric acid or nitrogen deficiency conditions and an increased expression level at the root under phosphoric acid deficiency conditions (see Example 2).

본 발명은 다른 관점으로서, 고친화성 인산운반체 유전자 OsPT2를 포함하는 재조합 벡터에 관한 것이다.In another aspect, the present invention relates to a recombinant vector comprising the high-affinity phosphate carrier gene OsPT2.

상기 재조합 벡터를 제조하는데 이용할 수 있는 백본 벡터의 바람직한 예는 아그로박테리움 튜머파시엔스(Agrobacterium tumefaciens)와 같은 적당한 숙주에 존재할 때 그 자체의 일부, 소위 T-영역을 식물 세포로 전이시킬 수 있는 Ti-플라스미드 벡터이다. Ti-플라스미드 벡터의 특히 바림직한 형태는 이원 벡터(binary vector)이다. 본 발명에 따른 유전자를 식물 숙주에 도입시키는데 이용될 수 있는 다른 적합한 벡터는 이중 가닥 식물 바이러스(예, CaMV) 및 단일 가닥 바이러스, 게미니 바이러스(gemini virus) 등으로부터 유래될 수 있는 것과 같은 바이러스 벡터, 예를 들면 비완전성 식물 바이러스 벡터로부터 선택될 수 있다.A preferred example of a backbone vector that can be used to prepare the recombinant vector is Ti, which is capable of transferring a portion of itself, a so-called T-region, to plant cells when present in a suitable host such as Agrobacterium tumefaciens. -Plasmid vector. A particularly preferred form of Ti-plasmid vector is a binary vector. Other suitable vectors that can be used to introduce the genes according to the invention into a plant host are viral vectors such as those which can be derived from double stranded plant viruses (eg CaMV) and single stranded viruses, gemini virus and the like. For example, from an incomplete plant viral vector.

본 발명의 또 다른 관점은 상기 고친화성 인산운반체 유전자 OsPT2를 포함하는 재조합 벡터로 형질전환된 식물에 관한 것이다.Another aspect of the invention relates to a plant transformed with a recombinant vector comprising the high affinity phosphate carrier gene OsPT2.

본 발명에 의하면, 고친화성 인산운반체 유전자 OsPT2는 인산의 이용성을 높여 식물의 생장을 촉진하므로 본 발명의 형질전환된 식물은 야생형 식물에 비해 생장이 향상되는 것을 특징으로 한다.According to the present invention, since the high-affinity phosphate carrier gene OsPT2 promotes plant growth by increasing the availability of phosphoric acid, the transformed plant of the present invention is characterized in that the growth is improved compared to wild type plants.

본 발명의 고친화성 인산운반체 유전자 OsPT2가 도입될 수 있는 식물은 벼, 밀, 보리, 옥수수, 콩, 감자, 밀, 팥, 귀리, 수수를 포함하는 식량작물류; 애기장대, 배추, 무, 고추, 딸기, 토마토, 수박, 오이, 양배추, 참외, 호박, 파, 양파, 당근을 포함하는 채소작물류; 인삼, 담배, 목화, 참깨, 사탕수수, 사탕무, 들깨, 땅콩, 유채를 포함하는 특용작물류; 사과나무, 배나무, 대추나무, 복숭아, 포도, 감귤, 감, 자두, 살구, 바나나를 포함하는 과수류; 장미, 카네이션, 국화, 백합, 튤립을 포함하는 화훼류로부터 선택될 수 있으나, 이에 제한되는 것은 아니다.Plants into which the high-affinity phosphate carrier gene OsPT2 may be introduced include food crops including rice, wheat, barley, corn, soybeans, potatoes, wheat, red beans, oats, and sorghum; Vegetable crops including Arabidopsis, Chinese cabbage, radish, pepper, strawberry, tomato, watermelon, cucumber, cabbage, melon, pumpkin, green onion, onion, carrot; Specialty crops, including ginseng, tobacco, cotton, sesame, sugar cane, sugar beet, perilla, peanut, rapeseed; Fruit trees including apple trees, pears, jujube trees, peaches, grapes, citrus fruits, persimmons, plums, apricots, bananas; Flowers, including but not limited to roses, carnations, chrysanthemums, lilies, tulips.

본 발명의 또 다른 관점은 고친화성 인산운반체 유전자 OsPT2를 포함하는 재조합 벡터를 작제하는 단계; 및 상기 재조합 벡터로 식물을 형질전환시키는 단계를 포함하는 형질전환된 식물의 제조방법에 관한 것이다.Another aspect of the invention comprises the steps of constructing a recombinant vector comprising a high affinity phosphate carrier gene OsPT2; And it relates to a method for producing a transformed plant comprising the step of transforming the plant with the recombinant vector.

상기 제조방법은 형질전환된 식물의 조직으로부터 형질전환 식물을 재분화하는 단계를 추가로 포함할 수 있다. 형질전환된 식물의 조직으로부터 형질전환 식물을 재분화하는 방법은 당업계에 공지된 임의의 방법을 이용할 수 있다.The method may further comprise the step of regenerating the transformed plant from the tissue of the transformed plant. The method of regenerating the transformed plant from the tissue of the transformed plant can use any method known in the art.

본 발명에서는 재조합 벡터를 이용하여 아그로박테리움 튜머파시엔스 매개 형질전환을 이용하여 형질전환시키는 것이 바람직하다.In the present invention, it is preferable to transform using Agrobacterium tumerfaciens mediated transformation using a recombinant vector.

본 발명에서는 한 양태로서, OsPT2 유전자의 코딩 영역을 이원 벡터(pCAMBIA1300-35S)에 클로닝하여 재조합 벡터를 작제한 후 triparental mating 방법으로 아그로박테리움 튜머파시엔스 EHA105로 옮긴 다음 애기장대로 상기 재조합 벡터가 포함된 아그로박테리움 튜머파시엔스 EHA105를 in planta transformation 방법을 통해 형질전환시켰다(실시예 4 참조).In one embodiment of the present invention, the coding region of the OsPT2 gene is cloned into a binary vector (pCAMBIA1300-35S) to construct a recombinant vector, and then transferred to Agrobacterium tumerfaciens EHA105 by triparental mating method. The included Agrobacterium tumerfaciens EHA105 was transformed through the in planta transformation method (see Example 4).

본 발명에서는 OsPT2 유전자의 벼 현탁 배양세포와 OsPT2 유전자를 대량 발현하는 애기장대 (Arabidopsis thaliana)의 형질전환체들이 인산이 결핍된 조건에서 인산 이용성이 향상된다는 것을 확인할 수 있었으며, 이 결과를 바탕으로 OsPT2 유전자를 대량발현 시킴으로써 인산 결핍 스트레스를 보다 효율적으로 극복하는 새로운 식물체의 개발이 가능할 것이다.In the present invention, it was confirmed that the transformants of rice suspension cultured cells of the OsPT2 gene and Arabidopsis thaliana expressing the OsPT2 gene were improved in the phosphoric acid deficient condition. Based on the results, OsPT2 By expressing genes in large quantities, new plants will be able to more efficiently overcome phosphate deficiency stress.

또한 배추나 무 같은 밭작물과 다른 화훼류 작물에서의 OsPT2 유전자를 유용하게 이용할 수 있다. OsPT2 genes are also useful in field crops such as cabbage and radish and other flower crops.

식물 자체 양분 흡수 및 수송능력을 향상시킴으로서 화학비료의 다량 사용으로 인한 토양과 수자원의 오염을 감소시켜서 생태계의 복원과 쾌적한 친환경적 농업의 발전과 나아가 작물의 생산량과 생산의 질을 높이는데 본 연구 결과는 기여할 것이다.By improving the plant's own nutrient absorption and transporting capacity, it reduces the pollution of soil and water resources due to the large amount of chemical fertilizers, thereby restoring ecosystems, developing pleasant and eco-friendly agriculture, and increasing the yield and quality of crops. Will contribute.

이하, 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the examples are only for illustrating the present invention in more detail, and the scope of the present invention is not limited by these examples in accordance with the gist of the present invention, those skilled in the art. Will be self-evident.

실시예 1: OsPT2 유전자의 분리 및 서열 동정Example 1 Isolation and Sequence Identification of OsPT2 Gene

본 실험은 우리나라 재배 품종인 동진벼를 사용하였다. 동진벼에서 genomic DNA를 분리하여 벼의 전체유전체 염기서열을 토대로 벼 유래의 고친화성 인산운반체 유전자(OsPT2)에 특이적인 올리고뉴클레오티드 프라이머를 제작하였고, PCR 방법을 이용하여 유전자의 코딩 영역을 증폭하였다. 증폭된 산물을 pGemT cloning vector에 클로닝하여 서열분석을 통해 유전자의 염기서열을 확인하였다. 분리된 벼 고친화성 인산운반체 유전자와 다른 식물체의 고친화성 인산운반체 유전자의 상동성을 비교하였다. 이들 유전자들 간에는 90% 정도의 아미노산 염기서열이 같았다. OsPT2 유전자의 cDNA 클론의 염기서열(서열번호: 1) 및 아미노산 서열(서열번호: 2)은 도 1 및 2에 상세히 표기하였다.This experiment used Dongjin rice, a Korean cultivar. Oligonucleotide primers specific to rice-derived high affinity phosphate carrier genes ( OsPT2 ) were prepared from genomic DNA isolated from Dongjin rice, and the coding region of the gene was amplified by PCR. The amplified product was cloned into the pGemT cloning vector to confirm the sequence of the gene through sequencing. The homology of the isolated rice high affinity phosphate carrier genes with that of other plants was compared. Among these genes, about 90% of the amino acid sequences were identical. The base sequence (SEQ ID NO: 1) and amino acid sequence (SEQ ID NO: 2) of the cDNA clone of the OsPT2 gene are shown in detail in FIGS.

실시예 2: OsPT2 유전자의 발현 조건 분석Example 2 Analysis of Expression Conditions of OsPT2 Gene

일반적으로 유사기능을 하는 유전자의 발현은 조직 특이적 또는 유도인자 특 이적으로 조절되므로 분리된 고친화성 인산운반체 유전자의 발현 양상을 RNA blot 방법을 이용하여 조사하였다. 이때 고친화성 인산운반체 유전자 특이적인 염기서열을 가진 3' UTR(untranslated region) DNA 단편을 프로브로 사용하였다. 동진벼 현탁배양 세포를 인산이 충분한 배지 (1 mM)와 인산이 결핍된 배지 (10 μM)에서 각각 2일간 배양하고, Trizol REAGENT (Invitrogen)을 이용하여 RNA를 분리하였다. 10㎍의 RNA를 1.2% (W/V) 변성 포름알데히드 아가로스 겔에서 전기영동하여 나일론 멤브레인(Amersham)에 RNA를 부착시켰다. RNA가 부착된 나일론 멤브레인은 [32P] dATP로 표지된 프로브를 20% (W/V) SDS, 20X SSPE, 100 g/L PEG (8,000 mwt), 250 mg/L 헤파린, 그리고 10ml/L Hearing sperm DNA (10 mg/ml)가 포함된 용액과 함께 65℃에서 하루 밤 동안 반응시켰다.In general, the expression of genes with similar functions is regulated by tissue-specific or inducer-specific factors, so the expression patterns of the isolated high-affinity phosphate carrier genes were examined using RNA blot method. In this case, a 3 'UTR (untranslated region) DNA fragment having a high affinity phosphate carrier gene-specific sequence was used as a probe. Dongjin rice suspension cultured cells were incubated for 2 days in a medium rich in phosphoric acid (1 mM) and a medium lacking phosphoric acid (10 μM), and RNA was isolated using Trizol REAGENT (Invitrogen). 10 μg of RNA was electrophoresed on a 1.2% (W / V) modified formaldehyde agarose gel to attach RNA to a nylon membrane (Amersham). Nylon membranes with RNA were attached to probes labeled with [ 32 P] dATP using 20% (W / V) SDS, 20X SSPE, 100 g / L PEG (8,000 mwt), 250 mg / L heparin, and 10 ml / L Hearing. The solution was reacted with sperm DNA (10 mg / ml) at 65 ° C. overnight.

벼 현탁배양 세포에서의 OsPT2 유전자의 발현은 인산의 결핍 시간에 따라 발현량에 차이가 있음을 확인하였다(도 3A). 또한, 벼 고친화성 인산운반체 유전자인 OsPT2는 인산과 질소 결핍 조건에서 발현양이 증가하는 양상을 보였다(도 3C). 현탁배양 세포의 발현 양상을 기초로 하여 OsPT2 유전자의 식물체 내에서 조직 특이적인 발현을 조사한 결과, OsPT2 유전자는 인산 결핍 조건의 벼의 뿌리에서 발현량이 증가하였다(도 3B). 이러한 결과는 식물체가 인산 결핍 환경에서는 인산에 대한 친화도가 높은 고친화성 인산 운반체를 뿌리에 대량 발현시켜 토양으로부터 보다 효율적으로 인산을 흡수한다는 연구와 일치한다. 인산이 결핍된 환경에서 식물체의 뿌리는 수많은 뿌리털을 만들어 표면적을 넓혀주어 토양에서 인산을 최대로 흡수하고 체관부를 통해서 식물체 전체로 이동되어 이용된다는 기존의 연구결과를 미루어 볼 때 OsPT2는 토양 속의 인산이 뿌리털로 흡수에 중요한 역할을 할 것으로 생각된다. OsPT2 gene expression in rice suspension culture cells was confirmed that the difference in the amount of expression depending on the time of phosphoric acid depletion (Fig. 3A). In addition, OsPT2 , a rice high affinity phosphate carrier gene, showed an increased expression level under phosphoric acid and nitrogen deficiency conditions (FIG. 3C). On the basis of the expression profile of the cultured cell suspension results, OsPT2 gene investigated tissue-specific expression in plants of genes OsPT2 increased amount of expression in the roots of the rice plant of phosphate deficiency conditions (Fig. 3B). These results are consistent with studies in which plants express large amounts of high-affinity phosphate carriers in the roots in the phosphate-deficient environment to absorb phosphate from the soil more efficiently. The roots of plants in the phosphate-deficient environment when given to widen the surface area created a number of root hairs absorb phosphorus from the soil up to the Judging of existing studies that use is moved as a whole plant through the phloem OsPT2 the phosphate in the soil It is thought to play an important role in absorption as root hairs.

실시예 3: OsPT2 유전자의 발현Example 3: Expression of OsPT2 Gene

재조합 단백질의 발현을 위해 OsPT2 유전자를 pBluescript 벡터로부터 EcoRⅠ과 XbaⅠ제한효소로 잘라 pBacPAK9 벡터의 AcNPV polyhedrin promoter 아래쪽에 옮겼다. 500ng의 pBacPak9-OsPAP2과 100ng AcNPV DNA을 sf9세포와 5시간 공배양시켜 형질전환하였고, 형질전환 세포를 TC 100 배지에서 5일 동안 배양하였다. 형질전환 곤충세포에서 발현된 OsPT2 재조합 단백질을 SDS-PAGE 겔에서 전기영동하여 분리를 수행한 결과 목적으로 하는 59kDa의 재조합 단백질이 정상적으로 만들어진 것을 확인할 수 있었다(도 4). OsPT2 gene for expression of recombinant protein The EcoR I and Xba I restriction enzymes were cut from the pBluescript vector and transferred under the AcNPV polyhedrin promoter of the pBacPAK9 vector. 500ng of pBacPak9- OsPAP2 and 100ng AcNPV DNA were co-cultured with sf9 cells for 5 hours and transformed, and the transformed cells were cultured in TC 100 medium for 5 days. OsPT2 recombinant protein expressed in the transgenic insect cells was electrophoresed on an SDS-PAGE gel, and as a result, it was confirmed that 59kDa recombinant protein of interest was normally made (FIG. 4).

실시예 4: OsPT2 유전자로 형질전환된 애기장대Example 4: Arabidopsis transformed with OsPT2 gene

벼는 대부분 물속에서 생활하기 때문에 다른 밭작물에 비해 상대적으로 약한 인산 결핍 스트레스를 받는다. 벼에서 분리한 고친화성 인산 운반체 유전자의 밭작물에서의 응용가능성을 증명하고 식물체내에서 그 기능을 조사하기 위해 쌍떡잎식물의 대표적인 모델 식물체인 애기장대 (Arabidopsis thaliana)에서 OsPT2 유전자를 대량발현하는 형질전환체를 만들었다. 애기장대의 형질전환체 생산과정을 간략히 살펴보면 다음과 같다. OsPT2 유전자의 코딩 영역을 binary vector (pCAMBIA1300-35S)의 EcoRI 과 XbaI 사이트에 클로닝하여 OsPT2 유전자가 항상 강하게 발현하는 CaMV 35S 프로모터에 의해서 조절되는 작제물을 만들었고 triparental mating 방법으로 Agrobacterium tumefaciens EHA105로 옮겼다. 애기장대 야생형 (wild-type) 식물체에 작제물이 포함된 Agrobacterium tumefaciens EHA105를 사용하여 in planta transformation 방법으로 애기장대를 형질전환하였다. T1 식물체에서 수확한 씨앗을 무균 처리한 후, carbenicillin (100 mg/L)과 hygromycin (20 mg/L)이 첨가된 B5 배지에서 발아시켜서 형질전환 된 식물체를 선택하고 OsPT2 유전자의 발현량을 RNA blot 방법으로 확인한 후에(도 5C), 다음 세대에서 순종 식물체를 얻었다. 순종 식물체를 50μM과 1mM의 인산이 첨가된 B5 액체배지에서 배양하면서 식물생육 상태를 야생형과 비교 조사하였다. 인산 결핍 조건에서 형질전환체의 생육이 대조군인 야생형 식물체와 비교하여 더 좋은 것을 확인하였다(도 5A). 정량적인 조사 결과에서도 야생형 식물체와 비교하여 형질전환체에서 생장이 좋은 것을 확인하였다. 특히 조사한 형질전환체 계통 중에서 가장 OsPT2 유전자의 발현이 높았던 T2 계통에서 생장이 약 50% 증가하는 것을 확인하였다(도 5B).Since rice lives mostly in water, it is relatively weak in phosphate stress compared to other field crops. A transformant that mass-expresses OsPT2 gene in Arabidopsis thaliana , Arabidopsis thaliana , a representative model plant of dicotyledonous plants, to prove its applicability in field crops and to investigate its function in plant crops. Made. A brief look at the Arabidopsis transformant production process is as follows. Cloning the coding region of the gene OsPT2 the EcoRI and XbaI sites of the binary vector (pCAMBIA1300-35S) made by the construct is regulated by the CaMV 35S promoter which is always strongly expressed gene OsPT2 transferred into Agrobacterium tumefaciens EHA105 by triparental mating method. Arabidopsis Agrobacterium tumefaciens EHA105 containing constructs in wild-type plants was transformed by in planta transformation. After aseptically treating seeds harvested from T1 plants, germinated in B5 medium containing carbenicillin (100 mg / L) and hygromycin (20 mg / L) to select transformed plants, and expressing the expression level of OsPT2 gene in RNA blot After confirmation by the method (FIG. 5C), pure plants were obtained from the next generation. Plant growth was compared with wild-type while cultivating obedient plants in B5 liquid medium supplemented with 50 μM and 1 mM phosphoric acid. It was confirmed that the growth of transformants in phosphate deficient conditions was better compared to wild type plants as controls (FIG. 5A). In the quantitative results, it was confirmed that the growth in the transformants is better than the wild type plants. In particular, it was confirmed that the growth of about 50% in the T2 line, which had the highest expression of the OsPT2 gene, among the transformant lines investigated (FIG. 5B).

도 1은 인산의 결핍 조건에서 발현량이 증가하는 벼의 고친화성 인산운반체 OsPT2 유전자의 염기서열을 나타낸 것이다.Figure 1 shows the nucleotide sequence of the high-affinity phosphate carrier OsPT2 gene of rice, the expression level is increased under phosphoric acid deficient conditions.

도 2는 인산의 결핍 조건에서 발현량이 증가하는 벼 고친화성 인산운반체 OsPT2 유전자의 cDNA로부터 연역된 아미노산 서열을 나타낸 것이다.Figure 2 shows the amino acid sequence deduced from the cDNA of the rice high affinity phosphate carrier OsPT2 gene with increased expression in phosphoric acid deficient conditions.

도 3은 벼의 현탁배양세포를 이용하여 인산 결핍 조건에서 OsPT2 유전자의 발현 양상을 조사하였다. (A) 인산 결핍 조건에서 시간별 유전자 발현양상은 3시간째부터 발현량이 급격히 증가하였다. (B) 인산결핍과 충분조건에서 벼 유식물체의 지상부와 지하부의 유전자 발현양상은 뿌리의 경우 인산이 결핍된 조건에서 강하게 발현되었다. (C) 몇 가지 무기양분 결핍 조건에서 유전자 발현양상은 인산과 질소 결핍 조건에서 강하게 발현되었다. (D) 몇 가지 호르몬 처리에 의한 유전자가 발현양상은 ABA와 kinetin 처리에서 강하게 발현되었다.Figure 3 investigated the expression pattern of OsPT2 gene in phosphate deficient conditions using suspension cultured cells. (A) In phosphate deficient condition, the expression level of genes increased rapidly at 3 hours. (B) Phosphorus deficiency and gene expression patterns of rice seedlings in the ground and the ground under strong conditions were strongly expressed in the case of root lacking phosphate. (C) Gene expression in some mineral nutrient deficient conditions was strongly expressed in phosphate and nitrogen deficient conditions. (D) Gene expression by several hormone treatments was strongly expressed in ABA and kinetin treatment.

도 4는 Baculovirus vector system을 이용하여 OsPT2 유전자를 발현시켰고, OsPT2 유전자가 도입된 세포에서만 재조합 단백질이 강하게 발현되었다.FIG. 4 expresses OsPT2 gene using Baculovirus vector system, and recombinant protein was strongly expressed only in cells into which OsPT2 gene was introduced.

도 5는 인산 결핍조건에서 OsPT2 유전자가 대량 발현하는 애기장대 형질전환체와 야생종 (wild-type) 식물체의 생장을 비교 조사하였다. (A, B) 인산 결핍조건에서 애기장대 형질전환체와 야생종 (wild-type) 식물체의 생장을 비교하였다. (C) 애기장대 형질전환체들에서 OsPT2 유전자가 대량 발현됨을 확인하였다.FIG. 5 compares the growth of Arabidopsis transformants with wild-type plants expressing OsPT2 genes in phosphate deficient conditions. (A, B) We compared the growth of Arabidopsis transformants and wild-type plants in phosphate deficient conditions. (C) It was confirmed that the OsPT2 gene is expressed in Arabidopsis transformants in large quantities.

<110> Dong-A University Research Foundation For Industry-Academy Cooperation <120> A high-affinity phosphate transporter gene OsPT2 isolated from rice and transgenic plants expressing the said gene <160> 2 <170> KopatentIn 1.71 <210> 1 <211> 1626 <212> DNA <213> Artificial Sequence <220> <223> OsPT2 <400> 1 atggcgcggc aggagcagca gcagcacctg caggtgctga gcgcgctgga cgcggcgaag 60 acgcagtggt accacttcac ggcgatcgtc gtcgccggca tgggcttctt caccgacgcc 120 tacgacctct tctgcatctc cctcgtcacc aagctgctcg gccgcatcta ctacaccgac 180 ctcgccaagg agaaccccgg cagcctgccg cccaacgtcg ccgcggcggt gaacggagtc 240 gcgttctgcg gcacgctggc ggggcagctc ttcttcgggt ggctcggcga caagctcggc 300 cggaagagcg tgtacgggat gacgctgctg atgatggtca tctgctccat cgcgtcgggg 360 ctctcgttct cgcacacgcc caccagcgtc atggcgacgc tctgcttctt ccggttctgg 420 ctcggattcg gcatcggcgg cgactacccg ctgtcggcga cgatcatgtc ggagtacgcc 480 aacaagaaga cccgcggcgc gttcatcgcc gccgtgttcg cgatgcaggg gttcggcatc 540 ctcgccggcg gcatcgtcac cctcatcatc tcctccgcgt tccgcgccgg gttcccggcg 600 ccggcgtacc aggacgaccg cgcgggctcc accgtccgcc aggccgacta cgtgtggcgg 660 atcatcctca tgctcggcgc catgccggcg ctgctcacct actactggcg gatgaagatg 720 ccggagacgg cgcgctacac cgccctcgtc gccaagaacg ccaagcaggc cgccgccgac 780 atgtccaagg tgctccaggt cgagatccag gaggagcagg acaagctgga gcagatggtg 840 acccggaaca gcagcagctt cggcctcttc tcccgccagt tcgcgcgccg ccacggcctc 900 cacctcgtcg gcaccgccac gacatggttc ctcctcgaca tcgccttcta cagccagaac 960 ctgttccaga aggacatctt caccagcatc aactggatcc ccaaggccaa gaccatgtcg 1020 gcgctggagg aggtgttccg catcgcgcgc gcccagacgc tcatcgccct gtgcggcacc 1080 gtcccgggct actggttcac cgtcttcctc atcgacatcg tcggccgctt cgccatccag 1140 ctgctagggt ttttcatgat gaccgtgttc atgctcggcc tcgccgtgcc gtaccaccac 1200 tggacgacga aggggaacca catcggcttc gtcgtcatgt acgccttcac cttcttcttc 1260 gccaacttcg gccccaactc caccaccttc atcgtgccgg cggagatctt cccggcgagg 1320 ctgcgttcca cctgccacgg catctcggcg gcggcgggga aggccggcgc catcatcgga 1380 tcgttcgggt tcctgtacgc ggcgcaggac ccgcacaagc ccgacgccgg gtacaaaccc 1440 gggatcgggg tgaggaactc gctgttcgtg ctcgccggat gcaacctgct cgggttcatc 1500 tgcacgttcc tcgtgccgga gtcgaagggg aagtcgctgg aggagatgtc cggcgaggcg 1560 gaggacgacg acgacgaggt ggccgccgcc ggcggtggcg ccgccgtgcg gccgcagacg 1620 gcgtag 1626 <210> 2 <211> 541 <212> PRT <213> Artificial Sequence <220> <223> OsPT2 <400> 2 Met Ala Arg Gln Glu Gln Gln Gln His Leu Gln Val Leu Ser Ala Leu 1 5 10 15 Asp Ala Ala Lys Thr Gln Trp Tyr His Phe Thr Ala Ile Val Val Ala 20 25 30 Gly Met Gly Phe Phe Thr Asp Ala Tyr Asp Leu Phe Cys Ile Ser Leu 35 40 45 Val Thr Lys Leu Leu Gly Arg Ile Tyr Tyr Thr Asp Leu Ala Lys Glu 50 55 60 Asn Pro Gly Ser Leu Pro Pro Asn Val Ala Ala Ala Val Asn Gly Val 65 70 75 80 Ala Phe Cys Gly Thr Leu Ala Gly Gln Leu Phe Phe Gly Trp Leu Gly 85 90 95 Asp Lys Leu Gly Arg Lys Ser Val Tyr Gly Met Thr Leu Leu Met Met 100 105 110 Val Ile Cys Ser Ile Ala Ser Gly Leu Ser Phe Ser His Thr Pro Thr 115 120 125 Ser Val Met Ala Thr Leu Cys Phe Phe Arg Phe Trp Leu Gly Phe Gly 130 135 140 Ile Gly Gly Asp Tyr Pro Leu Ser Ala Thr Ile Met Ser Glu Tyr Ala 145 150 155 160 Asn Lys Lys Thr Arg Gly Ala Phe Ile Ala Ala Val Phe Ala Met Gln 165 170 175 Gly Phe Gly Ile Leu Ala Gly Gly Ile Val Thr Leu Ile Ile Ser Ser 180 185 190 Ala Phe Arg Ala Gly Phe Pro Ala Pro Ala Tyr Gln Asp Asp Arg Ala 195 200 205 Gly Ser Thr Val Arg Gln Ala Asp Tyr Val Trp Arg Ile Ile Leu Met 210 215 220 Leu Gly Ala Met Pro Ala Leu Leu Thr Tyr Tyr Trp Arg Met Lys Met 225 230 235 240 Pro Glu Thr Ala Arg Tyr Thr Ala Leu Val Ala Lys Asn Ala Lys Gln 245 250 255 Ala Ala Ala Asp Met Ser Lys Val Leu Gln Val Glu Ile Gln Glu Glu 260 265 270 Gln Asp Lys Leu Glu Gln Met Val Thr Arg Asn Ser Ser Ser Phe Gly 275 280 285 Leu Phe Ser Arg Gln Phe Ala Arg Arg His Gly Leu His Leu Val Gly 290 295 300 Thr Ala Thr Thr Trp Phe Leu Leu Asp Ile Ala Phe Tyr Ser Gln Asn 305 310 315 320 Leu Phe Gln Lys Asp Ile Phe Thr Ser Ile Asn Trp Ile Pro Lys Ala 325 330 335 Lys Thr Met Ser Ala Leu Glu Glu Val Phe Arg Ile Ala Arg Ala Gln 340 345 350 Thr Leu Ile Ala Leu Cys Gly Thr Val Pro Gly Tyr Trp Phe Thr Val 355 360 365 Phe Leu Ile Asp Ile Val Gly Arg Phe Ala Ile Gln Leu Leu Gly Phe 370 375 380 Phe Met Met Thr Val Phe Met Leu Gly Leu Ala Val Pro Tyr His His 385 390 395 400 Trp Thr Thr Lys Gly Asn His Ile Gly Phe Val Val Met Tyr Ala Phe 405 410 415 Thr Phe Phe Phe Ala Asn Phe Gly Pro Asn Ser Thr Thr Phe Ile Val 420 425 430 Pro Ala Glu Ile Phe Pro Ala Arg Leu Arg Ser Thr Cys His Gly Ile 435 440 445 Ser Ala Ala Ala Gly Lys Ala Gly Ala Ile Ile Gly Ser Phe Gly Phe 450 455 460 Leu Tyr Ala Ala Gln Asp Pro His Lys Pro Asp Ala Gly Tyr Lys Pro 465 470 475 480 Gly Ile Gly Val Arg Asn Ser Leu Phe Val Leu Ala Gly Cys Asn Leu 485 490 495 Leu Gly Phe Ile Cys Thr Phe Leu Val Pro Glu Ser Lys Gly Lys Ser 500 505 510 Leu Glu Glu Met Ser Gly Glu Ala Glu Asp Asp Asp Asp Glu Val Ala 515 520 525 Ala Ala Gly Gly Gly Ala Ala Val Arg Pro Gln Thr Ala 530 535 540 <110> Dong-A University Research Foundation For Industry-Academy Cooperation <120> A high-affinity phosphate transporter gene OsPT2 isolated from          rice and transgenic plants expressing the said gene <160> 2 <170> KopatentIn 1.71 <210> 1 <211> 1626 <212> DNA <213> Artificial Sequence <220> <223> OsPT2 <400> 1 atggcgcggc aggagcagca gcagcacctg caggtgctga gcgcgctgga cgcggcgaag 60 acgcagtggt accacttcac ggcgatcgtc gtcgccggca tgggcttctt caccgacgcc 120 tacgacctct tctgcatctc cctcgtcacc aagctgctcg gccgcatcta ctacaccgac 180 ctcgccaagg agaaccccgg cagcctgccg cccaacgtcg ccgcggcggt gaacggagtc 240 gcgttctgcg gcacgctggc ggggcagctc ttcttcgggt ggctcggcga caagctcggc 300 cggaagagcg tgtacgggat gacgctgctg atgatggtca tctgctccat cgcgtcgggg 360 ctctcgttct cgcacacgcc caccagcgtc atggcgacgc tctgcttctt ccggttctgg 420 ctcggattcg gcatcggcgg cgactacccg ctgtcggcga cgatcatgtc ggagtacgcc 480 aacaagaaga cccgcggcgc gttcatcgcc gccgtgttcg cgatgcaggg gttcggcatc 540 ctcgccggcg gcatcgtcac cctcatcatc tcctccgcgt tccgcgccgg gttcccggcg 600 ccggcgtacc aggacgaccg cgcgggctcc accgtccgcc aggccgacta cgtgtggcgg 660 atcatcctca tgctcggcgc catgccggcg ctgctcacct actactggcg gatgaagatg 720 ccggagacgg cgcgctacac cgccctcgtc gccaagaacg ccaagcaggc cgccgccgac 780 atgtccaagg tgctccaggt cgagatccag gaggagcagg acaagctgga gcagatggtg 840 acccggaaca gcagcagctt cggcctcttc tcccgccagt tcgcgcgccg ccacggcctc 900 cacctcgtcg gcaccgccac gacatggttc ctcctcgaca tcgccttcta cagccagaac 960 ctgttccaga aggacatctt caccagcatc aactggatcc ccaaggccaa gaccatgtcg 1020 gcgctggagg aggtgttccg catcgcgcgc gcccagacgc tcatcgccct gtgcggcacc 1080 gtcccgggct actggttcac cgtcttcctc atcgacatcg tcggccgctt cgccatccag 1140 ctgctagggt ttttcatgat gaccgtgttc atgctcggcc tcgccgtgcc gtaccaccac 1200 tggacgacga aggggaacca catcggcttc gtcgtcatgt acgccttcac cttcttcttc 1260 gccaacttcg gccccaactc caccaccttc atcgtgccgg cggagatctt cccggcgagg 1320 ctgcgttcca cctgccacgg catctcggcg gcggcgggga aggccggcgc catcatcgga 1380 tcgttcgggt tcctgtacgc ggcgcaggac ccgcacaagc ccgacgccgg gtacaaaccc 1440 gggatcgggg tgaggaactc gctgttcgtg ctcgccggat gcaacctgct cgggttcatc 1500 tgcacgttcc tcgtgccgga gtcgaagggg aagtcgctgg aggagatgtc cggcgaggcg 1560 gaggacgacg acgacgaggt ggccgccgcc ggcggtggcg ccgccgtgcg gccgcagacg 1620 gcgtag 1626 <210> 2 <211> 541 <212> PRT <213> Artificial Sequence <220> <223> OsPT2 <400> 2 Met Ala Arg Gln Glu Gln Gln Gln His Leu Gln Val Leu Ser Ala Leu   1 5 10 15 Asp Ala Ala Lys Thr Gln Trp Tyr His Phe Thr Ala Ile Val Val Ala              20 25 30 Gly Met Gly Phe Phe Thr Asp Ala Tyr Asp Leu Phe Cys Ile Ser Leu          35 40 45 Val Thr Lys Leu Leu Gly Arg Ile Tyr Tyr Thr Asp Leu Ala Lys Glu      50 55 60 Asn Pro Gly Ser Leu Pro Pro Asn Val Ala Ala Ala Val Asn Gly Val  65 70 75 80 Ala Phe Cys Gly Thr Leu Ala Gly Gln Leu Phe Phe Gly Trp Leu Gly                  85 90 95 Asp Lys Leu Gly Arg Lys Ser Val Tyr Gly Met Thr Leu Leu Met Met             100 105 110 Val Ile Cys Ser Ile Ala Ser Gly Leu Ser Phe Ser His Thr Pro Thr         115 120 125 Ser Val Met Ala Thr Leu Cys Phe Phe Arg Phe Trp Leu Gly Phe Gly     130 135 140 Ile Gly Gly Asp Tyr Pro Leu Ser Ala Thr Ile Met Ser Glu Tyr Ala 145 150 155 160 Asn Lys Lys Thr Arg Gly Ala Phe Ile Ala Ala Val Phe Ala Met Gln                 165 170 175 Gly Phe Gly Ile Leu Ala Gly Gly Ile Val Thr Leu Ile Ile Ser Ser             180 185 190 Ala Phe Arg Ala Gly Phe Pro Ala Pro Ala Tyr Gln Asp Asp Arg Ala         195 200 205 Gly Ser Thr Val Arg Gln Ala Asp Tyr Val Trp Arg Ile Ile Leu Met     210 215 220 Leu Gly Ala Met Pro Ala Leu Leu Thr Tyr Tyr Trp Arg Met Lys Met 225 230 235 240 Pro Glu Thr Ala Arg Tyr Thr Ala Leu Val Ala Lys Asn Ala Lys Gln                 245 250 255 Ala Ala Ala Asp Met Ser Lys Val Leu Gln Val Glu Ile Gln Glu Glu             260 265 270 Gln Asp Lys Leu Glu Gln Met Val Thr Arg Asn Ser Ser Ser Phe Gly         275 280 285 Leu Phe Ser Arg Gln Phe Ala Arg Arg His Gly Leu His Leu Val Gly     290 295 300 Thr Ala Thr Thr Trp Phe Leu Leu Asp Ile Ala Phe Tyr Ser Gln Asn 305 310 315 320 Leu Phe Gln Lys Asp Ile Phe Thr Ser Ile Asn Trp Ile Pro Lys Ala                 325 330 335 Lys Thr Met Ser Ala Leu Glu Glu Val Phe Arg Ile Ala Arg Ala Gln             340 345 350 Thr Leu Ile Ala Leu Cys Gly Thr Val Pro Gly Tyr Trp Phe Thr Val         355 360 365 Phe Leu Ile Asp Ile Val Gly Arg Phe Ala Ile Gln Leu Leu Gly Phe     370 375 380 Phe Met Met Thr Val Phe Met Leu Gly Leu Ala Val Pro Tyr His His 385 390 395 400 Trp Thr Thr Lys Gly Asn His Ile Gly Phe Val Val Met Tyr Ala Phe                 405 410 415 Thr Phe Phe Phe Ala Asn Phe Gly Pro Asn Ser Thr Thr Phe Ile Val             420 425 430 Pro Ala Glu Ile Phe Pro Ala Arg Leu Arg Ser Thr Cys His Gly Ile         435 440 445 Ser Ala Ala Ala Gly Lys Ala Gly Ala Ile Ile Gly Ser Phe Gly Phe     450 455 460 Leu Tyr Ala Ala Gln Asp Pro His Lys Pro Asp Ala Gly Tyr Lys Pro 465 470 475 480 Gly Ile Gly Val Arg Asn Ser Leu Phe Val Leu Ala Gly Cys Asn Leu                 485 490 495 Leu Gly Phe Ile Cys Thr Phe Leu Val Pro Glu Ser Lys Gly Lys Ser             500 505 510 Leu Glu Glu Met Ser Gly Glu Ala Glu Asp Asp Asp Asp Glu Val Ala         515 520 525 Ala Ala Gly Gly Gly Ala Ala Val Arg Pro Gln Thr Ala     530 535 540  

Claims (9)

서열번호: 2에 나타낸 아미노산 서열로 구성된 폴리펩티드를 코딩하는 염기서열을 포함하는 분리된 OsPT2(Oryza sativa phosphate transporter 2) 유전자.An isolated OsPT2 ( Oryza sativa phosphate transporter 2 ) gene comprising a nucleotide sequence encoding a polypeptide consisting of the amino acid sequence shown as SEQ ID NO: 2. 제 1항에 있어서,The method of claim 1, 상기 염기서열은 서열번호: 1에 나타낸 염기서열로 구성되는 것을 특징으로 하는 유전자.The nucleotide sequence is a gene, characterized in that consisting of the nucleotide sequence shown in SEQ ID NO: 1. 제 1항에 있어서,The method of claim 1, 벼에서 분리된 것을 특징으로 하는 유전자.Gene, characterized in that isolated from rice. 제 1항에 있어서,The method of claim 1, 인산 결핍 조건에서 발현이 유도되는 것을 특징으로 하는 유전자.Gene characterized in that the expression is induced in phosphate deficient conditions. 제 1항에 따른 유전자를 포함하는 재조합 벡터.Recombinant vector comprising the gene according to claim 1. 제 5항에 따른 재조합 벡터로 형질전환된 식물.Plant transformed with the recombinant vector according to claim 5. 제 6항에 있어서,The method of claim 6, 상기 식물은 벼, 밀, 보리, 옥수수, 콩, 감자, 밀, 팥, 귀리, 수수를 포함하는 식량작물류; 애기장대, 배추, 무, 고추, 딸기, 토마토, 수박, 오이, 양배추, 참외, 호박, 파, 양파, 당근을 포함하는 채소작물류; 인삼, 담배, 목화, 참깨, 사탕수수, 사탕무, 들깨, 땅콩, 유채를 포함하는 특용작물류; 사과나무, 배나무, 대추나무, 복숭아, 포도, 감귤, 감, 자두, 살구, 바나나를 포함하는 과수류; 장미, 카네이션, 국화, 백합, 튤립을 포함하는 화훼류로부터 선택되는 것을 특징으로 하는 식물.The plant includes rice, wheat, barley, corn, beans, potatoes, wheat, red beans, oats, sorghum crops; Vegetable crops including Arabidopsis, Chinese cabbage, radish, pepper, strawberry, tomato, watermelon, cucumber, cabbage, melon, pumpkin, green onion, onion, carrot; Specialty crops, including ginseng, tobacco, cotton, sesame, sugar cane, sugar beet, perilla, peanut, rapeseed; Fruit trees including apple trees, pears, jujube trees, peaches, grapes, citrus fruits, persimmons, plums, apricots, bananas; A plant, which is selected from flowers, including roses, carnations, chrysanthemums, lilies, and tulips. 제 5항에 따른 재조합 벡터를 작제하는 단계; 및 상기 재조합 벡터로 식물을 형질전환시키는 단계를 포함하는 형질전환된 식물의 제조방법.Constructing a recombinant vector according to claim 5; And Method for producing a transformed plant comprising the step of transforming the plant with the recombinant vector. 제 8항에 있어서,The method of claim 8, 형질전환된 식물의 조직으로부터 형질전환 식물을 재분화하는 단계를 추가로 포함하는 것을 특징으로 하는 제조방법.And regenerating the transformed plant from the tissue of the transformed plant.
KR1020090041087A 2009-05-12 2009-05-12 A high-affinity phosphate transporter gene ospt2 isolated from rice and transgenic plants expressing the said gene KR20100122175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090041087A KR20100122175A (en) 2009-05-12 2009-05-12 A high-affinity phosphate transporter gene ospt2 isolated from rice and transgenic plants expressing the said gene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090041087A KR20100122175A (en) 2009-05-12 2009-05-12 A high-affinity phosphate transporter gene ospt2 isolated from rice and transgenic plants expressing the said gene

Publications (1)

Publication Number Publication Date
KR20100122175A true KR20100122175A (en) 2010-11-22

Family

ID=43407159

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090041087A KR20100122175A (en) 2009-05-12 2009-05-12 A high-affinity phosphate transporter gene ospt2 isolated from rice and transgenic plants expressing the said gene

Country Status (1)

Country Link
KR (1) KR20100122175A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103571870A (en) * 2013-11-02 2014-02-12 中国科学院遗传与发育生物学研究所 Method for increasing content of selenium in organism

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103571870A (en) * 2013-11-02 2014-02-12 中国科学院遗传与发育生物学研究所 Method for increasing content of selenium in organism
CN103571870B (en) * 2013-11-02 2016-03-16 中国科学院遗传与发育生物学研究所 A kind of method improving selenium content in organism

Similar Documents

Publication Publication Date Title
CN101743314A (en) Transgenic plants with increased stress tolerance and yield
KR101200989B1 (en) Gene Implicated in Drought Stress Tolerance and Transformed Plants with the Same
KR101291365B1 (en) Gene Implicated in Drought Stress Tolerance and Growth Accelerating and Transformed Plants with the Same
KR101416506B1 (en) Gene Implicated in Abiotic Stress Tolerance and Growth Accelerating and Use Thereof
CN102449154B (en) Methods and compositions for stress tolerance in plants
CN109628475B (en) Application of brassinolide synthetic gene PaCYP724B1 in regulation and control of plant branches
CN104164440A (en) Plant stress reactive MYC (myelocytomatosis protein) transcription factors as well as coding genes and application thereof
KR101803500B1 (en) Novel Gene Implicated in Plant Cold Stress Tolerance and Use Thereof
Gao et al. Expression of a hevein-like gene in transgenic Agave hybrid No. 11648 enhances tolerance against zebra stripe disease
CN111454963A (en) Salt-tolerant gene HuERF1 gene of pitaya and application thereof
KR20200063569A (en) Gene implicated in high temperature stress tolerance and use thereof
KR20100122175A (en) A high-affinity phosphate transporter gene ospt2 isolated from rice and transgenic plants expressing the said gene
KR102266998B1 (en) BrZHD10 gene with salt tolerance and use thereof
KR101383331B1 (en) Novel Gene Implicated in Plant Stress Tolerance and Use Thereof
KR101064590B1 (en) A phosphate starvation-induced rice purple acid phosphatase gene and transgenic plants
KR101918590B1 (en) Novel Gene Related to Plant Drought Stress Tolerance and Use Thereof
KR100632486B1 (en) A phosphate transporter genes and promoters of said genes that are expressed specifically in the root hair of rice and transgenic plants using said genes
KR100861717B1 (en) Atcpl5 gene and atcpl5 overexpression transgenic plants
KR101592357B1 (en) Novel Gene Implicated in Plant Cold Stress Tolerance and Use Thereof
KR100859988B1 (en) Above-Ground Specific Promoter and Above-Ground Specific Expression Method of Target Protein Using the Same
KR20190083578A (en) Novel Gene Implicated in Plant Environmental Stresses Tolerance and Use Thereof
CN104178497A (en) MYC (myelocytomatosis proteins) transcription factors derived from gossypium hirsutum L., coding genes thereof and applications of MYC transcription factors and coding genes to regulation of stress resistance of plant
KR102077511B1 (en) Novel Gene Implicated in Plant Environmental Stresses Tolerance and Use Thereof
KR102072276B1 (en) Novel gene related to plant cold stress tolerance and use thereof
KR20110121266A (en) Genes related to aba mediated abiotic stress resistances and transformed plants with the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application