KR20040000584A - Structure for reducing suctionloss of enclosed compressor - Google Patents

Structure for reducing suctionloss of enclosed compressor Download PDF

Info

Publication number
KR20040000584A
KR20040000584A KR1020020035075A KR20020035075A KR20040000584A KR 20040000584 A KR20040000584 A KR 20040000584A KR 1020020035075 A KR1020020035075 A KR 1020020035075A KR 20020035075 A KR20020035075 A KR 20020035075A KR 20040000584 A KR20040000584 A KR 20040000584A
Authority
KR
South Korea
Prior art keywords
inlet
cylinder assembly
hermetic compressor
space
partition plate
Prior art date
Application number
KR1020020035075A
Other languages
Korean (ko)
Inventor
안병하
이근형
안재우
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020020035075A priority Critical patent/KR20040000584A/en
Publication of KR20040000584A publication Critical patent/KR20040000584A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3568Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member with axially movable vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric

Abstract

PURPOSE: A structure for reducing suction loss of a hermetic compressor is provided to eliminate or minimize time in which an inlet is covered by a partition. CONSTITUTION: A hermetic compressor includes a cylinder assembly having an inner space(V) so that an inlet(11) and an outlet are connected with each other; a partition dividing the inner space into a plurality of hermetic spaces having a pair of the inlet and the outlet of the cylinder assembly, and rotated relatively to the cylinder assembly to move fluid in each of the hermetic spaces; and vanes slid into the cylinder assembly in axial direction to linearly move relatively to the partition to cut off movement of fluid in each of the hermetic spaces. A gas guiding groove(12) is formed near the inlet to be connected with the inlet so as to guide fluid passing the inlet to be smoothly introduced into the hermetic spaces of the cylinder assembly even when a part of the inlet is covered by the partition.

Description

밀폐형 압축기의 흡입손실 저감구조{STRUCTURE FOR REDUCING SUCTIONLOSS OF ENCLOSED COMPRESSOR}Suction loss reduction structure of hermetic compressor {STRUCTURE FOR REDUCING SUCTIONLOSS OF ENCLOSED COMPRESSOR}

본 발명은 복수 개의 베인을 구비하는 베인식 압축기에 관한 것으로, 특히 흡입구 주변에 가스안내홈을 형성하여 흡입가스가 원활하게 유입되도록 한 밀폐형 압축기의 흡입손실 저감구조에 관한 것이다.The present invention relates to a vane compressor having a plurality of vanes, and more particularly, to a suction loss reduction structure of a hermetic compressor, in which a gas guide groove is formed around a suction port so that suction gas flows smoothly.

일반적으로 베인식 압축기는 회전체에 베인을 압접시켜 실린더의 내부공간을 흡입영역과 압축영역으로 구획한 상태에서 회전체를 회전하여 상기 흡입영역과 압축영역을 서로 연속적으로 바꾸면서 유체를 흡입 압축 토출하도록 하는 것이다.In general, the vane compressor presses a vane to a rotating body to rotate the rotating body in a state in which the inner space of the cylinder is divided into a suction area and a compression area so that the fluid is sucked and compressed while continuously changing the suction area and the compression area. It is.

도 1은 종래 베인식 밀폐형 압축기의 일례를 보인 종단면도이다.1 is a longitudinal sectional view showing an example of a conventional vane-type hermetic compressor.

이에 도시한 바와 같이 종래의 베인식 밀폐형 압축기는, 케이싱(1)의 내측 상부에 동력을 발생하도록 설치하는 고정자(Ms)와 회전자(Mr)로 된 전동기구부와, 전동기구부의 하부에 회전자(Mr)와 연결하여 유체를 흡입 압축 토출하도록 설치하는 압축기구부로 구성하고 있다.As shown in the drawing, a conventional vane hermetic compressor includes an electric mechanism part including a stator (Ms) and a rotor (Mr) installed so as to generate power in the upper portion of the casing (1), and a rotor under the electric mechanism part. It is composed of a compressor mechanism that is connected to (Mr) and is installed to suck and discharge the fluid.

압축기구부는 냉매가스를 흡입 압축하기 위한 내부공간(V)을 구비하여 케이싱(1)의 하반부에 고정하는 실린더(2)와, 실린더(2)의 상면과 하면에 각각 체결하여 함께 실린더조립체를 형성하는 상부베어링플레이트(3A) 및 하부베어링플레이트(3B)와, 전동기구부의 회전자(Mr)에 결합하는 동시에 각각의 베어링 플레이트(3A,3B)에 관통 결합하여 전동기구부의 동력을 압축기구부에 전달하는 회전축(4)과, 회전축(4)에 결합하거나 또는 일체로 성형하여 실린더(2)의 내부공간(V)을 제1 공간(S1) 및 제2 공간(S2)으로 구획하기 위하여 상하 양 측면에 각각 절곡점을 가지도록 정현파 모양으로 형성하는 구획판(5)과, 구획판(5)의 양면에 각각 하단 및 상단을 접촉하여 회전축(4)의 회전시 각각의 공간(S1)(S2)을 흡입영역 및 압축영역으로 구획하는 제1 베인(6A) 및 제2 베인(6B)과, 각 베인(6A)(6B)을 탄력 지지하는 제1 스프링 조립체(7A) 및 제2 스프링 조립체(7B)와, 상부베어링플레이트(3A)와 하부베어링플레이트(3B)의 외곽면에 설치하여 각 공간(S1)(S2)에서 토출하는 압축가스를 토출소음을 감쇠하는 상부머플러(8A) 및 하부머플러(8B)를 포함하고 있다.The compression mechanism has an internal space (V) for sucking and compressing refrigerant gas, and the cylinder (2) is fixed to the lower half of the casing (1) and the upper and lower surfaces of the cylinder (2), respectively, to form a cylinder assembly together. It is coupled to the upper bearing plate (3A) and the lower bearing plate (3B) and the rotor (Mr) of the power mechanism part to pass through the respective bearing plates (3A, 3B) to transmit the power of the power mechanism part to the compressor sphere. The upper and lower sides of the rotary shaft 4 and the rotary shaft 4 to be coupled to or integrally molded to partition the internal space V of the cylinder 2 into the first space S1 and the second space S2. The partition plate 5 formed in a sinusoidal shape so as to have a bend point at each of the spaces, and the respective spaces S1 and S2 during the rotation of the rotary shaft 4 by contacting the lower and upper ends respectively on both sides of the partition plate 5. First vane 6A and second vane 6B, which partitions the The first spring assembly 7A and the second spring assembly 7B, which elastically support the vanes 6A and 6B, are installed on the outer surfaces of the upper bearing plate 3A and the lower bearing plate 3B, respectively. An upper muffler 8A and a lower muffler 8B are included to attenuate the discharge noise of the compressed gas discharged from the spaces S1 and S2.

실린더(2)는 그 중앙부에 구획판(5)에 의해 제1 공간(S1)과 제2 공간(S2)으로 나뉘는 내부공간(V)을 원형으로 형성하고, 일 측에는 실린더(2)의 외주면에서 내부공간(V)의 내주면까지 길게 관통하여 흡입가스를 상기한 내부공간(V)으로 유도하는 흡입구(2a)를 형성하고 있다.The cylinder 2 has a circular shape in the center of the inner space (V) divided into the first space (S1) and the second space (S2) by a partition plate 5, on one side at the outer peripheral surface of the cylinder (2) A suction port 2a is formed to penetrate to the inner circumferential surface of the inner space V to guide the suction gas to the inner space V.

흡입구(2a)는 도 2 및 도 3에서와 같이 제1 공간(S1)과 제2 공간(S2)에 함께 연통할 수 있도록 단수 개로 형성하거나 또는 도면으로 제시하지는 않았지만 각 공간(S1)(S2)이 독립적으로 연통할 수 있도록 복수 개를 형성할 수도 있다.As shown in FIGS. 2 and 3, the inlet port 2a is formed in a singular number so as to communicate with the first space S1 and the second space S2 together, but is not shown in the drawings, but each space S1 (S2) Plural pieces may be formed so as to communicate with each other independently.

도면중 미설명 부호인 SP는 흡입관이다.SP, which is not described in the drawings, is a suction pipe.

상기와 같은 종래 압축기는 다음과 같이 동작한다.The conventional compressor as described above operates as follows.

즉, 전동기구부에 전원을 인가하여 회전자(Mr)가 회전하면, 회전자(Mr)에 결합한 회전축(4)이 구획판(5)에 회전력을 전달하여 그 구획판(5)과 함께 어느 한 방향으로 회전하고, 구획판(5)의 상하 양 측면에 각각 접촉한 베인(6A,6B)이구획판(5)의 높낮이를 따라 상하 서로 반대방향으로 왕복하면서 제1 공간(S1)과 제2 공간(S2)의 용적이 가변하며, 이와 함께 한 개의 흡입구(2a)를 통해 제1 공간(S1) 및 제2 공간(S2)으로 새로운 유체를 동시에 흡입하였다가 압축하고, 이후 구획판(5)의 상사점 또는 하사점이 토출개시점에 도달하는 순간 각 공간(S1,S2)의 토출구(미도시)를 통해 압축된 유체를 번갈아 연속으로 토출하는 것이었다.That is, when the rotor (Mr) is rotated by applying power to the electric mechanism, the rotating shaft (4) coupled to the rotor (Mr) transmits the rotational force to the partition plate (5) and any of the partition plate (5) together with the partition plate (5). The vanes 6A, 6B, which rotate in the direction and respectively contact the upper and lower sides of the partition plate 5, reciprocate in the opposite direction from the upper and lower sides along the height of the partition plate 5, to the first space S1 and the second space. The volume of S2 is variable, and together with the suction port 2a, new fluid is simultaneously sucked into the first space S1 and the second space S2, then compressed, and thereafter, the partition plate 5 As soon as the top dead center or the bottom dead center reached the discharge start point, the compressed fluid was successively discharged alternately through the discharge ports (not shown) of the respective spaces S1 and S2.

그러나, 상기와 같은 종래의 밀폐형 압축기는 도 4에서와 같이, 구획판(5)은 그 상사점이 실린더(2)의 상단면 및 하단면에 선접촉(또는,면접촉)하는 반면 흡입구(2a)는 실린더(2)의 상단면과 하단면 사이에 일정 간격(t)을 두고 형성됨에 따라 구획판(5)의 상사점과 흡입구(2a)의 상사점 사이에는 간격이 발생하고 이로 인해 흡입구(2a)는 원주방향으로 일정 범위내에서 구획판(5)에 의해 가려져 제1 공간(S1)이나 또는 제2 공간(S2)과 연통하지 못하면서 냉매가스의 흡입이 일정 시간 동안 단절되는 문제점이 있었다.However, in the conventional hermetic compressor as described above, as shown in FIG. 4, the partition plate 5 has a top contact (or surface contact) with the top and bottom surfaces of the cylinder 2 while the suction port 2a is used. Is formed at a predetermined interval (t) between the upper and lower surfaces of the cylinder (2), the interval between the top dead center of the partition plate 5 and the top dead center of the inlet (2a) occurs, which causes the inlet (2a) ) Is blocked by the partition plate 5 within a predetermined range in the circumferential direction so that the suction of the refrigerant gas is disconnected for a predetermined time while not communicating with the first space S1 or the second space S2.

본 발명은 상기와 같은 종래 밀폐형 압축기가 가지는 문제점을 감안하여 안출한 것으로, 흡입구가 구획판에 의해 가려지는 시간을 제거하거나 최소화할 수 있는 밀폐형 압축기의 흡입손실 저감구조를 제공하려는데 본 발명의 목적이 있다.The present invention has been made in view of the problems of the conventional hermetic compressor as described above, and provides a suction loss reduction structure of the hermetic compressor that can eliminate or minimize the time that the inlet is covered by the partition plate. have.

도 1은 종래 밀폐형 압축기의 압축기구부를 보인 종단면도.1 is a longitudinal sectional view showing a compression mechanism of a conventional hermetic compressor.

도 2 및 도 3은 종래 밀폐형 압축기에서 실린더를 보인 사시도 및 평면도.2 and 3 are a perspective view and a plan view showing a cylinder in a conventional hermetic compressor.

도 4는 종래 밀폐형 압축기에서 흡입가스의 흐름을 보인 개략도.Figure 4 is a schematic diagram showing the flow of suction gas in the conventional hermetic compressor.

도 5 및 도 6은 본 발명 밀폐형 압축기에서 실린더를 보인 사시도 및 평면도.5 and 6 are a perspective view and a plan view showing a cylinder in the hermetic compressor of the present invention.

도 7은 본 발명 밀폐형 압축기에서 흡입가스의 흐름을 보인 개략도.Figure 7 is a schematic diagram showing the flow of suction gas in the hermetic compressor of the present invention.

도 8 및 도 9는 본 발명 밀폐형 압축기에서 실린더의 흡입구에 대한 변형예를 보인 각각의 요부 사시도.8 and 9 are each a perspective view of the main portion showing a modification to the inlet of the cylinder in the hermetic compressor of the present invention.

** 도면의 주요 부분에 대한 부호의 설명 **** Description of symbols for the main parts of the drawing **

5 : 구획판 10 : 실린더5: partition plate 10: cylinder

11 : 흡입구 12 : 가스안내홈11: suction port 12: gas guide groove

본 발명의 목적을 달성하기 위하여, 흡입구와 토출구가 서로 연통하도록 내부공간을 가지는 실린더조립체와, 실린더조립체의 흡입구와 토출구를 각각 한 쌍으로 가지도록 내부공간을 복수 개의 밀폐공간으로 구획하여 상기 실린더조립체에 대해상대회전운동을 하면서 각 밀폐공간내 유체를 이동시키는 구획판과, 구획판에 대해 상대직선운동을 하도록 상기 실린더조립체에 축방향으로 미끄러지게 결합하여 각 밀폐공간내 유체의 이동을 차단하는 베인을 포함한 밀폐형 압축기에 있어서, 실린더조립체의 흡입구 일부가 구획판에 의해 가려지더라도 그 흡입구를 통과하는 유체가 상기 실린더 조립체의 밀폐공간으로 원활하게 유입되도록 유도하는 가스안내홈을 상기한 흡입구 주변에 연결 형성하는 것을 특징으로 하는 밀폐형 압축기의 흡입손실 저감구조를 제공한다.In order to achieve the object of the present invention, the cylinder assembly having an inner space so that the inlet and the discharge port communicate with each other, and the cylinder assembly by partitioning the inner space into a plurality of closed spaces so as to have a pair of the inlet and the discharge port of the cylinder assembly, respectively. A partition plate for moving the fluid in each sealed space while making a relative rotational movement with respect to the vane, and a vane for slidably engaging the cylinder assembly axially so as to perform a relative linear motion with respect to the partition plate to block the movement of the fluid in each sealed space. In the hermetic compressor including: a gas guide groove for inducing a fluid flowing through the suction port smoothly into the sealed space of the cylinder assembly even though a part of the suction port of the cylinder assembly is covered by the partition plate, and connected to the vicinity of the suction port. Suction loss reduction of the hermetic compressor, characterized in that the forming Provide structure.

이하, 본 발명에 의한 밀폐형 압축기의 마찰손실 저감구조를 첨부도면에 도시한 일실시예에 의거하여 상세하게 설명한다.Hereinafter, the friction loss reduction structure of the hermetic compressor according to the present invention will be described in detail based on the embodiment shown in the accompanying drawings.

도 5 및 도 6은 본 발명 밀폐형 압축기에서 실린더를 보인 사시도 및 평면도이고, 도 7은 본 발명 밀폐형 압축기에서 흡입가스의 흐름을 보인 개략도이다.5 and 6 are a perspective view and a plan view showing a cylinder in the hermetic compressor of the present invention, Figure 7 is a schematic diagram showing the flow of suction gas in the hermetic compressor of the present invention.

이에 도시한 바와 같이 본 발명에 의한 밀폐형 압축기의 압축기구부는 도 1에서와 같이 유체를 흡입 압축하도록 밀폐된 내부공간(V)을 가지는 실린더조립체와, 실린더조립체의 내부공간(V)에 삽입 결합하여 그 실린더조립체의 내부공간(V)을 복수 개의 밀폐공간(S1)(S2)으로 구획하고 전동기구부의 회전력을 전달하는 회전축(4)에 일체 또는 후조립으로 결합하여 회전축(4)과 함께 회전하면서 냉매가스를 이동시키는 구획판(5)과, 구획판(5)의 상하 양측면에 압접하도록 실린더조립체에 삽입 결합하여 냉매가스의 이동을 차단함으로써 압축시키는 복수 개의 베인(6A)(6B)을 포함한다.As shown in FIG. 1, the compression mechanism of the hermetic compressor according to the present invention is inserted into and coupled to the cylinder assembly having the sealed inner space V and the inner space V of the cylinder assembly, as shown in FIG. 1. The inner space (V) of the cylinder assembly is partitioned into a plurality of sealed spaces (S1) (S2) and rotated together with the rotary shaft (4) by integrally or post-assembled to the rotary shaft (4) for transmitting the rotational force of the electric machine part. A partition plate 5 for moving the refrigerant gas, and a plurality of vanes 6A and 6B inserted into and coupled to the cylinder assembly to press-contact the upper and lower sides of the partition plate 5 to block the movement of the refrigerant gas. .

실린더조립체는 그 중앙에 내부공간(V)을 형성하고 상기한 밀폐공간(S1)(S2)에 함께 연통하도록 흡입구(11)를 가지는 실린더(10)와, 실린더(10)의 상하 양측 면에 결합하여 함께 내부공간(V)을 형성하고 각 밀폐공간(S1)(S2)에 연통하도록 토출구(미도시)를 구비함과 아울러 회전축(4)을 지지하는 상부베어링플레이트(3A) 및 하부베어링플레이트(3B)로 이루어진다.The cylinder assembly forms an inner space (V) at its center and is coupled to the cylinder (10) having a suction port (11) so as to communicate with the closed space (S1) (S2) together with the upper and lower sides of the cylinder (10). The upper bearing plate 3A and the lower bearing plate supporting the rotating shaft 4 and having a discharge port (not shown) so as to form an inner space V and communicate with each of the sealed spaces S1 and S2. 3B).

실린더는 도 5 및 도 6에서와 같이 환형으로 형성하고 그 일 측에 상기한 흡입구(11)를 외주면에서 내주면으로 관통하도록 형성하되, 흡입구(11)는 그 출구단인 실린더(10)의 내주면에 출구측 면적을 확장하기 위한 가스안내홈(12)을 형성한다.The cylinder is formed in an annular shape as shown in Figs. 5 and 6 and formed so that the suction port 11 penetrates from the outer circumferential surface to the inner circumferential surface on one side thereof, and the suction port 11 is formed on the inner circumferential surface of the cylinder 10, the outlet end thereof. A gas guide groove 12 is formed to expand the outlet side area.

가스안내홈(12)은 흡입구(11)의 직경과 동일한 폭을 가지고 축방향으로 수직하게 형성하는데, 이 경우 가스안내홈(12)의 폭과 깊이는 실린더(10)의 내경, 즉 각 밀폐공간(S1)(S2)의 체적에 비례하여 적절하게 조절하는 것이 바람직하다.The gas guide groove 12 has the same width as the diameter of the inlet 11 and is formed vertically in the axial direction. In this case, the width and depth of the gas guide groove 12 are the inner diameter of the cylinder 10, that is, each sealed space. It is preferable to adjust suitably in proportion to the volume of (S1) (S2).

또, 가스안내홈(12)은 도 8에서와 같이 흡입구(11)를 수용하여 실린더(10) 내주면의 원주방향으로 길게 형성할 수도 있고, 도 9에서와 같이 흡입구(11)를 수용하여 그 흡입구(11) 보다 넓게 환형으로 형성할 수도 있다.In addition, the gas guide groove 12 may be formed long in the circumferential direction of the inner circumferential surface of the cylinder 10 by receiving the inlet 11 as shown in Figure 8, the inlet 11 by receiving the inlet 11 as shown in FIG. It can also form in annular form more broadly than (11).

이러한 모든 경우에 흡입구(11)와 가스안내홈(12)이 서로 만나는 부위는 모따기 가공하여 실린더(10)의 내부공간쪽으로 갈수록 확장되도록 경사면(12a)을 형성하는 것이 냉매가스의 흡입을 원활하게 하는데 바람직하다.In all of these cases, the area where the inlet 11 and the gas guide groove 12 meet each other is chamfered to form an inclined surface 12a so as to extend toward the inner space of the cylinder 10 to smoothly suck the refrigerant gas. desirable.

도면중 종래와 동일한 부분에 대하여는 동일한 부호를 부여하였다.In the drawings, the same reference numerals are given to the same parts as in the prior art.

상기와 같은 본 발명 밀폐형 압축기의 흡입손실 저감구조는 다음과 같은 작용 효과가 있다.The suction loss reduction structure of the hermetic compressor of the present invention as described above has the following effects.

즉, 전동기구부에 전원을 인가하여 구획판(5)이 어느 한 방향으로 회전하면, 이와 함께 구획판(5)의 상하 양 측면에 각각 접촉한 제1베인(도 1에 도시)(6A)과 제2베인(도 1에 도시)(6B)이 구획판(5)을 따라 서로 반대쪽 축방향으로 상하 왕복하면서 실린더(10)의 제1 공간(S1)과 제2 공간(S2)으로 새로운 냉매가스를 연속으로 흡입 압축하였다가 각각의 토출구(미도시)를 통해 번갈아 토출하는 일련의 과정을 반복한다.In other words, when the partition plate 5 is rotated in either direction by applying power to the electric mechanism, the first vanes (shown in FIG. 1) 6A which are in contact with the upper and lower sides of the partition plate 5, respectively, and The second vane (shown in FIG. 1) 6B moves up and down in the axial direction opposite to each other along the partition plate 5 to form a new refrigerant gas into the first space S1 and the second space S2 of the cylinder 10. Is continuously compressed by suction and then alternately discharged through each discharge port (not shown).

여기서, 냉매가스는 각 밀폐공간(S1)(S2)의 체적변화에 따라 흡입구(10)를 통해 상기한 밀폐공간(S1)(S2)으로 연속하여 흡입되는데, 구획판(5)이 회전하는 중에 어느 시점에서는 흡입구(10)의 양쪽 끝단에 겹치도록 위치하여 일정 정도의 회전각도 동안 냉매가스의 흡입을 차단함에 따라 냉매가스의 흡입손실을 유발할 우려가 있으나, 도 7에서와 같이 냉매가스는 상기 구획판(5)에 의해 흡입구(11)의 정면쪽이 막히더라도 그 흡입구(11)의 출구측에 연결된 가스안내홈(12)을 따라 상하 양쪽이나 좌우 양쪽 또는 주변으로 빠져나가 구획판(5)의 상하 양쪽에 구비한 각각의 밀폐공간(S1)(S2)으로 흡입된다. 이에 따라 냉매가스는 구획판(5)의 회전각도에 관계없이 지속적으로 흡입되어 그만큼 냉매가스의 흡입손실을 줄일 수 있다.Here, the refrigerant gas is continuously sucked into the sealed space (S1) (S2) through the suction port 10 in accordance with the volume change of each sealed space (S1) (S2), while the partition plate (5) is rotating At some point, the suction port 10 may be overlapped with both ends of the suction port 10 to block the suction of the refrigerant gas for a predetermined rotation angle, thereby causing the suction loss of the refrigerant gas. However, as shown in FIG. Even if the front side of the inlet port 11 is blocked by the plate 5, the gas outlet groove 12 connected to the outlet side of the inlet port 11 exits up and down, left and right sides, or the periphery of the partition plate 5. It is sucked into the respective sealed spaces S1 and S2 provided on both the upper and lower sides. Accordingly, the refrigerant gas is continuously sucked regardless of the rotation angle of the partition plate 5, thereby reducing the suction loss of the refrigerant gas.

한편, 가스안내홈(12)을 도 8과 도 9에서와 같이 원주방향으로 길게 형성하거나 흡입구(11)의 직경 보다 크게 형성하더라도 그만큼 구획판(5)에 의해 밀폐공간이 닫히는 시간을 줄일 수 있어 냉매가스의 흡입손실을 줄일 수 있다.On the other hand, even if the gas guide groove 12 is formed long in the circumferential direction as shown in Figs. 8 and 9 or larger than the diameter of the suction port 11, the time for closing the closed space by the partition plate 5 can be reduced accordingly. The suction loss of the refrigerant gas can be reduced.

이렇게 하여 냉매가스가 각각의 흡입공간으로 연속하여 흡입됨에 따라 냉매가스가 원활하게 흡입되면서 흡입손실을 줄이고 이를 통해 압축기 효율을 높일 수 있다.In this way, as the refrigerant gas is continuously sucked into each suction space, the refrigerant gas is smoothly sucked, thereby reducing the suction loss and thereby increasing the compressor efficiency.

본 발명에 의한 밀폐형 압축기의 흡입손실 저감구조는, 실린더의 내주면에 흡입구와 연결되는 가스안내홈을 음각지게 형성함으로써, 구획판에 의해 흡입구의 일부가 막히더라도 냉매가스는 상기한 가스안내홈을 따라 각각의 밀폐공간으로 원활하게 유입되도록 하여 압축기의 흡입손실을 막고 이를 통해 압축기 효율을 높일 수 있다.In the suction loss reduction structure of the hermetic compressor according to the present invention, the gas guide groove connected to the suction port is engraved on the inner circumferential surface of the cylinder so that even if a part of the suction port is blocked by the partition plate, the refrigerant gas follows the gas guide groove. It is possible to smoothly flow into each sealed space to prevent the suction loss of the compressor and thereby increase the compressor efficiency.

Claims (5)

흡입구와 토출구가 서로 연통하도록 내부공간을 가지는 실린더조립체와, 실린더조립체의 흡입구와 토출구를 각각 한 쌍으로 가지도록 내부공간을 복수 개의 밀폐공간으로 구획하여 상기 실린더조립체에 대해 상대회전운동을 하면서 각 밀폐공간내 유체를 이동시키는 구획판과, 구획판에 대해 상대직선운동을 하도록 상기 실린더조립체에 축방향으로 미끄러지게 결합하여 각 밀폐공간내 유체의 이동을 차단하는 베인을 포함한 밀폐형 압축기에 있어서,A cylinder assembly having an inner space so that the inlet port and the outlet port communicate with each other, and the inner space is divided into a plurality of closed spaces so as to have a pair of the inlet port and the outlet port of the cylinder assembly, respectively, and the relative rotation movement with respect to the cylinder assembly is performed. In a hermetic compressor comprising a partition plate for moving a fluid in a space, and a vane slidingly axially coupled to the cylinder assembly to perform a relative linear movement with respect to the partition plate to block the movement of the fluid in each sealed space. 실린더조립체의 흡입구 일부가 구획판에 의해 가려지더라도 그 흡입구를 통과하는 유체가 상기 실린더 조립체의 밀폐공간으로 원활하게 유입되도록 유도하는 가스안내홈을 상기한 흡입구 주변에 연결 형성하는 것을 특징으로 하는 밀폐형 압축기의 흡입손실 저감구조.Sealed type, characterized in that the gas guide groove is formed around the inlet port to guide the fluid flowing through the inlet port into the closed space of the cylinder assembly even if a part of the inlet port of the cylinder assembly is covered by the partition plate. Suction loss reduction structure of compressor. 제1항에 있어서,The method of claim 1, 가스안내홈은 흡입구를 수용하여 축방향으로 길게 형성하는 것을 특징으로 하는 밀폐형 압축기의 흡입손실 저감구조.Gas guide groove is a suction loss reduction structure of the hermetic compressor characterized in that formed in the axial direction to accommodate the inlet. 제1항에 있어서,The method of claim 1, 가스안내홈은 흡입구를 수용하여 원주방향으로 길게 형성하는 것을 특징으로 하는 밀폐형 압축기의 흡입손실 저감구조.Gas guide groove is a suction loss reduction structure of the hermetic compressor, characterized in that formed in the circumferential direction to accommodate the inlet. 제1항에 있어서,The method of claim 1, 가스안내홈은 흡입구를 수용하여 환형으로 넓게 형성하는 것을 특징으로 하는 밀폐형 압축기의 흡입손실 저감구조.Gas guide groove is a suction loss reduction structure of the hermetic compressor, characterized in that the inlet is formed wide in the annular shape. 제1항 내지 제4항의 어느 한 항에 있어서,The method according to any one of claims 1 to 4, 흡입구와 가스안내홈이 만나는 부위를 모따기하여 경사지게 형성하는 것을 특징으로 하는 특징으로 하는 밀폐형 압축기의 흡입손실 저감구조.Suction loss reduction structure of the hermetic compressor characterized in that the inlet and the gas guide groove chamfered to form a slope.
KR1020020035075A 2002-06-21 2002-06-21 Structure for reducing suctionloss of enclosed compressor KR20040000584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020035075A KR20040000584A (en) 2002-06-21 2002-06-21 Structure for reducing suctionloss of enclosed compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020035075A KR20040000584A (en) 2002-06-21 2002-06-21 Structure for reducing suctionloss of enclosed compressor

Publications (1)

Publication Number Publication Date
KR20040000584A true KR20040000584A (en) 2004-01-07

Family

ID=37312422

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020035075A KR20040000584A (en) 2002-06-21 2002-06-21 Structure for reducing suctionloss of enclosed compressor

Country Status (1)

Country Link
KR (1) KR20040000584A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040038330A (en) * 2002-10-31 2004-05-08 엘지전자 주식회사 Structure for reducing suction leakage of enclossed compressor
US9516392B2 (en) 2007-08-17 2016-12-06 Linius (AUST) Pyt Ltd. Method and system for content delivery
JPWO2017138131A1 (en) * 2016-02-10 2018-09-06 三菱電機株式会社 Scroll compressor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5888487A (en) * 1981-11-24 1983-05-26 Toshiba Corp Rotary compressor
JPH02173383A (en) * 1988-12-23 1990-07-04 Matsushita Refrig Co Ltd Rotary compressor
KR920000909Y1 (en) * 1987-05-09 1992-01-31 대우전자 주식회사 Horizontal output circuit protecting circuit
JPH05202875A (en) * 1992-01-29 1993-08-10 Hitachi Ltd Rotary compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5888487A (en) * 1981-11-24 1983-05-26 Toshiba Corp Rotary compressor
KR920000909Y1 (en) * 1987-05-09 1992-01-31 대우전자 주식회사 Horizontal output circuit protecting circuit
JPH02173383A (en) * 1988-12-23 1990-07-04 Matsushita Refrig Co Ltd Rotary compressor
JPH05202875A (en) * 1992-01-29 1993-08-10 Hitachi Ltd Rotary compressor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040038330A (en) * 2002-10-31 2004-05-08 엘지전자 주식회사 Structure for reducing suction leakage of enclossed compressor
US9516392B2 (en) 2007-08-17 2016-12-06 Linius (AUST) Pyt Ltd. Method and system for content delivery
JPWO2017138131A1 (en) * 2016-02-10 2018-09-06 三菱電機株式会社 Scroll compressor

Similar Documents

Publication Publication Date Title
US20030108438A1 (en) Compressor
KR20100084079A (en) Rotary compressor
KR20030041576A (en) Oil leakage reducing apparatus for enclosed compressor
KR20040000584A (en) Structure for reducing suctionloss of enclosed compressor
KR100404469B1 (en) Bearing plate structure for compressor
US20030170134A1 (en) Compressor and vane therefor
KR20040038330A (en) Structure for reducing suction leakage of enclossed compressor
KR100480125B1 (en) Suction gas guide apparatus for enclossed compressor
KR100434079B1 (en) Structure for reducing frictionloss of enclosed compressor
KR20040036973A (en) Apparatus for reducing face pressor of enclossed compressor
KR100524794B1 (en) Refrigerants suction structure for enclossed compressor
KR20040040190A (en) Apparatus for reducing thrust face friction of enclossed compressor
KR20050011231A (en) Oil peeder for horizontal type enclosed compressor
KR20050012011A (en) Structure for reducing gas leakage of enclosed compressor
KR100324770B1 (en) Stroke volume magnification structure for enclosed compressor
KR100455197B1 (en) Discharge gas guide structure for enclosed compressor
KR20010097678A (en) Structure for reducing gas leakage enclosed compressor
KR20020078790A (en) Apparatus for reducing friction of compressor
KR20010105810A (en) Suction structure for closed compressor
KR20040040189A (en) Apparatus for reducing thrust face friction of enclossed compressor
KR20050011227A (en) Structre for reducing friction of enclosed compressor
KR20040040193A (en) Enclosed compressor
KR20030041578A (en) Swash plate structure for enclosed compressor
KR20040001706A (en) Structure for protecting gas leakage of enclosed compressor
KR20050012008A (en) Structure for reducing dead volume of enclosed compressor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application