KR20000045349A - Method for fabricating mos field effect transistor - Google Patents

Method for fabricating mos field effect transistor Download PDF

Info

Publication number
KR20000045349A
KR20000045349A KR1019980061907A KR19980061907A KR20000045349A KR 20000045349 A KR20000045349 A KR 20000045349A KR 1019980061907 A KR1019980061907 A KR 1019980061907A KR 19980061907 A KR19980061907 A KR 19980061907A KR 20000045349 A KR20000045349 A KR 20000045349A
Authority
KR
South Korea
Prior art keywords
insulating film
source
forming
drain
gate electrode
Prior art date
Application number
KR1019980061907A
Other languages
Korean (ko)
Other versions
KR100569570B1 (en
Inventor
김영석
정상철
Original Assignee
김영환
현대전자산업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영환, 현대전자산업 주식회사 filed Critical 김영환
Priority to KR1019980061907A priority Critical patent/KR100569570B1/en
Publication of KR20000045349A publication Critical patent/KR20000045349A/en
Application granted granted Critical
Publication of KR100569570B1 publication Critical patent/KR100569570B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/02129Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being boron or phosphorus doped silicon oxides, e.g. BPSG, BSG or PSG
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41733Source or drain electrodes for field effect devices for thin film transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6656Unipolar field-effect transistors with an insulated gate, i.e. MISFET using multiple spacer layers, e.g. multiple sidewall spacers

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE: A method for fabricating a MOS field effect transistor is provided to improve a device characteristic and a reliability by reducing a fail induced by a short channel. CONSTITUTION: A method for fabricating a MOS field effect transistor comprises forming an isolation layer at a semiconductor substrate and forming a first interlayer dielectric(13) on an entire surface. A first photoresist pattern is formed on the first interlayer dielectric(13) so as to expose source and drain regions. The first interlayer dielectric(13) is etched by using the first photoresist pattern as a mask, to thereby expose the semiconductor substrate. A conductive layer is formed on an entire surface. The source and drain electrodes are formed by flattening the conductive layer by a chemical mechanical polishing method. After forming a second interlayer dielectric(16) on a resultant structure, a second photoresist pattern is formed on the interlayer dielectric(16), and the second interlayer dielectric(16) and the first interlayer dielectric(13) are etched so as to expose the semiconductor substrate. After forming a spacer, a channel threshold voltage implantation is performed, and a gate electrode is formed by polishing a conductive layer(20).

Description

반도체소자의 모스전계효과 트렌지스터 제조방법Manufacturing method of MOS field effect transistor of semiconductor device

본 발명은 반도체소자의 모스전계효과 트렌지스터(metal-oxide-silicon field effect transistor) 제조방법에 관한 것으로, 특히 소오스/드레인영역을 스택형으로 형성하고, 상기 소오스/드레인영역의 측벽에 절연막 스페이서를 형성하여 게이트 전극과 소오스/드레인영역이 오버랩되는 것을 방지하여 쇼트채널이펙트(short channel effect)에 의한 페일을 감소시켜 소자의 특성을 향상시키는 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a metal-oxide-silicon field effect transistor of a semiconductor device. In particular, a source / drain region is formed in a stack, and an insulating layer spacer is formed on sidewalls of the source / drain region. The present invention relates to a method of preventing a gate electrode from overlapping with a source / drain region, thereby reducing fail due to a short channel effect, thereby improving device characteristics.

일반적으로, P형 또는 N형 반도체기판에 N 또는 P형 불순물로 형성되는 PN접합은 불순물을 반도체기판에 이온주입한 후, 열처리로 활성화시켜 확산영역을 형성한다.In general, a PN junction formed of an N or P-type impurity on a P-type or N-type semiconductor substrate is ion implanted into the semiconductor substrate and then activated by heat treatment to form a diffusion region.

따라서, 채널의 폭이 감소된 반도체소자에서는 확산영역으로 부터의 측면확산에 의한 쇼트채널이펙트를 방지하기 위하여 접합 깊이를 얕게 형성해야 한다.Therefore, in a semiconductor device having a reduced channel width, the junction depth must be shallow in order to prevent short channel effects due to side diffusion from the diffusion region.

종래기술에 따른 모스 전계효과 트랜지스터의 제조방법은 다음과 같다.A method of manufacturing a MOS field effect transistor according to the prior art is as follows.

먼저, 반도체기판 상부에 소자분리를 위한 소자분리절연막을 형성한 다음, 전 체표면 상부에 게이트 절연막 및 다결정실리콘층을 형성한다.First, a device isolation insulating film for device isolation is formed on the semiconductor substrate, and then a gate insulating film and a polysilicon layer are formed on the entire surface.

다음, 게이트 전극 마스크를 식각마스크로 사용하여 상기 다결정실리콘층 및 게이트 절연막을 식각하여 게이트 전극을 형성한다.Next, the polysilicon layer and the gate insulating layer are etched using a gate electrode mask as an etching mask to form a gate electrode.

그 다음, 상기 게이트 전극의 양측 반도체기판에 저농도의 불순물을 이온주입시켜 엘.디.디.(lightly doped drain, LDD)영역을 형성한다.Next, a low concentration of impurities are implanted into both semiconductor substrates of the gate electrode to form a lightly doped drain (LDD) region.

그리고, 전체표면 상부에 절연막을 형성한 다음, 전면식각하여 상기 게이트 전극의 측벽에 절연막 스페이서를 형성한다.Then, an insulating film is formed over the entire surface and then etched to form an insulating film spacer on the sidewall of the gate electrode.

그 후, 상기 절연막 스페이서의 양쪽 반도체기판에 고농도의 불순물을 이온주입하여 소오스/드레인영역을 형성하여 모스 전계효과 트랜지스터를 형성한다.Thereafter, a high concentration of impurities are implanted into both semiconductor substrates of the insulating film spacer to form a source / drain region to form a MOS field effect transistor.

상기와 같은 종래기술에 따른 반도체소자의 모스 전계효과 트렌지스터 제조방법은, 게이트 전극과 소오스/드레인영역의 가장자리가 중첩되는 부분에서 게이트 전극과 소오스/드레인전극의 전압차이에 의해서 공핍영역이 형성되어 강한 전기장이 발생되어 터널링(tunneling)현상이 유발되고 이로 인하여 GIDL(gate induced drain leakage)현상이 발생하고, 상기 소오스/드레인영역과 웰의 농도차이에 의해 공핍영역의 폭(delpetion width)이 증가하여 펀치쓰루(punchthrough)현상이 발생하며, 게이트 전극의 길이를 줄이는 방법을 사진공정에 의존하고 있으므로 현재 기술로는 0.15㎛ 이하로 조절하는 것이 어렵다. 또한 이때 채널 농도와 소오스/드레인영역의 농도차이에 의해 서피스 펀치쓰루(surface punchthrough)현상이 증가하는 문제점이 있다.In the method of manufacturing a MOS field effect transistor of a semiconductor device according to the related art, a depletion region is formed by a voltage difference between a gate electrode and a source / drain electrode at a portion where the edges of the gate electrode and the source / drain region overlap each other. An electric field is generated to cause tunneling, resulting in GIDL (gate induced drain leakage), and the depth of the depletion region increases due to the difference in concentration between the source / drain region and the well. Through-through occurs and the method of reducing the length of the gate electrode is dependent on the photographic process, so it is difficult to control the current technology to 0.15 μm or less. In addition, there is a problem in that surface punchthrough is increased due to a difference in channel concentration and a difference between source and drain regions.

본 발명은 상기한 종래기술의 문제점을 해결하기 위하여, 소오스/드레인전극을 스택형으로 형성하되, 그 상부 및 측벽에 절연막을 형성하고, 상기 소오스/드레인전극 사이에 게이트 전극을 형성하여 상기 소오스/드레인전극과 게이트 전극이 중첩되는 부분이 형성되지 않게 함으로써 쇼트채널에 의해 발생되는 페일을 감소시켜 소자의 특성 및 신뢰성을 향상시키는 반도체소자의 모스 전계효과 트렌지스터 제조방법을 제공하는데 그 목적이 있다.In order to solve the above-mentioned problems of the prior art, the source / drain electrodes are formed in a stack shape, an insulating film is formed on the upper and sidewalls thereof, and a gate electrode is formed between the source / drain electrodes to form the source / drain electrodes. SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a MOS field effect transistor of a semiconductor device, in which a portion generated by a short channel is reduced by preventing overlapping of the drain electrode and the gate electrode, thereby improving device characteristics and reliability.

도 1a 내지도 1f 는 본 발명의 제1실시예에 따른 반도체소자의 모스 전계효과 트렌지스터 제조방법을 도시한 단면도.1A to 1F are cross-sectional views illustrating a method of manufacturing a MOS field effect transistor of a semiconductor device according to a first embodiment of the present invention.

도 2a 내지 도 2g 는 본 발명의 제2실시예에 따른 반도체소자의 모스 전계효과 트렌지스터 제조방법을 도시한 단면도.2A to 2G are cross-sectional views illustrating a method of manufacturing a MOS field effect transistor of a semiconductor device according to a second embodiment of the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

11, 31 : 반도체기판 12, 32 : 소자분리절연막11, 31: semiconductor substrate 12, 32: device isolation insulating film

13, 37 : 층간절연막 14, 35 : 제1감광막 패턴13, 37: interlayer insulating film 14, 35: first photosensitive film pattern

15, 33 : 소오스/드레인용 도전층 16, 34 : 절연막15, 33: source / drain conductive layers 16, 34: insulating film

17, 38 : 제2감광막 패턴 18, 36 : 절연막 스페이서17, 38: second photosensitive film pattern 18, 36: insulating film spacer

19, 39 : 게이트 절연막 20, 40 : 게이트 전극용 도전층19, 39: gate insulating film 20, 40: conductive layer for gate electrode

이상의 목적을 달성하기 위한 본 발명에 따른 반도체소자의 모스 전계효과 트렌지스터 제조방법은,Method of manufacturing a MOS field effect transistor of a semiconductor device according to the present invention for achieving the above object,

소자분리절연막이 형성되어 있는 반도체기판 상부에 소오스/드레인영역으로 예정되는 부분을 노출시키는 제1층간절연막을 형성하는 공정과,Forming a first interlayer insulating film overlying the semiconductor substrate on which the device isolation insulating film is formed, exposing a portion intended as a source / drain region;

전체표면 상부에 소오스/드레인용 도전층을 형성한 다음, 상기 소오스/드레인용 도전층을 평탄화시키는 제1화학적 기계적 연마공정과,A first chemical mechanical polishing process of forming a source / drain conductive layer on the entire surface, and then planarizing the source / drain conductive layer;

상기 소오스/드레인용 도전층 상부에 불순물을 이온주입하여 스택형 소오스/드레인전극을 형성하는 공정과,Forming a stacked source / drain electrode by ion implanting impurities on the source / drain conductive layer;

전체표면 상부에 제2층간절연막을 형성하는 공정과,Forming a second interlayer insulating film over the entire surface;

게이트 전극으로 예정되는 부분을 노출시키는 게이트 전극 마스크를 식각마스크로 사용하여 상기 제2층간절연막과 제1층간절연막을 제거하여 상기 반도체기판을 노출시키는 공정과,Exposing the semiconductor substrate by removing the second interlayer insulating film and the first interlayer insulating film by using a gate electrode mask that exposes a predetermined portion as a gate electrode as an etching mask;

상기 노출된 반도체기판에 채널 Vt 임플란트공정을 실시한 다음, 상기 제2층간절연막과 스택형 소오스/드레인전극의 측벽에 절연막 스페이서를 형성한 후, 게이트 절연막을 형성하는 공정과,Performing a channel Vt implant process on the exposed semiconductor substrate, forming an insulating film spacer on sidewalls of the second interlayer insulating film and the stacked source / drain electrodes, and then forming a gate insulating film;

전체표면 상부에 게이트 전극용 도전층을 형성한 다음, 평탄화시켜 상기 스택형 소오스/드레인전극 사이를 매립하되, 상기 소오스/드레인전극과 중첩되지 않는 게이트 전극을 형성하는 제2화학적 기계적 연마공정을 포함하는 것을 제1특징으로 한다.A second chemical mechanical polishing process for forming a gate electrode conductive layer on the entire surface and then planarizing the gap between the stacked source / drain electrodes to form a gate electrode that does not overlap the source / drain electrodes Let it be a 1st characteristic to do.

또한, 이상의 목적을 달성하기 위한 본 발명에 따른 반도체소자의 모스 전계효과 트렌지스터 제조방법은,In addition, the method of manufacturing a Mohs field effect transistor of a semiconductor device according to the present invention for achieving the above object,

소자분리절연막이 형성되어 있는 반도체기판 상부에 소오스/드레인용 도전층과 제1층간절연막의 적층구조를 형성하는 공정과,Forming a stacked structure of a source / drain conductive layer and a first interlayer insulating film on the semiconductor substrate on which the device isolation insulating film is formed;

소오스/드레인영역으로 예정되는 부분을 보호하는 소오스/드레인전극 마스크를 식각마스크로 상기 적층구조를 식각하여 스택형 소오스/드레인전극을 형성하는 공정과,Forming a stacked source / drain electrode by etching the stack structure using a source / drain electrode mask protecting a portion intended to be a source / drain region as an etch mask;

상기 스택형 소오스/드레인전극의 측벽에 절연막 스페이서를 형성한 다음, 상기 반도체기판에 채널 Vt 임플란트하는 공정과,Forming an insulating film spacer on sidewalls of the stacked source / drain electrodes and then implanting a channel Vt into the semiconductor substrate;

전체표면 상부에 제2층간절연막을 형성하는 공정과,Forming a second interlayer insulating film over the entire surface;

게이트 전극으로 예정되는 부분을 노출시키는 게이트 전극 마스크를 식각마스크로 사용하여 상기 제2층간절연막을 제거하여 상기 반도체기판을 노출시킨 다음, 게이트 절연막을 형성하는 공정과,Exposing the semiconductor substrate by removing the second interlayer insulating film using a gate electrode mask that exposes a portion intended to be a gate electrode as an etching mask, and then forming a gate insulating film;

전체표면 상부에 게이트 전극용 도전층을 형성한 다음, 화학적 기계적 연마공정을 실시하여 상기 스택형 소오스/드레인전극 사이를 매립하되, 상기 스택형 소오스/드레인전극과 중첩되지 않는 게이트 전극을 형성하는 공정을 포함하는 것을 제2특징으로 한다.Forming a conductive layer for the gate electrode on the entire surface, and then performing a chemical mechanical polishing process to fill the gap between the stacked source / drain electrode, but to form a gate electrode that does not overlap with the stacked source / drain electrode It includes as a second feature.

이하, 첨부된 도면을 참고로 하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 1a 내지 도 1g 는 본 발명의 제1실시예에 따른 반도체소자의 모스 전계효과 트렌지스터 제조방법을 도시한 단면도이다.1A to 1G are cross-sectional views illustrating a method of manufacturing a MOS field effect transistor of a semiconductor device according to a first embodiment of the present invention.

먼저, 반도체기판(11)에서 소자분리영역으로 예정되는 부분에 소자분리절연막(12)을 형성하고, 전체표면 상부에 제1층간절연막(13)을 형성한다.First, a device isolation insulating film 12 is formed on a portion of the semiconductor substrate 11 that is intended as a device isolation region, and a first interlayer insulating film 13 is formed over the entire surface.

다음, 상기 제1층간절연막(13) 상부에 소오스/드레인영역으로 예정되는 부분을 노출시키는 제1감광막 패턴(14)을 형성한다. (도 1a, 도 1b참조)Next, a first photoresist pattern 14 is formed on the first interlayer insulating layer 13 to expose a portion of the source / drain region. (See FIG. 1A, FIG. 1B)

그 다음, 상기 제1감광막 패턴(14)을 식각마스크로 사용하여 상기 제1층간절연막(13)을 식각하여 상기 반도체기판(11)을 노출시킨다.Next, the first interlayer insulating layer 13 is etched using the first photoresist pattern 14 as an etching mask to expose the semiconductor substrate 11.

다음, 전체표면 상부에 소오스/드레인용 도전층(15)을 형성한다. 상기 소오스/드레인용 도전층(15)은 다결정실리콘층을 사용하여 형성한다.Next, a source / drain conductive layer 15 is formed over the entire surface. The source / drain conductive layer 15 is formed using a polysilicon layer.

그 다음, 상기 소오스/드레인용 도전층(15)을 화학적 기계적 연마공정으로 평탄화시켜 소오스/드레인전극을 형성한다.Next, the source / drain conductive layer 15 is planarized by a chemical mechanical polishing process to form a source / drain electrode.

그 후, 상기 구조 전표면에 제2층간절연막(16)을 형성한 다음, 상기 제2층간절연막(16) 상부에 게이트 전극으로 예정되는 부분을 노출시키는 제2감광막 패턴(17)을 형성한다. (도 1d참조)Thereafter, a second interlayer insulating film 16 is formed on the entire surface of the structure, and then a second photoresist film pattern 17 is formed on the second interlayer insulating film 16 to expose a portion intended as a gate electrode. (See FIG. 1D)

다음, 상기 제2감광막 패턴(17)을 식각마스크로 사용하여 상기 제2층간절연막(16)과 제1층간절연막(13)을 식각하여 상기 반도체기판(11)을 노출시킨다.Next, the second interlayer dielectric layer 16 and the first interlayer dielectric layer 13 are etched using the second photoresist layer pattern 17 as an etching mask to expose the semiconductor substrate 11.

그 다음, 전체표면 상부에 절연막을 형성한 후, 전면식각공정을 실시하여 상기 제2층간절연막(16)과 스택형 소오스/드레인전극의 측벽에 절연막 스페이서(18)를 형성한다. 이때, 상기 절연막 스페이서(18)는 상기 스택형 소오스/드레인전극과 후속공정으로 형성될 게이트 전극이 중첩되지 않도록 하기 위하여 형성한다.Next, after the insulating film is formed over the entire surface, an entire surface etching process is performed to form the insulating film spacer 18 on the sidewalls of the second interlayer insulating film 16 and the stacked source / drain electrodes. In this case, the insulating layer spacer 18 is formed so that the stacked source / drain electrodes do not overlap with the gate electrode to be formed in a subsequent process.

그 후, 상기 반도체기판(11)에 보론(boron) 또는 인(phosphorous)을 도즈로 사용하여 채널 Vt 임플란트공정을 실시한다. (도 1e참조)Subsequently, a channel Vt implant process is performed using boron or phosphorous as a dose to the semiconductor substrate 11. (See FIG. 1E)

다음, 전체표면 상부에 게이트 전극용 도전층(20)을 형성한다. (도 1f참조)Next, the conductive layer 20 for the gate electrode is formed on the entire surface. (See FIG. 1F)

그 다음, 상기 게이트 전극용 도전층(20)을 화학적 기계적 연막공정으로 평탄화시켜 상기 스택형 소오스/드레인전극의 사이를 매립하는 게이트 전극을 형성한다. (도 1g참조)Next, the gate electrode conductive layer 20 is planarized by a chemical mechanical film forming process to form a gate electrode that fills the gap between the stacked source / drain electrodes. (See Figure 1g)

본 발명의 제2실시예에 대하여 살펴보면 다음과 같다.Looking at the second embodiment of the present invention.

도 2a 내지 도 2g 는 본 발명의 제2실시예에 따른 반도체소자의 모스 전계효과 트랜지스터의 제조방법을 도시한 단면도이다.2A to 2G are cross-sectional views illustrating a method of manufacturing a MOS field effect transistor of a semiconductor device according to a second embodiment of the present invention.

먼저, 반도체기판(31)에서 소자분리영역으로 예정되는 부분에 소자분리절연막(32)을 형성하고, 전체표면 상부에 소오스/드레인용 도전층(33)과 제1층간절연막(34)의 적층구조를 형성한다.First, a device isolation insulating film 32 is formed on a portion of the semiconductor substrate 31 that is intended as a device isolation region, and the stacked structure of the source / drain conductive layer 33 and the first interlayer insulating film 34 is formed over the entire surface. To form.

다음, 상기 제1층간절연막(34) 상부에 소오스/드레인영역으로 예정되는 부분을 보호하는 제1감광막 패턴(35)을 형성한다. (도 2a, 도 2b참조)Next, a first photoresist layer pattern 35 is formed on the first interlayer insulating layer 34 to protect a portion of the source / drain region. (See FIG. 2A, FIG. 2B)

그 다음, 상기 제1감광막 패턴(35)을 식각마스크로 상기 적층구조를 식각하여 스택형 소오스/드레인전극을 형성하고, 상기 제1감광막 패턴(35)을 제거한다.Next, the stacked structure is etched using the first photoresist pattern 35 as an etch mask to form a stacked source / drain electrode, and the first photoresist pattern 35 is removed.

그 후, 상기 반도체기판(31)에 보론 또는 인을 도즈로 사용하여 채널 Vt 임플란트공정을 실시한다. (도 2c참조)Thereafter, the semiconductor substrate 31 is subjected to a channel Vt implant process using boron or phosphorus as a dose. (See FIG. 2C)

다음, 전체표면 상부에 절연막을 형성한 후 전면식각공정을 실시하여 상기 적층구조의 측벽에 절연막 스페이서(36)를 형성한다.Next, an insulating film is formed on the entire surface, and then an entire surface etching process is performed to form an insulating film spacer 36 on the sidewall of the stacked structure.

그 다음, 전체표면 상부에 상기 제1층간절연막(34)와 절연막 스페이서(36)와 식각선택비차이를 갖는 제2층간절연막(37)을 형성한다.Next, a second interlayer insulating film 37 having an etching selectivity difference between the first interlayer insulating film 34 and the insulating film spacer 36 is formed on the entire surface.

다음, 상기 제2층간절연막(37) 상부에 게이트 전극으로 예정되는 부분을 노출시키는 제2감광막 패턴(38)을 형성한다.Next, a second photoresist layer pattern 38 is formed on the second interlayer insulating layer 37 to expose a portion of the second interlayer insulating layer 37.

그 다음, 상기 제2감광막 패턴(38)을 식각마스크로 사용하여 상기 제2층간절연막(37)을 식각하여 상기 반도체기판(31)을 노출시킨 후, 상기 제2감광막 패턴(38)을 제거한 다음, 상기 노출된 반도체기판(31)에 게이트 절연막(39)을 형성한다. (도 2e참조)Next, the second interlayer insulating layer 37 is etched using the second photoresist pattern 38 as an etch mask to expose the semiconductor substrate 31, and then the second photoresist pattern 38 is removed. The gate insulating layer 39 is formed on the exposed semiconductor substrate 31. (See Figure 2E)

다음, 상기 구조 전표면에 게이트 전극용 도전층(40)을 형성한다.Next, the conductive layer 40 for the gate electrode is formed on the entire surface of the structure.

그 다음, 상기 게이트 전극용 도전층(40)을 화학적 기계적 연마공정으로 평탄화시켜 상기 스택형 소오스/드레인전극 사이를 매립시키는 게이트 전극을 형성한다. (도 2g참조)Next, the gate electrode conductive layer 40 is planarized by a chemical mechanical polishing process to form a gate electrode that fills the gap between the stacked source / drain electrodes. (See Fig. 2g)

이상에서 설명한 바와같이 본 발명에 따른 반도체소자의 모스 전계효과 트렌지스터 제조방법은, 소오스/드레인전극을 스택형으로 형성하고, 상기 소오스/드레인전극의 측벽에 절연막 스페이서를 형성한 다음 상기 소오스/드레인전극 사이에 매립되는 게이트 전극을 형성하여 상기 소오스/드레인전극과 상기 게이트전극이 서로 중첩되지 않도록함으로써 쇼트채널에 의해 DIBL현상이 발생하는 것을 방지하고, 상기 소오스/드레인전극과 게이트 전극이 서로 중첩되어 발생하는 GIDL현상을 방지하며, 소오스전극과 드레인전극이 서로 떨어져 있으므로 펀치쓰루현상이 발생하지 않고, 유효 채널 길이가 감소되어 전류구동능력이 향상되어 소자의 고속화를 가능하고 그에 따른 소자의 특성 및 신뢰성을 향상시키는 이점이 있다.As described above, in the method of manufacturing the MOS field effect transistor of the semiconductor device according to the present invention, the source / drain electrodes are formed in a stack, an insulating film spacer is formed on the sidewalls of the source / drain electrodes, and the source / drain electrodes are formed. By forming a gate electrode buried between the source / drain electrodes and the gate electrode so as not to overlap each other, the generation of the DIBL phenomenon by the short channel is prevented, and the source / drain electrode and the gate electrode overlap each other. It prevents the GIDL phenomenon, and because the source electrode and the drain electrode are separated from each other, the punch-through phenomenon does not occur, the effective channel length is reduced, and the current driving ability is improved, which enables the device to be speeded up, thereby improving the characteristics and reliability of the device. There is an advantage to improve.

Claims (4)

소자분리절연막이 형성되어 있는 반도체기판 상부에 소오스/드레인영역으로 예정되는 부분을 노출시키는 제1층간절연막을 형성하는 공정과,Forming a first interlayer insulating film overlying the semiconductor substrate on which the device isolation insulating film is formed, exposing a portion intended as a source / drain region; 전체표면 상부에 소오스/드레인용 도전층을 형성한 다음, 상기 소오스/드레인용 도전층을 평탄화시키는 제1화학적 기계적 연마공정과,A first chemical mechanical polishing process of forming a source / drain conductive layer on the entire surface, and then planarizing the source / drain conductive layer; 상기 소오스/드레인용 도전층 상부에 불순물을 이온주입하여 스택형 소오스/드레인전극을 형성하는 공정과,Forming a stacked source / drain electrode by ion implanting impurities on the source / drain conductive layer; 전체표면 상부에 제2층간절연막을 형성하는 공정과,Forming a second interlayer insulating film over the entire surface; 게이트 전극으로 예정되는 부분을 노출시키는 게이트 전극 마스크를 식각마스크로 사용하여 상기 제2층간절연막과 제1층간절연막을 제거하여 상기 반도체기판을 노출시키는 공정과,Exposing the semiconductor substrate by removing the second interlayer insulating film and the first interlayer insulating film by using a gate electrode mask that exposes a predetermined portion as a gate electrode as an etching mask; 상기 노출된 반도체기판에 채널 Vt 임플란트공정을 실시한 다음, 상기 제2층간절연막과 스택형 소오스/드레인전극의 측벽에 절연막 스페이서를 형성한 후, 게이트 절연막을 형성하는 공정과,Performing a channel Vt implant process on the exposed semiconductor substrate, forming an insulating film spacer on sidewalls of the second interlayer insulating film and the stacked source / drain electrodes, and then forming a gate insulating film; 전체표면 상부에 게이트 전극용 도전층을 형성한 다음, 평탄화시켜 상기 스택형 소오스/드레인전극 사이를 매립하되, 상기 소오스/드레인전극과 중첩되지 않는 게이트 전극을 형성하는 제2화학적 기계적 연마공정을 포함하는 것을 특징으로 하는 반도체소자의 모스 전계효과 트랜지스터 제조방법.A second chemical mechanical polishing process for forming a gate electrode conductive layer on the entire surface and then planarizing the gap between the stacked source / drain electrodes to form a gate electrode that does not overlap the source / drain electrodes A method for manufacturing a MOS field effect transistor of a semiconductor device, characterized in that. 소자분리절연막이 형성되어 있는 반도체기판 상부에 소오스/드레인용 도전층과 제1층간절연막의 적층구조를 형성하는 공정과,Forming a stacked structure of a source / drain conductive layer and a first interlayer insulating film on the semiconductor substrate on which the device isolation insulating film is formed; 소오스/드레인영역으로 예정되는 부분을 보호하는 소오스/드레인전극 마스크를 식각마스크로 상기 적층구조를 식각하여 스택형 소오스/드레인전극을 형성하는 공정과,Forming a stacked source / drain electrode by etching the stack structure using a source / drain electrode mask protecting a portion intended to be a source / drain region as an etch mask; 상기 스택형 소오스/드레인전극의 측벽에 절연막 스페이서를 형성한 다음, 상기 반도체기판에 채널 Vt 임플란트하는 공정과,Forming an insulating film spacer on sidewalls of the stacked source / drain electrodes and then implanting a channel Vt into the semiconductor substrate; 전체표면 상부에 제2층간절연막을 형성하는 공정과,Forming a second interlayer insulating film over the entire surface; 게이트 전극으로 예정되는 부분을 노출시키는 게이트 전극 마스크를 식각마스크로 사용하여 상기 제2층간절연막을 제거하여 상기 반도체기판을 노출시킨 다음, 게이트 절연막을 형성하는 공정과,Exposing the semiconductor substrate by removing the second interlayer insulating film using a gate electrode mask that exposes a portion intended to be a gate electrode as an etching mask, and then forming a gate insulating film; 전체표면 상부에 게이트 전극용 도전층을 형성한 다음, 화학적 기계적 연마공정을 실시하여 상기 스택형 소오스/드레인전극 사이를 매립하되, 상기 스택형 소오스/드레인전극과 중첩되지 않는 게이트 전극을 형성하는 공정을 포함하는 반도체소자의 모스 전계효과 트렌지스터 제조방법.Forming a conductive layer for the gate electrode on the entire surface, and then performing a chemical mechanical polishing process to fill the gap between the stacked source / drain electrode, but to form a gate electrode that does not overlap with the stacked source / drain electrode Mohs field effect transistor manufacturing method of a semiconductor device comprising a. 제 2 항에 있어서,The method of claim 2, 상기 제1층간절연막은 TEOS 또는 BPSG 산화막 또는 질화막계열의 박막으로 형성하는 것을 특징으로 하는 반도체소자의 모스 전계효과 트렌지스터 제조방법.The first interlayer dielectric film is formed of a thin film of TEOS or BPSG oxide film or nitride film series method of manufacturing a MOS field effect transistor of a semiconductor device. 제 2 항에 있어서,The method of claim 2, 상기 제2층간절연막과 절연막 스페이서는 상기 제1층간절연막과 식각선택비 차이가 나는 박막으로 형성하는 것을 특징으로 하는 반도체소자의 모스 전계효과 트렌지스터 제조방법.And the second interlayer insulating film and the insulating film spacer are formed of a thin film having an etching selectivity difference between the first interlayer insulating film and the insulating film spacer.
KR1019980061907A 1998-12-30 1998-12-30 Manufacturing method of MOS field effect transistor of semiconductor device KR100569570B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980061907A KR100569570B1 (en) 1998-12-30 1998-12-30 Manufacturing method of MOS field effect transistor of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980061907A KR100569570B1 (en) 1998-12-30 1998-12-30 Manufacturing method of MOS field effect transistor of semiconductor device

Publications (2)

Publication Number Publication Date
KR20000045349A true KR20000045349A (en) 2000-07-15
KR100569570B1 KR100569570B1 (en) 2006-08-10

Family

ID=19568604

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980061907A KR100569570B1 (en) 1998-12-30 1998-12-30 Manufacturing method of MOS field effect transistor of semiconductor device

Country Status (1)

Country Link
KR (1) KR100569570B1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970053849A (en) * 1995-12-29 1997-07-31 김광호 Morse manufacturing method using a trench
JP3217015B2 (en) * 1996-07-18 2001-10-09 インターナショナル・ビジネス・マシーンズ・コーポレーション Method for forming field effect transistor
KR100200757B1 (en) * 1996-11-18 1999-06-15 윤종용 Semiconductor device and manufacturing method thereof
KR100275739B1 (en) * 1998-08-14 2000-12-15 윤종용 A transistor having a reverse self-aligned structure and method for fabricating thereof

Also Published As

Publication number Publication date
KR100569570B1 (en) 2006-08-10

Similar Documents

Publication Publication Date Title
US6518623B1 (en) Semiconductor device having a buried-channel MOS structure
US20030201474A1 (en) Semiconductor device with multiple source/drain regions of different depths
KR20020085067A (en) Method of forming cmos type semiconductor device
US6562686B2 (en) Method for fabricating semiconductor device
US6008100A (en) Metal-oxide semiconductor field effect transistor device fabrication process
KR100569570B1 (en) Manufacturing method of MOS field effect transistor of semiconductor device
KR100220251B1 (en) Semiconductor device and method of manufacturing the same
KR100676194B1 (en) Method for fabricating CMOS Transistor
KR100899533B1 (en) method for manufacturing high voltage device and the same
KR100296105B1 (en) Manufacturing Method for Semiconductor Device
KR940010543B1 (en) Fabricating method of mos transistor
KR100485004B1 (en) Soi semiconductor device and method for manufacturing the same
KR100625392B1 (en) Manufacturing method for semiconductor device
KR100260366B1 (en) Method for fabricating semiconductor device
KR100334968B1 (en) Method for fabricating buried channel type PMOS transistor
KR100222043B1 (en) Mos-transistors and the manufacturing method thereof
KR20020010793A (en) Manufacturing method for semiconductor device
KR0161873B1 (en) Method of manufacturing semiconductor device
KR100254045B1 (en) Method for manufacturing semiconductor device
KR100534205B1 (en) Semiconductor device and method for manufacturing the same
KR100702833B1 (en) method for manufacturing high speed transistor
KR100269622B1 (en) A method of fabricating semiconductor device
KR100226496B1 (en) Method of manufacturing semiconductor device
KR100421899B1 (en) Method for fabricating semiconductor device
KR19980058385A (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110325

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee