KR200204240Y1 - Air cleaner using the ferroelectric semiconductor - Google Patents

Air cleaner using the ferroelectric semiconductor Download PDF

Info

Publication number
KR200204240Y1
KR200204240Y1 KR2020000016606U KR20000016606U KR200204240Y1 KR 200204240 Y1 KR200204240 Y1 KR 200204240Y1 KR 2020000016606 U KR2020000016606 U KR 2020000016606U KR 20000016606 U KR20000016606 U KR 20000016606U KR 200204240 Y1 KR200204240 Y1 KR 200204240Y1
Authority
KR
South Korea
Prior art keywords
ferroelectric
ferroelectric semiconductor
air
semiconductors
coating film
Prior art date
Application number
KR2020000016606U
Other languages
Korean (ko)
Inventor
안길홍
위승용
Original Assignee
주식회사코리아크린에어시스템
안길홍
위승용
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사코리아크린에어시스템, 안길홍, 위승용 filed Critical 주식회사코리아크린에어시스템
Application granted granted Critical
Publication of KR200204240Y1 publication Critical patent/KR200204240Y1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/4245Means for power supply or devices using electrical power in filters or filter elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Treating Waste Gases (AREA)
  • Water Supply & Treatment (AREA)

Abstract

본 고안은 강유전성 반도체를 이용한 공기정화장치에 관한 것이다.The present invention relates to an air purifier using ferroelectric semiconductor.

공기를 정화하기 위한 필터 정화 방법은 먼지등의 이물질은 제거할 수 있으나 유해 가스 등은 제대로 제거하는 것이 곤란하며, 반도체성 물질인 산화티타늄을 촉매로 사용하여 열을 가하게되면 반응이 일어나 공기중의 유독성 유기물, 미연소 탄화수소 화합물 등을 흡착 분해하는 작용을 하도록 하는 방식이 이용되고 있으나 열을 가하는 촉매 연소장치는 비대화와 유지비용이 고가로 되는 문제점이 있었던 것이다.Filter purifying method for purifying air can remove foreign substances such as dust, but it is difficult to remove harmful gas properly. When heat is applied by using titanium oxide, a semiconducting substance, as a catalyst, a reaction occurs and A method of adsorbing and decomposing toxic organic substances, unburned hydrocarbon compounds, and the like has been used, but a catalytic combustion device that applies heat has a problem of high cost and maintenance costs.

본 고안은 강유전성 반도체를 금속과 접합함으로써 반도체와 금속간의 에너지 준위차를 적용하여 교류 전기에너지를 에너지원으로 사용함으로써 상온, 상압하에서 강유전성 반도체의 표면에 전자-정공쌍을 형성시켜 밀폐된 공간에서도 산화환원 반응범위에 걸쳐 효율적인 표면반응이 일어나게 한 것으로, 금속 소재에 강유전성 반도체 코팅막을 형성하여 교류 전압을 인가하여 전기에너지를 사용할 수 있는 강유전성 반도체 코팅막을 이용한 환경오염물질 제거장치를 제조하는 것을 특징으로 한다.The present invention applies ferroelectric semiconductors to metals by applying energy level difference between semiconductors and metals, and uses alternating electrical energy as an energy source to form electron-hole pairs on the surface of ferroelectric semiconductors under normal temperature and atmospheric pressure to oxidize them even in confined spaces. Efficient surface reactions occur over a range of reduction reaction, characterized in that to form a ferroelectric semiconductor coating film on a metal material by applying an alternating current voltage to produce an environmental pollutant removal device using a ferroelectric semiconductor coating film that can use electrical energy. .

Description

강유전성 반도체를 이용한 공기정화장치{Air cleaner using the ferroelectric semiconductor}Air cleaner using ferroelectric semiconductors {Air cleaner using the ferroelectric semiconductor}

본 고안은 강유전성 반도체를 이용한 공기정화장치에 관한 것으로 상세하게는 실내 공기정화 및 유해 가스 등이 발생되는 산업 현장에서의 공기 정화를 위하여 강유전성 반도체를 금속과 접합 코팅하여 반응장치를 구성하고 이를 공기정화장치에 장착 적용함으로써 전기를 반응 에너지로 사용하여 비용절감과 효율증대 및 경량, 단순화와 대용량, 고농도의 신속한 처리가 가능하면서도 안전성 등이 향상된 공기정화장치를 제공하기 위한 것이다.The present invention relates to an air purifier using ferroelectric semiconductor, and more specifically, to purify the air in an industrial site where indoor air purification and harmful gas are generated, the ferroelectric semiconductor is bonded and coated with a metal to construct a reaction device, and the air purifier It is intended to provide an air purifier with improved safety and cost reduction, efficiency increase, light weight, simplification, large capacity, high concentration, and rapid processing by using electricity as a reactive energy.

주지하는 바와 같이 공기를 정화하기 위한 장치는 수많은 종류가 개발 사용되고 있는 것으로 대개는 필터를 이용하는 방법을 많이 사용하고 있으나, 필터를 이용하는 방법은 먼지등의 이물질은 제거할 수 있으나 유해 가스나 중금속 가스와 같은 극미세 입자를 갖는 기체는 제대로 여과하는 것이 곤란하며, 보다 진보된 방법으로 프라즈마 발생장치로 태우거나 전자빔을 발생시키는 방법들이 알려져 있다.As is well known, many types of devices for purifying air have been developed and used. Generally, a filter is used. However, the filter is used to remove foreign substances such as dust, Gases with the same ultrafine particles are difficult to filter properly, and more advanced methods are known for burning them with plasma generators or generating electron beams.

그러나, 상기한 방법들도 오염된 공기를 근본적으로 정화하기에는 미흡하였으며, 또다른 방법으로, 반도체성 물질인 산화티타늄을 촉매로 사용하여 열을 가하게되면 반응이 일어나 공기중의 유독성 유기물, 미연소 탄화수소 화합물 등을 흡착 분해하는 작용을 하도록 하는 방법이 이용되고 있으나 열을 가하는 촉매 연소장치는 비대화와 유지비용이 고가로 되는 문제점이 있었던 것으로 그 문제점에 대하여 보다 구체적으로 설명하면 다음과 같다.However, the above-mentioned methods are also insufficient to fundamentally clean the polluted air. In another method, when a heat is applied by using a semiconductor material, titanium oxide, as a catalyst, a reaction occurs, causing toxic organic substances and unburned hydrocarbons in the air. A method of adsorbing and decomposing a compound and the like is used, but a catalytic combustion device that applies heat has a problem that the enlargement and maintenance costs become expensive. The problem will be described in more detail as follows.

통상적으로 반도체성 물질들은 에너지 밴드갭 이상의 에너지를 흡수하면 전도전자가 여기되어(excited) 가전자대(valence band)로 부터 전도대(conduction)로 전도전자가 이동하여 가전자대에는 정공(positive hole)을 남기고 전도대에는 전자가 생성되어 전자-정공쌍(electron-hole pair)을 형성한다. 이때 전기장이 인가된 반도체의 전자-정공쌍의 거동은 캐리어의 이동수명을 연장시켜 재결합을 지연시키며 생성된 전자-정공쌍이 화합물과의 반응에 참여하게 된다.In general, semiconducting materials absorb conduction energy above the energy bandgap, and the conduction electrons are excited, and the conduction electrons move from the valence band to the conduction band, leaving positive holes in the valence band. Electrons are generated in the conduction band to form electron-hole pairs. At this time, the behavior of the electron-hole pair of the semiconductor to which the electric field is applied prolongs the life of the carrier to delay recombination, and the generated electron-hole pair participates in the reaction with the compound.

이러한 반도체성 물질중에서 음이온 부족형 비화학 양론성 전단구조를 가진 산화티타늄은 촉매로 사용할 수 있는 효과적인 물질로써 300℃ 이상의 열에너지를 흡수하면 전도전자가 여기되어 전자-정공쌍이 형성된다. 이렇게 여기된 산화티타늄은 그 자신은 용출됨이 없이 정공은 강력한 산화제인 OH 라디칼을 생성하여 오염물질을 분해하는 산화반응에 참여하고, 전자는 환원반응에 활용된다.Among these semiconducting materials, titanium oxide having an anion-deficient non-stoichiometric shear structure is an effective material that can be used as a catalyst and when electrons absorb heat energy of 300 ° C. or higher, electron-hole pairs are formed. The titanium oxide thus excited does not elute itself, but the hole participates in an oxidation reaction that generates OH radicals, a powerful oxidizing agent, to decompose contaminants, and the electron is used for a reduction reaction.

따라서, 촉매로써 산화티타늄은 대기에 포함된 유독성 유기물, 미연소 탄화수소 화합물 등을 흡착하여 CO2+ H2O + Mineral acids로 분해한다.Therefore, as a catalyst, titanium oxide adsorbs toxic organic substances, unburned hydrocarbon compounds, etc. contained in the atmosphere. Decomposes with CO 2 + H 2 O + Mineral acids.

또한, 산화티타늄 촉매는 살균 및 항균, 소취 및 탈취 등의 특성으로 인하여 각종 산업분야에서 광범위하게 이용된다.In addition, titanium oxide catalysts are widely used in various industrial fields due to characteristics such as sterilization and antibacterial, deodorization and deodorization.

종래의 방법은 반응을 일으키기 위하여서는 통상 열에너지를 제공하여 준다. 그러나 이러한 열에너지의 공급에는 화재 및 폭발의 위험성이 동반된다.Conventional methods usually provide thermal energy to cause a reaction. However, this supply of thermal energy carries a risk of fire and explosion.

따라서, 현실적으로 산업현장에서 적용하기에는 여러 가지 제약조건이 많게 된다. 즉, 열에너지의 공급문제, 코팅의 도막두께, 설치장소의 환경적 요인, 설치비용 및 설치 시스템의 구조상의 문제 등 여러 가지 제약조건들이 있음으로 인하여 촉매 반응의 우수한 효과에 비하여 실제 산업현장에서의 적용은 미미한 실정이다.Therefore, in reality, there are many constraints to apply in the industrial field. In other words, due to various constraints such as thermal energy supply problem, coating thickness of coating, environmental factor of installation location, installation cost and structural problem of installation system, application in actual industrial field compared to excellent effect of catalytic reaction Is insignificant.

본 고안은 이와 같은 제결점을 감안 해결하기 위하여 안출된 것으로서, 강유전성 반도체를 금속과 접합함으로써 반도체와 금속간의 에너지 준위차를 적용하여 교류 전기에너지를 에너지원으로 사용함으로써 상온, 상압하에서 강유전성 반도체의 표면에 전자-정공쌍을 형성시켜 밀폐된 공간에서도 산화환원 반응범위에 걸쳐 효율적인 표면반응이 일어나게 한 것이다.The present invention was devised to solve the above-mentioned drawbacks. The ferroelectric semiconductor is bonded to a metal to apply an energy level difference between the semiconductor and the metal to use alternating electrical energy as an energy source. The formation of electron-hole pairs in the structure allows efficient surface reactions to occur over a range of redox reactions, even in closed spaces.

본 고안의 다른 목적은 구조의 경량, 단순화를 이룰 수 있으며, 대용량, 고농도의 신속한 처리가 가능한 강유전성 반도체 코팅막에 의한 환경오염물질 제거장치를 제공함에 특징이 있는 것이다.Another object of the present invention is to provide a device for removing environmental pollutants by ferroelectric semiconductor coating film that can achieve a light weight, simplicity of structure, and a large capacity, high concentration and rapid treatment.

도 1은 본 고안에 적용된 강유전성 반도체 코팅막의 제조 공정도1 is a manufacturing process diagram of the ferroelectric semiconductor coating film applied to the present invention

도 2는 본 고안 코팅막이 형성된 강유전성 반도체를 이용한 공기정화 반응2 is an air purification reaction using a ferroelectric semiconductor having a coating film of the present invention

장치의 측 단면도Side section of the device

도 3은 본 고안 공기정화 반응장치의 일부 분해 사시도3 is a partially exploded perspective view of the present invention air purification reactor

도 4은 본 고안의 공기정화 반응장치가 장착된 공기정화장치를 보인 전체 개Figure 4 is a whole dog showing an air purifier equipped with an air purifying reactor of the present invention

략도Schematic

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

1 - 공기정화 반응장치 2 - 강유전성 반도체 판1-Air Purification Reactor 2-Ferroelectric Semiconductor Plate

3 - 덕트 4 - 전원선3-duct 4-power line

5 - 송풍 팬 11 - 공기정화장치5-Blower fan 11-Air purifier

12 - 연돌 13 - 분무 냉각탑12-stack 13-spray cooling tower

14 - 연통로 15 - 부산물 회수기14-Yeontong-Ro 15-By-Product Recovery Machine

도 1은 본 고안 코팅막이 형성된 강유전성 반도체를 이용한 공기정화 반응장치(1)의 측 단면도이다.1 is a side cross-sectional view of an air purification reactor 1 using a ferroelectric semiconductor having a coating film of the present invention.

본 고안에 적용된 강유전성 반도체 판(2)에 코팅막을 형성시킨 공정은 다음과 같다.The process of forming a coating film on the ferroelectric semiconductor plate 2 applied to the present invention is as follows.

제 1공정; TEOT[Tetraethyl orthotitanate]를 물/알콕사이드 몰비를 10∼50으로 하여 두 용액을 혼합하고, 2∼8시간 교반하여 가수분해 반응을 시킨다. 이 때 중성의 물 대신 1∼7wt%의 염산 또는 황산 수용액을 사용한다.First step; TEOT [Tetraethyl orthotitanate] has a water / alkoxide molar ratio of 10 to 50, and the two solutions are mixed and stirred for 2 to 8 hours to cause a hydrolysis reaction. In this case, 1-7 wt% aqueous hydrochloric acid or sulfuric acid solution is used instead of neutral water.

제 2공정; 산화티타늄 100mol wt%를 기준으로 하여 상기 제 1공정에서 얻어진 티탄산 산화물을 메타놀 용액에 혼합한 후 이트리움 또는 스트론륨 또는 란타늄을 10∼20wt%, 7wt% 염화비스무스 수용액으로 비스무스를 1.5∼3.5mol wt% 담지시킨다.Second process; Based on 100 mol wt% of titanium oxide, the titanate oxide obtained in the first step was mixed in a methanol solution, and then bismuth was added in an aqueous solution of 10-20 wt% of yttrium or strontium or lanthanum and 1.5-3.5 mol of 7 wt% bismuth chloride. It is supported by wt%.

제 3공정; 탄화수소의 흡착활성제로써 0.5wt% 염화백금 수용액을 0.1∼0.5mol wt%, 10% 암모니아수에 용해시킨 0.5wt% 염화은과 7.5wt% 수산화리듐 수용액에 용해시킨 15wt% 삼산화 텅크스텐 15wt% 산화모리브덴을 각각 2∼5mol wt%, 0.5∼2.0mol wt%, 1∼5mol wt%되게 담지 및 혼합한다. 이때 리듐이온의 삽입(intercalation)으로 코팅의 전기전도성의 향상되고 전도대는 positive value 쪽으로 이동한다.Third process; 15 wt% tungsten trioxide 15 wt% molybdenum dissolved in 0.5 wt% platinum chloride solution dissolved in 0.1 to 0.5 mol wt% in 10% ammonia water and 7.5 wt% lithium hydroxide in aqueous solution It was supported and mixed in 2-5 mol wt%, 0.5-2.0 mol wt%, and 1-5 mol wt%, respectively. The intercalation of lithium ions improves the electrical conductivity of the coating and the conduction band moves toward the positive value.

제 4공정; 분산이 완료된 코팅조성물을 건조도막 두께 15∼30 마이크로미터 되도록 금속에 코팅한 후 400∼600℃에서 6∼12시간 가열하여 최종 강유전성 반도체 코팅막을 얻는다.Fourth process; The coating composition, which has been dispersed, is coated on a metal to have a dry coating thickness of 15 to 30 micrometers and then heated at 400 to 600 ° C. for 6 to 12 hours to obtain a final ferroelectric semiconductor coating film.

상기 공정에 따른 강유전성 반도체 코팅막의 제조방법에 따라, 금속 표면에 코팅을 실시하게 되면 금속과 코팅간에 작업 함수에 따라 옴접촉 또는 쇼트키 장벽접합이 이루어진다. 이에 전압을 인가하면 전리충돌에 의한 여기 현상이 강유전성 반도체 입자에서 발생하여 형성된 전자-정공쌍이 산화환원반응에 참여하게 된다.According to the manufacturing method of the ferroelectric semiconductor coating film according to the above process, when the coating on the metal surface is made ohmic contact or Schottky barrier bonding according to the work function between the metal and the coating. When voltage is applied thereto, excitation due to ionization collision occurs in the ferroelectric semiconductor particles, and thus the formed electron-hole pairs participate in the redox reaction.

즉, 마이크로(micro)관점에서 볼 때 강유전성 반도체 개개의 입자내에서 전자-전공쌍이 형성되지만, 매크로(macro) 관점에서 볼 때 코팅 전체가 하나의 전자-정공쌍의 형태가 됨으로써 강유전성 반도체의 표면 화학반응의 효율성이 급증하는 것이다.In other words, electron-pole pairs are formed in individual particles of the ferroelectric semiconductor from a micro perspective, but the surface chemistry of the ferroelectric semiconductor is obtained by forming the entire coating in the form of one electron-hole pair from a macro perspective. The efficiency of the reaction is soaring.

상기한 공정에 의해 코팅막이 형성된 강유전성 반도체 판(2)을 1.5∼2㎝ 간격으로 배열하여 그룹을 형성한 것을 배출가스가 통과하는 덕트(3) 내에 등간격 배열 설치하고, 이들에 전원 AC440V를 인가하기 위한 전원선(4)으로 연결하여 일측에 송풍 팬(5)을 장착하여 강제 송풍될 수 있도록 구성하였다.By arranging the ferroelectric semiconductor plates 2 on which the coating film was formed by the above-described process and arranging the groups at intervals of 1.5 to 2 cm, an equal interval is provided in the duct 3 through which the exhaust gas passes, and power source AC440V is applied thereto. Connected with a power line (4) to the blowing fan 5 on one side was configured to be forced to blow.

이때, 상기 강유전성 반도체 판(2)은 4각의 외곽틀체 내에 마름모꼴 또는 격자형의 빗살로 이루어진 창문 형태로서 공기가 통과할 수 있는 망체 구조로 되어 있으며, 망체에 코팅이 이루어져 있다.At this time, the ferroelectric semiconductor plate (2) is a window structure consisting of a rhombic or lattice-shaped comb in the quadrilateral frame body has a mesh structure through which air can pass, and the coating is made on the mesh.

이와 같이 된 공기정화 반응장치(1)에 유독가스가 포함된 공기가 통과하게 되면, 반도체 물성 중 하나인 정류작용에 의하여 전압에 의거 형성된 변위전류전장 E1에 의하여 강유전성 반도체의 전자와 정공이 F1= ±Q1E1= ±(: 유전율)만큼의 힘을 받게 된다.When the air containing the toxic gas passes through the air purifying reactor 1 as described above, the electrons and holes of the ferroelectric semiconductor are formed by the displacement current electric field E 1 formed based on the voltage by rectification, one of the semiconductor properties. 1 = ± Q 1 E 1 = ± ( : The dielectric constant).

반도체에 전압이 걸렸을 때 형성되는 변위전류에 의하여 전자기장이 발생하게 된다. 이러한 전자기장에 의하여 발생하는 전자기력이 멤브레인에 기전력을 일으킴으로써 전자-정공쌍이 가속되고, 힘 F2= ±Q2E2= ±Q2E0Cos wt 이 발생한다. 이상과 같은 힘은 전기의 중첩원리(principle of superposition)에 의하여 합성되어 백터 방향으로 F total=(±F1)+(±F2) 만큼의 힘으로 기전력을 일으킨다. 즉 기전력 E = (±F1)+(±)에 의하여 강유전성 반도체 코팅면 전체가 산화환원반응에 참여하게 된다.The electromagnetic field is generated by the displacement current generated when the semiconductor is under voltage. The electromagnetic force generated by the electromagnetic field generates an electromotive force on the membrane, thereby accelerating the electron-hole pair, and a force F 2 = ± Q 2 E 2 = ± Q 2 E 0 Cos wt. These forces are synthesized by the principle of superposition of electricity, generating an electromotive force with a force of F total = (± F 1 ) + (± F 2 ) in the vector direction. Electromotive force E = (± F 1 ) + (± ), The entire ferroelectric semiconductor coating surface participates in the redox reaction.

따라서, 표면 활성 작용에 의하여 강유전성 반도체의 표면은Therefore, the surface of the ferroelectric semiconductor is

(a) H2O + h+→2H++ O2 (a) H2O + h+→ 2H++ O2

H2O + h+→H++ ㆍOH(OH Radical)H 2 O + h + → H + + ㆍ OH (OH Radical)

ㆍOH + h+→OHOH + h + → OH

2OH →(O) + H2O2OH → (O) + H 2 O

(b) h+→h+trap (h+trap : 표면에 포착된 정공으로 직접 산화반응에 참여)이 형성된다. 이와 같이 형성된 라디칼들은 화합물과 반응하여,(b) h + → h + trap (h + trap: directly involved in the oxidation reaction by holes trapped on the surface) is formed. The radicals thus formed react with the compound,

ⓐ NOx+ ㆍOH →H++ NO→H+NO Ⓐ NO x + ㆍ OH → H + + NO → H + NO

ⓑ Cl-+ ㆍOH →HOCl →H+Cl- Ⓑ Cl - + and OH → HOCl → H + Cl -

ⓒ H - C + ㆍOH →CO2+ H2OⒸ H-C + ㆍ OH → CO 2 + H 2 O

로 반응하여 제거된다.Is removed by reaction.

도 2는 본 고안의 공기정화 반응장치가 장착된 공기정화장치(11)를 보인 전체 개략도 이다.2 is an overall schematic view showing an air purifier 11 equipped with an air purifying reactor according to the present invention.

연돌(12)과 분무 내각탑(13) 사이를 연결하는 연통로(14) 상에 상기한 공기정화 반응장치(1)를 장착하고 그 일측에는 부산물 회수기(15)를 장착하여 구성된 것이다.The air purification reaction device 1 is mounted on the communication path 14 connecting the stack 12 and the spray cabinet tower 13, and a by-product recovery unit 15 is mounted on one side thereof.

이와 같이 구성된 공기정화장치(11)를 유해 가스가 발생되는 산업 현장에 설치하게 되면, 미세 유해물질 성분을 모두 제거할 수 있게 되는 것으로서, 분무 냉각탑(13)에서 생석회 + 물을 분사하여 SOx및 NOx를 일부 흡수시킨 뒤 남은 것을 공기정화 반응장치(1)에서 NOx및 염소화합물을 질산, 염산 등의 산이나 염의 형태로 전화시키게 되는 것이다.When the air purification system 11 constructed as described above installed in the industrial site where the toxic gases generated, as being able to remove all the fine toxic substances ingredient to the calcium oxide + water sprayed from the spray tower (13), SO x, and What is left after the partial absorption of NO x is converted to NO x and chlorine compounds in the form of acids or salts such as nitric acid and hydrochloric acid in the air purification reactor 1.

상기한 바와 같은 본 고안은 공기정화 반응장치를 전기 에너지원을 사용함으로써 콤팩트한 설비로 제조할 수 있으며, 전도전자를 여기시켜 표면 화학반응이 일어난다. 또한, 빠른 반응 속도로 인하여 대용량 고농도를 신속하게 처리할 수 있으며, 멤브레인을 다단계로 중첩하게 되면 반응 효율을 극대화 시킬 수 있는 에너지 절감형 감용화 구조로 설계할 수 있다. 그리고 배기가스의 악취제거에 높은 효율성을 나타낸다. 또한, 본 고안은 유기화합물의 제거 뿐 아니라 탈질 동시 처리시설이 용이하게 되는 등 여러가지의 유용한 효과가 있는 것이다.The present invention as described above can be manufactured in a compact installation by using an electrical energy source of the air purification reaction device, the surface chemical reaction occurs by exciting the conduction electrons. In addition, due to the fast reaction rate, it is possible to process a large amount of high concentration quickly, and by overlapping the membrane in multiple stages it can be designed as an energy-saving reduction structure that can maximize the reaction efficiency. And it shows high efficiency in removing odor of exhaust gas. In addition, the present invention has a number of useful effects, such as easy removal of organic compounds as well as simultaneous denitrification.

Claims (2)

연돌(12)과 분무 냉각탑(13) 사이를 연결하는 연통로(14) 상에 공기정화 반응장치(1)를 장착하고 그 일측에는 부산물 회수기(15)를 장착하여 구성됨을 특징으로 하는 강유전성 반도체를 이용한 공기정화장치.The ferroelectric semiconductor, characterized in that the air purification reactor (1) is mounted on the communication path (14) connecting between the chimney (12) and the spray cooling tower (13) and a by-product recoverer (15) is mounted on one side thereof. Used air purifier. 제 1항에 있어서, 상기 공기정화 반응장치(1)의 구성에 있어, 틀체 내에 망체로되어 공기가 통과 할 수 있도록 된 강유전성 반도체 판(2)을 1.5∼2㎝ 간격으로 배열하여 그룹을 형성한 것을 배출가스가 통과하는 덕트(3) 내에 등간격 배열 설치하고, 이들에 전원 AC440V를 인가하기 위한 전원선(4)으로 연결하여 전원에 의하여 반응되게 구성하며, 일측에 송풍 팬(5)을 장착하여 강제 송풍될 수 있도록 구성하여 된 것을 특징으로 하는 공기정화장치.2. The structure of the air purifying reactor 1 according to claim 1, wherein the ferroelectric semiconductor plates 2, which are meshed in the framework and allow air to pass through, are arranged at intervals of 1.5 to 2 cm to form groups. Is installed at equal intervals in the duct (3) through which the exhaust gas passes, connected to the power line (4) for applying the power AC440V to them, and configured to react by the power supply, and the blower fan (5) is mounted on one side. Air purifier, characterized in that configured to be forced to blow.
KR2020000016606U 2000-06-12 2000-06-12 Air cleaner using the ferroelectric semiconductor KR200204240Y1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000032139A KR20000058535A (en) 2000-06-12 2000-06-12 Method for the preparation of ferroelectric semiconductive coatings and the air cleaner using this ferroelectric semiconductive coatings

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020000032139A Division KR20000058535A (en) 2000-06-12 2000-06-12 Method for the preparation of ferroelectric semiconductive coatings and the air cleaner using this ferroelectric semiconductive coatings

Publications (1)

Publication Number Publication Date
KR200204240Y1 true KR200204240Y1 (en) 2000-11-15

Family

ID=19671722

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020000032139A KR20000058535A (en) 2000-06-12 2000-06-12 Method for the preparation of ferroelectric semiconductive coatings and the air cleaner using this ferroelectric semiconductive coatings
KR2020000016606U KR200204240Y1 (en) 2000-06-12 2000-06-12 Air cleaner using the ferroelectric semiconductor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020000032139A KR20000058535A (en) 2000-06-12 2000-06-12 Method for the preparation of ferroelectric semiconductive coatings and the air cleaner using this ferroelectric semiconductive coatings

Country Status (1)

Country Link
KR (2) KR20000058535A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102206354B1 (en) * 2019-03-29 2021-01-22 이승철 Apparatus for removing fine dust

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5876126A (en) * 1981-10-30 1983-05-09 Shoji Imamura Method and apparatus for purifying gas
JPS6071053A (en) * 1983-09-27 1985-04-22 Kiyuubitsuku Eng:Kk Dust collecting apparatus
KR0127112B1 (en) * 1994-02-04 1997-12-29 구자홍 Electrical dust collector
JP3388562B2 (en) * 1995-03-09 2003-03-24 株式会社日立製作所 Air cleaner
JPH09294911A (en) * 1996-05-01 1997-11-18 Mitsubishi Heavy Ind Ltd Harmful gas treatment apparatus
GB9803817D0 (en) * 1998-02-25 1998-04-22 Aea Technology Plc A component for gas treatment
KR100365368B1 (en) * 2000-05-16 2002-12-18 한국기계연구원 Method for treating toxic compounds using non-thermal plasma

Also Published As

Publication number Publication date
KR20000058535A (en) 2000-10-05

Similar Documents

Publication Publication Date Title
Gholami et al. Technologies for the nitrogen oxides reduction from flue gas: A review
Jiang et al. Plasma-catalytic destruction of xylene over Ag-Mn mixed oxides in a pulsed sliding discharge reactor
Liu et al. A review on removal of elemental mercury from flue gas using advanced oxidation process: chemistry and process
CN103463944B (en) A kind of electrostatic works in coordination with method for removing pollutant and device
JP5436399B2 (en) Decomposition and removal method using photocatalytic material
WO2018065176A1 (en) A process for low temperature gas cleaning and a catalyst for use in the process
CN109847752B (en) PEC system for treating ammonia gas and generating electricity by transition bimetallic oxidation composite catalytic material through photoelectric activation of persulfate
Li et al. Research progress on photocatalytic/photoelectrocatalytic oxidation of nitrogen oxides
CN101838078A (en) Method for deep purifying organic toxicant and waste water by photocatalysis-oxidation and preparation method for used photocatalysis material
KR200204240Y1 (en) Air cleaner using the ferroelectric semiconductor
US6645778B2 (en) Method for the preparation of ferroelectric semiconductive coating and apparatus for removing environmental air pollutants using this coating and electric power
CN110064294A (en) A kind of method of high-pressure electrostatic precipitation oxidation sweetening denitration
CN105169941A (en) Indoor light cracking adsorbing gas purification device
US20170014762A1 (en) Mercury removal apparatus, a flue gas treatment system, and a method of removing mercury
Luévano-Hipólito et al. Photocatalytic heterostructured materials for air decontamination and solar fuels production
KR100527209B1 (en) Concurrent reducing device of fine particles and hazardous gas
CN111389221A (en) Device and process for removing sludge-doped flue gas pollutants of coal-fired boiler
JPH03143524A (en) Air cleaning device
KR102511994B1 (en) Manufacturing method of carbon filter coated with electrical catalyst and method of removing volatile organic compounds using the same
KR20020026323A (en) Nitrogen Oxides degradation apparatus combined non-thermal plasma with electrocatalytic reduction reactions.
KR19990073397A (en) p-n Type PHOTO CATALYST COATING MANUFACTURE METHOD
KR20040009316A (en) The manufacture method of air conditioner&#39;s filter coated a p-n type titanium oxide
KR100345541B1 (en) Water spray type dust collecting system and apparatus for removing environmental air pollutants using ferro electric photosemiconductive surface chemical reaction
JP2002035603A (en) Method of producing ferroelectric optical semiconductor coating film and device for removing pollutant in air environment
CN212039863U (en) Coal fired boiler mixes burning mud smoke pollutants desorption device

Legal Events

Date Code Title Description
U107 Dual application of utility model
REGI Registration of establishment
T701 Written decision to grant on technology evaluation
G701 Publication of correction
FPAY Annual fee payment

Payment date: 20070913

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee