KR20030019863A - Method for discriminating the viability of seeds using near infrared spectroscopy - Google Patents

Method for discriminating the viability of seeds using near infrared spectroscopy Download PDF

Info

Publication number
KR20030019863A
KR20030019863A KR1020020047566A KR20020047566A KR20030019863A KR 20030019863 A KR20030019863 A KR 20030019863A KR 1020020047566 A KR1020020047566 A KR 1020020047566A KR 20020047566 A KR20020047566 A KR 20020047566A KR 20030019863 A KR20030019863 A KR 20030019863A
Authority
KR
South Korea
Prior art keywords
seed
seeds
germination
wavelength
near infrared
Prior art date
Application number
KR1020020047566A
Other languages
Korean (ko)
Inventor
민태기
유관식
Original Assignee
민태기
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 민태기 filed Critical 민태기
Publication of KR20030019863A publication Critical patent/KR20030019863A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food

Abstract

PURPOSE: A method for discriminating the germinative power of a seed by using a near infrared spectroscopy is provided to obtain a high quality seed by discriminating a healthy seed from a degraded seed. CONSTITUTION: A reflectance spectrum of each seed is obtained by using a near infrared spectroscopy. The seed of which reflectance spectrum is obtained is sown to examine the germinative power of the seed. The reflectance spectrum and the germinative power of the seed are analyzed. The seeds are grouped, and the difference in the reflectance spectrum of each seed is analyzed. The quality of the seed is discriminated by using the partial least squares 2 method or the soft independent modeling of class analysis method.

Description

근적외선 분광광도계을 이용한 종자의 발아력 판별방법 {Method for discriminating the viability of seeds using near infrared spectroscopy}Method for discriminating seed germination using near infrared spectrophotometer {Method for discriminating the viability of seeds using near infrared spectroscopy}

본 발명은 근적외선을 이용하여 건전종자와 퇴화종자를 판별하는 방법에 관한 것이다. 더욱 상세하게는, 본 발명은 종자를 한 알 단위로 근적외선 분광광도계에서 1100 - 2500nm의 파장으로 조사(照射)하여 그 반사파장(스펙트럼)을 얻고 파장을 분석하여 건전하게 발아하는 종자와 그렇지 않는 종자를 판별하는 방법에 관한 것이다.The present invention relates to a method for discriminating healthy seeds and degenerated seeds using near infrared rays. More specifically, the present invention is a seed seed grain irradiated at a wavelength of 1100-2500nm in a near-infrared spectrophotometer to obtain its reflection wavelength (spectrum) and to analyze the wavelength and to germinate seeds that are not well germinated. It is about how to determine.

통상 근적외선을 이용하여 농산물, 약품, 석유화학, 토양 등에서 화학적인 조성을 분석하는 방법이 많이 이용되고 있다. 특히 많은 종자, 즉 밀, 귀리, 벼, 옥수수 및 조에서 단백질, 지방, 탄수화물 및 섬유소 등의 화학적인 조성을 분석하는 방법으로 근적외선이 많이 이용되고 있다. 그러나 종자품질을 평가하기 위하여 생리적인 특질, 특히 종자의 발아력을 측정하기 위한 방법으로 근적외선을 이용한 예는 없다.In general, a method of analyzing the chemical composition of agricultural products, drugs, petrochemicals, soil, etc. using near infrared rays is widely used. In particular, many seeds, such as wheat, oats, rice, corn, and crude, have been widely used as a method for analyzing the chemical composition of proteins, fats, carbohydrates, and fiber. However, there is no example of using near-infrared rays as a method for measuring the physiological characteristics, in particular, the germination power of seeds to evaluate seed quality.

지금까지 종자의 발아력을 검정하는 방법에는 생화학적인 방법으로서 테트라졸리움 테스트(tetrazolium test)와 전기전도도 측정(conductivity test) 등이 있으며, 비 파괴적인 방법으로는 퇴화종자에서 페놀물질인 시나핀(sinapine)이나 혹은 아미노산이 누출되는 원리를 이용하는 방법 등이 있다.To date, the germination of seeds has been tested by biochemical methods such as tetrazolium test and conductivity test. Non-destructive methods are phenolic sinapine in degenerative seeds. Or using the principle of leaking amino acids.

이때 테트라졸리움 테스트는 효소의 활성을 측정하는 방법으로서 종자를 절단하거나 침지하여야 하는 등 과정이 복잡하고 많은 시간을 요할 뿐 아니라 결과의 해석도 어려운 단점이 있다.At this time, the tetrazolium test is a method for measuring the activity of the enzyme, the process is complicated and requires a lot of time, such as cutting or immersing the seed has a disadvantage of difficult interpretation of the results.

또한 전기전도도 측정은 종자를 침지한 후 퇴화종자의 파괴된 세포막에서 나오는 전해질을 측정하는 방법인데 종자를 한 알 단위로 측정하기 어려워 주로 많은 종자를 침지하여 검정해야 하는 단점이 있다.In addition, the conductivity measurement is a method of measuring the electrolyte from the decomposed seed cell membrane after immersing the seed, it is difficult to measure the seed by a single unit, there is a disadvantage that mainly by soaking many seeds to test.

또한 퇴화종자에서 시나핀이나 단백질이 누출되는 원리를 이용하는 방법은종자코팅을 통하여 누출되는 물질을 흡착하여 발색하도록 처리한 후 분리하는 것으로서, 비 파괴적이긴 하나 여러 가지 전처리과정이 필요하다.In addition, the method of leaking cinnapine or protein from degenerated seeds is treated by separating and adsorbing the leaking material through seed coating, which is non-destructive but requires various pretreatment processes.

그러므로 본 발명은 상기한 단점을 해결하기 위한 것으로서, 종자를 파종하기 이전에 건전종자와 퇴화종자를 비 파괴적으로 판별하는 방법을 제공하는데 그 목적이 있다.Therefore, an object of the present invention is to provide a method for non-destructively discriminating healthy seeds and degenerated seeds before sowing seeds.

도 1은 본 발명의 방법에 의해 분광광도계에서 근적외선을 종자에 조사하는 것을 나타내는 모식도,BRIEF DESCRIPTION OF THE DRAWINGS The schematic diagram which shows that a seed irradiates a near-infrared ray with a spectrophotometer by the method of this invention,

도 2는 AOSA 규정에 의한 무 종자의 정상발아(A), 비정상발아(B, C) 그리고 불발아(죽은 종자, D)를 구별하여 나타내는 예시도,Figure 2 is an illustration showing the normal germination (A), abnormal germination (B, C) and non-germination (dead seed, D) of the seedless according to the AOSA regulations,

도 3은 삼차원 PCA 방법으로 분리된 발아종자(+)와 불발아종자( □)의 반사 파장의 차이를 나타내는 예시도,3 is an exemplary view showing the difference between the reflection wavelengths of germinated seeds (+) and ungerminated seeds (□) separated by a three-dimensional PCA method,

도 4는 삼차원 PCA 방법으로 분리된 정상발아종자(+)와 비정상발아종자( □)의 반사 파장의 차이를 나타내는 예시도이다.Figure 4 is an exemplary view showing the difference between the reflection wavelength of the normal germination seed (+) and abnormal germination seed (□) separated by a three-dimensional PCA method.

이러한 목적을 달성하기 위해 본 발명은 종자를 파종하기 전에 건전종자와 퇴화종자를 비 파괴적으로 판별하는 방법에 있어서, 근적외선 분광광도계(near infrared spectroscopy)에서 종자를 한 알 단위로 각 종자에 대한 반사파장(reflectance spectrum)을 얻는 단계; 반사파장을 얻은 종자를 파종하여 각각의 종자에 대한 발아력 검사 단계; 조사된 반사파장과 발아력을 비교하여 종자를 그룹으로 나누어 영상분석법으로 반사파장의 차이를 분석하는 단계; 및 반사파장의 차이가 확인되면 미지의 시료에 대하여 반사파장을 얻고 종자의 생리적 품질을 부분최소자승 2법 또는 소프트 인디펜던트 모델링 오브 클래스 아날로기법을 이용하여 판별하는 단계를 포함하여 이루어지는 것을 특징으로 한다.In order to achieve the above object, the present invention provides a method for nondestructively discriminating healthy seeds and degenerated seeds before seeding the seeds, and reflecting wavelength of each seed in a single grain unit in near infrared spectroscopy. obtaining a reflectance spectrum; Seeding the seed obtained the reflected wavelength germination power test step for each seed; Comparing the irradiated reflected wavelength with the germination force and dividing the seeds into groups to analyze the difference of the reflected wavelengths by image analysis; And when the difference in the reflected wavelengths is confirmed, obtaining the reflected wavelengths for the unknown sample and determining the physiological quality of the seeds using the partial least squares 2 method or the soft independent modeling of class analog technique. .

이와 같이 본 발명의 목적은 종자를 파종하기 전에 건전종자와 퇴화종자를 비 파괴적으로 판별하는 데 있어, 한 알 단위로 근적외선인 1100-2500nm의 파장을조사(照射)하고, 그 반사파장(reflectance spectrum)을 각 종자에서 얻은 다음, 건전발아종자와 그렇지 않은 종자에 대한 근적외선 반사파장을 PCA(principle component analysis) 등의 영상분석법을 이용하여 분석하고 반사파장의 차이가 확인되면 미지의 시료에 대하여 반사파장을 얻고 종자의 생리적 품질을 부분최소자승 2법 또는 소프트 인디펜던트 모델링 오브 클래스 아날로기법을 이용하여 판별함으로써 달성된다.As described above, an object of the present invention is to non-destructively discriminate healthy seeds and degenerated seeds before sowing seeds, and irradiate wavelengths of 1100-2500 nm, which are near infrared rays, on a grain basis, and reflect spectrum thereof. ) Is obtained from each seed, and then the near-infrared reflected wavelengths of the whole germinated seeds and the non-seed seeds are analyzed by image analysis such as PCA (principle component analysis). And the physiological quality of the seeds is determined by using the least-square 2 method or the soft independent modeling of class analog technique.

도 1은 본 발명의 방법에 의해 분광광도계에서 근적외선을 종자에 조사하는 것을 나타내는 모식도이다.BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows that a seed is irradiated with near-infrared in a spectrophotometer by the method of this invention.

본 발명에서 모노크로메이터(monochromator)는 입사광(入射光) 속에 있는 임의의 파장의 단색광만을 추출하는데 사용되는 단색화장치로서 NIR 소스, 구체(integrating sphere) 등과 함께 사용된다. 이에 의한 근적외선 분광광도계는 NIRSystem 5000(Foss Co.) 또는 동등 이상의 기기가 적절하다. 근적외선은 하부방향에서 수정유리판을 통과하여 상부방향으로 조사(照射)되는데, 각 종자의 반사파장의 오차를 줄이면서 정확한 수치를 얻기 위해서 각 종자는 수정유리판 위에서 항상 동일한 위치에 고정되도록 한다. 즉, 동종의 종자에서 동일한 면이 조사(照射)되도록 하는 것이 중요하다.In the present invention, a monochromator is a monochromator used to extract only monochromatic light of any wavelength in incident light, and is used with an NIR source, an integrating sphere, or the like. NIRSystem 5000 (Foss Co.) or equivalent instrument is suitable for the near infrared spectrophotometer. Near-infrared rays are irradiated upward through the crystal glass plate in the downward direction, so that each seed is always fixed at the same position on the crystal glass plate in order to obtain an accurate value while reducing the error of the reflection wavelength of each seed. That is, it is important to make the same surface irradiate in the same kind of seed.

이때 종자를 고정할 수 있는 장치는 두께가 약 2-4 mm인 6각형 철판(예컨대 각변이 7.5 x 5.5 x 5.5 x 2.5 x 2.5 x 4.0cm)을 사용하고, 중간부에 종자 크기의 구멍을 형성하여 유리판 위에 고정한다.At this time, a device capable of fixing the seed is a hexagonal iron plate having a thickness of about 2-4 mm (eg, 7.5 x 5.5 x 5.5 x 2.5 x 2.5 x 4.0 cm on each side), and forms a seed-sized hole in the middle part. To be fixed on the glass plate.

그러나 종자를 고정할 수 있는 장치는 종자의 종류에 따라 여러 가지로 변형하여 사용할 수 있다. 근적외선 분광광도계 역시 종자의 반사파장을 얻을 수 있는 여러 종류의 기기를 사용할 수 있다.However, the device that can fix the seed can be used in various ways depending on the type of seed. Near-infrared spectrophotometers can also be used with a variety of instruments to obtain the reflected wavelength of the seed.

본 발명의 첫 번째 단계로서, 상기한 6각형 철판의 구멍에 종자를 한 알씩 동일한 방향으로 넣은 후 종자의 반사파장을 얻도록 한다.As a first step of the present invention, seed seeds are put in the same direction one by one in the hole of the hexagonal iron plate to obtain the reflection wavelength of the seeds.

본 발명의 다음 단계로서, 상기 첫 단계를 거친 종자를 파종하고 실내에서 발아력 검사를 실시한다. 이때, 발아 및 불발아, 발아한 종자 중에 비정상묘나 정상묘의 구별은 미국 공식종자검사자협회(Association of Official Seed Analysis: AOSA)의 발아검사 규정을 적용한다. 즉, 11x11x4cm 크기의 플라스틱 용기에 10x10cm의 흡습지 2겹을 깔고 밑에서 계속 수분을 흡습하도록 하여 흡습지 위에 파종한다. 발아검사는 매일 실시하며, 더 이상 발아하지 않을 때의 발아상태를 최종발아로 보았다.As a next step of the present invention, the seed having passed through the first step is sown and germination tests are performed indoors. At this time, germination, ungermination, and germination of the seed or abnormal seed germination of the seed germination test rules of the Association of Official Seed Analysis (AOSA). That is, two layers of 10x10cm absorbent paper are placed in a 11x11x4cm plastic container, and the moisture is continuously soaked from the bottom to be seeded on the absorbent paper. The germination test was carried out daily, and the germination state when no longer germinated was considered as the final germination.

본 발명의 다음 단계에서 발아가 조사된 종자와 그 종자 각각의 근적외선 반사파장과의 관계를 분석하기 위하여서는 판별을 목적으로 하는 다변량 영상분석법들을 이용하였는데, 특히 1100-2500nm의 영역의 근적외선 스펙트럼을 주성분 분석법(principle component analysis: PCA)으로 만들어진 세 개의 주성분(principle component)의 축을 이용하여 삼차원으로 구도를 구성하고 각 시료들이 가장 잘 분리되는 조건을 찾아 판별하는 방법을 사용한다. 그 외 부분최소자승 판별법(discriminant partial least squares: PLS) 등으로 판별할 수도 있다.In the next step of the present invention, in order to analyze the relationship between the seed irradiated and the near infrared reflection wavelength of each seed, multivariate image analysis methods for the purpose of discrimination were used, in particular, the near-infrared spectrum of the region of 1100-2500nm. Three-dimensional composition is constructed using the axes of three principal components (principal component analysis, PCA), and the method of finding and determining the conditions under which each sample is best separated is used. In addition, it may be determined by discriminant partial least squares (PLS).

본 발명의 마지막 단계에서 미지의 종자의 발아력을 검정하기 위해서는 상기한 첫 단계에서처럼 종자의 근적외선 반사파장을 얻은 후 이미 분석 완료된 자료와비교하여 반사파장이 속하는 그룹을 찾아 컴퓨터를 이용하여 판별함으로써 매우 쉽게 종자의 특성을 판별할 수 있다. 상기 판별은 부분최소자승 2(Partial Least Squares 2; PLS2)법 또는 소프트 인디펜던트 모델링 오브 클래스 아날로기(Soft Independent Modeling of Class Analogy; SIMCA)법을 이용하여 이루어질 수 있다.In order to test the germination power of unknown seeds in the last step of the present invention, it is very easy to obtain the near-infrared reflection wavelength of the seed as in the first step and compare it with the data already analyzed to find the group to which the reflection wavelength belongs, Seed characteristics can be determined. The determination may be made using the Partial Least Squares 2 (PLS2) method or the Soft Independent Modeling of Class Analogy (SIMCA) method.

이와 같이 본 발명의 종자 발아력 판별방법은 향후 미지의 종자를 기계적으로 발아력을 판별하여 자동 선별하기 위한 매우 중요한 기초기술에 속하며, 종자를 전처리 하거나 기타의 어떠한 처리도 필요하지 않아 매우 간편하고 효율적이며 경제적인 방법인 것이다.As described above, the seed germination force discrimination method of the present invention belongs to a very important basic technology for automatically sorting and automatically sorting unknown seeds in the future, and does not require pretreatment or any other treatment, which is very simple, efficient and economical. It is a way.

이하, 본 발명의 구체적인 방법을 실시예를 들어 상세히 설명하지만 본 발명의 권리범위는 이들 실시 예에만 한정되는 것은 아니다.Hereinafter, the specific method of the present invention will be described in detail with reference to Examples, but the scope of the present invention is not limited only to these Examples.

실시예 1 : 근적외선 분광광도계를 이용한 발아종자와 불발아종자의 스펙트럼 파장간의 차이 확인Example 1 Confirmation of the Difference Between Spectral Wavelengths of Germinated Seeds and Ungerminated Seeds Using Near Infrared Spectrophotometer

1993년에 수확한 국내 재배종인 청수궁중 품종의 무 종자를 시료로 사용하였다. 무 종자의 근적외선 반사파장을 얻기 위하여 NIRSystem 5000(Foss Co.)의 근적외선 분광광도계에서 1100-2500nm의 파장영역을 2nm 씩 파장을 증가하도록 하여 전체 반사파장을 각각의 종자에서 얻었다. 이들 종자를 AOSA 발아검사 규정에 의한 방법으로 파종하여 발아 및 불발아, 또 발아된 종자 중에서 정상발아와 비정상발아를 구별하였다.(도 2)Radish seeds of Cheongsu Palace, a Korean cultivar harvested in 1993, were used as samples. In order to obtain near-infrared reflected wavelength of seeds, the total reflected wavelength was obtained from each seed by increasing the wavelength of 1100-2500nm by 2nm in NIRSystem 5000 (Foss Co.) near-infrared spectrophotometer. These seeds were sown by the method according to the AOSA germination test to distinguish between normal and abnormal germination among germinated and ungerminated seeds.

그 결과 총 571개의 무 종자에서 발아된 종자는 325개이었고, 발아되지 않은종자는 246개이었다. 발아된 종자 중에서 정상발아가 283개, 비정상발아가 42개로 구분되었다. 이러한 결과를 가지고 다변량 영상분석법의 하나인 주성분분석법(principle component analysis)을 이용하여 발아된 종자와 불발아된 종자의 반사파장을 분석하였다.As a result, a total of 325 seeds germinated from 571 radish seeds and 246 non-germinated seeds. Among the germinated seeds, normal germination was 283 and abnormal germination was 42. With these results, the reflected wavelengths of germinated and ungerminated seeds were analyzed using principal component analysis, one of multivariate image analysis.

분석 결과는 도 3과 같으며 파장의 그룹은 뚜렷한 차이를 나타냈다. 분석은 WIN ISI II프로그램으로 컴퓨터상에서 수행되었다. 이에 따라 발아되는 종자와 발아되지 않는 종자는 서로 다른 근적외선 반사파장을 나타냄을 알 수 있었다.The analysis results are shown in FIG. 3, and the group of wavelengths showed distinct differences. The analysis was performed on a computer with the WIN ISI II program. Accordingly, the germinated seeds and the non-germinated seeds exhibited different near infrared reflection wavelengths.

또한 발아된 종자 중에서 정상발아와 비정상발아에 대한 근적외선 반사파장은 도 4와 같이 매우 뚜렷하게 파장의 차이를 나타내어 종자의 생리적인 품질인 발아력을 근적외선의 반사파장 만으로 판별할 수 있다는 것을 확인하였다.In addition, the near-infrared reflected wavelengths for normal and abnormal germination among the germinated seeds showed very different wavelengths as shown in FIG. 4, and it was confirmed that the germination force, which is the physiological quality of the seeds, could be determined only by the reflected wavelength of near infrared rays.

즉, 종자의 생리적인 상태에 따라서 분광광도계의 특정 파장에서 흡수, 배음의 크기가 변화되므로 건전종자와 퇴화종자가 용이하게 판별된다.That is, since the absorption and harmonic amplitudes are changed at specific wavelengths of the spectrophotometer according to the physiological state of the seeds, healthy seeds and degenerate seeds are easily distinguished.

실시예 2 : 미지의 종자에 대한 발아력 판별 시험Example 2 germination power determination test for unknown seeds

근적외선 분광광도계를 이용하여 종자의 스펙트럼을 얻고 이들 스펙트럼에 대하여 다변량 영상분석법의 하나인 주성분분석법(principle component analysis)에서 발아종자와 불발아종자가 뚜렷이 파장의 차이가 나타나는 것을 확인하고 미지의 무 종자에 대하여 발아종자인지 불발아종자인지를 판별하는 시험을 하였다.Seed spectra were obtained using a near-infrared spectrophotometer, and the principal component analysis, which is one of the multivariate image analysis methods, showed that the germinated and non-germinated seeds showed distinct wavelength differences. A test was conducted to determine whether the seeds were germinated or non-germinated.

판별방법으로서는 스펙트럼 페턴 인식법인 Partial Least Squares 2(PLS2) 방법과 Soft Independent Modeling of Class Analogy(SIMCA)법을 이용하였다.Partial Least Squares 2 (PLS2) method and Soft Independent Modeling of Class Analogy (SIMCA) method were used for discrimination.

PLS2 방법은 WinISI II 프로그램을 이용하였고, SIMCA 법은 Chemo HN1100 프로그램을 이용하였다. 먼저 미지의 종자를 판별하기 위해서는 기지의 발아종자와 불발아 종자에 대한 스펙트럼의 특성을 상기 판별식에 의하여 검량식(모델)을 만든 후 이 검량식을 이용하여 미지의 종자가 발아종자인지 불발아 종자인지를 판별하게 된다. 검량식을 위하여 300개의 무 종자에서 한 알 단위로 스펙트럼을 측정하고 종자는 각각 파종하여 발아여부를 조사하였다. 측정된 스펙트럼은 미세구조를 들어나게 하기위한 방법으로 1차와 2차 미분하였고 미분하지 않은 스펙트럼(raw spectrum)을 포함하여 3개의 모델을 만들었다. 모델을 만드는 과정에서 스펙트럼 데이터로부터 기준치를 크게 벗어나는 시료들을 수회에 걸쳐 제거하고 판별력이 우수한 모델(training set)을 선정하여 판별에 이용하였다.The PLS2 method used the WinISI II program and the SIMCA method used the Chemo HN1100 program. First, in order to discriminate unknown seeds, a calibration formula (model) is created by the above-described discriminant for the known germinated seeds and ungerminated seeds. Determine if it is a seed. For calibration, the spectra were measured in units of 300 radish seeds, and each seed was sown and examined for germination. The measured spectra were first and second derivatives and three models including the raw spectra as a means of eliciting the microstructure. In the model making process, samples that deviated significantly from the spectral data were removed several times, and a training set with excellent discriminating power was selected and used for discrimination.

표 1은 PLS2 방법으로 판별한 결과이다. 미지의 시료를 판별대상(testing set)으로 하여 판별한 결과 스펙트럼을 미분할 수록 판별력의 정확도가 증가하였으나 83% 까지가 가장 우수한 정확도 이었다.Table 1 shows the results determined by the PLS2 method. As a result of discriminating unknown sample as a test set, the accuracy of discrimination power increased with differentiation of spectrum, but the best accuracy was up to 83%.

PLS2 방법으로 미지의 무 종자의 발아능 판별결과Determination of germination capacity of unknown radish seeds by PLS2 method 모델Model 미분differential 구분division 발아germination 불발아Germination system 정확도(%)accuracy(%) 1One 미분안함Undifferentiated 발아germination 100100 4545 145145 6969 불발아Germination 00 5555 5555 5555 system 100100 100100 200200 22 1차 미분1st derivative 발아germination 100100 3131 131131 7676 불발아Germination 00 6969 6969 6969 system 100100 100100 200200 33 2차 미분2nd derivative 발아germination 100100 2121 121121 8383 불발아Germination 00 7979 7979 7979 system 100100 100100 200200

또 표 2 에서와 같이 SIMCA방법에 의하여 판별한 결과 1차미분한 스펙트럼을 이용할 경우 발아종자를 91%, 불 발아종자를 90%까지 판별할 수 있었다. 따라서 위의 두가지 판별방법 중에서 SIMCA 방법이 판별능력이 더 우수하였다.As shown in Table 2, as a result of the SIMCA method, when the first differential spectrum was used, it was possible to distinguish germination seeds by 91% and fire germination seeds by 90%. Therefore, the SIMCA method outperformed the two discrimination methods.

SIMCA 방법으로 미지의 무 종자의 발아능 판별결과Germination capacity of unknown radish seeds by SIMCA method 모델Model 미분differential 구분division 발아germination 불발아Germination system 정확도(%)accuracy(%) 1One 미분안함Undifferentiated 발아germination 100100 2424 124124 8181 불발아Germination 00 7676 7676 7676 system 100100 100100 200200 22 1차 미분1st derivative 발아germination 100100 1010 110110 9191 불발아Germination 00 9090 9090 9090 system 100100 100100 200200 33 2차 미분2nd derivative 발아germination 100100 3434 134134 7575 불발아Germination 00 6666 6666 6666 system 100100 100100 200200

이와 같이 미지의 종자에 대하여 근적외선 스펙트럼으로 페턴인식법을 이용하여 판별식의 모델을 이용하면 종자의 발아능을 신속, 정확하고 비파괴적으로 구분할 수 있다는 가능성을 확인하였다. 또한 앞으로 실제로 적용하기위해서 많은 시료 량으로써 정확한 판별식(training set)을 만들어 많은 변량을 수용하는 정성적인 모델을 확보한다면 더 정확한 정확도로서 판별할 수 있을 것이다.In this way, it was confirmed that the seed germination ability can be quickly, accurately and non-destructively classified using the pattern recognition method using the Peton recognition method in the near-infrared spectrum of unknown seeds. In addition, if a qualitative model that accommodates a large number of variables is made by making an accurate training set with a large amount of sample for practical application in the future, it may be determined with more accurate accuracy.

이상의 실시예를 통하여 설명한 바와 같이, 본 발명은 종자를 파종 전에 건전종자와 퇴화종자로 판별하는 방법에 관한 것으로서 근적외선 반사파장이 발아력에 따라 다르게 나타남을 이용하여 종자의 발아력을 성공적으로 판별할 수 있는 방법을 제공할 수 있는 효과가 있다.As described through the above embodiments, the present invention relates to a method for discriminating between healthy seeds and degenerated seeds before sowing seeds, and the near-infrared reflected wavelength is different depending on the germination power, and thus the seed germination power can be successfully determined. It has the effect of providing a method.

또한 종래의 어떠한 방법보다도 비 파괴적이고 간편하며 경제적으로 신속하게 종자의 생리적인 품질을 판별하는 방법이며 향후 기계적으로 종자를 자동 선별할 수 있도록 하는 기초기술을 제공할 수 있어 종자산업 상 매우 유용하게 응용될 수 있다.In addition, it is a non-destructive, simple, and economical method to determine the physiological quality of seeds faster than any conventional method, and it is very useful for the seed industry because it can provide the basic technology to automatically sort seeds in the future. Can be.

본 발명은 기재된 실시예에 한정되는 것은 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음은 이 기술의 분야에서 통상의 지식을 가진 자에게 자명하다. 따라서 그러한 변형예 또는 수정예들은 본 발명의 특허청구범위에 속한다 해야 할 것이다.It is apparent to those skilled in the art that the present invention is not limited to the described embodiments, and that various modifications and variations can be made without departing from the spirit and scope of the present invention. Therefore, such modifications or variations will have to belong to the claims of the present invention.

Claims (4)

종자를 파종하기 전에 건전종자와 퇴화종자를 비 파괴적으로 판별하는 방법에 있어서,In the method of non-destructively discriminating healthy seeds and degenerated seeds before sowing, 근적외선 분광광도계(near infrared spectroscopy)에서 종자를 한 알 단위로 각 종자에 대한 반사파장(reflectance spectrum)을 얻는 단계;Obtaining a reflection spectrum for each seed in a unit of seed in a near infrared spectroscopy; 반사파장을 얻은 종자를 파종하여 각각의 종자에 대한 발아력 검사 단계;Seeding the seed obtained the reflected wavelength germination power test step for each seed; 조사된 반사파장과 발아력을 비교하여 종자를 그룹으로 나누어 영상분석법으로 반사파장의 차이를 분석하는 단계; 및Comparing the irradiated reflected wavelength with the germination force and dividing the seeds into groups to analyze the difference of the reflected wavelengths by image analysis; And 반사파장의 차이가 확인되면 미지의 시료에 대하여 반사파장을 얻고 종자의 생리적 품질을 판별하는 단계를 포함하여 이루어지는 것을 특징으로 하는 근 적외선을 이용한 종자의 발아력 판별방법.When the difference in the reflected wavelength is confirmed, the method for determining the germination of the seed using near infrared rays, characterized in that it comprises the step of obtaining the reflection wavelength for the unknown sample and determining the physiological quality of the seed. 제 1항에 있어서, 상기 근적외선 분광광도계는 1100nm-2500nm 범위의 파장으로 스케닝(scanning)하여 반사파장을 얻는 것을 특징으로 하는 근 적외선을 이용한 종자의 발아력 판별방법.The method of claim 1, wherein the near-infrared spectrophotometer is scanned to a wavelength in the range of 1100 nm to 2500 nm to obtain a reflected wavelength. 제 1항에 있어서, 상기 반사파장의 비교 및 분석은 컴퓨터상에서 영상분석을 할 수 있는 프로그램에 의해 수행되는 것을 특징으로 하는 근 적외선을 이용한 종자의 발아력 판별방법.The method of claim 1, wherein the comparison and analysis of the reflected wavelengths is performed by a program capable of image analysis on a computer. 제 1항에 있어서, 상기 종자의 생리적 품질을 판별하기 위한 방법으로는 부분최소자승 2(Partial Least Squares 2; PLS2)법 또는 소프트 인디펜던트 모델링 오브 클래스 아날로기(Soft Independent Modeling of Class Analogy; SIMCA)법을 사용함을 특징으로 하는 근 적외선을 이용한 종자의 발아력 판별방법.The method of claim 1, wherein the method for determining the physiological quality of the seeds is based on Partial Least Squares 2 (PLS2) or Soft Independent Modeling of Class Analogy (SIMCA). Seed germination of seeds using near infrared rays, characterized in that the method is used.
KR1020020047566A 2001-08-30 2002-08-12 Method for discriminating the viability of seeds using near infrared spectroscopy KR20030019863A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020010052914 2001-08-30
KR20010052914 2001-08-30

Publications (1)

Publication Number Publication Date
KR20030019863A true KR20030019863A (en) 2003-03-07

Family

ID=27721629

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020047566A KR20030019863A (en) 2001-08-30 2002-08-12 Method for discriminating the viability of seeds using near infrared spectroscopy

Country Status (1)

Country Link
KR (1) KR20030019863A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101011575B1 (en) * 2010-04-13 2011-01-27 경북대학교 산학협력단 Non invasive method and apparatus for selecting superior seed
KR101033440B1 (en) * 2010-12-14 2011-05-09 경북대학교 산학협력단 Non invasive methods and apparatus for detection of cucumber seeds contaminated with virus
KR101341815B1 (en) * 2012-12-04 2014-01-06 대한민국 Screening devices of seeds using hyperspectral image processing
KR101509052B1 (en) * 2013-05-02 2015-04-08 대한민국 Method of predicting seed viability
WO2016204350A1 (en) * 2015-06-16 2016-12-22 Republic Of Korea(Management : Rural Development Administration) Method for measurement of preharvest sprouting damaged grain using any one or more of the total dissolved solids and electric conductivity in wheat
KR102291771B1 (en) * 2020-06-23 2021-08-19 강원대학교산학협력단 Non-destructive Determination Method For Plant Seed Germination And Growth Using Near-Infrared Absorption Spectrum
KR20210119927A (en) * 2019-04-30 2021-10-06 한국식품연구원 Prediction System of Germination Rate of Wheat and Prediction Method of Germination Rate of Wheat using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63235849A (en) * 1987-03-24 1988-09-30 Satake Eng Co Ltd Evaluation of quality of rice
JPS6454253A (en) * 1987-08-25 1989-03-01 Satake Eng Co Ltd Evaluation of taste of rice
JPH05107180A (en) * 1991-10-17 1993-04-27 Iseki & Co Ltd Rice quality analyzer
JPH09288056A (en) * 1996-04-23 1997-11-04 Nireco Corp Method and apparatus for measurement of food taste value of rice
JPH11173982A (en) * 1997-12-15 1999-07-02 Daiken Iki Kk Method and apparatus for measuring concentration of protein in serum
US6080950A (en) * 1996-05-02 2000-06-27 Centrum Voor Plantenveredelings Method for determining the maturity and quality of seeds and an apparatus for sorting seeds

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63235849A (en) * 1987-03-24 1988-09-30 Satake Eng Co Ltd Evaluation of quality of rice
JPS6454253A (en) * 1987-08-25 1989-03-01 Satake Eng Co Ltd Evaluation of taste of rice
JPH05107180A (en) * 1991-10-17 1993-04-27 Iseki & Co Ltd Rice quality analyzer
JPH09288056A (en) * 1996-04-23 1997-11-04 Nireco Corp Method and apparatus for measurement of food taste value of rice
US6080950A (en) * 1996-05-02 2000-06-27 Centrum Voor Plantenveredelings Method for determining the maturity and quality of seeds and an apparatus for sorting seeds
JPH11173982A (en) * 1997-12-15 1999-07-02 Daiken Iki Kk Method and apparatus for measuring concentration of protein in serum

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101011575B1 (en) * 2010-04-13 2011-01-27 경북대학교 산학협력단 Non invasive method and apparatus for selecting superior seed
WO2011129526A2 (en) * 2010-04-13 2011-10-20 경북대학교 산학협력단 Noninvasive method and apparatus for screening high-quality seeds
WO2011129526A3 (en) * 2010-04-13 2012-01-26 경북대학교 산학협력단 Noninvasive method and apparatus for screening high-quality seeds
US9513217B2 (en) 2010-04-13 2016-12-06 Kyungpook National University Industry-Academic Cooperation Foundation Non-invasive method and apparatus for screening high-quality seeds
KR101033440B1 (en) * 2010-12-14 2011-05-09 경북대학교 산학협력단 Non invasive methods and apparatus for detection of cucumber seeds contaminated with virus
KR101341815B1 (en) * 2012-12-04 2014-01-06 대한민국 Screening devices of seeds using hyperspectral image processing
KR101509052B1 (en) * 2013-05-02 2015-04-08 대한민국 Method of predicting seed viability
WO2016204350A1 (en) * 2015-06-16 2016-12-22 Republic Of Korea(Management : Rural Development Administration) Method for measurement of preharvest sprouting damaged grain using any one or more of the total dissolved solids and electric conductivity in wheat
KR20210119927A (en) * 2019-04-30 2021-10-06 한국식품연구원 Prediction System of Germination Rate of Wheat and Prediction Method of Germination Rate of Wheat using the same
KR102291771B1 (en) * 2020-06-23 2021-08-19 강원대학교산학협력단 Non-destructive Determination Method For Plant Seed Germination And Growth Using Near-Infrared Absorption Spectrum

Similar Documents

Publication Publication Date Title
Wang et al. Development of multi-cultivar models for predicting the soluble solid content and firmness of European pear (Pyrus communis L.) using portable vis–NIR spectroscopy
McGlone et al. Vis/NIR estimation at harvest of pre-and post-storage quality indices for ‘Royal Gala’apple
Cayuela Vis/NIR soluble solids prediction in intact oranges (Citrus sinensis L.) cv. Valencia Late by reflectance
CN102179375B (en) Nondestructive detecting and screening method based on near-infrared for crop single-grain components
Antonucci et al. Non-destructive estimation of mandarin maturity status through portable VIS-NIR spectrophotometer
Shao et al. Visible/near infrared spectrometric technique for nondestructive assessment of tomato ‘Heatwave’(Lycopersicum esculentum) quality characteristics
Lu et al. A near–infrared sensing technique for measuring internal quality of apple fruit
He et al. Nondestructive determination of tomato fruit quality characteristics using VIS/NIR spectroscopy technique
Magwaza et al. Assessment of rind quality of ‘Nules Clementine’mandarin fruit during postharvest storage: 2. Robust Vis/NIRS PLS models for prediction of physico-chemical attributes
Li et al. Pears characteristics (soluble solids content and firmness prediction, varieties) testing methods based on visible-near infrared hyperspectral imaging
CN108663339A (en) Corn online test method of going mouldy based on spectrum and image information fusion
Shenderey et al. NIRS detection of moldy core in apples
WO2005111583A1 (en) Method for nondestructively examining component of vegetable or the like by near-infrared spectroscopy and its device
US20210247318A1 (en) Non-Destructive Detection of Egg Freshness Based on Raman Spectroscopy
Delwiche Measurement of single-kernel wheat hardness using near-infrared transmittance
JP2019503490A (en) Spectroscopic analysis method and apparatus using multiple processing of infrared and fluorescent spectral data
KR100433263B1 (en) non-destructive analysis method of one seed grain by near infrared reflectance spectroscopy
CN108169168A (en) Test and analyze rice grain protein content mathematical model and construction method and application
KR20030019863A (en) Method for discriminating the viability of seeds using near infrared spectroscopy
Temma et al. Measuring the sugar content of apples and apple juice by near infrared spectroscopy
CN107314985A (en) A kind of method that utilization near infrared spectrum detects rape stem content of cellulose
KR100287296B1 (en) Soil composition measuring method and measuring device
CN107314986A (en) A kind of method that utilization near infrared spectrum detects rape stem soluble sugar content
Fu et al. Discrimination of pear varieties using three classification methods based on near-infrared spectroscopy
Saenphon et al. Total soluble solids, dry matter content prediction and maturity stage classification of durian fruit using long-wavelength NIR reflectance

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
E801 Decision on dismissal of amendment
B601 Maintenance of original decision after re-examination before a trial
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20050325

Effective date: 20061130