KR20000051030A - AWG multiplexer - Google Patents

AWG multiplexer Download PDF

Info

Publication number
KR20000051030A
KR20000051030A KR1019990001262A KR19990001262A KR20000051030A KR 20000051030 A KR20000051030 A KR 20000051030A KR 1019990001262 A KR1019990001262 A KR 1019990001262A KR 19990001262 A KR19990001262 A KR 19990001262A KR 20000051030 A KR20000051030 A KR 20000051030A
Authority
KR
South Korea
Prior art keywords
thermal
waveguide
temperature
conductive plate
lattice
Prior art date
Application number
KR1019990001262A
Other languages
Korean (ko)
Other versions
KR100322127B1 (en
Inventor
이영규
Original Assignee
윤종용
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤종용, 삼성전자 주식회사 filed Critical 윤종용
Priority to KR1019990001262A priority Critical patent/KR100322127B1/en
Publication of KR20000051030A publication Critical patent/KR20000051030A/en
Application granted granted Critical
Publication of KR100322127B1 publication Critical patent/KR100322127B1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12019Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the optical interconnection to or from the AWG devices, e.g. integration or coupling with lasers or photodiodes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2856Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers formed or shaped by thermal heating means, e.g. splitting, branching and/or combining elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/1215Splitter

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

PURPOSE: A waveguide heat grid type optical wave divider is provided to expand a range of temperature control of an optical wave divider by using a thermal conductive plate for controlling temperature with a plurality of thermal sensing elements, thereby expanding a larger range of wave. CONSTITUTION: A waveguide heat grid type optical wave divider includes a waveguide heat grid module(310), a thermal conductive plate(320), and thermoelectric element(330). The waveguide heat grid module includes a first star coupler for dividing a power input from input and output waveguides, a waveguide heat grid as a phase shifter, and a second star coupler as a mach-zehnder interferometer. The thermal conductive plate is formed of aluminum having a high thermal conductance for applying heat to the grid module and a plurality of thermal sensing element for measuring temperature ranges of the grid module. As the thermoelectric element, a thermoelectric cooler increases or decreases a temperature of the thermal conductive plate.

Description

도파로열 격자형 광파장분할기 {AWG multiplexer}Waveguide Lattice Optical Wavelength Splitter {AWG multiplexer}

본 발명은 광파장분할기에 관한 것으로, 특히 광파장 분할기의 온도조절에 의한 파장조절능력을 개선하기 위한 도파로열 격자형 광파장분할기에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical wavelength divider, and more particularly, to a waveguide thermal lattice type optical wavelength divider for improving the wavelength control ability by temperature control of an optical wavelength divider.

광파장분할기는 광통신망의 대용량, 다채널화를 구현하는 WDM네트워크의 필수적인 소자로 개발되어 왔다.The optical wavelength splitter has been developed as an essential element of the WDM network which realizes the large capacity, multi-channelization of the optical communication network.

도 1은 광도파로열 격자형 광파장분할기의 기본적인 형태를 도시한 것으로, 제1 스타커플러(110), 도파로열 격자(120) 및 제2 스타커플러(130)로 이루어진다.1 illustrates a basic form of an optical waveguide thermal lattice type optical wavelength splitter, and includes a first star coupler 110, a waveguide thermal lattice 120, and a second star coupler 130.

제1 스타커플러(110)는 입출력 도파로로부터 입력되는 전력을 분할한다. 도파로열 격자(120)는 위상천이(Phase shfter)역할을 한다. 제2 스타커플러(130)는 마흐젠더 간섭계(mach-zehnder interferometer)역할을 한다.The first star coupler 110 divides power input from an input / output waveguide. The waveguide grating 120 acts as a phase shifter. The second star coupler 130 serves as a mach-zehnder interferometer.

광도파로열 격자형 광파장분할기의 동작원리는 도파로열 격자(120)에서 도파로에 따라 선형적으로 위상이 이동된 빛이 파장에 따라 파두면(wave front)이 각기 다른 방향을 향하면서 보강간섭을 일으켜 파장분할을 하게 되는 것이다.The operation principle of the optical waveguide lattice-type optical splitter causes constructive interference in which the wave front is directed in different directions according to the wavelength of the light linearly shifted in phase according to the waveguide in the waveguide grating 120. Wavelength division is to be done.

파장조절을 위해 서미스터와 열전자 냉각기(Thermoelectric cooler:이하 TEC) 그리고 이러한 소자들을 유기적으로 조절해주는 온도 조절기(temperature controller)를 사용하여 광파장분할기의 온도를 변화시킨다. 즉, 온도에 따라 저항이 변하는 서미스터를 온도감지소자로 사용하고, 온도 제어기가 그 변한 저항으로 온도변화를 감지하여 이에 적합한 전류를 열전자 냉각기에 흐르게 한다. 펠티어(Peltier)효과에 의해 동작하는 TEC는 온도 제어기에서 보내지는 전류에 의하여 온도를 상승 및 하강시켜 조절하고자 하는 광파장분할기의 온도를 유지하게 된다.The wavelength is controlled by using a thermistor, a thermoelectric cooler (TEC), and a temperature controller to control these devices organically. That is, a thermistor whose resistance changes with temperature is used as a temperature sensing element, and the temperature controller senses a temperature change with the changed resistance and causes a suitable current to flow in the thermoelectronic cooler. The TEC operated by the Peltier effect maintains the temperature of the optical wavelength divider to be adjusted by raising and lowering the temperature by the current sent from the temperature controller.

여기에 사용하는 서미스터는 온도와 저항간에 비선형 특성을 가지며 이는 대수 다항식의 확장(logarithm polynomial expansion)에 의해 모델링 되어진다. 온도와 저항간의 비선형 특성을 표현하는 대표적인 식이 스타인-하트(stein-hart) 방정식이며 다음과 같이 표현된다.The thermistors used here have a nonlinear characteristic between temperature and resistance, which is modeled by logarithm polynomial expansion. The representative equation for nonlinear properties between temperature and resistance is the stein-hart equation.

여기에 T는 켈빈(kelvin) 상수이고, A,B,C는 폴리노미얼 피팅(polynomial fitting)에 의해 구해지며 이 식을 이용하여 10KΩ(at 25℃)의 서미스터의 경우 0.01℃ 이하의 오차로 -20∼50℃까지 조절할 수 있다.Where T is the Kelvin constant, and A, B, and C are obtained by polynomial fitting, and using this equation, the thermistor of 10KΩ (at 25 ° C) It can be adjusted from -20 to 50 ℃.

도 2는 서미스터 저항과 온도와의 관계를 도시한 것이다.2 shows the relationship between thermistor resistance and temperature.

이러한 서미스터의 비선형 특성으로 인하여 각 서미스터마다 온도 감지 능력에 한계를 가지게 된다. 즉, 주변온도가 올라갈수록 서미스터 저항은 급격하게 감소하고 민감도는 점점 떨어지게 된다.Due to the nonlinear nature of these thermistors, there is a limit to the temperature sensing capability of each thermistor. In other words, as the ambient temperature increases, the thermistor resistance decreases rapidly and sensitivity decreases.

종래에는 광도파로열 광파장분할기에서 하나의 서미스터를 사용하여 조절가능한 온도범위가 제한되어 있었으며, 이로 인하여 더욱 넓은 범위의 파장조절에 한계를 가지고 있다.Conventionally, the temperature range that can be adjusted using a thermistor in the optical waveguide optical optical splitter has been limited, and thus, there is a limit to a wider range of wavelength control.

따라서 온도조절기는 고온인 경우 저항변화가 한계에 다다르는 온도 이상에서는 더 이상 온도 조절을 할 수 없게 된다. 또한 저온인 경우 온도조절기가 서미스터에 흘러주는 전류와 서미스터가 온도에 따라 변하는 저항의 곱 즉, 전압이 일정한 값(보통 5V)이상일 경우 더 이상 온도조절을 할 수 없게 된다.Therefore, the temperature controller is no longer able to control the temperature at temperatures higher than the temperature at which the resistance change reaches a limit. In addition, at low temperatures, the temperature of the thermistor is multiplied by the current of the thermistor and the resistance that changes with temperature, that is, when the voltage is above a certain value (usually 5V), the temperature can no longer be controlled.

본 발명이 이루고자하는 기술적 과제는 복수개의 열감지소자를 사용하여 열감지소자 특성에 의해 제한되는 온도범위를 넓혀 온도범위에서도 파장조절을 할 수 있는 도파로열 격자형 광파장분할기를 제공함에 있다.The technical problem to be achieved by the present invention is to provide a waveguide thermal lattice type optical wavelength divider that can control the wavelength even in the temperature range by widening the temperature range limited by the characteristics of the heat sensing element using a plurality of heat sensing elements.

도 1은 광파장분할기의 기본구조를 도시한 것이다.1 shows the basic structure of an optical wavelength divider.

도 2는 서미스터의 저항과 온도와의 관계를 도시한 것이다.2 shows the relationship between the resistance of the thermistor and the temperature.

도 3은 본 발명에 의한 도파로열 격자형 광파장분할기를 도시한 것이다.3 shows a waveguide thermal lattice type optical wavelength splitter according to the present invention.

도 4는 복수개의 서미스터를 사용하는 열전도판을 도시한 것이다.4 illustrates a heat conduction plate using a plurality of thermistors.

상기 기술적 과제를 해결하기 위한 본 발명에 위한 도파로열 격자형 광파장분할기는 도파로열 격자모듈; 상기 도파로열 격자모듈의 온도를 일정하게 유지하도록 열을 전도하고, 상기 도파로열 격자모듈의 온도 조절을 위하여 복수개의 열감지소자를 구비하는 열전도판; 및 상기 열전도판에 열을 가하는 열전자소자를 포함함을 특징으로 한다.The waveguide thermal lattice-type optical wavelength splitter for the present invention for solving the technical problem is a waveguide thermal lattice module; A heat conduction plate that conducts heat to maintain a constant temperature of the waveguide thermal lattice module, and includes a plurality of heat sensing elements for temperature control of the waveguide thermal lattice module; And a thermal electronic device for applying heat to the thermal conductive plate.

이하 도면을 참조하여 본 발명을 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 3은 본 발명에 의한 도파로열 격자형 광파장분할기를 도시한 것으로, 도파로열 격자모듈(310), 열전도판(320) 및 열전자소자(330)으로 이루어진다.3 illustrates a waveguide thermal lattice type optical wavelength splitter according to the present invention, and includes a waveguide thermal lattice module 310, a thermal conductive plate 320, and a thermal electronic device 330.

도파로열 격자모듈(310)은 입출력 도파로로부터 입력되는 전력을 분할하는 제1 스타커플러, 위상천이(Phase shfter)역할을 하는 도파로열 격자 및 마흐젠더 간섭계(mach-zehnder interferometer)역할을 하는 제2 스타커플러로 이루어진다.The waveguide grating module 310 is a first star coupler for dividing the power input from the input and output waveguides, a waveguide grating serving as a phase shifter and a second star acting as a mach-zehnder interferometer. It consists of a coupler.

열전도판(320)은 도파로열 격자모듈(310)에 열을 가하는 것으로, 열전도도가 좋은 알루미늄판으로 이루어진다. 또한 열전도판(320)은 도파로열 격자모듈(310)의 온도범위를 측정하기 위하여 내부에 복수개의 열감지소자를 포함한다. 상기 열감지소자로는 서미스터가 사용된다.The heat conduction plate 320 applies heat to the waveguide thermal lattice module 310 and is made of an aluminum plate having good thermal conductivity. In addition, the thermal conductive plate 320 includes a plurality of thermal sensing elements therein for measuring the temperature range of the waveguide thermal lattice module 310. Thermistor is used as the heat sensing element.

열전자소자(330)는 열전도판(320)의 온도를 상승시키거나 하강시킨다. 열전자소자(330)로는 열전자 냉각기(Themoelectric cooler:TEC)가 사용된다.The thermal electronic device 330 raises or lowers the temperature of the thermal conductive plate 320. As the thermoelectronic element 330, a thermoelectric cooler (TEC) is used.

상술한 바에 의하여 본 발명의 동작을 상세히 설명하기로 한다.As described above, the operation of the present invention will be described in detail.

도파로열 격자모듈(310)의 동작원리는 도파로열 격자에서 도파로에 따라 선형적으로 위상이 이동된 빛이 파장에 따라 파두면(wave front)이 각기 다른 방향을 향하면서 보강간섭을 일으켜 파장분할을 하게 되는 것이다.The principle of operation of the waveguide grating module 310 is that when the light linearly shifted in phase according to the waveguide in the waveguide grating causes wave front to face different directions and causes constructive interference, wavelength division is performed. Will be done.

이러한 도파로열 격자모듈(310) 특성은 격자 방정식으로 표현된다. 격자 방정식(grating equation)은 도파로열 격자를 회절격자(diffraction grating)로 간주하고 입사하는 빛의 격자에 따른 분산 특성을 기술한 식이다. 이 식은 도파로열 격자모듈(310)를 구성하는 세부분, 즉, 제1 스타커플러, 도파로열 격자, 제2 스타커플러에서의 위상변화를 모두 합한 뒤, 이 위상변화의 합이 최종출력 평면(제2스타커플러와 출력도파로와의 경계면)에서 보강간섭을 일으키는 조건을 구한다. 이에 따른 격자방정식은 다음과 같다.The waveguide grating module 310 characteristics are represented by a lattice equation. The grating equation considers the waveguide grating as a diffraction grating and describes the dispersion characteristics along the grating of the incident light. This equation sums up the phase changes in the first waveguide lattice module 310, that is, the first star coupler, the waveguide lattice, and the second star coupler. Find the condition of constructive interference at the interface between the 2 star coupler and the output waveguide. The lattice equation according to this is as follows.

ns는 스타커플러의 유효 굴절율이고, nc는 광도파로열 격자의 유효 굴절율이고, d는 광도파로 열 격자의 피치이고, m은 회절차수이고, ΔL은 인접한 광도파로 열 격자 사이의 길이 차이, λ는 파장을 나타낸다.n s is the effective refractive index of the star coupler, n c is the effective refractive index of the optical waveguide thermal grating, d is the pitch of the optical waveguide thermal grating, m is the diffraction order, and ΔL is the difference in length between adjacent optical waveguide thermal gratings. denotes the wavelength.

도파로열 격자모듈(310)은 제조공정상의 여러 가지 원인에 의해 설계된 파장이 정확히 구현되지 않을 수 있으며, 이러한 경우 온도조절로 파장을 미세 조정할 수 있다. 온도변화에 따라 굴절율(ns, nc) 및이 변하게 되고 이로 인하여 파장을 조절할 수 있게 되는 것이다.The waveguide thermal lattice module 310 may not accurately implement the wavelength designed by various causes in the manufacturing process, and in this case, the wavelength may be finely adjusted by temperature control. Refractive index (n s , n c ) and This changes, which makes it possible to adjust the wavelength.

실리카재질의 광소자의 경우 0.01nm/0C의 온도에 따른 파장 변이 특성을 가지며, 실현하고자 하는 설계파장에서 변이된 파장만큼 온도를 조절하여 실현하고자 하는 파장을 구현해 낼 수 있다.In the case of a silica-based optical device, it has a wavelength variation characteristic according to a temperature of 0.01 nm / 0 C, and the wavelength to be realized can be realized by controlling the temperature by the wavelength shifted from the design wavelength to be realized.

파장조절을 위해 열감지소자인 서미스터와 열전자소자(330)인 열전자 냉각기(Thermoelectric cooler:이하 TEC) 그리고 이러한 소자들을 유기적으로 조절해주는 온도 조절기(temperature controller)를 사용하여 도파로열 격자모듈(310)의 온도를 변화시킨다.The temperature of the waveguide thermal lattice module 310 is controlled by using a thermistor, which is a thermal sensing element, a thermoelectric cooler (TEC), which is a thermoelectronic element 330, and a temperature controller for organically controlling such elements. To change.

즉, 온도에 따라 저항이 변하는 서미스터를 온도감지소자로 사용하고, 온도 제어기가 그 변한 저항으로 온도변화를 감지하여 이에 적합한 전류를 열전자 냉각기(330)에 흐르게 한다. 펠티어(Peltier)효과에 의해 동작하는 TEC는 온도 제어기에서 보내지는 전류에 의하여 온도를 상승 및 하강시켜 조절하고자 하는 도파로열 격자모듈(310)의 온도를 유지하게 된다.That is, a thermistor whose resistance changes with temperature is used as a temperature sensing element, and the temperature controller senses a temperature change with the changed resistance and causes a suitable current to flow in the thermoelectronic cooler 330. The TEC operating by the Peltier effect maintains the temperature of the waveguide thermal lattice module 310 to be adjusted by raising and lowering the temperature by the current sent from the temperature controller.

여기에 사용하는 서미스터는 온도와 저항간에 비선형 특성을 가지며 이는 대수 다항식의 확장(logarithm polynomial expantion)에 의해 모델링 되어진다.The thermistors used here have a nonlinear characteristic between temperature and resistance, which is modeled by logarithm polynomial expantion.

수학식 1을 이용하여 10KΩ(25℃)의 서미스터의 경우 0.01℃ 이하의 오차로 -20℃∼50℃까지 조절할 수 있다.Using the equation 1, the thermistor of 10 KΩ (25 ° C.) may be adjusted to -20 ° C. to 50 ° C. with an error of 0.01 ° C. or less.

다음은 그 대표적인 예이다.The following is a representative example.

2.25KΩ : -60℃∼10℃ 5KΩ : -45℃∼10℃ 10KΩ : -20℃∼50℃2.25KΩ: -60 ℃ ~ 10 ℃ 5KΩ: -45 ℃ ~ 10 ℃ 10KΩ: -20 ℃ ~ 50 ℃

20KΩ : -10℃∼70℃ 50KΩ : 0℃∼90℃ 100KΩ : 10℃∼110℃20KΩ: -10 ℃ ~ 70 ℃ 50KΩ: 0 ℃ ~ 90 ℃ 100KΩ: 10 ℃ ~ 110 ℃

따라서 감지 온도범위가 다른 서미스터를 복수개 사용하여 외부온도에 민감한 영역에 있는 서미스터의 저항을 온도조절에 적용케 하여 조절할 수 있는 온도 범위를 넓혔다.Therefore, by using a plurality of thermistors with different sensing temperature ranges, the resistance of the thermistor in an area sensitive to external temperature is applied to the temperature control, thereby widening the temperature range that can be adjusted.

도 4는 복수개의 서미스터를 사용하는 열전도판을 도시한 것이다. 이것은 열전도판(410)에 복수개의 서미스터(420)를 내장한 것이다.4 illustrates a heat conduction plate using a plurality of thermistors. This is a built-in plurality of thermistors 420 in the thermal conductive plate 410.

예를 들어 10KΩ의 서미스터를 하나 사용할 경우 조절 가능한 온도범위는 -20∼50℃로, 이 온도범위에 의한 파장조절 가능범위는 0.7nm이다. 그러나, 본 발명의 방법으로 5KΩ과 20KΩ의 서미스터의 두 조합으로 사용할 경우 온도 범위는 -45∼70℃로, 이 온도 범위에 의한 파장조절가능 범위는 1.15nm이다.For example, if one thermistor of 10KΩ is used, the adjustable temperature range is -20 to 50 ° C, and the wavelength adjustable range by this temperature range is 0.7nm. However, the temperature range of -45 ~ 70 ℃ when used in two combinations of 5KΩ and 20KΩ thermistor by the method of the present invention, the wavelength adjustable range by this temperature range is 1.15nm.

또한, 열전도판(410)의 복수개의 서미스터(420)의 선택적 구동을 위하여 비교회로를 사용한다. 상기 비교회로는 상기 예에서 보듯이 5KΩ과 20KΩ의 서미스터중 하나를 선택하는 기능을 갖는다. 따라서, 5KΩ의 서미스터만을 사용할 수 있고, 반대로 20KΩ의 서미스터만을 사용할 수 있다.In addition, a comparison circuit is used to selectively drive the plurality of thermistors 420 of the thermal conductive plate 410. The comparison circuit has a function of selecting one of a 5 KΩ and 20 KΩ thermistor as shown in the above example. Therefore, only a 5KΩ thermistor can be used, and conversely, only a 20KΩ thermistor can be used.

본 발명에 의하면, 복수개의 열감지소자를 사용하여 온도범위를 조절하는 열전도판을 사용함으로써, 광파장분할기의 온도조절 범위가 확장되어지고 이로 인하여 조절될 수 있는 파장범위도 넓어진다.According to the present invention, by using the heat conduction plate to adjust the temperature range by using a plurality of heat sensing elements, the temperature control range of the optical wavelength splitter is extended, thereby widening the wavelength range that can be adjusted.

Claims (6)

도파로열 격자모듈;Waveguide thermal lattice module; 상기 도파로열 격자모듈의 온도를 일정하게 유지하도록 열을 전도하고, 상기 도파로열 격자모듈의 온도 조절을 위하여 복수개의 열감지소자를 구비하는 열전도판; 및A heat conduction plate that conducts heat to maintain a constant temperature of the waveguide thermal lattice module, and includes a plurality of heat sensing elements for temperature control of the waveguide thermal lattice module; And 상기 열전도판에 열을 가하는 열전자소자를 포함함을 특징으로 하는 도파로열 격자형 광파장분할기.Waveguide lattice-type optical wavelength splitter comprising a thermal electronic device for applying heat to the thermal conductive plate. 제1항에 있어서,The method of claim 1, 상기 열전도판의 복수개의 열감지소자에 의해 측정된 온도측정치를 입력받아 상기 열전자소자의 온도를 조절하는 온도조절기를 더 구비함을 특징으로 하는 도파로열 격자형 광파장분할기.And a temperature controller configured to receive temperature measurements measured by the plurality of thermal sensing elements of the thermal conductive plate and adjust the temperature of the thermal electronic elements. 제1항에 있어서,The method of claim 1, 상기 열전도판의 복수개의 열감지소자의 선택적 구동을 위하여 비교회로를 더 구비함을 특징으로 하는 도파로열 격자형 광파장분할기.And a comparison circuit for selectively driving the plurality of thermal sensing elements of the thermal conductive plate. 제1항에 있어서, 상기 열전도판은The method of claim 1, wherein the thermal conductive plate 상기 도파로열 격자모듈의 온도를 조절을 위하여 서로 다른 저항값을 갖는 복수개의 열감지소자를 구비하는 것을 특징으로 하는 도파로열 격자형 광파장분할기.And a plurality of thermal sensing elements having different resistance values for controlling the temperature of the waveguide thermal lattice module. 제4항에 있어서, 상기 열감지소자는The method of claim 4, wherein the heat sensing element 서미스터임을 특징으로 하는 도파로열 격자형 광파장분할기.A waveguide thermal lattice type optical wavelength splitter characterized in that the thermistor. 제1항에 있어서, 상기 열전자소자는The method of claim 1, wherein the thermal electronic device 열전자 냉각기(Thermoelectric cooler)임을 특징으로 하는 도파로열 격자형 광파장분할기.A waveguide thermal lattice type optical splitter characterized by a thermoelectric cooler.
KR1019990001262A 1999-01-18 1999-01-18 AWG multiplexer KR100322127B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990001262A KR100322127B1 (en) 1999-01-18 1999-01-18 AWG multiplexer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990001262A KR100322127B1 (en) 1999-01-18 1999-01-18 AWG multiplexer

Publications (2)

Publication Number Publication Date
KR20000051030A true KR20000051030A (en) 2000-08-16
KR100322127B1 KR100322127B1 (en) 2002-02-04

Family

ID=19571580

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990001262A KR100322127B1 (en) 1999-01-18 1999-01-18 AWG multiplexer

Country Status (1)

Country Link
KR (1) KR100322127B1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100369811B1 (en) * 2001-01-30 2003-01-29 삼성전자 주식회사 Optical waveguide module using heat conducting element by means of phase change
KR100387070B1 (en) * 2001-01-30 2003-06-12 삼성전자주식회사 Device for fixing and packaging planner lightwave element module
KR100387035B1 (en) * 2001-01-30 2003-06-12 삼성전자주식회사 Optical waveguide module using unified heat conducting module
KR100424464B1 (en) * 2002-06-12 2004-03-26 삼성전자주식회사 Heat transfer device for planer lightwaveguide module
WO2009017335A1 (en) * 2007-07-27 2009-02-05 Chem Optics Inc. Tunable laser module based on polymer waveguides
US8831433B2 (en) 2012-12-07 2014-09-09 Applied Optoelectronics, Inc. Temperature controlled multi-channel transmitter optical subassembly and optical transceiver module including same
US8995484B2 (en) 2013-02-22 2015-03-31 Applied Optoelectronics, Inc. Temperature controlled multi-channel transmitter optical subassembly and optical transceiver module including same
US9160455B2 (en) 2011-07-14 2015-10-13 Applied Optoelectronics, Inc. External cavity laser array system and WDM optical system including same
US9236945B2 (en) 2012-12-07 2016-01-12 Applied Optoelectronics, Inc. Thermally shielded multi-channel transmitter optical subassembly and optical transceiver module including same
US9306671B2 (en) 2012-12-07 2016-04-05 Applied Optoelectronics, Inc. Thermally isolated multi-channel transmitter optical subassembly and optical transceiver module including same
US9479280B2 (en) 2011-07-14 2016-10-25 Applied Optoelectronics, Inc. Extended cavity fabry-perot laser assembly capable of high speed optical modulation with narrow mode spacing and WDM optical system including same
US9614620B2 (en) 2013-02-06 2017-04-04 Applied Optoelectronics, Inc. Coaxial transmitter optical subassembly (TOSA) with cuboid type to laser package and optical transceiver including same
US9876576B2 (en) 2016-03-17 2018-01-23 Applied Optoelectronics, Inc. Layered coaxial transmitter optical subassemblies with support bridge therebetween
US9964720B2 (en) 2014-06-04 2018-05-08 Applied Optoelectronics, Inc. Monitoring and controlling temperature across a laser array in a transmitter optical subassembly (TOSA) package
US10230471B2 (en) 2013-02-06 2019-03-12 Applied Optoelectronics, Inc. Coaxial transmitter optical subassembly (TOSA) with cuboid type to laser package and optical transceiver including same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100387070B1 (en) * 2001-01-30 2003-06-12 삼성전자주식회사 Device for fixing and packaging planner lightwave element module
KR100387035B1 (en) * 2001-01-30 2003-06-12 삼성전자주식회사 Optical waveguide module using unified heat conducting module
KR100369811B1 (en) * 2001-01-30 2003-01-29 삼성전자 주식회사 Optical waveguide module using heat conducting element by means of phase change
KR100424464B1 (en) * 2002-06-12 2004-03-26 삼성전자주식회사 Heat transfer device for planer lightwaveguide module
WO2009017335A1 (en) * 2007-07-27 2009-02-05 Chem Optics Inc. Tunable laser module based on polymer waveguides
US9160455B2 (en) 2011-07-14 2015-10-13 Applied Optoelectronics, Inc. External cavity laser array system and WDM optical system including same
US9479280B2 (en) 2011-07-14 2016-10-25 Applied Optoelectronics, Inc. Extended cavity fabry-perot laser assembly capable of high speed optical modulation with narrow mode spacing and WDM optical system including same
US9306671B2 (en) 2012-12-07 2016-04-05 Applied Optoelectronics, Inc. Thermally isolated multi-channel transmitter optical subassembly and optical transceiver module including same
US9236945B2 (en) 2012-12-07 2016-01-12 Applied Optoelectronics, Inc. Thermally shielded multi-channel transmitter optical subassembly and optical transceiver module including same
US8831433B2 (en) 2012-12-07 2014-09-09 Applied Optoelectronics, Inc. Temperature controlled multi-channel transmitter optical subassembly and optical transceiver module including same
US9614620B2 (en) 2013-02-06 2017-04-04 Applied Optoelectronics, Inc. Coaxial transmitter optical subassembly (TOSA) with cuboid type to laser package and optical transceiver including same
US10230471B2 (en) 2013-02-06 2019-03-12 Applied Optoelectronics, Inc. Coaxial transmitter optical subassembly (TOSA) with cuboid type to laser package and optical transceiver including same
US8995484B2 (en) 2013-02-22 2015-03-31 Applied Optoelectronics, Inc. Temperature controlled multi-channel transmitter optical subassembly and optical transceiver module including same
US9964720B2 (en) 2014-06-04 2018-05-08 Applied Optoelectronics, Inc. Monitoring and controlling temperature across a laser array in a transmitter optical subassembly (TOSA) package
US9876576B2 (en) 2016-03-17 2018-01-23 Applied Optoelectronics, Inc. Layered coaxial transmitter optical subassemblies with support bridge therebetween

Also Published As

Publication number Publication date
KR100322127B1 (en) 2002-02-04

Similar Documents

Publication Publication Date Title
KR100322127B1 (en) AWG multiplexer
Liu et al. Thermo-optic phase shifters based on silicon-on-insulator platform: state-of-the-art and a review
US7903910B2 (en) Coupled optical waveguide resonators with heaters for thermo-optic control of wavelength and compound filter shape
USRE48654E1 (en) Photonic integrated circuit incorporating a bandgap temperature sensor
US20160124251A1 (en) Photonic integrated circuit incorporating a bandgap temperature sensor
EP0577154B1 (en) Thermally controllable optical devices
CN110121673A (en) Photoswitch based on carrier effect
Heimala et al. Thermally tunable integrated optical ring resonator with poly-Si thermistor
CA2311961A1 (en) Slotted monolithic optical waveguides
EP1530067B1 (en) Optical waveguide device, variable optical attenuator, and optical switch
Yeo et al. Polymer-silica hybrid 1× 2 thermooptic switch with low crosstalk
US7330630B2 (en) Waveguide type variable optical attenuator
CN110888245A (en) Wavelength selection method and wavelength selection device of tunable laser
Qiu et al. Design and analysis of Y-branched polymeric digital optical switch with low power consumption
JP4819415B2 (en) Optical device
Zhang et al. High-temperature Bragg grating waveguide sensor
CN218447925U (en) Device for preventing wavelength from generating drift along with temperature change
Breglio et al. Temperature optical sensor based on a silicon bimodal Y branch
Parra et al. Silicon thermo-optic phase shifters: a review of configurations and optimization strategies
Chen et al. Silicon Photonics Foundry Fabricated, Slow-Light Enhanced, Low Power Thermal Phase Shifter
CN117289387A (en) Temperature monitoring method of optical waveguide chip
Jia et al. An experimental investigation and multiphysics simulation of thermoelectric temperature controller for AWG chips
JP2004258462A (en) Variable dispersion compensator
Yan et al. Integrated thin film heater and sensor with arrayed waveguide gratings
KR102611850B1 (en) Temperature-stabilized wavelength tunable optical filter

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20051219

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee