KR20000008278A - Apparatus for fabricating semiconductor - Google Patents

Apparatus for fabricating semiconductor Download PDF

Info

Publication number
KR20000008278A
KR20000008278A KR1019980028012A KR19980028012A KR20000008278A KR 20000008278 A KR20000008278 A KR 20000008278A KR 1019980028012 A KR1019980028012 A KR 1019980028012A KR 19980028012 A KR19980028012 A KR 19980028012A KR 20000008278 A KR20000008278 A KR 20000008278A
Authority
KR
South Korea
Prior art keywords
plasma
electrode
semiconductor manufacturing
plasma electrode
manufacturing apparatus
Prior art date
Application number
KR1019980028012A
Other languages
Korean (ko)
Other versions
KR100265866B1 (en
Inventor
황철주
Original Assignee
황철주
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 황철주 filed Critical 황철주
Priority to KR1019980028012A priority Critical patent/KR100265866B1/en
Publication of KR20000008278A publication Critical patent/KR20000008278A/en
Application granted granted Critical
Publication of KR100265866B1 publication Critical patent/KR100265866B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67023Apparatus for fluid treatment for general liquid treatment, e.g. etching followed by cleaning

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE: An apparatus for fabricating semiconductor is provided to improve process uniformity and a process rate by increasing a heat response rate and a heat transfer rate. CONSTITUTION: The apparatus comprises: (a)a process chamber, (b)a heater for heating a reaction space in the process chamber, (c)a electrode for forming plasma, and (d)a electric power source for supplying electric power to the electrode. In the apparatus, the electrode is located in the place not to screen a thermal energy supplied by the heater.

Description

반도체 제조장치Semiconductor manufacturing device

본 발명은 반도체 제조장치에 관한 것으로, 특히 화학기상 증착공정, 에싱공정 및 건식식각공정 등에 다용도로 적용되어 공정처리의 균일도(uniformity)를 향상시킬 수 있는 반도체 제조장치에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor manufacturing apparatus, and more particularly, to a semiconductor manufacturing apparatus capable of improving the uniformity of a process by being applied to a multi-purpose chemical vapor deposition process, an ashing process, and a dry etching process.

최근에, 반도체소자의 제조공정에서 반도체 기판의 대구경화가 요구되는 반면, 그에 따른 장비의 구조적 문제에 의해 화학기상 증착공정, 에싱공정 및 건식식각공정 등의 공정처리 균일도가 저하되는 문제점이 발생되고 있다. 이 때문에, 반도체 기판이 대구경화하더라도 공정균일도를 확보하려는 연구가 진행중에 있다. 특히, 화학기상 증착장비, 에싱장비 및 건식식각장비에 사용되는 플라즈마 챔버의 구조 자체를 개선함으로써 이를 해결하려는 노력도 활발하다.Recently, large diameters of semiconductor substrates are required in the manufacturing process of semiconductor devices, but structural problems of the equipment may cause problems such as uniformity of process treatments such as chemical vapor deposition, ashing, and dry etching. have. For this reason, studies are underway to secure process uniformity even if the semiconductor substrate is large-sized. In particular, efforts to solve this problem by actively improving the structure of the plasma chamber used in chemical vapor deposition equipment, ashing equipment and dry etching equipment.

그러면, 종래기술에 의한 화학기상 증착장비를 도면을 참조하여 설명하기로 한다.Then, the chemical vapor deposition apparatus according to the prior art will be described with reference to the drawings.

도 4는 종래의 화학기상 증착장비의 개략적인 단면도이다. 도 4를 참조하면, 외부와 격리되어 진공상태를 만들 수 있는 반응공간(S)을 형성시키는 벨자(Belljar, 10)가 있고, 그 벨자(10)의 내부, 즉 반응공간(S)을 가열하기 위한 벨자히터(12)가 벨자(10)의 외부를 둘러싸고 있다. 이 벨자히터(12)는 벨자(10)의 외부에 위치한 원통형 단열벽에 코일 형태로 감겨져 있다. 이 때, 벨자(10)는 일반적으로 석영을 사용하고, 반응공간(S)과 벨자히터(12) 사이에 위치하고 있다.4 is a schematic cross-sectional view of a conventional chemical vapor deposition apparatus. Referring to FIG. 4, there is a bell jar 10 to form a reaction space S that is isolated from the outside to create a vacuum state, and heats the inside of the bell jar 10, that is, the reaction space S. FIG. Belza heater 12 for surrounds the outside of the bellza (10). The bell heater 12 is wound in the form of a coil on a cylindrical heat insulating wall located outside the bell jar 10. In this case, the bell jar 10 generally uses quartz and is located between the reaction space S and the bell jar heater 12.

또한, 반응공간(S) 내부로 공급되는 소스가스를 플라즈마 상태로 만드는 플라즈마전극(14)이 벨자히터(12)와 벨자(10)의 사이에 설치되어 있다. 이 플라즈마전극(14)은 일반적으로 벨자(10)와 마찬가지로 돔형상을 갖고 있으며, 벨자(10)의 전체면을 둘러싸고 있다. 또한, 이 플라즈마전극(14)에 전원을 공급하는 플라즈마 파워공급원(16)이 접속되어 있다.In addition, a plasma electrode 14 for making a source gas supplied into the reaction space S into a plasma state is provided between the bell heater 12 and the bell jar 10. The plasma electrode 14 generally has a dome shape like the bell jar 10 and surrounds the entire surface of the bell jar 10. In addition, a plasma power supply source 16 for supplying power to the plasma electrode 14 is connected.

한편, 기판이 장착되는 서셉터(Susceptor, 18)는 벨자(10)의 내부에 위치하며 접지되어 있다. 소스가스를 주입하는 가스공급수단(20)과, 반응이 완료된 가스를 배출시키기 위한 가스배출수단(22)이 반응공간(S)의 저면에 설치되어 있다. 반응공간(S)과 외부 사이에 기판을 출입시키기 위한 기판출입구(24)가 벨자(10)의 측면에 설치되어 있다.Meanwhile, the susceptor 18 on which the substrate is mounted is located inside the bell 10 and is grounded. The gas supply means 20 for injecting the source gas and the gas discharge means 22 for discharging the gas having completed the reaction are provided at the bottom of the reaction space S. A substrate entrance 24 is provided at the side of the bell jar 10 to allow the substrate to enter and exit between the reaction space S and the outside.

상기와 같이 구성된 종래의 화학기상 증착장비의 동작을 도 4를 참조하여 설명하면 다음과 같다.The operation of the conventional chemical vapor deposition apparatus configured as described above with reference to Figure 4 as follows.

기판을 서셉터(18)에 탑재시켜 반응공간(S)내에 장착한다. 이 상태에서 진공장치(미도시)에 의해 벨자(10)의 내부를 고진공으로 만든 후 이를 유지시킨다. 벨자히터(12)를 이용하여 벨자(10)내의 반응공간(S)을 가열한 후 일정온도에 유지시킨다. 이 때, 벨자히터(12)에 의해 발생한 열에너지는 플라즈마전극(14)과 벨자(10)를 거쳐 반응공간(S)의 온도를 상승시키게 된다. 이 상태에서 플라즈마를 발생시키기 위해 가스를 주입한 후, 플라즈마전극(14)에 전원을 공급하여 반응공간(S) 내부에서 플라즈마를 일으킨다. 플라즈마가 안정되면 가스공급수단(20)을 통해 형성시키고자 하는 물질을 주입하게 되고, 이에 따라 이 물질은 벨자히터(12)로부터 열공급을 받아 기판상에 막을 형성한다.The substrate is mounted on the susceptor 18 and mounted in the reaction space S. In this state, the interior of the bell jar 10 is made high by a vacuum device (not shown) and then maintained therein. The reaction space S in the bell jar 10 is heated using the bell jar heater 12 and then maintained at a constant temperature. At this time, the heat energy generated by the bell heater 12 increases the temperature of the reaction space S through the plasma electrode 14 and the bell jar 10. After injecting gas to generate plasma in this state, power is supplied to the plasma electrode 14 to generate plasma in the reaction space S. FIG. When the plasma is stabilized, a material to be formed is injected through the gas supply means 20, and the material receives heat from the Belza heater 12 to form a film on the substrate.

그러나, 종래의 화학기상 증착장비는, 플라즈마전극이 벨자히터와 반응공간 사이에 위치하여 있으므로, 플라즈마전극이 벨자히터에 의한 열에너지를 차단 및 반사하거나 흡수하게 된다. 이에 따라, 벨자히터에 의한 열에너지가 반응공간 내부로 전달되는 것이 방해되어, 열응답도나 열전달율이 떨어지고 공정처리속도가 늦어진다는 문제점이 있다.However, in the conventional chemical vapor deposition apparatus, since the plasma electrode is located between the Belza heater and the reaction space, the plasma electrode blocks and reflects or absorbs the heat energy by the Belza heater. Accordingly, there is a problem that the heat energy by the Belza heater is prevented from being transferred into the reaction space, so that the thermal response rate or heat transfer rate is lowered and the processing speed is slowed.

또한, 종래의 화학기상 증착장비와 같은 플라즈마 챔버구조를 갖는 에싱장비와 건식식각장비에서 공정을 진행할 경우에도, 마찬가지로 열응답도나 열전달율이 떨어지고 공정처리속도가 늦어진다는 문제점이 있다.In addition, even when the process is carried out in the ashing equipment and dry etching equipment having a plasma chamber structure, such as a conventional chemical vapor deposition equipment, there is a problem that the thermal response rate or heat transfer rate is also lowered and the processing speed is slowed.

따라서, 본 발명의 기술적 과제는 가열수단으로부터의 발생된 열에너지가 차단물에 의해서 차단, 반사 및 흡수되지 않고 반응공간에 직접 전달되도록 하여 열전달율과 열응답도 및 공정처리속도를 향상시키는 반도체 제조장치를 제공하는데 있다.Accordingly, the technical problem of the present invention is to provide a semiconductor manufacturing apparatus that improves heat transfer rate, thermal response, and processing speed by allowing the thermal energy generated from the heating means to be directly transmitted to the reaction space without being blocked, reflected, and absorbed by the blocking material. To provide.

또한, 본 발명의 다른 기술적 과제는 플라즈마전극의 위치, 개수 및 각각의 전원공급원 및 주파수를 조절하여, 막 형성이나 식각, 혹은 에싱 장치등으로 광범위하게 응용하는 것이 가능한 반도체 제조장치를 제공하는데 있다.In addition, another technical problem of the present invention is to provide a semiconductor manufacturing apparatus that can be widely applied to film formation, etching, ashing, etc. by adjusting the position, number of plasma electrodes, and respective power supply sources and frequencies.

도 1은 본 발명의 일 실시예에 따른 매엽식 화학기상 증착장비의 개략적인 단면도,1 is a schematic cross-sectional view of a sheet-type chemical vapor deposition apparatus according to an embodiment of the present invention,

도 2는 본 발명의 다른 실시예에 따른 매엽식 화학기상 증착장비의 개략적인 단면도,2 is a schematic cross-sectional view of a sheet-type chemical vapor deposition apparatus according to another embodiment of the present invention,

도 3은 본 발명의 또 다른 실시예에 따른 매엽식 화학기상 증착장비의 개략적인 단면도,3 is a schematic cross-sectional view of a sheet-type chemical vapor deposition apparatus according to another embodiment of the present invention,

도 4는 종래의 화학기상 증착장비의 개략적인 단면도이다.4 is a schematic cross-sectional view of a conventional chemical vapor deposition apparatus.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

30 : 벨자(Belljar) 32 : 벨자히터30: Beljar 32: Belza heater

34a, 34b : 플라즈마전극 35, 35', 35" : 플라즈마 파워공급원34a, 34b: plasma electrode 35, 35 ', 35 ": plasma power supply

상기 기술적 과제들을 달성하기 위한 본 발명에 의한 반도체 제조장치는: 격리체에 의해 외부와 격리된 반응공간을 제공하는 반응챔버와, 상기 반응공간을 가열하기 위한 가열수단과, 상기 반응공간내에 공급되는 소스가스를 분해하여 플라즈마로 만들기 위한 플라즈마전극과, 상기 플라즈마전극에 전원을 공급하는 전원공급수단을 구비하는 반도체 제조장치에 있어서, 상기 가열수단에 의해 발생된 열에너지가 상기 플라즈마전극에 의해 차폐되지 않도록, 상기 플라즈마전극과 가열수단을 배치시킨 것을 특징으로 한다.According to an aspect of the present invention, there is provided a semiconductor manufacturing apparatus including: a reaction chamber providing a reaction space isolated from an outside by an isolator, heating means for heating the reaction space, and a reaction chamber provided in the reaction space. A semiconductor manufacturing apparatus comprising a plasma electrode for decomposing a source gas into a plasma, and a power supply means for supplying power to the plasma electrode, wherein the heat energy generated by the heating means is not shielded by the plasma electrode. And the plasma electrode and the heating means are arranged.

이 때, 상기 가열수단은 전열코일이며, 상기 플라즈마전극에 의해 발생한 플라즈마 이온이 고밀도 플라즈마가 될 수 있도록 전자기장을 발생시키는 것이 바람직하다.At this time, the heating means is a heat transfer coil, it is preferable to generate an electromagnetic field so that the plasma ions generated by the plasma electrode can be a high-density plasma.

이 때, 상기 플라즈마전극이 적어도 두 개 이상의 부분으로 나뉘어지도록 할 수도 있다.In this case, the plasma electrode may be divided into at least two parts.

이와 같이, 플라즈마 전극을 나누어 설치할 경우, 상기 격리체 내에 벨자돔을 마련하고, 나뉘어진 상기 플라즈마 전극들 중의 적어도 하나 이상을 상기 벨자돔 내에 설치하여도 좋다.As described above, when the plasma electrodes are divided and provided, a bell jar dome may be provided in the separator, and at least one or more of the divided plasma electrodes may be installed in the bell jar dome.

또한, 상기 플라즈마전극이 상기 반응공간의 상부에 위치한 상부 플라즈마전극과 상기 반응챔버의 측면을 따라 마련된 측면 플라즈마전극을 포함하여 이루어진 것이 더 바람직하다.The plasma electrode may further include an upper plasma electrode positioned above the reaction space and a side plasma electrode provided along a side surface of the reaction chamber.

또한, 적어도 두 개 이상의 부분으로 나뉘어진 상기 플라즈마전극들이 서로 다른 플라즈마 주파수 영역을 사용하는 것도 바람직하다.It is also preferable that the plasma electrodes divided into at least two or more portions use different plasma frequency regions.

그리고, 적어도 두 개 이상의 부분으로 나뉘어진 상기 플라즈마전극들이 하나의 플라즈마 파워 공급장치에 의해 플라즈마 파워를 조절하도록 설치되는 것을 특징으로 한다.In addition, the plasma electrodes divided into at least two or more parts may be installed to adjust plasma power by one plasma power supply device.

또한, 적어도 두 개 이상의 부분으로 나뉘어진 상기 플라즈마전극들이 서로 별개의 플라즈마 파워 공급장치에 의해 플라즈마 파워를 조절하도록 설치되는 것을 특징으로 한다.In addition, the plasma electrodes divided into at least two or more parts is characterized in that it is installed to control the plasma power by a separate plasma power supply device.

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 대해 설명한다.Hereinafter, with reference to the accompanying drawings will be described a preferred embodiment of the present invention.

본 발명의 실시예에 따른 매엽식 화학기상 증착장비의 도면에 있어서, 동일 기능을 수행하는 구성요소는 동일 참조번호로 나타내었으며, 반복적인 설명은 생략한다.In the drawing of the sheet type chemical vapor deposition apparatus according to an embodiment of the present invention, the components performing the same function are denoted by the same reference numerals, and repeated description thereof will be omitted.

본 발명의 매엽식 화학기상 증착장비에 사용된 플라즈마 챔버를 응용하여 에싱공정 및 식각공정을 수행하는 장비를 제조할 수도 있다. 여기서는 증착공정의 실시예에 대해서 설명하기로 한다.The plasma chamber used in the single wafer chemical vapor deposition apparatus of the present invention may be applied to manufacture an equipment for performing an ashing process and an etching process. Herein, embodiments of the deposition process will be described.

[제1 실시예][First Embodiment]

도 1은 본 발명의 일 실시예에 따른 매엽식 화학기상 증착장비의 개략적인 단면도이다. 도 1을 참조하면, 벨자(Belljar, 30)는 그 내부가 진공화되어 반응을 일으킬 수 있는 반응공간(S)을 형성시키고 있다. 벨자(30)는 돔형상으로 제작되어 있으며, 벨자(30)의 외부에는, 히터연결체에 의해 격리체에 고정된 벨자히터(32)가 마련되어 있다. 벨자히터(32)는 벨자(30)의 형상을 따라 회전한 나선형코일로 감겨져 있다. 이와 같이, 벨자히터(32)에 선형인 전열체를 사용함으로써 열의 방출뿐만 아니라 자기장도 발생됨을 알 수 있다. 벨자히터(32)가 자기장을 발생시킬 수 있도록 그 양단에 히터전원공급원(미도시)이 인가된다.1 is a schematic cross-sectional view of a sheet type chemical vapor deposition apparatus according to an embodiment of the present invention. Referring to FIG. 1, Belljar 30 forms a reaction space S in which the inside thereof is evacuated to cause a reaction. The bell jar 30 is manufactured in a dome shape, and the bell jar heater 32 fixed to the isolator by the heater connection body is provided outside the bell jar 30. The bellza heater 32 is wound by a spiral coil rotated along the shape of the bell jar 30. As such, it can be seen that the magnetic field is generated as well as the release of heat by using the linear heating element in the Belza heater 32. A heater power supply (not shown) is applied at both ends of the bell heater 32 to generate a magnetic field.

반응공간(S)내로 공급되는 소스가스를 플라즈마 상태로 만들기 위해, 벨자(30)의 외부에는 플라즈마 파워를 발생시키는 플라즈마전극(34)이 위치하고 있다.In order to make the source gas supplied into the reaction space S into a plasma state, a plasma electrode 34 generating plasma power is positioned outside the bell jar 30.

본 실시예에서, 플라즈마전극(34)은 상부 플라즈마전극(34a)과 측면 플라즈마전극(34b)으로 이루어져 있다. 상부 플라즈마전극(34a)은 벨자(30)의 극 부근에 위치하고 측면 플라즈마전극(34b)은 벨자(30)의 측면에 위치하고 있다.In this embodiment, the plasma electrode 34 is composed of an upper plasma electrode 34a and a side plasma electrode 34b. The upper plasma electrode 34a is located near the pole of the bell jar 30 and the side plasma electrode 34b is located on the side of the bell jar 30.

벨자히터(32)에서 발생된 열에너지가 중간에 에너지 흡수체없이 직접 반응공간(S)에 도달되도록 하기 위해 상부 및 측면 플라즈마전극(34a, 34b)은 나선형 벨자히터(32)에서 발생되는 열에너지를 차단하지 않도록 설치되는데, 이를 위해 상부 및 측면 플라즈마전극(34a, 34b)은 일정크기의 판형상으로 제작되거나, 링형상으로 제작된다.The upper and side plasma electrodes 34a and 34b do not block the heat energy generated by the spiral bell heater 32 so that the heat energy generated by the bell heater 32 reaches the reaction space S directly without an energy absorber in the middle. The upper and side plasma electrodes 34a and 34b are manufactured in a plate shape of a predetermined size or in a ring shape.

상부 플라즈마전극(34a)은 극 근처에 설치되므로 적어도 기판의 넓이를 갖는 것이 바람직하다. 또한, 상부 플라즈마전극(34a)에는 플라즈마 파워공급원(35)이 접속되며, 서셉터(36)에 대해서 교류 혹은 직류 플라즈마 방식을 사용할 수 있다. 바람직하게는 교류 플라즈마 방식을 사용한다.Since the upper plasma electrode 34a is provided near the pole, it is preferable to have at least the width of the substrate. In addition, a plasma power supply 35 is connected to the upper plasma electrode 34a, and an AC or DC plasma method can be used for the susceptor 36. Preferably, an alternating plasma method is used.

또한, 측면 플라즈마전극(34b)은 원형띠 형상을 하고 벨자(30)의 적도 부근의 원주를 따라서 설치되는 것이 바람직하다. 이 때 측면 플라즈마전극(34b)에는 상부 플라즈마전극(34a)에 공급되는 동일한 플라즈마 파워공급원(35)이 접속되며, 서셉터(36)에 대해서 교류 혹은 직류 플라즈마 방식을 사용할 수 있으며, 바람직하게는 교류 플라즈마를 이용한다.In addition, the side plasma electrode 34b preferably has a circular band shape and is provided along a circumference near the equator of the bell jar 30. At this time, the same plasma power supply source 35 supplied to the upper plasma electrode 34a is connected to the side plasma electrode 34b, and the susceptor 36 may use an alternating current or a direct current plasma method. Use plasma.

상부 플라즈마전극(34a)과 측면 플라즈마전극(34b)에서 교류 플라즈마를 이용할 경우에, 더욱 바람직하게는 공정처리의 종류에 따라 13.56㎒, 450㎑ 및 50㎑중의 하나를 선택하여 사용하는 것이 좋다.In the case of using an alternating plasma in the upper plasma electrode 34a and the side plasma electrode 34b, more preferably, one of 13.56 MHz, 450 kHz, and 50 GHz is selected and used depending on the type of process.

본 실시예에서는 상부 플라즈마전극(34a)과 측면 플라즈마전극(34b)의 파워 공급라인을 하나의 라인을 사용하되 상부 플라즈마전극(34a)과 측면 플라즈마전극(34b)의 동작을 각각 제어하기 위해 스위치(SW1, SW2)가 설치되어 있다.In the present embodiment, the power supply line of the upper plasma electrode 34a and the side plasma electrode 34b is used in one line, but the switch (s) is used to control the operation of the upper plasma electrode 34a and the side plasma electrode 34b, respectively. SW1, SW2) are installed.

이와 같이, 본 실시예에서는 상부와 측면 플라즈마전극(34a, 34b)에 하나의 플라즈마 파워공급원(35)이 접속되어 있다.Thus, in this embodiment, one plasma power supply 35 is connected to the upper and side plasma electrodes 34a and 34b.

한편, 반응공간(S) 내부에는 기판이 놓이는 서셉터(Susceptor, 36)가 설치된다. 서셉터(36)는 이동수단에 의해 기판의 증착환경에 적정한 위치로 상하 이동될 수 있으며 일정 위치에 고정될 수 있다.Meanwhile, a susceptor 36 on which a substrate is placed is installed in the reaction space S. The susceptor 36 may be moved up and down to a position suitable for the deposition environment of the substrate by the moving means, and may be fixed at a predetermined position.

또한, 소스가스가 벨자히터(32)에 의해 충분히 가열될 수 있도록 가스공급수단(37)이 반응공간(S)의 하단외부에 마련되어 있다. 가스주입기(37')는 벨자(30)의 내부에 위치하며, 특히 가스주입기(37')의 분사구는 벨자(30)의 내부로 공급되어 상승하는 소스가스의 충분한 예열을 위해 벨자히터(32)의 하단측면 근처에 위치하고 있다. 반응이 완료된 가스를 배출시키기 위한 가스배출수단(38)이 반응공간(S)의 하단에 설치되어 있다. 반응공간(S)과 외부 사이에 기판을 출입시키기 위한 기판출입구(40)가 벨자(30)의 측면에 설치된다.In addition, a gas supply means 37 is provided outside the lower end of the reaction space S so that the source gas can be sufficiently heated by the Belza heater 32. The gas injector 37 ′ is located inside the bell jar 30, and in particular, the injection hole of the gas injector 37 ′ is supplied into the bell jar 30 so that the bell jar heater 32 is sufficiently preheated for the rising source gas. It is located near the bottom side of the. Gas discharge means 38 for discharging the gas after the reaction is completed is installed at the lower end of the reaction space (S). The substrate entrance 40 is provided at the side of the bell jar 30 to allow the substrate to enter and exit between the reaction space S and the outside.

[제2 실시예]Second Embodiment

도 2는 본 발명의 다른 실시예에 따른 매엽식 화학기상 증착장비의 개략적인 단면도이다. 도 2를 참조하면, 본 실시예와 제1 실시예와의 차이점은, 상부 플라즈마전극(34a)과 측면 플라즈마전극(34b)이 각각 서로 다른 플라즈마 파워공급원(35', 35")에 접속되어 있다는 것이다.2 is a schematic cross-sectional view of a sheet type chemical vapor deposition apparatus according to another embodiment of the present invention. 2, the difference between the present embodiment and the first embodiment is that the upper plasma electrode 34a and the side plasma electrode 34b are connected to different plasma power supplies 35 'and 35 ", respectively. will be.

상부 플라즈마전극(34a)은 제1 플라즈마 파워공급원(35')에 접속되어 있고, 측면 플라즈마전극(34b)은 제2 플라즈마 파워공급원(35")에 접속되어 있다. 또한, 상부 플라즈마전극(34a)과 측면 플라즈마전극(34b)의 동작을 각각 제어하기 위해 스위치(SW3, SW4)가 설치되어 있다.The upper plasma electrode 34a is connected to the first plasma power supply 35 ', and the side plasma electrode 34b is connected to the second plasma power supply 35 ". The upper plasma electrode 34a is also connected. Switches SW3 and SW4 are provided for controlling the operations of the side and side plasma electrodes 34b, respectively.

바람직하게, 상부 플라즈마전극(34a)이 13.56㎒를 사용할 때, 측면플라즈마전극(34b)은 450㎑ 및 50㎑로 사용하는 것이 좋다. 이와 같이 다른 주파수 영역을 각각의 플라즈마 파워공급원(35', 35")에 공급하여 사용목적에 따라 공정을 제어할 수 있다. 물론, 서로 다른 플라즈마 파워공급원(35', 35")을 제1 실시예와 같이 13.56㎒, 450㎑ 및 50㎑중의 하나를 선택하여 하나의 플라즈마 파워공급원처럼 사용할 수도 있다.Preferably, when the upper plasma electrode 34a uses 13.56 MHz, the side plasma electrode 34b is preferably used at 450 Hz and 50 Hz. As such, different frequency ranges may be supplied to the respective plasma power supplies 35 'and 35 "to control the process according to the purpose of use. Of course, different plasma power supplies 35' and 35" may be implemented in the first embodiment. As an example, one of 13.56 MHz, 450 GHz, and 50 GHz may be selected and used as one plasma power supply.

본 발명의 반도체 제조장치를 막 형성이나 불필요한 막의 식각 혹은 에싱 등에 사용하는 것이 가능하며, 그 목적에 따라서 플라즈마전극 뿐만 아니라 서셉터(36)에도 백-바이어스(Back-Bias)를 걸어 사용할 수 있다.The semiconductor manufacturing apparatus of the present invention can be used for film formation, etching of unnecessary films, ashing, or the like, and depending on the purpose, back-bias can be applied to not only the plasma electrode but also the susceptor 36.

또한, 제1 및 제2 실시예에서 제시된 두 개의 플라즈마전극(34a, 34b)외에 다수의 플라즈마전극을 더 배치시켜 사용할 수도 있다. 그에 따른 플라즈마 파워공급원의 개수도 임의로 조절이 가능하다.In addition, in addition to the two plasma electrodes 34a and 34b shown in the first and second embodiments, a plurality of plasma electrodes may be further disposed. Accordingly, the number of plasma power supplies can be arbitrarily adjusted.

[제3 실시예]Third Embodiment

도 3은 본 발명의 또 다른 실시예에 따른 매엽식 화학기상 증착장비의 개략적인 단면도이다. 도 3을 참조하면, 제1 실시예 및 제2 실시예와는 달리 상부 플라즈마전극(34a)이 벨자(30) 내부에 설치되어 있다. 물론 이 경우에도, 상부 플라즈마전극(34a)과 벨자히터(32)는 서로 차폐되지 않도록 하여, 높은 열응답도나 열전달율을 갖게 한다. 본 실시예에서는 상부 플라즈마전극(34a)만이 벨자(30) 내부에 설치되어 있으나, 필요에 따라 측면 플라즈마전극(34b)도 벨자(30) 내부에 설치될 수 있다.3 is a schematic cross-sectional view of a sheet-type chemical vapor deposition apparatus according to another embodiment of the present invention. Referring to FIG. 3, unlike the first and second embodiments, an upper plasma electrode 34a is installed inside the bell jar 30. Of course, even in this case, the upper plasma electrode 34a and the bell heaters 32 are not shielded from each other, so that they have high thermal response or heat transfer rate. In the present embodiment, only the upper plasma electrode 34a is installed inside the bell jar 30, but the side plasma electrode 34b may also be installed inside the bell jar 30 as necessary.

상기와 같이 각각 구성된 본 발명의 매엽식 화학기상 증착장비의 동작을 도 1을 참조하여 상세히 설명하면 다음과 같다.The operation of the sheet type chemical vapor deposition apparatus of the present invention configured as described above will be described in detail with reference to FIG. 1 as follows.

기판을 서셉터(36)에 탑재시켜 반응공간(S)내에 장착한다. 이 때, 서셉터(36)의 높이를 조절하는데, 서셉터(36)의 높이에 따라 기판상에서의 소스가스의 온도, 농도 및 자기장의 세기가 모두 변화되므로 공정 균일도를 최상으로 만들어 줄 수 있는 높이로 조절한다. 이 상태에서 진공장치를 이용하여 반응공간(S)을 고진공상태로 만든다. 이 고진공상태에서 벨자히터(32)를 이용하여 반응공간(S)의 내부를 가열한다.The substrate is mounted in the susceptor 36 and mounted in the reaction space S. At this time, the height of the susceptor 36 is adjusted. The height of the susceptor 36 changes the temperature, the concentration of the source gas on the substrate, and the intensity of the magnetic field, so that the process uniformity can be made the best. Adjust with In this state, the reaction space S is made into a high vacuum state using a vacuum apparatus. In this high vacuum state, the bell jar heater 32 is used to heat the inside of the reaction space S.

벨자히터(32)는 벨자(30)의 형상에 의해 나선형으로 벨자(30)를 둘러싸고 있으므로 솔레노이드와 같은 역할을 함으로써, 벨자히터(32)는 자장을 발생시키고 그에 따른 자장은 기판상에 집중된다. 또한, 벨자히터(32)에 의한 열에너지는 종래의 플라즈마전극을 거치지 않고 직접 반응공간을 가열하므로 짧은 시간동안에 반응공간(S)의 온도를 상승시키게 된다. 이와 같이 벨자히터(32)와 플라즈마전극(34)의 구조배치에 의해 반응공간(S) 내부온도를 상승시킬 경우, 가열시간을 단축시킬 수 있다. 종래에 플라즈마를 적용한 기상증착장비는 500℃까지 내부온도를 상승시키는 데 걸리는 시간이 20분이었는데 본 발명에 따른 기상증착장비는 5분이면 충분하다.Since the bell heater 32 surrounds the bell jar 30 spirally by the shape of the bell jar 30, the bell heater 32 acts like a solenoid, so that the bell heater 32 generates a magnetic field and the magnetic field is concentrated on the substrate. In addition, the heat energy by the bell heater 32 directly heats the reaction space without passing through the conventional plasma electrode, thereby raising the temperature of the reaction space S for a short time. In this way, when the temperature of the reaction space S is increased by the structure arrangement of the bell heater 32 and the plasma electrode 34, the heating time can be shortened. In the conventional vapor deposition apparatus using plasma, the time taken to raise the internal temperature to 500 ° C. was 20 minutes, but the vapor deposition apparatus according to the present invention is sufficient for 5 minutes.

이와 같이, 짧은 시간동안에 반응공간(S)을 가열시킨 후, 일정온도에 유지시킨 상태에서 플라즈마를 발생시키기 위해 소스가스를 주입한다. 플라즈마전극(34)에 플라즈마 파워를 공급하여 반응공간(S) 내부에서 플라즈마를 일으킨다. 플라즈마전극(34)에 의한 전자기장의 효과를 이용함으로써 플라즈마의 밀도를 높이고 균일도를 향상시킨다. 예를들면, 종래의 플라즈마 적용한 기상증착장비에 비하여 본 발명에 따른 기상증착장비는 이온밀도가 높아 고밀도의 막형성이 가능하고, 식각용 장치로 이용할 경우에 플라즈마 이온의 직진성이 높아 비등방성 에치특성을 갖게 된다.As such, after the reaction space S is heated for a short time, source gas is injected to generate plasma in a state of being maintained at a constant temperature. The plasma power is supplied to the plasma electrode 34 to generate plasma in the reaction space S. By utilizing the effect of the electromagnetic field by the plasma electrode 34, the density of the plasma is increased and the uniformity is improved. For example, compared to the conventional vapor deposition equipment using plasma, the vapor deposition equipment according to the present invention has a high ion density, which enables the formation of a high-density film. Will have

특히, 서셉터(36)와 사이에서 플라즈마가 발생되도록, 측면 플라즈마전극(34b)은 기판에 대해서 전기장으로 인해 직진성을 갖는 운동을 하는 이온에 자기장의 효과를 주어 플라즈마 이온밀도가 높아지고, 결국 고밀도 플라즈마가 가능하게 된다. 이에 따라, 고밀도의 플라즈마 막을 형성시킨다.In particular, in order to generate a plasma between the susceptor 36, the side plasma electrode 34b has an effect of a magnetic field on the ions having a linear motion due to the electric field with respect to the substrate, thereby increasing the plasma ion density, resulting in high density plasma. Becomes possible. Thus, a high density plasma film is formed.

이상, 본 실시예에서는 개선된 플라즈마 처리장치를 화학기상 증착장비에 적용하였으나, 다른 종류의 소스가스를 각각 주입하고, 장비에 약간의 변경을 가한다면 균일도가 향상된 에싱공정 및 식각공정 등을 진행할 수 있다.In the present embodiment, the improved plasma processing apparatus is applied to the chemical vapor deposition apparatus. However, if a different type of source gas is injected and a slight change is made to the equipment, the ashing process and the etching process may be improved. have.

상술한 바와 같이, 본 발명에 따른 반도체 제조장치는, 플라즈마를 이용하는 장치에서 고밀도의 균일한 플라즈마 형성이 가능하고 반응공간의 온도가 높아서 고밀도 플라즈마 막 형성이나 비등방성 에치장치 혹은 포토 레지스트제거를 위한 에싱장치로도 응용할 수 있다.As described above, the semiconductor manufacturing apparatus according to the present invention is capable of forming a high density and uniform plasma in a device using a plasma and having a high reaction space temperature so as to form a high density plasma film, an anisotropic etching apparatus, or ashing for removing a photoresist. It can also be applied as a device.

Claims (8)

격리체에 의해 외부와 격리된 반응공간을 제공하는 반응챔버와, 상기 반응공간을 가열하기 위한 가열수단과, 상기 반응공간내에 공급되는 소스가스를 분해하여 플라즈마로 만들기 위한 플라즈마전극과, 상기 플라즈마전극에 에너지를 공급하는 플라즈마 파워 공급장치를 구비하는 반도체 제조장치에 있어서,A reaction chamber providing a reaction space isolated from the outside by an insulator, heating means for heating the reaction space, a plasma electrode for decomposing a source gas supplied into the reaction space into a plasma, and the plasma electrode A semiconductor manufacturing apparatus comprising a plasma power supply for supplying energy to a 상기 가열수단에 의해 발생된 열에너지가 상기 플라즈마전극에 의해 차폐되지 않도록, 상기 플라즈마전극과 가열수단을 배치시킨 것을 특징으로 하는 반도체 제조장치.And the plasma electrode and the heating means are arranged so that the heat energy generated by the heating means is not shielded by the plasma electrode. 제1항에 있어서, 상기 가열수단은 전열코일이며, 상기 플라즈마전극에 의해 발생한 플라즈마 이온이 고밀도 플라즈마가 될 수 있도록 전자기장을 발생시키는 것을 특징으로 하는 반도체 제조장치.The semiconductor manufacturing apparatus according to claim 1, wherein the heating means is a heat transfer coil, and generates an electromagnetic field so that plasma ions generated by the plasma electrode become high density plasma. 제1항에 있어서, 상기 플라즈마전극이 적어도 두 개 이상의 부분으로 나뉘어진 것을 특징으로 하는 반도체 제조장치.The semiconductor manufacturing apparatus of claim 1, wherein the plasma electrode is divided into at least two parts. 제3항에 있어서, 상기 격리체 내에 벨자돔을 마련하고, 나뉘어진 상기 플라즈마전극들 중의 적어도 하나 이상이 상기 벨자돔 내에 설치된 것을 특징으로 하는 반도체 제조장치.4. The semiconductor manufacturing apparatus according to claim 3, wherein a bell jar dome is provided in the isolator, and at least one of the divided plasma electrodes is installed in the bell jar dome. 제3항에 있어서, 상기 플라즈마전극이 상기 반응공간의 상부에 위치한 상부 플라즈마전극과 상기 반응챔버의 측면을 따라 마련된 측면 플라즈마전극을 포함하여 이루어진 것을 특징으로 하는 반도체 제조장치.The semiconductor manufacturing apparatus according to claim 3, wherein the plasma electrode comprises an upper plasma electrode positioned above the reaction space and a side plasma electrode provided along a side surface of the reaction chamber. 제3항에 있어서, 적어도 두 개 이상의 부분으로 나뉘어진 상기 플라즈마전극들이 서로 다른 플라즈마 주파수 영역을 사용하는 것을 특징으로 하는 반도체 제조장치.4. The semiconductor manufacturing apparatus according to claim 3, wherein the plasma electrodes divided into at least two or more portions use different plasma frequency regions. 제3항에 있어서, 적어도 두 개 이상의 부분으로 나뉘어진 상기 플라즈마전극들이 하나의 플라즈마 파워 공급장치에 의해 플라즈마 파워를 조절하도록 설치되는 것을 특징으로 하는 반도체 제조장치.4. The semiconductor manufacturing apparatus according to claim 3, wherein the plasma electrodes divided into at least two or more parts are installed to adjust plasma power by one plasma power supply device. 제3항에 있어서, 적어도 두 개 이상의 부분으로 나뉘어진 상기 플라즈마전극들이 서로 별개의 플라즈마 파워 공급장치에 의해 플라즈마 파워를 조절하도록 설치되는 것을 특징으로 하는 반도체 제조장치.4. The semiconductor manufacturing apparatus according to claim 3, wherein the plasma electrodes divided into at least two or more parts are installed to control plasma power by plasma power supplies which are separated from each other.
KR1019980028012A 1998-07-11 1998-07-11 Apparatus for manufacturing semiconductor device KR100265866B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980028012A KR100265866B1 (en) 1998-07-11 1998-07-11 Apparatus for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980028012A KR100265866B1 (en) 1998-07-11 1998-07-11 Apparatus for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
KR20000008278A true KR20000008278A (en) 2000-02-07
KR100265866B1 KR100265866B1 (en) 2000-12-01

Family

ID=19543865

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980028012A KR100265866B1 (en) 1998-07-11 1998-07-11 Apparatus for manufacturing semiconductor device

Country Status (1)

Country Link
KR (1) KR100265866B1 (en)

Cited By (132)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100741645B1 (en) * 2001-01-16 2007-07-23 주성엔지니어링(주) Single wafer type LPCVD apparatus having a direct heating type belljar heater
WO2014022192A1 (en) * 2012-08-02 2014-02-06 Applied Materials, Inc. Semiconductor processing with dc assisted rf power for improved control
US8801952B1 (en) 2013-03-07 2014-08-12 Applied Materials, Inc. Conformal oxide dry etch
US8895449B1 (en) 2013-05-16 2014-11-25 Applied Materials, Inc. Delicate dry clean
US8921234B2 (en) 2012-12-21 2014-12-30 Applied Materials, Inc. Selective titanium nitride etching
US8927390B2 (en) 2011-09-26 2015-01-06 Applied Materials, Inc. Intrench profile
US8951429B1 (en) 2013-10-29 2015-02-10 Applied Materials, Inc. Tungsten oxide processing
US8956980B1 (en) 2013-09-16 2015-02-17 Applied Materials, Inc. Selective etch of silicon nitride
US8969212B2 (en) 2012-11-20 2015-03-03 Applied Materials, Inc. Dry-etch selectivity
US8980763B2 (en) 2012-11-30 2015-03-17 Applied Materials, Inc. Dry-etch for selective tungsten removal
US8999856B2 (en) 2011-03-14 2015-04-07 Applied Materials, Inc. Methods for etch of sin films
US9023732B2 (en) 2013-03-15 2015-05-05 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9023734B2 (en) 2012-09-18 2015-05-05 Applied Materials, Inc. Radical-component oxide etch
US9034770B2 (en) 2012-09-17 2015-05-19 Applied Materials, Inc. Differential silicon oxide etch
US9040422B2 (en) 2013-03-05 2015-05-26 Applied Materials, Inc. Selective titanium nitride removal
US9064815B2 (en) 2011-03-14 2015-06-23 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
US9064816B2 (en) 2012-11-30 2015-06-23 Applied Materials, Inc. Dry-etch for selective oxidation removal
US9111877B2 (en) 2012-12-18 2015-08-18 Applied Materials, Inc. Non-local plasma oxide etch
US9117855B2 (en) 2013-12-04 2015-08-25 Applied Materials, Inc. Polarity control for remote plasma
US9114438B2 (en) 2013-05-21 2015-08-25 Applied Materials, Inc. Copper residue chamber clean
US9136273B1 (en) 2014-03-21 2015-09-15 Applied Materials, Inc. Flash gate air gap
US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
US9159606B1 (en) 2014-07-31 2015-10-13 Applied Materials, Inc. Metal air gap
US9165786B1 (en) 2014-08-05 2015-10-20 Applied Materials, Inc. Integrated oxide and nitride recess for better channel contact in 3D architectures
US9190293B2 (en) 2013-12-18 2015-11-17 Applied Materials, Inc. Even tungsten etch for high aspect ratio trenches
US9236266B2 (en) 2011-08-01 2016-01-12 Applied Materials, Inc. Dry-etch for silicon-and-carbon-containing films
US9236265B2 (en) 2013-11-04 2016-01-12 Applied Materials, Inc. Silicon germanium processing
US9245762B2 (en) 2013-12-02 2016-01-26 Applied Materials, Inc. Procedure for etch rate consistency
US9263278B2 (en) 2013-12-17 2016-02-16 Applied Materials, Inc. Dopant etch selectivity control
US9287134B2 (en) 2014-01-17 2016-03-15 Applied Materials, Inc. Titanium oxide etch
US9287095B2 (en) 2013-12-17 2016-03-15 Applied Materials, Inc. Semiconductor system assemblies and methods of operation
US9293568B2 (en) 2014-01-27 2016-03-22 Applied Materials, Inc. Method of fin patterning
US9299538B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9299537B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9299582B2 (en) 2013-11-12 2016-03-29 Applied Materials, Inc. Selective etch for metal-containing materials
US9299575B2 (en) 2014-03-17 2016-03-29 Applied Materials, Inc. Gas-phase tungsten etch
US9309598B2 (en) 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
US9324576B2 (en) 2010-05-27 2016-04-26 Applied Materials, Inc. Selective etch for silicon films
US9355856B2 (en) 2014-09-12 2016-05-31 Applied Materials, Inc. V trench dry etch
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9378978B2 (en) 2014-07-31 2016-06-28 Applied Materials, Inc. Integrated oxide recess and floating gate fin trimming
US9378969B2 (en) 2014-06-19 2016-06-28 Applied Materials, Inc. Low temperature gas-phase carbon removal
US9385028B2 (en) 2014-02-03 2016-07-05 Applied Materials, Inc. Air gap process
US9390937B2 (en) 2012-09-20 2016-07-12 Applied Materials, Inc. Silicon-carbon-nitride selective etch
US9396989B2 (en) 2014-01-27 2016-07-19 Applied Materials, Inc. Air gaps between copper lines
US9406523B2 (en) 2014-06-19 2016-08-02 Applied Materials, Inc. Highly selective doped oxide removal method
US9425058B2 (en) 2014-07-24 2016-08-23 Applied Materials, Inc. Simplified litho-etch-litho-etch process
US9493879B2 (en) 2013-07-12 2016-11-15 Applied Materials, Inc. Selective sputtering for pattern transfer
US9496167B2 (en) 2014-07-31 2016-11-15 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9553102B2 (en) 2014-08-19 2017-01-24 Applied Materials, Inc. Tungsten separation
US9576809B2 (en) 2013-11-04 2017-02-21 Applied Materials, Inc. Etch suppression with germanium
US9613822B2 (en) 2014-09-25 2017-04-04 Applied Materials, Inc. Oxide etch selectivity enhancement
US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current
US9691645B2 (en) 2015-08-06 2017-06-27 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US9721789B1 (en) 2016-10-04 2017-08-01 Applied Materials, Inc. Saving ion-damaged spacers
US9741593B2 (en) 2015-08-06 2017-08-22 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US9768034B1 (en) 2016-11-11 2017-09-19 Applied Materials, Inc. Removal methods for high aspect ratio structures
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US9847289B2 (en) 2014-05-30 2017-12-19 Applied Materials, Inc. Protective via cap for improved interconnect performance
US9865484B1 (en) 2016-06-29 2018-01-09 Applied Materials, Inc. Selective etch using material modification and RF pulsing
US9881805B2 (en) 2015-03-02 2018-01-30 Applied Materials, Inc. Silicon selective removal
US9885117B2 (en) 2014-03-31 2018-02-06 Applied Materials, Inc. Conditioned semiconductor system parts
US9934942B1 (en) 2016-10-04 2018-04-03 Applied Materials, Inc. Chamber with flow-through source
US9947549B1 (en) 2016-10-10 2018-04-17 Applied Materials, Inc. Cobalt-containing material removal
US9966240B2 (en) 2014-10-14 2018-05-08 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US10043674B1 (en) 2017-08-04 2018-08-07 Applied Materials, Inc. Germanium etching systems and methods
US10043684B1 (en) 2017-02-06 2018-08-07 Applied Materials, Inc. Self-limiting atomic thermal etching systems and methods
US10049891B1 (en) 2017-05-31 2018-08-14 Applied Materials, Inc. Selective in situ cobalt residue removal
US10062585B2 (en) 2016-10-04 2018-08-28 Applied Materials, Inc. Oxygen compatible plasma source
US10062579B2 (en) 2016-10-07 2018-08-28 Applied Materials, Inc. Selective SiN lateral recess
US10062587B2 (en) 2012-07-18 2018-08-28 Applied Materials, Inc. Pedestal with multi-zone temperature control and multiple purge capabilities
US10062575B2 (en) 2016-09-09 2018-08-28 Applied Materials, Inc. Poly directional etch by oxidation
US10128086B1 (en) 2017-10-24 2018-11-13 Applied Materials, Inc. Silicon pretreatment for nitride removal
US10163696B2 (en) 2016-11-11 2018-12-25 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US10170282B2 (en) 2013-03-08 2019-01-01 Applied Materials, Inc. Insulated semiconductor faceplate designs
US10224210B2 (en) 2014-12-09 2019-03-05 Applied Materials, Inc. Plasma processing system with direct outlet toroidal plasma source
US10242908B2 (en) 2016-11-14 2019-03-26 Applied Materials, Inc. Airgap formation with damage-free copper
US10256112B1 (en) 2017-12-08 2019-04-09 Applied Materials, Inc. Selective tungsten removal
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US10283324B1 (en) 2017-10-24 2019-05-07 Applied Materials, Inc. Oxygen treatment for nitride etching
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US10319649B2 (en) 2017-04-11 2019-06-11 Applied Materials, Inc. Optical emission spectroscopy (OES) for remote plasma monitoring
US10354889B2 (en) 2017-07-17 2019-07-16 Applied Materials, Inc. Non-halogen etching of silicon-containing materials
US10403507B2 (en) 2017-02-03 2019-09-03 Applied Materials, Inc. Shaped etch profile with oxidation
US10424464B2 (en) 2015-08-07 2019-09-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10468285B2 (en) 2015-02-03 2019-11-05 Applied Materials, Inc. High temperature chuck for plasma processing systems
US10468267B2 (en) 2017-05-31 2019-11-05 Applied Materials, Inc. Water-free etching methods
US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US10566206B2 (en) 2016-12-27 2020-02-18 Applied Materials, Inc. Systems and methods for anisotropic material breakthrough
US10573496B2 (en) 2014-12-09 2020-02-25 Applied Materials, Inc. Direct outlet toroidal plasma source
US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
US10593523B2 (en) 2014-10-14 2020-03-17 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
US10600639B2 (en) 2016-11-14 2020-03-24 Applied Materials, Inc. SiN spacer profile patterning
US10615047B2 (en) 2018-02-28 2020-04-07 Applied Materials, Inc. Systems and methods to form airgaps
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
US10854426B2 (en) 2018-01-08 2020-12-01 Applied Materials, Inc. Metal recess for semiconductor structures
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
US11239061B2 (en) 2014-11-26 2022-02-01 Applied Materials, Inc. Methods and systems to enhance process uniformity
US11257693B2 (en) 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
US11594428B2 (en) 2015-02-03 2023-02-28 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101044366B1 (en) * 2002-06-12 2011-06-29 어플라이드 머티어리얼스, 인코포레이티드 Plasma method and apparatus for processing a substrate
KR101250356B1 (en) * 2006-11-08 2013-04-05 주식회사 원익아이피에스 Apparatus for manufacturing semiconductor
KR101275870B1 (en) * 2011-09-01 2013-06-18 최대규 Wafer processing system having plasma generator for cleaning exhaust gas

Cited By (185)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100741645B1 (en) * 2001-01-16 2007-07-23 주성엔지니어링(주) Single wafer type LPCVD apparatus having a direct heating type belljar heater
US9754800B2 (en) 2010-05-27 2017-09-05 Applied Materials, Inc. Selective etch for silicon films
US9324576B2 (en) 2010-05-27 2016-04-26 Applied Materials, Inc. Selective etch for silicon films
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US8999856B2 (en) 2011-03-14 2015-04-07 Applied Materials, Inc. Methods for etch of sin films
US9064815B2 (en) 2011-03-14 2015-06-23 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
US10062578B2 (en) 2011-03-14 2018-08-28 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
US9842744B2 (en) 2011-03-14 2017-12-12 Applied Materials, Inc. Methods for etch of SiN films
US9236266B2 (en) 2011-08-01 2016-01-12 Applied Materials, Inc. Dry-etch for silicon-and-carbon-containing films
US8927390B2 (en) 2011-09-26 2015-01-06 Applied Materials, Inc. Intrench profile
US9012302B2 (en) 2011-09-26 2015-04-21 Applied Materials, Inc. Intrench profile
US10062587B2 (en) 2012-07-18 2018-08-28 Applied Materials, Inc. Pedestal with multi-zone temperature control and multiple purge capabilities
US10032606B2 (en) 2012-08-02 2018-07-24 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US9373517B2 (en) 2012-08-02 2016-06-21 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
WO2014022192A1 (en) * 2012-08-02 2014-02-06 Applied Materials, Inc. Semiconductor processing with dc assisted rf power for improved control
US9034770B2 (en) 2012-09-17 2015-05-19 Applied Materials, Inc. Differential silicon oxide etch
US9887096B2 (en) 2012-09-17 2018-02-06 Applied Materials, Inc. Differential silicon oxide etch
US9023734B2 (en) 2012-09-18 2015-05-05 Applied Materials, Inc. Radical-component oxide etch
US9390937B2 (en) 2012-09-20 2016-07-12 Applied Materials, Inc. Silicon-carbon-nitride selective etch
US10354843B2 (en) 2012-09-21 2019-07-16 Applied Materials, Inc. Chemical control features in wafer process equipment
US9978564B2 (en) 2012-09-21 2018-05-22 Applied Materials, Inc. Chemical control features in wafer process equipment
US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
US11264213B2 (en) 2012-09-21 2022-03-01 Applied Materials, Inc. Chemical control features in wafer process equipment
US8969212B2 (en) 2012-11-20 2015-03-03 Applied Materials, Inc. Dry-etch selectivity
US8980763B2 (en) 2012-11-30 2015-03-17 Applied Materials, Inc. Dry-etch for selective tungsten removal
US9064816B2 (en) 2012-11-30 2015-06-23 Applied Materials, Inc. Dry-etch for selective oxidation removal
US9111877B2 (en) 2012-12-18 2015-08-18 Applied Materials, Inc. Non-local plasma oxide etch
US9449845B2 (en) 2012-12-21 2016-09-20 Applied Materials, Inc. Selective titanium nitride etching
US8921234B2 (en) 2012-12-21 2014-12-30 Applied Materials, Inc. Selective titanium nitride etching
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US11024486B2 (en) 2013-02-08 2021-06-01 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US10424485B2 (en) 2013-03-01 2019-09-24 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9040422B2 (en) 2013-03-05 2015-05-26 Applied Materials, Inc. Selective titanium nitride removal
US9607856B2 (en) 2013-03-05 2017-03-28 Applied Materials, Inc. Selective titanium nitride removal
US8801952B1 (en) 2013-03-07 2014-08-12 Applied Materials, Inc. Conformal oxide dry etch
US9093390B2 (en) 2013-03-07 2015-07-28 Applied Materials, Inc. Conformal oxide dry etch
US10170282B2 (en) 2013-03-08 2019-01-01 Applied Materials, Inc. Insulated semiconductor faceplate designs
US9704723B2 (en) 2013-03-15 2017-07-11 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9093371B2 (en) 2013-03-15 2015-07-28 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9023732B2 (en) 2013-03-15 2015-05-05 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9991134B2 (en) 2013-03-15 2018-06-05 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9153442B2 (en) 2013-03-15 2015-10-06 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9184055B2 (en) 2013-03-15 2015-11-10 Applied Materials, Inc. Processing systems and methods for halide scavenging
US8895449B1 (en) 2013-05-16 2014-11-25 Applied Materials, Inc. Delicate dry clean
US9114438B2 (en) 2013-05-21 2015-08-25 Applied Materials, Inc. Copper residue chamber clean
US9493879B2 (en) 2013-07-12 2016-11-15 Applied Materials, Inc. Selective sputtering for pattern transfer
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US8956980B1 (en) 2013-09-16 2015-02-17 Applied Materials, Inc. Selective etch of silicon nitride
US9209012B2 (en) 2013-09-16 2015-12-08 Applied Materials, Inc. Selective etch of silicon nitride
US8951429B1 (en) 2013-10-29 2015-02-10 Applied Materials, Inc. Tungsten oxide processing
US9576809B2 (en) 2013-11-04 2017-02-21 Applied Materials, Inc. Etch suppression with germanium
US9236265B2 (en) 2013-11-04 2016-01-12 Applied Materials, Inc. Silicon germanium processing
US9520303B2 (en) 2013-11-12 2016-12-13 Applied Materials, Inc. Aluminum selective etch
US9711366B2 (en) 2013-11-12 2017-07-18 Applied Materials, Inc. Selective etch for metal-containing materials
US9299582B2 (en) 2013-11-12 2016-03-29 Applied Materials, Inc. Selective etch for metal-containing materials
US9245762B2 (en) 2013-12-02 2016-01-26 Applied Materials, Inc. Procedure for etch rate consistency
US9117855B2 (en) 2013-12-04 2015-08-25 Applied Materials, Inc. Polarity control for remote plasma
US9287095B2 (en) 2013-12-17 2016-03-15 Applied Materials, Inc. Semiconductor system assemblies and methods of operation
US9263278B2 (en) 2013-12-17 2016-02-16 Applied Materials, Inc. Dopant etch selectivity control
US9190293B2 (en) 2013-12-18 2015-11-17 Applied Materials, Inc. Even tungsten etch for high aspect ratio trenches
US9287134B2 (en) 2014-01-17 2016-03-15 Applied Materials, Inc. Titanium oxide etch
US9293568B2 (en) 2014-01-27 2016-03-22 Applied Materials, Inc. Method of fin patterning
US9396989B2 (en) 2014-01-27 2016-07-19 Applied Materials, Inc. Air gaps between copper lines
US9385028B2 (en) 2014-02-03 2016-07-05 Applied Materials, Inc. Air gap process
US9299575B2 (en) 2014-03-17 2016-03-29 Applied Materials, Inc. Gas-phase tungsten etch
US9299538B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9299537B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9837249B2 (en) 2014-03-20 2017-12-05 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9136273B1 (en) 2014-03-21 2015-09-15 Applied Materials, Inc. Flash gate air gap
US9885117B2 (en) 2014-03-31 2018-02-06 Applied Materials, Inc. Conditioned semiconductor system parts
US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
US10465294B2 (en) 2014-05-28 2019-11-05 Applied Materials, Inc. Oxide and metal removal
US9309598B2 (en) 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
US9847289B2 (en) 2014-05-30 2017-12-19 Applied Materials, Inc. Protective via cap for improved interconnect performance
US9378969B2 (en) 2014-06-19 2016-06-28 Applied Materials, Inc. Low temperature gas-phase carbon removal
US9406523B2 (en) 2014-06-19 2016-08-02 Applied Materials, Inc. Highly selective doped oxide removal method
US9425058B2 (en) 2014-07-24 2016-08-23 Applied Materials, Inc. Simplified litho-etch-litho-etch process
US9773695B2 (en) 2014-07-31 2017-09-26 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9378978B2 (en) 2014-07-31 2016-06-28 Applied Materials, Inc. Integrated oxide recess and floating gate fin trimming
US9496167B2 (en) 2014-07-31 2016-11-15 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9159606B1 (en) 2014-07-31 2015-10-13 Applied Materials, Inc. Metal air gap
US9165786B1 (en) 2014-08-05 2015-10-20 Applied Materials, Inc. Integrated oxide and nitride recess for better channel contact in 3D architectures
US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current
US9553102B2 (en) 2014-08-19 2017-01-24 Applied Materials, Inc. Tungsten separation
US9355856B2 (en) 2014-09-12 2016-05-31 Applied Materials, Inc. V trench dry etch
US9613822B2 (en) 2014-09-25 2017-04-04 Applied Materials, Inc. Oxide etch selectivity enhancement
US9837284B2 (en) 2014-09-25 2017-12-05 Applied Materials, Inc. Oxide etch selectivity enhancement
US9966240B2 (en) 2014-10-14 2018-05-08 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US10593523B2 (en) 2014-10-14 2020-03-17 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US10707061B2 (en) 2014-10-14 2020-07-07 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US10796922B2 (en) 2014-10-14 2020-10-06 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US10490418B2 (en) 2014-10-14 2019-11-26 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US11637002B2 (en) 2014-11-26 2023-04-25 Applied Materials, Inc. Methods and systems to enhance process uniformity
US11239061B2 (en) 2014-11-26 2022-02-01 Applied Materials, Inc. Methods and systems to enhance process uniformity
US10573496B2 (en) 2014-12-09 2020-02-25 Applied Materials, Inc. Direct outlet toroidal plasma source
US10224210B2 (en) 2014-12-09 2019-03-05 Applied Materials, Inc. Plasma processing system with direct outlet toroidal plasma source
US11257693B2 (en) 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
US11594428B2 (en) 2015-02-03 2023-02-28 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US10468285B2 (en) 2015-02-03 2019-11-05 Applied Materials, Inc. High temperature chuck for plasma processing systems
US9881805B2 (en) 2015-03-02 2018-01-30 Applied Materials, Inc. Silicon selective removal
US11158527B2 (en) 2015-08-06 2021-10-26 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US9691645B2 (en) 2015-08-06 2017-06-27 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US10607867B2 (en) 2015-08-06 2020-03-31 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US9741593B2 (en) 2015-08-06 2017-08-22 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US10468276B2 (en) 2015-08-06 2019-11-05 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US10424464B2 (en) 2015-08-07 2019-09-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US11476093B2 (en) 2015-08-27 2022-10-18 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US11735441B2 (en) 2016-05-19 2023-08-22 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US9865484B1 (en) 2016-06-29 2018-01-09 Applied Materials, Inc. Selective etch using material modification and RF pulsing
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
US10062575B2 (en) 2016-09-09 2018-08-28 Applied Materials, Inc. Poly directional etch by oxidation
US10224180B2 (en) 2016-10-04 2019-03-05 Applied Materials, Inc. Chamber with flow-through source
US9934942B1 (en) 2016-10-04 2018-04-03 Applied Materials, Inc. Chamber with flow-through source
US10062585B2 (en) 2016-10-04 2018-08-28 Applied Materials, Inc. Oxygen compatible plasma source
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US9721789B1 (en) 2016-10-04 2017-08-01 Applied Materials, Inc. Saving ion-damaged spacers
US10541113B2 (en) 2016-10-04 2020-01-21 Applied Materials, Inc. Chamber with flow-through source
US10319603B2 (en) 2016-10-07 2019-06-11 Applied Materials, Inc. Selective SiN lateral recess
US10062579B2 (en) 2016-10-07 2018-08-28 Applied Materials, Inc. Selective SiN lateral recess
US9947549B1 (en) 2016-10-10 2018-04-17 Applied Materials, Inc. Cobalt-containing material removal
US10163696B2 (en) 2016-11-11 2018-12-25 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US10770346B2 (en) 2016-11-11 2020-09-08 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US10186428B2 (en) 2016-11-11 2019-01-22 Applied Materials, Inc. Removal methods for high aspect ratio structures
US9768034B1 (en) 2016-11-11 2017-09-19 Applied Materials, Inc. Removal methods for high aspect ratio structures
US10242908B2 (en) 2016-11-14 2019-03-26 Applied Materials, Inc. Airgap formation with damage-free copper
US10600639B2 (en) 2016-11-14 2020-03-24 Applied Materials, Inc. SiN spacer profile patterning
US10566206B2 (en) 2016-12-27 2020-02-18 Applied Materials, Inc. Systems and methods for anisotropic material breakthrough
US10903052B2 (en) 2017-02-03 2021-01-26 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10403507B2 (en) 2017-02-03 2019-09-03 Applied Materials, Inc. Shaped etch profile with oxidation
US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10043684B1 (en) 2017-02-06 2018-08-07 Applied Materials, Inc. Self-limiting atomic thermal etching systems and methods
US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10529737B2 (en) 2017-02-08 2020-01-07 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10325923B2 (en) 2017-02-08 2019-06-18 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
US10319649B2 (en) 2017-04-11 2019-06-11 Applied Materials, Inc. Optical emission spectroscopy (OES) for remote plasma monitoring
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US11915950B2 (en) 2017-05-17 2024-02-27 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US11361939B2 (en) 2017-05-17 2022-06-14 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US10049891B1 (en) 2017-05-31 2018-08-14 Applied Materials, Inc. Selective in situ cobalt residue removal
US10468267B2 (en) 2017-05-31 2019-11-05 Applied Materials, Inc. Water-free etching methods
US10497579B2 (en) 2017-05-31 2019-12-03 Applied Materials, Inc. Water-free etching methods
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
US10354889B2 (en) 2017-07-17 2019-07-16 Applied Materials, Inc. Non-halogen etching of silicon-containing materials
US10593553B2 (en) 2017-08-04 2020-03-17 Applied Materials, Inc. Germanium etching systems and methods
US10043674B1 (en) 2017-08-04 2018-08-07 Applied Materials, Inc. Germanium etching systems and methods
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US11101136B2 (en) 2017-08-07 2021-08-24 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10283324B1 (en) 2017-10-24 2019-05-07 Applied Materials, Inc. Oxygen treatment for nitride etching
US10128086B1 (en) 2017-10-24 2018-11-13 Applied Materials, Inc. Silicon pretreatment for nitride removal
US10256112B1 (en) 2017-12-08 2019-04-09 Applied Materials, Inc. Selective tungsten removal
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US10861676B2 (en) 2018-01-08 2020-12-08 Applied Materials, Inc. Metal recess for semiconductor structures
US10854426B2 (en) 2018-01-08 2020-12-01 Applied Materials, Inc. Metal recess for semiconductor structures
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
US10699921B2 (en) 2018-02-15 2020-06-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
US10615047B2 (en) 2018-02-28 2020-04-07 Applied Materials, Inc. Systems and methods to form airgaps
US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
US11004689B2 (en) 2018-03-12 2021-05-11 Applied Materials, Inc. Thermal silicon etch
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes

Also Published As

Publication number Publication date
KR100265866B1 (en) 2000-12-01

Similar Documents

Publication Publication Date Title
KR100265866B1 (en) Apparatus for manufacturing semiconductor device
KR100639843B1 (en) Plasma source for hdp-cvd chamber
KR100188076B1 (en) Method and apparatus for producing magnetically-coupled planar plasma
US5252178A (en) Multi-zone plasma processing method and apparatus
US5904780A (en) Plasma processing apparatus
TW583343B (en) Plasma processing apparatus and dielectric plate adapted to be provided between a process chamber of a plasma processing apparatus and slot electrode guiding a microwave used for a plasma process
US20100101727A1 (en) Capacitively coupled remote plasma source with large operating pressure range
KR19980033120A (en) A parallel plate electrode plasma reactor capable of controlling the radiation distribution of plasma ion density with an induction antenna
US20030094238A1 (en) Plasma processing apparatus for spatial control of dissociation and ionization
KR20050079860A (en) Plasma generation apparatus and plasma processing apparatus and method for utilizing the same
KR100960791B1 (en) Apparatus for plasma doping
JPH06267903A (en) Plasma device
JP2021503686A (en) Ultra-localization and plasma uniformity control in the manufacturing process
JP3814176B2 (en) Plasma processing equipment
JP4340348B2 (en) Plasma generator
US5543688A (en) Plasma generation apparatus with interleaved electrodes and corresponding method
US20040163595A1 (en) Plasma processing apparatus
KR101020075B1 (en) Inductively coupled plasma reactor
KR102498944B1 (en) Process for performing self-limited etching of organic materials
KR101496840B1 (en) Plasma reactor apparatus having magnetism control constitution
JPH0368771A (en) Microwave plasma treating device
JP2009140932A (en) Plasma generating device
JP2003243376A (en) Plasma treatment apparatus
KR20050049169A (en) System for generating inductively coupled plasma and antenna coil structure for generating inductive electric field
KR100391180B1 (en) Method and apparatus for plasma chemical treatment of a substrate surface

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
J202 Request for trial (for correction)
J301 Trial decision

Free format text: TRIAL DECISION FOR CORRECTION REQUESTED 20040514

Effective date: 20060628

Free format text: TRIAL NUMBER: 2004105000014; TRIAL DECISION FOR CORRECTION REQUESTED 20040514

Effective date: 20060628

FPAY Annual fee payment

Payment date: 20130410

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20140402

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20150512

Year of fee payment: 16

LAPS Lapse due to unpaid annual fee