KR20010036045A - Method for Thermal treatment of TiAlN layer - Google Patents

Method for Thermal treatment of TiAlN layer Download PDF

Info

Publication number
KR20010036045A
KR20010036045A KR1019990042881A KR19990042881A KR20010036045A KR 20010036045 A KR20010036045 A KR 20010036045A KR 1019990042881 A KR1019990042881 A KR 1019990042881A KR 19990042881 A KR19990042881 A KR 19990042881A KR 20010036045 A KR20010036045 A KR 20010036045A
Authority
KR
South Korea
Prior art keywords
metal
tialn
film
layer
tialn film
Prior art date
Application number
KR1019990042881A
Other languages
Korean (ko)
Other versions
KR100574926B1 (en
Inventor
임현석
강상범
최길현
Original Assignee
윤종용
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤종용, 삼성전자 주식회사 filed Critical 윤종용
Priority to KR1019990042881A priority Critical patent/KR100574926B1/en
Publication of KR20010036045A publication Critical patent/KR20010036045A/en
Application granted granted Critical
Publication of KR100574926B1 publication Critical patent/KR100574926B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • H01L21/76883Post-treatment or after-treatment of the conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53214Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being aluminium
    • H01L23/53219Aluminium alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE: An annealing method for a TiAlN layer is provided to control a defect such as electro-migration by improving a tensile stress characteristic regarding the TiAlN layer, and to increase capacitance and improve a leakage current characteristic of a capacitor having a metal-insulator-metal(MIM) structure by nitrifiding the surface of the TiAlN layer to prevent oxygen from being diffused from a dielectric layer. CONSTITUTION: An insulating layer(102) is deposited on a semiconductor substrate(100) having a lower structure. A contact hole is formed on the insulating layer. A TiAlN layer(104) for a capacitor electrode having a metal-insulator-metal(MIM) structure is formed on the resultant structure having the contact hole by a chemical atomic layer deposition method. A rapid thermal nitridation(RTN) is performed in an atmosphere including any one of nitrogen, oxygen and inert gas to reduce tensile stress regarding the TiAlN layer.

Description

TiAIN막의 열처리방법{Method for Thermal treatment of TiAlN layer}Heat treatment method of TiAIN film {Method for Thermal treatment of TiAlN layer}

본 발명은 반도체 소자의 제조방법에 관한 것으로, 더욱 상세하게는 금속/유전층/금속(MIM) 구조의 커패시터에서 TiAlN을 전극으로 사용할 경우의 열처리방법에 관한 것이다.The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a heat treatment method when TiAlN is used as an electrode in a capacitor having a metal / dielectric layer / metal (MIM) structure.

최근 금속/유전층/금속(MIM) 구조의 커패시터에서 전극으로 TiAlN을 사용할 경우, 화학적 원자층 증착공정으로 이를 제조한다. 통상, TiAlN막의 하지막이 실리콘(Si)일 경우, 1200Å 두께의 TiAlN막에 가해지는 장력 스트레스(Tensile stress)는 약 2.0E10 dyne/㎠ 정도이다. 이러한 장력 스트레스는 두께에 따라 변화는 있지만, 이것은 일반적인 장벽층(diffusion barrier layer)으로 사용되는 화학기상증착(CVD: Chemical Vapor Deposition)에 의한 질화티타늄(TiN)막과 비슷한 장력 스트레스이다.Recently, when TiAlN is used as an electrode in a capacitor having a metal / dielectric layer / metal (MIM) structure, it is manufactured by a chemical atomic layer deposition process. Usually, when the base film of the TiAlN film is silicon (Si), the tensile stress applied to the TiAlN film having a thickness of 1200 GPa is about 2.0E10 dyne / cm 2. Although the tensile stress varies with thickness, it is a tensile stress similar to a titanium nitride (TiN) film by chemical vapor deposition (CVD) used as a general diffusion barrier layer.

이렇게 막질 내에서 장력 스트레스가 높아지면 여러 가지 결함(defects)이 발생하는데, 이러한 결함의 발생은 디자인 룰(design rule)이 작은 서브-미크론(Sub-micron) 소자일수록 더욱 심각한 실정이다. 대표적인 결함중의 하나로 메탈층(conductive metal layer)이 움직여 반도체 소자내의 전류의 흐름이 단선(short)되거나, 끊어지거나(open) 혹은 누설전류 등을 야기하는 일렉트로-마이그레이션(Electro-migration)을 들 수 있다. 이러한 일렉트로-마이그레이션 결함은 TiAlN막을 두껍게 증착한 경우에 주로 발생할 수 있는데, 특히 금속/유전층/금속(MIM) 구조의 커패시터 구조에서 TiAlN막을 매몰 콘택(Buried Contact)의 플러그(plug)로 사용할 때 TiAlN막을 두껍게 증착해야 한다. 이렇게 TiAlN막을 두껍게 증착하면 일렉트로-마이그레이션(Electro-migration) 문제뿐만 아니라 리프팅(lifting) 문제까지 발생하여 심각한 공정상의 결함이 야기될 수 있다.As the tensile stress increases in the film, various defects occur. The occurrence of such defects is more serious in a sub-micron device having a small design rule. One of the typical defects is electro-migration, in which a conductive metal layer moves, causing a current to flow in the semiconductor device to be short, open, or leaking. have. This electro-migration defect can occur mainly when the TiAlN film is deposited thickly, especially when the TiAlN film is used as a plug of buried contact in the capacitor structure of the metal / dielectric layer / metal (MIM) structure. It must be deposited thickly. This thick deposition of TiAlN film may cause not only electro-migration problems but also lifting problems, which may cause serious process defects.

따라서, TiAlN을 금속/유전층/금속(MIM) 구조의 커패시터의 전극을 사용할 경우에는, 반도체 소자의 신뢰성을 높이기 위하여 막질 내부에서 발생하는 장력 스트레스(Tensile Stress)를 줄일 필요가 있다.Therefore, when TiAlN uses electrodes of a capacitor having a metal / dielectric layer / metal (MIM) structure, it is necessary to reduce the tensile stress generated inside the film to increase the reliability of the semiconductor device.

본 발명이 이루고자 하는 기술적 과제는 TiAlN막을 금속/유전층/금속(MIM) 구조의 커패시터 전극으로 사용할 경우에 막질 내부의 장력 스트레스를 줄일 수 있는 TiAlN막의 열처리방법을 제공하는데 있다.An object of the present invention is to provide a heat treatment method of a TiAlN film that can reduce the tensile stress inside the film quality when the TiAlN film is used as a capacitor electrode of a metal / dielectric layer / metal (MIM) structure.

도 1은 본 발명에 의한 TiAlN막의 열처리방법을 설명하기 위해 도시한 단면도이다.1 is a cross-sectional view for explaining the heat treatment method of the TiAlN film according to the present invention.

* 도면의 주요부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

100: 반도체 기판, 102: 절연막,100: semiconductor substrate, 102: insulating film,

104: 하부전극용 TiAlN막.104: TiAlN film for lower electrode.

상기 기술적 과제를 달성하기 위하여 본 발명은, 하부구조가 형성된 반도체 기판에 절연막을 증착하는 공정과, 상기 절연막에 콘택홀을 형성하는 공정과, 상기 콘택홀이 형성된 결과물 상에 금속/유전층/금속(MIM) 구조의 커패시터 전극용 TiAlN막을 화학적 원자층 증착법으로 형성하는 공정과, 상기 TiAlN막에 대한 장력 스트레스(Tensile Stress)를 줄이기 위하여 질소, 산소 및 불활성기체중에 어느 하나를 포함하는 분위기에서 급속질화처리(RTN)를 수행하는 공정을 구비하는 것을 특징으로 하는 TiAlN막의 열처리방법을 제공한다.In order to achieve the above technical problem, the present invention provides a process for depositing an insulating film on a semiconductor substrate having a lower structure, forming a contact hole in the insulating film, and forming a metal / dielectric layer / metal on a resultant in which the contact hole is formed. A process of forming a TiAlN film for a capacitor electrode having a MIM structure by chemical atomic layer deposition, and rapid nitriding treatment in an atmosphere containing any one of nitrogen, oxygen, and an inert gas in order to reduce tensile stress on the TiAlN film. Provided is a heat treatment method for a TiAlN film, comprising the step of performing RTN.

본 발명의 바람직한 실시예에 의하면, 상기 TiAlN막을 형성할 때 암모니아(NH3) 가스를 흘러주는 공정(flushing process)을 1회 이상 하는 것이 적합하며, 상기 TiAlN막의 증착 전후에 암모니아(NH3) 가스를 흘러주는 공정(flushing process)을 더 진행하는 것이 적합하다.According to a preferred aspect of the present invention, when forming the TiAlN film is ammonia (NH 3) appropriate to the process (flushing process) to flow the gas at least once and ammonia to the TiAlN film is deposited before or after (NH 3) gas It is appropriate to proceed further with the flushing process.

본 발명에서의 TiAlN막에 대한 장력 스트레스 감소를 위한 열처리 방법은 금속/유전층/금속(MIM) 구조의 커패시터에 한정되어 설명하였지만, 이는 메탈콘택용으로 사용되는 TiAlN막에도 적용이 가능하며, 반도체 소자의 모든 제조공정에서 사용되는 TiAlN막에 대한 장력 스트레스 완화를 위하여 적용할 수 있음은 물론이다.Although the heat treatment method for reducing the tensile stress on the TiAlN film in the present invention has been described as being limited to a capacitor having a metal / dielectric layer / metal (MIM) structure, it is applicable to a TiAlN film used for a metal contact, and a semiconductor device. Of course, it can be applied to alleviate the tensile stress on the TiAlN film used in all manufacturing processes.

일반적으로 DRAM(Dynamic Random Access Memory)의 제조공정에서 급속질화처리(RTN)와 같은 열처리(annealing)가 이루어지는 목적은, 장벽층(diffusion barrier layer)에 대한 장벽효과를 증대시키거나, 금속/유전층/금속(MIM) 구조의 커패시터 구조나, 금속/유전층/실리콘(MIS) 구조의 커패시터에서 유전층의 특성을 개선하기 위하여 금속과 실리콘층의 계면에서 산화가 발생하여 산화층을 형성함으로써 커패시턴스 특성이 저하되는 것을 방지하기 위해 수행된다. 그러나 본 발명의 특징은 TiAlN막에 대한 장력 스트레스를 완화시키기 위해 급속질화처리(RTN)가 수행되는 특징을 가진다.In general, the purpose of annealing such as rapid nitridation (RTN) in the manufacturing process of Dynamic Random Access Memory (DRAM) is to increase the barrier effect on the diffusion barrier layer, or to increase the metal / dielectric layer / In order to improve the characteristics of the dielectric layer in the capacitor structure of the metal (MIM) structure or the capacitor of the metal / dielectric layer / silicon (MIS) structure, oxidation occurs at the interface between the metal and the silicon layer to form an oxide layer. Is done to prevent. However, a feature of the present invention is that rapid nitriding (RTN) is performed to alleviate the tensile stress on the TiAlN film.

그러므로 본발명에 따르면, 금속/유전층/금속(MIM) 구조의 커패시터에서 TiAlN막을 전극으로 사용할 경우에 막질 내부에 장력 스트레스를 제거하여 일렉트로 마이그레이션( electro-migration)이나 리프팅(lifting) 결함의 발생을 억제할 수 있다.Therefore, according to the present invention, when a TiAlN film is used as an electrode in a capacitor of a metal / dielectric layer / metal (MIM) structure, tension stress is removed from inside the film to suppress the occurrence of electro-migration or lifting defects. can do.

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1을 참조하면, 반도체 기판(100)에 하부구조, 예컨대 트랜지스터나 비트 라인(bit line)과 같은 구조(미도시)를 형성하고, 평탄화를 위한 절연막(102)을 형성한다. 이어서, 사진 및 식각공정을 진행하여 하지막을 노출시키는 콘택홀을 형성한다. 그 후, 커패시터의 하부전극층인 TiAlN막(104)을 화학적 원자층 증착방법으로 두껍게 증착한다.Referring to FIG. 1, a structure (not shown) such as a substructure, for example, a transistor or a bit line, is formed on a semiconductor substrate 100, and an insulating film 102 for planarization is formed. Subsequently, a photo hole and an etching process are performed to form a contact hole exposing the underlying film. Thereafter, the TiAlN film 104, which is the lower electrode layer of the capacitor, is deposited thickly by chemical atomic layer deposition.

여기서, 화학적 원자층 증착방법으로 형성된 TiAlN막질 내에 존재할 수 있는 성분은 일반적으로 TiN, AlN, Ti, Al, Si등이 있다. TiAlN막(104)의 하지막이 실리콘층 일때, 상기 TiAlN막(104) 내에 존재하는 개개에 대한 열팽창계수를 살펴보면 아래와 같다.Here, components that may be present in the TiAlN film formed by the chemical atomic layer deposition method generally include TiN, AlN, Ti, Al, Si, and the like. When the underlying film of the TiAlN film 104 is a silicon layer, the coefficient of thermal expansion for each of the TiAlN films 104 is as follows.

성분ingredient TiNTiN AlNAlN TiTi AlAl SiSi 열팽창계수Coefficient of thermal expansion 9.49.4 4.84.8 8.98.9 23.923.9 2.292.29

표 1에 나타난 열팽창계수를 살펴보면, TiAlN막 내에서 장력 스트레스를 올릴 수 있는 것은 Al 성분이고, 장력 스트레스를 줄일 수 있는 것은 AlN으로 생각할 수 있다. 그러므로, TiAlN막을 질소를 포함하는 분위기에서 열처리를 수행하면 막질 내에서 표면의 조성과 결합상태를 바꿀 수 있기 때문에 장력 스트레스를 줄일 수 있다는 것을 알 수 있다.Looking at the coefficient of thermal expansion shown in Table 1, it can be thought that it is Al component that can raise the tensile stress in the TiAlN film, and that AlN can reduce the tensile stress. Therefore, it can be seen that when the TiAlN film is heat-treated in an atmosphere containing nitrogen, the tensile stress can be reduced because the composition and bonding state of the surface can be changed in the film quality.

따라서, TiAlN막을 화학적 원자층 증착방법으로 형성할 때, 그 형성전 또는 형성후에 질소를 포함하는 가스인 암모니아 가스(NH3)를 흘려주는 공정(Flushing)을 추가하거나, TiAlN막을 형성하는 중간에 적어도 1회 이상 질소를 포함하는 가스인 암모니아 가스(NH3)를 흘려주는 공정(Flushing)을 추가할 수 있다.Therefore, when the TiAlN film is formed by a chemical atomic layer deposition method, a process of flowing ammonia gas (NH 3 ), which is a gas containing nitrogen, before or after the formation thereof is added, or at least in the middle of forming the TiAlN film. Flushing may be added to flow ammonia gas (NH 3 ), which is a gas containing nitrogen one or more times.

일 예로 질소를 포함하는 가스인 암모니아 가스(NH3)를 흘려주는 공정(Flushing)을 막질의 두께가 10∼500Å의 간격마다 진행할 수 있다. 따라서, TiAlN막의 두께가 두꺼운 경우에도 장력 스트레스를 충분히 낮추는 효과를 기대할 수 있다. 이렇게 TiAlN막을 화학적 원자층 증착방법으로 형성할 때 암모니아 가스를 흘려주는 것은 후속공정에서 진행되는 급속질화처리(RTN)와 동일한 효과를 나타내기 때문이며, 상기 급속질화처리(RTN)의 효과에 대해서는 후속공정에서 다시 설명한다.For example, a flushing process of flowing ammonia gas (NH 3 ), which is a gas containing nitrogen, may be performed at intervals of 10 to 500 kPa. Therefore, even when the thickness of the TiAlN film is thick, the effect of sufficiently lowering the tensile stress can be expected. The ammonia gas flowing when the TiAlN film is formed by the chemical atomic layer deposition method has the same effect as the rapid nitriding treatment (RTN) performed in the subsequent process, and the subsequent process for the rapid nitriding treatment (RTN) effect. Will be explained again.

상기 하부전극용 TiAlN막(104)이 형성된 결과물에 장력 스트레스를 줄이기 위한 급속질화처리(RTN: Rapid Thermal Nitridation)를 진행한다. 이러한 급속질화처리는 산소, 질소, 불활성기체중에서 선택된 어느 하나를 포함하는 분위기에서 수행할 수 있다. 산소인 경우에는 O2, O3, N2O가스를 사용하고, 질소인 경우에는 N2, NH3가스를 이용하는 것이 바람직하다.Rapid thermal nitriding (RTN) is performed to reduce the tensile stress on the resultant formed TiAlN film 104 for the lower electrode. Such rapid nitriding may be performed in an atmosphere containing any one selected from oxygen, nitrogen, and inert gas. If the oxygen is O 2, O 3, using the N 2 O gas, it is preferable that if the nitrogen, the use of N 2, NH 3 gas.

본 발명에서는 일 예로 TiAlN막(104)을 120, 240Å의 두께로 각각 형성하고, 챔버의 온도를 850℃로 조절하고, 암모니아 가스(NH3)의 분위기에서 5분간 급속질화처리를 수행하였다. 그 후, 열처리를 수행한 TiAlN 막질과 수행하지 않은 TiAlN 막질에 대한 장력 스트레스를 각각 측정하여 그 결과를 아래에 수록하였다.In the present invention, for example, the TiAlN film 104 was formed to a thickness of 120 and 240 kPa, respectively, and the temperature of the chamber was adjusted to 850 ° C., and rapid nitriding was performed for 5 minutes in an atmosphere of ammonia gas (NH 3 ). After that, the tensile stress for the TiAlN film and the TiAlN film not subjected to the heat treatment were measured, respectively, and the results are listed below.

두께 막질Thick film RTN을 수행하지 않은 TiAlN 막TiAlN membrane without RTN RTN을 수행한 TiAlN막TiAlN film on RTN 120Å120Å 1.17E10 dyne/㎠1.17E10 dyne / ㎠ 6.7E9 dyne/㎠(34% 감소)6.7E9 dyne / ㎠ (34% reduction) 240Å240Å 1.5E10 dyne/㎠1.5E10 dyne / ㎠ 1.2E10 dyne/㎠(20% 감소)1.2E10 dyne / ㎠ (20% reduction)

상기 표에서 알 수 있듯이 본 발명과 같이 하부전극용 TiAlN막(104)에 대하여 급속질화처리를 수행한 경우가, 수행하지 않은 경우보다 장력 스트레스에 대한 특성면에서 크게 개선된 것을 확인 할 수 있다. 이러한 효과는 상기 표 2에서도 알 수 있듯이 TiAlN막질의 두께가 얇을수록 크게 나타난다. 본 발명에서는 금속/유전층/금속(MIM) 구조의 커패시터에 한정하여 TiAlN막의 열처리 방법을 설명하였지만, 이를 금속접촉(Metal Contact)에 장벽층으로 사용되는 TiAlN막에 적용할 경우에는 장벽강화 효과를 얻을 수 있을 뿐만 아니라, Al/Si 접촉, 또는 Cu/Si 접촉계면에서 확산방지 효과도 얻을 수 있다.As can be seen from the above table, it can be seen that the rapid nitriding treatment on the TiAlN film 104 for the lower electrode as in the present invention is significantly improved in terms of the properties of the tensile stress than the case where the nitriding treatment is not performed. As can be seen from Table 2, this effect is larger as the thickness of the TiAlN film is thinner. In the present invention, the heat treatment method of the TiAlN film is limited to a capacitor having a metal / dielectric layer / metal (MIM) structure. However, when this is applied to a TiAlN film used as a barrier layer for metal contact, a barrier strengthening effect is obtained. In addition, the anti-diffusion effect can be obtained at Al / Si contact or Cu / Si contact interface.

본 발명은 상기한 실시예에 한정되지 않으며, 본 발명이 속한 기술적 사상 내에서 당 분야의 통상의 지식을 가진 자에 의해 많은 변형이 가능함이 명백하다.The present invention is not limited to the above embodiments, and it is apparent that many modifications can be made by those skilled in the art within the technical spirit to which the present invention belongs.

따라서, 상술한 본 발명에 따르면, 첫째, TiAlN막을 급속질화처리(RTN)하여 TiAlN막에 대한 장력 스트레스(Tensile Stress) 특성을 개선함으로써 일렉트로-마이그레이션(Electro-migration)과 같은 소자 결함을 억제할 수 있다. 둘째, TiAlN막의 급속질화처리시(RTN)에 TiAlN막의 표면이 질화처리되어 유전체막으로부터 유입되는 산소의 확산(oxygen diffusion)을 막아줌으로써, 금속/유전층/금속(MIM) 구조의 커패시터에서 커패시턴스(Capacitance)의 증가와 누설전류(leakage current) 특성을 개선할 수 있다.Therefore, according to the present invention described above, first, the TiAlN film can be rapidly nitrided (RTN) to improve the tensile stress characteristic of the TiAlN film, thereby suppressing device defects such as electro-migration. have. Second, during the rapid nitriding of the TiAlN film (RTN), the surface of the TiAlN film is nitrided to prevent oxygen diffusion from the dielectric film, thereby allowing capacitance in the capacitor of the metal / dielectric layer / metal (MIM) structure. ) And leakage current characteristics can be improved.

Claims (3)

하부구조가 형성된 반도체 기판에 절연막을 증착하는 공정;Depositing an insulating film on a semiconductor substrate on which a lower structure is formed; 상기 절연막에 콘택홀을 형성하는 공정;Forming a contact hole in the insulating film; 상기 콘택홀이 형성된 결과물 상에 금속/유전층/금속(MIM) 구조의 커패시터 전극용 TiAlN막을 화학적 원자층 증착법으로 형성하는 공정;Forming a TiAlN film for a capacitor electrode having a metal / dielectric layer / metal (MIM) structure by chemical atomic layer deposition on the resultant formed contact hole; 상기 TiAlN막에 대한 장력 스트레스(Tensile Stress)를 줄이기 위하여 질소, 산소 및 불활성기체중에 어느 하나를 포함하는 분위기에서 급속질화처리(RTN)를 수행하는 공정을 구비하는 것을 특징으로 하는 TiAlN막의 열처리방법.And a rapid nitriding treatment (RTN) in an atmosphere including any one of nitrogen, oxygen, and an inert gas to reduce the tensile stress on the TiAlN film. 제1항에 있어서,The method of claim 1, 상기 TiAlN막을 형성할 때 암모니아(NH3) 가스를 흘러주는 공정(flushing process)을 1회 이상 하는 것을 특징으로 하는 TiAlN막의 열처리 방법.When the TiAlN film is formed, the heat treatment method of the TiAlN film, characterized in that one or more times (flushing process) flowing ammonia (NH 3 ) gas. 제1항에 있어서,The method of claim 1, 상기 TiAlN막의 증착 전후에 암모니아(NH3) 가스를 흘러주는 공정(flushing process)을 더 진행하는 것을 특징으로 하는 TiAlN막의 열처리 방법.And heat-flushing the ammonia (NH 3 ) gas before and after the TiAlN film is deposited.
KR1019990042881A 1999-10-05 1999-10-05 Method for Thermal treatment of TiAlN layer KR100574926B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990042881A KR100574926B1 (en) 1999-10-05 1999-10-05 Method for Thermal treatment of TiAlN layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990042881A KR100574926B1 (en) 1999-10-05 1999-10-05 Method for Thermal treatment of TiAlN layer

Publications (2)

Publication Number Publication Date
KR20010036045A true KR20010036045A (en) 2001-05-07
KR100574926B1 KR100574926B1 (en) 2006-05-02

Family

ID=19614062

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990042881A KR100574926B1 (en) 1999-10-05 1999-10-05 Method for Thermal treatment of TiAlN layer

Country Status (1)

Country Link
KR (1) KR100574926B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100422565B1 (en) * 2001-06-12 2004-03-12 주식회사 하이닉스반도체 Method of forming a capacitor of a semiconductor device
US7416954B2 (en) * 2002-06-27 2008-08-26 Intel Corporation Enhanced on-chip decoupling capacitors and method of making same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100422565B1 (en) * 2001-06-12 2004-03-12 주식회사 하이닉스반도체 Method of forming a capacitor of a semiconductor device
US7416954B2 (en) * 2002-06-27 2008-08-26 Intel Corporation Enhanced on-chip decoupling capacitors and method of making same
US7843036B2 (en) 2002-06-27 2010-11-30 Intel Corporation Enhanced on-chip decoupling capacitors and method of making same

Also Published As

Publication number Publication date
KR100574926B1 (en) 2006-05-02

Similar Documents

Publication Publication Date Title
EP1020901B1 (en) Method for making an integrated circuit capacitor including tantalum pentoxide
US6614082B1 (en) Fabrication of semiconductor devices with transition metal boride films as diffusion barriers
KR100360413B1 (en) Method of manufacturing capacitor of semiconductor memory device by two-step thermal treatment
KR100507860B1 (en) Capacitor having oxidation barrier and method for fabricating the same
KR100500940B1 (en) Method for fabricating capacitor in semiconductor device
KR100574926B1 (en) Method for Thermal treatment of TiAlN layer
KR100318453B1 (en) METHOD FOR FORMING CAPACITOR HAVING BOTTOM ELECTRODE FORMED BY Ir/Pt DOUBLE LAYER
KR100271715B1 (en) Manufacturing method for capacitor of the semiconductor device
US20020047148A1 (en) Methods of manufacturing integrated circuit capacitors having ruthenium upper electrodes and capacitors formed thereby
KR100422596B1 (en) Method for fabricating capacitor
KR100309131B1 (en) Method of manufacturing a capacitor in a semiconductor device
KR100373162B1 (en) Method of manufacturing a capacitor in a semiconductor device
KR100219518B1 (en) Method of fabricating a capacitor of semiconductor device
KR20000035741A (en) A method for manufacturing a semiconductor device
KR100691941B1 (en) Method of manufacturing a capacitor in semiconductor device
KR100355220B1 (en) Method for contacting polycide with polycide
KR19980043786A (en) Method for manufacturing capacitor with Ta2O5 dielectric film
KR19990050864A (en) Capacitor Manufacturing Method
KR100421044B1 (en) Method for manufacturing capacitor of semiconductor memory device
KR100463241B1 (en) Capacitor manufacturing method that can prevent oxidation of the adhesive film
KR20020035982A (en) Method for forming gate of semiconductor device
KR100529393B1 (en) Capacitor with aluminium nitride for oxygen barrier and method for manufacturing the same
KR100707799B1 (en) Method for fabricating capacitor
KR20040039979A (en) Method of manufacturing capacitor for semiconductor device
KR20000024712A (en) Method for fabricating capacitor having tantalum oxide film as dielectric film

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment
FPAY Annual fee payment
LAPS Lapse due to unpaid annual fee