KR20090071339A - Tissue density analysis method of ginseng fresh root by Near Infrared Spectroscopy - Google Patents

Tissue density analysis method of ginseng fresh root by Near Infrared Spectroscopy Download PDF

Info

Publication number
KR20090071339A
KR20090071339A KR1020080080345A KR20080080345A KR20090071339A KR 20090071339 A KR20090071339 A KR 20090071339A KR 1020080080345 A KR1020080080345 A KR 1020080080345A KR 20080080345 A KR20080080345 A KR 20080080345A KR 20090071339 A KR20090071339 A KR 20090071339A
Authority
KR
South Korea
Prior art keywords
ginseng
near infrared
measuring
density
infrared spectroscopy
Prior art date
Application number
KR1020080080345A
Other languages
Korean (ko)
Inventor
현동윤
김금숙
김영창
방경환
강승원
김충국
성낙술
차선우
김동휘
Original Assignee
대한민국(관리부서:농촌진흥청)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국(관리부서:농촌진흥청) filed Critical 대한민국(관리부서:농촌진흥청)
Publication of KR20090071339A publication Critical patent/KR20090071339A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/443Emission spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/46Processing the detected response signal, e.g. electronic circuits specially adapted therefor by spectral analysis, e.g. Fourier analysis or wavelet analysis

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

An analysis method of the density of ginseng tissues through near infrared spectroscopy is provided to improve measuring accuracy and shorten measurement time by measuring density of the ginseng tissues through near infrared ray of 932~974nm range. An analysis method of the density of ginseng tissues through near infrared spectroscopy comprises: a step of calculating experimental value data by measuring tissue hardness to a plurality of ginsengs; a step of collecting spectrum which is reflected by irradiating the near infrared ray on a plurality of ginsengs; a step of calculating the standard measuring formula by analyzing the experimental value data and the collected spectrum with multi-variate regression; and a step of substituting the standard measuring formula for the ginseng reflectance spectrum of the experimental value and verifying the standard measuring formula. The near infrared ray is the range of 932~974nm.

Description

근적외선 분광법을 이용한 인삼 조직의 치밀도 측정 방법{Tissue density analysis method of ginseng fresh root by Near Infrared Spectroscopy}Tissue density analysis method of ginseng fresh root by Near Infrared Spectroscopy}

본 발명은 인삼 조직의 치밀도 측정 방법에 관한 것으로서, 더욱 상세하게는 근적외선 분광법을 이용하여 인삼 조직의 치밀도를 신속하며 정확하게 측정하여 인삼의 객관적 품질 판단 기준을 제시할 수 있는 측정 방법에 관한 것이다. The present invention relates to a method for measuring the density of ginseng tissues, and more particularly, to a method for measuring objective density of ginseng by quickly and accurately measuring the density of ginseng tissues using near infrared spectroscopy. .

통상 인삼으로 불리는 수삼은 밭에서 재배된 생삼을 건조하지 않고 그대로 보존한 것으로, 생산량의 약 절반 정도는 생식용으로 나머지 절반은 홍삼 등의 가공제품 원료로 이용되고 있다. 수삼(이하 인삼)은 재배농가의 기술 수준에 따라 품질이 크게 다르기 때문에 출하 시 품질에 따른 분류를 필수적으로 행해야 한다.Fresh ginseng, commonly called ginseng, is a raw ginseng grown in a field without being dried. About half of the yield is used for raw food and the other half is used as a raw material for processed products such as red ginseng. Since the quality of ginseng (hereinafter referred to as ginseng) varies greatly depending on the skill level of the farmer, it is essential to classify according to quality at the time of shipment.

현재 실시되고 있는 인삼의 품질 판단은 달관에 의한 외형적인 기준에 의존하고 있다. 예컨대, 몸통의 상하가 균형이 있을 것, 몸통에 상처나 흠집이 없이 되도록 매끈할 것, 사람의 다리에 준하는 뿌리가 균형있게 둘 많게는 셋 정도일 것, 잔뿌리가 골고루 무성할 것 등 판단 기준이 사람마다 다양하기 때문에 객관적으로 품질을 판단하기가 쉽지 않다는 문제점이 있었다. Currently, the quality of ginseng is judged by the external criteria based on the crown. For example, there should be a balance between the top and bottom of the body, smooth to make sure that the body is free of cuts and scratches, two or three balanced roots to the human leg, and even lush roots. There was a problem that it is not easy to judge the quality objectively because of the variety.

한편 인삼의 품질을 보다 객관적으로 정확하게 판단하기 위해서는 광학 현미경과 전자 현미경을 이용하여 조직 치밀도를 검사하는 방법이 있다. 하지만, 이 방법은 측정 결과가 나오는데 1~2일이 소요되며 검사 숙련도에 따라 편차가 크다는 단점이 있다. 대안으로 뿌리의 단단한 정도인 경도를 측정하여 인삼의 품질을 물리적으로 판단하는 방법도 있지만, 이 방법은 측정 샘플의 위치에 따라 오차범위가 크고 재현성이 낮다는 문제점이 있으며, 나아가 조직 치밀도와 경도가 종종 일치하지 않는다는 문제점이 있었다. On the other hand, in order to determine the quality of ginseng more objectively, there is a method of examining the tissue density using an optical microscope and an electron microscope. However, this method has a drawback in that it takes 1 to 2 days for the measurement result to appear and the deviation is large depending on the test skill. Alternatively, there is a method of physically determining the quality of ginseng by measuring the hardness of the root, but this method has a problem that the error range is large and the reproducibility is low depending on the position of the measurement sample. Often there was a problem of inconsistency.

분 발명은 상술한 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 인삼 품질의 객관적인 판단 기준인 조직 치밀도를 정밀하게 측정하여 소비자 신뢰성을 높일 수 있는 근적외선 분광법을 이용한 인삼 치밀도 측정 방법을 제공하는 데 있다.The present invention is to solve the above problems, an object of the present invention is to provide a method for measuring ginseng density using near-infrared spectroscopy that can accurately measure tissue density, which is an objective criterion of ginseng quality, to increase consumer reliability. There is.

상기 목적을 달성하기 위한 본 발명에 따른 근적외선을 이용한 인삼 치밀도 측정 방법은 복수의 인삼에 대한 조직 경도를 측정하여 실측값 데이터를 구하는 단계와, 복수의 인삼에 근적외선을 조사하여 반사된 스펙트럼을 수집하는 단계와, 수집된 스펙트럼과 실측값 데이터를 다변량 회기 분석하여 표준 검량식을 구하는 단계와, 표준 검량식을 실측값의 인삼 반사 스펙트럼에 대입하여 검증하는 단계를 포함한다. Ginseng density measurement method using the near-infrared ray according to the present invention for achieving the above object is to obtain the measured value data by measuring the hardness of a plurality of ginseng, and to collect the reflected spectrum by irradiating near-infrared rays on the plurality of ginseng And multivariate regression analysis of the collected spectra and measured data to obtain a standard calibration equation, and verifying by substituting the standard calibration equation into the ginseng reflection spectrum of the measured value.

또한, 본 발명에 따른 근적외선을 이용한 인삼 치밀도 측정 방법의 상기 근적외선은 932~974nm 영역이다. In addition, the near infrared ray of the ginseng density measurement method using the near infrared ray according to the present invention is in the region of 932 ~ 974nm.

또한, 본 발명에 따른 근적외선을 이용한 인삼 치밀도 측정 방법의 인삼의 조직 경도 측정은 근적외선 분석기(NIRs 6500, FOSS)와 외장형 센서를 이용하는 것을 특징으로 하는 인삼 조직의 치밀도 측정 방법.In addition, the tissue hardness measurement of ginseng of the ginseng density measurement method using the near infrared ray according to the present invention is a method of measuring the density of ginseng tissue, characterized in that using a near infrared analyzer (NIRs 6500, FOSS) and an external sensor.

본 발명에 따른 근적외선 분광법을 이용한 인삼 치밀도 측정 방법은 종래 인삼의 경도를 측정하는 방식보다 인삼 조직 치밀도를 정밀하게 측정할 수 있으며, 또한 종래의 광학 현미경과 전자 현미경을 이용한 측정 방식보다 신속하게 조직 치밀도를 측정할 수 있기 때문에, 소비자들에게 인삼의 품위 등급에 대한 객관적인 판단기준을 신속하게 제시할 수 있다. Ginseng density measurement method using the near-infrared spectroscopy according to the present invention can accurately measure the ginseng tissue density than the conventional method of measuring the hardness of ginseng, and also faster than the conventional measurement method using an optical microscope and an electron microscope Because tissue density can be measured, consumers can quickly present objective criteria for grading the grade of ginseng.

이하, 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 상세히 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 근적외선을 조사한 복수개 인삼의 반사 스펙트럼이며, 도 2는 도 1의 그래프를 2차 미분에 의해 전처리한 스펙트럼이고, 도 3은 스펙트럼의 결과를 플롯(plot)한 그래프이다. 1 is a reflection spectrum of a plurality of ginseng irradiated with near infrared rays, FIG. 2 is a spectrum obtained by pre-processing the graph of FIG. 1 by the second derivative, and FIG. 3 is a graph plotting the results of the spectrum.

먼저 본 발명을 설명하기 앞서 이해를 돕기 위해 근적외선 분광 분석법을 간략하게 설명하면 다음과 같다. 근적외선 분광 분석법은 측정 검체에 대한 전처리가 거의 필요 없는 방법으로 비파괴 분석법이라 할 수 있다. 근적외선 분광 분석법은 700∼2500nm의 영역에서 검체를 분석하며 IR 영역에서 유래되는 -CH, -NH, -OH 등의 기본 분자진동 에너지의 결합대(combination band)와 1차에서 4차 배음대(1st∼4th overtone band)에 의한 흡수를 이용한다.First, the near-infrared spectroscopy is briefly described to help understand the present invention. Near-infrared spectroscopy is a non-destructive analysis method that requires little pretreatment of the measured sample. Near-infrared spectroscopy analyzes specimens in the region of 700 to 2500 nm and combines bands of basic molecular vibration energy such as -CH, -NH, and -OH derived from IR and primary to fourth harmonic bands (1st). Absorption by 4 th overtone band).

근적외선 영역은 1800년대 William Herschel에 의해 발견된 이후, 많은 잡음과 약한 신호로 인하여 활발한 연구가 진행되지 않았다. 그러다가 1960년대 초 Karl Norris가 복잡한 근적외선 스펙트럼에 다변량 분석법을 적용하여 농산물의 화학적 고체 검체를 분석함으로써 처음으로 근적외선 분광 분석법의 실용화를 가져왔다. 이후 농업분야에서 시작된 근적외선 분광 분석법의 적용은 식품, 사료, 섬유, 석유화학 및 고분자 분야뿐만 아니라 의약업계에서도 그 응용이 확대되어지고 있다. 근적외선 분광 분석법은 검체에 대한 전처리를 최소화하며 신속한 분석이 가능하다. 또한 여러 성분을 동시에 측정할 수 있고 실시간에 반복측정이 가능한 비파괴적 분석법이라는 장점이 있다.Since the near-infrared region was discovered by William Herschel in the 1800's, there has been no active study due to a lot of noise and weak signals. Then, in the early 1960s, Karl Norris applied the multivariate analysis to complex near-infrared spectra to analyze chemical solid samples of agricultural products, for the first time in practical use of near-infrared spectroscopy. Since then, the application of near-infrared spectroscopy, which has been started in agriculture, is expanding its application not only in the food, feed, fiber, petrochemical and polymer fields, but also in the pharmaceutical industry. Near-infrared spectroscopy minimizes pretreatment of samples and enables rapid analysis. It also has the advantage of a non-destructive method that can measure multiple components simultaneously and can be repeated in real time.

실시예Example

본 실험에 사용될 인삼은 국내 각지에서 생산된 4년근 수삼이다. 먼저, 준비된 복수의 인삼은 몸체를 절단하여 근적외선 분석기(NIRs 6500, FOSS)의 외장형 센서에 밀착시켜 암조건하에서 스캐닝하여 도 2와 같은 반사 스펙트럼을 얻는다. 측정방식은 투과법(Transmittance)을 2nm 간격으로, segment는 20, gap은 4로 스캐닝을 실시한다. 스캐닝이 완료된 시료는 인삼의 조직 경도에 대한 실측값 데이터를 얻기 위해 Texture analyser(TA-HD, USA)로 측정한다. 측정 시 센서 프로브는 2mm, 샘플 투과 길이는 8mm로 하였다. 측정된 데이터는 NIRs 프로그램에 기록하여 테이 블 정보로 이용한다. The ginseng to be used in this experiment is four-year-old ginseng produced in various parts of Korea. First, a plurality of prepared ginseng is cut by the body to be in close contact with the external sensor of the near infrared analyzer (NIRs 6500, FOSS) to scan under dark conditions to obtain a reflection spectrum as shown in FIG. In the measurement method, scanning is performed with 2 nm intervals, 20 segments, and 4 gaps. Scanned samples are measured with a texture analyzer (TA-HD, USA) to obtain actual data on the gross hardness of ginseng. In the measurement, the sensor probe was 2 mm and the sample transmission length was 8 mm. The measured data is recorded in the NIRs program and used as table information.

인삼의 반사 스펙트럼이 얻어지면, 이를 수학적으로 전처리한다. 보통 근적외선 스펙트럼은 재현성이 우수하나 때때로 시료상태나 피측정자에 따라 바탕선 변화 등 약간의 변화가 있게 되므로, 전처리를 함으로써 추후 검량 결과를 향상시킬 수 있다.Once the reflection spectrum of ginseng is obtained, it is mathematically preprocessed. Normally, near-infrared spectra have excellent reproducibility, but sometimes there are slight changes such as baseline changes depending on the sample state or subject. Thus, pretreatment can improve the calibration result later.

구체적으로 전처리는 측정된 반사 스펙트럼들을 상기 인삼의 경도 실측값과 비교하여 유의한 제1근적외선 파장 영역의 반사도 값을 흡광도값으로 전환하여 2차 미분한다. 그리고 흡광도값과 수삼의 뿌리 경도와 상관관계를 분석하여 유의한 결과를 나타내는 제2근적외선 파장영역을 획득한다. Specifically, the pretreatment compares the measured reflection spectra with the hardness measurement value of the ginseng to second derivative by converting the significant reflectance value of the first near infrared wavelength region into an absorbance value. The correlation between the absorbance value and the root hardness of fresh ginseng is analyzed to obtain a second near-infrared wavelength region having a significant result.

전처리된 데이터는 적정 검량식을 도출하기 위해 다중회귀 분석(MLR)을 이용하여 통계적 분석을 실시한 후 인삼의 경도 실측값과 반사 스펙트럼 간의 상관관계를 나타내는 검량식을 산출한다. 인삼의 경도 실측값과 제2근적외선 파장영역 대역 중 상관관계가 가장 유의한 대역은 도 3에 도시한 바와 같은 932~974nm 대역이며, 이 대역에서의 검량식은 아래 표와 같다. The preprocessed data is statistically analyzed using multiple regression analysis (MLR) to derive an appropriate calibration equation, and then calculates a calibration equation indicating the correlation between the hardness measured value and the reflection spectrum of ginseng. The most significant correlation between the hardness measured value of ginseng and the second near infrared wavelength range band is the 932 to 974 nm band as shown in FIG. 3, and the calibration equation in this band is shown in the following table.

검량식Calibration 파장(nm)Wavelength (nm) Simple RSimple R Multi RMulti R y=59183.34×-3694.152y = 59183.34 × -3694.152 932932 0.8740.874 -- y=21400.61x2+88927.85x1-3450.28y = 21400.61x2 + 88927.85x1-3450.28 x2=974 x1=932x2 = 974 x1 = 932 -0.807 0.874-0.807 0.874 0.8830.883

표 1은 가장 유의한 결과를 나타낸 파장영역 정보영역(932~ 974nm)에서의 각 조건에 따른 팩터 및 오차를 나타낸 것이다. Table 1 shows the factors and the errors according to the conditions in the wavelength region information region (932 ~ 974nm) showing the most significant results.

상기 표 1에 파장별 가중치 및 바이어스 값을 획득하여 인삼의 조직 치밀도 계측 검량식을 구하면 아래와 같다. Obtaining the calibration value of tissue density of ginseng by obtaining the weight and bias values for each wavelength in Table 1 as follows.

[검량식][Calibration formula]

Figure 112008058537448-PAT00001
Figure 112008058537448-PAT00001

Ai:획득된 수삼 뿌리 시료의 반사도를 흡광도로 전환시킨 값Ai: A value obtained by converting the absorbance of the obtained fresh ginseng root sample into absorbance

Xi: 각 파장별 가중치(Factor)Xi: Factor for each wavelength

B : 바이어스(Bias) 값B: Bias value

*각 파장별 가중치(factor)* Weight for each wavelength

파장wavelength factorfactor 932932 10989.9610989.96 374374 8268.3468268.346

*바이어스값:0.034* Bias value: 0.034

상기와 같이 검량식이 구해지면, 인삼 경도 실측값과 대비하여 검량식을 검증한다. 검증 결과, 인삼의 경도 실측값과 검량식 간의 상관계수는 0.883, 회귀분석 결정계수는 0.723으로서, 그 정확성을 확인할 수 있다.When the calibration equation is obtained as described above, the calibration equation is verified against the ginseng hardness measured value. As a result of the verification, the correlation coefficient between the hardness measurement value of the ginseng and the calibration equation was 0.883, and the regression analysis coefficient was 0.723.

상술한 바와 같이 근적외선 분광법을 이용한 인삼 조직의 치밀도 측정은 종래 인삼의 경도를 측정하는 방식보다 인삼 조직 치밀도를 정밀하게 측정할 수 있으며, 또한 종래의 광학 현미경과 전자 현미경을 이용한 측정 방식보다 신속하게 조직 치밀도를 측정할 수 있다는 장점이 있다. As described above, the measurement of the density of ginseng tissue using near-infrared spectroscopy can measure the ginseng tissue density more precisely than the method of measuring the hardness of conventional ginseng, and it is also faster than the measurement method using conventional optical microscope and electron microscope. The advantage is that tissue density can be measured.

도 1은 본 발명에 따른 근적외선 분광법으로 측정하여 얻어진 인삼 조직의 반사 스펙트럼을 1차 미분에 의해 전처리한 스펙트럼이다.1 is a spectrum obtained by preliminary processing of the reflection spectrum of ginseng tissue obtained by measuring by near infrared spectroscopy according to the present invention.

도 2는 본 발명에 따른 근적외선 분광법으로 측정하여 얻어진 인삼 조직의 치밀도 반사 스펙트럼 중 인삼 경도 실측값과 가장 높은 상관관계를 보인 스펙트럼을 도시한 것이다. Figure 2 shows the spectrum showing the highest correlation with the ginseng hardness measured value of the dense reflection spectrum of the ginseng tissue obtained by measuring by the near infrared spectroscopy according to the present invention.

도 3은 본 발명에 따른 근적외선 분광법으로 얻어진 인삼 조직의 치밀도 반사 스펙트럼 중 인삼 경도 실측값과 가장 높은 상관관계를 보인 스펙트럼의 결과를 플롯(plot)한 상태를 도시한 도면이다.FIG. 3 is a view showing a state in which the result of the spectrum showing the highest correlation with the ginseng hardness measured value among the dense reflection spectra of the ginseng tissue obtained by the near infrared spectroscopy according to the present invention is plotted.

Claims (3)

복수의 인삼에 대한 조직 경도를 측정하여 실측값 데이터를 구하는 단계;Obtaining measured data by measuring tissue hardness of a plurality of ginsengs; 상기 복수의 인삼에 근적외선을 조사하여 반사된 스펙트럼을 수집하는 단계;Irradiating near infrared rays to the plurality of ginseng to collect the reflected spectra; 상기 수집된 스펙트럼과 실측값 데이터를 다변량 회기 분석하여 표준 검량식을 구하는 단계;Multivariate regression analysis of the collected spectra and measured data to obtain a standard calibration equation; 상기 표준 검량식을 실측값의 인삼 반사 스펙트럼에 대입하여 검증하는 단계;를 포함하는 것을 특징으로 하는 근적외선을 이용한 인삼 조직의 치밀도 측정 방법.Verifying by substituting the standard calibration equation into the ginseng reflection spectrum of the measured value; and measuring the density of the ginseng tissue using near infrared rays. 제 1항에 있어서,The method of claim 1, 상기 근적외선은 932~974nm 영역인 것을 특징으로 하는 인삼 조직의 치밀도 측정 방법.The near-infrared ray is a density measurement method of ginseng tissue, characterized in that 932 ~ 974nm region. 제 1항 또는 제 2항에 있어서,The method according to claim 1 or 2, 상기 인삼의 조직 경도 측정은 근적외선 분석기(NIRs 6500, FOSS)와 외장형 센서를 이용하는 것을 특징으로 하는 인삼 조직의 치밀도 측정 방법.The method of measuring the hardness of the ginseng tissue is characterized by using a near infrared analyzer (NIRs 6500, FOSS) and an external sensor.
KR1020080080345A 2007-12-27 2008-08-18 Tissue density analysis method of ginseng fresh root by Near Infrared Spectroscopy KR20090071339A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020070138188 2007-12-27
KR20070138188 2007-12-27

Publications (1)

Publication Number Publication Date
KR20090071339A true KR20090071339A (en) 2009-07-01

Family

ID=41322767

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080080345A KR20090071339A (en) 2007-12-27 2008-08-18 Tissue density analysis method of ginseng fresh root by Near Infrared Spectroscopy

Country Status (1)

Country Link
KR (1) KR20090071339A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101224109B1 (en) * 2010-12-08 2013-01-24 대한민국 Method for evaluating the quality of ginseng using near infrared
KR20140088262A (en) * 2012-12-28 2014-07-10 한국식품연구원 Method for analyzing effective ingredients in ginseng

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101224109B1 (en) * 2010-12-08 2013-01-24 대한민국 Method for evaluating the quality of ginseng using near infrared
KR20140088262A (en) * 2012-12-28 2014-07-10 한국식품연구원 Method for analyzing effective ingredients in ginseng

Similar Documents

Publication Publication Date Title
McGlone et al. Vis/NIR estimation at harvest of pre-and post-storage quality indices for ‘Royal Gala’apple
Liu et al. Use of FT-NIR spectrometry in non-invasive measurements of internal quality of ‘Fuji’apples
Magwaza et al. NIR spectroscopy applications for internal and external quality analysis of citrus fruit—a review
Qin et al. Nondestructive evaluation of internal maturity of tomatoes using spatially offset Raman spectroscopy
He et al. Nondestructive determination of tomato fruit quality characteristics using VIS/NIR spectroscopy technique
Nawi et al. The application of spectroscopic methods to predict sugarcane quality based on stalk cross-sectional scanning
Shetty et al. Development of NIR calibration models to assess year-to-year variation in total non-structural carbohydrates in grasses using PLSR
Huishan et al. Application Fourier transform near infrared spectrometer in rapid estimation of soluble solids content of intact citrus fruits
Hein et al. Predicting microfibril angle in Eucalyptus wood from different wood faces and surface qualities using near infrared spectra
Schwanninger et al. Determination of lignin content in Norway spruce wood by Fourier transformed near infrared spectroscopy and partial least squares regression analysis. Part 2: Development and evaluation of the final model
CN111157511A (en) Egg freshness nondestructive testing method based on Raman spectrum technology
Yang et al. In situ determination of growing stages and harvest time of tomato (Lycopersicon esculentum) fruits using fiber-optic visible—near-infrared (vis-nir) spectroscopy
Nawi et al. Visible and shortwave near infrared spectroscopy for predicting sugar content of sugarcane based on a cross-sectional scanning method
WO2020130942A1 (en) A non-destructive system and method for determining the quality of chinese herb using terahertz time-domain spectroscopy
CN1647757A (en) Method and its device for body surface non-invasive detecting living body tissue
Yan-de et al. Measurement of sugar content in Fuji apples by FT-NIR spectroscopy
Mat et al. Prediction of sugarcane quality parameters using visible-shortwave near infrared spectroradiometer
Herrera et al. Non-destructive determination of core-transition-outer wood of Pinus nigra combining FTIR spectroscopy and prediction models
KR101224109B1 (en) Method for evaluating the quality of ginseng using near infrared
KR20090071339A (en) Tissue density analysis method of ginseng fresh root by Near Infrared Spectroscopy
Phuphaphud et al. Effects of waxy types of a sugarcane stalk surface on the spectral characteristics of visible-shortwave near infrared measurement
Xie et al. Nondestructive determination of soluble solids content and pH in tomato juice using NIR transmittance spectroscopy
Hu et al. Nondestructive determination method of fruit quantity detection based on Vis/NIR spectroscopy technique
Liu et al. Application of near-infrared spectroscopy with fiber optics for detecting interior quality in peaches
Ying et al. Application FT-NIR in rapid estimation of soluble solids content of intact kiwifruits by reflectance mode

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application