KR20030060625A - Wastewater treatment method using membrane bioreactor with reduced sludge production - Google Patents

Wastewater treatment method using membrane bioreactor with reduced sludge production Download PDF

Info

Publication number
KR20030060625A
KR20030060625A KR1020020001405A KR20020001405A KR20030060625A KR 20030060625 A KR20030060625 A KR 20030060625A KR 1020020001405 A KR1020020001405 A KR 1020020001405A KR 20020001405 A KR20020001405 A KR 20020001405A KR 20030060625 A KR20030060625 A KR 20030060625A
Authority
KR
South Korea
Prior art keywords
sludge
membrane separation
treatment
treatment method
activated sludge
Prior art date
Application number
KR1020020001405A
Other languages
Korean (ko)
Other versions
KR100419259B1 (en
Inventor
김훈
염익태
김형수
권재현
Original Assignee
주식회사 제닉스엔지니어링
주식회사 태영
염익태
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 제닉스엔지니어링, 주식회사 태영, 염익태 filed Critical 주식회사 제닉스엔지니어링
Priority to KR10-2002-0001405A priority Critical patent/KR100419259B1/en
Publication of KR20030060625A publication Critical patent/KR20030060625A/en
Application granted granted Critical
Publication of KR100419259B1 publication Critical patent/KR100419259B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Activated Sludge Processes (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE: Provided is a method for treating wastewater using a membrane bioreactor, the method being capable of reducing sludge by mechanical and chemical pretreatment of excess sludge. CONSTITUTION: The method is performed by using a wastewater treatment system including a membrane activated sludge treatment unit(10), an excess sludge pretreatment basin(20) and a coagulant feeding unit(30), and the method comprises the steps of inputting excessive sludge into the excess sludge pretreatment unit(10), feeding alkali chemicals to the excess sludge pretreatment unit(10), thereby improving solubility and biodegradability of the sludge, and selectively returning the sludge of the pretreatment unit(10) to an anoxic zone(15) and an aerobic membrane bioreactor(13), thereby accelerating biodegradation of organic material in the sludge.

Description

슬러지 감량형 막분리 활성슬러지 공법을 이용한 하수처리방법 {Wastewater Treatment Method Using Membrane Bioreactor With Reduced Sludge Production}Wastewater Treatment Method Using Membrane Bioreactor With Reduced Sludge Production

본 발명은 활성슬러지를 이용한 생물학적 하폐수 처리법에 막분리 공법을 결합한 막분리 활성슬러지 공법에 있어서, 슬러지 감량형 막분리 활성슬러지 공법을 이용한 하수처리 방법에 관한 것으로, 더 상세하게는 잉여 슬러지의 화학적, 기계적 전처리를 통하여 슬러지의 가용성 및 생분해성을 촉진, 증가시켜 슬러지를 저감되게 하는 것이다.The present invention relates to a sewage treatment method using a sludge reduction type membrane separation activated sludge method in a membrane separation activated sludge method in which biological sewage treatment method using activated sludge is combined with a membrane separation method. Mechanical pretreatment promotes and increases the solubility and biodegradability of the sludge to reduce the sludge.

또한, 상기 화학적, 기계적 전처리를 통하여 가용성 및 생분해성으로 전환된 슬러지를 무산소조로 반송하여 탈질 반응에 필요한 탄소원을 공급되게 함으로서 질소 제거효율을 높이는 것이다.In addition, the sludge converted to soluble and biodegradable through the chemical and mechanical pretreatment to an oxygen-free tank to supply a carbon source necessary for the denitrification reaction to increase the nitrogen removal efficiency.

종래의 막분리 활성슬러지법은 반응조내에 고농도의 미생물을 유지함으로써 안정적인 처리수질을 얻을 수 있고, 또한 상기 반응조 부피를 대폭적으로 줄일 수 있다는 장점으로 인해 점점 더 그 활용도가 높아가고 있는 것으로, 특히 소규모 오수처리 또는 중수처리에 많이 응용되고 있다.In the conventional membrane separation activated sludge method, stable water quality can be obtained by maintaining a high concentration of microorganisms in a reaction tank, and the utilization of the membrane separation activated sludge is increasing due to the advantage that the reactor volume can be drastically reduced. It is widely applied to treatment or heavy water treatment.

그러나, 대부분의 생물학적 하폐수 처리공법이 그러하듯이 오염물질의 생물학적 분해의 결과로 생성되는 잉여슬러지의 처리문제에 대한 유지관리 및 비용발생 요인의 문제점으로 대두되고 있다.However, as with most biological sewage treatment methods, it is emerging as a problem of maintenance and cost-related factors for the treatment of surplus sludge generated as a result of the biodegradation of pollutants.

즉, 막분리 활성슬러지법은 일반적인 하수처리 방법인 활성슬러지법과 비교해 볼 때 설치 소요면적이 작고, 자동운전이 용이하다는 점, 또 침전조를 별도로 포함하지 않아 슬러지 벌킹등의 문제를 원천적으로 해결할 수 있다는 점등의 장점이 있어 소규모 하수 처리시설에 많이 활용되어 왔다. 이는 특히, 막의 선택에 따라 처리 수질을 필요로 하는 만큼 조절할 수 있기 때문에 최근의 물 재 이용에 대한 정책적 배려와 발맞추어 소규모 중수 처리 시설에도 많이 활용되고 있는 추세이다.In other words, the membrane separation activated sludge method has a smaller installation area compared to the activated sludge method, which is a general sewage treatment method, and is easy to operate automatically. Because of its merits of lighting, it has been widely used in small sewage treatment facilities. In particular, since the treatment water quality can be adjusted according to the selection of the membrane, it is being used in small heavy water treatment facilities in line with recent policy considerations for water reuse.

막분리 활성슬러지 공법은 여타 생물학적 처리공법들과 마찬가지로 오염물질의 분해와 미생물 성장의 결과로 슬러지가 축적되게 되며, 안정적인 운전을 위해 적정량의 슬러지를 인발함으로써 반응조내의 슬러지 농도를 일정수준으로 유지시켜주는 것이 필요하다. 슬러지 인발의 결과로 발생한 잉여슬러지는 일반적으로 별도의 농축, 탈수, 건조등의 공정을 거쳐 부피를 감량시키고 최종 발생한 케이크는 매립 또는 소각처리 되고있다.Membrane activated sludge method, like other biological treatment methods, causes sludge to accumulate as a result of decomposition of contaminants and microbial growth, and maintains the sludge concentration in the reactor by drawing an appropriate amount of sludge for stable operation. It is necessary. Surplus sludge produced as a result of sludge drawing is generally reduced in volume through separate concentration, dehydration and drying processes, and the final cake is landfilled or incinerated.

일반적으로 이러한 슬러지의 처리비용은 전체 수처리 비용의 상당부분을 차지하고 있으며, 특히 소규모 오수처리에 많이 활용되고 있는 막분리 활성슬러지 공법의 경우 별도의 슬러지 처리 시설을 갖추고 운영한다는 것은 유지관리 측면이나 비용적인 측면에서 상당히 큰 부담의 문제점이 있다.In general, the treatment cost of such sludge is a large part of the total water treatment cost, and especially in the case of the membrane separation activated sludge method, which is widely used for small-scale sewage treatment, it is necessary to maintain a separate sludge treatment facility in terms of maintenance or cost. In terms of problems, there is a considerable burden.

더욱이, 최근들어 슬러지의 최종처리와 관련된 법규가 강화되어 직접매립이나 소각, 해양투기 등 기존방식의 처리가 갈수록 어려워지고 있고, 그 비용도 증가하고 있는 것이다.In addition, the regulations related to the final treatment of sludge have been strengthened in recent years, making it difficult to treat conventional methods such as direct landfilling, incineration and ocean dumping, and the cost is increasing.

본 발명은 이상과 같은 문제점등을 해결하고자 안출된 것으로서, 본 발명의목적은 슬러지 감량형 막분리 활성슬러지 공법을 이용한 하수처리 방법에 관한 것으로, 잉여 슬러지의 화학적, 기계적 전처리를 통하여 슬러지의 가용성 및 생분해성을 촉진, 증가시켜 슬러지를 저감되게 하는 공법을 제공함에 있다.The present invention has been made to solve the above problems, the object of the present invention relates to a sewage treatment method using a sludge reduction type membrane separation activated sludge method, solubility of the sludge through chemical and mechanical pretreatment of excess sludge The present invention provides a method for promoting and increasing biodegradability to reduce sludge.

본 발명의 다른 목적은 상기 화학적, 기계적 전처리를 통하여 가용성 및 생분해성으로 전환된 슬러지를 무산소조로 반송하여 탈질 반응에 필요한 탄소원을 공급되게 함으로서 질소 제거효율을 높이는 하폐수 처리공법을 제공함에 있다.Another object of the present invention is to provide a wastewater treatment method for improving nitrogen removal efficiency by returning sludge converted to soluble and biodegradable through an chemical and mechanical pretreatment to an oxygen-free tank to supply a carbon source required for the denitrification reaction.

이와 같은 목적을 달성하기 위하여, 본 발명은 막분리형 수처리 공법에 있어서, 인발된 슬러지의 전처리 과정에서 알칼리 약품을 첨가하거나, 온도를 가열하거나, 오존으로 부분산화시킨 후, 알칼리 약품을 첨가하거나, 알칼리 약품을 첨가한 후, 볼밀로 분쇄처리 하거나 등의 선택적 처리로 상기 슬러지의 가용성 및 생분해성을 촉진, 증가시킨 후, 다시 생물반응조로 반송하여 유기물질의 생분해와 자산화를 촉진시켜 발생 슬러지의 양을 현저히 저감되게 하는 것이다.In order to achieve the above object, the present invention, in the membrane separation type water treatment method, in the pretreatment process of the drawn sludge, alkali chemicals are added, the temperature is heated, or partially oxidized with ozone, alkali chemicals are added, or alkali After adding the chemicals, pulverizing with a ball mill or selective treatment to promote and increase the solubility and biodegradability of the sludge, and then return to the bioreactor to promote the biodegradation and assetization of the organic material to increase the amount of sludge generated To be significantly reduced.

도 1은 종래의 막분리 활성슬러지법(Membrane Bioreactor)을 이용한 하수처리 방법을 개략적으로 나타낸 도면.1 is a view schematically showing a sewage treatment method using a conventional membrane separation activated sludge method (Membrane Bioreactor).

도 2는 종래의 생물학적 질소, 인 제거형 막분리 활성슬러지법을 이용한 하수처리 방법을 개략적으로 나타낸 도면.Figure 2 schematically shows a sewage treatment method using a conventional biological nitrogen, phosphorus removal membrane separation activated sludge method.

도 3은 본 발명의 슬러지 감량형 막분리 활성슬러지 공정에 따른 하수처리를 개략적으로 나타낸 도면.Figure 3 schematically shows the sewage treatment according to the sludge reduction type membrane separation activated sludge process of the present invention.

※ 도면의 주요 부분에 대한 부호의 설명※ Explanation of codes for main parts of drawing

10 : 막분리형 활성슬러지 처리장치 11 : 공기공급장치10: membrane separation activated sludge treatment device 11: air supply device

12 : 멤브레인 고액분리장치 13 : 호기엠비알(MBR)조12: membrane solid-liquid separator 13: expulsive MBR tank

14 : 내부순환라인 15 : 무산소조14: internal circulation line 15: anoxic tank

20 : 잉여슬러지 전처리 반응조 30 : 응집제 투여장치20: excess sludge pretreatment reactor 30: flocculant administration device

이하, 본 발명을 첨부된 도면에 의하여 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 3은 본 발명의 슬러지 감량형 막분리 활성슬러지 공정에 따른 하수처리를 개략적으로 나타낸 도면으로서, 도시된 바와 같이 본 발명은 막분리형 활성슬러지 처리장치(10), 잉여슬러지 전처리 반응조(20) 및 인 동시 제거를 위한 응집제 투여장치(30)로 구별할 수 있는 것으로, 각 단계별 세부 내용을 설명하면,3 is a view schematically showing the sewage treatment according to the sludge reduction type membrane separation activated sludge process of the present invention, as shown in the present invention, the membrane separation type activated sludge treatment apparatus 10, the excess sludge pretreatment reactor 20, and What can be distinguished by the coagulant dosing device 30 for the simultaneous removal of phosphorus, the details of each step,

상기 막분리형 활성슬러지 처리장치(10)는 기본적으로 유기물의 호기분해공정을 위한 공기공급장치(11)와 막분리를 이용한 멤브레인 고액분리장치(12)로 이루어져 있고, 이 두 장치는 단일 반응조, 또는 별도의 반응조에서 가동 될 수도 있고, 또한 유기물과 질소의 동시제거를 위하여 탈질단계를 포함할 경우, 호기엠비알(MBR)조(13) 전단에 무산소조(15)를 두고 내부순환라인(14)을 통하여 연동되게 하며, 이 경우 암모니아성 질소는 호기엠비알조(13)에서 질산화 미생물에 의하여 질산성 질소로 산화되며, 질산성 질소는 상기 내부순환라인(14)을 통하여 무산소조(15)로 보내지고 여기에서 탈질반응으로 제거된다.The membrane-separated activated sludge treatment apparatus 10 basically consists of an air supply apparatus 11 for aerobic decomposition process of organic matter and a membrane solid-liquid separator 12 using membrane separation, and these two apparatuses are a single reactor, or It may be operated in a separate reaction tank, and also includes a denitrification step for the simultaneous removal of organic matter and nitrogen, with an oxygen-free tank (15) in front of the aerobic MBR (13) tank 13 to the internal circulation line (14) In this case, the ammonia nitrogen is oxidized to nitric acid by the nitrifying microorganism in the aerobic MB (13), nitric acid nitrogen is sent to the anoxic tank (15) through the inner circulation line (14) Is removed by denitrification at.

이때, 무산소 조건 이외에 상기 탈질반응에 있어서, 중요한 필요조건이 생분해성 탄소원으로 이것은 탈질 미생물이 무기탄소를 이용한 질산화 미생물과는 달리 유기탄소를 먹이로 필요로 하는 미생물이기 때문이고, 따라서 탈질반응의 효율은 상기 탄소원의 공급에 있다.In this case, in addition to the anoxic condition, in the denitrification reaction, an important requirement is a biodegradable carbon source because the denitrification microorganism is a microorganism which requires organic carbon to be fed, unlike the nitrification microorganism using inorganic carbon, and thus the efficiency of the denitrification reaction Is in the supply of the carbon source.

상기 잉여슬러지 전처리 반응조(20)에서는 슬러지를 구성하고 있는 미생물들의 세포벽을 화학적 또는 기계적으로 파괴하여 미생물들을 가용화시키고, 고분자 물질을 저분자 물질로 전환시켜 슬러지의 생분해성을 높이는 것으로, 상기 미생물 세포벽 파괴를 위한 슬러지 전처리로서, 알칼리처리, 열적처리, 볼밀처리, 오존처리 중 선택적처리로, 또는 상기 처리중 선택적 병합처리로 이루어져 있다.In the excess sludge pretreatment reactor 20, solubilizing the microorganisms by chemically or mechanically destroying the cell walls of the microorganisms constituting the sludge, and converting the polymer material into a low molecular material to increase the biodegradability of the sludge, the destruction of the microbial cell wall As sludge pretreatment for the treatment, it is composed of an alkali treatment, a thermal treatment, a ball mill treatment, an optional treatment of ozone treatment, or a selective consolidation treatment of the treatment.

상기 알칼리처리는 pH10~14에서 2~4시간 처리, 상기 열적처리는 50~70℃에서 2~4시간 처리, 상기 볼밀처리는 2000~4000rpm으로 10~30분간 처리, 오존처리는 0.03~0.07g O3/g-SS 로 처리 되게 하는 것이 바람직 한것으로, 상기 알칼리처리와열적처리는 세포벽의 가수분해를 촉진시켜 파괴하는 것이고, 볼밀처리는 기계적인 압력을 가하여 세포벽을 파괴하는 것이다.The alkali treatment is treated for 2 to 4 hours at pH 10-14, the thermal treatment is treated for 2 to 4 hours at 50 to 70 ° C, the ball mill treatment is performed at 2000 to 4000 rpm for 10 to 30 minutes, and the ozone treatment is 0.03 to 0.07 g It is preferable to be treated with O 3 / g-SS. The alkali treatment and the thermal treatment promote hydrolysis of the cell wall to destroy it, and the ball mill treatment is to destroy the cell wall by applying mechanical pressure.

본 발명에서 막분리 활성슬러지가 무산소조를 포함하지 않은 경우에는 호기엠비알조(13)에서 전처리 필요량 만큼의 슬러지를 인발하여 상기와 같이 전처리 후, 상기 호기엠비알조(13)로 반송하며, 무산소조(15)를 포함하는 경우에는 상기 전처리 후, 무산소조(15)로 반송되는 것으로, 내부순환되는 슬러지 중 상기 전처리 필요량 만큼만 별도 처리한 후, 내부순환라인(14)을 통하여 다시 호기엠비알조(13)로 이송 처리되게 하는 것이다.In the present invention, when the membrane-separated activated sludge does not contain an anoxic tank, the sludge as much as the pretreatment amount is extracted in the aerobic MBI tank 13, and after the pretreatment as described above, the membrane is returned to the aerobic tank 13, an oxygen-free tank (15). ), After the pretreatment, it is returned to the oxygen-free tank 15, and treated separately as much as the required amount of pretreatment of the sludge circulated internally, and then transferred back to the aerobic MV tank 13 through the internal circulation line (14). To be processed.

상기 전처리에 의한 하폐수 슬러지의 가용성 및 생분해성 효율은 실험결과 하기 표 1과 같다. 이때 슬러지의 초기 부유물 농도와 COD(cr)농도는 각각 11,440 mg/L 과 13,890mg/L 이며, 생분해도 실험은 호홉법(Respirometry)을 사용, 측정하였다.Solubility and biodegradation efficiency of the wastewater sludge by the pretreatment is shown in Table 1 below. At this time, sludge initial suspended solids concentration and COD (cr) concentration were 11,440 mg / L and 13,890mg / L, respectively, and biodegradation experiments were measured using the respirometry method.

상기 표 1에서 실험된 전처리 단계의 공정중에서 알칼리처리는 비교적 간단하고, 저렴한 비용으로 처리되고, 다른 전처리 공정과 병합처리가 가능, 용이하며, 또한 열적처리나 오존처리와 병행될 경우 생분해성 효율이 증대 되었음을 보여주고 있다.Alkaline treatment in the process of the pre-treatment step tested in Table 1 is relatively simple, low-cost treatment, can be combined with other pre-treatment, easy, and also biodegradable efficiency when combined with thermal or ozone treatment It shows an increase.

상기 전처리 과정을 통하여 생분해성이 높아진 슬러지는 막분리형 활성슬러지 처리단계의 반응조로 순환되어 원 하폐수의 생분해성 유기물과 함께 처리되나, 질소 제거를 위하여 무산소조를 포함한 경우는 이 무산소조로 이송시키면 탈질 반응에 필요한 탄소원으로 작용하여 탈질효율을 증대, 질소제거율을 높이게 된다.The sludge which has increased biodegradability through the pretreatment process is circulated to the reaction tank of the membrane separation type activated sludge treatment step and is treated with biodegradable organic material of the raw wastewater, but in the case of containing an anoxic tank for nitrogen removal, the sludge is transferred to the anoxic tank for denitrification reaction. It acts as a necessary carbon source to increase the denitrification efficiency and increase the nitrogen removal rate.

별도의 슬러지 인발없이 잉여슬러지의 전처리와 전처리 슬러지의 반송을 통하여 슬러지 중 유기물 성분의 분해를 유도할 경우, 생물학적으로 분해될 수 없는 슬러지 중의 유기물질 중 일부는 이온성 물질로 용해되어 분리막을 통과하여 처리수와 방류되고 입자성 무기물질은 반응조내에 축적되게 된다.When the sludge is decomposed by pretreatment of excess sludge and the return of the pretreated sludge without additional sludge extraction, some of the organic substances in the sludge that cannot be biologically decomposed are dissolved as ionic substances and passed through the membrane. It is discharged with the treated water and the particulate inorganic material accumulates in the reactor.

따라서, 활성슬러지 중 미생물 농도를 일정하게 유지시켜 주기 위해서는 최소한의 슬러지 인발이 필요하다.Therefore, in order to maintain a constant concentration of microorganisms in activated sludge, a minimum amount of sludge is drawn out.

무기물의 축적을 방지하기 위한 슬러지 인발량은 슬러지 전처리를 도입하지 않았을 경우와 비교할 경우 10%이하 수준으로 줄어 들게 된다.Sludge withdrawal to prevent the accumulation of minerals is reduced to less than 10% compared to the case without the introduction of sludge pretreatment.

결과적으로 본 발명을 적용함으로써 하폐수 원수량의 0.5~1% 정도 규모의 슬러지 전처리 시설을 설치함으로써 잉여슬러지 발생량을 80~90%이상 저감 시킬 수 있게 된다.As a result, by applying the present invention it is possible to reduce the amount of excess sludge generated by more than 80 ~ 90% by installing a sludge pretreatment plant of 0.5 ~ 1% of the amount of raw water sewage.

인 동시제거를 위한 응집제 투여장치(30)에서는 막분리형 활성슬러지 처리장치(10)와 잉여슬러지 전처리 반응조(20)를 통하여 슬러지 발생량이 저감될 경우, 원수 중 인성분의 제거효율이 저하되는데, 이는 생물학적 처리공정에서 인의 제거가 슬러지로의 인성분 합성과 잉여슬러지의 인발을 통하여 이루어지기 때문인바, 이를 해결하기 위해 본 발명에서는 응집제를 투여한 것으로, 이 경우 응집제 투여는 호기 엠비알조에서 이루어지게 함으로써 침전조나 침전 체류시간을 둘 필요가 없고, 또한 슬러지 인발량이 적기 때문에 상당량의 응집제가 처리시스템 안에서 순환하게 되어 응집제 소요량도 저감될 수 있으면서 그 처리 효율은 80~90% 수준으로 높일 수 있다.In the flocculant dosing device 30 for simultaneous removal of phosphorus, when the sludge generation amount is reduced through the membrane separation type activated sludge treatment device 10 and the excess sludge pretreatment reaction tank 20, the removal efficiency of phosphorus in raw water is lowered. Phosphorus removal in the biological treatment process is achieved through the synthesis of phosphorus to sludge and the extraction of excess sludge. In order to solve this problem, in the present invention, a coagulant is administered. There is no need to settle sedimentation tanks or settling residence times, and the amount of sludge drawn is small, which allows a significant amount of flocculant to circulate in the treatment system, thereby reducing the flocculant requirement and increasing the treatment efficiency to 80-90%.

이상 설명한 바와 같이, 본 발명은 막분리형 활성슬러지 처리장치(10)로 부터 잉여슬러지를 인발, 전처리하여 가용성 및 생분해성을 촉진하고, 이를 상기 막분리형 활성슬러지 처리장치(10)로, 또는 무산소조(15)로 이송처리 함으로서, 슬러지 처리량을 현저히 저감하여 처리비용을 획기적으로 절감하는 효과가 있고, 또한 질소제거에 필요한 추가적인 탄소원을 공급하여 질소제거효율을 높일 수 있는 효과가 있으며, 더불어 인제거 효율이 높은 효과가 있는 것이다.As described above, the present invention promotes solubility and biodegradation by drawing and pretreating excess sludge from the membrane-type activated sludge treatment apparatus 10, and then, to the membrane-type activated sludge treatment apparatus 10, or an oxygen-free tank ( 15), the sludge throughput is significantly reduced, and the treatment cost can be drastically reduced, and additional carbon sources necessary for nitrogen removal can be supplied to increase the nitrogen removal efficiency, and the phosphorus removal efficiency is also improved. It is highly effective.

Claims (7)

하폐수 처리공정으로 폭기조내에 분리막을 침지시켜 활성슬러지 혼합액을 고액분리하는 막분리형 수처리 방법에 있어서, 막분리형 활성슬러지 처리장치(10), 잉여슬러지 전처리 반응조(20) 및 응집제 투여장치(30)로 이루어지되, 인발된 슬러지를 상기 잉여슬러지 전처리 반응조(20)에서 알칼리 약품을 첨가하여 슬러지의 가용성 및 생분해성을 촉진, 증가시켜 무산소조(15), 호기엠비알조(13)로 선택적으로 반송하여 슬러지중 유기물의 생분해와 자산화를 가속, 슬러지 발생량을 저감되게 하는 것을 특징으로 하는 슬러지 감량형 막분리 활성슬러지 공법을 이용한 하수처리방법.In the membrane separation type water treatment method for solid-liquid separation of activated sludge mixed solution by dipping a separator in an aeration tank by a wastewater treatment process, the membrane separation type activated sludge treatment device (10), the excess sludge pretreatment reaction tank (20) and the flocculant dispensing device (30) However, by adding the alkali chemicals in the excess sludge pretreatment reaction tank 20 to promote and increase the solubility and biodegradability of the sludge, it is selectively returned to the anoxic tank 15 and the aerobic MBl 13 to organic matter in the sludge. Sewage treatment method using the sludge reduction type membrane separation activated sludge process, characterized in that to accelerate the biodegradation and reoxidation of sewage, and to reduce the amount of sludge generated. 제 1항에 있어서, 인발된 슬러지를 알칼리 처리시에 가온시켜 슬러지의 가용성 및 생분해성을 촉진, 증대시키는 것을 특징으로 하는 슬러지 감량형 막분리 활성슬러지 공법을 이용한 하수처리방법.The sewage treatment method using a sludge reduction type membrane separation activated sludge process according to claim 1, wherein the drawn sludge is heated during alkali treatment to promote and increase the solubility and biodegradability of the sludge. 제 1항에 있어서, 인발된 슬러지를 오존처리로 부분산화 시킨 후, 알칼리처리로 슬러지의 가용성 및 생분해성을 촉진, 증대시키는 것을 특징으로 하는 슬러지 감량형 막분리 활성슬러지 공법을 이용한 하수처리방법.The sewage treatment method using the sludge reduction type membrane separation activated sludge process according to claim 1, wherein after the partial sludge is partially oxidized by ozone treatment, the solubility and biodegradability of the sludge is promoted and increased by alkali treatment. 제 1항에 있어서, 인발된 슬러지를 알칼리 처리 후, 볼밀 분쇄처리로 슬러지의 가용성 및 생분해성을 촉진, 증대시키는 것을 특징으로 하는 슬러지 감량형 막분리 활성슬러지 공법을 이용한 하수처리방법.2. The sewage treatment method using sludge reduction type membrane separation activated sludge process according to claim 1, wherein after the alkali treatment of the drawn sludge, the ball mill grinding treatment promotes and increases the solubility and biodegradability of the sludge. 제 1항에 있어서, 무산소조(15) 및 호기엠비알조(13)에 무기물이 축적되지 않도록 간헐적으로 적정량의 슬러지를 인발하여 슬러지의 생물학적 활성도를 유지하는 것을 특징으로 하는 슬러지 감량형 막분리 활성슬러지 공법을 이용한 하수처리방법.The sludge reduction type membrane separation activated sludge process according to claim 1, wherein the sludge-reducing type membrane separation activated sludge is characterized by drawing an appropriate amount of sludge intermittently so that inorganic matters do not accumulate in the anoxic tank 15 and the aerobic tank 13. Sewage treatment method using. 제 1항에 있어서, 잉여슬러지 전처리 반응조(20)에서 전처리된 슬러지를 무산소조(15)로 반송하여 탈질에 필요한 생분해성 탄소원으로 활용되게 하는 것을 특징으로 하는 슬러지 감량형 막분리 활성슬러지 공법을 이용한 하수처리방법.The sewage using sludge reduction type membrane separation activated sludge process according to claim 1, characterized in that the sludge pretreated in the excess sludge pretreatment reaction tank (20) is returned to the oxygen-free tank (15) to be utilized as a biodegradable carbon source for denitrification. Treatment method. 제 1항에 있어서, 호기엠비알조(13)에 응집제 투여장치(30)로 응집제를 일정량 투여하여 하폐수의 인성분을 제거하도록 되어 있는 것을 특징으로 하는 슬러지 감량형 막분리 활성슬러지 공법을 이용한 하수처리방법.The sewage treatment method using sludge reduction type membrane separation activated sludge method according to claim 1, characterized in that the coagulant is administered to the aerobic MBB 13 with a coagulant dispensing device 30 to remove phosphorus components of the wastewater. Way.
KR10-2002-0001405A 2002-01-10 2002-01-10 Wastewater Treatment Method Using Membrane Bioreactor With Reduced Sludge Production KR100419259B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0001405A KR100419259B1 (en) 2002-01-10 2002-01-10 Wastewater Treatment Method Using Membrane Bioreactor With Reduced Sludge Production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0001405A KR100419259B1 (en) 2002-01-10 2002-01-10 Wastewater Treatment Method Using Membrane Bioreactor With Reduced Sludge Production

Publications (2)

Publication Number Publication Date
KR20030060625A true KR20030060625A (en) 2003-07-16
KR100419259B1 KR100419259B1 (en) 2004-02-21

Family

ID=32217566

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0001405A KR100419259B1 (en) 2002-01-10 2002-01-10 Wastewater Treatment Method Using Membrane Bioreactor With Reduced Sludge Production

Country Status (1)

Country Link
KR (1) KR100419259B1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030074966A (en) * 2002-03-15 2003-09-22 주식회사 태영 Process For Sludge Treatment Using Sludge Pretreatment And Membrane Bioreactor
KR100669196B1 (en) 2006-02-14 2007-01-16 경희대학교 산학협력단 Sewage sludge reduction by mechanically pretreated aerobic digestion and metal catalyst/o3-oxidation
KR100785044B1 (en) * 2006-11-09 2007-12-12 한국과학기술연구원 Method for remodeling of the existing wastewater treatment facilities into advanced treatment facilities and operating method using the advanced treatment facilities
KR100813110B1 (en) * 2006-08-28 2008-03-17 장미정 A sanitation disposal system for water
KR100853077B1 (en) * 2008-04-08 2008-08-19 효성에바라엔지니어링 주식회사 Submerged poly tetrafluoro ethylene membrane bioreactor and advanced wastewater treatment process using the same
US7713413B2 (en) * 2006-04-11 2010-05-11 Siemens Water Technologies Corp. Aerated anoxic membrane bioreactor
KR101142860B1 (en) * 2012-02-29 2012-05-08 (주)티에스케이워터 Alkalisludge for phosphorus reducing, manufacturing method of alkalisludge, method for phosphorus reducing of sewage and wastewater using alkalisludge and apparatus for progress thereof
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9630147B2 (en) 2010-09-24 2017-04-25 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
CN108059245A (en) * 2017-12-28 2018-05-22 深圳市海川实业股份有限公司 A kind of biological MBR integrated waste water treatment systems
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
US10507431B2 (en) 2007-05-29 2019-12-17 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101634233B1 (en) 2015-08-07 2016-06-28 (주)포웰 Wastewater treatment system for reducing sludge
KR101627767B1 (en) 2015-12-21 2016-06-08 에코이앤오(주) Wastewater treatment system for sludge reduction
KR102555263B1 (en) 2022-10-31 2023-07-14 더죤환경기술(주) Sludge treatment method generated during sewage treatment

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030074966A (en) * 2002-03-15 2003-09-22 주식회사 태영 Process For Sludge Treatment Using Sludge Pretreatment And Membrane Bioreactor
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
KR100669196B1 (en) 2006-02-14 2007-01-16 경희대학교 산학협력단 Sewage sludge reduction by mechanically pretreated aerobic digestion and metal catalyst/o3-oxidation
US7713413B2 (en) * 2006-04-11 2010-05-11 Siemens Water Technologies Corp. Aerated anoxic membrane bioreactor
KR100813110B1 (en) * 2006-08-28 2008-03-17 장미정 A sanitation disposal system for water
KR100785044B1 (en) * 2006-11-09 2007-12-12 한국과학기술연구원 Method for remodeling of the existing wastewater treatment facilities into advanced treatment facilities and operating method using the advanced treatment facilities
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US10507431B2 (en) 2007-05-29 2019-12-17 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
KR100853077B1 (en) * 2008-04-08 2008-08-19 효성에바라엔지니어링 주식회사 Submerged poly tetrafluoro ethylene membrane bioreactor and advanced wastewater treatment process using the same
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US10441920B2 (en) 2010-04-30 2019-10-15 Evoqua Water Technologies Llc Fluid flow distribution device
US9630147B2 (en) 2010-09-24 2017-04-25 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US11065569B2 (en) 2011-09-30 2021-07-20 Rohm And Haas Electronic Materials Singapore Pte. Ltd. Manifold arrangement
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US10391432B2 (en) 2011-09-30 2019-08-27 Evoqua Water Technologies Llc Manifold arrangement
WO2013129778A1 (en) * 2012-02-29 2013-09-06 (주)티에스케이워터 Alkali sludge for reducing phosphorous, method for preparing alkali sludge, method for reducing phosphorous in wastewater using alkali sludge, and wastewater treatment apparatus for performing same
KR101142860B1 (en) * 2012-02-29 2012-05-08 (주)티에스케이워터 Alkalisludge for phosphorus reducing, manufacturing method of alkalisludge, method for phosphorus reducing of sewage and wastewater using alkalisludge and apparatus for progress thereof
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
US11173453B2 (en) 2013-10-02 2021-11-16 Rohm And Haas Electronic Materials Singapores Method and device for repairing a membrane filtration module
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
CN108059245A (en) * 2017-12-28 2018-05-22 深圳市海川实业股份有限公司 A kind of biological MBR integrated waste water treatment systems

Also Published As

Publication number Publication date
KR100419259B1 (en) 2004-02-21

Similar Documents

Publication Publication Date Title
KR100419259B1 (en) Wastewater Treatment Method Using Membrane Bioreactor With Reduced Sludge Production
KR100670081B1 (en) Apparatus and method for treatment of food waste
HK1076618A1 (en) Process and assembly for the treatment of waste water on ships
JP2003275796A (en) Method and apparatus for treating sludge by making good use of sludge pretreating unit and membrane separation type bioreactor
KR101288952B1 (en) Sewage sludge treatment system using microorganism
KR100770626B1 (en) Bio gas collection system of organic waste
JP2003033780A (en) Method for wastewater treatment
KR101003482B1 (en) Disposal method of high concentration organic matter waste water
KR20220096414A (en) Apparatus for treating waste water using iron oxide powder
KR100479649B1 (en) The procces and apparatus of Livestock wastewater treatment.
KR20020079029A (en) A zero-sludge -discharging membrane bioreactor(Z-MBR) activated sludge process
JP3788716B2 (en) Organic wastewater treatment method and treatment apparatus
KR100710488B1 (en) Apparatus and method for water and wastewater treatment using dissolved ozone flotation and pressurized ozone oxidation
KR102340961B1 (en) Apparatus for treating waste water using iron oxide powder
KR20020075637A (en) Method and apparatus for treating excess sludge produced from processes for biological treatment of sewage or waste water
JP2009195783A (en) Organic wastewater treatment method
JP2006326438A (en) Apparatus and method for treating sludge
KR100614098B1 (en) A method for phosphorous and nitrogen removal with sludge disintegration in advanced wastewater treatment process
JP2001149981A (en) Method for treating sewage and sludge
KR20000072906A (en) Advanced Treatment Method for Sewage or Industrial Waste Water
KR200289075Y1 (en) Apparatus of Livestock wastewater treatment.
JP5873744B2 (en) Organic wastewater and organic waste treatment method and treatment equipment
JP4230617B2 (en) Wastewater treatment equipment containing organic solids
JP6909147B2 (en) Organic wastewater treatment equipment, organic wastewater treatment method and renovation method of organic wastewater treatment equipment
JP3756827B2 (en) Sludge reduction method and apparatus

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130205

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140110

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150202

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20160304

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20170102

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20180104

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20190104

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20200102

Year of fee payment: 17