KR20080049697A - Bio radar system based on orthogonal frequency division multiplexing - Google Patents

Bio radar system based on orthogonal frequency division multiplexing Download PDF

Info

Publication number
KR20080049697A
KR20080049697A KR1020080042615A KR20080042615A KR20080049697A KR 20080049697 A KR20080049697 A KR 20080049697A KR 1020080042615 A KR1020080042615 A KR 1020080042615A KR 20080042615 A KR20080042615 A KR 20080042615A KR 20080049697 A KR20080049697 A KR 20080049697A
Authority
KR
South Korea
Prior art keywords
signal
equation
radar system
bio
ofdm
Prior art date
Application number
KR1020080042615A
Other languages
Korean (ko)
Other versions
KR101022513B1 (en
Inventor
이병섭
Original Assignee
이병섭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이병섭 filed Critical 이병섭
Priority to KR1020080042615A priority Critical patent/KR101022513B1/en
Publication of KR20080049697A publication Critical patent/KR20080049697A/en
Application granted granted Critical
Publication of KR101022513B1 publication Critical patent/KR101022513B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/04Systems determining presence of a target
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/36Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
    • G01S13/40Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal wherein the frequency of transmitted signal is adjusted to give a predetermined phase relationship
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/12Modulator circuits; Transmitter circuits
    • H04L27/122Modulator circuits; Transmitter circuits using digital generation of carrier signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3405Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power
    • H04L27/3411Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power reducing the peak to average power ratio or the mean power of the constellation; Arrangements for increasing the shape gain of a signal set

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Physiology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

A bio radar system using an OFDM(Orthogonal Frequency Division Multiplexing) signal is provided to overcome deterioration of performance by overcoming noise and interference. A bio radar system using an OFDM carrier includes an OFDM transmitter and receiver structure. The bio radar system further includes an adaptive filter for separating a transmission signal from a received signal, and a low pass filter and a band pass filter for separating a heartbeat and respiration signal from a detected complex heartbeat and respiration signal. The bio radar system utilizes the OFDM signal in order to overcome noise and interference. The bio radar system extracts a reflected signal of a pure target from a mixed reception signal.

Description

다중 직교 반송파를 이용한 바이오 레이다 시스템{Bio Radar system based on Orthogonal Frequency Division Multiplexing}Bio Radar system based on Orthogonal Frequency Division Multiplexing}

도 1: 바이오레이다(Bio-Radar) 응용도Figure 1: Bio-Radar Application Diagram

도 2: OFDM 송, 수신기 구조를 바이오 레이다로 사용하는 구조도를 나타내고 일반 OFDM 송,수신기와 달리 수신단에 있어 수신신호중에서 생체에서 반사된 신호만을 추출하기 위한 적응형 필터와 혼합된 심박과 호흡에서 각각을 추출하기 위한 저역필터와 밴드패스필터가 추가된다.FIG. 2 shows a structural diagram of using an OFDM transmitter and a receiver as a bio radar and differs from a general OFDM transmitter and receiver in a heartbeat and respiration mixed with an adaptive filter for extracting only a signal reflected from a living body from a received signal at a receiver. A low pass filter and a band pass filter are added to extract the.

도 3: 도플러 현상에 의해 왜곡된 QAM 성좌도. 도플러 주파수 천이 인덱스 e에 따른 QAM 성좌도를 보여준다. 성좌도의 중심이 e 값이 증가함에 unit circle 상에서 회전하고 동시에 dispersion(randomness)도 증가하는것을 알수 있다.3: QAM constellation diagram distorted by the Doppler phenomenon. The QAM constellation plot according to the Doppler frequency shift index e is shown. It can be seen that the center of the constellation also rotates on the unit circle as the value of e increases and at the same time the dispersion (randomness) increases.

도 4: 본발명에서 제시한 방법에 의해 혼합된 심박과 호흡의 기준신호를 이용하여 컴퓨터 시뮬레이션 결과 추출된 혼합 신호를 보여준다.Figure 4 shows the mixed signal extracted from the computer simulation using the reference signal of the heart rate and respiration mixed by the method presented in the present invention.

도 5: 추출된 심박과 호흡의 주파수 스펙트럼을 보여주고 이로부터 심박신호을 추출하기 위한 밴드패스필터 주파수 응답특성을 보여 준다.Figure 5 shows the frequency spectrum of the extracted heart rate and respiration and shows the bandpass filter frequency response characteristics for extracting the heart rate signal from it.

도 6: 추출된 심박과 호흡의 주파수 스펙트럼을 보여주고 이로부터 호흡신호을 추출하기 위한 저역패스필터의 주파수 응답특성을 보여 준다.6 shows the frequency spectrum of the extracted heart rate and respiration and shows the frequency response of the low pass filter for extracting respiration signals.

도 7: 추출된 심박과 호흡의 혼합신호로부터 밴드패스 필터 통과후 추출된 심박신호와 기준신호를 보여준다.Figure 7 shows the heart rate signal and the reference signal extracted after passing the bandpass filter from the mixed signal of the heart rate and breath.

도 8: 추출된 심박과 호흡의 혼합신호로부터 밴드패스 필터 통과후 추출된 심박신호와 기준신호를 보여준다.8 shows the heart rate signal and the reference signal extracted after passing the band pass filter from the mixed signal of the extracted heart rate and respiration.

[문헌1] 특허등록 제 0801645 :OFDM 시스템에서 수신성좌도를 이용한 도플러 편이 주파수 측정 및 보정방법[Patent 1] Patent Registration 0801645: Doppler shift frequency measurement and correction method using reception chart in OFDM system

[문헌2]B.S.Lee, "Doppler effect compensation scheme based on constellation estimation for OFDM System"IEE, Electronic Letter 2008. Jan Vol 44, no 1. PP38-40[2] B.S.Lee, "Doppler effect compensation scheme based on constellation estimation for OFDM System" IEE, Electronic Letter 2008. Jan Vol 44, no 1.PP38-40

도플러효과를 이용한 레이다로써 구름의 분포를 확인하는 기상레이다 및 차량의 속도를 감지하는 속도 감지 레이다는 널리 활용 되고 있다. 최근 비접촉 형태로 생체의 심장박동 및 호흡을 감지하기 위한 바이오 레이다에 대한 연구, 개발이 활발히 진행되고 있다. 그러나 바이오 레이다의 경우 대상이 인체이기 때문에 방사할수 있는 RF(Radio Frequency)송신신호 전력이 엄격히 제한 되고 있고 인체로부터 반사되어 수신되는 신호 역시 대단히 미약하여 주변의 잡음 및 간섭에 매우 취약할 수밖에 없다. 따라서 이렇게 열악한 신호 환경에서 수신신호를 감지, 처리하여 도플러 주파수 천이를 계산하고 이로부터 심장박동 및 호흡신호를 추출할 수 있는 효 과적이고 안정적인 방법이 필요하다.As a radar using the Doppler effect, a weather radar for checking the distribution of clouds and a speed radar for detecting the speed of a vehicle are widely used. Recently, the research and development of the bio radar for detecting the heartbeat and respiration of the living body in a non-contact form is actively progressing. However, in the case of a bio radar, since the target is a human body, the power of a radio frequency (RF) transmission signal that can be radiated is strictly limited, and the signal reflected from the human body is also very weak, and thus, it is very vulnerable to ambient noise and interference. Therefore, there is a need for an effective and stable method for detecting Doppler frequency shifts by detecting and processing received signals in such poor signal environments and extracting heartbeat and respiration signals from them.

종래의 도플러 레이다는 단일 반송파인 CW(Continuous Wave)를 송출신호로 사용하고 목적물로부터 반사되어 수신된 신호로부터 도플러 천이성분을 추출하여 목적물의 속도를 추출하는 방식으로 동작한다. 단일 반송파를 사용하는 이유는 도플러 천이 주파수를 추출하는데 있어 다중주파수의 경우 보다 시스템 구성에 있어 간단하고 주파수 대역 효율면에서 장점이 있기 때문이다. 그리고 대상이 생물체가 아닌경우에는 필요한 수신신호 레벨을 확보하기 위해 송출신호를 증대 시킬수 있고 목적물이 금속인 경우에는 반사되는 신호레벨이 상대적으로 크기 때문에 단일 반송파에 의한 도플러 주파수 검출이 용이 하다고 하겠다. 반면 단점으로써는 다중 경로 환경에서의 페이딩에 영향을 받기 쉽고 단일 반송파의 파장에 관련된 Null point 존재에 의해 목적물과 레이다간의 거리상에 제약이 있을 수 있다.The conventional Doppler radar operates by using a single carrier wave (CW) as a transmission signal and extracting the Doppler transition component from the received signal reflected from the target to extract the velocity of the target. The reason for using a single carrier is to extract the Doppler transition frequency because it is simpler in system configuration and has advantages in frequency band efficiency than in the case of multi-frequency. If the target is not a living organism, the transmission signal can be increased to secure the required reception signal level. If the target object is a metal, the reflected signal level is relatively large, so it is easy to detect the Doppler frequency by a single carrier. On the other hand, as a disadvantage, it is susceptible to fading in a multipath environment, and there may be a limitation on the distance between the target and the radar due to the presence of a null point related to the wavelength of a single carrier.

바이오 레이다의 경우 인체에 송출할 수 있는 송출 신호 전력이 제한 되어 있고 인체의 전파 반사계수가 낮기 때문에 목적물로부터 반사되온 수신신호의 레벨이 극도로 미약하여 주변 잡음 및 간섭에 취약할 수 밖에 없다. 이를 극복하기 위해 직교성 복수 반송파인 OFDM 신호를 사용할 경우 하나의 반송파에서의 에러가 전체 반송파를 통한 해석에 영향을 미치지 않기 때문에 매우 안정적으로 도플러 주파수 편이를 측정할 수 있고 이를 통해 인체의 심장박동과 호흡신호를 검출 할 수 있다.In the case of bio radar, the power of the transmission signal that can be transmitted to the human body is limited, and the radio wave reflection coefficient of the human body is low, so the level of the received signal reflected from the target is extremely weak, which is inevitable to ambient noise and interference. In order to overcome this problem, the OFDM signal, which is an orthogonal multicarrier, can be used to measure the Doppler frequency shift very stably since the error in one carrier does not affect the interpretation through the entire carrier. Can be detected.

그러나 OFDM 기반 도플러 레이다를 구현할 경우, IFFT/FFT 길이를 1024개로 가정할때 1024 개 주파수 각각에 도플러 주파수 측정모듈을 장착하는것은 기술적으로 불가능할 수 있고 설혹 가능하다고 해도 시스템 복장도 및 경제성 면에서 경쟁력이 없다. 그러나 [문헌1]의 방식을 활용할 경우, 통상적인 FFT 수신장치를 통해서 검출된 심볼의 성좌도로부터 전체 반송파에서의 도플러 주파수 편이를 효과적으로 검출할 수 있고 이때 도플러 주파수 계산에 통계적으로 활용되는 심볼의 수가 FFT 길이를 1024, 심볼 전송속도를 100 심볼/초 로 가정할 때 1초 동안 활용할 수 있는 데이터수가 102,400 심볼이 되기 때문에 수개의 반송파에서 발생될 수 있는 에러가 전체를 통한 도플러 주파수 검출에 영향을 주지 않는다. 따라서 제안된 방식을 이용할 경우, 잡음 및 간섭에 강하고 그러나 간단하고 매우 경제적인 바이오 레이다를 구성할 수 있다.However, when implementing an OFDM-based Doppler radar, it may be technically impossible to mount the Doppler frequency measurement module on each of the 1024 frequencies assuming IFFT / FFT length is 1024. none. However, when using the method of [Document 1], it is possible to effectively detect the Doppler frequency shift in the whole carrier from the constellation diagram of the symbol detected through the conventional FFT receiver, and the number of symbols utilized statistically for the Doppler frequency calculation is FFT Assuming a length of 1024 and a symbol transmission rate of 100 symbols / second, the number of available data for one second is 102,400 symbols, so that an error that can occur on several carriers does not affect the detection of Doppler frequency throughout. . Therefore, using the proposed method, it is possible to construct a bio radar that is robust to noise and interference but is simple and very economical.

본발명의 구성은 [도2] 와 같이 기본적으로 OFDM 송,수신기 구조를 갖고, 수신신호에서 송신신호를 분리하기 위한 적응형 필터 및 검출된 복합 심장박동 및 호흡신호에서 심장박동 및 호흡신호를 분리하기 위한 저역통과필터 및 밴드패스 필터가 추가 된다.The configuration of the present invention basically has an OFDM transmitter and receiver structure as shown in FIG. 2, and an adaptive filter for separating a transmitted signal from a received signal, and a separated heartbeat and respiratory signal from the detected complex heartbeat and respiratory signals. A low pass filter and a band pass filter are added for this purpose.

OFDM 송신기에서 송출되는 바이오 레이다 신호 s(t)는 수학식 1로 표시된다.The bio radar signal s ( t ) transmitted from the OFDM transmitter is represented by Equation 1.

수학식 1Equation 1

Figure 112008502404096-PAT00002
Figure 112008502404096-PAT00002

여기서 X(i)는 QAM 심볼, N은 OFDM 서브 반송파 수, T 는 심볼폭, fs는 서브 반송파 대역폭, fc 는 송신반송파 주파수를 나타낸다. s(t)가 송출되어 수신된 신호는 수학식 2, 수학식 3으로 각각 표시된다.Where X (i) is a QAM symbol, N is the number of OFDM sub-carriers, T is the symbol width, f s is the sub-carrier bandwidth, f c denotes a carrier frequency transmission. s ( t ) is transmitted and received signals are represented by equations (2) and (3), respectively.

수학식 2Equation 2

Figure 112008502404096-PAT00025
Figure 112008502404096-PAT00025

여기서 목적물까지의 규정거리를 do, 호흡 및 심장박동에 의한 변위를 x(t)라고하면 전파가 왕복하는 거리는 2d(t)=2do+2x(t)로 표시되고, c는 전파전파 속도를 의미한다. 그리고 α는 송신안테나에서 수신안테나로 직접 전달되는 누설계수, β는 목적물로부터 반사되는 신호의 크기를 나타내는 반사계수이다. 수학식 2에서 목적물로부터 반사되는 항만을 R(t)로 표시하면 수학식 3과 같이 된다.Here, if the specified distance to the target is d o , and the displacement due to respiration and heartbeat is x ( t ), the distance that the radio waves travel is expressed as 2 d ( t ) = 2d o +2 x ( t ), and c is a radio wave. It means the speed of propagation. Α is a leakage coefficient directly transmitted from a transmitting antenna to a receiving antenna, and β is a reflection coefficient representing a magnitude of a signal reflected from an object. In Equation 2, if only the term reflected from the target object is represented by R ( t ), Equation 3 is obtained.

수학식 3Equation 3

Figure 112008502404096-PAT00026
Figure 112008502404096-PAT00026

따라서 목표물의 변위를 포함한 목표물까지의 시간지연에 따른 위상 지연값은 수학식 4와 같고,Therefore, the phase delay value according to the time delay to the target including the displacement of the target is given by Equation 4,

수학식 4Equation 4

Figure 112008502404096-PAT00027
Figure 112008502404096-PAT00027

이로부터 수학식 5 와 같이 도플러 주파수 편이를 구할 수 있다.From this, the Doppler frequency shift can be obtained as shown in Equation 5.

수학식 5Equation 5

Figure 112008502404096-PAT00028
Figure 112008502404096-PAT00028

그러나 본발명에서는 수학식 5 에 의해서 도플러 천이 주파수를 구하지 않고 수신단에서 심볼을 복구한후 OFDM 각 서브 반송파에 실린 심볼이 도플러 주파수 천이에 의해서 왜곡되는 패턴을 이용하여 도플러 천이 주파수를 구한다. 이를 위하여 수신단의 복조과정에서 down conversion 후 저역통과필터를 통한 신호를 복소수 형태로 표시하면 수학식 6 과 같이 표시된다.In the present invention, however, the Doppler transition frequency is obtained by using a pattern in which the symbols carried on each OFDM subcarrier are distorted by the Doppler frequency transition after recovering the symbol at the receiving end without calculating the Doppler transition frequency. For this purpose, if the signal through the low pass filter is displayed in a complex form after down conversion in the demodulation process of the receiver, it is expressed as in Equation 6.

수학식 6Equation 6

Figure 112008502404096-PAT00007
Figure 112008502404096-PAT00007

수학식 6 이 FFT단을 통과하게 되는 수학식 7과 같이 송신 심볼을 복구할 수 있다.As shown in Equation 7 in which Equation 6 passes through the FFT stage, it is possible to recover a transmitted symbol.

수학식 7Equation 7

Figure 112008502404096-PAT00029
Figure 112008502404096-PAT00029

여기서 S(l-k) 는 수학식 8과 같고 도플러 주파수 편이에 의한 Inter Carrier Interference (ICI) 계수를 나타낸다.Where S ( lk ) is equal to Equation 8 and represents an Inter Carrier Interference (ICI) coefficient due to Doppler frequency shift.

수학식 8Equation 8

Figure 112008502404096-PAT00030
Figure 112008502404096-PAT00030

여기서 e 는 도플러 주파수 천이를 서브캐리어 주파수 간격으로 나눈값 즉 e=f d /f s 이다. 수학식 7에서 첫 번째항이 αX(k)는 송신안테나에서 수신안테나로 직접 induced 항으로 심볼에 도플러 주파수 천이에 의한 왜곡을 포함하고 있지 않다. 따라서 첫 번째항을 효과적으로 제거한후 도플러 주파수 천이에 의해 성좌도가 왜곡된 성분인 Y d (k)을 처리하여 도플러 주파수를 측정하는것이 필요하다. 도플러 레이다 시스템이 구축되면 송신 안테나에 대한 수신안테나의 격리(isolation)정도에 따라 α 값이 결정되고 측정에 의하여 손쉽게 구할수 있기 때문에 α 값은 사전에 알수 있다. 그리고 일반 통신 시스템과는 다르게 바이오 레이다에서 각각의 OFDM 서브 반송파에 실려 보낸 심볼값도 알고 있기 때문에 수학식 9와 같이 순수한 Y d (k)값을 근사적으로 구할 수 있다.Where e is the Doppler frequency shift divided by the subcarrier frequency interval, ie e = f d / f s . In Equation 7, the first term αX ( k ) is a term directly induced from the transmitting antenna to the receiving antenna and does not include distortion due to the Doppler frequency shift in the symbol. Therefore, after effectively removing the first term, it is necessary to measure the Doppler frequency by processing Y d ( k ), which is a component of which the constellation is distorted by the Doppler frequency shift. Since the Doppler radar system of this α value in accordance with the isolated (isolation) the degree of the receive antenna for the transmit antenna it is determined easily obtained by measurement when the building α value may know in advance. Unlike the general communication system, since the symbol values carried in the respective OFDM subcarriers are also known in the bio radar, the pure Y d ( k ) value can be approximated as shown in Equation (9).

수학식 9Equation 9

Figure 112008502404096-PAT00010
Figure 112008502404096-PAT00010

바이오 레이다에서 목적물과 레이더 사이의 반사계수인 β 값도 수학식 10과 같이 Y d (k)의 절대값의 기대값(Expectation)을 구함으로써 근사적으로 구할 수 있다. Β value, which is a reflection coefficient between a target and a radar in a bio radar, can also be approximated by obtaining an expectation of an absolute value of Y d ( k ) as shown in Equation 10.

수학식 10Equation 10

Figure 112008502404096-PAT00031
Figure 112008502404096-PAT00031

구해진 β 값으로 Y d (k)를 정규화 시키면 수학식 11을 얻을 수 있다Equation 11 can be obtained by normalizing Y d ( k ) with the obtained β value.

수학식 11Equation 11

Figure 112008502404096-PAT00032
Figure 112008502404096-PAT00032

수학식 Y(k) 도플러 천이에 의해 순수하게 왜곡된 심볼을 의미하고 이를 이미 알고 있는 송신 심볼 X(k)로 나눈후 기대값을 구하면[문헌 2]Equation Y ( k ) means a symbol that is purely distorted by the Doppler transition, divides it by a known transmission symbol X ( k ), and obtains an expected value.

수학식 12Equation 12

Figure 112008502404096-PAT00033
Figure 112008502404096-PAT00033

즉 수신된 심볼을 송신한 심볼로 나눈후 기대값을 구하면 구해진 복소수 값의 Phase 성분이 (πe) 이되므로 이 값을 가지고 수학식 13을 이용하여 도플러 편이 주파수 f d 를 구할 수 있다.That is, when the received symbol is divided by the transmitted symbol and the expected value is obtained, the phase component of the obtained complex value becomes ( πe ). Thus , the Doppler shift frequency f d can be obtained using Equation 13 with this value.

수학식 13Equation 13

Figure 112008502404096-PAT00034
Figure 112008502404096-PAT00034

도플러 편이 주파수는 목표물의 움직임 함수인 x(t)와 함수관계가 있으므로 이를 통하여 목표물인 인체의 심장박동과 호흡에 따른 변위 신호를 추출할 수 있다.Since the Doppler shift frequency has a functional relationship with x ( t ), which is a function of the target's movement, it is possible to extract displacement signals according to the heartbeat and respiration of the target body.

수학식 13 으로 표시되는 도플러 편이 주파수 정보는 심장박동과 호흡에 따른 인체 변이 정보를 포함하고 있는데 각각의 주파수 정보가 다르므로 [도5],[도6]과 같이 저역통과 필터 및 밴드패스필터를 통과 시켜 [도7], [도8] 과 같이 순수한 심장박동 신호와 호흡신호를 추출한다.Doppler shift frequency information represented by Equation 13 includes human variation information according to the heartbeat and respiration, and because each frequency information is different, it passes through the low pass filter and the bandpass filter as shown in [FIG. 5] and [FIG. 6]. 7 and 8 to extract the pure heartbeat signal and the respiratory signal.

OFDM 신호를 사용하여 도플러 주파수를 측정하고자 할때 바이오 레이다의 경 우와 같이 인체의 변이가 매우 작아서 이에 따른 도플러 주파수 변이가 작아서 결과적으로 수신된 성좌도에 나타나는 위상상의 편이(e)가 작아서 이를통하여 도플러 주파수를 측정하는데 어려움이 있을 수 있다. 그러나 이것은 [도3]과 같이 OFDM 서브 반송파 간격인 f s 를 조정함으로써 최적의 성좌도상의 변위를 유도할수 있다. 즉 f d 가 작은 경우 f s 도 감소 시켜 적정한 e 값을 유지할 수 있다.Using OFDM signal the variation of the human body is very small, such as when Wo of the bio radar when trying to measure the Doppler frequency this Doppler frequency shift is small, resulting in a deviation (e) on the phase small through which the Doppler frequency appearing in the receive constellation according It may be difficult to measure. However, this can induce an optimal constellation displacement by adjusting the OFDM subcarrier spacing f s as shown in FIG. In other words, if f d is small, f s may be reduced to maintain an appropriate value of e .

수학식 14Equation 14

Figure 112008502404096-PAT00035
Figure 112008502404096-PAT00035

OFDM을 이용한 다중반송파 바이오 레이다를 사용함으로써 종래의 단일 반송파를 사용하는 바이오 레이다의 경우 수신신호가 극도로 미약하여 잡음 및 간섭에 취약하고 단일 파장에 따른 NULL 점의 존재로 인한 성능열화를 극복할 수 있다. 더욱이 OFDM 송,수신기는 이미 통신기계에 널리 활용되어 소형화 및 표준화가 이루어진 장치이기 때문에 이를 바이오 레이다 시스템으로 구현할 경우, 경제성 있고 성능이 우수한 바이오 레이다를 손쉽게 구현할 수 있다.By using a multicarrier bio radar using OFDM, the conventional biocarrier using a single carrier is extremely weak in receiving signals, which is vulnerable to noise and interference, and can overcome performance degradation due to the presence of a NULL point according to a single wavelength. have. Furthermore, since OFDM transmitter and receiver are already widely used in communication machines and have been miniaturized and standardized, it is possible to easily implement economic and excellent bio radar when implemented as a bio radar system.

Claims (4)

잡음 및 간섭 극복하기 위해 다중 직교 반송파인 OFDM 신호를 바이오(도플러)레이다에 활용하는 시스템 [도 1] 및 수학식 1에서 수학식 13을 통하여 명시된 방법A system that utilizes OFDM signals, which are multiple orthogonal carriers, in a bio (Doppler) radar to overcome noise and interference [FIG. 1] and the method specified by Equation 13 in Equation 1 수학식 9 로 표시되는 혼합된 수신신호에서 순수 목표물로부터 반사된 신호를 도출하는 방법A method for deriving a signal reflected from a pure target in the mixed received signal represented by Equation (9) 수학식 10, 수학식 11에서 표시된바와 같이 목표물과 바이오 레이다 사이의 반사계수를 구하는 방법How to calculate the reflection coefficient between the target and the bio radar as shown in Equations 10 and 11 수학식 14와 같이 OFDM 서브 반송파 간격을 조정함으로써 작은 도플러 주파수 편이에 대해 적정한 e 값을 유지하여 결과적으로 도플러 주파수 편이를 효과적으로 측정하는 방법By adjusting the OFDM subcarrier spacing as shown in Equation 14, a method of effectively measuring the Doppler frequency shift as a result of maintaining an appropriate e value for a small Doppler frequency shift
KR1020080042615A 2008-05-06 2008-05-06 Bio Radar system based on Orthogonal Frequency Division Multiplexing KR101022513B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080042615A KR101022513B1 (en) 2008-05-06 2008-05-06 Bio Radar system based on Orthogonal Frequency Division Multiplexing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080042615A KR101022513B1 (en) 2008-05-06 2008-05-06 Bio Radar system based on Orthogonal Frequency Division Multiplexing

Publications (2)

Publication Number Publication Date
KR20080049697A true KR20080049697A (en) 2008-06-04
KR101022513B1 KR101022513B1 (en) 2011-03-16

Family

ID=39805371

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080042615A KR101022513B1 (en) 2008-05-06 2008-05-06 Bio Radar system based on Orthogonal Frequency Division Multiplexing

Country Status (1)

Country Link
KR (1) KR101022513B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101252740B1 (en) * 2011-05-25 2013-04-11 연세대학교 산학협력단 A sensor and a method of sensing thereof
KR20180010713A (en) * 2016-07-22 2018-01-31 한국전자통신연구원 Multi-carrier doppler rader
KR20190090610A (en) * 2018-01-25 2019-08-02 한국과학기술원 Differential phase radar bio-signal detection apparatus and method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103529436A (en) * 2013-10-12 2014-01-22 南京信息工程大学 Method for carrying out separation and time-frequency analysis on respiration and heartbeat signals in non-contact life detection on basis of HHT (Hilbert Huang Transform)
KR101777381B1 (en) 2016-12-19 2017-09-11 엘아이지넥스원 주식회사 Device for Estimating DOA of a target echo signal using Adaptive Filters in PCL receivers, and DOA Estimation Method using the same
KR102298120B1 (en) * 2020-12-10 2021-09-03 주식회사 에이슬립 Computer device for obtaining wireless communication-based object status information
KR102387736B1 (en) * 2021-08-30 2022-04-18 주식회사 에이슬립 Object state information obtaining method, apparatus and computer program through wireless signal analysis

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10259522A1 (en) 2002-12-19 2004-07-01 Robert Bosch Gmbh Radar-based sensing of the position and / or movement of the body or in the body of living beings
JP4452145B2 (en) 2004-08-20 2010-04-21 株式会社デンソー Heart rate detector
WO2006115704A1 (en) * 2005-04-22 2006-11-02 University Of Florida Research Foundation , Inc. System and methods for remote sensing using double-sideband signals
KR100801645B1 (en) * 2006-08-25 2008-02-05 이병섭 Doppler frequency Compensation method for OFDM System Based on Received Constellation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101252740B1 (en) * 2011-05-25 2013-04-11 연세대학교 산학협력단 A sensor and a method of sensing thereof
KR20180010713A (en) * 2016-07-22 2018-01-31 한국전자통신연구원 Multi-carrier doppler rader
KR20190090610A (en) * 2018-01-25 2019-08-02 한국과학기술원 Differential phase radar bio-signal detection apparatus and method

Also Published As

Publication number Publication date
KR101022513B1 (en) 2011-03-16

Similar Documents

Publication Publication Date Title
KR20080049697A (en) Bio radar system based on orthogonal frequency division multiplexing
CN107819709B (en) Method and device for detecting moving target
CN102404268B (en) Method for estimating and compensating doppler frequency offset in Rician channels in high-speed mobile environment
CN105187352B (en) A kind of integer frequency bias method of estimation leading based on OFDM
CN103095638A (en) Orthogonal Frequency Division Multiplexing (OFDM) system sampling frequency shift blind estimation method under multipath fading channel
CN112398764B (en) Frequency offset estimation method and system combining DMRS (demodulation reference signal) and PTRS (packet transport RS)
CN106961403A (en) A kind of OFDM underwater sound voice communication Doppler effect correction methods of estimation based on sparse channel model
US7557752B2 (en) Apparatus and method for communication
CN110673129B (en) Estimation device and estimation method
CN116527458B (en) SNR estimation method and device for DMRS signal of 5G small cell
JP2012088279A (en) Radar device and mobile target detecting method to be applied for radar device
US9888496B1 (en) Systems and methods for carrier sensing in wireless communication systems
Mahfoudia et al. On the feasibility of DVB-T based passive radar with a single receiver channel
CN109738868B (en) External radiation source radar non-stationary clutter suppression method based on channel identification
Lang et al. Reducing hardware requirements and computational effort for automotive OFDM radar systems
CN100355255C (en) Synchronous method of large search range OFDM system carrier based on statistical uniform
CN105187351B (en) A kind of OFDM Timing Synchronization detection methods under multipath channel
CN112714091B (en) Method and device for determining symbol synchronization position in digital signal
JP5276427B2 (en) Reception device and symbol timing detection method
CN103905361A (en) Sampling frequency synchronization method in OFDM system
CN114397649A (en) Target matching method based on subcarrier
CN107171776B (en) Method for generating multi-carrier waveguide frequency sequence in specified time interval based on FBMC modulation
CN110519194A (en) Based on the phase noise inhibition method of Comb Pilot in OFDM data chain
WO2023127340A1 (en) Estimating device, estimating method, and program
CN115442199B (en) CP-free MIMO-OFDM integrated signal design and processing method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee