KR20070102809A - High precision radial foil bearing - Google Patents

High precision radial foil bearing Download PDF

Info

Publication number
KR20070102809A
KR20070102809A KR1020060034471A KR20060034471A KR20070102809A KR 20070102809 A KR20070102809 A KR 20070102809A KR 1020060034471 A KR1020060034471 A KR 1020060034471A KR 20060034471 A KR20060034471 A KR 20060034471A KR 20070102809 A KR20070102809 A KR 20070102809A
Authority
KR
South Korea
Prior art keywords
foil
top foil
bearing
bearings
shaft
Prior art date
Application number
KR1020060034471A
Other languages
Korean (ko)
Other versions
KR100782374B1 (en
Inventor
이헌석
Original Assignee
한국터보기계(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국터보기계(주) filed Critical 한국터보기계(주)
Priority to KR1020060034471A priority Critical patent/KR100782374B1/en
Publication of KR20070102809A publication Critical patent/KR20070102809A/en
Application granted granted Critical
Publication of KR100782374B1 publication Critical patent/KR100782374B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C27/00Elastic or yielding bearings or bearing supports, for exclusively rotary movement
    • F16C27/02Sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C27/00Elastic or yielding bearings or bearing supports, for exclusively rotary movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/024Sliding-contact bearings for exclusively rotary movement for radial load only with flexible leaves to create hydrodynamic wedge, e.g. radial foil bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Support Of The Bearing (AREA)

Abstract

A high precision radial foil bearing is provided to maintain the original shape even when an initial assembling pre-load is applied to the radial foil bearing, thereby reducing driving torque. A high precision radial foil bearing includes a bearing housing(1), a bump(2), a top foil(3), and a key(4). If a pre-load is applied to the top foil, the top foil is pressed inward to make friction with a shaft(6). By making the thickness of the top foil large sufficiently, the top foil maintains the original shape. A gap between a shaft and the top foil can be always maintained at the minimum so that the friction can be minimized even in a stop state. The top foil can maintain the original shape by interposing a spacer between the key and a cut surface(5).

Description

정밀 래디알 포일 베어링 {High Precision Radial Foil Bearing}High Precision Radial Foil Bearings

제1도 : 래디알 포일베어링의 종래 형태Fig. 1: Conventional form of radial foil bearing

제2도 : 예하중을 높여 정밀도를 높인 포일베어링Fig. 2: Foil bearing with high preload

제3도 : 스페이서를 설치하여 정밀도를 더욱 높인 포일베어링Fig. 3: Foil bearing with more precision by installing spacer

베어링은 크게 구름베어링(볼 또는 롤러 사용), 무급유베어링(유활성 있는 재료를 사용하여 마찰하며 동작), 미끄럼베어링(오일 사용), 기체베어링, 자기베어링(자기력을 이용하여 무접촉 동작)으로 나뉘어 진다. 미끄럼베어링은 동압과 정압으로 구별되며, 동압 미끄럼베어링은 상대미끄럼 운동에 의하여 오일이 압력을 발생하여 축을 지지하며, 정압 미끄럼 베어링은 베어링 외부에서 고압의 오일을 공급함으로써 축을 지지한다. 기체베어링은 기름대신 기체가 사용되는 것을 제외하고는 미끄럼베어링과 동일한 원리로 동작한다. 외부에서 가압기체를 넣어주면 정압 기체베어링이며, 상대미끄럼 운동에 의하여 압력이 발생하면 동압 기체베어링이다.Bearings are largely divided into rolling bearings (with balls or rollers), oil-free bearings (friction with active materials), sliding bearings (with oil), gas bearings, magnetic bearings (contactless operation with magnetic force) Lose. Sliding bearings are divided into dynamic and static pressures, and dynamic sliding bearings support the shaft by the oil generated by the relative sliding movement, and the static sliding bearing supports the shaft by supplying high pressure oil from the outside of the bearing. Gas bearings operate on the same principle as sliding bearings, except that gas is used instead of oil. If pressurized gas is put from outside, it is a constant pressure gas bearing. If pressure is generated by relative sliding, it is a dynamic pressure gas bearing.

동압기체베어링은 적은 마찰손실과 액체윤활유의 불필요성 등의 이유로 고속회전응용분야에 널리 사용되고 있으며, 특히 구름베어링으로 지지하기 어려운 초고 속분야와 액체 윤활류를 사용하기 어려운 곳에 주로 사용되어 지고 있다. 동압기체베어링은 홈붙이 베어링, 틸팅패드베어링,포일베어링 으로 나뉘어 지며, 홈붙이 베어링은 홈을 설치하여 압력을 발생시키는 구조이며, 스파이럴 홈붙이 베어링이 대표적인 예이다. 동압 유체 필름 틸트 패드 베어링(Hydrodynamic fluid-film tilt pad bearing)은 사용조건이 매우 제한적이기 때문에 그 조건을 넘어서면 파손될 위험이 커지게 되는 단점이 있다. 예를 들어 설계조건 이상 또는 이하의 조건에서 강성이 급격히 저하하기 때문에 이 베어링은 충격과 축의 비정렬(misalignment)과 열변형에 매우 취약하다. 이에 비해 컴플라이언트 동압 유체필름베어링(Compliant hydrodynamic fluid-film bearing)이라고 불리는 포일베어링은 고정형태의 틸트패드베어링에 비하여 확연하게 높은 성능을 제공하며, 최근 20년간 비약적인 발전을 하여왔으며, 항공기 공기조화장치에서 충분한 내구성과 안정정이 확인된 바 있으며, 특히 10만 RPM이 넘는 초고속회전의 극저온용 터보압축기와 같은 고속회전기계에 사용되고 있다. 이 베어링은 약간의 액체가 섞여 있는 상황에서도 사용이 가능하며, 유연성과 저가격화의 가능성이 장점이다. 항공에서의 포일베어링은 1970년부터 환경조절장치(ECS)에서 케빈내의 압력과 온도를 조절하는 핵심구성품인 ACM(Air Cooling Machine)에 주로 사용되고 있으며, 가장 적절한 사용 예라고 볼 수 있다. 이 응용에서 포일베어링은 오일시스템이 없으므로 캐빈내부를 오염시키지 않고, 정해진 정비일정 없이 볼베어링에 비하여 충분히 긴 시간의 안정적 동작을 가능하게 하였다. 그리고 베어링의 파손시에도 터보구성품의 파손이 거의 없는 장점을 제공하며, 보잉747에 사용된 포일베어링은 수리없이 10만시간이상의 동작을 하고 있다.Dynamic pressure bearings are widely used in high-speed rotating applications due to their low friction loss and the need for liquid lubricating oils. Especially, dynamic pressure bearings are mainly used in high-speed applications that are difficult to support with rolling bearings and where it is difficult to use liquid lubricants. Dynamic gas bearings are divided into grooved bearings, tilting pad bearings, and foil bearings. Bearings with grooves generate pressure by installing grooves, and spiral grooved bearings are typical examples. Hydrodynamic fluid-film tilt pad bearings have a disadvantage in that the risk of breakage increases if the conditions of use are very limited. For example, these bearings are very susceptible to shock, shaft misalignment and thermal deformation because their stiffness drops sharply above or below design conditions. In comparison, foil bearings, called compliant hydrodynamic fluid-film bearings, offer significantly higher performance than fixed tilt pad bearings, and have made significant progress in recent 20 years. Sufficient durability and stability have been confirmed, and it is used in high-speed rotary machines such as ultra-high speed cryogenic turbocompressors in excess of 100,000 RPM. The bearings can be used even in the presence of some liquids, and offer the advantage of flexibility and low cost. Foil bearings in aviation have been used since 1970, mainly in the air cooling machine (ACM), a key component that controls the pressure and temperature in the cabin in the environmental control system (ECS). In this application, the foil bearing does not have an oil system, so it does not contaminate the inside of the cabin and allows stable operation for a sufficiently long time compared to the ball bearing without a fixed maintenance schedule. And in case of bearing failure, it provides the advantage of almost no damage of turbo components, and the foil bearing used in Boeing 747 operates over 100,000 hours without repair.

포일베어링은 크게 두가지로 나뉘어진다. 도1과 같이 낱개의 날개형태의 포일을 회전방향으로 일부 겹쳐 배치하고 축을 지지하는 리프타입(Leaf Type)과, 도 2와 같이 전체를 하나의 포일로 하고 포일 외부에 여러 가지 형태로 포일을 지지하는 스프링(Spring)을 배치하는 범프타입(Bump Type)으로 나뉘어진다. 리프타입은 지지하중이 작고 외부충격이 적은 경우에 적용이 가능하며 기동토크가 큰 단점을 가지고 있다. 이에 비하여 범프타입은 기동시의 부하가 작으며, 내구성 및 강성이 우수하다고 알려져 있으나, 설계와 생산이 까다로우며 특히 안정성을 확보하는 것이 어려워 세계적으로 2-3군데 정도 밖에 기술을 보유하고 있지 못한 형편이다. 베어링 하우징(Bearing Housing) 안쪽에 스프링역할을 하는 범프(Bump Foil)가 베어링 하우징(Bearing Housing)에 용접되어 있고, 그 안쪽에 실질적으로 축(Shaft, Journal)과 맞닿는 탑포일(Top Foil)이 베어링 하우징(Bearing Housing)에 용접되어 있다. 축이 회전하여 공기를 끌고 지나가면 탑포일과 범프가 변형되며, 하중을 지지하는 유체필름을 형성하기 위한 공간을 생성하게 된다. 포일베어링에서 유체필름을 발생시키기 위한 기하학적형상은 탑포일의 탄성변형에 의해서 제공된다. 회전수가 높아질 수록 탑포일과 범프는 바깥쪽으로 밀려나가게 되며 축이 중심에서 벗어나게 되면 쐐기모양(Converging Wedge)의 공간이 형상된다. 이 때 포일베어링에서는 탑포일이 변형되는 특징을 가지고 있으므로 설계를 잘하여 미세한 탑포일의 변형에 의하여 복잡한 기계가공없이 적절한 동압이 발생되는 최적의 형태를 얻을 수 있게 된다. 또한 반경방향의 여유가 생기므로, 고속회전에 따른 축직경의 증가에 대응할 수 있게 되는 장점을 얻을 수 있다. 이러한 특성을 결정 짓는 것은 탑포일의 두께와 탑포일을 지지하는 범프의 형상이다. 특히 범프의 설계에 따라 축계가 필요로 하는 강성과 댐핑(Damping)을 제공하는 것이 결정되어 지므로, 범프의 형태, 두께, 높이, 피치, 개수 등이 베어링의 성능을 결정짓는 가장 중요한 인자가 되는 것이다.Foil bearings are largely divided into two types. As shown in FIG. 1, a leaf type that partially overlaps each wing-shaped foil in a rotational direction and supports the shaft, and supports the foil in various forms on the outside of the foil as one foil as shown in FIG. It is divided into the bump type which arranges the spring. The leaf type is applicable to the case where the supporting load is small and the external impact is small, and the starting torque has a big disadvantage. On the other hand, the bump type is known to have a small starting load, excellent durability and rigidity, but it is difficult to design and produce, and it is difficult to secure stability. It's bad. A bump foil, which acts as a spring in the bearing housing, is welded to the bearing housing, and a top foil in contact with the shaft and the journal is in contact with the bearing housing. It is welded to the housing. As the shaft rotates to draw air, the top foil and bumps deform and create a space for forming a load-bearing fluid film. The geometry for generating the fluid film in the foil bearing is provided by the elastic deformation of the top foil. As the number of turns increases, the top foil and bumps are pushed outwards, and when the shaft is out of the center, the space of the converging wedge is formed. In this case, the foil bearing has a characteristic that the top foil is deformed, so that the design can be performed well so that an optimum shape can be obtained in which proper dynamic pressure is generated without complicated machining by the deformation of the fine top foil. In addition, since there is a margin in the radial direction, an advantage of being able to cope with an increase in the shaft diameter due to the high speed rotation can be obtained. What determines these properties is the thickness of the top foil and the shape of the bumps supporting the top foil. In particular, the design of the bump determines the stiffness and damping required by the shaft system, so the shape, thickness, height, pitch, and number of bumps are the most important factors that determine the bearing performance. .

더 나아가 군사용 베어링은 더욱 고속과 열악한 환경 및 충격에 견디는 성능을 요구하고 있으며, 고속 고출력 고효율 BLDC 모터에서는 일반적인 오일윤활 베어링으로는 요구성능을 제공할 수 없는 상황이다. 또한 구조적으로 충분한 비정렬과 열, 진동을 견디어 낼 수 있어야 하며 이를 위해 최대의 지지력을 얻기 위해서 범프를 축방향으로 분리하고 회전방향으로 분리하는 것이 유리하다고 알려져 있다.Furthermore, military bearings require higher speeds, harsher environments and shock resistance, and high-speed, high-power, high-efficiency BLDC motors cannot deliver the performance required by conventional oil-lubricated bearings. In addition, it is known to be able to withstand structurally sufficient misalignment, heat and vibration, and it is known that it is advantageous to separate the bumps in the axial direction and the rotation direction in order to obtain the maximum supporting force.

미국내에 출원된 관련 특허는 다음과 같다. 4,300,806 ; 5,915,841; 5,988,885; 4,465,384; 5,498,083; 5,584,582; 6,024,491; 6,190,048 B1; 4,624,583; 3,893,733; 3,809,443; 4,178,046; 4,654,939; 4,005,914; 5,911,511; 5,534,723; 5,427,455; 5,866,518Related patents filed in the United States are as follows. 4,300,806; 5,915,841; 5,988,885; 4,465,384; 5,498,083; 5,584,582; 6,024,491; 6,190,048 B1; 4,624,583; 3,893,733; 3,809,443; 4,178,046; 4,654,939; 4,005,914; 5,911,511; 5,534,723; 5,427,455; 5,866,518

원리에 대한 것이 이미 1970년대에 기본 특허가 출원되어 만료되었고, 범프와 탑포일에 대한 변경에 의하여 성능을 향상시키고자 노력해 왔음을 알 수 있다. 또한 5,866,518에는 고온에 적용가능하며 부착성이 우수한 금속성 건식윤활제를 개발하기 위하여 많은 노력을 하여 왔음을 알 수 있다.It can be seen that the principle has already been filed and expired in the 1970s, and efforts have been made to improve performance by changing bumps and top foils. In addition, 5,866,518 it can be seen that a lot of efforts to develop a metallic dry lubricant that is applicable to high temperatures and excellent adhesion.

본 발명은 범프타입 포일베어링에 관한 것으로 지지력을 향상시키고 정밀한 회전을 제공하는데에 목적이 있다. The present invention relates to a bump type foil bearing, which aims to improve bearing capacity and provide precise rotation.

지금까지의 포일베어링은 회전정밀도를 높이기 위하여 예하중을 주어 정지시에 축(6)과 탑포일(3)이 범프(2)의 예하중으로 조여진 상태로 있으므로, 회전에 의하여 축(6)과 탑포일(3)이 이격되기 위해서는 상당한 회전수까지 마찰이 있는 상태가 지속되게 된다. 따라서 기동시의 부하가 커지고 마모가 조기에 발생하는 문제점을 지니게 된다. 그렇다고 해서 예하중을 줄여 조립을 하게 되면 기동시의 부하나 마모는 감소하게 되지만 회전시 축의 거동이 커져 고정밀회전을 요하는 경우에는 적용하기 어렵게 된다. The conventional foil bearings are pre-loaded in order to increase the rotational accuracy, and the shaft 6 and the top foil 3 are tightened to the preload of the bump 2 at the time of stopping, so that the shaft 6 and the top gun are rotated. In order for the work 3 to be spaced apart, the frictional state is maintained up to a considerable number of revolutions. Therefore, there is a problem that the load at start-up increases and wear occurs early. However, if the preload is reduced and the assembly is reduced, the load or wear at the start is reduced, but it is difficult to apply it in the case of requiring high precision rotation due to the increase of the behavior of the shaft during rotation.

따라서 본발명에서는 예하중을 주어 회전정밀도를 높이면서도 정지상태에서부터 마찰이 작도록 하는 래디알포일베어링을 제공하고자 한다. Therefore, the present invention is to provide a radial foil bearing which gives a preload to increase the rotational precision while reducing the friction from the standstill.

본발명은 도2에 보인 것과 같이 베어링하우징(1), 범프(2), 탑포일(3), 키(4)로 구성되어진다.The present invention consists of a bearing housing 1, a bump 2, a top foil 3, and a key 4 as shown in FIG.

예하중이 있는 경우에 탑포일(3)이 내경쪽으로 눌려 축(6)과 마찰을 하게 되므로, 탑포일(3)의 두께를 현재 통상적이라고 알려져 있는 것(직경 60mm 베어링의 경우 0.1t 박판을 사용하며 벤딩하거나 그대로 사용)보다 충분히 두껍게 하여 그 자체로 원형이 유지됨으로써 범프에는 예하중을 가하지만 축과 탑포일 사이의 간극이 줄어들지 않도록 하여 최소한의 간극을 항시 유지할 수 있도록 함으로써 정지상태에서도 마찰이 최소가 되도록 할 수 있다.In the case of preload, the top foil 3 is pressed toward the inner diameter to rub against the shaft 6, so that the thickness of the top foil 3 is now known to be conventional (0.1t thin plate for 60 mm diameter bearings). It is thicker than bending or used as it is, so that the circular shape is maintained by itself so that the bump is preloaded, but the gap between the shaft and the top foil is not reduced so that the minimum gap is maintained at all times, so that the friction is minimal even at the standstill. Can be

여기서 충분한 두께는 구조적인 강성과 성능시험을 통하여 다음의 관계를 만 족하는 것이 된다는 것을 확인하였다.In this case, it was confirmed that sufficient thickness would satisfy the following relationship through structural stiffness and performance test.

Figure 112006026408639-PAT00002
Figure 112006026408639-PAT00002

t : 두께 [mm]t: thickness [mm]

D : 축직경 [mm]D: Shaft diameter [mm]

이때, 탑포일(3)은 두께가 충분하므로 정밀한 형태를 위하여 선반으로 가공하고 절단을 하여 제작하게 되므로, 절단면이 맞닿으면서 범프(2)에 예하중을 주게 되면 탑포일 내경은 정확한 원이 아니게 된다. 따라서 도2와 같이 절단면이 맞닿게 하여 예하중을 주게 되면 지지력이 낮아지는 단점이 생기게 된다.At this time, since the top foil 3 is sufficiently thick, the top foil 3 is processed into a lathe and manufactured by cutting for precise shape. Therefore, when the cutting surface abuts and gives a preload to the bump 2, the inside diameter of the top foil is not an exact circle. do. Therefore, as shown in Figure 2 when the cutting surface abuts to give a preload there is a disadvantage that the bearing capacity is lowered.

이 문제를 해결하기 위하여 도3과 같이 키(4)와 절단면(5) 사이에 스페이서를 두면, 탑포일(3)을 원형으로 유지할 수 있게 된다. 절단면의 공간은 장비에 따라 다르며 절달 두께와 동일한 스페이서를 사용하면 된다.In order to solve this problem, if the spacer is placed between the key 4 and the cutting surface 5 as shown in Fig. 3, the top foil 3 can be kept in a circular shape. The space of the cut plane varies depending on the equipment, and a spacer equal to the cutting thickness can be used.

상기한 바와 같이 두꺼운 탑포일 자체의 강성에 의하여 초기 조립 예하중을 받아도 원형을 유지하도록 하여 축에 직접적인 힘을 가하지 않으므로 기동토크를 줄이고, 예하중을 줌으로써 회전정밀도가 높게 되는 효과를 가지게 된다.As described above, the circular top is maintained by the rigidity of the thick top foil itself so that the circular shape is maintained even when the initial assembly preload is not applied. Therefore, the starting torque is reduced and the rotational precision is increased by applying the preload.

Claims (2)

다음의 두께를 가지는 탑포일(3)을 포함하는 래디알 포일베어링에 있어;For a radial foil bearing comprising a top foil 3 having the following thickness;
Figure 112006026408639-PAT00003
Figure 112006026408639-PAT00003
t : 두께 [mm]t: thickness [mm] D : 축직경 [mm]D: Shaft diameter [mm] 탑포일(3)의 절단면이 서로 맞닿아 예하중을 가하며 조립되어 탑포일(3)과 축(6)이 간섭이 없도록 조립되는 것을 특징으로 하는 래디알 포일베어링Radial foil bearing, characterized in that the cutting surface of the top foil (3) abuts against each other to apply a preload so that the top foil (3) and the shaft (6) is assembled so that there is no interference
1항의 래디알 포일 베어링에 있어서, 키(4)에 용접된 스페이서(7)를 포함하는 것을 특징으로 하는 래디알 포일 베어링Radial foil bearing according to claim 1, characterized in that it comprises a spacer (7) welded to the key (4).
KR1020060034471A 2006-04-17 2006-04-17 High Precision Radial Foil Bearing KR100782374B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060034471A KR100782374B1 (en) 2006-04-17 2006-04-17 High Precision Radial Foil Bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060034471A KR100782374B1 (en) 2006-04-17 2006-04-17 High Precision Radial Foil Bearing

Publications (2)

Publication Number Publication Date
KR20070102809A true KR20070102809A (en) 2007-10-22
KR100782374B1 KR100782374B1 (en) 2007-12-05

Family

ID=38817508

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060034471A KR100782374B1 (en) 2006-04-17 2006-04-17 High Precision Radial Foil Bearing

Country Status (1)

Country Link
KR (1) KR100782374B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103649572A (en) * 2011-07-22 2014-03-19 株式会社Ihi Radial foil bearing
CN107725593A (en) * 2017-11-09 2018-02-23 西安交通大学 Elastic bearing Foil gas bearing with the pre- wedge shape space of inherent structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100573384B1 (en) * 2004-02-14 2006-04-25 한국터보기계(주) Radial Foil Bearing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103649572A (en) * 2011-07-22 2014-03-19 株式会社Ihi Radial foil bearing
CN103649572B (en) * 2011-07-22 2016-01-13 株式会社Ihi Radial bearing foil
CN107725593A (en) * 2017-11-09 2018-02-23 西安交通大学 Elastic bearing Foil gas bearing with the pre- wedge shape space of inherent structure

Also Published As

Publication number Publication date
KR100782374B1 (en) 2007-12-05

Similar Documents

Publication Publication Date Title
KR100573384B1 (en) Radial Foil Bearing
US20100177997A1 (en) Radial foil bearing with sealing function
US8414191B2 (en) Keyless/grooveless foil bearing with fold over tab
US20110150376A1 (en) Trust foil bearing
CN102927124B (en) Multi-layer bubbled foil radial dynamic pressure gas bearing
EP2710272B1 (en) Coast down bushing for magnetic bearing systems
US20120261536A1 (en) Compliant bearing mount
JP6591179B2 (en) Foil bearing
WO2015157052A1 (en) Foil thrust bearing for oil free turbocharger
US20060078239A1 (en) Wave bearings in high performance applications
KR100413060B1 (en) High load capacity smart foil journal bearing with semi-active dampers
KR100749828B1 (en) Radial foil bearing with seal function
US5205652A (en) Nonlinear spring supported hydrodynamic bearing
JP2018028328A (en) Ball bearing, spindle device and machine tool
KR100782374B1 (en) High Precision Radial Foil Bearing
KR20090075272A (en) Long life foil bearing
KR102442191B1 (en) Air foil bearing and air compressor having the same
US5447376A (en) Package bearing system
EP2679842A1 (en) Hydrodynamic journal bearing - especially for the use in steam turbine and other rotary equipment
CN110714981B (en) Dynamic pressure gas thrust bearing
CN217950990U (en) Squeeze film damping tilting pad sliding bearing
JP2001012464A (en) Bearing device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20121123

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20131230

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20141125

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150909

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160927

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180508

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20181231

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20191226

Year of fee payment: 13