KR20030059420A - 3D MEMS light collection plate, manufacturing method and display devices - Google Patents

3D MEMS light collection plate, manufacturing method and display devices Download PDF

Info

Publication number
KR20030059420A
KR20030059420A KR1020010088281A KR20010088281A KR20030059420A KR 20030059420 A KR20030059420 A KR 20030059420A KR 1020010088281 A KR1020010088281 A KR 1020010088281A KR 20010088281 A KR20010088281 A KR 20010088281A KR 20030059420 A KR20030059420 A KR 20030059420A
Authority
KR
South Korea
Prior art keywords
light
plate
collecting system
liquid crystal
manufacturing
Prior art date
Application number
KR1020010088281A
Other languages
Korean (ko)
Inventor
문성욱
박종연
박종오
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020010088281A priority Critical patent/KR20030059420A/en
Priority to JP2002209929A priority patent/JP2003202567A/en
Publication of KR20030059420A publication Critical patent/KR20030059420A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136277Active matrix addressed cells formed on a semiconductor substrate, e.g. of silicon
    • G02F1/136281Active matrix addressed cells formed on a semiconductor substrate, e.g. of silicon having a transmissive semiconductor substrate

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE: A three-dimensional MEMS(Micro Electro Mechanical System) light collection plate and a method for manufacturing the same, and a display device using the pumping optics are provided to reduce light loss on an optical path of light, thereby improving the efficiency and transmissivity of the light. CONSTITUTION: A plurality of feed horns(65) is formed length and breadth. A upper aperture ratio of each feed horns is different from a lower aperture ratio. Light emitted from a back light unit(10) reaches a glass substrate(50) through the plurality of feed horns of a light collection plate(20). The light bumped against a wall of the light collection plate is reflected and reached to the glass substrate via a liquid crystal plate(40), so that the light is interrupted due to areas of thin film transistors(30).

Description

3차원 MEMS 집광계와 제조방법 및 그 집광계를 이용한 디스플레이 소자{3D MEMS light collection plate, manufacturing method and display devices}3D MEMS light collection system and manufacturing method and display device using the light collection system {3D MEMS light collection plate, manufacturing method and display devices}

본 발명은 3차원 MEMS 집광계와 제조방법 및 그 집광계를 이용한 디스플레이 소자에 관한 것으로서, 더 상세하게는 디스플레이 소자의 백라이트 램프에서 발산되어 나오는 광이 글라스 기판까지 전달되는 경로에서 손실되는 광손실을 감소시켜서 광의 전체 효율을 향상시킬 수 있는 3차원 MEMS 집광계와 제조방법 및 그 집광계를 이용한 디스플레이 소자에 관한 것이다.The present invention relates to a three-dimensional MEMS light collecting system, a manufacturing method, and a display device using the light collecting system. More particularly, the present invention relates to a light loss that is lost in a path where light emitted from a backlight lamp of a display device is transferred to a glass substrate. The present invention relates to a three-dimensional MEMS light collecting system and a manufacturing method capable of reducing the overall efficiency of light, and a display device using the light collecting system.

일반적으로, 정보화 사회에서 액정 표시 장치(Liquid Crystal Display)의 개발은 눈부시게 발전하고 있으며 그 역할도 중요화되고 있다.In general, the development of liquid crystal display (LCD) in the information society has been remarkably developed and its role is also becoming important.

액정 표시 장치는 자체 발광을 하지 못하기 때문에 일반적으로 사용되고 있는 투과형 액정 표시 장치에서는 백라이트(back light)가 필요하며, 액정 표시 장치의 성능은 액정 표시 장치 자체만이 아니라 사용하는 백라이트의 성능에 의존하는 바가 크다.Since a liquid crystal display does not emit light by itself, a back light is required in a commonly used transmissive liquid crystal display, and the performance of the liquid crystal display depends not only on the liquid crystal display itself but also on the performance of the backlight used. The bar is big.

이러한 액정 표시 장치중 TFT-LCD는 입사된 빛의 3∼10%만 투과하는 매우 비효율적인 광조변조기이다.Among such liquid crystal display devices, TFT-LCD is a very inefficient light modulator that transmits only 3 to 10% of incident light.

즉, 두장의 편광판의 투과도 45%, 유리 두장의 투과도 94%, TFT 어레이 및 화소의 투과도 65%, 컬러필터의 투과도를 27%라 두고 계산을 하면, TFT-LCD의 광투과도는 약 7.4%이다.In other words, the light transmittance of the TFT-LCD is about 7.4% based on 45% transmittance of two polarizers, 94% transmittance of two glass sheets, 65% transmittance of a TFT array and pixels, and 27% transmittance of a color filter. .

예를 들어 현재 생산되는 12.1 인치급의 광투과도는 5∼8%이다.For example, currently produced 12.1 inch light transmittance is 5-8%.

백라이트에서 나온 빛이 후면 편광판, TFT 기판, 컬러필터 및 전면 편광판을 투과하면 그 세기가 10%이하로 떨어진다.When the light from the backlight passes through the rear polarizer, TFT substrate, color filter, and front polarizer, its intensity drops below 10%.

한편, 종래 박막트랜지스터(Thin Film Transistor) LCD의 백라이트 구조는 램프, 반사판, 도광판, 확산판, 프리즘판으로 구성된다.On the other hand, the backlight structure of a conventional thin film transistor (Thin Film Transistor) LCD is composed of a lamp, a reflector, a light guide plate, a diffusion plate, a prism plate.

이러한 TFT-LCD 백라이트 구조는 백라이트에서 나온 빛이 상기 구성의 각 층을 통과하면서 투과하는 구조 형태를 가진다.This TFT-LCD backlight structure has a form in which light from the backlight is transmitted while passing through each layer of the configuration.

즉, 백라이트에서 나온 빛이 도광판, 확산판, 수평 및 수직 프리즘판을 통과한 상태에서 박막 트랜지스터가 차지하는 면적 때문에 빛이 100% 통과하지 못하고 차단하는 현상이 발생한다.That is, due to the area occupied by the thin film transistors in the state where the light from the backlight passes through the light guide plate, the diffuser plate, and the horizontal and vertical prism plates, the light does not pass 100% and is blocked.

본 발명은 상술한 문제점을 해결하기 위하여 안출된 것으로서, 디스플레이 소자의 백라이트 램프에서 발산되어 나오는 광이 글라스 기판까지 전달되는 경로에서 손실되는 광손실을 감소시켜 광의 전체 효율을 향상시킬 수 있는 3차원 MEMS 집광계와 제조방법 및 그 집광계를 이용한 디스플레이 소자를 제공하는데 목적이 있는 것이다.The present invention has been made to solve the above-described problems, three-dimensional MES can improve the overall efficiency of the light by reducing the light loss lost in the path of the light emitted from the backlight lamp of the display element to the glass substrate An object is to provide a light collecting system, a manufacturing method, and a display device using the light collecting system.

본 발명은 또한 미소기전소자(MEMS)의 여러 공정을 이용하여 3차원 피드혼(feed horn) MEMS 구조체의 집광계를 제작하여 여러 종류의 디스플레이 소자에 응용 가능한 새로운 방법을 제안하는데 목적이 있는 것이다.Another object of the present invention is to propose a new method that can be applied to various types of display devices by fabricating a light collecting system of a three-dimensional feed horn MEMS structure using various processes of micro-electromechanical devices (MEMS).

상술한 목적을 달성하기 위하여 본 발명은, 상하 개구율에 차이가 나는 피드혼이 다수개 종횡으로 형성된 직각도파관 구조를 갖는 것을 특징으로 하는 3차원 MEMS 집광계를 제공하고자 한다.In order to achieve the above object, the present invention is to provide a three-dimensional MEMS condensing system characterized in that it has a rectangular waveguide structure formed with a plurality of vertical and horizontal feed horns having a difference in the vertical opening ratio.

상술한 목적을 달성하기 위하여 본 발명은, 반도체 기판에 전기 도금을 위한 시드층을 형성하는 공정과, 상기 시드층의 상부에 희생층을 제조하기 위해 감광수지를 도포하여 감광막을 형성하는 공정과, 상기 감광막의 상부에 패턴이 형성된 마스크를 위치시키고 빛을 조사하는 공정과, 빛의 전사에 의해 혼모양의 감광막 구조물을 형성하는 공정과, 전기도금을 하여 금속막의 구조물을 제조하는 공정과, CMP 공법으로 상기 금속막 구조물을 평탄화하는 공정과, 희생층인 상기 감광막을 제거하는 공정으로 구성됨을 특징으로 하는 3차원 MEMS 집광계의 제조방법을 제공하고자 한다.In order to achieve the above object, the present invention is a process for forming a seed layer for electroplating on a semiconductor substrate, a process of forming a photosensitive film by applying a photosensitive resin to produce a sacrificial layer on top of the seed layer, Placing a mask on which the pattern is formed on the photoresist and irradiating light; forming a hybrid photoresist structure by transferring light; and manufacturing a metal film structure by electroplating; and a CMP method. To provide a method of manufacturing a three-dimensional MEMS light collecting system, characterized in that consisting of the step of planarizing the metal film structure, and removing the photosensitive film as a sacrificial layer.

상술한 목적을 달성하기 위하여 본 발명은, 램프, 램프커버, 반사판, 도광판, 확산판, 상하 프리즘판, 보호판으로 이루어진 백라이트 유니트 상부에, 박막 트랜지스터가 하부에 소정거리 이격을 두고 배치된 액정판이 위치되는 디스플레이 소자에 있어서:In order to achieve the above object, the present invention provides a liquid crystal plate in which a thin film transistor is disposed at a lower distance from an upper portion of a backlight unit including a lamp, a lamp cover, a reflecting plate, a light guide plate, a diffusion plate, an upper and lower prism plate, and a protective plate. In the display device:

상기 보호판과 액정판 사이에 상하 개구율에 차이가 나는 피드혼이 형성된 집광계가 개재됨을 특징으로 하는 집광계를 이용한 디스플레이 소자를 제공하고자 한다.An object of the present invention is to provide a display device using a light collecting system, wherein a light collecting system having a feed horn having a difference in vertical opening ratio between the protective plate and the liquid crystal plate is interposed.

도 1a와 도 1b는 본 발명에 따른 디스플레이 소자용 3차원 MEMS 집광계의 개요도와 3차원적인 그림이다.1A and 1B are schematic and three-dimensional illustrations of a three-dimensional MEMS condenser for a display device according to the present invention.

도 2는 도 1의 집광계를 이용한 디스플레이 소자의 구성도이다.FIG. 2 is a diagram illustrating a display device using the light collecting system of FIG. 1.

도 3a 내지 도 3g는 본 발명에 따른 집광계의 제조 공정도이다.3A to 3G are manufacturing process diagrams of a light collecting system according to the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

1 : 램프2 : 램프커버1: lamp 2: lamp cover

3 : 반사판4 : 도광판3: reflection plate 4: light guide plate

5 : 확산판6 : 수평 프리즘판5: diffuser plate 6: horizontal prism plate

7 : 수직 프리즘판8 : 보호판7: vertical prism plate 8: protective plate

10 : 백라이트 유니트20 : 집광계10: backlight unit 20: condenser

30 : 박막 트랜지스터40 : 액정판30 thin film transistor 40 liquid crystal plate

50 : 글라스 기판60 : 시드층50 glass substrate 60 seed layer

61 : 반도체 기판62 : 마스크61 semiconductor substrate 62 mask

63 : 감광막64 : 금속막63: photosensitive film 64: metal film

65 : 피드혼65: Feedhorn

이하 본 발명을 첨부된 도면을 참고로 하여 설명하면 다음과 같다.Hereinafter, the present invention will be described with reference to the accompanying drawings.

도 1a는 본 발명에 따른 본 발명에 따른 디스플레이 소자용 3차원 MEMS 집광계의 개요도이고, 도 1b는 집광계의 3차원적인 그림을 나타낸다.1A is a schematic diagram of a three-dimensional MEMS condenser for a display device according to the present invention, and FIG. 1B shows a three-dimensional picture of the condenser.

도시된 바와 같이, 본 발명에 따른 집광계(20)는 직각도파관(Rectangular Waveguide)의 구조를 적용하되, 상하 개구율에 차이가 나는 피드혼(65)이 다수개 종횡으로 형성된다.As shown, the light collecting system 20 according to the present invention is applied to the structure of a rectangular waveguide (Rectangular Waveguide), the feed horn 65 is different in the vertical opening ratio is formed in a plurality of longitudinal and horizontal.

상기 피드혼(65)에서 상부 구멍의 지름(a)이 하부 구멍의 지름(b)보다 작게(a<b) 형성되어 상하 개구율에서 차이가 나게 된다.In the feed horn 65, the diameter (a) of the upper hole is formed smaller than the diameter (b) of the lower hole (a <b) to be different in the upper and lower aperture ratio.

상기 하부 개구율이 상부 개부율보다 크게 형성되고 이러한 개구율의 차이 원리로 인해 빛을 모으는 집광 역할을 하게 된다.The lower aperture ratio is larger than the upper aperture ratio, and due to the principle of difference in aperture ratio, it serves to collect light.

즉, 상기 백라이트 유니트(10)에서 발산되어 투과된 빛이 집광계(20)의 피드혼(65)을 통해 상부의 글라스 기판(50)에 도달하되, 개구율의 차이에 의해 집광계(20)의 벽체에 부딪친 빛은 반사되어 글라스 기판(50)에 도달하게 된다.That is, the light emitted and transmitted from the backlight unit 10 reaches the upper glass substrate 50 through the feed horn 65 of the light concentrating system 20, but due to the difference in aperture ratio, Light hitting the wall is reflected and reaches the glass substrate 50.

백라이트 유니트(10)의 램프에서 빛이 발산되어 여러 층을 통해 투과되고 투과된 빛은 상기 원리에 의해 집광계(20)의 피드혼(65)을 통해 액정판(40)을 투과함으로써 글라스 기판(50)에 도달하게 되고 이에 의해 박막 트랜지스터(30)가 차지하는 면적 때문에 빛이 100% 통과하지 못하고 차단되는 현상을 방지할 수 있게 된다.The light emitted from the lamp of the backlight unit 10 is transmitted through various layers, and the transmitted light passes through the liquid crystal plate 40 through the feed horn 65 of the light collecting system 20 according to the above principle. 50), thereby preventing the light from being blocked 100% due to the area occupied by the thin film transistor 30.

도 2는 상기 집광계를 디스플레이 소자에 적용한 예시도이다.2 illustrates an example in which the light collecting system is applied to a display device.

도시된 바와 같이, 백라이트 유니트(10)는 빛을 발산하는 램프(1)와 상기 램프의 측면에 빛을 산란시켜 균일화하는 도광판(4,light guide plate)이 부착 설치된다.As illustrated, the backlight unit 10 is provided with a lamp 1 for emitting light and a light guide plate 4 for scattering and homogenizing light on the side of the lamp.

상기 램프(1)는 일측이 개구되게 감싸는 반사체의 램프커버(2)로 둘러싸여진다.The lamp 1 is surrounded by a lamp cover 2 of a reflector that is wrapped so that one side is opened.

상기 도광판(4)의 상면에는 확산판(5,diffusion film)이 배치되며 하면에는 반사판(3)이 배치되어, 확산판(5)은 액정판(40,liquid crystal cell)으로 입사되는 빛의 균일도를 높여 주고, 반사판(3)은 램프(1)에서 발생된 빛의 외부 누출, 즉 도광판(4)의 하부로 빛이 누출되는 것을 방지한다.A diffuser film 5 is disposed on an upper surface of the light guide plate 4, and a reflector plate 3 is disposed on a lower surface of the light guide plate 4, and the diffuser plate 5 has uniformity of light incident on the liquid crystal plate 40. The reflection plate 3 prevents external leakage of light generated from the lamp 1, that is, light leaks to the lower portion of the light guide plate 4.

또한 상기 확산판(5)의 상부에는 빛의 진행 경로를 전환시키고, 그 휘도를 도출하기 위한 한쌍의 수직 및 수평 프리즘판(7,6,prism film)이 상하로 배치된다.In addition, a pair of vertical and horizontal prism plates 7, 6 and prism films are arranged above and below the light diffusion path 5 to switch the light propagation path and derive its brightness.

상기 프리즘판(6,7) 상부에 프리즘판(6,7)의 형상 보호를 위해 보호판(8,protection film)이 배치되고, 액정판(40)은 보호판(8)의 상부에 소정 거리를 두고 이격 배치된다.A protection film 8 is disposed on the prism plates 6 and 7 to protect the shape of the prism plates 6 and 7, and the liquid crystal plate 40 has a predetermined distance above the protection plate 8. Spaced apart.

상기 액정판(40)에는 하부에 일정거리 이격되어 배치된 박막 트랜지스터(30,thin film transistor)가 일정 면적을 차지하고, 액정판(40)과 보호판(8) 사이에는 본 발명에 따른 집광계(20,light collection plate)가 개재되되, 상기 박막 트랜지스터(30)의 직하부에 집광계(20)가 위치된다.In the liquid crystal panel 40, thin film transistors 30 spaced apart from each other by a predetermined distance occupy a predetermined area, and the light collecting system 20 according to the present invention is disposed between the liquid crystal plate 40 and the protective plate 8. The light collection plate is interposed, and the light collecting system 20 is positioned directly under the thin film transistor 30.

이와 같이 구성된 디스플레이 소자는 램프(1)에서 발사된 빛이 직접 또는 반사체의 램프커버(2)에 의해 반사되어 도광판(4)으로 입사되고, 이어서 확산판(5), 프리즘판(6,7) 및 집광계(20)의 피드혼(65)을 통해 액정판(40)으로 입사되어 소정의 화상이 형성된다.In the display element configured as described above, the light emitted from the lamp 1 is reflected directly or by the lamp cover 2 of the reflector and is incident on the light guide plate 4, followed by the diffusion plate 5 and the prism plates 6 and 7. And incident on the liquid crystal plate 40 through the feed horn 65 of the light collecting system 20 to form a predetermined image.

이때 박막 트랜지스터(30)의 면적 때문에 차단되는 빛은 상하 개구율이 차이에 의한 피드혼(65)의 집광원리로 인해 반사되어 모두 상부의 액정판(40)으로 입사된다.At this time, the light blocked due to the area of the thin film transistor 30 is reflected by the light condensing principle of the feed horn 65 due to the difference in the vertical opening ratio, and both are incident on the upper liquid crystal plate 40.

보다 더 상세하게는 램프(1)에서 나온 빛은 반사판(3)에 의해 외부로 노출이 방지된 채 도광판(4)으로 입사되어 고르게 산란되고, 이와 같이 산란된 빛은 확산판(5)에 의해 더욱 균일화된 후, 프리즘판(6,7)을 통과하면서 일정각으로 진행경로가 전환되고 보호판(8)을 지나 액정판(40)으로 입사된다.More specifically, the light emitted from the lamp 1 is incident on the light guide plate 4 and evenly scattered while being prevented from being exposed to the outside by the reflecting plate 3, and the scattered light is diffused by the diffuser plate 5. After being more uniform, the traveling path is switched at a predetermined angle while passing through the prism plates 6 and 7, and passes through the protective plate 8 to enter the liquid crystal plate 40.

이때 진행경로가 전환된 빛의 대부분은 반사없이 피드혼(65)을 통해 상부의 액정판(40)으로 입사되고 나머지 빛은 집광계(20)의 벽면에 반사되어 피드혼(65)을 통해 상부의 액정판(40)으로 입사되는 것에 의해 박막 트랜지스터(30)가 차지하는 면적때문에 입사되지 못하는 빛이 액정판(40)에 입사하게 된다.At this time, most of the light whose path is changed is incident to the upper liquid crystal panel 40 through the feed horn 65 without reflection, and the remaining light is reflected on the wall surface of the light concentrating system 20 and the upper part through the feed horn 65. When the light is incident on the liquid crystal plate 40, light that cannot be incident due to the area occupied by the thin film transistor 30 is incident on the liquid crystal plate 40.

도 3은 상기 집광계의 제조 공정을 나타낸는 도면이다.3 is a diagram illustrating a manufacturing process of the light collecting system.

도 3a에서, 반도체 기판(61)에 전기 도금을 위한 시드층(60,seed layer)이 형성된다.In FIG. 3A, a seed layer 60 for electroplating is formed on the semiconductor substrate 61.

도 3b에서 상기 시드층(60)의 상부에는 희생층을 제조하기 위해 감광수지를 도포하여 감광막(63)을 형성한다.In FIG. 3B, a photosensitive resin is coated on the seed layer 60 to form a sacrificial layer to form a photosensitive layer 63.

도 3c에서 상기 감광막(63)의 상부에 패턴이 형성된 마스크(62)를 위치시키고 빛을 조사한다.In FIG. 3C, a mask 62 having a pattern formed on the photoresist 63 is irradiated with light.

도 3d에서 전사(lithography)에 의해 혼모양의 감광막(63) 구조물을 형성한다.In FIG. 3D, a hybrid photosensitive film 63 structure is formed by lithography.

이때 감광막(63)은 빛에 노출함으로써 불용성(不溶性)이 되는 네거티브형과, 반대로 가용성(可溶性)이 되는 포지티브형이 있고, 본 발명은 네거티브형의 예이다.At this time, the photosensitive film 63 has the negative type which becomes insoluble by exposure to light, and the positive type which becomes soluble on the contrary, and this invention is an example of a negative type.

도 3e에서 전기도금(electro plating)을 하여 금속막(64)의 구조물을 제조하고, 도 3f에서 CMP(Cehmical Mechanical Polishing) 공법으로 상기 금속막(64) 구조물을 평탄화하는 연마를 행한다.In FIG. 3E, electroplating is performed to fabricate the structure of the metal film 64, and in FIG. 3F, polishing is performed to planarize the structure of the metal film 64 by the CMP (Cehmical Mechanical Polishing) method.

도 3g에서 건식 방법인 플라즈마 애셔(plasma asher)를 이용하여 감광막(63) 즉, 희생층을 제거하면, 도 2와 같은 상하 개구율이 다른 피드혼(65)의 집광계(20)의 구조물을 얻을 수 있다.When the photosensitive layer 63, that is, the sacrificial layer is removed by using a plasma asher in FIG. 3G, a structure of the light collecting system 20 of the feed horn 65 having different vertical opening ratios as shown in FIG. 2 is obtained. Can be.

상기 플라즈마를 이용하는 건식 방법은 반응실(chamber)에 넣고 고주파를 인가한 상태로 산소 기체를 주입하여, 반응실 내부에 생성되는 플라즈마의 영향으로 산소가 높은 에너지 준위로 여기되도록하여 감광막(63)을 산화시킨다.In the dry method using the plasma, oxygen gas is injected into a reaction chamber and a high frequency is applied, so that oxygen is excited at a high energy level under the influence of plasma generated inside the reaction chamber, thereby causing the photosensitive film 63 to be moved. Oxidize.

이 방법은 습식 방법보다 비싼 공정이지만, 화공약품을 취급할 필요를 덜어 주고 이후 세척 공정도 필요없다This method is more expensive than the wet method, but eliminates the need for handling chemicals and eliminates the need for subsequent cleaning.

이상에서와 같이 도 2에 나오는 디스플레이 소자 전체의 구조적인 요소에서 도 3의 제조 공정에 따라 제작된 도 1의 3차원 MEMS 집광계로, 디스플레이 소자의 백라이트 램프에서 발산되어 나오는 광을 글라스 기판까지 전달되는 경로에서 손실되는 광손실을 감소시켜서 광의 전체 효율을 향상시킬 수 있다.As described above, the three-dimensional MEMS condensing system of FIG. 1 manufactured according to the manufacturing process of FIG. 3 from the structural elements of the entire display element shown in FIG. 2 transmits the light emitted from the backlight lamp of the display element to the glass substrate. The overall efficiency of the light can be improved by reducing the light loss lost in the path.

이상에서 살펴본 바와 같이 본 발명에 의하면, 3차원 피드혼 MEMS 집광계의 상하 개구율 차이 원리로 인한 집광 역할로 광의 경로상에서 손실되는 광손실을 감소시켜서 결국 광의 전체 효율을 향상시킬 수 있고 종래 FPD(Flat Panel Display)소자의 단점인 비효율적인 빛의 투과도를 개선시킬 수 있는 효과가 있다.As described above, according to the present invention, it is possible to reduce the light loss lost on the path of light by condensing due to the principle of difference in the vertical opening ratio of the three-dimensional feed horn MEMS light collecting system, thereby improving the overall efficiency of light and improving the conventional FPD (Flat). Panel Display) It has the effect of improving the inefficient transmittance of light, which is a disadvantage of the device.

Claims (6)

상하 개구율에 차이가 나는 피드혼이 다수개 종횡으로 형성된 직각도파관 구조를 갖는 것을 특징으로 하는 3차원 MEMS 집광계.A three-dimensional MEMS condensing system, characterized in that it has a rectangular waveguide structure in which a plurality of feed horns having different vertical aperture ratios are formed vertically and horizontally. 청구항 1에 있어서, 상기 하부 개구율이 상부 개구율보다 큰 것을 특징으로 하는 3차원 MEMS 집광계.The 3D MEMS light collecting system of claim 1, wherein the lower aperture ratio is larger than the upper aperture ratio. 반도체 기판에 전기 도금을 위한 시드층을 형성하는 공정과,Forming a seed layer for electroplating on the semiconductor substrate, 상기 시드층의 상부에 희생층을 제조하기 위해 감광수지를 도포하여 감광막을 형성하는 공정과,Forming a photoresist film by applying a photoresist to form a sacrificial layer on top of the seed layer; 상기 감광막의 상부에 패턴이 형성된 마스크를 위치시키고 빛을 조사하는 공정과,Placing a mask on which the pattern is formed on the photoresist and irradiating light; 상기 빛의 전사에 의해 혼모양의 감광막 구조물을 형성하는 공정과,Forming a hybrid photosensitive film structure by the transfer of light; 전기도금을 하여 금속막의 구조물을 제조하는 공정과,Manufacturing a metal film structure by electroplating; CMP 공법으로 상기 금속막 구조물을 평탄화하는 공정과,Planarizing the metal film structure by a CMP method; 희생층인 상기 감광막을 제거하는 공정을,Removing the photosensitive film as a sacrificial layer, 포함하는 3차원 MEMS 집광계의 제조방법.Method for manufacturing a three-dimensional MEMS light collecting system comprising. 청구항 3에 있어서, 상기 감광막의 제거는 건식 방법인 플라즈마 얘셔를 이용함을 특징으로 하는 3차원 MEMS 집광계의 제조방법.The method of claim 3, wherein the photoresist is removed using a plasma insulator, which is a dry method. 램프, 램프커버, 반사판, 도광판, 확산판, 상하 프리즘판, 보호판으로 이루어진 백라이트 유니트 상부에, 박막 트랜지스터가 하부에 소정거리 이격을 두고 배치된 액정판이 위치되는 디스플레이 소자에 있어서:In a display element in which a liquid crystal plate in which a thin film transistor is disposed at a predetermined distance from a lower portion of a backlight unit including a lamp, a lamp cover, a reflecting plate, a light guide plate, a diffusion plate, an upper and lower prism plate, and a protective plate is positioned: 상기 보호판과 액정판 사이에 상하 개구율에 차이가 나는 피드혼이 형성된 집광계가 개재됨을 특징으로 하는 집광계를 이용한 디스플레이 소자.And a light collecting system having a feed horn having a difference in top and bottom aperture ratios between the protective plate and the liquid crystal plate. 청구항 5에 있어서, 상기 집광계가 박막 트랜지스터의 직하부에 위치됨을 특징으로 하는 집광계를 이용한 디스플레이 소자.The display device of claim 5, wherein the light collecting system is positioned directly under the thin film transistor.
KR1020010088281A 2001-12-29 2001-12-29 3D MEMS light collection plate, manufacturing method and display devices KR20030059420A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020010088281A KR20030059420A (en) 2001-12-29 2001-12-29 3D MEMS light collection plate, manufacturing method and display devices
JP2002209929A JP2003202567A (en) 2001-12-29 2002-07-18 Three-dimensional means condenser, its manufacturing method and liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010088281A KR20030059420A (en) 2001-12-29 2001-12-29 3D MEMS light collection plate, manufacturing method and display devices

Publications (1)

Publication Number Publication Date
KR20030059420A true KR20030059420A (en) 2003-07-10

Family

ID=27656299

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010088281A KR20030059420A (en) 2001-12-29 2001-12-29 3D MEMS light collection plate, manufacturing method and display devices

Country Status (2)

Country Link
JP (1) JP2003202567A (en)
KR (1) KR20030059420A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120046700A (en) * 2010-11-02 2012-05-10 후지필름 가부시키가이샤 Photosensitive resin composition, method for producing pattern, mems structure, method for producing the structure, method for dry etching, method for wet etching, mems shutter device, and image display apparatus
KR101684848B1 (en) * 2015-06-09 2016-12-12 (주)이미지스테크놀로지 A pressure sensing touch system on the device using display panel of based on liquid crystal display

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101614463B1 (en) 2009-11-05 2016-04-22 삼성디스플레이 주식회사 Display device using mems element and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0588021A (en) * 1991-09-25 1993-04-09 Nitto Denko Corp Light transmission body
JPH05249450A (en) * 1991-12-02 1993-09-28 Nec Corp Liquid crystal display
JPH07114014A (en) * 1993-10-18 1995-05-02 Sanyo Electric Co Ltd Liquid crystal display device
JPH08220519A (en) * 1995-02-14 1996-08-30 Matsushita Electric Ind Co Ltd Diffusion screen and liquid crystal display device using it
JP2000347129A (en) * 1999-06-08 2000-12-15 Sony Corp Projecting optical system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61107202A (en) * 1984-10-30 1986-05-26 Shimadzu Corp Semitransparent mirror
JPH0980464A (en) * 1995-09-13 1997-03-28 Toshiba Corp Liquid crystal display device
JP3393979B2 (en) * 1997-07-01 2003-04-07 松下電器産業株式会社 Image display panel, image display device, projection display device and viewfinder using the same
JPH11258595A (en) * 1998-03-10 1999-09-24 Citizen Watch Co Ltd Liquid crystal display device
JP3603656B2 (en) * 1999-03-29 2004-12-22 株式会社デンソー Method of manufacturing electrode substrate for display

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0588021A (en) * 1991-09-25 1993-04-09 Nitto Denko Corp Light transmission body
JPH05249450A (en) * 1991-12-02 1993-09-28 Nec Corp Liquid crystal display
JPH07114014A (en) * 1993-10-18 1995-05-02 Sanyo Electric Co Ltd Liquid crystal display device
JPH08220519A (en) * 1995-02-14 1996-08-30 Matsushita Electric Ind Co Ltd Diffusion screen and liquid crystal display device using it
JP2000347129A (en) * 1999-06-08 2000-12-15 Sony Corp Projecting optical system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120046700A (en) * 2010-11-02 2012-05-10 후지필름 가부시키가이샤 Photosensitive resin composition, method for producing pattern, mems structure, method for producing the structure, method for dry etching, method for wet etching, mems shutter device, and image display apparatus
KR101684848B1 (en) * 2015-06-09 2016-12-12 (주)이미지스테크놀로지 A pressure sensing touch system on the device using display panel of based on liquid crystal display

Also Published As

Publication number Publication date
JP2003202567A (en) 2003-07-18

Similar Documents

Publication Publication Date Title
TW517146B (en) Illumination device and method for manufacturing the same
US8264778B2 (en) Display substrate, method of manufacturing the same and electrowetting display panel having the display substrate
CN102540306B (en) Grating, liquid crystal display device and manufacture methods of grating and liquid crystal display device
US9195143B2 (en) Mask plate and exposing method
KR100990074B1 (en) Inclined exposure lithography system
JP2007101834A (en) Microlens manufacturing method, mask, microlens, spatial optical modulator and projector
KR20180035864A (en) Optical mask for optical alignment and optical alignment method
KR20030059420A (en) 3D MEMS light collection plate, manufacturing method and display devices
US7072010B2 (en) Manufacturing method of embossing pattern and reflective liquid crystal display device including the same
JP2007065611A (en) Prism sheet and backlight unit having same prism sheet and employed in liquid crystal display panel
JP2001059963A (en) Liquid crystal display element
US7323123B2 (en) Method of fabricating light-guide plate
KR100623030B1 (en) Fabrication method of metal wire grid polarizer for liquid crystal display on flexible substrate
KR101096711B1 (en) Direct Type Back Light
JP2006106687A (en) Polarization optical device and liquid crystal display module
JPH09185082A (en) Liquid crystal display device
KR20020022319A (en) Liquid crystal display device with microlens array and its manufacturing method
KR101266612B1 (en) Exposure apparatus
KR100806810B1 (en) A Mask Aligner
JP2010038929A (en) Display
KR101416168B1 (en) Photo mask for fabricating display device and stage system having the same
KR100305640B1 (en) Reflective Liquid Crystal Display
TW200925683A (en) Light guide plate, manufacturing method and application thereof
KR20010004408A (en) A reflective liquid crystal display and a manufacturing method thereof
KR20010086701A (en) method for forming light guide plate of LCD

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B601 Maintenance of original decision after re-examination before a trial
E801 Decision on dismissal of amendment
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20050211

Effective date: 20060630