KR20070022694A - Gene Expression Markers for Predicting Response to Chemotherapy - Google Patents

Gene Expression Markers for Predicting Response to Chemotherapy Download PDF

Info

Publication number
KR20070022694A
KR20070022694A KR1020067023413A KR20067023413A KR20070022694A KR 20070022694 A KR20070022694 A KR 20070022694A KR 1020067023413 A KR1020067023413 A KR 1020067023413A KR 20067023413 A KR20067023413 A KR 20067023413A KR 20070022694 A KR20070022694 A KR 20070022694A
Authority
KR
South Korea
Prior art keywords
dna
artificial sequence
cancer
expression
synthetic oligonucleotide
Prior art date
Application number
KR1020067023413A
Other languages
Korean (ko)
Inventor
조프레 비. 베이커
스티븐 샤크
루카 지안니
Original Assignee
게노믹 헬쓰, 인코포레이티드
폰다지오네 이르씨스 이스티튜토 나찌오날레 데이 투모리
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 게노믹 헬쓰, 인코포레이티드, 폰다지오네 이르씨스 이스티튜토 나찌오날레 데이 투모리 filed Critical 게노믹 헬쓰, 인코포레이티드
Priority to KR1020067023413A priority Critical patent/KR20070022694A/en
Publication of KR20070022694A publication Critical patent/KR20070022694A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Hospice & Palliative Care (AREA)
  • Biophysics (AREA)
  • Oncology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 그의 발현이 암의 예후에 중요한 유전자 세트를 제공한다. 특히, 본 발명은 암 환자가 화학요법에 대하여 유리한 치료 반응을 갖기 쉬운지를 예측하는데 유용한 유전자 발현 정보를 제공한다.The present invention provides a set of genes whose expression is important for prognosis of cancer. In particular, the present invention provides gene expression information useful for predicting whether a cancer patient is likely to have a favorable therapeutic response to chemotherapy.

암, 예후, 유전자, 유전자 발현 정보, 화학요법, 치료 반응 Cancer, Prognosis, Genes, Gene Expression Information, Chemotherapy, Therapeutic Response

Description

화학요법 반응을 예측하기 위한 유전자 발현 마커 {Gene Expression Markers for Predicting Response to Chemotherapy}Gene Expression Markers for Predicting Response to Chemotherapy

본 발명은 그의 발현이 암의 예후에 중요한 유전자 세트를 제공한다. 특히, 본 발명은 암 환자가 화학요법에 대하여 유리한 치료 반응을 갖기 쉬운지를 예측하는데 유용한 유전자 발현 정보를 제공한다.The present invention provides a set of genes whose expression is important for prognosis of cancer. In particular, the present invention provides gene expression information useful for predicting whether a cancer patient is likely to have a favorable therapeutic response to chemotherapy.

종양의들은 "처치 기준(standard of care)"으로 특성화되는 화학요법 약제 및 특정 암에 대한 표지 자격을 갖지는 않지만 그 암에 있어서의 효능의 증거는 있는 수많은 약물의 상이한 조합들을 포함하여, 이들이 이용할 수 있는 수많은 치료 선택사항들을 갖는다. 양호한 치료 성과에 대한 최상의 가능성은 환자에게 이용가능한 최적의 암 치료를 지정해야 하고 이러한 지정은 진단 후 가능한 빠르게 이루어져야 할 필요가 있다. 특히, 화학요법 약제, 예를 들면 안트라시클린 및 탁산이 제한된 효능을 갖고 독성이기 때문에 "처치 기준" 화학요법에 대한 환자 반응의 가능성을 결정하는 것이 중요하다. 따라서 가장 반응하기 쉽거나 또는 가장 반응하기 어려운 환자의 식별은 보다 현명한 환자 선택을 통해, 이들 약물이 제공해야 하는 순 이익을 증대시키고 순 사망률 및 독성을 감소시킬 수 있다.Tumor doctors include different combinations of chemotherapy drugs that are characterized as a "standard of care" and numerous combinations of drugs that do not qualify for labeling for a particular cancer but have evidence of efficacy in that cancer. There are numerous treatment options available. The best possibility for good treatment outcomes should specify the optimal cancer treatment available to the patient and this designation needs to be made as soon as possible after diagnosis. In particular, it is important to determine the likelihood of patient response to “treatment criteria” chemotherapy because chemotherapeutic agents such as anthracycline and taxanes have limited efficacy and are toxic. Thus, identification of the most responsive or least responsive patient can, through smarter patient selection, increase the net benefits that these drugs must provide and reduce net mortality and toxicity.

현재, 임상학적 관행에 사용되는 진단 시험은 단일 분석물질이므로, 많은 상이한 마커들 사이의 알려져 있는 관계들의 잠재적인 값을 손에 넣지 못한다. 게다가, 진단 시험들은 주로 면역조직화학에 의존하여 정량적이 아니다. 이 방법은 부분적으로는 시약이 표준화되어 있지 않기 때문에, 그리고 부분적으로는 해석이 주관적이어서 쉽게 정량화될 수 없기 때문에, 상이한 실험실에서 상이한 결과를 산출한다. RNA-기재 시험은 시간이 지남에 따른 RNA 분해 문제 및 분석을 위한 신선한 조직 샘플을 환자로부터 얻기 어렵다는 사실 때문에 자주 사용되지 못하였다. 고정되어 파라핀에 매립된 조직이 보다 쉽게 입수할 수 있어 고정 조직에서 RNA를 검출하기 위한 방법들이 확립되어 있다. 그러나, 이들 방법은 전형적으로 소량의 물질로부터 많은 수의 유전자 (DNA 또는 RNA)의 연구를 가능하게 하지 못한다. 그리하여, 전통적으로 고정 조직은 단백질의 면역조직화학 검출의 경우 이외에선 거의 사용되지 않고 있다.Currently, diagnostic tests used in clinical practice are single analytes and thus do not obtain the potential value of known relationships between many different markers. In addition, diagnostic tests are not quantitative, mainly dependent on immunohistochemistry. This method yields different results in different laboratories, in part because the reagents are not standardized, and in part because the interpretation is subjective and cannot be easily quantified. RNA-based testing was not frequently used due to the problem of RNA degradation over time and the fact that fresh tissue samples for analysis were difficult to obtain from patients. Tissues immobilized and embedded in paraffin are more readily available, and methods for detecting RNA in fixed tissues have been established. However, these methods typically do not allow the study of large numbers of genes (DNA or RNA) from small amounts of material. Thus, traditionally, fixed tissues are rarely used except for immunohistochemical detection of proteins.

최근 수년 동안에, 몇몇 그룹들은 마이크로어레이(microarray) 유전자 발현 분석에 의한 다양한 암 유형의 분류에 관한 연구를 발표하였다 (예를 들면, 문헌 ([Golub et al ., Science 286:531-537 (1999)], [Bhattacharjae et al ., Proc . Natl. Acad . Sci. USA 98:13790-13795 (2001)], [Chen-Hsiang et al ., Bioinformatics 17 (Suppl.1):S316-S322 (2001)], 및 [Ramaswamy et al ., Proc . Natl. Acad . Sci. USA 98:15149-15154 (2001)]) 참조). 유전자 발현 패턴에 기초한 인간 유방암의 특정 분류들도 또한 보고되어 있다 (문헌 ([Martin et al ., Cancer Res . 60:2232-2238 (2000)], [West et al ., Proc . Natl . Acad . Sci. USA98:11462-11467 (2001)], [Sorlie et al ., Proc . Natl . Acad . Sci . USA 98:10869-10874 (2001)], 및 [Yan et al ., Cancer Res . 61:8375-8380 (2001)])). 그러나, 이들 연구들은 대부분 유방암을 포함하는 다양한 유형의 암의 이미 확립된 분류를 개선하고 다듬는 것에 초점을 두어, 일반적으로 차등적으로 발현되는 유전자들의 관계에 대한 새로운 통찰을 제공하지 못하고, 암 치료법의 임상학적 성과를 개선하도록 이러한 발견들을 치료 전략에 연계시키지 못한다.In recent years, several groups have published studies on the classification of various cancer types by microarray gene expression analysis (see, for example, Golub et. al ., Science 286: 531-537 (1999), Bhattacharjae et al ., Proc . Natl. Acad . Sci . USA 98: 13790-13795 (2001), Chen-Hsiang et. al ., Bioinformatics 17 (Suppl . 1): S316-S322 (2001), and Ramaswamy et. al ., Proc . Natl. Acad . Sci . USA 98: 15149-15154 (2001)]. Certain classifications of human breast cancer based on gene expression patterns have also been reported (Martin et. al ., Cancer Res . 60: 2232-2238 (2000), West et al ., Proc . Natl . Acad . Sci . USA 98: 11462-11467 (2001), Sorlie et. al ., Proc . Natl . Acad . Sci . USA 98: 10869-10874 (2001), and Yan et. al ., Cancer Res . 61: 8375-8380 (2001)]). However, these studies focus on improving and refine the already established classification of various types of cancer, including breast cancer in the majority of cases, and do not provide new insights into the relationship of genes that are differentially expressed in general, and These findings are not linked to treatment strategies to improve clinical outcomes.

비록 현대 분자 생물학 및 생화학이 그의 활성이 종양 세포의 거동, 그의 분화 상태, 및 그의 특정 요법 약제에 대한 내성 또는 민감도에 영향을 미치는 수백개의 유전자들을 밝혀냈지만, 몇몇 예외가 있어, 이들 유전자들의 현황은 일상적으로 약물 치료에 대한 임상학적 결정을 내릴 목적으로 이용되지 못하고 있다. 한 주목할 만한 예외는 타목시펜과 같은 항-에스트로겐 약물을 이용한 치료에 대한 환자를 선택하는데 유방 암종에서의 에스트로겐 수용체 (ER) 단백질 발현을 사용하는 것이다. 다른 예외적인 예는 유방 암종에서의 ErbB2 (Her2) 단백질 발현을 사용하여 Her2 길항제 약물 헤르셉틴(Herceptin)® (진테크, 인크.(Genentech, Inc.), 캘리포니아주 사우쓰 샌프란시스코)을 이용한 치료에 대한 환자를 선택하는 것이다.Although modern molecular biology and biochemistry have uncovered hundreds of genes whose activity affects tumor cell behavior, their differentiation status, and resistance or sensitivity to certain therapeutic agents, with a few exceptions, the status of these genes It is not routinely used to make clinical decisions about drug treatment. One notable exception is the use of estrogen receptor (ER) protein expression in breast carcinoma in selecting patients for treatment with anti-estrogen drugs such as tamoxifen. Another exceptional example is the use of ErbB2 (Her2) protein expression in breast carcinoma for treatment with Her2 antagonist drug Herceptin® (Genentech, Inc., South San Francisco, CA). To choose a patient.

최근의 진전에도 불구하고, 발병적으로 별개의 종양 유형에 대해 특이적 치료 섭생을 표적화하고, 궁극적으로 성과를 최대화시키기 위하여 종양 치료를 개인화하기 위한 암 치료의 도전과제들이 남아있다. 따라서, 각종 치료 선택사항들에 대한 환자 반응에 관한 예측적 정보를 동시에 제공하는 시험을 필요로 하고 있다. 이것은 그의 생물학이 거의 이해되지 않고 있는 유방암의 경우 특히 그러하다. 유 방암의 소수의 아군, 예를 들면 ErbB2 양성 아군 및 에스트로겐 수용체 (ER) 및 소수의 추가적인 전사 인자들의 유전자 발현이 적거나 내지는 없는 것을 특징으로 하는 아군으로의 분류 (문헌 [Perou et al ., Nature 406:747-752 (2000)])가 유방암의 세포 및 분자 이질성을 반영하지 못하고, 환자 반응을 최대화하는 치료 전략의 설계를 가능하게 하지 못함이 명백하다.Despite recent advances, the challenges of cancer treatment remain to personalize tumor treatment in order to target specific treatment regimens for pathologically distinct tumor types and ultimately maximize outcomes. Thus, there is a need for tests that simultaneously provide predictive information about patient response to various treatment options. This is especially true of breast cancer, whose biology is little understood. A few subgroups of breast cancer, such as ErbB2 positive subgroups and subclasses characterized by little or no gene expression of estrogen receptors (ER) and a few additional transcription factors (Perou et al. al ., Nature 406: 747-752 (2000)] do not reflect the cellular and molecular heterogeneity of breast cancer and do not allow the design of therapeutic strategies to maximize patient response.

유방암은 미국 내 여성들 사이에서 가장 일반적인 암 유형이고, 40-59세 연령의 여성들 사이에서의 암 사망의 주된 원인이다. 그러므로, 화학요법에 대한 환자 반응을 예측하는 임상학적으로 확인된 유방암 시험을 특히 많이 필요로 하고 있다.Breast cancer is the most common type of cancer among women in the United States and the leading cause of cancer deaths among women ages 40-59. Therefore, there is a particular need for clinically confirmed breast cancer trials that predict patient response to chemotherapy.

<발명의 요약>Summary of the Invention

본 발명은 암, 예를 들면 유방암 환자의 화학요법에 대한 반응을 예측하는데 유용한 유전자 세트를 제공한다. 또한, 본 발명은 다중-유전자 RNA 분석을 사용하여, 화학요법에 대한 환자 반응을 예측하는 임상학적으로 확인된 암, 예를 들면 유방암 시험을 제공한다. 본 발명은 관련 유전자 세트 내 모든 마커들의 분석을 위해 보관된 파라핀-매립 생검 물질의 사용을 채택하고, 따라서 가장 광범위하게 이용가능한 유형의 생검 물질과 상용성이다.The present invention provides a set of genes useful for predicting the response to chemotherapy in cancer, for example breast cancer patients. The present invention also provides clinically confirmed cancers, such as breast cancer tests, that predict patient response to chemotherapy using multi-gene RNA analysis. The present invention employs the use of stored paraffin-embedded biopsy materials for the analysis of all markers in the relevant gene set and is therefore compatible with the most widely available types of biopsy materials.

한 면에서, 본 발명은 암으로 진단된 대상체로부터 얻은 암 세포를 포함하는 생물학적 샘플 중에서 1종 이상의 예후 RNA 전사체 또는 이들의 발현 생성물의 발현도를 결정하는 것을 포함하는 상기 암으로 진단된 대상체의 화학요법에 대한 반응을 예측하는 방법에 관한 것으로, 여기서의 상기 예후 RNA 전사체는 TBP; ILT.2; ABCC5; CD18; GATA3; DICER1; MSH3; GBP1; IRS1; CD3z; fasl; TUBB; BAD; ERCC1; MCM6; PR; APC; GGPS1; KRT18; ESRRG; E2F1; AKT2; 에이.카테닌(A.Catenin); CEGP1; NPD009; MAPK14; RUNX1; ID2; 쥐.카테닌(G.Catenin); FBXO5; FHIT; MTA1; ERBB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; CDC20; STAT3; ERK1; HLA.DPB1; SGCB; CGA; DHPS; MGMT; CRIP2; MMP12; ErbB3; RAP1GDS1; CDC25B; IL6; CCND1; CYBA; PRKCD; DR4; 헵신(Hepsin); CRABP1; AK055699; 콘티그.(Contig.)51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; ZNF38; MCM2; GBP2; SEMA3F; CD31; COL1A1; ER2; BAG1; AKT1; COL1A2; STAT1; Wnt.5a; PTPD1; RAB6C; TK1, ErbB2, CCNB1, BIRC5, STK6, MKI67, MYBL2, MMP11, CTSL2, CD68, GSTM1, BCL2, ESR1로 이루어진 군으로부터 선택된 1종 이상의 유전자의 전사체이고, 이때In one aspect, the invention relates to a chemistry of a subject diagnosed with cancer comprising determining the expression level of one or more prognostic RNA transcripts or expression products thereof in a biological sample comprising cancer cells obtained from the subject diagnosed with cancer. A method of predicting a response to therapy wherein the prognostic RNA transcripts comprise TBP; ILT.2; ABCC5; CD18; GATA3; DICER1; MSH3; GBP1; IRS1; CD3z; fasl; TUBB; BAD; ERCC1; MCM6; PR; APC; GGPS1; KRT18; ESRRG; E2F1; AKT2; A.Catenin; CEGP1; NPD009; MAPK14; RUNX1; ID2; Rat G.Catenin; FBXO5; FHIT; MTA1; ERBB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; CDC20; STAT3; ERK1; HLA.DPB1; SGCB; CGA; DHPS; MGMT; CRIP2; MMP12; ErbB3; RAP1GDS1; CDC25B; IL6; CCND1; CYBA; PRKCD; DR4; Hepsin (Hepsin); CRABP1; AK055699; Contig. 51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; ZNF38; MCM2; GBP2; SEMA3F; CD31; COL1A1; ER2; BAG1; AKT1; COL1A2; STAT1; Wnt. 5a; PTPD1; RAB6C; A transcript of at least one gene selected from the group consisting of TK1, ErbB2, CCNB1, BIRC5, STK6, MKI67, MYBL2, MMP11, CTSL2, CD68, GSTM1, BCL2, ESR1

(a) ILT.2; CD18; GBP1; CD3z; fasl; MCM6; E2F1; ID2; FBXO5; CDC20; HLA.DPB1; CGA; MMP12; CDC25B; IL6; CYBA; DR4; CRABP1; 콘티그.51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; MCM2; GBP2; CD31; ER2; STAT1; TK1; ERBB2, CCNB1, BIRC5, STK6, MKI67, MYBL2, MMP11, CTSL2 및 CD68; 또는 상응하는 발현 생성물 중 1종 이상의 발현 단위가 증가했으면, 상기 대상체가 화학요법에 대한 반응이 증가될 가능성을 갖는 것으로 예측되고,(a) ILT.2; CD18; GBP1; CD3z; fasl; MCM6; E2F1; ID2; FBXO5; CDC20; HLA.DPB1; CGA; MMP12; CDC25B; IL6; CYBA; DR4; CRABP1; Contig. 51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; MCM2; GBP2; CD31; ER2; STAT1; TK1; ERBB2, CCNB1, BIRC5, STK6, MKI67, MYBL2, MMP11, CTSL2 and CD68; Or if at least one expression unit of the corresponding expression product has increased, the subject is predicted to have an increased response to chemotherapy,

(b) TBP; ABCC5; GATA3; DICER1; MSH3; IRS1; TUBB; BAD; ERCC1; PR; APC; GGPS1; KRT18; ESRRG; AKT2; 에이.카테닌; CEGP1; NPD009; MAPK14; RUNX1; 쥐.카테닌; FHIT; MTA1; ErbB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; STAT3; ERK1; SGCB; DHPS; MGMT; CRIP2; ErbB3; RAP1GDS1; CCND1; PRKCD; 헵신; AK055699; ZNF38; SEMA3F; COL1A1; BAG1; AKT1; COL1A2; Wnt.5a; PTPD1; RAB6C; GSTM1, BCL2, ESR1; 또는 상응하는 발현 생성물 중 1종 이상의 발현 단위가 증가했으면, 상기 대상체가 화학요법에 대한 반응이 감소될 가능성을 갖는 것으로 예측된다.(b) TBP; ABCC5; GATA3; DICER1; MSH3; IRS1; TUBB; BAD; ERCC1; PR; APC; GGPS1; KRT18; ESRRG; AKT2; A. catenin; CEGP1; NPD009; MAPK14; RUNX1; Rat.catenin; FHIT; MTA1; ErbB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; STAT3; ERK1; SGCB; DHPS; MGMT; CRIP2; ErbB3; RAP1GDS1; CCND1; PRKCD; Heptin; AK055699; ZNF38; SEMA3F; COL1A1; BAG1; AKT1; COL1A2; Wnt. 5a; PTPD1; RAB6C; GSTM1, BCL2, ESR1; Or if one or more expression units of the corresponding expression product has increased, it is predicted that the subject has the potential for reduced response to chemotherapy.

특정 실시태양에서는, 상기 방법에서 예후 RNA 전사체는 TBP; ILT.2; ABCC5; CD18; GATA3; DICER1; MSH3; GBP1; IRS1; CD3z; fasl; TUBB; BAD; ERCC1; MCM6; PR; APC; GGPS1; KRT18; ESRRG; E2F1; AKT2; 에이.카테닌; CEGP1; NPD009; MAPK14; RUNX1; ID2; 쥐.카테닌; FBXO5; FHIT; MTA1; ERBB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; CDC20; STAT3; ERK1; HLA.DPB1; SGCB; CGA; DHPS; MGMT; CRIP2; MMP12; ErbB3; RAP1GDS1; CDC25B; IL6; CCND1; CYBA; PRKCD; DR4; 헵신; CRABP1; AK055699; 콘티그.51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; ZNF38; MCM2; GBP2; SEMA3F; CD31; COL1A1; ER2; BAG1; AKT1; COL1A2; STAT1; Wnt.5a; PTPD1; RAB6C; 및 TK1로 이루어진 군으로부터 선택된 1종 이상의 유전자의 전사체이다.In certain embodiments, the prognostic RNA transcript in the method comprises TBP; ILT.2; ABCC5; CD18; GATA3; DICER1; MSH3; GBP1; IRS1; CD3z; fasl; TUBB; BAD; ERCC1; MCM6; PR; APC; GGPS1; KRT18; ESRRG; E2F1; AKT2; A. catenin; CEGP1; NPD009; MAPK14; RUNX1; ID2; Rat.catenin; FBXO5; FHIT; MTA1; ERBB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; CDC20; STAT3; ERK1; HLA.DPB1; SGCB; CGA; DHPS; MGMT; CRIP2; MMP12; ErbB3; RAP1GDS1; CDC25B; IL6; CCND1; CYBA; PRKCD; DR4; Heptin; CRABP1; AK055699; Contig. 51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; ZNF38; MCM2; GBP2; SEMA3F; CD31; COL1A1; ER2; BAG1; AKT1; COL1A2; STAT1; Wnt. 5a; PTPD1; RAB6C; And a transcript of at least one gene selected from the group consisting of TK1.

다른 실시태양에서, 반응은 완전 병리 반응이다.In other embodiments, the reaction is a complete pathological reaction.

바람직한 실시태양에서, 대상체는 사람 환자이다.In a preferred embodiment, the subject is a human patient.

암은 임의의 유형의 암일 수 있지만, 바람직하게는 충실성 종양, 예를 들면 유방암, 난소암, 위암, 결장암, 췌장암, 전립선암 및 폐암이다.The cancer can be any type of cancer, but is preferably a solid tumor such as breast cancer, ovarian cancer, gastric cancer, colon cancer, pancreatic cancer, prostate cancer and lung cancer.

종양이 유방암인 경우, 예를 들면 침윤 유방암, 또는 II기 또는 III기 유방암일 수 있다.If the tumor is breast cancer, it may be for example invasive breast cancer or stage II or III breast cancer.

특정 실시태양에서, 화학요법은 보조항암 화학요법(adjuvant chemotherapy)이다.In certain embodiments, the chemotherapy is adjuvant chemotherapy.

다른 실시태양에서, 화학요법은 신보조항암 화학요법(neoadjuvant chemotherapy)이다.In another embodiment, the chemotherapy is neoadjuvant chemotherapy.

신보조항암 화학요법은 예를 들면 탁산 유도체, 예를 들면 도세탁셀 및(또는) 파클리탁셀, 및(또는) 다른 항암제, 예를 들면 안트라시클린류 항암제의 구성원, 독소루비신, 토포이소머라제 억제제 등의 투여를 포함할 수 있다.Neoadjuvant chemotherapy can be administered, for example, with taxane derivatives such as docetaxel and / or paclitaxel, and / or other anticancer agents such as members of anthracycline anticancer agents, doxorubicin, topoisomerase inhibitors, and the like. It may include.

본 방법은 상기 열거한 예후 전사체들 또는 이들의 발현 생성물들 중 2종 이상, 또는 5종 이상, 또는 10종 이상 또는 15종 이상의 발현도의 결정을 포함할 수 있다.The method may comprise the determination of two or more, or five or more, or ten or more or fifteen or more expression levels of the prognostic transcripts or expression products thereof listed above.

생물학적 샘플은 예를 들면 암 세포를 포함하는 조직 샘플일 수 있고, 여기서 조직은 고정되어 파라핀에 매립된 것이거나, 또는 신선하거나 또는 냉동된 것일 수 있다.The biological sample may be, for example, a tissue sample comprising cancer cells, wherein the tissue may be fixed and embedded in paraffin, or fresh or frozen.

특정 실시태양에서, 조직은 미세침, 코어(core) 또는 다른 유형의 생검으로부터 얻는다.In certain embodiments, the tissue is obtained from microneedle, core or other type of biopsy.

다른 실시태양에서, 조직 샘플은 미세침 흡인, 기관지 세정 또는 경기관지 생검에 의해 얻는다.In another embodiment, the tissue sample is obtained by microneedle aspiration, bronchial lavage or coronary biopsy.

상기 예후 RNA 전사체(들)의 발현도는 예를 들면 RT-PCR 또는 다른 PCR-기재 방법, 면역조직화학, 프로테오믹스(proteomics) 기술, 또는 당업계에 공지된 임의의 다른 방법 또는 이들의 병용에 의해 측정될 수 있다.The expression level of the prognostic RNA transcript (s) can be determined, for example, by RT-PCR or other PCR-based methods, immunohistochemistry, proteomics techniques, or any other method known in the art or combinations thereof. Can be measured.

한 실시태양에서, 상기 예후 RNA 전사체 또는 이들의 발현 생성물의 측정을 위한 검정시험은 키트(들)의 형태로 제공된다.In one embodiment, the assay for measuring the prognostic RNA transcripts or expression products thereof is provided in the form of kit (s).

다른 면에서, 본 발명은 하기 유전자 중 복수종에 혼성화되는 폴리뉴클레오티드를 포함하는 어레이(array)에 관한 것이다: TBP; ILT.2; ABCC5; CD18; GATA3; DICER1; MSH3; GBP1; IRS1; CD3z; fasl; TUBB; BAD; ERCC1; MCM6; PR; APC; GGPS1; KRT18; ESRRG; E2F1; AKT2; 에이.카테닌; CEGP1; NPD009; MAPK14; RUNX1; ID2; 쥐.카테닌; FBXO5; FHIT; MTA1; ERBB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; CDC20; STAT3; ERK1; HLA.DPB1; SGCB; CGA; DHPS; MGMT; CRIP2; MMP12; ErbB3; RAP1GDS1; CDC25B; IL6; CCND1; CYBA; PRKCD; DR4; 헵신; CRABP1; AK055699; 콘티그.51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; ZNF38; MCM2; GBP2; SEMA3F; CD31; COL1A1; ER2; BAG1; AKT1; COL1A2; STAT1; Wnt.5a; PTPD1; RAB6C; TK1, ErbB2, CCNB1, BIRC5, STK6, MKI67, MYBL2, MMP11, CTSL2, CD68, GSTM1, BCL2, ESR1. In another aspect, the invention relates to an array comprising a polynucleotide hybridizing to multiple species of the following genes: TBP; ILT.2; ABCC5; CD18; GATA3; DICER1; MSH3; GBP1; IRS1; CD3z; fasl; TUBB; BAD; ERCC1; MCM6; PR; APC; GGPS1; KRT18; ESRRG; E2F1; AKT2; A. catenin; CEGP1; NPD009; MAPK14; RUNX1; ID2; Rat.catenin; FBXO5; FHIT; MTA1; ERBB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; CDC20; STAT3; ERK1; HLA.DPB1; SGCB; CGA; DHPS; MGMT; CRIP2; MMP12; ErbB3; RAP1GDS1; CDC25B; IL6; CCND1; CYBA; PRKCD; DR4; Heptin; CRABP1; AK055699; Contig. 51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; ZNF38; MCM2; GBP2; SEMA3F; CD31; COL1A1; ER2; BAG1; AKT1; COL1A2; STAT1; Wnt. 5a; PTPD1; RAB6C; TK1, ErbB2, CCNB1, BIRC5, STK6, MKI67, MYBL2, MMP11, CTSL2, CD68, GSTM1, BCL2, ESR1.

한 실시태양에서, 어레이는 하기 유전자 중 복수종에 혼성화되는 폴리뉴클레오티드를 포함한다: TBP; ILT.2; ABCC5; CD18; GATA3; DICER1; MSH3; GBP1; IRS1; CD3z; fasl; TUBB; BAD; ERCC1; MCM6; PR; APC; GGPS1; KRT18; ESRRG; E2F1; AKT2; 에이.카테닌; CEGP1; NPD009; MAPK14; RUNX1; ID2; 쥐.카테닌; FBXO5; FHIT; MTA1; ERBB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; CDC20; STAT3; ERK1; HLA.DPB1; SGCB; CGA; DHPS; MGMT; CRIP2; MMP12; ErbB3; RAP1GDS1; CDC25B; IL6; CCND1; CYBA; PRKCD; DR4; 헵신; CRABP1; AK055699; 콘티그.51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; ZNF38; MCM2; GBP2; SEMA3F; CD31; COL1A1; ER2; BAG1; AKT1; COL1A2; STAT1; Wnt.5a; PTPD1; RAB6C; TK1.In one embodiment, the array comprises polynucleotides that hybridize to multiple species of the following genes: TBP; ILT.2; ABCC5; CD18; GATA3; DICER1; MSH3; GBP1; IRS1; CD3z; fasl; TUBB; BAD; ERCC1; MCM6; PR; APC; GGPS1; KRT18; ESRRG; E2F1; AKT2; A. catenin; CEGP1; NPD009; MAPK14; RUNX1; ID2; Rat.catenin; FBXO5; FHIT; MTA1; ERBB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; CDC20; STAT3; ERK1; HLA.DPB1; SGCB; CGA; DHPS; MGMT; CRIP2; MMP12; ErbB3; RAP1GDS1; CDC25B; IL6; CCND1; CYBA; PRKCD; DR4; Heptin; CRABP1; AK055699; Contig. 51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; ZNF38; MCM2; GBP2; SEMA3F; CD31; COL1A1; ER2; BAG1; AKT1; COL1A2; STAT1; Wnt. 5a; PTPD1; RAB6C; TK1.

다른 실시태양에서, 어레이는 하기 유전자 중 복수종에 혼성화되는 폴리뉴클레오티드를 포함한다: ILT.2; CD18; GBP1; CD3z; fasl; MCM6; E2F1; ID2; FBXO5; CDC20; HLA.DPB1; CGA; MMP12; CDC25B; IL6; CYBA; DR4; CRABP1; 콘티그.51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; MCM2; GBP2; CD31; ER2; STAT1; TK1; ERBB2, CCNB1, BIRC5, STK6, MKI67, MYBL2, MMP11, CTSL2 및 CD68.In other embodiments, the array comprises polynucleotides that hybridize to multiple species of the following genes: ILT.2; CD18; GBP1; CD3z; fasl; MCM6; E2F1; ID2; FBXO5; CDC20; HLA.DPB1; CGA; MMP12; CDC25B; IL6; CYBA; DR4; CRABP1; Contig. 51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; MCM2; GBP2; CD31; ER2; STAT1; TK1; ERBB2, CCNB1, BIRC5, STK6, MKI67, MYBL2, MMP11, CTSL2 and CD68.

또다른 실시태양에서, 어레이는 하기 유전자 중 복수종에 혼성화되는 폴리뉴클레오티드를 포함한다: ILT.2; CD18; GBP1; CD3z; fasl; MCM6; E2F1; ID2; FBXO5; CDC20; HLA.DPB1; CGA; MMP12; CDC25B; IL6; CYBA; DR4; CRABP1; 콘티그.51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; MCM2; GBP2; CD31; ER2; STAT1; TK1.In another embodiment, the array comprises polynucleotides that hybridize to multiple species of the following genes: ILT.2; CD18; GBP1; CD3z; fasl; MCM6; E2F1; ID2; FBXO5; CDC20; HLA.DPB1; CGA; MMP12; CDC25B; IL6; CYBA; DR4; CRABP1; Contig. 51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; MCM2; GBP2; CD31; ER2; STAT1; TK1.

또다른 실시태양에서, 어레이는 하기 유전자 중 복수종에 혼성화되는 폴리뉴클레오티드를 포함한다: TBP; ABCC5; GATA3; DICER1; MSH3; IRS1; TUBB; BAD; ERCC1; PR; APC; GGPS1; KRT18; ESRRG; AKT2; 에이.카테닌; CEGP1; NPD009; MAPK14; RUNX1; 쥐.카테닌; FHIT; MTA1; ErbB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; STAT3; ERK1; SGCB; DHPS; MGMT; CRIP2; ErbB3; RAP1GDS1; CCND1; PRKCD; 헵신; AK055699; ZNF38; SEMA3F; COL1A1; BAG1; AKT1; COL1A2; Wnt.5a; PTPD1; RAB6C; GSTM1, BCL2, ESR1. In another embodiment, the array comprises polynucleotides that hybridize to multiple species of the following genes: TBP; ABCC5; GATA3; DICER1; MSH3; IRS1; TUBB; BAD; ERCC1; PR; APC; GGPS1; KRT18; ESRRG; AKT2; A. catenin; CEGP1; NPD009; MAPK14; RUNX1; Rat.catenin; FHIT; MTA1; ErbB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; STAT3; ERK1; SGCB; DHPS; MGMT; CRIP2; ErbB3; RAP1GDS1; CCND1; PRKCD; Heptin; AK055699; ZNF38; SEMA3F; COL1A1; BAG1; AKT1; COL1A2; Wnt. 5a; PTPD1; RAB6C; GSTM1, BCL2, ESR1.

다른 실시태양에서, 어레이는 하기 유전자 중 복수종에 혼성화되는 폴리뉴클레오티드를 포함한다: TBP; ABCC5; GATA3; DICER1; MSH3; IRS1; TUBB; BAD; ERCC1; PR; APC; GGPS1; KRT18; ESRRG; AKT2; 에이.카테닌; CEGP1; NPD009; MAPK14; RUNX1; 쥐.카테닌; FHIT; MTA1; ErbB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; STAT3; ERK1; SGCB; DHPS; MGMT; CRIP2; ErbB3; RAP1GDS1; CCND1; PRKCD; 헵신; AK055699; ZNF38; SEMA3F; COL1A1; BAG1; AKT1; COL1A2; Wnt.5a; PTPD1; RAB6C. In other embodiments, the array comprises polynucleotides that hybridize to multiple species of the following genes: TBP; ABCC5; GATA3; DICER1; MSH3; IRS1; TUBB; BAD; ERCC1; PR; APC; GGPS1; KRT18; ESRRG; AKT2; A. catenin; CEGP1; NPD009; MAPK14; RUNX1; Rat.catenin; FHIT; MTA1; ErbB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; STAT3; ERK1; SGCB; DHPS; MGMT; CRIP2; ErbB3; RAP1GDS1; CCND1; PRKCD; Heptin; AK055699; ZNF38; SEMA3F; COL1A1; BAG1; AKT1; COL1A2; Wnt. 5a; PTPD1; RAB6C.

각종 실시태양에서, 어레이는 상기 폴리뉴클레오티드를 5종 이상, 또는 10종 이상, 또는 15종 이상 또는 10종 이상 포함한다.In various embodiments, the array comprises at least 5, or at least 10, or at least 15 or at least 10 polynucleotides.

특정 실시태양에서, 어레이는 상기 열거한 유전자들 모두에 혼성화되는 폴리뉴클레오티드를 포함한다.In certain embodiments, the array comprises polynucleotides that hybridize to all of the genes listed above.

다른 특정 실시태양에서, 어레이는 동일 유전자에 혼성화되는 1종 초과의 폴리뉴클레오티드를 포함한다.In another particular embodiment, the array comprises more than one polynucleotide that hybridizes to the same gene.

다른 실시태양에서, 폴리뉴클레오티드 중 1종 이상은 인트론-기재 서열을 포함하고, 이 인트론-기재 서열의 발현은 대응하는 엑손 서열의 발현과 상관관계가 있다.In other embodiments, at least one of the polynucleotides comprises an intron-based sequence, wherein expression of the intron-based sequence correlates with expression of the corresponding exon sequence.

각종 실시태양에서, 폴리뉴클레오티드는 cDNA 또는 올리고뉴클레오티드일 수 있다.In various embodiments, the polynucleotides can be cDNA or oligonucleotides.

다른 면에서, 본 발명은 In another aspect, the invention

(a) 개인화된 게놈 프로파일을 제작할 환자로부터 얻은 암 세포에서 TBP; ILT.2; ABCC5; CD18; GATA3; DICER1; MSH3; GBP1; IRS1; CD3z; fasl; TUBB; BAD; ERCC1; MCM6; PR; APC; GGPS1; KRT18; ESRRG; E2F1; AKT2; 에이.카테닌; CEGP1; NPD009; MAPK14; RUNXI; ID2; 쥐.카테닌; FBXO5; FHIT; MTA1; ERBB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; CDC20; STAT3; ERK1; HLA.DPB1; SGCB; CGA; DHPS; MGMT; CRIP2; MMP12; ErbB3; RAP1GDS1; CDC25B; IL6; CCND1; CYBA; PRKCD; DR4; 헵신; CRABP1; AK055699; 콘티그.51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; ZNF38; MCM2; GBP2; SEMA3F; CD31; COL1A1; ER2; BAG1; AKT1; COL1A2; STAT1; Wnt.5a; PTPD1; RAB6C; TK1, ErbB2, CCNB1, BIRC5, STK6, MKI67, MYBL2, MMP11, CTSL2, CD68, GSTM1, BCL2, ESR1로 이루어진 군으로부터 선택된 유전자 또는 유전자 세트의 RNA 전사체 또는 발현 생성물의 표준화 발현도를 결정하는 단계; 및(a) TBP in cancer cells obtained from patients to produce personalized genomic profiles; ILT.2; ABCC5; CD18; GATA3; DICER1; MSH3; GBP1; IRS1; CD3z; fasl; TUBB; BAD; ERCC1; MCM6; PR; APC; GGPS1; KRT18; ESRRG; E2F1; AKT2; A. catenin; CEGP1; NPD009; MAPK14; RUNXI; ID2; Rat.catenin; FBXO5; FHIT; MTA1; ERBB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; CDC20; STAT3; ERK1; HLA.DPB1; SGCB; CGA; DHPS; MGMT; CRIP2; MMP12; ErbB3; RAP1GDS1; CDC25B; IL6; CCND1; CYBA; PRKCD; DR4; Heptin; CRABP1; AK055699; Contig. 51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; ZNF38; MCM2; GBP2; SEMA3F; CD31; COL1A1; ER2; BAG1; AKT1; COL1A2; STAT1; Wnt. 5a; PTPD1; RAB6C; Determining normalized expression of an RNA transcript or expression product of a gene or gene set selected from the group consisting of TK1, ErbB2, CCNB1, BIRC5, STK6, MKI67, MYBL2, MMP11, CTSL2, CD68, GSTM1, BCL2, ESR1; And

(b) 상기 유전자 발현 분석에 의해 얻어진 데이터를 요약한 보고서를 만드는 단계(b) generating a report summarizing the data obtained by the gene expression analysis

를 포함하는, 환자에 대해 개인화된 게놈 프로파일을 제작하는 방법에 관한 것이다.It relates to a method of making a personalized genomic profile for a patient, comprising.

구체적인 실시태양에서, ILT.2; CD18; GBP1; CD3z; fasl; MCM6; E2F1; ID2; FBXO5; CDC20; HLA.DPB1; CGA; MMP12; CDC25B; IL6; CYBA; DR4; CRABP1; 콘티그.51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; MCM2; GBP2; CD31; ER2; STAT1; TK1; ERBB2, CCNB1, BIRC5, STK6, MKI67, MYBL2, MMP11, CTSL2 및 CD68; 또는 상응하는 발현 생성물 중 1종 이상의 발현이 증가된 것으로 측정된 경우, 보고서는 상기 대상체가 화학요법에 대한 반응이 증가될 가능성을 갖는다는 예측을 포함한다. 이 경우, 특정 실시태양에서, 이 방법은 환자에게 화학요법제를 처치하는 추가의 단계를 포함한다.In specific embodiments, ILT.2; CD18; GBP1; CD3z; fasl; MCM6; E2F1; ID2; FBXO5; CDC20; HLA.DPB1; CGA; MMP12; CDC25B; IL6; CYBA; DR4; CRABP1; Contig. 51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; MCM2; GBP2; CD31; ER2; STAT1; TK1; ERBB2, CCNB1, BIRC5, STK6, MKI67, MYBL2, MMP11, CTSL2 and CD68; Or if the expression of one or more of the corresponding expression products is determined to be increased, the report includes a prediction that the subject has the potential to increase response to chemotherapy. In this case, in certain embodiments, the method comprises the additional step of treating the patient with a chemotherapeutic agent.

상기한 방법에서, TBP; ABCC5; GATA3; DICER1; MSH3; IRS1; TUBB; BAD; ERCC1; PR; APC; GGPS1; KRT18; ESRRG; AKT2; 에이.카테닌; CEGP1; NPD009; MAPK14; RUNX1; 쥐.카테닌; FHIT; MTA1; ErbB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; STAT3; ERK1; SGCB; DHPS; MGMT; CRIP2; ErbB3; RAP1GDS1; CCND1; PRKCD; 헵신; AK055699; ZNF38; SEMA3F; COL1A1; BAG1; AKT1; COL1A2; Wnt.5a; PTPD1; RAB6C; GSTM1, BCL2, ESR1; 또는 상응하는 발현 생성물 중 1종 이상의 발현이 증가된 것으로 측정된 경우, 보고서는 상기 대상체가 화학요법에 대한 반응이 감소될 가능성을 갖는다는 예측을 포함한다.In the above method, TBP; ABCC5; GATA3; DICER1; MSH3; IRS1; TUBB; BAD; ERCC1; PR; APC; GGPS1; KRT18; ESRRG; AKT2; A. catenin; CEGP1; NPD009; MAPK14; RUNX1; Rat.catenin; FHIT; MTA1; ErbB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; STAT3; ERK1; SGCB; DHPS; MGMT; CRIP2; ErbB3; RAP1GDS1; CCND1; PRKCD; Heptin; AK055699; ZNF38; SEMA3F; COL1A1; BAG1; AKT1; COL1A2; Wnt. 5a; PTPD1; RAB6C; GSTM1, BCL2, ESR1; Or if the expression of one or more of the corresponding expression products is determined to be increased, the report includes a prediction that the subject has the potential to reduce the response to chemotherapy.

다른 면에서, 본 발명은 In another aspect, the invention

(a) ACTB, BAG1, BCL2, CCNB1, CD68, SCUBE2, CTSL2, ESR1, GAPD, GRB7, GSTM1, GUSB, ERBB2, MKI67, MYBL2, PGR, RPLPO, STK6, MMP11, BIRC5, TFRC, 또는 이들의 발현 생성물의 RNA 전사체의 발현도를 결정하는 단계, 및(a) ACTB, BAG1, BCL2, CCNB1, CD68, SCUBE2, CTSL2, ESR1, GAPD, GRB7, GSTM1, GUSB, ERBB2, MKI67, MYBL2, PGR, RPLPO, STK6, MMP11, BIRC5, TFRC, or expression products thereof Determining the expression level of RNA transcripts, and

(b) 재발 스코어 (RS, Recurrence Score)를 계산하는 단계 (b) calculating a recurrence score (RS)

를 포함하는, 화학요법에 대한 환자의 반응 가능성을 결정하는 방법에 관한 것이다.It relates to a method of determining the likelihood of a patient's response to chemotherapy, including.

한 실시태양에서, RS > 50을 갖는 환자는 화학요법에 대해 반응하기 쉬운 환자들의 상위 50 백분위수 내에 있다.In one embodiment, patients with RS> 50 are in the top 50 percentiles of patients who are likely to respond to chemotherapy.

다른 실시태양에서, RS < 35를 갖는 환자는 화학요법에 대해 반응하기 쉬운 환자들의 하위 50 백분위수 내에 있다.In another embodiment, patients with RS <35 are in the lower 50 percentile of patients who are likely to respond to chemotherapy.

추가의 실시태양에서, RS는 (i) 성장 인자 서브세트(subset): GRB7 및 HER2; (ii) 에스트로겐 수용체 서브세트: ER, PR, Bcl2, 및 CEGP1; (iii) 증식 서브세트: SURV, Ki.67, MYBL2, CCNB1, 및 STK15; 및 (iv) 침윤 서브세트: CTSL2, 및 STMY3 (이때 서브세트 (i) 내지 (iv) 중 임의의 것의 유전자는 상기 종양 내에서 상기 유전자와 동시발현되고 피어슨(Pearson) 상관 계수 ≥ 0.40인 대체 유전자로 치환될 수 있음)의 유전자 서브세트를 생성하고;In further embodiments, the RS comprises (i) a growth factor subset: GRB7 and HER2; (ii) estrogen receptor subsets: ER, PR, Bcl2, and CEGP1; (iii) proliferation subsets: SURV, Ki.67, MYBL2, CCNB1, and STK15; And (iv) invasive subsets: CTSL2, and STMY3, wherein a gene of any of subsets (i) to (iv) is co-expressed with said gene in said tumor and has a Pearson correlation coefficient> 0.40 Generate a subset of genes);

(c) 서브세트 (i) 내지 (iv) 각각의 유방암 재발에 대한 기여도를 가중(weighting)하여 상기 대상체의 재발 스코어 (RS)를 계산함으로써 정해진다.(c) Subsets (i) to (iv) are weighted for each breast cancer recurrence to calculate the recurrence score (RS) of the subject.

상기한 방법은 CD68, GSTM1 및 BAG1 또는 이들의 발현 생성물, 또는 대응하는 대체 유전자 또는 이들의 발현 생성물의 RNA 전사체를 측정하고, 상기 유전자 또는 대체 유전자의 유방암 재발에 대한 기여도를 RS 계산에 포함시키는 단계를 추가로 포함할 수 있다.The method described above measures RNA transcripts of CD68, GSTM1 and BAG1 or expression products thereof, or corresponding replacement genes or expression products thereof, and includes the contribution of the gene or replacement gene to breast cancer recurrence in RS calculations. It may further comprise a step.

RS는 예를 들면, 하기 식을 이용하여 정해질 수 있다:RS can be determined using, for example, the following equation:

RS = (0.23 내지 0.70)×GRB7 축 역치 - (0.17 내지 0.55)×ER 축 + (0.52 내지 1.56)×증식 축 역치 + (0.07 내지 0.21)×침윤 축 + (0.03 내지 0.15)×CD68 - (0.04 내지 0.25)×GSTM1 - (0.05 내지 0.22)×BAG1RS = (0.23 to 0.70) x GRB7 axis threshold-(0.17 to 0.55) x ER axis + (0.52 to 1.56) x growth axis threshold + (0.07 to 0.21) x infiltration axis + (0.03 to 0.15) x CD68-(0.04 To 0.25) x GSTM1-(0.05 to 0.22) x BAG1

[상기 식에서,[Wherein,

(i) GRB7 축 = (0.45 내지 1.35)×GRB7 + (0.05 내지 0.15)×HER2이고; (i) GRB7 axis = (0.45-1.35) × GRB7 + (0.05-0.15) × HER2;

(ii) GRB7 축 < -2이면, GRB7 축 역치 = -2이고, (ii) if the GRB7 axis <-2, then the GRB7 axis threshold = -2,

GRB7 축 ≥ -2이면, GRB7 축 역치 = GRB7 축이고;      If the GRB7 axis> -2, then the GRB7 axis threshold = GRB7 axis;

(iii) ER 축 = (Est1 + PR + Bcl2 + CEGP1)/4이고; (iii) the ER axis = (Est1 + PR + Bcl2 + CEGP1) / 4;

(iv) 증식 축 = (SURV + Ki.67 + MYBL2 + CCNB1+ STK15)/5이고; (iv) axis of proliferation = (SURV + Ki.67 + MYBL2 + CCNB1 + STK15) / 5;

(v) 증식 축 < -3.5이면, 증식 축 역치 = -3.5이고,(v) if propagation axis <-3.5, propagation axis threshold = -3.5,

증식 축 ≥ -3.5이면, 증식 축 역치 = 증식 축이고;     If propagation axis ≧ −3.5, then propagation axis threshold = proliferation axis;

(vi) 침윤 축 = (CTSL2 + STMY3)/2이며, (vi) infiltration axis = (CTSL2 + STMY3) / 2,

여기서, (iii), (iv) 및 (vi) 내의 유전자들의 개별 기여도는 0.5 내지 1.5의 계수로 가중되고, 보다 높은 RS는 유방암의 재발 가능성 증가를 나타냄].Wherein individual contributions of the genes in (iii), (iv) and (vi) are weighted with a coefficient between 0.5 and 1.5, with higher RS indicating an increased likelihood of recurrence of breast cancer.

다른 실시태양에서, RS는 하기 식을 이용하여 구해진다:In another embodiment, RS is obtained using the following formula:

RS (범위, 0 내지 100) = + 0.47×HER2군 스코어RS (range, 0-100) = + 0.47 × HER2 group score

- 0.34×ER군 스코어                        -0.34 × ER group score

+ 1.04×증식군 스코어                        + 1.04 × Growth Score

+ 0.10×침윤군 스코어                        + 0.10 × infiltration group score

+ 0.05×CD68                         + 0.05 × CD68

- 0.08×GSTM1                         0.08 × GSTM1

- 0.07×BAG1                         0.07 × BAG1

도 1은 병리적 완전 반응 종점을 갖는 임상 시험으로부터의 결과에 기초한, 화학요법에 대한 환자 반응의 가능성 및 재발 스코어 (RS) 사이의 관계를 보여준다.1 shows the relationship between likelihood of patient response to chemotherapy and recurrence score (RS) based on results from clinical trials with pathologically complete response endpoints.

표 1은 그의 발현이 아드리아마이신 및 탁산 신보조항암 화학요법에 대한 유 방암 반응과 양성 또는 음성 상관관계가 있는 유전자 목록을 보여준다. 결과는 병리적 완전 반응 종점을 갖는 임상 시험으로부터 얻는다. 통계학적 분석은 프로빗(probit) 연결 함수와 함께 단변량(univariate) 일반화 선형 모델을 이용하였다.Table 1 shows a list of genes whose expression correlates positively or negatively with breast cancer response to adriamycin and taxane neoadjuvant chemotherapy. Results are obtained from clinical trials with pathologic complete response endpoints. Statistical analysis used a univariate generalized linear model with a probit link function.

표 2는 그의 발현이 화학요법에 대한 유방암 반응을 예측하는 유전자의 목록을 제공한다. 결과는 후향적 임상 시험으로부터 얻는다. 표는 PCR 증식에 사용된 전진성 및 역 프라이머 (각각 "f" 및 "r"로 표시됨) 및 프로브("p"로 표시됨)에 대한 서열, 유전자에 대한 수납 번호를 포함한다.Table 2 provides a list of genes whose expression predicts breast cancer response to chemotherapy. Results are obtained from retrospective clinical trials. The table includes sequences for the forward and reverse primers (indicated by "f" and "r") and probes (indicated by "p"), and the accession numbers for the genes used for PCR propagation.

표 3은 지시된 유전자들의 PCR 증식에 사용된 암플리콘(amplicon) 서열을 보여준다.Table 3 shows the amplicon sequences used for PCR propagation of the indicated genes.

A. 정의 A. Definition

달리 정의되지 않는다면, 본원에 사용된 기술 및 과학 용어들은 본 발명이 속한 분야의 통상의 숙련인이 일반적으로 이해하는 바와 같은 의미를 갖는다. 문헌 ([Singleton et al ., Dictionary of Microbiology and Molecular Biology 2nd ed., J. Wiley & Sons (New York, NY 1994)] 및 [March, Advanced Organic Chemistry Reactions, Mechanisms and Structure 4th ed., John Wiley & Sons (New York, NY 1992)])은 당업계의 통상의 숙련인에게 본 출원에 사용된 용어들 중 다수에 대한 일반적인 지침을 제공한다. Unless defined otherwise, technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Singleton et. al . , Dictionary of Microbiology and Molecular Biology 2nd ed., J. Wiley & Sons (New York, NY 1994)] and March, Advanced Organic Chemistry Reactions, Mechanisms and Structure 4th ed., John Wiley & Sons (New York, NY 1992). )]) Provides general guidance for many of the terms used in this application to those skilled in the art.

당업계의 통상의 숙련인은 본 발명의 실행에 사용될 수 있는, 본원에 설명된 것과 유사한 또는 동등한 많은 방법 및 재료들을 인식할 수 있을 것이다. 사실상, 본 발명은 어떤 방식으로든 설명된 방법 및 재료로 제한되지 않는다. 본 발명의 목적상, 하기 용어들이 아래에서 정의된다.Those skilled in the art will recognize many methods and materials similar or equivalent to those described herein that can be used in the practice of the present invention. In fact, the invention is not limited to the methods and materials described in any way. For the purposes of the present invention, the following terms are defined below.

용어 "마이크로어레이(microarray)"는 기질 상의 혼성화가능한 어레이 엘레멘트, 바람직하게는 폴리뉴클레오티드 프로브의 규칙적인 배치를 말한다.The term “microarray” refers to the regular arrangement of hybridizable array elements, preferably polynucleotide probes, on a substrate.

용어 "폴리뉴클레오티드"는 단수 또는 복수로 사용될 때, 일반적으로 임의의 폴리리보뉴클레오티드 또는 폴리데옥시리보뉴클레오티드를 말하고, 이것은 변형되지 않은 RNA 또는 DNA 또는 변형된 RNA 또는 DNA일 수 있다. 따라서, 예를 들면, 본원에 정의된 바와 같은 폴리뉴클레오티드는 비제한적으로, 한- 및 두-가닥 DNA, 한- 및 두-가닥 구역을 포함하는 DNA, 한- 및 두-가닥 RNA, 한- 및 두-가닥 구역을 포함하는 RNA, 한-가닥 또는 보다 전형적으로는 두-가닥일 수 있거나 또는 한- 및 두-가닥 구역을 포함하는 DNA 및 RNA를 포함하는 하이브리드 분자를 포함한다. 또한, 본원에서 사용된 용어 "폴리뉴클레오티드"는 RNA 또는 DNA 또는 RNA와 DNA 둘다를 포함하는 세-가닥 구역을 말한다. 이러한 구역 내의 가닥들은 동일한 분자로부터의 것이거나 또는 상이한 분자들로부터의 것일 수 있다. 구역은 1종 이상의 분자들 모두를 포함할 수 있지만, 보다 구체적으로는 분자들 중 일부의 한 구역만을 포함한다. 삼중-나선형 구역의 분자들 중 하나는 올리고뉴클레오티드이다. 용어 "폴리뉴클레오티드"는 구체적으로 cDNA를 포함한다. 용어는 1개 이상의 변형된 염기를 함유하는 DNA (cDNA 포함) 및 RNA를 포함한다. 따라서, 안정성을 위해 또는 다른 이유로 변형된 주쇄를 갖는 DNA 또는 RNA는 본원에서 의도되는 바와 같은 "폴리뉴클레오티드"이다. 게다가, 일반적이지 않은 염기, 예를 들면 이노신 또는 변형된 염기, 예를 들면 삼중수소 염기를 포함하는 DNA 또는 RNA는 본원에서 정의된 용어 "폴리뉴클레오티드" 내에 포함된다. 일반적으로, 용어 "폴리뉴클레오티드"는 변형되지 않은 폴리뉴클레오티드의 모든 화학적으로, 효소적으로 및(또는) 대사적으로 변형된 형태, 뿐만 아니라 단순 및 복합 세포를 포함하는 세포 및 바이러스의 DNA 및 RNA 특징을 갖는 화학적 형태를 포함한다.The term "polynucleotide", when used in the singular or plural, generally refers to any polyribonucleotide or polydeoxyribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. Thus, for example, polynucleotides as defined herein include, but are not limited to, DNA comprising one- and two-stranded DNA, one- and two-stranded regions, one- and two-stranded RNA, one-and RNAs comprising two-stranded regions, single-stranded or more typically two-stranded, or hybrid molecules comprising DNA and RNA comprising one- and two-stranded regions. Also, as used herein, the term “polynucleotide” refers to a three-stranded region comprising RNA or DNA or both RNA and DNA. The strands in this region can be from the same molecule or from different molecules. A zone may comprise all of one or more molecules, but more specifically includes only one zone of some of the molecules. One of the molecules of the triple-helix region is an oligonucleotide. The term "polynucleotide" specifically includes cDNA. The term includes DNA (including cDNA) and RNA containing one or more modified bases. Thus, a DNA or RNA having a backbone modified for stability or for other reasons is a "polynucleotide" as intended herein. In addition, DNA or RNA comprising an unusual base such as inosine or a modified base such as tritium base is included within the term "polynucleotide" as defined herein. In general, the term "polynucleotide" refers to all chemically, enzymatically and / or metabolically modified forms of unmodified polynucleotides, as well as DNA and RNA characteristics of cells and viruses, including simple and complex cells. It includes a chemical form having a.

용어 "올리고뉴클레오티드"는 비제한적으로 한-가닥 데옥시리보뉴클레오티드, 한- 또는 두-가닥 리보뉴클레오티드, RNA:DNA 하이브리드 및 두-가닥 DNA를 포함하는, 비교적 짧은 폴리뉴클레오티드를 말한다. 올리고뉴클레오티드, 예를 들면 한-가닥 DNA 프로브 올리고뉴클레오티드는 종종 예를 들면 상업적으로 입수가능한 자동화 올리고뉴클레오티드 합성기를 사용하는 화학적 방법에 의해 합성된다. 그러나, 올리고뉴클레오티드는 시험관내 재조합 DNA-매개 기술을 포함하는 각종 다른 방법들에 의해 및 세포 및 유기체 중에서의 DNA 발현에 의해 제조될 수 있다.The term “oligonucleotide” refers to a relatively short polynucleotide, including but not limited to one-stranded deoxyribonucleotides, one- or two-stranded ribonucleotides, RNA: DNA hybrids and two-stranded DNA. Oligonucleotides, such as single-stranded DNA probe oligonucleotides, are often synthesized by chemical methods using, for example, commercially available automated oligonucleotide synthesizers. However, oligonucleotides can be prepared by a variety of other methods, including in vitro recombinant DNA-mediated techniques, and by expression of DNA in cells and organisms.

용어 "차등적으로 발현된 유전자", "차등적인 유전자 발현" 및 상호교환적으로 사용되는 이들의 동의어들은 정상 또는 대조용 대상체에서의 그의 발현에 비하여, 그의 발현이 질병, 구체적으로 유방암과 같은 암을 앓는 대상체 중에서 보다 높은 또는 보다 낮은 수준으로 활성화되는 유전자를 말한다. 이 용어는 또한 그의 발현이 동일한 질병의 상이한 단계에서 보다 높은 또는 보다 낮은 수준으로 활성화되는 유전자를 포함한다. 차등적으로 발현되는 유전자는 핵산 수준 또는 단백질 수준에서 활성화되거나 또는 억제될 수 있거나, 또는 다른 스플라이싱을 받아 상이한 폴리펩티드 생성물을 야기시킬 수 있음을 또한 알 수 있다. 이러한 차이는 예를 들면 폴리펩티드의 mRNA 수준, 표면 발현, 분비 또는 다른 분배에 있어서의 변화에 의해 입증될 수 있다. 차등적인 유전자 발현은 2개 이상의 유전자 또는 이들의 유전자 생성물들 사이의 발현 비교, 또는 2개 이상의 유전자 또는 이들의 유전자 생성물들 사이의 발현 비의 비교, 또는 심지어는 동일한 유전자의 2개의 상이하게 가공된 생성물들의 비교 (이들은 정상 대상체과 질병, 구체적으로 암을 앓는 대상체 사이에서 또는 동일한 질병의 각종 단계들 사이에서 다름)를 포함할 수 있다. 차등적인 발현은 예를 들면 정상 세포와 질병에 걸린 세포들 사이에서, 또는 상이한 질병 사건 또는 질병 단계를 거치는 세포들 사이에서 유전자 또는 그의 발현 생성물에서 일시적인 또는 세포 발현 패턴의 정량적, 뿐만 아니라 정성적 차이를 모두 포함한다. 본 발명의 목적상, "차등적인 유전자 발현"은 정상 및 질병에 걸린 대상체에서 또는 질병에 걸린 대상체의 다양한 질병 전개 단계에서 주어진 유전자의 발현 사이에 약 2배 이상, 바람직하게는 약 4배 이상, 보다 바람직하게는 약 6배 이상, 가장 바람직하게는 약 10배 이상의 차이가 있을 때 존재하는 것으로 간주된다.The terms “differentially expressed gene”, “differential gene expression” and their synonyms used interchangeably refer to disease, particularly cancer, such as breast cancer, as compared to its expression in normal or control subjects. Refers to genes that are activated at higher or lower levels among subjects with a disease. The term also includes genes whose expression is activated at higher or lower levels in different stages of the same disease. It will also be appreciated that differentially expressed genes may be activated or inhibited at the nucleic acid level or the protein level, or may undergo other splicing to result in different polypeptide products. Such differences can be demonstrated, for example, by changes in mRNA levels, surface expression, secretion or other distribution of the polypeptide. Differential gene expression is a comparison of expression between two or more genes or their gene products, or a comparison of expression ratios between two or more genes or their gene products, or even two differently processed genes of the same gene. Comparison of products (these may differ between a normal subject and a disease, in particular a subject suffering from cancer, or between various stages of the same disease). Differential expression is, for example, a quantitative, as well as qualitative difference in the pattern of transient or cell expression in a gene or its expression product between normal and diseased cells, or between cells undergoing different disease events or disease stages. Includes all of them. For the purposes of the present invention, "differential gene expression" is at least about 2 times, preferably at least about 4 times, between the expression of a given gene in normal and diseased subjects or at various stages of disease development in a diseased subject, More preferably at least about 6 times and most preferably at least about 10 times.

유전자 전사체 또는 유전자 발현 생성물에 관한 용어 "표준화된"은 기준 유전자 세트의 전사체/생성물의 평균 수준에 대한 전사체 또는 유전자 발현 생성물의 수준을 말하는데, 여기서 기준 유전자들은 환자, 조직 또는 치료에 걸쳐 이들의 최소한의 변동에 기준하여 선택되거나 ("살림 유전자(housekeeping genes)"), 또는 기준 유전자는 시험된 유전자들 전체이다. 후자의 경우, 일반적으로 "전체 표준화(global normalization)"로 언급되는데, 시험된 유전자들의 총 수가 비교적 큰, 바람직하게는 50 초과인 것이 중요하다. 구체적으로, RNA 전사체에 관한 용어 '표준화된'은 기준 유전자 세트의 전사 수준의 평균에 대한 전사 수준을 말한다. 보다 구체적으로, 타크맨(TaqMan)® RT-PCR에 의해 측정하였을 때 RNA 전사체의 평균 수준은 기준 유전자 전사체 세트의 Ct 값 - 평균 Ct 값을 말한다.The term “standardized” with respect to a gene transcript or gene expression product refers to the level of the transcript or gene expression product relative to the average level of the transcript / product of the reference gene set, wherein the reference genes are throughout the patient, tissue or treatment. Selected based on their minimal variation (“housekeeping genes”), or reference genes are all of the genes tested. In the latter case, generally referred to as "global normalization", it is important that the total number of genes tested is relatively large, preferably greater than 50. Specifically, the term 'standardized' with respect to RNA transcripts refers to the level of transcription relative to the average of the levels of transcription of a set of reference genes. More specifically, the mean level of RNA transcript as measured by TaqMan® RT-PCR refers to the Ct value—mean Ct value of the reference gene transcript set.

용어 "발현 역치" 및 "정의된 발현 역치"는 상호교환적으로 사용되며, 이 수준 이상에서는 유전자 또는 유전자 생성물이 환자 반응 또는 내약물성에 대한 예측 마커로서 사용되는 해당 유전자 또는 유전자 생성물의 수준을 말한다. 역치는 대표적으로는 임상적 연구로부터 실험적으로 정의된다. 발현 역치는 최대 민감성(예를 들면, 한 약물에 대한 반응자들 모두를 검출하도록), 또는 최대 선택성(예를 들면 한 약물에 대한 반응자들 만을 선택하도록), 또는 최소 오차로 선택될 수 있다.The terms "expression threshold" and "defined expression threshold" are used interchangeably and above this level refer to the level of the gene or gene product at which the gene or gene product is used as a predictive marker for patient response or drug resistance. . Thresholds are typically defined experimentally from clinical studies. The expression threshold may be selected for maximum sensitivity (eg to detect all responders to one drug), or maximum selectivity (eg to select only responders for one drug), or minimum error.

어구 "유전자 증폭"은 특정 세포 또는 세포주에서 유전자 또는 유전자 단편의 다수개의 복사물이 형성되는 과정을 말한다. 복제된 영역 (증폭된 DNA의 신장)은 종종 "암플리콘"으로 언급된다. 종종, 생산된 메신저 RNA (mRNA)의 양, 즉 유전자 발현도는 또한 특정 유전자의 만들어진 복제 수에 비례하여 증가된다.The phrase “gene amplification” refers to the process by which multiple copies of a gene or gene fragment are formed in a particular cell or cell line. Replicated regions (extension of amplified DNA) are often referred to as "amplicons". Often, the amount of messenger RNA (mRNA) produced, ie gene expression, is also increased in proportion to the number of copies made of a particular gene.

용어 "예후"는 본원에서 암에 의한 사망 또는 유방암과 같은 신생물성 질환의 진행 (재발, 전이성 확산 및 내약물성 포함)의 가능성의 예측을 말하는데 사용된다. 용어 "예측"은 본원에서 환자가 한 약물 또는 약물 세트에 대하여 유리하게 또는 불리하게 반응하게 될 가능성 및 또한 이들 반응의 정도, 또는 환자가 주요 종양의 수술 제거 및(또는) 화학요법 후에 암 재발 없이 특정 기간 동안 살아남게 될 가능성을 말하는데 사용된다. 본 발명의 예측 방법은 임의의 특정 환자에 대하여 가장 적절한 치료 기법을 선택함으로써 치료를 결정하는데 임상적으로 사용될 수 있다. 본 발명의 예측 방법은 환자가 치료 섭생, 예를 들면 수술 시술, 주어진 약물 또는 약물 조합물을 이용한 화학요법, 및(또는) 방사선 요법에 대하여 유리하게 반응하기 쉬운지, 또는 수술 및(또는) 화학요법 또는 다른 치료 기법의 종료 후에 환자의 장기간 생존이 가능한지를 예측하는데 있어서 귀중한 수단이 된다. The term “prognosis” is used herein to refer to the prediction of the likelihood of death from cancer or the progression of neoplastic diseases such as breast cancer, including recurrence, metastatic spread and drug resistance. The term “prediction” herein refers to the likelihood that a patient will respond favorably or adversely to a drug or set of drugs and also the extent of these responses, or that the patient will not have cancer recurrence after surgical removal of major tumors and / or chemotherapy Used to say the likelihood of survival for a certain period of time. The prediction method of the present invention can be used clinically to determine treatment by selecting the most appropriate treatment technique for any particular patient. The predictive methods of the present invention are directed to whether a patient is advantageously responsive to a treatment regimen, such as a surgical procedure, chemotherapy with a given drug or drug combination, and / or radiation therapy, or surgery and / or chemotherapy. It is a valuable means of predicting the long term survival of the patient after the end of therapy or other treatment techniques.

용어 "장기간" 생존은 본원에서 수술 또는 다른 치료 후 3년 이상, 보다 바람직하게는 8년 이상, 가장 바람직하게는 10년 이상 생존하는 것을 말하는데 사용된다.The term “long term” survival is used herein to refer to surviving at least 3 years, more preferably at least 8 years, most preferably at least 10 years after surgery or other treatment.

용어 "종양"은 본원에서 사용될 때 모든 신생물성 세포 성장 및 증식 (악성 또는 양성 불문) 및 모든 암조짐 및 암성 세포 및 조직을 말한다.The term "tumor" as used herein refers to all neoplastic cell growth and proliferation (whether malignant or benign) and all cancerous and cancerous cells and tissues.

용어 "암" 및 "암성"은 전형적으로는 조절되지 않는 세포 성장을 특징으로 하는 포유동물 내 생리학적 상태를 설명하거나 또는 말한다. 암의 예는 유방암, 결장암, 폐암, 전립선암, 간세포암, 위암, 췌장암, 자궁경부암, 난소암, 간암, 방광암, 요도의 암, 갑상선암, 신장암, 암종, 흑색종, 및 뇌암을 포함하지만 이들로 제한되지는 않는다. The terms "cancer" and "cancerous" describe or refer to physiological conditions in mammals that are typically characterized by unregulated cell growth. Examples of cancers include, but are not limited to, breast cancer, colon cancer, lung cancer, prostate cancer, hepatocellular cancer, gastric cancer, pancreatic cancer, cervical cancer, ovarian cancer, liver cancer, bladder cancer, cancer of the urethra, thyroid cancer, kidney cancer, carcinoma, melanoma, and brain cancer. It is not limited to.

암의 "발병학"은 환자의 안녕에 해를 끼치는 모든 현상들을 포함한다. 이것은 비제한적으로, 비정상적 또는 조절불가능한 세포 성장, 전이, 이웃하는 세포들의 정상 기능의 방해, 사이토킨 또는 다른 분비 생성물의 비정상적 수준의 방출, 종양성 또는 면역학적 반응의 억제 또는 악화, 신생물, 전암상태, 악성종양, 주변의 또는 먼 조직 또는 기관, 예를 들면 림프절 등의 침윤을 포함한다.The "oncology" of cancer includes all the phenomena that harm a patient's well-being. This includes, but is not limited to, abnormal or uncontrollable cell growth, metastasis, disruption of normal functioning of neighboring cells, release of abnormal levels of cytokines or other secretory products, inhibition or exacerbation of neoplastic or immunological responses, neoplasia, precancerous conditions , Malignancies, infiltration of surrounding or distant tissues or organs, such as lymph nodes.

"환자 반응"은 비제한적으로 (1) 느리게 하고 완전한 성장 저지를 포함하는, 종양 성장의 어느 정도의 억제; (2); 종양 세포 수의 감소; (3) 종양 크기의 감소; (4) 종양 세포의 인접하는 주변 기관 및(또는) 조직으로의 침윤 억제 (즉, 감소, 느리게 함 또는 완전한 정지); (5) 전이의 억제 (즉, 감소, 느리게 함 또는 완전한 정지); (6) 항종양 면역 반응의 증강 (이것은 종양의 퇴행 또는 거부를 야기할 수 있지만 반드시 그러할 필요는 없음); (7) 종양과 관련된 하나 이상의 증상의 어느 정도의 완화; (8) 치료 후 생존 기간의 증가; 및(또는) (9) 치료 후 주어진 기간에서의 감소된 사망률을 포함하는 환자에 대한 이익을 나타내는 임의의 종점을 사용하여 평가될 수 있다. "Patient response" includes, but is not limited to, (1) some degree of inhibition of tumor growth, including slowing and complete growth inhibition; (2); Reduction in the number of tumor cells; (3) reduction in tumor size; (4) inhibit (ie, reduce, slow or complete stop) of infiltration of tumor cells into adjacent peripheral organs and / or tissues; (5) inhibition (ie, reduction, slowing down or complete stopping) of metastasis; (6) augmentation of anti-tumor immune response (which may, but need not necessarily) lead to tumor regression or rejection; (7) relief to some extent of one or more symptoms associated with the tumor; (8) increased survival after treatment; And / or (9) any endpoint that represents a benefit for the patient, including a reduced mortality rate in a given period after treatment.

"신보조항암 요법"은 주요(주) 요법 이전에 주어지는 부가적 또는 보조적 요법이다. 신보조항암 요법은 예를 들면 화학요법, 방사선 요법, 및 호르몬 요법을 포함한다. 따라서, 화학요법은 종양을 수축시키기 위하여 수술 이전에 투여되어 수술을 보다 효과적이게 할 수 있거나, 또는 이전에 수술불가능한 종양의 경우에는 가능하게 할 수 있다."New adjuvant anticancer therapy" is an additional or adjuvant therapy given prior to the main (main) therapy. Neoadjuvant cancer therapy includes, for example, chemotherapy, radiation therapy, and hormonal therapy. Thus, chemotherapy may be administered prior to surgery to shrink the tumor to make the surgery more effective, or in the case of previously inoperable tumors.

혼성화 반응의 "엄격성(stringency)"은 당업계의 통상의 숙련인이 쉽게 결정할 수 있고, 일반적으로는 프로브 길이, 세척 온도 및 염 농도에 의존하는 실험적 계산이다. 일반적으로, 보다 긴 프로브는 적절한 어닐링을 위해 보다 높은 온도를 필요로 하는 반면, 보다 짧은 프로브는 보다 낮은 온도를 요구한다. 혼성화는 일반적으로 상보적 스트랜드들이 그들의 용융 온도 이하의 환경 중에 존재할 때 변성된 DNA가 재어닐링할 수 있는 능력에 의존한다. 프로브와 혼성화가능한 서열 사이의 원하는 상동성 정도가 높을수록, 사용될 수 있는 상대 온도가 보다 높다. 그 결과, 보다 높은 상대 온도는 반응 조건을 보다 엄격하게 만드는 경향이 있는 반면, 보다 낮은 온도는 덜 그러하다고 할 수 있다. 혼성화 반응의 엄격성에 대한 추가적인 세부사항 및 설명에 대해서는, 문헌 [Ausubel et al., Current Protocols in Molecular Biology, Wiley Interscience Publishers, (1995)]을 참조한다. The “stringency” of the hybridization reaction is easily determined by one of ordinary skill in the art and is an experimental calculation that generally depends on probe length, wash temperature and salt concentration. In general, longer probes require higher temperatures for proper annealing, while shorter probes require lower temperatures. Hybridization generally relies on the ability of denatured DNA to reanneal when complementary strands are present in an environment below their melting temperature. The higher the degree of desired homology between the probe and the hybridizable sequence, the higher the relative temperature that can be used. As a result, higher relative temperatures tend to make the reaction conditions more stringent, while lower temperatures are less so. For further details and explanations on the stringency of the hybridization reaction, see Ausubel et al., Current Protocols in Molecular Biology, Wiley Interscience Publishers, (1995).

본원에서 정의되는 "엄격한 조건" 또는 "고 엄격성 조건"은 전형적으로는 (1) 예를 들면 50℃에서 0.015 M 염화나트륨/0.0015 M 시트르산나트륨/0.1% 소듐 도데실 술페이트 세척에 낮은 이온 세기 및 높은 온도를 사용하고; (2) 혼성화 동안 42℃에서 변성제, 예를 들면 포름아미드, 예를 들면 50% (v/v) 포름아미드와 0.1 % 소 혈청 알부민/0.1 % 피콜(Ficoll)/0.1% 폴리비닐피롤리돈/50 mM 인산나트륨 완충제, pH 6.5와 함께 750 mM 염화나트륨, 75 mM 시트르산나트륨을 사용; 또는 (3) 42℃에서 50% 포름아미드, 5×SSC (0.75M NaCl, 0.075 M 시트르산나트륨), 50 mM 인산나트륨 (pH 6.8), 0.1% 피로인산나트륨, 5×덴하르트 용액(Denhardt's solution), 음파처리된 연어 정자 DNA (50 ㎍/ml), 0.1% SDS, 및 10% 덱스트란 술페이트를 사용하고, 42℃에서 0.2×SSC (염화나트륨/시트르산나트륨) 및 50% 포름아미드 (55℃에서) 중에서 세척한 후, 55℃에서의 EDTA를 함유하는 0.1×SSC로 이루어진 고-엄격성 세척이 이어진다."Strict conditions" or "high stringency conditions" as defined herein typically include (1) low ionic strength, for example, at 50 ° C. for 0.015 M sodium chloride / 0.0015 M sodium citrate / 0.1% sodium dodecyl sulfate wash and Using high temperatures; (2) denaturant at 42 ° C. during hybridization, for example formamide, for example 50% (v / v) formamide and 0.1% bovine serum albumin / 0.1% Ficoll / 0.1% polyvinylpyrrolidone / Using 750 mM sodium chloride, 75 mM sodium citrate with 50 mM sodium phosphate buffer, pH 6.5; Or (3) 50% formamide at 42 ° C., 5 × SSC (0.75M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5 × Denhardt's solution , Sonicated salmon sperm DNA (50 μg / ml), 0.1% SDS, and 10% dextran sulfate, 0.2 × SSC (sodium chloride / sodium citrate) and 50% formamide (at 55 ° C.) at 42 ° C. ), Followed by a high-stringency wash consisting of 0.1 x SSC containing EDTA at 55 ° C.

"적당히 엄격한 조건"은 문헌 [Sambrook et al., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Press, 1989]에 설명되어 있는 바와 동일할 수 있으며, 상기한 것보다 덜 엄격한 세척 용액 및 혼성화 조건 (예를 들면, 온도, 이온 세기 및 %SDS)의 사용을 포함한다. 적당히 엄격한 조건의 예는 37℃에서 20% 포름아미드, 5×SSC (150 mM NaCl, 15 mM 시트르산삼나트륨), 50 mM 인산나트륨 (pH 7.6), 5×덴하르트 용액, 10% 덱스트란 술페이트, 및 20 mg/ml 변성된 전단작용을 받은 연어 정자 DNA를 포함하는 용액 중에서 밤동안의 인큐베이션에 이은 약 37-50℃에서 1×SSC 중에서 필터의 세척이다. 당업자들은 프로브 길이 등과 같은 인자들을 채택하는데 필요한 온도, 이온 세기 등을 어떻게 조절하는지 알 수 있을 것이다."Moderately stringent conditions" may be the same as described in Sambrook et al., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Press, 1989, and less stringent washing solutions and hybridizations than those described above. The use of conditions (eg, temperature, ionic strength and% SDS). Examples of moderately stringent conditions include 20% formamide, 5 × SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5 × denhardt solution, 10% dextran sulfate at 37 ° C. , And overnight incubation in a solution comprising 20 mg / ml denatured sheared salmon sperm DNA followed by washing of the filter in 1 × SSC at about 37-50 ° C. Those skilled in the art will appreciate how to adjust the temperature, ionic strength, etc. required to adopt factors such as probe length and the like.

본 발명의 내용상, 임의의 특정 유전자 세트에 열거된 유전자들 중 "1종 이상", "2종 이상", "5종 이상" 등에 대한 언급은 열거된 유전자들의 임의의 하나 또는 임의의 및 모든 조합물을 의미한다.In the context of the present invention, reference to "one or more", "two or more", "five or more", etc., among the genes listed in any particular gene set, refers to any one or any and all combinations of the listed genes. Means water.

B. 상세한 설명 B. Detailed Description

본 발명의 실행은 달리 지시하지 않는 한, 분자 생물학 (재조합 기술 포함), 미생물학, 세포 생물학 및 생화학의 종래 기술 (당업계의 통상의 기술 내에 속함)을 사용할 것이다. 이러한 기술은 문헌 (["Molecular Cloning: A Laboratory Manual", 2nd edition (Sambrook et al., 1989)], ["Oligonucleotide Synthesis" (M. J. Gait, ed., 1984)], ["Animal Cell Culture" (R. I. Freshney, ed., 1987)], ["Methods in Enzymology" (Academic Press, Inc.)], ["Handbook of Experimental Immunology", 4th edition (D. M. Weir & C. C. Blackwell, eds., Blackwell Science Inc., 1987)], ["Gene Transfer Vectors for Mammalian Cells" (J. M. Miller & M. P. Calos, eds., 1987)], ["Current Protocols in Molecular Biology" (F. M. Ausubel et al. , eds., 1987)] 및 ["PCR: The Polymerase Chain Reaction", (Mullis et al., eds. , 1994)])과 같은 문헌들에서 자세하게 설명되어 있다. The practice of the present invention will employ, unless otherwise indicated, conventional techniques of molecular biology (including recombination techniques), microbiology, cell biology, and biochemistry (which are within the ordinary skill in the art). These techniques are described in ([. "Molecular Cloning: A Laboratory Manual", 2 nd edition (Sambrook et al, 1989)], [. "Oligonucleotide Synthesis" (MJ Gait, ed, 1984)], [ "Animal Cell Culture" (RI Freshney, ed., 1987)], "Methods in Enzymology" (Academic Press, Inc.), "" Handbook of Experimental Immunology ", 4 th edition (DM Weir & CC Blackwell, eds., Blackwell Science Inc , 1987)], "Gene Transfer Vectors for Mammalian Cells" (JM Miller & MP Calos, eds., 1987)], "Current Protocols in Molecular Biology" (FM Ausubel et al., Eds., 1987)] And ["PCR: The Polymerase Chain Reaction", (Mullis et al., Eds., 1994)).

1. 유전자 발현 프로파일작성( Profiling ) 1. Create a gene expression profiling (Profiling)

유전자 발현 프로파일작성 방법은 폴리뉴클레오티드의 혼성화 분석에 기초한 방법, 폴리뉴클레오티드의 서열화에 기초한 방법, 및 프로테오믹스 기재 방법을 포함한다. 샘플 중에서의 mRNA 발현의 정량화를 위한 당업계에 공지된 가장 일반적으로 사용되는 방법은 노던 블롯팅(northern blotting) 및 현장 혼성화(in situ hybridization) (문헌 [Parker & Barnes, Methods in Molecular Biology 106:247-283 (1999)]); RNAse 보호 검정시험 (문헌[Hod, Biotechniques 13:852-854 (1992)]); 및 PCR-기재 방법, 예를 들면 역 전사 폴리머라제 연쇄 반응 (RT-PCR) (문헌 [Weis et al ., Trends in Genetics 8:263-264 (1992)])을 포함한다. 다르게는, DNA 두가닥, RNA 두가닥, 및 DNA-RNA 하이브리드 두가닥 또는 DNA-단백질 두가닥을 포함하는 특정 두가닥을 인식할 수 있는 항체들이 사용될 수 있다. 서열화-기재 유전자 발현 분석에 대표적인 방법은 유전자 발현의 연속 분석(Serial Analysis of Gene Expression (SAGE)) 및 대량적으로 평행한 시그너쳐 서열화(massively parallel signature sequencing (MPSS))에 의한 유전자 발현 분석을 포함한다.Gene expression profiling methods include methods based on hybridization analysis of polynucleotides, methods based on sequencing polynucleotides, and methods based on proteomics. The most commonly used methods known in the art for the quantification of mRNA expression in a sample are Northern blotting and in situ hybridization (Parker & Barnes, Methods). in Molecular Biology 106: 247-283 (1999)]; RNAse protection assay (Hod, Biotechniques 13: 852-854 (1992)); And PCR-based methods, such as reverse transcription polymerase chain reaction (RT-PCR) (Weis et al ., Trends in Genetics 8: 263-264 (1992)]. Alternatively, antibodies capable of recognizing specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes, can be used. Representative methods for sequencing-based gene expression analysis include gene expression analysis by serial analysis of gene expression (SAGE) and massively parallel signature sequencing (MPSS). .

2. PCR -기재 유전자 발현 프로파일작성 방법 2. PCR -based Gene Expression Profiling Method

a. 역 전사효소 PCR ( RT - PCR ) a. Reverse Transcriptase PCR ( RT - PCR )

가장 민감하고 가장 유연한 정량적 PCR-기재 유전자 발현 프로파일작성 방법들 중 하나는 RT-PCR이고, 이것은 약물 치료와 함께 또는 약물 치료 없이 정상 조직 및 종양 조직에서의 상이한 샘플 집단에 있어서의 mRNA 수준을 비교하여 유전자 발현 패턴을 특성화하고, 밀접하게 관련된 mRNA들을 판별하고, RNA 구조를 분석하는데 사용될 수 있다. One of the most sensitive and most flexible quantitative PCR-based gene expression profiling methods is RT-PCR, which compares mRNA levels in different sample populations in normal and tumor tissues with or without drug treatment. It can be used to characterize gene expression patterns, determine closely related mRNAs, and analyze RNA structure.

제1 단계는 표적 샘플로부터 mRNA의 단리이다. 출발 물질은 대표적으로는 사람 종양 또는 종양 세포주로부터 단리된 전체 RNA 및 각각 대응하는 정상 조직 또는 세포주이다. 따라서 RNA는 건강한 제공자로부터의 풀링된(pooled) DNA와 함께, 각종 주요 종양 (유방, 폐, 결장, 전립선, 뇌, 간, 신장, 췌장, 비장, 갑상선, 고환, 난소, 자궁 등의 종양 또는 종양 세포주 포함)으로부터 단리될 수 있다. mRNA의 공급원이 주요 종양인 경우, mRNA는 예를 들면 냉동되거나 보관된 파라핀-매립 및 고정된 (예를 들면, 포르말린-고정된) 조직 샘플로부터 추출될 수 있다.The first step is the isolation of mRNA from the target sample. Starting materials are typically total RNA isolated from human tumors or tumor cell lines and corresponding normal tissue or cell lines, respectively. Thus, RNA, along with pooled DNA from a healthy donor, may be a tumor or tumor of various major tumors (breast, lung, colon, prostate, brain, liver, kidney, pancreas, spleen, thyroid, testes, ovaries, uterus, etc. Cell lines). If the source of mRNA is the primary tumor, the mRNA can be extracted, for example, from frozen or stored paraffin-embedded and immobilized (eg formalin-fixed) tissue samples.

mRNA 추출을 위한 일반적인 방법은 당업계에 공지되어 있으며, 문헌 [Ausubel et al ., Current Protocols of Molecular Biology, John Wiley and Sons (1997)]을 비롯한 분자 생물학의 표준 교과서에 개시되어 있다. 파라핀에 매립된 조직으로부터의 RNA 추출 방법은 예를 들면, 문헌 ([Rupp and Locker, Lab Invest . 56: A67 (1987)] 및 [De Andres et al ., BioTechniques 18: 42044 (1995)])에 개시되어 있다. 특히, RNA 단리는 상업적 제조업체, 예를 들면 퀴아겐(Qiagen)으로부터의 정제 키트, 완충제 세트 및 프로테아제를 사용하여 제조업자의 지시사항에 따라 수행할 수 있다. 예를 들면, 배양물 중의 세포들로부터의 전체 RNA는 퀴아겐 RN이지(easy) 미니-컬럼(mini-columns)을 사용하여 단리할 수 있다. 다른 상업적으로 입수가능한 RNA 단리 키트는 마스터푸어(MasterPure)TM 완전 DNA 및 RNA 정제 키트 (에피센트레(EPICENTRE)®, 위스콘신주 매디슨) 및 파라핀 블록(Paraffin Block) RNA 단리 키트 (앰비온, 인크.(Ambion, Inc.))를 포함한다. 조직 샘플로부터의 전제 RNA는 RNA Stat-60 (Tel-Test)를 사용하여 단리할 수 있다. 종양으로부터 제조된 RNA는 예를 들면 염화세슘 밀도 구배 원심분리에 의해 단리될 수 있다.General methods for mRNA extraction are known in the art and described in Ausubel et. al . , Current Protocols of Molecular Biology , John Wiley and Sons (1997), are described in standard textbooks of molecular biology. Methods of RNA extraction from tissue embedded in paraffin are described, for example, in Rupp and Locker, Lab. Invest . 56: A67 (1987) and De Andres et. al ., BioTechniques 18: 42044 (1995). In particular, RNA isolation can be performed according to the manufacturer's instructions using a commercial kit, such as a purification kit from Qiagen, a buffer set and a protease. For example, total RNA from cells in culture can be isolated using Qiagen RN easy mini-columns. Other commercially available RNA isolation kits include the MasterPure Complete DNA and RNA Purification Kit (EPICENTRE®, Madison, Wisconsin) and Paraffin Block RNA Isolation Kit (Ambion, Inc.). (Ambion, Inc.). Complete RNA from tissue samples can be isolated using RNA Stat-60 (Tel-Test). RNA prepared from tumors can be isolated, for example, by cesium chloride density gradient centrifugation.

RNA는 PCR을 위한 주형으로 사용될 수 없기 때문에, RT-PCR에 의한 유전자 발현 프로파일작성의 제1 단계는 RNA 주형의 cDNA로의 역 전사이고, 이후 그의 PCR 반응으로의 지수적 증폭이 이어진다. 2가지 가장 일반적으로 사용되는 역 전사효소는 조류 골수아세포증 바이러스 역 전사효소 (AMV-RT) 및 몰로니(Moloney) 쥐 백혈병 바이러스 역 전사효소 (MMLV-RT)이다. 역 전사 단계는 대표적으로 발현 프로파일작성의 환경 및 목표에 따라, 특정 프라이머, 무작위 헥사머, 또는 올리고-dT 프라이머를 사용하여 초회항원자극된다. 예를 들면, 추출된 RNA는 진앰프(GeneAmp) RNA PCR 키트 (퍼킨 엘머(Perkin Elmer), 미국 캘리포니아주)를 사용하여 제조업자의 지시사항에 따라 역-전사될 수 있다. 유도된 cDNA는 이어서 후속되는 PCR 반응에서 주형으로서 사용될 수 있다. Since RNA cannot be used as a template for PCR, the first step in gene expression profiling by RT-PCR is reverse transcription of the RNA template into cDNA, followed by exponential amplification into its PCR reaction. The two most commonly used reverse transcriptases are avian myeloblastosis virus reverse transcriptase (AMV-RT) and Moloney rat leukemia virus reverse transcriptase (MMLV-RT). The reverse transcription step is typically first antigen-stimulated using specific primers, random hexamers, or oligo-dT primers, depending on the environment and goal of expression profiling. For example, the extracted RNA can be reverse-transcribed using the GeneAmp RNA PCR Kit (Perkin Elmer, California, USA) according to the manufacturer's instructions. The derived cDNA can then be used as a template in subsequent PCR reactions.

비록 PCR 단계가 각종 열안정성 DNA-의존성 DNA 폴리머라제를 사용할 수 있지만, 이것은 전형적으로는 Taq DNA 폴리머라제를 사용하는데, 이것은 5'-3' 뉴클레아제 활성을 갖지만, 3'-5' 판독방지(proofreading) 엔도뉴클레아제 활성은 부족하다. 따라서, 타크맨® PCR은 전형적으로는 Taq 또는 Tth 폴리머라제의 그의 표적 암플리콘에 결합된 혼성화 프로브를 혼성화시키는 5'-뉴클레아제 활성을 이용하지만, 동등한 5' 뉴클레아제 활성을 갖는 임의의 효소가 사용될 수 있다. 2개의 올리고뉴클레오티드 프라이머들을 사용하여 PCR 반응의 대표적인 암플리콘을 생성시킨다. 제3 올리고뉴클레오티드 또는 프로브는 2개의 PCR 프라이머들 사이에 위치한 뉴클레오티드 서열을 검출하도록 설계된다. 프로브는 Taq DNA 폴리머라제 효소에 의해 비-연신성이고, 리포터 형광 염료 및 켄처(quencher) 형광 염료로 표지된다. 리포터 염료로부터 임의의 레이저-유도 방출은 2개의 염료가 이들이 프로브 상에 있을 때와 같이 함께 가깝게 위치할 때 켄칭 염료에 의해 켄칭된다. 증폭 반응 동안, Taq DNA 폴리머라제 효소는 주형-의존적 방식으로 프로브를 절단한다. 생성되는 프로브 단편들은 용액 중에서 해리되고, 방출된 리포터 염료로부터의 신호에는 제2 형광단의 켄칭 효과가 없다. 리포터 염료의 한 분자가 합성된 새로운 분자 각각으로부터 방출되고, 켄칭되지 않은 리포터 염료의 검출은 데이터의 정량적 해석에 대한 기준을 제공한다.Although the PCR step can use a variety of thermostable DNA-dependent DNA polymerases, it typically uses Taq DNA polymerase, which has 5'-3 'nuclease activity, but has 3'-5' read protection. There is a lack of proofreading endonuclease activity. Thus, Takman® PCR typically utilizes 5'-nuclease activity that hybridizes hybridization probes bound to its target amplicons of Taq or Tth polymerase, but any that have equivalent 5 'nuclease activity. May be used. Two oligonucleotide primers are used to generate representative amplicons of the PCR reaction. The third oligonucleotide or probe is designed to detect a nucleotide sequence located between two PCR primers. The probe is non-extensible by Taq DNA polymerase enzyme and is labeled with a reporter fluorescent dye and a quencher fluorescent dye. Any laser-induced emission from the reporter dye is quenched by the quench dye when the two dyes are placed together as close as they are on the probe. During the amplification reaction, Taq DNA polymerase enzyme cleaves the probe in a template-dependent manner. The resulting probe fragments dissociate in solution and have no quenching effect of the second fluorophore on the signal from the released reporter dye. One molecule of reporter dye is released from each of the synthesized new molecules, and detection of the unquenched reporter dye provides a basis for quantitative interpretation of the data.

타크맨® RT-PCR은 상업적으로 입수가능한 장비, 예를 들면 ABI 프리즘(PRISM) 7700TM 시퀀스 디텍션 시스템(Sequence Detection System)TM (퍼킨-엘머-어플라이드 바이오시스템즈(Perkin-Elmer-Applied Biosystems), 미국 캘리포니아주 포스터 시티), 또는 라이트사이클러(Lightcycler) (로쉐 몰큘라 바이오케미칼즈(Roche Molecular Biochemicals), 독일 만하임)를 사용하여 수행될 수 있다. 바람직한 실시태양에서, 5' 뉴클레아제 절차가 실시간 정량적 PCR 장치, 예를 들면 ABI 프리즘 7700TM 시퀀스 디텍션 시스템TM 상에서 실행된다. 시스템은 써모사이클러(thermocycler), 레이저, 전하-커플링된 장치 (CCD), 카메라 및 컴퓨터로 이루어진다. 시스템은 샘플을 써모사이클러 상에서 96-웰 포맷으로 증폭시킨다. 증폭 동안, 레이저-유도 형광 신호는 모든 96 웰에 대하여 섬유 광학 케이블을 통해 실시간으로 수집된다. 시스템은 기기를 실행하기 위한 및 데이터를 분석하기 위한 소프트웨어를 포함한다.TAKMAN® RT-PCR is a commercially available instrument, such as the ABI Prism 7700 Sequence Detection System (Perkin-Elmer-Applied Biosystems, USA). Foster City, CA), or Lightcycler (Roche Molecular Biochemicals, Mannheim, Germany). In a preferred embodiment, the 5 'nuclease procedure is performed on a real-time quantitative PCR device, such as the ABI Prism 7700 Sequence Detection System . The system consists of a thermocycler, laser, charge-coupled device (CCD), camera and computer. The system amplifies the sample in a 96-well format on a thermocycler. During amplification, laser-induced fluorescence signals are collected in real time via fiber optic cables for all 96 wells. The system includes software for running the device and for analyzing the data.

5'-뉴클레아제 검정시험 데이터는 초기에 Ct, 또는 역치 사이클로서 표현된다. 상기 논의된 바와 같이, 형광 값은 매 사이클 동안 기록되고, 증폭 반응으로 그 지점으로까지 증폭된 생성물의 양을 나타낸다. 형광 신호가 처음 통계학적으로 유의한 것으로 기록될 때의 지점이 역치 사이클 (Ct)이다. 5'-nuclease assay data is initially expressed as Ct, or threshold cycle. As discussed above, the fluorescence value is recorded every cycle and represents the amount of product amplified to that point in the amplification reaction. The point when the fluorescence signal is first recorded as statistically significant is the threshold cycle (C t ).

샘플들 간의 변동 효과 및 오차를 최소화시키기 위하여, RT-PCR은 일반적으로 기준 RNA (이것은 이상적으로는 상이한 조직들 사이에서 일정 수준으로 발현됨)를 사용하여 수행되고, 실험적 치료에 의해 영향을 받지 않는다. 유전자 발현 패턴을 표준화하는데 가장 자주 사용되는 RNA는 살림 유전자 글리세르알데히드-3-포스페이트-데히드로게나제 (GAPD) 및 β-악틴 (ACTB)에 대한 mRNA이다. In order to minimize the variability effects and errors between samples, RT-PCR is generally performed using reference RNA, which is ideally expressed at some level between different tissues, and is not affected by experimental treatment. . The RNA most often used to standardize gene expression patterns is mRNA for the live gene glyceraldehyde-3-phosphate-dehydrogenase (GAPD) and β-actin (ACTB).

RT-PCR 기술의 보다 최근의 변화는 실시간 정량적 PCR인데, 이것은 이중-표지된 형광원성 프로브 (즉, 타크맨® 프로브)를 통한 PCR 생성물 축적을 측정한다. 실시간 PCR은 정량적 경쟁적 PCR (여기서는, 각 표적 서열에 대한 내부 경쟁자가 표준화에 사용됨) 및 샘플 내에 포함된 표준화 유전자 또는 RT-PCR에 대한 살림 유전자를 사용하는 정량적 비교용 PCR 모두와 상용가능하다. 추가적인 세부사항들에 관해서는, 예를 들면 문헌 [Held et al ., Genome Research 6:986-994 (1996)]을 참조한다. A more recent change in RT-PCR technology is real time quantitative PCR, which measures PCR product accumulation via double-labeled fluorogenic probes (ie, Taqman® probes). Real-time PCR is compatible with both quantitative competitive PCR (wherein internal competitors for each target sequence are used for standardization) and quantitative comparison PCR using standardized genes included in the sample or saline genes for RT-PCR. For further details, see for example Held et. al ., Genome Research 6: 986-994 (1996).

b. 매스어레이 ( MassARRAY ) 시스템 b. Mass array (MassARRAY) system

시커놈, 인크.(Sequenom, Inc.) (캘리포니아주 샌 디에고)가 개발한 매스어레이-기재 유전자 발현 프로파일작성 방법에서는, RNA의 단리 및 역 전사 후에 얻어진 cDNA를 합성 DNA 분자 (경쟁자) (이것은 단일 염기를 제외한 모든 위치에서 표적화 cDNA 구역과 일치함)로 스파이크하고(spiked), 내부 표준으로 사용한다. cDNA/경쟁자 혼합물을 PCR 증폭시키고, 후-PCR 새우 알칼리성 포스파타제 (SAP) 효소 처리를 가하여, 남아있는 뉴클레오티드의 데포스포릴화를 야기시킨다. 알칼리성 포스파타제의 불활성화 후에, 경쟁자 및 cDNA로부터의 PCR 생성물을 프라이머 신장시키고, 이것은 경쟁자- 및 cDNA-유래 PCR 생성물에 대한 별도의 질량 신호들을 생성시킨다. 정제 후, 이들 생성물들을, 매트릭스-보조 레이저 탈착 이온화 흐름시간 질량 분광측정법 (MALDI-TOF MS) 분석을 이용한 분석에 필요한 성분들이 이미-부하되어 있는 칩 어레이 상에 계량분배한다. 반응에 존재하는 cDNA를 이어서 생성된 질량 스펙트럼 내의 피크 면적 비를 분석하여 정량화한다. 추가적인 세부사항들에 대해서는, 예를 들면 문헌 [Ding and Cantor, Proc . Natl . Acad . Sci . USA 100:3059-3064 (2003)]을 참조한다. In the massarray-based gene expression profiling method developed by Sequenom, Inc. (San Diego, Calif.), CDNA obtained after isolation and reverse transcription of RNA is synthesized from a synthetic DNA molecule (competitor) (this is a single Spiked to the targeting cDNA region at all positions except base) and used as internal standard. The cDNA / competitor mixture is PCR amplified and post-PCR shrimp alkaline phosphatase (SAP) enzyme treatment is added to cause dephosphorylation of the remaining nucleotides. After inactivation of alkaline phosphatase, PCR products from competitors and cDNAs are primer stretched, which produces separate mass signals for competitor- and cDNA-derived PCR products. After purification, these products are metered onto an array of chips already loaded with the components necessary for analysis using matrix-assisted laser desorption ionization flow time mass spectrometry (MALDI-TOF MS) analysis. The cDNA present in the reaction is then quantified by analyzing the peak area ratio in the resulting mass spectrum. For further details, see, eg, Ding and Cantor, Proc . Natl . Acad . Sci . USA 100: 3059-3064 (2003).

c. 기타 PCR -기재 방법 c. Other PCR -Based Methods

추가의 PCR-기재 기술은 예를 들면 시차 디스플레이 (문헌 [Liang and Pardee, Science 257:967-971 (1992)]); 증폭된 단편 길이 다형성 (iAFLP) (문헌[Kawamoto et al., Genome Res . 12:1305-1312 (1999)]); 비드어레이(BeadArray)TM 기술 (일루미나(Illumina), 캘리포니아주 샌 디에고) (문헌([Oliphant et al., Discovery of Markers for Disease (Supplement to Biotechniques), June 2002] 및 [Ferguson et al., Analytical Chemistry 72: 5618 (2000)])); 유전자 발현에 대한 신속 검정시험에 상업적으로 입수가능한 루미넥스(Luminex)100 LabMAP 시스템 및 다색-코딩된 미소구 (루미넥스 코포레이션(Luminex Corp.), 텍사스주 오스틴)를 사용하는, 유전자 발현 검출용 비즈어레이(BeadsArray for Detection of Gene Expression) (BADGE) (문헌 [Yang et al., Genome Res. 11:1888-1898 (2001)]); 및 고 피복 발현 프로파일작성 (HiCEP) 분석 (문헌 [Fukumura et al., Nucl . Acids . Res. 31(16) e94 (2003)])을 포함한다. Additional PCR-based techniques are described, for example, in parallax displays (Liang and Pardee, Science 257: 967-971 (1992)); Amplified fragment length polymorphism (iAFLP) (Kawamoto et al., Genome Res . 12: 1305-1312 (1999); BeadArray technology (Illumina, San Diego, CA) (Oliphant et al., Discovery of Markers for Disease (Supplement to Biotechniques ), June 2002] and Ferguson et al., Analytical Chemistry 72: 5618 (2000)])); Beads for gene expression detection using a commercially available Luminex 100 LabMAP system and multicolor-coded microspheres (Luminex Corp., Austin, Texas) for rapid assay for gene expression Arrays for Detection of Gene Expression (BADGE) (Yang et al., Genome Res . 11: 1888-1898 (2001); And high coat expression profiling (HiCEP) analysis (Fukumura et al., Nucl . Acids . Res. 31 (16) e94 (2003)).

3. 마이크로어레이 3. Microarray

차등적인 유전자 발현은 마이크로어레이 기술을 사용하여 판별 또는 확인될 수 있다. 따라서, 유방암-관련 유전자의 발현 프로파일은 마이크로어레이 기술을 사용하여 신선한 또는 파라핀에 매립된 종양 조직에서 측정될 수 있다. 이 방법에서는, 관심을 갖는 서열 (cDNA 및 올리고뉴클레오티드 포함)을 마이크로칩 기판 상에 플레이팅 또는 배열시킨다. 배열된 서열들을 이어서 관심을 갖는 세포 또는 조직으로부터의 특정 DNA 프로브와 혼성화시킨다. RT-PCR 방법에서와 마찬가지로, mRNA의 공급원은 전형적으로 사람 종양 또는 종양 세포주, 및 대응하는 정상 조직 또는 세포주로부터 단리된 전체 RNA이다. 따라서 RNA는 각종 주요 종양 또는 종양 세포주로부터 단리될 수 있다. mRNA의 공급원이 주요 종양인 경우, mRNA는 예를 들면 냉동되거나 보관된 파라핀-매립 및 고정된 (예를 들면 포르말린-고정된) 조직 샘플 (이것은 매일의 임상적 관행으로 일상적으로 제조 및 보존됨)로부터 추출될 수 있다.Differential gene expression can be determined or confirmed using microarray techniques. Thus, expression profiles of breast cancer-related genes can be measured in fresh or paraffin embedded tumor tissue using microarray technology. In this method, sequences of interest (including cDNA and oligonucleotides) are plated or arranged on a microchip substrate. The arranged sequences are then hybridized with specific DNA probes from the cell or tissue of interest. As in the RT-PCR method, the source of mRNA is typically human RNA or tumor cell lines, and total RNA isolated from the corresponding normal tissues or cell lines. Thus RNA can be isolated from various major tumors or tumor cell lines. If the source of mRNA is a major tumor, the mRNA may be, for example, frozen or stored paraffin-embedded and fixed (eg formalin-fixed) tissue samples (which are routinely prepared and preserved with daily clinical practice). Can be extracted from.

마이크로어레이 기술의 특정 실시태양에서, cDNA 클론의 PCR 증폭된 삽입물이 치밀한 어레이로 기판 상에 가해진다. 바람직하게는, 10,000 이상의 뉴클레오티드 서열들이 기판에 가해진다. 10,000 엘레멘트 각각으로 마이크로칩 상에 고정화된 미세배열된 유전자들이 엄격한 조건 하에서의 혼성화에 적합하다. 형광적으로 표지된 cDNA 프로브들이 관심을 갖는 조직으로부터 추출된 RNA의 역 전사에 의해 형광 뉴클레오티드의 혼입을 통해 생성될 수 있다. 칩에 가해진 표지된 cDNA 프로브는 어레이 상의 DNA 각 스팟에 특이성을 갖게 혼성화된다. 비-특이적으로 결합된 프로브들을 제거하기 위한 엄격한 세척 후, 칩을 동일초점 레이저 현미경에 의해 또는 다른 검출 방법, 예를 들면 CCD 카메라에 의해 주사한다. 각 배열된 엘레멘트의 혼성화에 대한 정량화는 대응하는 mRNA 과다의 평가를 가능하게 한다. 이중 색 형광의 경우, 2개의 RNA 공급원으로부터 생성된 별도로 표지된 cDNA 프로브가 어레이에 각 쌍별로 혼성화된다. 따라서 각 명시된 유전자에 대응하는 2개의 공급원으로부터의 전사체의 상대적 과다가 동시에 결정된다. 소형화 규모의 혼성화가 많은 수의 유전자들에 대한 발현 패턴의 편리하고 신속한 평가를 제공한다. 이러한 방법은 희귀한 전사체 (이것은 세포 당 소수개의 복사물로 발현됨)을 검출하는데 및 발현도에 있어서 적어도 대략 2배 차이로 재현가능하게 검출하는데 필요한 민감성을 갖는 것으로 나타났다 (문헌 [Schena et al ., Proc . Natl . Acad . Sci . USA 93(2):106-149 (1996)]). 마이크로어레이 분석은 상업적으로 입수가능한 장비에 의해 제조업자의 프로토콜에 따라, 예를 들면 아피매트릭스 겐칩(Affymetrix GenChip) 기술 또는 인사이트(Incyte's) 마이크로어레이 기술을 사용하여 수행될 수 있다.In certain embodiments of microarray technology, PCR amplified inserts of cDNA clones are applied onto the substrate in a dense array. Preferably, 10,000 or more nucleotide sequences are added to the substrate. Microarrayed genes immobilized on microchips with 10,000 elements each are suitable for hybridization under stringent conditions. Fluorescently labeled cDNA probes can be generated through incorporation of fluorescent nucleotides by reverse transcription of RNA extracted from tissue of interest. Labeled cDNA probes applied to the chip hybridize with specificity to each spot of DNA on the array. After stringent washing to remove non-specifically bound probes, the chip is scanned by in-focus laser microscopy or by another detection method, such as a CCD camera. Quantification of hybridization of each arranged element allows for evaluation of the corresponding mRNA excess. In the case of dual color fluorescence, separately labeled cDNA probes generated from two RNA sources hybridize to each pair in the array. Thus, the relative excess of transcripts from two sources corresponding to each specified gene is determined simultaneously. Miniaturization scale hybridization provides convenient and rapid evaluation of expression patterns for large numbers of genes. This method has been shown to have the necessary sensitivity to detect rare transcripts (which are expressed in a few copies per cell) and reproducibly with at least approximately 2-fold differences in expression (Schena et. al ., Proc . Natl . Acad . Sci . USA 93 (2): 106-149 (1996)]. Microarray analysis can be performed by commercially available equipment according to the manufacturer's protocol, for example using Affymetrix GenChip technology or Insight's microarray technology.

유전자 발현의 대규모 분석을 위한 마이크로어레이 방법의 개발은 암 분류의 분자 마커에 대해 및 각종 종양 타입에서의 성과 예측에 대하여 체계적으로 연구할 수 있게 만든다.The development of microarray methods for large-scale analysis of gene expression makes it possible to systematically study molecular markers of cancer classification and performance prediction in various tumor types.

4. 유전자 발현의 연속 분석 ( SAGE ) 4. Continuous Analysis of Gene Expression ( SAGE )

유전자 발현의 연속 분석 (SAGE)은 각 전사체에 대한 개별 혼성화 프로브를 제공할 필요없이, 많은 수의 유전자 전사체의 동시적인 및 정량적인 분석을 가능하게 하는 방법이다. 우선, 한 전사체를 독특하게 동정하기에 충분한 정보를 함유하는 짧은 서열 꼬리표(tag) (약 10-14 bp)를 생성시키는데, 단 꼬리표는 각 전사체 내의 독특한 위치로부터 얻는다. 이어서, 많은 전사체들을 함께 연결하여 긴 일련의 분자들 (서열화되어 다수개의 꼬리표들의 동일성을 동시에 나타냄)을 형성한다. 개별 꼬리표의 과다를 측정하고 각 꼬리표에 대응하는 유전자를 동정함으로써 임의의 전사체 집단의 발현 패턴을 정량적으로 평가할 수 있다. 보다 자세한 내용을 위해서는, 예를 들면 문헌 ([Velculescu et al ., Science 270:484-487 (1995)] 및 [Velculescu et al ., Cell 88:243-51 (1997)])을 참조한다. Serial analysis of gene expression (SAGE) is a method that allows for simultaneous and quantitative analysis of large numbers of gene transcripts without the need to provide separate hybridization probes for each transcript. First, a short sequence tag (about 10-14 bp) is generated that contains enough information to uniquely identify a transcript, with the tag being obtained from a unique location within each transcript. Many transcripts are then linked together to form a long series of molecules (sequenced to represent the identity of multiple tags simultaneously). The expression pattern of any transcript population can be quantitatively assessed by measuring the excess of an individual tag and identifying the gene corresponding to each tag. For more details, see, eg, Velculescu et. al ., Science 270: 484-487 (1995) and Velculescu et al ., Cell 88: 243-51 (1997).

5. 대량적으로 평행한 시그너쳐 서열화 ( MPSS )에 의한 유전자 발현 분석 5. Gene Expression Analysis by Massively Parallel Signature Sequencing ( MPSS )

문헌 [Brenner et al ., Nature Biotechnology 18:630-634 (2000)]에 의해 설명되는 이 방법은 비-겔-기재 시그너쳐 서열화와 별도의 5 ㎛ 직경 마이크로비드 상에서의 수백만의 주형들의 시험관내 클로닝을 병용하는 서열화 접근법이다. 우선, DNA 주형들의 마이크로비드 라이브러리를 시험관내 클로닝으로 구축한다. 이후, 고 밀도 (전형적으로는 3×106 마이크로비드/cm)의 흐름 세포 중에서의 주형-함유 마이크로비드의 평면 어레이의 구축(assembly)이 이어진다. 각 마이크로비드 상의 클로닝된 주형의 유리 단부를 DNA 단편 분리를 필요로 하지 않는 형광-기재 시그너쳐 서열화 방법을 사용하여 동시에 분석한다. 이 방법은 한번의 작업으로 효모 cDNA 라이브러리로부터 수백 수천개의 유전자 시그너쳐 서열들을 동시에 및 정확하게 제공하는 것으로 나타났다.Brenner et al ., Nature Biotechnology 18: 630-634 (2000) is a sequencing approach that combines non-gel-based signature sequencing with in vitro cloning of millions of templates on separate 5 μm diameter microbeads. First, microbead libraries of DNA templates are constructed by in vitro cloning. This is followed by the assembly of a planar array of template-containing microbeads in high density (typically 3 × 10 6 microbeads / cm) flow cells. The free end of the cloned template on each microbead is analyzed simultaneously using a fluorescence-based signature sequencing method that does not require DNA fragment separation. This method has been shown to provide hundreds and thousands of gene signature sequences from yeast cDNA libraries simultaneously and accurately in one operation.

6. 면역조직화학 6. Immunohistochemistry

면역조직화학 방법 또한 본 발명의 예후 마커들의 발현도를 검출하는데 적합하다. 따라서, 항체 또는 항혈청, 바람직하게는 폴리클론 항혈청 및 가장 바람직하게는 각 마커에 특이성인 모노클론 항체를 사용하여 발현을 검출한다. 항체는 예를 들면 방사성 표지, 형광 표지, 합텐 표지, 예를 들면 비오틴, 또는 효소, 예를 들면 호스 래디쉬 퍼옥시다제 또는 알칼리성 포스파타제를 이용한, 항체 자신들의 직접적인 표지화에 의해 검출될 수 있다. 다르게는, 표지되지 않은 1차 항체를 1차 항체에 특이적인 항혈청, 폴리클론 항혈청 또는 모노클론 항체를 포함하는 표지된 2차 항체와 함께 사용한다. 면역조직화학 프로토콜 및 키트는 당업계에 공지되어 있고 상업적으로 입수가능하다.Immunohistochemical methods are also suitable for detecting the expression of prognostic markers of the present invention. Thus, expression is detected using antibodies or antisera, preferably polyclonal antisera and most preferably monoclonal antibodies specific for each marker. Antibodies can be detected, for example, by direct labeling of the antibodies themselves with radiolabels, fluorescent labels, hapten labels such as biotin, or enzymes such as horse radish peroxidase or alkaline phosphatase. Alternatively, an unlabeled primary antibody is used in combination with a labeled secondary antibody comprising an antiserum, polyclonal antiserum or monoclonal antibody specific for the primary antibody. Immunohistochemistry protocols and kits are known in the art and are commercially available.

7. 프로테오믹스 7. Proteomics

용어 "프로테옴(proteome)"은 특정 기간에 샘플 (예를 들면, 조직, 유기체 또는 세포 배양물) 중에 존재하는 단백질 전체로서 정의된다. 프로테오믹스는 특히, 샘플 중의 단백질 발현의 전반적인 변화의 연구를 포함한다 (또한, "발현 프로테오믹스"로도 불림). 프로테오믹스는 전형적으로는 다음 단계들을 포함한다: (1) 2-D 겔 전기영동 (2-D PAGE)에 의한 샘플 중의 개별 단백질의 분리; (2) 겔로부터 회수된 개별 단백질의 확인, 예를 들면 질량 분광측정법 또는 N-말단 서열화, 및 (3) 생물정보학(bioinformatics)을 이용한 데이터의 분석. 프로테오믹스 방법은 유전자 발현 프로파일작성의 다른 방법에 대한 귀중한 부록으로 단독으로 또는 다른 방법과 함께 본 발명의 예후 마커들의 생성물을 검출하는데 사용될 수 있다.The term “proteome” is defined as the entirety of a protein present in a sample (eg, tissue, organism or cell culture) at a particular time period. Proteomics in particular involves the study of the overall change in protein expression in a sample (also called "expression proteomics"). Proteomics typically include the following steps: (1) separation of individual proteins in a sample by 2-D gel electrophoresis (2-D PAGE); (2) identification of individual proteins recovered from the gel, such as mass spectrometry or N-terminal sequencing, and (3) analysis of data using bioinformatics. Proteomics methods are valuable appendices to other methods of gene expression profiling and can be used alone or in combination with other methods to detect the product of prognostic markers of the present invention.

8. mRNA 단리, 정제 및 증폭의 일반적인 설명 8. General description of mRNA isolation, purification and amplification

mRNA 단리, 정제, 프라이머 신장 및 증폭을 포함하는, RNA 공급원으로서 고정되어 파라핀에 매립된 조직을 사용하는 유전자 발현을 프로파일작성하기 위한 대표적인 프로토콜의 단계들이 각종의 출판된 잡지 논문 (예를 들면, 문헌 ([T.E. Godfrey et al. J. Molec . Diagnostics 2: 84-91 [2000]] 및 [K. Specht et al., Am. J. Pathol . 158: 419-29 [2001]]))에 제공된다. 요약하면, 대표적인 방법은 파라핀-매립 종양 조직 샘플의 약 10 ㎛ 두께 절편을 절단하는 것으로 시작된다. 이어서 RNA를 추출하고, 단백질 및 DNA를 제거한다. RNA 농도의 분석 후, RNA 수복 및(또는) 증폭 단계들이 필요할 경우 포함될 수 있으며, 유전자 특이적 프로모터를 사용하여 RNA가 역 전사된 후 RT-PCR이 이어진다. 최종적으로, 데이터를 분석하여 관찰된 종양 샘플에서 확인된 특징적인 유전자 발현 패턴에 기초하여 환자에게 이용할 수 있는 최상의 치료 선택사항(들)을 판별해낸다.Representative protocol steps for profiling gene expression using immobilized, paraffin-embedded tissue as an RNA source, including mRNA isolation, purification, primer extension and amplification, are described in various published magazine articles (eg, literature (TE Godfrey et al. J. Molec . Diagnostics 2: 84-91 [2000] and K. Specht et al., Am. J. Pathol . 158: 419-29 [2001]). . In summary, a representative method begins with cutting about 10 μm thick sections of paraffin-embedded tumor tissue samples. RNA is then extracted and proteins and DNA are removed. After analysis of RNA concentration, RNA repair and / or amplification steps may be included if necessary, followed by RT-PCR after RNA is reverse transcribed using a gene specific promoter. Finally, the data is analyzed to determine the best treatment option (s) available to the patient based on the characteristic gene expression patterns identified in the observed tumor samples.

9. 암 화학요법 9. Cancer Chemotherapy

암 치료에 사용되는 화학요법제는 그들의 작용 기전에 따라 몇 개의 군으로 나눠질 수 있다. 일부 화학요법제는 DNA 및 RNA를 직접 손상시킨다. DNA의 복제를 파괴함으로써, 상기 화학요법제는 복제를 완전히 중단시키거나 또는 넌센스 DNA 또는 RNA의 생산을 야기한다. 이러한 범주에는 예를 들면 시스플라틴 (플라티놀(Platinol)®), 다우노루비신 (세루비딘(Cerubidine)®), 독소루비신 (아드리아마이신(Adriamycin)®), 및 에토포시드 (베페시드(VePesid)®)가 포함된다. 다른 군의 암 화학요법제는 뉴클레오티드 또는 데옥시뉴클레오티드의 형성을 방해하여, RNA 합성 및 세포 복제가 차단된다. 이러한 분류 내의 약물의 예는 메토트렉세이트 (아비트렉세이트(Abitrexate)®), 머캅토푸린 (푸린에톨(Purinethol)®), 플루오로우라실 (아드루실(Adrucil)®), 및 히드록시우레아 (히드레아(Hydrea)®)를 포함한다. 제3의 분류의 화학요법제는 유사분열 방추체의 합성 및 분해에 영향을 미쳐, 그 결과 세포 분할을 방해한다. 이러한 분류 내의 약물의 예는 빈블라스틴 (벨반((Velban)®), 빈크리스틴 (온코빈(Oncovin)®) 및 탁센, 예를 들면 파시탁셀 (탁솔(Taxol)®), 및 토세탁셀 (탁소테레(Taxotere)®)을 포함한다. 토세탁셀은 현재 미국에서 이전의 화학요법 실패 후 국소적으로 진행된 또는 전이성 유방암을 갖는 환자 및 이전의 백금-기재 화학요법의 실패 후 국소적으로 진행된 또는 전이성 작지 않은 세포 폐암을 갖는 환자를 치료하는데 허용된다.Chemotherapeutic agents used to treat cancer can be divided into several groups depending on their mechanism of action. Some chemotherapeutic agents directly damage DNA and RNA. By disrupting the replication of DNA, the chemotherapeutic agent completely stops replication or results in the production of nonsense DNA or RNA. These categories include, for example, cisplatin (Platinol®), daunorubicin (Cerubidine®), doxorubicin (Adriamycin®), and etoposide (VePesid®). ) Is included. Another group of cancer chemotherapeutic agents interfere with the formation of nucleotides or deoxynucleotides, thereby blocking RNA synthesis and cell replication. Examples of drugs in this class include methotrexate (Abitrexate®), mercaptopurine (Purinethol®), fluorouracil (Adrucil®), and hydroxyurea (hydrarea) (Hydrea) ®). The third class of chemotherapeutic agents affects the synthesis and degradation of mitotic spindles, thereby disrupting cell division. Examples of drugs in this class include vinblastine (Velban®), vincristine (Oncovin®) and taxanes such as pacitaxel (Taxol®), and tocetaxel ( Taxotere®) Tocetaxel is currently administered locally in patients with locally advanced or metastatic breast cancer after a previous chemotherapy failure and after failure of previous platinum-based chemotherapy or It is allowed to treat patients with metastatic small cell lung cancer.

화학요법과 관련된 일반적인 문제점은 화학요법제, 예를 들면 안트라시클린 및 탁센의 높은 독성으로, 이것은 이 치료 접근법의 임상적 이점들을 제한시킨다.A common problem associated with chemotherapy is the high toxicity of chemotherapeutic agents such as anthracycline and taxanes, which limits the clinical benefits of this treatment approach.

대부분의 환자들은 종양의 수술 제거 직후에 화학요법을 받는다. 이러한 접근법은 일반적으로 보조 요법으로 언급된다. 그러나, 화학요법은 소위 신보조항암 치료로 불리는 바와 같이 또한 수술 전에 투여될 수 있다. 비록, 신보조항암 화학요법의 사용이 진행된 및 수술불가능한 유방암의 치료에서 기원하였지만, 또한 다른 유형의 암의 치료에서의 사용도 얻었다. 신보조항암 화학요법의 효능은 몇몇 임상 시험으로 시험되었다. 멀티-센터 내셔날 서지칼 어드쥬번트 브레스트 앤드 바울 프로젝트 (the multi-center National Surgical Adjuvant Breast and Bowel Project) B-18 (NSAB B-18) 시험 (문헌 ([Fisher et al., J. Clin . Oncology 15:2002-2004 (1997)] 및 [Fisher et al., J. Clin . Oncology 16:2672-2685 (1998)]))에서, 신보조항암 요법은 아드리아마이신 및 시클로포스파미드의 조합물과 함께 수행되었다 ("AC 섭생"). 다른 임상 시험에서는, 신보조항암 요법을 5-플루오로우라실, 에피루비신 및 시클로포스파미드의 조합물을 사용하여 투여하였다 ("FEC 섭생") (문헌 [van Der Hage et al., J. Clin . Oncol. 19:4224-4237 (2001)]). 보다 새로운 임상 시험은 또한 탁산-함유 신보조항암 치료 섭생을 사용하였다. 예를 들면, 문헌 ([Holmes et al., J. Natl . Cancer Inst. 83:1797-1805 (1991)] 및 [Moliterni et al., Seminars in Oncology, 24:S17-10-S-17-14 (1999)]) 참조. 유방암에 대한 신보조항암 화학요법에 관한 추가적인 정보에 대해서는, 문헌 [Cleator et al., Endocrine -Related Cancer 9:183-195 (2002)]을 참조한다. Most patients receive chemotherapy immediately after surgical removal of the tumor. This approach is commonly referred to as adjuvant therapy. However, chemotherapy may also be administered before surgery, as is called so-called neoadjuvant cancer treatment. Although the use of neoadjuvant chemotherapy originated in the treatment of advanced and inoperable breast cancer, it has also been used in the treatment of other types of cancer. The efficacy of neoadjuvant chemotherapy has been tested in several clinical trials. The multi-center National Surgical Adjuvant Breast and Bowel Project B-18 (NSAB B-18) Exam (Fisher et al., J. Clin . Oncology 15: 2002-2004 (1997) and Fisher et al., J. Clin . Oncology 16: 2672-2685 (1998)]), the neoadjuvant cancer therapy is a combination of adriamycin and cyclophosphamide. Was performed together (“AC regimen”). In another clinical trial, neoadjuvant cancer therapy was administered using a combination of 5-fluorouracil, epirubicin and cyclophosphamide ("FEC regimen") (van Der Hage et al., J. Clin . Oncol . 19: 4224-4237 (2001). Newer clinical trials also used taxane-containing neoadjuvant chemotherapy regimens. See, eg, Holmes et al., J. Natl . Cancer Inst . 83: 1797-1805 (1991) and Moliterni et al., Seminars in Oncology , 24: S 17-10-S-17-14 (1999)]. For further information on neoadjuvant chemotherapy for breast cancer, see Cleator et al., Endocrine- Related Cancer 9: 183-195 (2002).

10. 암 유전자 세트, 검정시험된 유전자 부분서열( Subsequences ), 및 유전자 발현 데이터의 임상적 적용 10. Clinical application of cancer gene sets, assayed gene subsequences , and gene expression data

본 발명의 중요한 면은 유방암 조직에 의한 특정 유전자의 측정된 발현을 사용하여 예후 정보를 제공하는 것이다. 이러한 목적을 위해, 검정시험된 RNA의 양, 사용된 RNA 품질에 있어서의 변동, 및 다른 인자, 예를 들면 기계 및 작업자 차이에 있어서의 차이에 대해 보정하는(표준화) 것이 필수적이다. 그러므로, 검정시험은 전형적으로 GAPD 및 ACTB와 같은 공지된 살림 유전자로부터 전사된 것들을 포함하는, 기준 RNA의 사용을 측정하여 혼입시킨다. 유전자 발현 데이터를 표준화하기 위한 정확한 방법은 문헌 ["User Bulletin #2" for the ABI PRISM 7700 Sequence Detection System (Applied Biosystems; 1997)]에 제공된다. 다르게는, 표준화는 검정시험된 유전자들 또는 이들의 많은 서브세트 전부의 평균 또는 중간 신호 (Ct)를 기준으로 할 수 있다 (전체 표준화 접근법). 하기 실시예에 설명된 연구에서는, 소위 중심 표준화 전략을 사용하였는데, 이것은 표준화를 위해 임상적 성과와의 상관성 부족에 기초하여 선택된 스크리닝된 유전자의 서브세트를 이용하였다.An important aspect of the present invention is the use of the measured expression of specific genes by breast cancer tissue to provide prognostic information. For this purpose, it is essential to correct (standardize) the amount of RNA tested, variations in RNA quality used, and differences in other factors, such as machine and operator differences. Therefore, assays typically measure and incorporate the use of reference RNA, including those transcribed from known salivary genes such as GAPD and ACTB. Accurate methods for standardizing gene expression data are provided in "User Bulletin # 2" for the ABI PRISM 7700 Sequence Detection System (Applied Biosystems; 1997). Alternatively, normalization can be based on the mean or median signal (Ct) of the assayed genes or all of their many subsets (full standardization approach). In the studies described in the Examples below, a so-called central standardization strategy was used, which used a subset of screened genes selected based on lack of correlation with clinical outcome for standardization.

11. 재발 및 요법에 대한 반응 스코어 및 이들의 응용 11. Response scores for relapse and therapy and their application

2003년 7월 10일에 출원된 동시계류중인 출원 No. 60/486,302는 암 재발의 가능성 및(또는) 치료 기법에 환자가 잘 반응할 가능성을 결정하기 위한 연산-기재 예후 시험을 설명한다. 이것과 다른 암 예후 방법을 구분짓는 연산의 특징은 1) 재발 가능성을 측정하는데 사용된 독특한 시험 mRNAs 세트 (또는 대응하는 유전자 발현 생성물), 2) 발현 데이터를 식으로 합치는데 사용된 특정 가중치, 및 3) 환자들을 상이한 수준의 위험을 갖는 군, 예를 들면 저, 중간 및 고 위험 군으로 나누는데 사용된 역치를 포함한다. 이 연산은 수치적인 재발 스코어 (RS) 또는 치료에 대한 환자 반응이 평가되는 경우엔, 요법에 대한 반응 스코어 (RTS)를 산출해낸다. Pending Application No. filed July 10, 2003. 60 / 486,302 describes a computational-based prognosis trial to determine the likelihood of cancer recurrence and / or the likelihood that a patient will respond well to a treatment technique. Features of the operation that distinguish this from other cancer prognostic methods include 1) a unique set of test mRNAs (or corresponding gene expression products) used to measure recurrence, 2) specific weights used to combine expression data, and 3) thresholds used to divide patients into groups with different levels of risk, eg, low, medium and high risk groups. This operation yields a numerical recurrence score (RS) or a response score (RTS) for therapy if the patient's response to the treatment is evaluated.

시험은 명시된 mRNA 또는 이들의 발현 생성물의 수준을 측정하기 위한 실험실 검정시험을 필요로 하지만, 신선한 조직이거나 또는 냉동된 조직, 또는 이미 반드시 환자들로부터 수집되어 보관되어 있는 고정되어 파라핀에 매립된 종양 생검 시험편을 매우 소량으로 이용할 수 있다. 따라서, 시험은 비침입성일 수 있다. 예를 들면 코어 생검 또는 미세침 흡인을 통해 수확된 종양 조직의 몇가지 상이한 방법들과 상용성이기도 하다.The test requires laboratory assays to determine the levels of specified mRNAs or expression products thereof, but is fixed or paraffin embedded tumor biopsies that are either fresh or frozen tissue or already collected and stored from patients. Test specimens are available in very small quantities. Thus, the test can be non-invasive. It is also compatible with several different methods of tumor tissue harvested, for example, via core biopsy or microneedle aspiration.

이 방법에 따르면, 암 재발 스코어 (RS)는According to this method, the cancer recurrence score (RS) is

(a) 상기 대상체로부터 얻은 암 세포를 포함하는 생물학적 샘플로 유전자 또는 단백질 발현 프로파일을 작성하고;(a) generating a gene or protein expression profile with a biological sample comprising cancer cells obtained from the subject;

(b) 다수개의 개별 유전자의 발현도 [즉, mRNA 또는 단백질 수준]를 정량화하여 각 유전자에 대한 발현 값을 정하고;(b) quantifying the expression levels (ie mRNA or protein levels) of a plurality of individual genes to determine expression values for each gene;

(c) 각각 암-관련 생물학적 함수에 의해 및(또는) 동시발현에 의해 연결된 유전자들에 대한 발현 값을 포함하는, 유전자 발현 값들의 서브세트를 생성시키고;(c) generate a subset of gene expression values, each comprising an expression value for genes linked by cancer-related biological function and / or by co-expression;

(d) 한 서브세트 내의 각 유전자의 발현도에 상기 서브세트 내에서의 그의 암 재발 또는 요법 반응에 대한 상대적 기여도를 반영하는 계수를 곱하고 곱한 값을 더하여 상기 서브세트에 대한 값을 산출하고; (d) multiply the expression level of each gene in one subset by a coefficient reflecting its relative contribution to cancer recurrence or therapy response in the subset and add the multiplied value to yield a value for the subset;

(e) 각 서브세트의 그 값에 그의 암 재발 또는 요법 반응에 대한 기여도를 반영하는 계수를 곱하고; (e) multiply that value of each subset by a coefficient that reflects its contribution to cancer recurrence or therapy response;

(f) 상기 계수를 곱한 각 서브세트에 대한 값들의 합을 구하여 재발 스코어 (RS) 또는 요법 반응 (RTS) 스코어를 얻음으로써 결정되는데, 여기서,(f) is determined by summing the values for each subset multiplied by the coefficients to obtain a recurrence score (RS) or therapy response (RTS) score, wherein

암 재발 또는 요법 반응과 선형 상관관계를 보이지 않는 각 서브세트의 기여도는 단지 소정의 역치 값 이상에서만 포함되고, The contribution of each subset that does not linearly correlate with cancer recurrence or therapy response is included only above a predetermined threshold value,

명시된 유전자의 증가된 발현이 암 재발 위험을 감소시키는 서브세트에는 음의 값을 부여하고, 명시된 유전자의 발현이 암 재발 위험을 증가시키는 서브세트에는 양의 값을 부여한다.Increased expression of the specified genes gives a negative value to subsets that reduce the risk of cancer recurrence and positive expression to the subsets where expression of the specified genes increases the risk of cancer recurrence.

구체적인 실시태양에서, RS는In a specific embodiment, RS is

(a) 상기 대상체로부터 얻은 종양 세포를 함유하는 생물학적 샘플 중에서, GRB7, HER2, EstRl, PR, Bcl2, CEGP1, SURV, Ki.67, MYBL2, CCNB1, STK15, CTSL2, STMY3, CD68, GSTM1, 및 BAG1, 또는 이들의 발현 생성물의 발현도를 결정하고; (a) Among biological samples containing tumor cells obtained from the subject, GRB7, HER2, EstRl, PR, Bcl2, CEGP1, SURV, Ki.67, MYBL2, CCNB1, STK15, CTSL2, STMY3, CD68, GSTM1, and BAG1 Or determine the degree of expression of their expression products;

(b) 하기 식에 의해 재발 스코어 (RS)를 계산함으로서 결정된다:(b) is determined by calculating the recurrence score (RS) by the formula:

RS = (0.23 내지 0.70)×GRB7 축 역치 - (0.17 내지 0.51)×ER 축 + (0.53 내지 1.56)×증식 축 역치 + (0.07 내지 0.21)×침윤 축 + (0.03 내지 0.15)×CD68 - (0.04 내지 0.25)×GSTM1 - (0.05 내지 0.22)×BAG1RS = (0.23 to 0.70) x GRB7 axis threshold-(0.17 to 0.51) x ER axis + (0.53 to 1.56) x growth axis threshold + (0.07 to 0.21) x infiltration axis + (0.03 to 0.15) x CD68-(0.04 To 0.25) x GSTM1-(0.05 to 0.22) x BAG1

[상기 식에서,[Wherein,

(i) GRB7 축 = (0.45 내지 1.35)×GRB7 + (0.05 내지 0.15)×HER2이고; (i) GRB7 axis = (0.45-1.35) × GRB7 + (0.05-0.15) × HER2;

(ii) GRB7 축 < -2이면, GRB7 축 역치 = -2이고, (ii) if the GRB7 axis <-2, then the GRB7 axis threshold = -2,

GRB7 축 ≥ -2이면, GRB7 축 역치 = GRB7 축이고;      If the GRB7 axis> -2, then the GRB7 axis threshold = GRB7 axis;

(iii) ER 축 = (Est1 + PR + Bcl2 + CEGP1)/4이고; (iii) the ER axis = (Est1 + PR + Bcl2 + CEGP1) / 4;

(iv) 증식 축 = (SURV + Ki.67 + MYBL2 + CCNB1+ STK15)/5이고; (iv) axis of proliferation = (SURV + Ki.67 + MYBL2 + CCNB1 + STK15) / 5;

(v) 증식 축 < -3.5이면, 증식 축 역치 = -3.5이고,(v) if propagation axis <-3.5, propagation axis threshold = -3.5,

증식 축 ≥ -3.5이면, 증식 축 역치 = 증식 축이고;    If propagation axis ≧ −3.5, then propagation axis threshold = proliferation axis;

(vi) 침윤 축 = (CTSL2 + STMY3)/2이며, (vi) infiltration axis = (CTSL2 + STMY3) / 2,

여기서, 범위를 구체적으로 나타내지 않은 모든 개별 유전자들에 대한 값은 약 0.5 내지 1.5 사이에서 변할 수 있고, 보다 높은 RS는 암의 재발 가능성 증가를 나타냄].Wherein the values for all individual genes not specifically indicated in the range can vary between about 0.5 and 1.5, with higher RS indicating an increased likelihood of recurrence of the cancer.

본 발명의 추가적인 세부사항들은 하기의 비제한적인 실시예에서 설명될 것이다.Further details of the invention will be described in the following non-limiting examples.

침윤 유방암에서의 In invasive breast cancer 신보조항암New supportive cancer 화학요법의 후향적 연구: 파라핀-매립 코어  Retrospective Study of Chemotherapy: Paraffin-embedded Core 생검Biopsy 조직의 유전자 발현 프로파일작성 Gene Expression Profile of Tissue

이것은 게노믹 헬쓰, 인크.(Genomic Health, Inc.) (캘리포니아주 레드우드 시티), 및 인스티튜트 투모리(Institute Tumori) (이탈리아 밀라노)가 관여한 공동 연구이었다. 이 연구의 주요 목적은 국소적으로 진행된 유방암에서 신보조항암 화학요법에 대한 병리적 완전 반응 (pCR)과 처리전 분자 프로파일 사이의 상관관계를 탐구하는 것이었다. This was a joint study involving Genomic Health, Inc. (Redwood City, Calif.), And Institute Tumori (Milan, Italy). The main purpose of this study was to explore the correlation between pathologic complete response (pCR) to neoadjuvant chemotherapy in locally advanced breast cancer and molecular profile before treatment.

환자 포함 기준: Patient Inclusion Criteria :

침윤 유방암의 조직학적 진단 (수술 날짜 1998-2002); 피부 침윤 및(또는) N2 겨드랑 상태 및(또는) 동측성 양성 빗장위림프절; 이스티튜토 나지오날레 투모리(Istituto Nazionale Tumori) (이탈리아 밀라노)에서 수행된 코어 생검, 신보조항암 화학요법 및 수술 절제술; 조직학적 진단 또는 진단 절차로부터 얻은 생물학적 물질이 연구에 사용된다는 것을 알고 서명한 동의; 및 본 연구에 포함되기 위한 종양 조직의 적당량을 나타내는 조직병리학적 평가.Histological diagnosis of invasive breast cancer (operation date 1998-2002); Skin infiltration and / or N2 axillary condition and / or ipsilateral benign clavicle lymph node; Core biopsies, neoadjuvant chemotherapy and surgical resections performed in Istituto Nazionale Tumori (Milan, Italy); Consent to know and sign that a biological material from histological diagnosis or diagnostic procedure is to be used in the study; And histopathological evaluation indicating an appropriate amount of tumor tissue for inclusion in the study.

배제 기준:Exclusion Criteria:

먼 전이; 초기 코어 생검으로부터 또는 수술 절제술로부터 입수가능한 종양 블록 없음; 또는 병리학자가 H&E 슬라이드를 관찰하여 평가하였을 때 블록 내 종양이 없거나 또는 거의 없음 (슬라이드 상의 전체 조직의 5% 미만).Distant metastasis; No tumor block available from initial core biopsy or from surgical resection; Or no or little tumor in the block (less than 5% of the total tissue on the slide) when the pathologist assessed by observing the H & E slide.

연구 설계Study design

89명의 평가가능한 환자들 (96명의 임상적으로 평가가능한 환자 세트로부터)을 판별하여 연구하였다. 384 mRNA 종들의 수준을 RT-PCR로 측정하여, 생체의학 연구 문헌으로 선택된 후보 암-관련 유전자의 생성물을 나타내었다. 부적절한 신호로 인해 단지 하나의 유전자가 손실되었다.89 evaluable patients (from a set of 96 clinically evaluable patients) were identified and studied. Levels of 384 mRNA species were measured by RT-PCR, indicating the product of the candidate cancer-related gene selected in the biomedical research literature. Only one gene was lost due to inappropriate signals.

환자 특성들은 다음과 같았다: 평균 연령: 50세; 종양 등급: 24% 상당함, 55% 중간, 및 21% 빈약함; 환자의 63%는 ER 양성 {면역조직화학에 의해}; 환자의 70%는 양성 림프절을 가졌다. Patient characteristics were as follows: mean age: 50 years old; Tumor grade: 24% equivalent, 55% medium, and 21% poor; 63% of patients were ER positive {by immunohistochemistry}; 70% of patients had benign lymph nodes.

모든 환자들은 1차 신보조항암 화학요법을 제공받았다: 독소루비신 + 탁솔 3주/3 사이클 후 탁솔® (파클리탁셀) 1주/12 사이클. 화학요법의 종료 후 종양을 수술 제거하였다. 화학요법의 시작 전에 코어 종양 생검 시험편을 얻어 RT-PCR 검정시험용 RNA 공급원으로 사용하였다.All patients received first neoadjuvant chemotherapy: Doxorubicin + Taxol 3 weeks / 3 cycles followed by Taxol® (paclitaxel) 1 week / 12 cycles. Tumors were surgically removed after the end of chemotherapy. Core tumor biopsy specimens were obtained prior to commencement of chemotherapy and used as RNA sources for RT-PCR assays.

재료와 방법Materials and methods

고정되어 파라핀에 매립된 (FPE) 종양 조직을 생검으로부터 화학요법 전과 후에 얻었다. 화학요법 전에 코어 생검을 행하였다. 그 경우, 병리학자들은 가장 대표적인 1차 종양 블록을 선택하여 RNA 분석을 위한 9개의 10 미크론 절편을 제공하였다. 구체적으로, 전체 9개의 절편 (각각 두께 10 미크론)을 제조하여 3개의 코스타 브랜드 마이크로원심분리 튜브(Costar Brand Microcentrifuge Tubes) (폴리프로필렌, 1.7 mL 튜브, 투명; 각 튜브에 3개의 절편)에 넣고 풀링하였다.Fixed and paraffin embedded (FPE) tumor tissues were obtained from biopsies before and after chemotherapy. Core biopsies were performed before chemotherapy. In that case, pathologists selected the most representative primary tumor blocks to provide nine 10 micron fragments for RNA analysis. Specifically, a total of nine sections (10 microns thick each) were prepared and pooled in three Costa Brand Microcentrifuge Tubes (polypropylene, 1.7 mL tubes, transparent; three sections in each tube) and pooled. It was.

메신저 RNA를 마스터퓨어TM RNA 정제 키트 (에피센터 테크놀로지스(Epicentre Technologies))를 사용하여 추출하고 리보그린(RiboGreen)® 형광 방법 (몰큘라 프로브(Molecular probes))에 의해 정량화하였다. 정량적 유전자 발현의 분자 검정시험을 ABI 프리즘 7900TM 시퀀스 디텍션 시스템TM (퍼킨-엘머-어플라이드 바이오시스템즈, 미국 캘리포니아주 포스터 시티)를 사용하여 수행하였다. ABI 프리즘 7900TM은 써모사이클러, 레이저, 전하-커플링된 장치 (CCD), 카메라 및 컴퓨터 로 이루어진다. 시스템은 샘플을 써모사이클러 상에서 384-웰 포맷으로 증폭시킨다. 증폭 동안, 레이저-유도 형광 신호가 모든 384 웰에 대하여 실시간으로 수집되고 CCD에서 검출된다. 시스템은 기기를 실행하기 위한 및 데이터를 분석하기 위한 소프트웨어를 포함한다.Messenger RNA was extracted using the MasterPure RNA Purification Kit (Epicentre Technologies) and quantified by RiboGreen® fluorescence method (Molecular probes). Molecular assays of quantitative gene expression were performed using ABI Prism 7900 Sequence Detection System (Perkin-Elmer-Applied Biosystems, Foster City, CA, USA). The ABI Prism 7900 consists of a thermocycler, laser, charge-coupled device (CCD), camera and computer. The system amplifies the sample in a 384-well format on a thermocycler. During amplification, laser-induced fluorescence signals are collected in real time for all 384 wells and detected in the CCD. The system includes software for running the device and for analyzing the data.

분석 및 결과Analysis and results

종양 조직을 384 유전자들에 대하여 분석하였다. 각 환자에 대한 역치 사이클 (CT) 값을 임상적 성과와의 상관성 부족에 기초하여 선택된, 특정 환자에 대한 스크리닝된 유전자의 한 서브세트의 평균에 기초하여 표준화하였다 (중심 표준화 전략). 화학요법에 대한 유리한 반응 환자를 병리적 완전 반응 (pCR)으로 정의하였다. 환자들을 모든 화학요법의 완료시에 반응에 대하여 정식으로 평가하였다.Tumor tissue was analyzed for 384 genes. Threshold cycle (C T ) values for each patient were normalized based on the mean of one subset of screened genes for a particular patient selected based on lack of correlation with clinical outcome (central standardization strategy). Favorable Response to Chemotherapy Patients were defined as pathological complete response (pCR). Patients were formally assessed for response upon completion of all chemotherapy.

임상적 완전 반응 (cCR)은 물리적 관찰 또는 진단적 유방 영상화에 의해 모든 임상적으로 검출가능한 질병의 완전한 사라짐을 필요로 한다.Clinical complete response (cCR) requires complete disappearance of all clinically detectable disease by physical observation or diagnostic breast imaging.

병리적 완전 반응 (pCR)은 1차 화학요법 후 생검된 유방 조직, 덩어리절제술 또는 유방절제술 시험편의 조직학적 관찰시 잔류 유방암의 부재를 필요로 한다. 상피내 잔류 관상 암종 (DCIS)이 존재할 수 있다. 부위절 내 잔류 암이 존재하지 않을 수 있다. 89명의 평가가능한 환자들 중 11명 (12%)이 병리적 완전 반응 (pCR)을 가졌다. 이들 환자들 중 7명은 ER 음성이었다. Pathologically complete response (pCR) requires the absence of residual breast cancer upon histological observation of biopsied breast tissue, lumpectomy or mastectomy specimens after primary chemotherapy. There may be residual coronary carcinoma (DCIS) in the epithelium. There may be no residual cancer in the segment. Eleven (12%) of 89 evaluable patients had pathologic complete response (pCR). Seven of these patients were ER negative.

부분 임상적 반응을 종양 면적 (가장 긴 수직 직경의 곱의 합)의 50% 이상 감소 또는 유방 및 겨드랑에서의 다수개의 병변의 가장 긴 수직 직경의 곱의 합에 있어서의 50% 이상 감소로 정의하였다. 어떠한 질병 면적도 > 25% 만큼 증가되지 않았고, 새로운 병변은 나타나지 않았다.Partial clinical response was defined as at least 50% reduction in tumor area (sum of the products of the longest vertical diameter) or at least 50% reduction in the sum of the products of the longest vertical diameter of the multiple lesions in the breast and armpit . No disease area was increased by> 25% and no new lesions appeared.

표준화 유전자 발현과 pCR의 이원적 성과 또는 pCR이 없는 것 사이의 관계를 비교함으로써 분석을 수행하였다. 단변량 일반화 모델을 프로빗 또는 로짓(logit) 연결 함수와 함께 사용하였다. 예를 들면, 문헌 [Van K. Borooah, LOGIT and PROBIT, Ordered Multinominal Models, Sage University Paper, 2002] 참조. The analysis was performed by comparing the relationship between normalized gene expression and the dual outcome of pCR or no pCR. Univariate generalization models were used with the probit or logit link functions. See, eg, Van K. Borooah, LOGIT and PROBIT, Ordered Multinominal Models, Sage University Paper, 2002.

표 1은 유전자 발현과 병리적 반응 상관관계를 제공하고, 군들 사이의 차이에 대한 p-값이 <0.1인 86개의 유전자들을 열거한다. 두번째 란 (제목이 "방향"임)은 증가된 발현이 화학요법에 대한 반응 가능성의 감소 또는 증가와 상관관계가 있는지를 나타낸다. 각 유전자에 대한 예측 값의 통계학적 유의성이 P-값(오른쪽 란)에 의해 제공된다.Table 1 provides a correlation of gene expression and pathological response and lists 86 genes with a p-value of <0.1 for differences between groups. The second column (subject is “direction”) indicates whether increased expression correlates with a decrease or increase in the likelihood of response to chemotherapy. The statistical significance of the predicted value for each gene is provided by the P-value (right column).

Figure 112006081755411-PCT00001
Figure 112006081755411-PCT00001

Figure 112006081755411-PCT00002
Figure 112006081755411-PCT00002

표 1에 기재된 데이터에 기초할 때, 하기 유전자들, 즉: ILT.2; CD18; GBP1; CD3z; fasl; MCM6; E2F1; ID2; FBXO5; CDC20; HLA.DPB1; CGA; MMP12; CDC25B; IL6; CYBA; DR4; CRABP1; 콘티그.51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; MCM2; GBP2; CD31; ER2; STAT1; TK1의 증가된 발현은 치료에 대한 완전 병리 반응의 증가된 가능성과 상관관계가 있는 반면; 하기 유전자들, 즉: TBP; ABCC5; GATA3; DICER1; MSH3; IRS1; TUBB; BAD; ERCC1; PR; APC; GGPS1; KRT18; ESRRG; AKT2; 에이.카테닌; CEGP1; NPD009; MAPK14; RUNX1; 쥐.카테닌; FHIT; MTA1; ErbB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBPS; rhoC; RALBP1; STAT3; ERK1; SGCB; DHPS; MGMT; CRIP2; ErbB3; RAP1GDS1; CCNDI; PRKCD; 헵신; AK055699; ZNF38; SEMA3F; COL1A1; BAG1; AKT1; COL1A2; Wnt.5a; PTPD1; RAB6C; Bcl2의 증가된 발현은 치료에 대한 완전 병리 반응의 감소된 가능성과 상관관계가 있다. Based on the data described in Table 1, the following genes, namely: ILT.2; CD18; GBP1; CD3z; fasl; MCM6; E2F1; ID2; FBXO5; CDC20; HLA.DPB1; CGA; MMP12; CDC25B; IL6; CYBA; DR4; CRABP1; Contig. 51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; MCM2; GBP2; CD31; ER2; STAT1; Increased expression of TK1 correlates with increased likelihood of complete pathological response to treatment; The following genes: TBP; ABCC5; GATA3; DICER1; MSH3; IRS1; TUBB; BAD; ERCC1; PR; APC; GGPS1; KRT18; ESRRG; AKT2; A. catenin; CEGP1; NPD009; MAPK14; RUNX1; Rat.catenin; FHIT; MTA1; ErbB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBPS; rhoC; RALBP1; STAT3; ERK1; SGCB; DHPS; MGMT; CRIP2; ErbB3; RAP1GDS1; CCNDI; PRKCD; Heptin; AK055699; ZNF38; SEMA3F; COL1A1; BAG1; AKT1; COL1A2; Wnt. 5a; PTPD1; RAB6C; Increased expression of Bcl2 correlates with a reduced likelihood of complete pathological response to treatment.

재발 위험 연산 (동시계류중인 U.S. 출원 No. 60/486,302에 기재됨)과 pCR 사이의 관계 또한 조사하였다. 연산은 21 mRNA 종들의 측정된 수준을 포함시킨다. 16개의 mRNAs (아래에서 거명됨)가 후보 임상학적 마커이었고, 나머지 5개 (ACTB, GAPD, GUSB, RPLPO, 및 TFRC)가 기준 유전자이었다. 기준-표준화된 발현 측정치는 0 내지 15 범위이고, 여기서 한 단위 증가는 RNA의 2배 증가를 반영한다. The relationship between the recurrence risk calculation (described in U.S. Application No. 60 / 486,302 in the same year) and pCR was also investigated. The calculation includes the measured levels of 21 mRNA species. Sixteen mRNAs (named below) were candidate clinical markers and the remaining five (ACTB, GAPD, GUSB, RPLPO, and TFRC) were reference genes. Baseline-standardized expression measurements range from 0 to 15, where one unit increase reflects a 2 fold increase in RNA.

재발 스코어 (RS)는 4개 세트의 마커 유전자들 (에스트로겐 수용체 군의 4개 유전자-ESRI, PGR, BCL2, 및 SCUBE2; 증식 세트의 5개 유전자-MKI67, MYBL2, BIRC5, CCNB 1, 및 STK6; HER2 세트의 2개 유전자-ERBB2 및 GRB7; 침윤군의 2개 유전자-MMP11 및 CTSL2) 및 3개의 다른 개별 유전자-GSTM1, BAG1, 및 CD68의 정량적 발현으로부터 계산하였다. Recurrence scores (RS) were calculated from four sets of marker genes (four genes of the estrogen receptor group-ESRI, PGR, BCL2, and SCUBE2; five genes of the proliferation set-MKI67, MYBL2, BIRC5, CCNB 1, and STK6; Quantitative expression of two genes of the HER2 set-ERBB2 and GRB7; two genes of the invasion group-MMP11 and CTSL2) and three other individual genes-GSTM1, BAG1, and CD68.

비록 식에 사용된 유전자 및 곱셈 계수들이 변할 수 있지만, 대표적인 실시태양에서는, 하기 식을 이용하여 RS를 계산할 수 있다: Although the genes and multiplication coefficients used in the equations may vary, in representative embodiments, the following equations may be used to calculate RS:

RS (범위, 0 내지 100) = + 0.47×HER2군 스코어RS (range, 0-100) = + 0.47 × HER2 group score

- 0.34×ER군 스코어                        -0.34 × ER group score

+ 1.04×증식군 스코어                        + 1.04 × Growth Score

+ 0.10×침윤군 스코어                        + 0.10 × infiltration group score

+ 0.05×CD68                         + 0.05 × CD68

- 0.08×GSTM1                         0.08 × GSTM1

- 0.07×BAG1                         0.07 × BAG1

임상학적 및 유전자 발현 데이터 세트를 연구하는데 이러한 연산을 적용하면 도 1에 나타낸 바와 같이, RS 대 pCR 값에 관한 연속 곡선이 산출된다. 이들 데이터의 관찰은 RS > 50을 갖는 환자들이 화학요법에 대한 반응 가능성의 면에서 환자들의 상위 50 백분위수 내에 있고, RS < 35를 갖는 환자들이 화학요법에 대한 반응 가능성의 면에서 환자들의 하위 50 백분위수 내에 있음을 보여준다.Applying this operation to the study of clinical and gene expression data sets yields a continuous curve for RS versus pCR values, as shown in FIG. 1. The observation of these data shows that patients with RS> 50 are in the upper 50 percentile of patients in terms of the likelihood of response to chemotherapy, and patients with RS <35 are in the lower 50 Shows in percentile.

본 명세서 전반에 걸쳐 인용된 모든 참고문헌들이 본원에서 명백히 참고문헌으로 인용된다.All references cited throughout this specification are expressly incorporated herein by reference.

본 발명을 특정 실시태양에 대하여 강조하여 설명하였지만, 구체적인 방법 및 기술에 있어서의 변화 및 변형이 가능함이 당업계의 통상의 숙련인에게 명백하다. 따라서, 본 발명은 하기하는 특허 청구의 범위에 의해 정의되는 본 발명의 본질 및 범위 내에 포함되는 모든 변형을 포함한다.While the invention has been described with particular emphasis on certain embodiments, it will be apparent to those skilled in the art that changes and variations in specific methods and techniques are possible. Accordingly, the invention includes all modifications that fall within the spirit and scope of the invention as defined by the following claims.

Figure 112006081755411-PCT00003
Figure 112006081755411-PCT00003

Figure 112006081755411-PCT00004
Figure 112006081755411-PCT00004

Figure 112006081755411-PCT00005
Figure 112006081755411-PCT00005

Figure 112006081755411-PCT00006
Figure 112006081755411-PCT00006

Figure 112006081755411-PCT00007
Figure 112006081755411-PCT00007

Figure 112006081755411-PCT00008
Figure 112006081755411-PCT00008

Figure 112006081755411-PCT00009
Figure 112006081755411-PCT00009

SEQUENCE LISTING <110> GENOMIC HEALTH, INC. BAKER, JOFFRE B. SHAK, STEVEN GIANNI, LUCA <120> GENE EXPRESSION MARKERS FOR PREDICTING RESPONSE TO CHEMOTHERAPY <130> 39740-0017 <140> PCT/US2005/011760 <141> 2005-04-07 <160> 340 <170> FastSEQ for Windows Version 4.0 <210> 1 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 1 cgttccgatc ctctatactg cat 23 <210> 2 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 2 aggtccctgt tggccttata gg 22 <210> 3 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 3 atgcctacag caccctgatg tcgca 25 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 4 tgcagactgt accatgctga 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 5 ggccagcacc ataatcctat 20 <210> 6 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 6 ctgcacacgg ttctaggctc cg 22 <210> 7 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 7 ctgcatgtga ttgaataaga aacaaga 27 <210> 8 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 8 tgtggacctg atccctgtac ac 22 <210> 9 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 9 tgaccacacc aaagcctccc tgg 23 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 10 acgaattgtc ggtgaggtct 20 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 11 gtccatgctg aaatcattgg 20 <210> 12 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 12 caggatacca cagtcctgga gaccc 25 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 13 cgcttctatg gcgctgagat 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 14 tcccggtaca ccacgttctt 20 <210> 15 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 15 cagccctgga ctacctgcac tcgg 24 <210> 16 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 16 tcctgccacc cttcaaacc 19 <210> 17 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 17 ggcggtaaat tcatcatcga a 21 <210> 18 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 18 caggtcacgt ccgaggtcga caca 24 <210> 19 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 19 ggacagcagg aatgtgtttc 20 <210> 20 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 20 acccactcga tttgtttctg 20 <210> 21 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 21 cattggctcc ccgtgacctg ta 22 <210> 22 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 22 gggtcaggtg cctcgagat 19 <210> 23 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 23 ctgctcactc ggctcaaact c 21 <210> 24 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 24 tgggcccaga gcatgttcca gatc 24 <210> 25 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 25 cgttgtcagc acttggaata caa 23 <210> 26 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 26 gttcaacctc ttcctgtgga ctgt 24 <210> 27 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 27 cccaattaac atgacccggc aaccat 26 <210> 28 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 28 cctggagggt cctgtacaat 20 <210> 29 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 29 ctaattgggc tccatctcg 19 <210> 30 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 30 catcatggga ctcctgccct tacc 24 <210> 31 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 31 cagatggacc tagtacccac tgaga 25 <210> 32 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 32 cctatgattt aagggcattt ttcc 24 <210> 33 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 33 ttccacgccg aaggacagcg at 22 <210> 34 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 34 gcatgttcgt ggcctctaag a 21 <210> 35 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 35 cggtgtagat gcacagcttc tc 22 <210> 36 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 36 aaggagacca tccccctgac ggc 23 <210> 37 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 37 cgtcaggacc caccatgtct 20 <210> 38 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 38 ggttaattgg tgacatcctc aaga 24 <210> 39 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 39 cgcggccgag acatggcttg 20 <210> 40 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 40 tgtatttcaa gacctctgtg cactt 25 <210> 41 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 41 ttagcctgag gaattgctgt gtt 23 <210> 42 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 42 tttatgaacc tgccctgctc ccaca 25 <210> 43 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 43 agatgaagtg gaaggcgctt 20 <210> 44 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 44 tgcctctgta atcggcaact g 21 <210> 45 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 45 caccgcggcc atcctgca 18 <210> 46 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 46 gggcgtggaa cagtttatct 20 <210> 47 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 47 cacggtgaag gtttcgagt 19 <210> 48 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 48 agacatctgc cccaagaagg acgt 24 <210> 49 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 49 tggattggag ttctgggaat g 21 <210> 50 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 50 gcttgcactc cacaggtaca ca 22 <210> 51 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 51 actggccgtg gcactggaca aca 23 <210> 52 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 52 aaacgagcag tttgccatca g 21 <210> 53 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 53 gttggtgatg ttccgaagca 20 <210> 54 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 54 cctcaccggc atagactgga agcg 24 <210> 55 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 55 tgacaatcag cacacctgca t 21 <210> 56 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 56 tgtgactaca gccgtgatcc tta 23 <210> 57 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 57 caggccctct tccgagcggt 20 <210> 58 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 58 ctgaaggagc tccaagacct 20 <210> 59 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 59 caaaaccgct gtgtttcttc 20 <210> 60 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 60 tgctgatgtg ccctctcctt gg 22 <210> 61 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 61 gtggccatcc agctgacc 18 <210> 62 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 62 cagtggtagg tgatgttctg gga 23 <210> 63 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 63 tcctgcgcct gatgtccacc g 21 <210> 64 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 64 cagccaagaa ctggtatagg agct 24 <210> 65 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 65 aaactggctg ccagcattg 19 <210> 66 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 66 tctcctagcc agacgtgttt cttgtccttg 30 <210> 67 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 67 cgacagttgc gatgaaagtt ctaa 24 <210> 68 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 68 ggctgctaga gaccatggac at 22 <210> 69 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 69 cctcctcctg ttgctgccac taatgct 27 <210> 70 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 70 aacttcaagg tcggagaagg 20 <210> 71 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 71 tggctaaact cctgcacttg 20 <210> 72 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 72 ccgtccacgg tctcctcctc a 21 <210> 73 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Foward Primer <400> 73 gtgctacgcc accctgtt 18 <210> 74 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 74 caggggcttc tcgtagatgt 20 <210> 75 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 75 ccgatgttca cgcctttggg tc 22 <210> 76 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Foward Primer <400> 76 ggtgcctact ccattgtgg 19 <210> 77 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 77 gtggagccct tcttcctctt 20 <210> 78 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 78 tactccagca ggcacacaaa cacg 24 <210> 79 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 79 gggagaacgg gatcaatagg at 22 <210> 80 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 80 gcatcagcca gtcctcaaac t 21 <210> 81 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 81 ctcattgggc accagcaggt ttcc 24 <210> 82 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 82 tccaattcca gcatcactgt 20 <210> 83 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 83 ggcagtgaag gcgataaagt 20 <210> 84 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 84 agaaaagctg tttgtctccc cagca 25 <210> 85 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 85 tgcacagagg gtgtgggtta c 21 <210> 86 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 86 tcttcatctg atttacaagc tgtacatg 28 <210> 87 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 87 caatgcttcc aacaatttgt ttgcttgcc 29 <210> 88 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 88 actccctcta cccttgagca 20 <210> 89 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 89 caggcctcag ttccttcagt 20 <210> 90 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 90 cagaagaaca gctcagggac ccct 24 <210> 91 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 91 tggtccatcg ccagttatca 20 <210> 92 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 92 tgttctagcg atcttgcttc aca 23 <210> 93 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 93 atctgtatgc ggaacctcaa aagagtccct 30 <210> 94 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 94 cggttatgtc atgccagata cac 23 <210> 95 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 95 gaactgagac ccactgaaga aagg 24 <210> 96 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 96 cctcaaaggt actccctcct cccgg 25 <210> 97 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 97 tggctcttaa tcagtttcgt tacct 25 <210> 98 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 98 caaggcatat cgatcctcat aaagt 25 <210> 99 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 99 tgtcccacga ataatgcgta aattctccag 30 <210> 100 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 100 gtccaggtgg atgtgaaaga 20 <210> 101 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 101 cggccaggat acacatctta 20 <210> 102 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 102 cagcaggccc tcaaggagct g 21 <210> 103 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 103 acggatcaca gtggaggaag 20 <210> 104 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 104 ctcatccgtc gggtcatagt 20 <210> 105 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 105 cgctggctca cccctacctg 20 <210> 106 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 106 ccagcaccat tgttgaagat 20 <210> 107 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 107 agtctcttgg gcatcgagtt 20 <210> 108 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 108 ccccagacca agtgtgaata catgct 26 <210> 109 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 109 gcactttggg attctttcca ttat 24 <210> 110 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 110 gcatgtaaga agaccctcac tgaa 24 <210> 111 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 111 acaacattct cggtgcctgt aacaaagaa 29 <210> 112 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 112 ggattgtaga ctgtcaccga aattc 25 <210> 113 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 113 ggctattcct cattttctct acaaagtg 28 <210> 114 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 114 cctccaggag gctaccttct tcatgttcac 30 <210> 115 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 115 ccagtggagc gcttccat 18 <210> 116 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 116 ctctctgggt cgtctgaaac aa 22 <210> 117 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 117 tcggccactt catcaggacg cag 23 <210> 118 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 118 ggataattca gacaacaaca ccatct 26 <210> 119 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 119 tgaagtaatc agccacagac tcaat 25 <210> 120 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 120 tcaattgtaa cattctcacc caggccttg 29 <210> 121 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 121 gaagcgcaga tcatgaagaa 20 <210> 122 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 122 ctcctcagac accactgcat 20 <210> 123 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 123 ctgaagcacg acaagctggt ccag 24 <210> 124 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 124 tcagcagcaa gggcatcat 19 <210> 125 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 125 ggtggttttc ttgagcgtgt act 23 <210> 126 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 126 cgcccgcagg cctcatcct 19 <210> 127 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 127 caaaggagct cactgtggtg tct 23 <210> 128 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 128 gagtcagaat ggcttattca cagatg 26 <210> 129 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 129 tgttccaacc actgaatctg gacc 24 <210> 130 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 130 ttgggaaata tttgggcatt 20 <210> 131 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 131 agaagctagg gtggttgtcc 20 <210> 132 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 132 ttgggacatt gtagacttgg ccagac 26 <210> 133 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 133 gcatgggaac catcaacca 19 <210> 134 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 134 tgaggagttt gccttgattc g 21 <210> 135 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 135 ccatggacca acttcactat gtgacagagc 30 <210> 136 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 136 ctccgacgtg gctttcca 18 <210> 137 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 137 cgtaattggc agaattgatg aca 23 <210> 138 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 138 tggcccacag catctatgga atccc 25 <210> 139 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 139 ccatctgcat ccatcttgtt 20 <210> 140 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 140 ggccaccagg gtattatctg 20 <210> 141 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 141 ctccccaccc ttgagaagtg cct 23 <210> 142 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 142 aggctgctgg aggtcatctc 20 <210> 143 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 143 cttcctgcgg ccacagtct 19 <210> 144 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 144 ccagaggccg tttcttggcc g 21 <210> 145 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 145 tccatgatgg ttctgcaggt t 21 <210> 146 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 146 tgagcagcac catcagtaac g 21 <210> 147 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 147 ccccggacag tggctctgac g 21 <210> 148 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 148 aacgactgct actccaagct caa 23 <210> 149 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 149 ggatttccat cttgctcacc tt 22 <210> 150 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 150 tgcccagcat cccccagaac aa 22 <210> 151 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 151 gcatggtagc cgaagatttc a 21 <210> 152 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 152 tttccggtaa tagtctgtct catagatatc 30 <210> 153 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 153 cgcgtcatac caaaatctcc gattttga 28 <210> 154 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 154 cctgaacctt ccaaagatgg 20 <210> 155 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 155 accaggcaag tctcctcatt 20 <210> 156 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 156 ccagattgga agcatccatc tttttca 27 <210> 157 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 157 agccatcact ctcagtgcag 20 <210> 158 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 158 actgcagagt cagggtctcc 20 <210> 159 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 159 caggtcctat cgtggcccct ga 22 <210> 160 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Foward Primer <400> 160 ccacagctca ccttctgtca 20 <210> 161 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 161 cctcagtgcc agtctcttcc 20 <210> 162 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 162 tccatcccag ctccagccag 20 <210> 163 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 163 agagatcgag gctctcaagg 20 <210> 164 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 164 ggccttttac ttcctcttcg 20 <210> 165 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 165 tggttcttct tcatgaagag cagctcc 27 <210> 166 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 166 tgagtggaaa agcctgacct atg 23 <210> 167 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 167 ggactccatc tcttcttggt caa 23 <210> 168 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 168 tgaagtcatc agctttgtgc caccacc 27 <210> 169 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 169 gacttttgcc cgctaccttt c 21 <210> 170 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 170 gccactaact gcttcagtat gaagag 26 <210> 171 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 171 acagctcatt gttgtcacgc cgga 24 <210> 172 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 172 tgatggtcct atgtgtcaca ttca 24 <210> 173 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 173 tgggacagga aacacaccaa 20 <210> 174 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 174 caggtttcat accaacacag gcttcagcac 30 <210> 175 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 175 cgctcagcca gatgcaatc 19 <210> 176 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 176 gcactgagat cttcctattg gtgaa 25 <210> 177 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 177 tgccccagtc acctgctgtt a 21 <210> 178 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 178 gtgaaatgaa acgcaccaca 20 <210> 179 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 179 gaccctgctc acaaccagac 20 <210> 180 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 180 cagccctttg gggaagctgg 20 <210> 181 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 181 ccaacgcttg ccaaatcct 19 <210> 182 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 182 acggtagtga cagcatcaaa actc 24 <210> 183 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 183 aaccagctct ctgtgacccc aatt 24 <210> 184 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 184 tgattaccat catggctcag a 21 <210> 185 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 185 cttgtgaaaa tgccatccac 20 <210> 186 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 186 tcccaattgt cgcttcttct gcag 24 <210> 187 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Sequence <400> 187 ccgccctcac ctgaagaga 19 <210> 188 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Sequence <400> 188 ggaataagtt agccgcgctt ct 22 <210> 189 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 189 cccagtgtcc gccaaggagc g 21 <210> 190 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 190 ggccaggatc tgtggtggta 20 <210> 191 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 191 ctccacgtcg tggacattga 20 <210> 192 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 192 ctctggcctt ccgagaaggt acc 23 <210> 193 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 193 ggctgtggct gaggctgtag 20 <210> 194 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 194 ggagcattcg aggtcaaatc a 21 <210> 195 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 195 ttcccagagt gtctcacctc cagcagag 28 <210> 196 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 196 gcatcaggct gtcattatgg 20 <210> 197 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 197 agtagttgtg ctgcccttcc 20 <210> 198 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 198 tgtccttacc tgtgggagct gtaaggtc 28 <210> 199 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 199 ctgacacttg ccgcagagaa 20 <210> 200 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 200 aggtggtcct tggtctggaa 20 <210> 201 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 201 ccctttctca cccacctcat ctgcac 26 <210> 202 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 202 cgcttgccta actcatactt tcc 23 <210> 203 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 203 ccattcagac tgcgccactt 20 <210> 204 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 204 tccacgcagc gtggcactg 19 <210> 205 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 205 gcgacagctc ctctagttcc a 21 <210> 206 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 206 ttcccgaagt ctccgcccg 19 <210> 207 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 207 ggaacaccag cttgaatttc ct 22 <210> 208 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 208 ggtgtcagat ataaatgtgc aaatgc 26 <210> 209 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 209 ttcgatattg ccagcagcta taaa 24 <210> 210 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 210 tgctgtcctg tcggtctcag tacgttca 28 <210> 211 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 211 tgtggatgct ggattgattt 20 <210> 212 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 212 aagcagcact tcctggtctt 20 <210> 213 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 213 ccactggtgc agctgctaaa tagca 25 <210> 214 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 214 agtgggagac acctgacctt 20 <210> 215 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 215 tgatctgggc attgtactcc 20 <210> 216 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 216 ttgatcttct gctcaatctc agcttgaga 29 <210> 217 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 217 cccgttcggt ctgaggaa 18 <210> 218 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 218 gagcactcaa ggtagccaaa gg 22 <210> 219 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 219 tccggttcgc catgtcccg 19 <210> 220 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 220 aacagagaca ttgccaacca 20 <210> 221 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 221 gtgatttgcc caggaagttt 20 <210> 222 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 222 ttggatctgc ttgctgtcca aacc 24 <210> 223 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 223 cgcgagcccc tcattataca 20 <210> 224 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 224 cactcgccgt tgacatcct 19 <210> 225 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 225 ctccccacag cgcatcgagg aa 22 <210> 226 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 226 cagtggagac cagttgggta gtg 23 <210> 227 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 227 ccttgaagag cgtcccatca 20 <210> 228 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 228 cacacatgca gagcttgtag cgtaccca 28 <210> 229 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 229 gggctcagct ttcagaagtg 20 <210> 230 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 230 acatgttcag ctggtccaca 20 <210> 231 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 231 tggcagtttt cttctgtcac caaaa 25 <210> 232 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 232 tcacatgcca ctttggtgtt 20 <210> 233 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 233 cttgcaggaa gcggctatac 20 <210> 234 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 234 tcctgggaga gattgaccag ca 22 <210> 235 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 235 gcccgaaacg ccgaatata 19 <210> 236 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 236 cgtggctctc ttatcctcat gat 23 <210> 237 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 237 taccgcagca aaccgcttgg g 21 <210> 238 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 238 gccgggaaga ccgtaattgt 20 <210> 239 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 239 cagcggcacc aggttcag 18 <210> 240 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 240 caaatggctt cctctggaag gtccca 26 <210> 241 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 241 tgctgttgct gagtctgttg 20 <210> 242 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 242 cttgcctggc ttcacagata 20 <210> 243 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 243 ccagtcccca gaagaccatg tctg 24 <210> 244 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 244 tgtggtgagg aaggagtcag 20 <210> 245 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 245 cccagagagt gggtcagc 18 <210> 246 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 246 ctgtgactgt ctccagggct tcca 24 <210> 247 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 247 tggcttcagg agctgaatac c 21 <210> 248 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 248 tgctgtcgtg atgagaaaat agtg 24 <210> 249 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 249 caggcacaca caggtgggac acaaat 26 <210> 250 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 250 gtatcaggac cacatgcagt acatc 25 <210> 251 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 251 tgtcggaatt gatactggca tt 22 <210> 252 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 252 ttgatgcctg tcttcgcgcc ttct 24 <210> 253 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 253 tttccaaaca tcagcgagtc 20 <210> 254 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 254 aacaggagcg cttgaaagtt 20 <210> 255 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 255 acggtgcttc tccctctcca gtg 23 <210> 256 <211> 78 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 256 cgttccgatc ctctatactg catcccaggc atgcctacag caccctgatg tcgcagccta 60 taaggccaac agggacct 78 <210> 257 <211> 76 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 257 tgcagactgt accatgctga ccattgccca tcgcctgcac acggttctag gctccgatag 60 gattatggtg ctggcc 76 <210> 258 <211> 78 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 258 ctgcatgtga ttgaataaga aacaagaaag tgaccacacc aaagcctccc tggctggtgt 60 acagggatca ggtccaca 78 <210> 259 <211> 68 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 259 acgaattgtc ggtgaggtct caggatacca cagtcctgga gaccctatcc aatgatttca 60 gcatggac 68 <210> 260 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 260 cgcttctatg gcgctgagat tgtgtcagcc ctggactacc tgcactcgga gaagaacgtg 60 gtgtaccggg a 71 <210> 261 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 261 tcctgccacc cttcaaacct caggtcacgt ccgaggtcga cacaaggtac ttcgatgatg 60 aatttaccgc c 71 <210> 262 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 262 ggacagcagg aatgtgtttc tccatacagg tcacggggag ccaatggttc agaaacaaat 60 cgagtgggt 69 <210> 263 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 263 gggtcaggtg cctcgagatc gggcttgggc ccagagcatg ttccagatcc cagagtttga 60 gccgagtgag cag 73 <210> 264 <211> 81 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 264 cgttgtcagc acttggaata caagatggtt gccgggtcat gttaattggg aaaaagaaca 60 gtccacagga agaggttgaa c 81 <210> 265 <211> 83 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 265 cctggagggt cctgtacaat ctcatcatgg gactcctgcc cttacccagg ggccacagag 60 cccccgagat ggagcccaat tag 83 <210> 266 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 266 cagatggacc tagtacccac tgagatttcc acgccgaagg acagcgatgg gaaaaatgcc 60 cttaaatcat agg 73 <210> 267 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 267 gcatgttcgt ggcctctaag atgaaggaga ccatccccct gacggccgag aagctgtgca 60 tctacaccg 69 <210> 268 <211> 81 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 268 cgtcaggacc caccatgtct gccccatcac gcggccgaga catggcttgg ccacagctct 60 tgaggatgtc accaattaac c 81 <210> 269 <211> 75 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 269 tgtatttcaa gacctctgtg cacttattta tgaacctgcc ctgctcccac agaacacagc 60 aattcctcag gctaa 75 <210> 270 <211> 65 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 270 agatgaagtg gaaggcgctt ttcaccgcgg ccatcctgca ggcacagttg ccgattacag 60 aggca 65 <210> 271 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 271 gggcgtggaa cagtttatct cagacatctg ccccaagaag gacgtactcg aaaccttcac 60 cgtg 64 <210> 272 <211> 68 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 272 tggattggag ttctgggaat gtactggccg tggcactgga caacagtgtg tacctgtgga 60 gtgcaagc 68 <210> 273 <211> 85 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 273 aaacgagcag tttgccatca gacgcttcca gtctatgccg gtgaggctgc tgggccacag 60 ccccgtgctt cggaacatca ccaac 85 <210> 274 <211> 77 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 274 tgacaatcag cacacctgca ttcaccgctc ggaagagggc ctgagctgca tgaataagga 60 tcacggctgt agtcaca 77 <210> 275 <211> 76 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 275 ctgaaggagc tccaagacct cgctctccaa ggcgccaagg agagggcaca tcagcagaag 60 aaacacagcg gttttg 76 <210> 276 <211> 68 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 276 gtggccatcc agctgacctt cctgcgcctg atgtccaccg aggcctccca gaacatcacc 60 taccactg 68 <210> 277 <211> 80 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 277 cagccaagaa ctggtatagg agctccaagg acaagaaaca cgtctggcta ggagaaacta 60 tcaatgctgg cagccagttt 80 <210> 278 <211> 81 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 278 cgacagttgc gatgaaagtt ctaatctctt ccctcctcct gttgctgcca ctaatgctga 60 tgtccatggt ctctagcagc c 81 <210> 279 <211> 67 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 279 aacttcaagg tcggagaagg ctttgaggag gagaccgtgg acggacgcaa gtgcaggagt 60 ttagcca 67 <210> 280 <211> 76 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 280 gtgctacgcc accctgttcg gacccaaagg cgtgaacatc gggggcgcgg gctcctacat 60 ctacgagaag cccctg 76 <210> 281 <211> 77 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 281 ggtgcctact ccattgtggc gggcgtgttt gtgtgcctgc tggagtaccc ccgggggaag 60 aggaagaagg gctccac 77 <210> 282 <211> 78 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 282 gggagaacgg gatcaatagg atcggaaacc tgctggtgcc caatgagaat tactgcaagt 60 ttgaggactg gctgatgc 78 <210> 283 <211> 68 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 283 tccaattcca gcatcactgt ggagaaaagc tgtttgtctc cccagcatac tttatcgcct 60 tcactgcc 68 <210> 284 <211> 83 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 284 tgcacagagg gtgtgggtta caccaatgct tccaacaatt tgtttgcttg cctcccatgt 60 acagcttgta aatcagatga aga 83 <210> 285 <211> 75 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 285 actccctcta cccttgagca agggcagggg tccctgagct gttcttctgc cccatactga 60 aggaactgag gcctg 75 <210> 286 <211> 76 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 286 tggtccatcg ccagttatca catctgtatg cggaacctca aaagagtccc tggtgtgaag 60 caagatcgct agaaca 76 <210> 287 <211> 81 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 287 cggttatgtc atgccagata cacacctcaa aggtactccc tcctcccggg aaggcaccct 60 ttcttcagtg ggtctcagtt c 81 <210> 288 <211> 86 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 288 tggctcttaa tcagtttcgt tacctgcctc tggagaattt acgcattatt cgtgggacaa 60 aactttatga ggatcgatat gccttg 86 <210> 289 <211> 67 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 289 gtccaggtgg atgtgaaaga tccccagcag gccctcaagg agctggctaa gatgtgtatc 60 ctggccg 67 <210> 290 <211> 67 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 290 acggatcaca gtggaggaag cgctggctca cccctacctg gagcagtact atgacccgac 60 ggatgag 67 <210> 291 <211> 67 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 291 ccagcaccat tgttgaagat ccccagacca agtgtgaata catgctcaac tcgatgccca 60 agagact 67 <210> 292 <211> 80 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 292 gcactttggg attctttcca ttatgattct ttgttacagg caccgagaat gttgtattca 60 gtgagggtct tcttacatgc 80 <210> 293 <211> 90 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 293 ggctattcct cattttctct acaaagtggc ctcagtgaac atgaagaagg tagcctcctg 60 gaggagaatt tcggtgacag tctacaatcc 90 <210> 294 <211> 67 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 294 ccagtggagc gcttccatga cctgcgtcct gatgaagtgg ccgatttgtt tcagacgacc 60 cagagag 67 <210> 295 <211> 80 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 295 ggataattca gacaacaaca ccatctttgt gcaaggcctg ggtgagaatg ttacaattga 60 gtctgtggct gattacttca 80 <210> 296 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 296 gaagcgcaga tcatgaagaa gctgaagcac gacaagctgg tccagctcta tgcagtggtg 60 tctgaggag 69 <210> 297 <211> 68 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 297 tcagcagcaa gggcatcatg gaggaggatg aggcctgcgg gcgccagtac acgctcaaga 60 aaaccacc 68 <210> 298 <211> 75 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 298 caaaggagct cactgtggtg tctgtgttcc aaccactgaa tctggacccc atctgtgaat 60 aagccattct gactc 75 <210> 299 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 299 ttgggaaata tttgggcatt ggtctggcca agtctacaat gtcccaatat caaggacaac 60 caccctagct tct 73 <210> 300 <211> 83 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 300 gcatgggaac catcaaccag caggccatgg accaacttca ctatgtgaca gagctgacag 60 atcgaatcaa ggcaaactcc tca 83 <210> 301 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 301 ctccgacgtg gctttccagt ggcccacagc atctatggaa tcccatctgt catcaattct 60 gccaattacg 70 <210> 302 <211> 67 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 302 ccatctgcat ccatcttgtt tgggctcccc acccttgaga agtgcctcag ataataccct 60 ggtggcc 67 <210> 303 <211> 84 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 303 aggctgctgg aggtcatctc cgtgtgtgat tgccccagag gccgtttctt ggccgccatc 60 tgccaagact gtggccgcag gaag 84 <210> 304 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 304 tccatgatgg ttctgcaggt ttctgcggcc ccccggacag tggctctgac ggcgttactg 60 atggtgctgc tca 73 <210> 305 <211> 76 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 305 aacgactgct actccaagct caaggagctg gtgcccagca tcccccagaa caagaaggtg 60 agcaagatgg aaatcc 76 <210> 306 <211> 83 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 306 gcatggtagc cgaagatttc acagtcaaaa tcggagattt tggtatgacg cgagatatct 60 atgagacaga ctattaccgg aaa 83 <210> 307 <211> 72 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 307 cctgaacctt ccaaagatgg ctgaaaaaga tggatgcttc caatctggat tcaatgagga 60 gacttgcctg gt 72 <210> 308 <211> 63 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 308 agccatcact ctcagtgcag ccaggtccta tcgtggcccc tgaggagacc ctgactctgc 60 agt 63 <210> 309 <211> 74 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 309 ccacagctca ccttctgtca ggtgtccatc ccagctccag ccagctccca gagaggaaga 60 gactggcact gagg 74 <210> 310 <211> 68 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 310 agagatcgag gctctcaagg aggagctgct cttcatgaag aagaaccacg aagaggaagt 60 aaaaggcc 68 <210> 311 <211> 76 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 311 tgagtggaaa agcctgacct atgatgaagt catcagcttt gtgccaccac cccttgacca 60 agaagagatg gagtcc 76 <210> 312 <211> 75 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 312 gacttttgcc cgctaccttt cattccggcg tgacaacaat gagctgttgc tcttcatact 60 gaagcagtta gtggc 75 <210> 313 <211> 82 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 313 tgatggtcct atgtgtcaca ttcatcacag gtttcatacc aacacaggct tcagcacttc 60 ctttggtgtg tttcctgtcc ca 82 <210> 314 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 314 cgctcagcca gatgcaatca atgccccagt cacctgctgt tataacttca ccaataggaa 60 gatctcagtg c 71 <210> 315 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 315 gtgaaatgaa acgcaccaca ctggacagcc ctttggggaa gctggagctg tctggttgtg 60 agcagggtc 69 <210> 316 <211> 78 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 316 ccaacgcttg ccaaatcctg acaattcaga accagctctc tgtgacccca atttgagttt 60 tgatgctgtc actaccgt 78 <210> 317 <211> 82 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 317 tgattaccat catggctcag attggctcct atgttcctgc agaagaagcg acaattggga 60 ttgtggatgg cattttcaca ag 82 <210> 318 <211> 77 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 318 ccgccctcac ctgaagagaa acgcgctcct tggcggacac tgggggagga gaggaagaag 60 cgcggctaac ttattcc 77 <210> 319 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 319 ggccaggatc tgtggtggta caattgactc tggccttccg agaaggtacc atcaatgtcc 60 acgacgtgga g 71 <210> 320 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 320 ggctgtggct gaggctgtag catctctgct ggaggtgaga cactctggga actgatttga 60 cctcgaatgc tcc 73 <210> 321 <211> 85 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 321 gcatcaggct gtcattatgg tgtccttacc tgtgggagct gtaaggtctt ctttaagagg 60 gcaatggaag ggcagcacaa ctact 85 <210> 322 <211> 68 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 322 ctgacacttg ccgcagagaa tccctttctc acccacctca tctgcacctt ccagaccaag 60 gaccacct 68 <210> 323 <211> 81 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 323 cgcttgccta actcatactt tcccgttgac acttgatcca cgcagcgtgg cactgggacg 60 taagtggcgc agtctgaatg g 81 <210> 324 <211> 78 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 324 gcgacagctc ctctagttcc accatgtccg cgggcggaga cttcgggaat ccgctgagga 60 aattcaagct ggtgttcc 78 <210> 325 <211> 84 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 325 ggtgtcagat ataaatgtgc aaatgccttc ttgctgtcct gtcggtctca gtacgttcac 60 tttatagctg ctggcaatat cgaa 84 <210> 326 <211> 67 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 326 tgtggatgct ggattgattt caccactggt gcagctgcta aatagcaaag accaggaagt 60 gctgctt 67 <210> 327 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 327 agtgggagac acctgacctt tctcaagctg agattgagca gaagatcaag gagtacaatg 60 cccagatca 69 <210> 328 <211> 68 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 328 cccgttcggt ctgaggaagg ccgggacatg gcgaaccgga tcagtgcctt tggctacctt 60 gagtgctc 68 <210> 329 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 329 aacagagaca ttgccaacca tattggatct gcttgctgtc caaaccagca aacttcctgg 60 gcaaatcac 69 <210> 330 <211> 86 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 330 cgcgagcccc tcattataca ctgggcagcc tccccacagc gcatcgagga atgcgtgctc 60 tcaggcaagg atgtcaacgg cgagtg 86 <210> 331 <211> 77 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 331 cagtggagac cagttgggta gtggtgactg ggtacgctac aagctctgca tgtgtgctga 60 tgggacgctc ttcaagg 77 <210> 332 <211> 81 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 332 gggctcagct ttcagaagtg ctgagttggc agttttcttc tgtcaccaaa agaggtctca 60 atgtggacca gctgaacatg t 81 <210> 333 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 333 tcacatgcca ctttggtgtt tcataatctc ctgggagaga ttgaccagca gtatagccgc 60 ttcctgcaag 70 <210> 334 <211> 65 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 334 gcccgaaacg ccgaatataa tcccaagcgg tttgctgcgg taatcatgag gataagagag 60 ccacg 65 <210> 335 <211> 84 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 335 gccgggaaga ccgtaattgt ggctgcactg gatgggacct tccagaggaa gccatttggg 60 gccatcctga acctggtgcc gctg 84 <210> 336 <211> 74 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 336 tgctgttgct gagtctgttg ccagtcccca gaagaccatg tctgtgttga gctgtatctg 60 tgaagccagg caag 74 <210> 337 <211> 66 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 337 tgtggtgagg aaggagtcag agagctgtga ctgtctccag ggcttccagc tgacccactc 60 tctggg 66 <210> 338 <211> 89 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 338 tggcttcagg agctgaatac cctcccaggc acacacaggt gggacacaaa taagggtttt 60 ggaaccacta ttttctcatc acgacagca 89 <210> 339 <211> 75 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 339 gtatcaggac cacatgcagt acatcggaga aggcgcgaag acaggcatca aagaatgcca 60 gtatcaattc cgaca 75 <210> 340 <211> 65 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 340 tttccaaaca tcagcgagtc cacactggag agggagaagc accgtaactt tcaagcgctc 60 ctgtt 65                                 SEQUENCE LISTING <110> GENOMIC HEALTH, INC.       BAKER, JOFFRE B.       SHAK, STEVEN       GIANNI, LUCA <120> GENE EXPRESSION MARKERS FOR PREDICTING   RESPONSE TO CHEMOTHERAPY    <130> 39740-0017 <140> PCT / US2005 / 011760 <141> 2005-04-07 <160> 340 FastSEQ for Windows Version 4.0 <210> 1 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 1 cgttccgatc ctctatactg cat 23 <210> 2 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 2 aggtccctgt tggccttata gg 22 <210> 3 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 3 atgcctacag caccctgatg tcgca 25 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 4 tgcagactgt accatgctga 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 5 ggccagcacc ataatcctat 20 <210> 6 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 6 ctgcacacgg ttctaggctc cg 22 <210> 7 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 7 ctgcatgtga ttgaataaga aacaaga 27 <210> 8 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 8 tgtggacctg atccctgtac ac 22 <210> 9 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 9 tgaccacacc aaagcctccc tgg 23 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 10 acgaattgtc ggtgaggtct 20 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 11 gtccatgctg aaatcattgg 20 <210> 12 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 12 caggatacca cagtcctgga gaccc 25 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 13 cgcttctatg gcgctgagat 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 14 tcccggtaca ccacgttctt 20 <210> 15 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 15 cagccctgga ctacctgcac tcgg 24 <210> 16 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 16 tcctgccacc cttcaaacc 19 <210> 17 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 17 ggcggtaaat tcatcatcga a 21 <210> 18 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 18 caggtcacgt ccgaggtcga caca 24 <210> 19 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 19 ggacagcagg aatgtgtttc 20 <210> 20 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 20 acccactcga tttgtttctg 20 <210> 21 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 21 cattggctcc ccgtgacctg ta 22 <210> 22 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer        <400> 22 gggtcaggtg cctcgagat 19 <210> 23 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer        <400> 23 ctgctcactc ggctcaaact c 21 <210> 24 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe        <400> 24 tgggcccaga gcatgttcca gatc 24 <210> 25 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer        <400> 25 cgttgtcagc acttggaata caa 23 <210> 26 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer        <400> 26 gttcaacctc ttcctgtgga ctgt 24 <210> 27 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe        <400> 27 cccaattaac atgacccggc aaccat 26 <210> 28 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer        <400> 28 cctggagggt cctgtacaat 20 <210> 29 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer        <400> 29 ctaattgggc tccatctcg 19 <210> 30 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe        <400> 30 catcatggga ctcctgccct tacc 24 <210> 31 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer        <400> 31 cagatggacc tagtacccac tgaga 25 <210> 32 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer        <400> 32 cctatgattt aagggcattt ttcc 24 <210> 33 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe        <400> 33 ttccacgccg aaggacagcg at 22 <210> 34 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 34 gcatgttcgt ggcctctaag a 21 <210> 35 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 35 cggtgtagat gcacagcttc tc 22 <210> 36 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 36 aaggagacca tccccctgac ggc 23 <210> 37 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 37 cgtcaggacc caccatgtct 20 <210> 38 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 38 ggttaattgg tgacatcctc aaga 24 <210> 39 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 39 cgcggccgag acatggcttg 20 <210> 40 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 40 tgtatttcaa gacctctgtg cactt 25 <210> 41 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 41 ttagcctgag gaattgctgt gtt 23 <210> 42 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 42 tttatgaacc tgccctgctc ccaca 25 <210> 43 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 43 agatgaagtg gaaggcgctt 20 <210> 44 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 44 tgcctctgta atcggcaact g 21 <210> 45 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 45 caccgcggcc atcctgca 18 <210> 46 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 46 gggcgtggaa cagtttatct 20 <210> 47 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 47 cacggtgaag gtttcgagt 19 <210> 48 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 48 agacatctgc cccaagaagg acgt 24 <210> 49 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 49 tggattggag ttctgggaat g 21 <210> 50 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 50 gcttgcactc cacaggtaca ca 22 <210> 51 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 51 actggccgtg gcactggaca aca 23 <210> 52 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 52 aaacgagcag tttgccatca g 21 <210> 53 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 53 gttggtgatg ttccgaagca 20 <210> 54 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 54 cctcaccggc atagactgga agcg 24 <210> 55 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 55 tgacaatcag cacacctgca t 21 <210> 56 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 56 tgtgactaca gccgtgatcc tta 23 <210> 57 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 57 caggccctct tccgagcggt 20 <210> 58 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 58 ctgaaggagc tccaagacct 20 <210> 59 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 59 caaaaccgct gtgtttcttc 20 <210> 60 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 60 tgctgatgtg ccctctcctt gg 22 <210> 61 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 61 gtggccatcc agctgacc 18 <210> 62 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 62 cagtggtagg tgatgttctg gga 23 <210> 63 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 63 tcctgcgcct gatgtccacc g 21 <210> 64 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 64 cagccaagaa ctggtatagg agct 24 <210> 65 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 65 aaactggctg ccagcattg 19 <210> 66 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 66 tctcctagcc agacgtgttt cttgtccttg 30 <210> 67 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 67 cgacagttgc gatgaaagtt ctaa 24 <210> 68 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 68 ggctgctaga gaccatggac at 22 <210> 69 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 69 cctcctcctg ttgctgccac taatgct 27 <210> 70 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 70 aacttcaagg tcggagaagg 20 <210> 71 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 71 tggctaaact cctgcacttg 20 <210> 72 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 72 ccgtccacgg tctcctcctc a 21 <210> 73 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Foward Primer <400> 73 gtgctacgcc accctgtt 18 <210> 74 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 74 caggggcttc tcgtagatgt 20 <210> 75 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 75 ccgatgttca cgcctttggg tc 22 <210> 76 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Foward Primer <400> 76 ggtgcctact ccattgtgg 19 <210> 77 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 77 gtggagccct tcttcctctt 20 <210> 78 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 78 tactccagca ggcacacaaa cacg 24 <210> 79 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 79 gggagaacgg gatcaatagg at 22 <210> 80 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 80 gcatcagcca gtcctcaaac t 21 <210> 81 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 81 ctcattgggc accagcaggt ttcc 24 <210> 82 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 82 tccaattcca gcatcactgt 20 <210> 83 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 83 ggcagtgaag gcgataaagt 20 <210> 84 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 84 agaaaagctg tttgtctccc cagca 25 <210> 85 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 85 tgcacagagg gtgtgggtta c 21 <210> 86 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 86 tcttcatctg atttacaagc tgtacatg 28 <210> 87 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 87 caatgcttcc aacaatttgt ttgcttgcc 29 <210> 88 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 88 actccctcta cccttgagca 20 <210> 89 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 89 caggcctcag ttccttcagt 20 <210> 90 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 90 cagaagaaca gctcagggac ccct 24 <210> 91 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 91 tggtccatcg ccagttatca 20 <210> 92 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 92 tgttctagcg atcttgcttc aca 23 <210> 93 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 93 atctgtatgc ggaacctcaa aagagtccct 30 <210> 94 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 94 cggttatgtc atgccagata cac 23 <210> 95 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 95 gaactgagac ccactgaaga aagg 24 <210> 96 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 96 cctcaaaggt actccctcct cccgg 25 <210> 97 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 97 tggctcttaa tcagtttcgt tacct 25 <210> 98 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 98 caaggcatat cgatcctcat aaagt 25 <210> 99 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 99 tgtcccacga ataatgcgta aattctccag 30 <210> 100 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 100 gtccaggtgg atgtgaaaga 20 <210> 101 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 101 cggccaggat acacatctta 20 <210> 102 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 102 cagcaggccc tcaaggagct g 21 <210> 103 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 103 acggatcaca gtggaggaag 20 <210> 104 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 104 ctcatccgtc gggtcatagt 20 <210> 105 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 105 cgctggctca cccctacctg 20 <210> 106 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 106 ccagcaccat tgttgaagat 20 <210> 107 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 107 agtctcttgg gcatcgagtt 20 <210> 108 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 108 ccccagacca agtgtgaata catgct 26 <210> 109 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 109 gcactttggg attctttcca ttat 24 <210> 110 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 110 gcatgtaaga agaccctcac tgaa 24 <210> 111 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 111 acaacattct cggtgcctgt aacaaagaa 29 <210> 112 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 112 ggattgtaga ctgtcaccga aattc 25 <210> 113 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 113 ggctattcct cattttctct acaaagtg 28 <210> 114 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 114 cctccaggag gctaccttct tcatgttcac 30 <210> 115 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 115 ccagtggagc gcttccat 18 <210> 116 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 116 ctctctgggt cgtctgaaac aa 22 <210> 117 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 117 tcggccactt catcaggacg cag 23 <210> 118 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 118 ggataattca gacaacaaca ccatct 26 <210> 119 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 119 tgaagtaatc agccacagac tcaat 25 <210> 120 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 120 tcaattgtaa cattctcacc caggccttg 29 <210> 121 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 121 gaagcgcaga tcatgaagaa 20 <210> 122 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 122 ctcctcagac accactgcat 20 <210> 123 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 123 ctgaagcacg acaagctggt ccag 24 <210> 124 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 124 tcagcagcaa gggcatcat 19 <210> 125 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 125 ggtggttttc ttgagcgtgt act 23 <210> 126 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 126 cgcccgcagg cctcatcct 19 <210> 127 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 127 caaaggagct cactgtggtg tct 23 <210> 128 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 128 gagtcagaat ggcttattca cagatg 26 <210> 129 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 129 tgttccaacc actgaatctg gacc 24 <210> 130 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 130 ttgggaaata tttgggcatt 20 <210> 131 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 131 agaagctagg gtggttgtcc 20 <210> 132 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 132 ttgggacatt gtagacttgg ccagac 26 <210> 133 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <133> 133 gcatgggaac catcaacca 19 <210> 134 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 134 tgaggagttt gccttgattc g 21 <210> 135 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 135 ccatggacca acttcactat gtgacagagc 30 <210> 136 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 136 ctccgacgtg gctttcca 18 <210> 137 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 137 cgtaattggc agaattgatg aca 23 <210> 138 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 138 tggcccacag catctatgga atccc 25 <139> <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 139 ccatctgcat ccatcttgtt 20 <210> 140 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 140 ggccaccagg gtattatctg 20 <210> 141 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 141 ctccccaccc ttgagaagtg cct 23 <210> 142 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 142 aggctgctgg aggtcatctc 20 <210> 143 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 143 cttcctgcgg ccacagtct 19 <210> 144 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 144 ccagaggccg tttcttggcc g 21 <210> 145 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 145 tccatgatgg ttctgcaggt t 21 <210> 146 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 146 tgagcagcac catcagtaac g 21 <210> 147 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 147 ccccggacag tggctctgac g 21 <210> 148 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 148 aacgactgct actccaagct caa 23 <210> 149 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 149 ggatttccat cttgctcacc tt 22 <210> 150 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 150 tgcccagcat cccccagaac aa 22 <210> 151 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 151 gcatggtagc cgaagatttc a 21 <210> 152 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 152 tttccggtaa tagtctgtct catagatatc 30 <210> 153 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 153 cgcgtcatac caaaatctcc gattttga 28 <210> 154 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 154 cctgaacctt ccaaagatgg 20 <210> 155 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 155 accaggcaag tctcctcatt 20 <210> 156 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 156 ccagattgga agcatccatc tttttca 27 <210> 157 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 157 agccatcact ctcagtgcag 20 <210> 158 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 158 actgcagagt cagggtctcc 20 <210> 159 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 159 caggtcctat cgtggcccct ga 22 <210> 160 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Foward Primer <400> 160 ccacagctca ccttctgtca 20 <210> 161 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 161 cctcagtgcc agtctcttcc 20 <210> 162 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 162 tccatcccag ctccagccag 20 <210> 163 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 163 agagatcgag gctctcaagg 20 <210> 164 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 164 ggccttttac ttcctcttcg 20 <210> 165 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 165 tggttcttct tcatgaagag cagctcc 27 <210> 166 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 166 tgagtggaaa agcctgacct atg 23 <210> 167 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 167 ggactccatc tcttcttggt caa 23 <210> 168 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 168 tgaagtcatc agctttgtgc caccacc 27 <210> 169 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 169 gacttttgcc cgctaccttt c 21 <210> 170 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 170 gccactaact gcttcagtat gaagag 26 <210> 171 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 171 acagctcatt gttgtcacgc cgga 24 <210> 172 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 172 tgatggtcct atgtgtcaca ttca 24 <210> 173 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 173 tgggacagga aacacaccaa 20 <210> 174 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 174 caggtttcat accaacacag gcttcagcac 30 <175> 175 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 175 cgctcagcca gatgcaatc 19 <210> 176 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 176 gcactgagat cttcctattg gtgaa 25 <210> 177 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 177 tgccccagtc acctgctgtt a 21 <210> 178 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 178 gtgaaatgaa acgcaccaca 20 <210> 179 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 179 gaccctgctc acaaccagac 20 <210> 180 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 180 cagccctttg gggaagctgg 20 <210> 181 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 181 ccaacgcttg ccaaatcct 19 <210> 182 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 182 acggtagtga cagcatcaaa actc 24 <210> 183 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 183 aaccagctct ctgtgacccc aatt 24 <210> 184 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 184 tgattaccat catggctcag a 21 <210> 185 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 185 cttgtgaaaa tgccatccac 20 <210> 186 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 186 tcccaattgt cgcttcttct gcag 24 <210> 187 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Sequence <400> 187 ccgccctcac ctgaagaga 19 <210> 188 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Sequence <400> 188 ggaataagtt agccgcgctt ct 22 <210> 189 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 189 cccagtgtcc gccaaggagc g 21 <210> 190 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 190 ggccaggatc tgtggtggta 20 <210> 191 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 191 ctccacgtcg tggacattga 20 <210> 192 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 192 ctctggcctt ccgagaaggt acc 23 <210> 193 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 193 ggctgtggct gaggctgtag 20 <210> 194 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 194 ggagcattcg aggtcaaatc a 21 <210> 195 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 195 ttcccagagt gtctcacctc cagcagag 28 <210> 196 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 196 gcatcaggct gtcattatgg 20 <210> 197 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 197 agtagttgtg ctgcccttcc 20 <210> 198 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 198 tgtccttacc tgtgggagct gtaaggtc 28 <210> 199 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 199 ctgacacttg ccgcagagaa 20 <210> 200 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 200 aggtggtcct tggtctggaa 20 <210> 201 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 201 ccctttctca cccacctcat ctgcac 26 <210> 202 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 202 cgcttgccta actcatactt tcc 23 <210> 203 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 203 ccattcagac tgcgccactt 20 <210> 204 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 204 tccacgcagc gtggcactg 19 <210> 205 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 205 gcgacagctc ctctagttcc a 21 <206> 206 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 206 ttcccgaagt ctccgcccg 19 <210> 207 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 207 ggaacaccag cttgaatttc ct 22 <210> 208 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 208 ggtgtcagat ataaatgtgc aaatgc 26 <210> 209 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 209 ttcgatattg ccagcagcta taaa 24 <210> 210 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 210 tgctgtcctg tcggtctcag tacgttca 28 <210> 211 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 211 tgtggatgct ggattgattt 20 <210> 212 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 212 aagcagcact tcctggtctt 20 <210> 213 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 213 ccactggtgc agctgctaaa tagca 25 <210> 214 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 214 agtgggagac acctgacctt 20 <210> 215 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 215 tgatctgggc attgtactcc 20 <210> 216 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 216 ttgatcttct gctcaatctc agcttgaga 29 <210> 217 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 217 cccgttcggt ctgaggaa 18 <210> 218 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 218 gagcactcaa ggtagccaaa gg 22 <210> 219 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 219 tccggttcgc catgtcccg 19 <210> 220 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 220 aacagagaca ttgccaacca 20 <210> 221 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 221 gtgatttgcc caggaagttt 20 <210> 222 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 222 ttggatctgc ttgctgtcca aacc 24 <210> 223 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 223 cgcgagcccc tcattataca 20 <210> 224 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 224 cactcgccgt tgacatcct 19 <210> 225 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 225 ctccccacag cgcatcgagg aa 22 <210> 226 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 226 cagtggagac cagttgggta gtg 23 <210> 227 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 227 ccttgaagag cgtcccatca 20 <210> 228 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 228 cacacatgca gagcttgtag cgtaccca 28 <210> 229 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 229 gggctcagct ttcagaagtg 20 <210> 230 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 230 acatgttcag ctggtccaca 20 <210> 231 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 231 tggcagtttt cttctgtcac caaaa 25 <210> 232 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 232 tcacatgcca ctttggtgtt 20 <210> 233 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 233 cttgcaggaa gcggctatac 20 <210> 234 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 234 tcctgggaga gattgaccag ca 22 <210> 235 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 235 gcccgaaacg ccgaatata 19 <210> 236 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 236 cgtggctctc ttatcctcat gat 23 <210> 237 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 237 taccgcagca aaccgcttgg g 21 <210> 238 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 238 gccgggaaga ccgtaattgt 20 <210> 239 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 239 cagcggcacc aggttcag 18 <210> 240 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 240 caaatggctt cctctggaag gtccca 26 <210> 241 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 241 tgctgttgct gagtctgttg 20 <210> 242 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 242 cttgcctggc ttcacagata 20 <210> 243 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 243 ccagtcccca gaagaccatg tctg 24 <210> 244 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 244 tgtggtgagg aaggagtcag 20 <210> 245 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 245 cccagagagt gggtcagc 18 <210> 246 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 246 ctgtgactgt ctccagggct tcca 24 <210> 247 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 247 tggcttcagg agctgaatac c 21 <210> 248 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 248 tgctgtcgtg atgagaaaat agtg 24 <210> 249 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 249 caggcacaca caggtgggac acaaat 26 <210> 250 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 250 gtatcaggac cacatgcagt acatc 25 <210> 251 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 251 tgtcggaatt gatactggca tt 22 <210> 252 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 252 ttgatgcctg tcttcgcgcc ttct 24 <210> 253 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Forward Primer <400> 253 tttccaaaca tcagcgagtc 20 <210> 254 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Reverse Primer <400> 254 aacaggagcg cttgaaagtt 20 <210> 255 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 255 acggtgcttc tccctctcca gtg 23 <210> 256 <211> 78 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 256 cgttccgatc ctctatactg catcccaggc atgcctacag caccctgatg tcgcagccta 60 taaggccaac agggacct 78 <210> 257 <211> 76 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 257 tgcagactgt accatgctga ccattgccca tcgcctgcac acggttctag gctccgatag 60 gattatggtg ctggcc 76 <210> 258 <211> 78 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 258 ctgcatgtga ttgaataaga aacaagaaag tgaccacacc aaagcctccc tggctggtgt 60 acagggatca ggtccaca 78 <210> 259 <211> 68 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 259 acgaattgtc ggtgaggtct caggatacca cagtcctgga gaccctatcc aatgatttca 60 gcatggac 68 <210> 260 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 260 cgcttctatg gcgctgagat tgtgtcagcc ctggactacc tgcactcgga gaagaacgtg 60 gtgtaccggg a 71 <210> 261 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 261 tcctgccacc cttcaaacct caggtcacgt ccgaggtcga cacaaggtac ttcgatgatg 60 aatttaccgc c 71 <210> 262 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 262 ggacagcagg aatgtgtttc tccatacagg tcacggggag ccaatggttc agaaacaaat 60 cgagtgggt 69 <210> 263 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 263 gggtcaggtg cctcgagatc gggcttgggc ccagagcatg ttccagatcc cagagtttga 60 gccgagtgag cag 73 <210> 264 <211> 81 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 264 cgttgtcagc acttggaata caagatggtt gccgggtcat gttaattggg aaaaagaaca 60 gtccacagga agaggttgaa c 81 <210> 265 <211> 83 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 265 cctggagggt cctgtacaat ctcatcatgg gactcctgcc cttacccagg ggccacagag 60 cccccgagat ggagcccaat tag 83 <210> 266 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 266 cagatggacc tagtacccac tgagatttcc acgccgaagg acagcgatgg gaaaaatgcc 60 cttaaatcat agg 73 <210> 267 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 267 gcatgttcgt ggcctctaag atgaaggaga ccatccccct gacggccgag aagctgtgca 60 tctacaccg 69 <210> 268 <211> 81 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 268 cgtcaggacc caccatgtct gccccatcac gcggccgaga catggcttgg ccacagctct 60 tgaggatgtc accaattaac c 81 <210> 269 <211> 75 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 269 tgtatttcaa gacctctgtg cacttattta tgaacctgcc ctgctcccac agaacacagc 60 aattcctcag gctaa 75 <210> 270 <211> 65 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 270 agatgaagtg gaaggcgctt ttcaccgcgg ccatcctgca ggcacagttg ccgattacag 60 aggca 65 <210> 271 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 271 gggcgtggaa cagtttatct cagacatctg ccccaagaag gacgtactcg aaaccttcac 60 cgtg 64 <210> 272 <211> 68 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 272 tggattggag ttctgggaat gtactggccg tggcactgga caacagtgtg tacctgtgga 60 gtgcaagc 68 <210> 273 <211> 85 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 273 aaacgagcag tttgccatca gacgcttcca gtctatgccg gtgaggctgc tgggccacag 60 ccccgtgctt cggaacatca ccaac 85 <210> 274 <211> 77 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 274 tgacaatcag cacacctgca ttcaccgctc ggaagagggc ctgagctgca tgaataagga 60 tcacggctgt agtcaca 77 <210> 275 <211> 76 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 275 ctgaaggagc tccaagacct cgctctccaa ggcgccaagg agagggcaca tcagcagaag 60 aaacacagcg gttttg 76 <210> 276 <211> 68 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 276 gtggccatcc agctgacctt cctgcgcctg atgtccaccg aggcctccca gaacatcacc 60 taccactg 68 <210> 277 <211> 80 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 277 cagccaagaa ctggtatagg agctccaagg acaagaaaca cgtctggcta ggagaaacta 60 tcaatgctgg cagccagttt 80 <210> 278 <211> 81 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 278 cgacagttgc gatgaaagtt ctaatctctt ccctcctcct gttgctgcca ctaatgctga 60 tgtccatggt ctctagcagc c 81 <210> 279 <211> 67 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 279 aacttcaagg tcggagaagg ctttgaggag gagaccgtgg acggacgcaa gtgcaggagt 60 ttagcca 67 <210> 280 <211> 76 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 280 gtgctacgcc accctgttcg gacccaaagg cgtgaacatc gggggcgcgg gctcctacat 60 ctacgagaag cccctg 76 <210> 281 <211> 77 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 281 ggtgcctact ccattgtggc gggcgtgttt gtgtgcctgc tggagtaccc ccgggggaag 60 aggaagaagg gctccac 77 <210> 282 <211> 78 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 282 gggagaacgg gatcaatagg atcggaaacc tgctggtgcc caatgagaat tactgcaagt 60 ttgaggactg gctgatgc 78 <210> 283 <211> 68 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 283 tccaattcca gcatcactgt ggagaaaagc tgtttgtctc cccagcatac tttatcgcct 60 tcactgcc 68 <210> 284 <211> 83 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 284 tgcacagagg gtgtgggtta caccaatgct tccaacaatt tgtttgcttg cctcccatgt 60 acagcttgta aatcagatga aga 83 <210> 285 <211> 75 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 285 actccctcta cccttgagca agggcagggg tccctgagct gttcttctgc cccatactga 60 aggaactgag gcctg 75 <210> 286 <211> 76 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 286 tggtccatcg ccagttatca catctgtatg cggaacctca aaagagtccc tggtgtgaag 60 caagatcgct agaaca 76 <210> 287 <211> 81 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 287 cggttatgtc atgccagata cacacctcaa aggtactccc tcctcccggg aaggcaccct 60 ttcttcagtg ggtctcagtt c 81 <210> 288 <211> 86 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 288 tggctcttaa tcagtttcgt tacctgcctc tggagaattt acgcattatt cgtgggacaa 60 aactttatga ggatcgatat gccttg 86 <210> 289 <211> 67 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 289 gtccaggtgg atgtgaaaga tccccagcag gccctcaagg agctggctaa gatgtgtatc 60 ctggccg 67 <210> 290 <211> 67 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 290 acggatcaca gtggaggaag cgctggctca cccctacctg gagcagtact atgacccgac 60 ggatgag 67 <210> 291 <211> 67 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 291 ccagcaccat tgttgaagat ccccagacca agtgtgaata catgctcaac tcgatgccca 60 agagact 67 <210> 292 <211> 80 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 292 gcactttggg attctttcca ttatgattct ttgttacagg caccgagaat gttgtattca 60 gtgagggtct tcttacatgc 80 <210> 293 <211> 90 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 293 ggctattcct cattttctct acaaagtggc ctcagtgaac atgaagaagg tagcctcctg 60 gaggagaatt tcggtgacag tctacaatcc 90 <210> 294 <211> 67 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 294 ccagtggagc gcttccatga cctgcgtcct gatgaagtgg ccgatttgtt tcagacgacc 60 cagagag 67 <210> 295 <211> 80 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 295 ggataattca gacaacaaca ccatctttgt gcaaggcctg ggtgagaatg ttacaattga 60 gtctgtggct gattacttca 80 <210> 296 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 296 gaagcgcaga tcatgaagaa gctgaagcac gacaagctgg tccagctcta tgcagtggtg 60 tctgaggag 69 <210> 297 <211> 68 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 297 tcagcagcaa gggcatcatg gaggaggatg aggcctgcgg gcgccagtac acgctcaaga 60 aaaccacc 68 <210> 298 <211> 75 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 298 caaaggagct cactgtggtg tctgtgttcc aaccactgaa tctggacccc atctgtgaat 60 aagccattct gactc 75 <210> 299 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 299 ttgggaaata tttgggcatt ggtctggcca agtctacaat gtcccaatat caaggacaac 60 caccctagct tct 73 <210> 300 <211> 83 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 300 gcatgggaac catcaaccag caggccatgg accaacttca ctatgtgaca gagctgacag 60 atcgaatcaa ggcaaactcc tca 83 <210> 301 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 301 ctccgacgtg gctttccagt ggcccacagc atctatggaa tcccatctgt catcaattct 60 gccaattacg 70 <210> 302 <211> 67 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 302 ccatctgcat ccatcttgtt tgggctcccc acccttgaga agtgcctcag ataataccct 60 ggtggcc 67 <210> 303 <211> 84 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 303 aggctgctgg aggtcatctc cgtgtgtgat tgccccagag gccgtttctt ggccgccatc 60 tgccaagact gtggccgcag gaag 84 <210> 304 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 304 tccatgatgg ttctgcaggt ttctgcggcc ccccggacag tggctctgac ggcgttactg 60 atggtgctgc tca 73 <210> 305 <211> 76 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 305 aacgactgct actccaagct caaggagctg gtgcccagca tcccccagaa caagaaggtg 60 agcaagatgg aaatcc 76 <210> 306 <211> 83 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 306 gcatggtagc cgaagatttc acagtcaaaa tcggagattt tggtatgacg cgagatatct 60 atgagacaga ctattaccgg aaa 83 <210> 307 <211> 72 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 307 cctgaacctt ccaaagatgg ctgaaaaaga tggatgcttc caatctggat tcaatgagga 60 gacttgcctg gt 72 <210> 308 <211> 63 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 308 agccatcact ctcagtgcag ccaggtccta tcgtggcccc tgaggagacc ctgactctgc 60 agt 63 <210> 309 <211> 74 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 309 ccacagctca ccttctgtca ggtgtccatc ccagctccag ccagctccca gagaggaaga 60 gactggcact gagg 74 <210> 310 <211> 68 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 310 agagatcgag gctctcaagg aggagctgct cttcatgaag aagaaccacg aagaggaagt 60 aaaaggcc 68 <210> 311 <211> 76 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 311 tgagtggaaa agcctgacct atgatgaagt catcagcttt gtgccaccac cccttgacca 60 agaagagatg gagtcc 76 <210> 312 <211> 75 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 312 gacttttgcc cgctaccttt cattccggcg tgacaacaat gagctgttgc tcttcatact 60 gaagcagtta gtggc 75 <210> 313 <211> 82 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 313 tgatggtcct atgtgtcaca ttcatcacag gtttcatacc aacacaggct tcagcacttc 60 ctttggtgtg tttcctgtcc ca 82 <210> 314 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 314 cgctcagcca gatgcaatca atgccccagt cacctgctgt tataacttca ccaataggaa 60 gatctcagtg c 71 <210> 315 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 315 gtgaaatgaa acgcaccaca ctggacagcc ctttggggaa gctggagctg tctggttgtg 60 agcagggtc 69 <210> 316 <211> 78 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 316 ccaacgcttg ccaaatcctg acaattcaga accagctctc tgtgacccca atttgagttt 60 tgatgctgtc actaccgt 78 <210> 317 <211> 82 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 317 tgattaccat catggctcag attggctcct atgttcctgc agaagaagcg acaattggga 60 ttgtggatgg cattttcaca ag 82 <210> 318 <211> 77 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 318 ccgccctcac ctgaagagaa acgcgctcct tggcggacac tgggggagga gaggaagaag 60 cgcggctaac ttattcc 77 <210> 319 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 319 ggccaggatc tgtggtggta caattgactc tggccttccg agaaggtacc atcaatgtcc 60 acgacgtgga g 71 <210> 320 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 320 ggctgtggct gaggctgtag catctctgct ggaggtgaga cactctggga actgatttga 60 cctcgaatgc tcc 73 <210> 321 <211> 85 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 321 gcatcaggct gtcattatgg tgtccttacc tgtgggagct gtaaggtctt ctttaagagg 60 gcaatggaag ggcagcacaa ctact 85 <210> 322 <211> 68 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 322 ctgacacttg ccgcagagaa tccctttctc acccacctca tctgcacctt ccagaccaag 60 gaccacct 68 <210> 323 <211> 81 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 323 cgcttgccta actcatactt tcccgttgac acttgatcca cgcagcgtgg cactgggacg 60 taagtggcgc agtctgaatg g 81 <210> 324 <211> 78 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 324 gcgacagctc ctctagttcc accatgtccg cgggcggaga cttcgggaat ccgctgagga 60 aattcaagct ggtgttcc 78 <210> 325 <211> 84 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 325 ggtgtcagat ataaatgtgc aaatgccttc ttgctgtcct gtcggtctca gtacgttcac 60 tttatagctg ctggcaatat cgaa 84 <210> 326 <211> 67 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 326 tgtggatgct ggattgattt caccactggt gcagctgcta aatagcaaag accaggaagt 60 gctgctt 67 <210> 327 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 327 agtgggagac acctgacctt tctcaagctg agattgagca gaagatcaag gagtacaatg 60 cccagatca 69 <210> 328 <211> 68 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 328 cccgttcggt ctgaggaagg ccgggacatg gcgaaccgga tcagtgcctt tggctacctt 60 gagtgctc 68 <210> 329 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 329 aacagagaca ttgccaacca tattggatct gcttgctgtc caaaccagca aacttcctgg 60 gcaaatcac 69 <210> 330 <211> 86 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 330 cgcgagcccc tcattataca ctgggcagcc tccccacagc gcatcgagga atgcgtgctc 60 tcaggcaagg atgtcaacgg cgagtg 86 <210> 331 <211> 77 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 331 cagtggagac cagttgggta gtggtgactg ggtacgctac aagctctgca tgtgtgctga 60 tgggacgctc ttcaagg 77 <210> 332 <211> 81 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 332 gggctcagct ttcagaagtg ctgagttggc agttttcttc tgtcaccaaa agaggtctca 60 atgtggacca gctgaacatg t 81 <210> 333 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 333 tcacatgcca ctttggtgtt tcataatctc ctgggagaga ttgaccagca gtatagccgc 60 ttcctgcaag 70 <210> 334 <211> 65 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 334 gcccgaaacg ccgaatataa tcccaagcgg tttgctgcgg taatcatgag gataagagag 60 ccacg 65 <210> 335 <211> 84 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 335 gccgggaaga ccgtaattgt ggctgcactg gatgggacct tccagaggaa gccatttggg 60 gccatcctga acctggtgcc gctg 84 <210> 336 <211> 74 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 336 tgctgttgct gagtctgttg ccagtcccca gaagaccatg tctgtgttga gctgtatctg 60 tgaagccagg caag 74 <210> 337 <211> 66 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 337 tgtggtgagg aaggagtcag agagctgtga ctgtctccag ggcttccagc tgacccactc 60 tctggg 66 <210> 338 <211> 89 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 338 tggcttcagg agctgaatac cctcccaggc acacacaggt gggacacaaa taagggtttt 60 ggaaccacta ttttctcatc acgacagca 89 <210> 339 <211> 75 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 339 gtatcaggac cacatgcagt acatcggaga aggcgcgaag acaggcatca aagaatgcca 60 gtatcaattc cgaca 75 <210> 340 <211> 65 <212> DNA <213> Artificial Sequence <220> <223> Amplicon <400> 340 tttccaaaca tcagcgagtc cacactggag agggagaagc accgtaactt tcaagcgctc 60 ctgtt 65

Claims (70)

암으로 진단된 대상체로부터 얻은 암 세포를 포함하는 생물학적 샘플 중에서 1종 이상의 예후 RNA 전사체 또는 이들의 발현 생성물의 발현도를 결정하는 것을 포함하고, 여기서의 상기 예후 RNA 전사체는 TBP; ILT.2; ABCC5; CD18; GATA3; DICER1; MSH3; GBP1; IRS1; CD3z; fasl; TUBB; BAD; ERCC1; MCM6; PR; APC; GGPS1; KRT18; ESRRG; E2F1; AKT2; 에이.카테닌(A.Catenin); CEGP1; NPD009; MAPK14; RUNX1; ID2; 쥐.카테닌(G.Catenin); FBXO5; FHIT; MTA1; ERBB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; CDC20; STAT3; ERK1; HLA.DPB1; SGCB; CGA; DHPS; MGMT; CRIP2; MMP12; ErbB3; RAP1GDS1; CDC25B; IL6; CCND1; CYBA; PRKCD; DR4; 헵신(Hepsin); CRABP1; AK055699; 콘티그.(Contig.)51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; ZNF38; MCM2; GBP2; SEMA3F; CD31; COL1A1; ER2; BAG1; AKT1; COL1A2; STAT1; Wnt.5a; PTPD1; RAB6C; TK1, ErbB2, CCNB1, BIRC5, STK6, MKI67, MYBL2, MMP11, CTSL2, CD68, GSTM1, BCL2, ESR1로 이루어진 군으로부터 선택된 1종 이상의 유전자의 전사체이고, 이때Determining the expression level of at least one prognostic RNA transcript or expression product thereof in a biological sample comprising cancer cells obtained from a subject diagnosed with cancer, wherein the prognostic RNA transcript comprises TBP; ILT.2; ABCC5; CD18; GATA3; DICER1; MSH3; GBP1; IRS1; CD3z; fasl; TUBB; BAD; ERCC1; MCM6; PR; APC; GGPS1; KRT18; ESRRG; E2F1; AKT2; A.Catenin; CEGP1; NPD009; MAPK14; RUNX1; ID2; Rat G.Catenin; FBXO5; FHIT; MTA1; ERBB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; CDC20; STAT3; ERK1; HLA.DPB1; SGCB; CGA; DHPS; MGMT; CRIP2; MMP12; ErbB3; RAP1GDS1; CDC25B; IL6; CCND1; CYBA; PRKCD; DR4; Hepsin (Hepsin); CRABP1; AK055699; Contig. 51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; ZNF38; MCM2; GBP2; SEMA3F; CD31; COL1A1; ER2; BAG1; AKT1; COL1A2; STAT1; Wnt. 5a; PTPD1; RAB6C; A transcript of at least one gene selected from the group consisting of TK1, ErbB2, CCNB1, BIRC5, STK6, MKI67, MYBL2, MMP11, CTSL2, CD68, GSTM1, BCL2, ESR1 (a) ILT.2; CD18; GBP1; CD3z; fasl; MCM6; E2F1; ID2; FBXO5; CDC20; HLA.DPB1; CGA; MMP12; CDC25B; IL6; CYBA; DR4; CRABP1; 콘티그.51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; MCM2; GBP2; CD31; ER2; STAT1; TK1; ERBB2, CCNB1, BIRC5, STK6, MKI67, MYBL2, MMP11, CTSL2 및 CD68; 또는 상응하는 발현 생성물 중 1종 이상의 발현 단위가 증가했으면, 상기 대상체가 화학요법에 대한 반응 이 증가될 가능성을 갖는 것으로 예측되고,(a) ILT.2; CD18; GBP1; CD3z; fasl; MCM6; E2F1; ID2; FBXO5; CDC20; HLA.DPB1; CGA; MMP12; CDC25B; IL6; CYBA; DR4; CRABP1; Contig. 51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; MCM2; GBP2; CD31; ER2; STAT1; TK1; ERBB2, CCNB1, BIRC5, STK6, MKI67, MYBL2, MMP11, CTSL2 and CD68; Or if at least one expression unit of the corresponding expression product has increased, the subject is expected to have an increased response to chemotherapy, (b) TBP; ABCC5; GATA3; DICER1; MSH3; IRS1; TUBB; BAD; ERCC1; PR; APC; GGPS1; KRT18; ESRRG; AKT2; 에이.카테닌; CEGP1; NPD009; MAPK14; RUNX1; 쥐.카테닌; FHIT; MTA1; ErbB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; STAT3; ERK1; SGCB; DHPS; MGMT; CRIP2; ErbB3; RAP1GDS1; CCND1; PRKCD; 헵신; AK055699; ZNF38; SEMA3F; COL1A1; BAG1; AKT1; COL1A2; Wnt.5a; PTPD1; RAB6C; GSTM1, BCL2, ESR1; 또는 상응하는 발현 생성물 중 1종 이상의 발현 단위가 증가했으면, 상기 대상체가 화학요법에 대한 반응이 감소될 가능성을 갖는 것으로 예측되는, (b) TBP; ABCC5; GATA3; DICER1; MSH3; IRS1; TUBB; BAD; ERCC1; PR; APC; GGPS1; KRT18; ESRRG; AKT2; A. catenin; CEGP1; NPD009; MAPK14; RUNX1; Rat.catenin; FHIT; MTA1; ErbB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; STAT3; ERK1; SGCB; DHPS; MGMT; CRIP2; ErbB3; RAP1GDS1; CCND1; PRKCD; Heptin; AK055699; ZNF38; SEMA3F; COL1A1; BAG1; AKT1; COL1A2; Wnt. 5a; PTPD1; RAB6C; GSTM1, BCL2, ESR1; Or if at least one expression unit of the corresponding expression product has increased, it is predicted that the subject has the potential to decrease the response to chemotherapy, 암으로 진단된 대상체의 화학요법에 대한 반응 예측 방법.A method of predicting response to chemotherapy in a subject diagnosed with cancer. 제1항에 있어서, 상기 예후 RNA 전사체가 TBP; ILT.2; ABCC5; CD18; GATA3; DICER1; MSH3; GBP1; IRS1; CD3z; fasl; TUBB; BAD; ERCC1; MCM6; PR; APC; GGPS1; KRT18; ESRRG; E2F1; AKT2; 에이.카테닌; CEGP1; NPD009; MAPK14; RUNX1; ID2; 쥐.카테닌; FBXO5; FHIT; MTA1; ERBB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; CDC20; STAT3; ERK1; HLA.DPB1; SGCB; CGA; DHPS; MGMT; CRIP2; MMP12; ErbB3; RAP1GDS1; CDC25B; IL6; CCND1; CYBA; PRKCD; DR4; 헵신; CRABP1; AK055699; 콘티그.51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; ZNF38; MCM2; GBP2; SEMA3F; CD31; COL1A1; ER2; BAG1; AKT1; COL1A2; STAT1; Wnt.5a; PTPD1; RAB6C; 및 TK1로 이루어진 군으로부터 선택된 1종 이상의 유전자의 전사체인 방법.The method of claim 1, wherein the prognostic RNA transcript is TBP; ILT.2; ABCC5; CD18; GATA3; DICER1; MSH3; GBP1; IRS1; CD3z; fasl; TUBB; BAD; ERCC1; MCM6; PR; APC; GGPS1; KRT18; ESRRG; E2F1; AKT2; A. catenin; CEGP1; NPD009; MAPK14; RUNX1; ID2; Rat.catenin; FBXO5; FHIT; MTA1; ERBB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; CDC20; STAT3; ERK1; HLA.DPB1; SGCB; CGA; DHPS; MGMT; CRIP2; MMP12; ErbB3; RAP1GDS1; CDC25B; IL6; CCND1; CYBA; PRKCD; DR4; Heptin; CRABP1; AK055699; Contig. 51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; ZNF38; MCM2; GBP2; SEMA3F; CD31; COL1A1; ER2; BAG1; AKT1; COL1A2; STAT1; Wnt. 5a; PTPD1; RAB6C; And a transcript of at least one gene selected from the group consisting of TK1. 제2항에 있어서, 상기 반응이 완전 병리 반응인 방법.The method of claim 2, wherein said reaction is a complete pathological reaction. 제2항에 있어서, 상기 대상체가 사람 환자인 방법.The method of claim 2, wherein the subject is a human patient. 제2항에 있어서, 상기 암이 유방암, 난소암, 위암, 결장암, 췌장암, 전립선암 및 폐암으로 이루어진 군으로부터 선택된 것인 방법.The method of claim 2, wherein the cancer is selected from the group consisting of breast cancer, ovarian cancer, gastric cancer, colon cancer, pancreatic cancer, prostate cancer and lung cancer. 제5항에 있어서, 상기 암이 유방암인 방법.The method of claim 5, wherein the cancer is breast cancer. 제6항에 있어서, 상기 암이 침윤 유방암인 방법.The method of claim 6, wherein the cancer is infiltrating breast cancer. 제7항에 있어서, 상기 암이 II기 또는 III기 유방암인 방법.8. The method of claim 7, wherein the cancer is stage II or stage III breast cancer. 제2항에 있어서, 상기 화학요법이 보조항암 화학요법(adjuvant chemotherapy)인 방법.The method of claim 2, wherein the chemotherapy is adjuvant chemotherapy. 제2항에 있어서, 상기 화학요법이 신보조항암 화학요법(neoadjuvant chemotherapy)인 방법.The method of claim 2, wherein the chemotherapy is neoadjuvant chemotherapy. 제10항에 있어서, 상기 신보조항암 화학요법이 탁산 유도체의 투여를 포함하는 것인 방법.The method of claim 10, wherein the neoadjuvant cancer chemotherapy comprises administration of a taxane derivative. 제11항에 있어서, 상기 탁산이 도세탁셀 또는 파클리탁셀인 방법.The method of claim 11, wherein the taxane is docetaxel or paclitaxel. 제12항에 있어서, 상기 탁산이 도세탁셀인 방법.The method of claim 12, wherein the taxane is docetaxel. 제11항에 있어서, 상기 화학요법이 추가적인 항암제의 투여를 추가로 포함하는 것인 방법.The method of claim 11, wherein the chemotherapy further comprises administration of an additional anticancer agent. 제14항에 있어서, 상기 추가적인 항암제가 안트라시클린류 항암제의 구성원인 방법.The method of claim 14, wherein the additional anticancer agent is a member of anthracycline anticancer agent. 제15항에 있어서, 상기 추가적인 항암제가 독소루비신인 방법.The method of claim 15, wherein said additional anticancer agent is doxorubicin. 제15항에 있어서, 상기 추가적인 항암제가 토포이소머라제 억제제인 방법.The method of claim 15, wherein said additional anticancer agent is a topoisomerase inhibitor. 제2항에 있어서, 상기 예후 전사체 또는 이들의 발현 생성물 중 2종 이상의 발현도를 결정하는 것을 포함하는 것인 방법.The method of claim 2 comprising determining the expression level of at least two of said prognostic transcripts or expression products thereof. 제2항에 있어서, 상기 예후 전사체 또는 이들의 발현 생성물 중 5종 이상의 발현도를 결정하는 것을 포함하는 것인 방법.The method of claim 2, comprising determining the expression level of at least five of said prognostic transcripts or expression products thereof. 제2항에 있어서, 상기 예후 전사체 또는 이들의 발현 생성물 모두의 발현도를 결정하는 것을 포함하는 것인 방법.3. The method of claim 2 comprising determining the expression level of the prognostic transcript or all of their expression products. 제2항에 있어서, 상기 생물학적 샘플이 암 세포를 포함하는 조직 샘플인 방법.The method of claim 2, wherein the biological sample is a tissue sample comprising cancer cells. 제21항에 있어서, 상기 조직이 고정되어 파라핀에 매립된 것이거나, 신선한 것이거나, 또는 냉동된 것인 방법.The method of claim 21, wherein the tissue is fixed and embedded in paraffin, fresh, or frozen. 제21항에 있어서, 상기 조직이 미세침, 코어(core) 또는 다른 유형의 생검으로부터 얻어진 것인 방법.The method of claim 21, wherein the tissue is obtained from a microneedle, a core, or other type of biopsy. 제21항에 있어서, 상기 조직 샘플이 미세침 흡인, 기관지 세정 또는 경기관지 생검에 의해 얻어진 것인 방법.The method of claim 21, wherein the tissue sample is obtained by microneedle aspiration, bronchial lavage, or coronary biopsy. 제2항에 있어서, 상기 예후 RNA 전사체(들)의 발현도가 RT-PCR 또는 다른 PCR-기재 방법에 의해 결정되는 것인 방법.The method of claim 2, wherein the expression level of said prognostic RNA transcript (s) is determined by RT-PCR or other PCR-based methods. 제2항에 있어서, 상기 발현 생성물(들)의 발현도가 면역조직화학에 의해 결정되는 것인 방법.The method of claim 2, wherein the expression level of said expression product (s) is determined by immunohistochemistry. 제2항에 있어서, 상기 발현 생성물(들)의 발현도가 프로테오믹스(proteomics) 기술에 의해 결정되는 것인 방법.The method of claim 2, wherein the expression level of said expression product (s) is determined by proteomics techniques. 제2항에 있어서, 상기 예후 RNA 전사체 또는 이들의 발현 생성물의 측정을 위한 검정시험이 키트(들)의 형태로 제공되는 것인 방법.The method of claim 2, wherein the assay for measuring the prognostic RNA transcript or expression product thereof is provided in the form of kit (s). 제1항에 있어서, 상기 예후 전사체가 인트론-기재 서열을 포함하고, 이 인트론-기재 서열의 발현은 대응하는 엑손 서열의 발현과 상관관계가 있는 것인 방법.The method of claim 1, wherein the prognostic transcript comprises an intron-based sequence and the expression of the intron-based sequence correlates with the expression of a corresponding exon sequence. TBP; ILT.2; ABCC5; CD18; GATA3; DICER1; MSH3; GBP1; IRS1; CD3z; fasl; TUBB; BAD; ERCC1; MCM6; PR; APC; GGPS1; KRT18; ESRRG; E2F1; AKT2; 에이.카테닌; CEGP1; NPD009; MAPK14; RUNX1; ID2; 쥐.카테닌; FBXO5; FHIT; MTA1; ERBB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; CDC20; STAT3; ERK1; HLA.DPB1; SGCB; CGA; DHPS; MGMT; CRIP2; MMP12; ErbB3; RAP1GDS1; CDC25B; IL6; CCND1; CYBA; PRKCD; DR4; 헵신; CRABP1; AK055699; 콘티그.51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; ZNF38; MCM2; GBP2; SEMA3F; CD31; COL1A1; ER2; BAG1; AKT1; COL1A2; STAT1; Wnt.5a; PTPD1; RAB6C; TK1, ErbB2, CCNB1, BIRC5, STK6, MKI67, MYBL2, MMP11, CTSL2, CD68, GSTM1, BCL2, ESR1 유전자 중 복수종에 혼성화되는 폴리뉴클레오티드를 포함하는 어레이. TBP; ILT.2; ABCC5; CD18; GATA3; DICER1; MSH3; GBP1; IRS1; CD3z; fasl; TUBB; BAD; ERCC1; MCM6; PR; APC; GGPS1; KRT18; ESRRG; E2F1; AKT2; A. catenin; CEGP1; NPD009; MAPK14; RUNX1; ID2; Rat.catenin; FBXO5; FHIT; MTA1; ERBB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; CDC20; STAT3; ERK1; HLA.DPB1; SGCB; CGA; DHPS; MGMT; CRIP2; MMP12; ErbB3; RAP1GDS1; CDC25B; IL6; CCND1; CYBA; PRKCD; DR4; Heptin; CRABP1; AK055699; Contig. 51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; ZNF38; MCM2; GBP2; SEMA3F; CD31; COL1A1; ER2; BAG1; AKT1; COL1A2; STAT1; Wnt. 5a; PTPD1; RAB6C; An array comprising polynucleotides hybridizing to multiple species of TK1, ErbB2, CCNB1, BIRC5, STK6, MKI67, MYBL2, MMP11, CTSL2, CD68, GSTM1, BCL2, ESR1 genes. 제30항에 있어서, TBP; ILT.2; ABCC5; CD18; GATA3; DICER1; MSH3; GBP1; IRS1; CD3z; fasl; TUBB; BAD; ERCC1; MCM6; PR; APC; GGPS1; KRT18; ESRRG; E2F1; AKT2; 에이.카테닌; CEGP1; NPD009; MAPK14; RUNX1; ID2; 쥐.카테닌; FBXO5; FHIT; MTA1; ERBB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; CDC20; STAT3; ERK1; HLA.DPB1; SGCB; CGA; DHPS; MGMT; CRIP2; MMP12; ErbB3; RAP1GDS1; CDC25B; IL6; CCND1; CYBA; PRKCD; DR4; 헵신; CRABP1; AK055699; 콘티그.51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; ZNF38; MCM2; GBP2; SEMA3F; CD31; COL1A1; ER2; BAG1; AKT1; COL1A2; STAT1; Wnt.5a; PTPD1; RAB6C; TK1 유전자 중 복수종에 혼성화되는 폴리뉴클레오티드를 포함하는 어레이.31. The method of claim 30, further comprising: TBP; ILT.2; ABCC5; CD18; GATA3; DICER1; MSH3; GBP1; IRS1; CD3z; fasl; TUBB; BAD; ERCC1; MCM6; PR; APC; GGPS1; KRT18; ESRRG; E2F1; AKT2; A. catenin; CEGP1; NPD009; MAPK14; RUNX1; ID2; Rat.catenin; FBXO5; FHIT; MTA1; ERBB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; CDC20; STAT3; ERK1; HLA.DPB1; SGCB; CGA; DHPS; MGMT; CRIP2; MMP12; ErbB3; RAP1GDS1; CDC25B; IL6; CCND1; CYBA; PRKCD; DR4; Heptin; CRABP1; AK055699; Contig. 51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; ZNF38; MCM2; GBP2; SEMA3F; CD31; COL1A1; ER2; BAG1; AKT1; COL1A2; STAT1; Wnt. 5a; PTPD1; RAB6C; An array comprising polynucleotides that hybridize to multiple species of the TK1 gene. 제30항에 있어서, ILT.2; CD18; GBP1; CD3z; fasl; MCM6; E2F1; ID2; FBXO5; CDC20; HLA.DPB1; CGA; MMP12; CDC25B; IL6; CYBA; DR4; CRABP1; 콘티그.51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; MCM2; GBP2; CD31; ER2; STAT1; TK1; ERBB2, CCNB1, BIRC5, STK6, MKI67, MYBL2, MMP11, CTSL2 및 CD68 유전자 중 복수종에 혼성화되는 폴리뉴클레오티드를 포함하는 어레이.31. The method of claim 30 further comprising: ILT.2; CD18; GBP1; CD3z; fasl; MCM6; E2F1; ID2; FBXO5; CDC20; HLA.DPB1; CGA; MMP12; CDC25B; IL6; CYBA; DR4; CRABP1; Contig. 51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; MCM2; GBP2; CD31; ER2; STAT1; TK1; An array comprising polynucleotides that hybridize to multiple species of the ERBB2, CCNB1, BIRC5, STK6, MKI67, MYBL2, MMP11, CTSL2, and CD68 genes. 제30항에 있어서, ILT.2; CD18; GBP1; CD3z; fasl; MCM6; E2F1; ID2; FBXO5; CDC20; HLA.DPB1; CGA; MMP12; CDC25B; IL6; CYBA; DR4; CRABP1; 콘티그.51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; MCM2; GBP2; CD31; ER2; STAT1; TK1 유전자 중 복수종에 혼성화되는 폴리뉴클레오티드를 포함하는 어레이.31. The method of claim 30 further comprising: ILT.2; CD18; GBP1; CD3z; fasl; MCM6; E2F1; ID2; FBXO5; CDC20; HLA.DPB1; CGA; MMP12; CDC25B; IL6; CYBA; DR4; CRABP1; Contig. 51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; MCM2; GBP2; CD31; ER2; STAT1; An array comprising polynucleotides that hybridize to multiple species of the TK1 gene. 제30항에 있어서, TBP; ABCC5; GATA3; DICER1; MSH3; IRS1; TUBB; BAD; ERCC1; PR; APC; GGPS1; KRT18; ESRRG; AKT2; 에이.카테닌; CEGP1; NPD009; MAPK14; RUNX1; 쥐.카테닌; FHIT; MTA1; ErbB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; STAT3; ERK1; SGCB; DHPS; MGMT; CRIP2; ErbB3; RAP1GDS1; CCND1; PRKCD; 헵신; AK055699; ZNF38; SEMA3F; COL1A1; BAG1; AKT1; COL1A2; Wnt.5a; PTPD1; RAB6C; GSTM1, BCL2, ESR1 유전자 중 복수종에 혼성화되는 폴리뉴클레오티드를 포함하는 어레이.31. The method of claim 30, further comprising: TBP; ABCC5; GATA3; DICER1; MSH3; IRS1; TUBB; BAD; ERCC1; PR; APC; GGPS1; KRT18; ESRRG; AKT2; A. catenin; CEGP1; NPD009; MAPK14; RUNX1; Rat.catenin; FHIT; MTA1; ErbB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; STAT3; ERK1; SGCB; DHPS; MGMT; CRIP2; ErbB3; RAP1GDS1; CCND1; PRKCD; Heptin; AK055699; ZNF38; SEMA3F; COL1A1; BAG1; AKT1; COL1A2; Wnt. 5a; PTPD1; RAB6C; An array comprising polynucleotides that hybridize to multiple species of the GSTM1, BCL2, ESR1 genes. 제30항에 있어서, TBP; ABCC5; GATA3; DICER1; MSH3; IRS1; TUBB; BAD; ERCC1; PR; APC; GGPS1; KRT18; ESRRG; AKT2; 에이.카테닌; CEGP1; NPD009; MAPK14; RUNX1; 쥐.카테닌; FHIT; MTA1; ErbB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; STAT3; ERK1; SGCB; DHPS; MGMT; CRIP2; ErbB3; RAP1GDS1; CCND1; PRKCD; 헵신; AK055699; ZNF38; SEMA3F; COL1A1; BAG1; AKT1; COL1A2; Wnt.5a; PTPD1; RAB6C 유전자 중 복수종에 혼성화되는 폴리뉴클레오티드를 포함하는 어레이.31. The method of claim 30, further comprising: TBP; ABCC5; GATA3; DICER1; MSH3; IRS1; TUBB; BAD; ERCC1; PR; APC; GGPS1; KRT18; ESRRG; AKT2; A. catenin; CEGP1; NPD009; MAPK14; RUNX1; Rat.catenin; FHIT; MTA1; ErbB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; STAT3; ERK1; SGCB; DHPS; MGMT; CRIP2; ErbB3; RAP1GDS1; CCND1; PRKCD; Heptin; AK055699; ZNF38; SEMA3F; COL1A1; BAG1; AKT1; COL1A2; Wnt. 5a; PTPD1; An array comprising polynucleotides that hybridize to multiple species of the RAB6C gene. 제30항에 있어서, 상기 폴리뉴클레오티드를 5종 이상 포함하는 어레이.31. The array of claim 30, comprising at least five of said polynucleotides. 제30항에 있어서, 상기 폴리뉴클레오티드를 10종 이상 포함하는 어레이.31. The array of claim 30, comprising at least 10 of said polynucleotides. 제30항에 있어서, 상기 폴리뉴클레오티드를 15종 이상 포함하는 어레이.31. The array of claim 30, comprising at least 15 of said polynucleotides. 제30항에 있어서, 상기 유전자 모두에 혼성화되는 폴리뉴클레오티드를 포함하는 어레이.The array of claim 30 comprising polynucleotides that hybridize to all of the genes. 제30항에 있어서, 동일 유전자에 혼성화되는 1종 초과의 폴리뉴클레오티드를 포함하는 어레이.The array of claim 30 comprising more than one polynucleotide hybridized to the same gene. 제30항에 있어서, 상기 폴리뉴클레오티드 중 적어도 하나가 인트론-기재 서열을 포함하고, 이 인트론-기재 서열의 발현은 대응하는 엑손 서열의 발현과 상관관계가 있는 어레이.The array of claim 30, wherein at least one of the polynucleotides comprises an intron-based sequence, wherein expression of the intron-based sequence correlates with expression of the corresponding exon sequence. 제30항 내지 제41항 중 어느 한 항에 있어서, 상기 폴리뉴클레오티드가 cDNA인 어레이.42. The array of any one of claims 30-41, wherein said polynucleotide is cDNA. 제30항 내지 제41항 중 어느 한 항에 있어서, 상기 폴리뉴클레오티드가 올리고뉴클레오티드인 어레이.42. The array of any one of claims 30 to 41 wherein said polynucleotide is an oligonucleotide. (a) 개인화된 게놈 프로파일을 작성할 환자로부터 얻은 암 세포에서 TBP; ILT.2; ABCC5; CD18; GATA3; DICER1; MSH3; GBP1; IRS1; CD3z; fasl; TUBB; BAD; ERCC1; MCM6; PR; APC; GGPS1; KRT18; ESRRG; E2F1; AKT2; 에이.카테닌; CEGP1; NPD009; MAPK14; RUNXI; ID2; 쥐.카테닌; FBXO5; FHIT; MTA1; ERBB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; CDC20; STAT3; ERK1; HLA.DPB1; SGCB; CGA; DHPS; MGMT; CRIP2; MMP12; ErbB3; RAP1GDS1; CDC25B; IL6; CCND1; CYBA; PRKCD; DR4; 헵신; CRABP1; AK055699; 콘티그.51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; ZNF38; MCM2; GBP2; SEMA3F; CD31; COL1A1; ER2; BAG1; AKT1; COL1A2; STAT1; Wnt.5a; PTPD1; RAB6C; TK1, ErbB2, CCNB1, BIRC5, STK6, MKI67, MYBL2, MMP11, CTSL2, CD68, GSTM1, BCL2, ESR1로 이루어진 군으로부터 선택된 유전자 또는 유전자 세트의 RNA 전사체 또는 발현 생성물의 표준화 발현도를 결정하는 단계; 및(a) TBP in cancer cells obtained from patients to create a personalized genomic profile; ILT.2; ABCC5; CD18; GATA3; DICER1; MSH3; GBP1; IRS1; CD3z; fasl; TUBB; BAD; ERCC1; MCM6; PR; APC; GGPS1; KRT18; ESRRG; E2F1; AKT2; A. catenin; CEGP1; NPD009; MAPK14; RUNXI; ID2; Rat.catenin; FBXO5; FHIT; MTA1; ERBB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; CDC20; STAT3; ERK1; HLA.DPB1; SGCB; CGA; DHPS; MGMT; CRIP2; MMP12; ErbB3; RAP1GDS1; CDC25B; IL6; CCND1; CYBA; PRKCD; DR4; Heptin; CRABP1; AK055699; Contig. 51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; ZNF38; MCM2; GBP2; SEMA3F; CD31; COL1A1; ER2; BAG1; AKT1; COL1A2; STAT1; Wnt. 5a; PTPD1; RAB6C; Determining normalized expression of an RNA transcript or expression product of a gene or gene set selected from the group consisting of TK1, ErbB2, CCNB1, BIRC5, STK6, MKI67, MYBL2, MMP11, CTSL2, CD68, GSTM1, BCL2, ESR1; And (b) 상기 유전자 발현 분석에 의해 얻어진 데이터를 요약한 보고서를 만드는 단계(b) generating a report summarizing the data obtained by the gene expression analysis 를 포함하는, 환자에 대해 개인화된 게놈 프로파일의 제작 방법.A method of making a personalized genomic profile for a patient, comprising. 제44항에 있어서, 상기 암 세포가 충실성 종양으로부터 얻어진 것인 방법.45. The method of claim 44, wherein said cancer cell is obtained from a solid tumor. 제45항에 있어서, 상기 충실성 종양이 유방암, 난소암, 위암, 결장암, 췌장암, 전립선암 및 폐암으로 이루어진 군으로부터 선택된 것인 방법.46. The method of claim 45, wherein the solid tumor is selected from the group consisting of breast cancer, ovarian cancer, gastric cancer, colon cancer, pancreatic cancer, prostate cancer and lung cancer. 제45항에 있어서, 상기 암 세포가 상기 종양을 고정시켜 파라핀에 매립한 생검 샘플로부터 얻어진 것인 방법.46. The method of claim 45, wherein said cancer cells are obtained from a biopsy sample immobilized in paraffin by immobilizing said tumor. 제47항에 있어서, 상기 RNA가 단편화된 것인 방법.48. The method of claim 47, wherein said RNA is fragmented. 제45항에 있어서, 상기 보고서가 상기 환자를 위한 치료 기법에 대한 추천을 포함하는 것인 방법.46. The method of claim 45, wherein said report comprises a recommendation for a treatment technique for said patient. 제45항에 있어서, ILT.2; CD18; GBP1; CD3z; fasl; MCM6; E2F1; ID2; FBXO5; CDC20; HLA.DPB1; CGA; MMP12; CDC25B; IL6; CYBA; DR4; CRABP1; 콘티그.51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; MCM2; GBP2; CD31; ER2; STAT1; TK1; ERBB2, CCNB1, BIRC5, STK6, MKI67, MYBL2, MMP11, CTSL2 및 CD68; 또는 상응하는 발현 생성물 중 1종 이상의 발현이 증가된 것으로 측정된 경우, 상기 보고서가 상기 대상체는 화학요법에 대한 반응이 증가될 가능성을 갖는다는 예측을 포함하는 것인 방법.46. The method of claim 45 further comprising: ILT.2; CD18; GBP1; CD3z; fasl; MCM6; E2F1; ID2; FBXO5; CDC20; HLA.DPB1; CGA; MMP12; CDC25B; IL6; CYBA; DR4; CRABP1; Contig. 51037; VCAM1; FYN; GRB7; AKAP.2; RASSF1; MCP1; MCM2; GBP2; CD31; ER2; STAT1; TK1; ERBB2, CCNB1, BIRC5, STK6, MKI67, MYBL2, MMP11, CTSL2 and CD68; Or if the expression of one or more of the corresponding expression products is determined to be increased, the report includes a prediction that the subject has an increased likelihood of increased response to chemotherapy. 제50항에 있어서, 상기 환자에게 화학요법제를 처치하는 단계를 추가로 포함하는 것인 방법.51. The method of claim 50, further comprising treating the patient with a chemotherapeutic agent. 제51항에 있어서, 상기 환자가 보조항암 화학요법을 받는 것인 방법.The method of claim 51, wherein the patient is receiving adjuvant chemotherapy. 제51항에 있어서, 상기 환자가 신보조항암 화학요법을 받는 것인 방법.The method of claim 51, wherein the patient is receiving neoadjuvant cancer chemotherapy. 제53항에 있어서, 상기 신보조항암 화학요법이 탁산 유도체의 투여를 포함하는 것인 방법.The method of claim 53, wherein the neoadjuvant cancer chemotherapy comprises administration of a taxane derivative. 제54항에 있어서, 상기 탁산이 도세탁셀 또는 파클리탁셀인 방법.55. The method of claim 54, wherein said taxane is docetaxel or paclitaxel. 제55항에 있어서, 상기 탁산이 도세탁셀인 방법.The method of claim 55, wherein the taxane is docetaxel. 제54항에 있어서, 상기 화학요법이 추가적인 항암제의 투여를 추가로 포함하는 것인 방법.The method of claim 54, wherein the chemotherapy further comprises administration of an additional anticancer agent. 제57항에 있어서, 상기 추가적인 항암제가 안트라시클린류 항암제의 구성원인 방법.58. The method of claim 57, wherein said additional anticancer agent is a member of anthracycline anticancer agent. 제57항에 있어서, 상기 추가적인 항암제가 독소루비신인 방법.58. The method of claim 57, wherein said additional anticancer agent is doxorubicin. 제57항에 있어서, 상기 항암제가 토포이소머라제 억제제인 방법.The method of claim 57, wherein the anticancer agent is a topoisomerase inhibitor. 제45항에 있어서, TBP; ABCC5; GATA3; DICER1; MSH3; IRS1; TUBB; BAD; ERCC1; PR; APC; GGPS1; KRT18; ESRRG; AKT2; 에이.카테닌; CEGP1; NPD009; MAPK14; RUNX1; 쥐.카테닌; FHIT; MTA1; ErbB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; STAT3; ERK1; SGCB; DHPS; MGMT; CRIP2; ErbB3; RAP1GDS1; CCND1; PRKCD; 헵신; AK055699; ZNF38; SEMA3F; COL1A1; BAG1; AKT1; COL1A2; Wnt.5a; PTPD1; RAB6C; GSTM1, BCL2, ESR1; 또는 상응하는 발현 생성물 중 1종 이상의 발현이 증가된 것으로 측정된 경우, 상기 보고서가 상기 대상체는 화학요법에 대한 반응이 감소될 가능성을 갖는다는 예측을 포함하는 것인 방법.46. The method of claim 45, further comprising: TBP; ABCC5; GATA3; DICER1; MSH3; IRS1; TUBB; BAD; ERCC1; PR; APC; GGPS1; KRT18; ESRRG; AKT2; A. catenin; CEGP1; NPD009; MAPK14; RUNX1; Rat.catenin; FHIT; MTA1; ErbB4; FUS; BBC3; IGF1R; CD9; TP53BP1; MUC1; IGFBP5; rhoC; RALBP1; STAT3; ERK1; SGCB; DHPS; MGMT; CRIP2; ErbB3; RAP1GDS1; CCND1; PRKCD; Heptin; AK055699; ZNF38; SEMA3F; COL1A1; BAG1; AKT1; COL1A2; Wnt. 5a; PTPD1; RAB6C; GSTM1, BCL2, ESR1; Or when the expression of one or more of the corresponding expression products is determined to be increased, the report comprises a prediction that the subject has a reduced likelihood of a response to chemotherapy. 제44항에 있어서, 상기 RNA 전사체가 인트론-기재 서열을 포함하고, 이 인트론-기재 서열의 발현은 대응하는 엑손 서열의 발현과 상관관계가 있는 것인 방법.45. The method of claim 44, wherein said RNA transcript comprises an intron-based sequence and wherein expression of said intron-based sequence correlates with expression of a corresponding exon sequence. (a) ACTB, BAG1, BCL2, CCNB1, CD68, SCUBE2, CTSL2, ESR1, GAPD, GRB7, GSTM1, GUSB, ERBB2, MKI67, MYBL2, PGR, RPLPO, STK6, MMP11, BIRC5, TFRC 유전자, 또는 이들의 발현 생성물의 RNA 전사체의 발현도를 결정하는 단계, 및(a) ACTB, BAG1, BCL2, CCNB1, CD68, SCUBE2, CTSL2, ESR1, GAPD, GRB7, GSTM1, GUSB, ERBB2, MKI67, MYBL2, PGR, RPLPO, STK6, MMP11, BIRC5, TFRC genes, or expressions thereof Determining the expression level of the RNA transcript of the product, and (b) 재발 스코어 (RS, Recurrence Score)를 계산하는 단계 (b) calculating a recurrence score (RS) 를 포함하는, 화학요법에 대한 환자의 반응 가능성 결정 방법.Comprising a method of determining the patient's response to chemotherapy. 제63항에 있어서, RS > 50을 갖는 환자가 화학요법에 대해 반응하기 쉬운 환자들의 상위 50 백분위수 내에 있는 것인 방법.64. The method of claim 63, wherein the patient with RS> 50 is in the top 50 percentiles of patients who are likely to respond to chemotherapy. 제63항에 있어서, RS < 35를 갖는 환자가 화학요법에 대해 반응하기 쉬운 환자들의 하위 50 백분위수 내에 있는 것인 방법.The method of claim 63, wherein the patient with RS <35 is in the lower 50 percentile of patients prone to respond to chemotherapy. 제63항에 있어서, RS가, 66. The method of claim 63, wherein RS is (i) 성장 인자 서브세트(subset): GRB7 및 HER2; (i) growth factor subsets: GRB7 and HER2; (ii) 에스트로겐 수용체 서브세트: ER, PR, Bcl2, 및 CEGP1; (ii) estrogen receptor subsets: ER, PR, Bcl2, and CEGP1; (iii) 증식 서브세트: SURV, Ki.67, MYBL2, CCNB1, 및 STK15; 및 (iii) proliferation subsets: SURV, Ki.67, MYBL2, CCNB1, and STK15; And (iv) 침윤 서브세트: CTSL2, 및 STMY3(iv) infiltration subsets: CTSL2, and STMY3 (이때, 서브세트 (i) 내지 (iv) 중 임의의 것의 유전자는 상기 종양 내에서 상기 유전자와 동시발현되고 피어슨(Pearson) 상관 계수 ≥ 0.40인 대체 유전자로 치환될 수 있음)의 유전자 서브세트를 생성하고; Wherein a gene of any of subsets (i) to (iv) can be coexpressed with the gene in the tumor and substituted with a replacement gene having a Pearson correlation coefficient ≥ 0.40 Generate; 서브세트 (i) 내지 (iv) 각각의 유방암 재발에 대한 기여도를 가중(weighting)하여 상기 대상체의 재발 스코어 (RS)를 계산함으로써 정해지는 것인 방법.Subsets (i) to (iv) are determined by weighting the contribution to each breast cancer recurrence to calculate the recurrence score (RS) of the subject. 제66항에 있어서, CD68, GSTM1 및 BAG1 또는 이들의 발현 생성물, 또는 대응하는 대체 유전자 또는 이들의 발현 생성물의 RNA 전사체를 측정하고, 상기 유전자 또는 대체 유전자의 유방암 재발에 대한 기여도를 RS 계산에 포함시키는 단계를 추가로 포함하는 것인 방법.67. The method of claim 66, wherein the RNA transcripts of CD68, GSTM1 and BAG1 or expression products thereof, or corresponding replacement genes or expression products thereof are measured and the contribution of the gene or replacement gene to breast cancer recurrence is calculated in RS calculation. Further comprising the step of including. 제66항에 있어서, RS가 하기 식을 이용하여 정해지는 것인 방법:67. The method of claim 66, wherein RS is determined using the formula: RS = (0.23 내지 0.70)×GRB7 축 역치 - (0.17 내지 0.55)×ER 축 + (0.52 내지 1.56)×증식 축 역치 + (0.07 내지 0.21)×침윤 축 + (0.03 내지 0.15)×CD68 - (0.04 내지 0.25)×GSTM1 - (0.05 내지 0.22)×BAG1RS = (0.23 to 0.70) x GRB7 axis threshold-(0.17 to 0.55) x ER axis + (0.52 to 1.56) x growth axis threshold + (0.07 to 0.21) x infiltration axis + (0.03 to 0.15) x CD68-(0.04 To 0.25) x GSTM1-(0.05 to 0.22) x BAG1 [상기 식에서,[Wherein, (i) GRB7 축 = (0.45 내지 1.35)×GRB7 + (0.05 내지 0.15)×HER2이고; (i) GRB7 axis = (0.45-1.35) × GRB7 + (0.05-0.15) × HER2; (ii) GRB7 축 < -2이면, GRB7 축 역치 = -2이고, (ii) if the GRB7 axis <-2, then the GRB7 axis threshold = -2, GRB7 축 ≥ -2이면, GRB7 축 역치 = GRB7 축이고;      If the GRB7 axis> -2, then the GRB7 axis threshold = GRB7 axis; (iii) ER 축 = (Est1 + PR + Bcl2 + CEGP1)/4이고; (iii) the ER axis = (Est1 + PR + Bcl2 + CEGP1) / 4; (iv) 증식 축 = (SURV + Ki.67 + MYBL2 + CCNB1+ STK15)/5이고; (iv) axis of proliferation = (SURV + Ki.67 + MYBL2 + CCNB1 + STK15) / 5; (v) 증식 축 < -3.5이면, 증식 축 역치 = -3.5이고,(v) if propagation axis <-3.5, propagation axis threshold = -3.5, 증식 축 ≥ -3.5이면, 증식 축 역치 = 증식 축이고;    If propagation axis ≧ −3.5, then propagation axis threshold = proliferation axis; (vi) 침윤 축 = (CTSL2 + STMY3)/2이며, (vi) infiltration axis = (CTSL2 + STMY3) / 2, 여기서, (iii), (iv) 및 (vi) 내의 유전자들의 개별 기여도는 0.5 내지 1.5 의 계수로 가중되고, 보다 높은 RS는 유방암의 재발 가능성 증가를 나타냄].Wherein individual contributions of the genes in (iii), (iv) and (vi) are weighted with a coefficient between 0.5 and 1.5, with higher RS indicating an increased likelihood of recurrence of breast cancer. 제66항에 있어서, RS가 하기 식을 이용하여 정해지는 것인 방법:67. The method of claim 66, wherein RS is determined using the formula: RS (범위, 0 내지 100) = + 0.47×HER2군 스코어RS (range, 0-100) = + 0.47 × HER2 group score - 0.34×ER군 스코어                        -0.34 × ER group score + 1.04×증식군 스코어                        + 1.04 × Growth Score + 0.10×침윤군 스코어                        + 0.10 × infiltration group score + 0.05×CD68                         + 0.05 × CD68 - 0.08×GSTM1                         0.08 × GSTM1 - 0.07×BAG1.                        0.07 x BAG1. 제63항에 있어서, 상기 RNA 전사체가 인트론-기재 서열을 포함하고, 이 인트론-기재 서열의 발현은 대응하는 엑손 서열의 발현과 상관관계가 있는 것인 방법.64. The method of claim 63, wherein the RNA transcript comprises an intron-based sequence and the expression of the intron-based sequence correlates with the expression of the corresponding exon sequence.
KR1020067023413A 2004-04-09 2005-04-07 Gene Expression Markers for Predicting Response to Chemotherapy KR20070022694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020067023413A KR20070022694A (en) 2004-04-09 2005-04-07 Gene Expression Markers for Predicting Response to Chemotherapy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US60/561.035 2004-04-09
KR1020067023413A KR20070022694A (en) 2004-04-09 2005-04-07 Gene Expression Markers for Predicting Response to Chemotherapy

Publications (1)

Publication Number Publication Date
KR20070022694A true KR20070022694A (en) 2007-02-27

Family

ID=43654320

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020067023413A KR20070022694A (en) 2004-04-09 2005-04-07 Gene Expression Markers for Predicting Response to Chemotherapy

Country Status (1)

Country Link
KR (1) KR20070022694A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100839585B1 (en) * 2007-04-10 2008-06-19 조선대학교산학협력단 Detection of anticancer drugs resistance genes using multiplex pcr and detection kit using thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100839585B1 (en) * 2007-04-10 2008-06-19 조선대학교산학협력단 Detection of anticancer drugs resistance genes using multiplex pcr and detection kit using thereof

Similar Documents

Publication Publication Date Title
US10619215B2 (en) Prediction of likelihood of cancer recurrence
JP6190434B2 (en) Gene expression markers to predict response to chemotherapeutic agents
AU2004248120B2 (en) Gene expression markers for predicting response to chemotherapy
AU2011204944B2 (en) Gene expression markers for predicting response to chemotherapy
KR20070022694A (en) Gene Expression Markers for Predicting Response to Chemotherapy
AU2016210735B2 (en) Gene expression markers for predicting response to chemotherapy
AU2019261715A1 (en) Prediction of likelihood of cancer recurrence

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination