KR102472270B1 - Development of novel methanotroph that co-assimilate methane and xylose, and producing shinorine using itself - Google Patents

Development of novel methanotroph that co-assimilate methane and xylose, and producing shinorine using itself Download PDF

Info

Publication number
KR102472270B1
KR102472270B1 KR1020200121443A KR20200121443A KR102472270B1 KR 102472270 B1 KR102472270 B1 KR 102472270B1 KR 1020200121443 A KR1020200121443 A KR 1020200121443A KR 20200121443 A KR20200121443 A KR 20200121443A KR 102472270 B1 KR102472270 B1 KR 102472270B1
Authority
KR
South Korea
Prior art keywords
xylose
seq
methane
shinorine
gene encoding
Prior art date
Application number
KR1020200121443A
Other languages
Korean (ko)
Other versions
KR20220039887A (en
Inventor
이은열
덕 안 뉴엔
이옥경
Original Assignee
경희대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경희대학교 산학협력단 filed Critical 경희대학교 산학협력단
Priority to KR1020200121443A priority Critical patent/KR102472270B1/en
Publication of KR20220039887A publication Critical patent/KR20220039887A/en
Application granted granted Critical
Publication of KR102472270B1 publication Critical patent/KR102472270B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1003Transferases (2.) transferring one-carbon groups (2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1022Transferases (2.) transferring aldehyde or ketonic groups (2.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • C12N9/92Glucose isomerase (5.3.1.5; 5.3.1.9; 5.3.1.18)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/001Amines; Imines
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y202/00Transferases transferring aldehyde or ketonic groups (2.2)
    • C12Y202/01Transketolases and transaldolases (2.2.1)
    • C12Y202/01001Transketolase (2.2.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01017Xylulokinase (2.7.1.17)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y501/00Racemaces and epimerases (5.1)
    • C12Y501/03Racemaces and epimerases (5.1) acting on carbohydrates and derivatives (5.1.3)
    • C12Y501/03001Ribulose-phosphate 3-epimerase (5.1.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y503/00Intramolecular oxidoreductases (5.3)
    • C12Y503/01Intramolecular oxidoreductases (5.3) interconverting aldoses and ketoses (5.3.1)
    • C12Y503/01005Xylose isomerase (5.3.1.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y603/00Ligases forming carbon-nitrogen bonds (6.3)
    • C12Y603/02Acid—amino-acid ligases (peptide synthases)(6.3.2)
    • C12Y603/02004D-Alanine-D-alanine ligase (6.3.2.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/03Carbon-oxygen lyases (4.2) acting on phosphates (4.2.3)
    • C12Y402/03135DELTA6-protoilludene synthase (4.2.3.135)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 메탄과 자일로스를 공동 탄소원으로 사용하는 형질전환 메탄자화균 및 이를 이용한 시노린의 생산 방법에 관한 것으로, 보다 구체적으로 메탄자화균 내 자일로스 대사 경로를 구축하여 탄소원으로 메탄 및 자일로스를 동시에 활용하는 형질전환 메탄자화균으로 기존 메탄자화균 대비 세포 성장률 및 시노린 생산성이 향상된 방법으로 메탄 유래 고부가가치 유용산물로써 활용 가능하다. The present invention relates to a transgenic methanogen that uses methane and xylose as a common carbon source and a method for producing shinoline using the same, and more specifically, to a xylose metabolic pathway in the methanogen and methane and xylose as carbon sources can be used as a high value-added useful product derived from methane as a method of improving cell growth rate and shinoline productivity compared to existing methanogens.

Description

메탄 및 자일로스를 동시 대사하는 메탄자화균의 개발 및 이를 이용한 시노린 생산방법 {Development of novel methanotroph that co-assimilate methane and xylose, and producing shinorine using itself}Development of a novel methanotroph that co-assimilate methane and xylose, and producing shinorine using itself}

본 발명은 메탄자화균 내 자일로스 대사 경로를 도입하여 탄소원으로 메탄과 자일로스를 동시에 활용함으로써 비 산화성 RuMP 경로를 향상시켜 세포 성장 및 시노린 생산성을 향상시키는 방법에 관한 것이다.The present invention relates to a method for improving cell growth and shinoline productivity by improving the non-oxidative RuMP pathway by simultaneously utilizing methane and xylose as carbon sources by introducing a xylose metabolic pathway into methanogens.

C1 탄소 기반의 바이오 전환을 통한 화학물질 및 연료 생산에 대한 연구가 활발히 진행되고 있으며, 이는 향후 산업 현장에서 화학물질 및 연료 생산 방법의 변화를 가져올 것으로 기대된다. 특히, 메탄을 유일 탄소원 및 에너지원으로 사용하는 메탄자화균은 유일한 메탄전환 생촉매이다. 메탄자화균 (Methanotrophic bacteria)을 이용하여 메탄 유래 다양한 고부가가치 유용 산물을 생산하려는 시도가 꾸준히 시도되어 왔으나, 메탄자화균의 생리학적 특성에 대한 전반적인 이해 부족, 균주 자체의 낮은 성장률, 유전자 도구의 부재와 같은 여러 어려움을 이유로, 아직까지 널리 활용되기는 어려운 실정이다. Research on the production of chemicals and fuels through C1 carbon-based bioconversion is being actively conducted, which is expected to bring about changes in the production methods of chemicals and fuels in the future. In particular, methanotrophs, which use methane as the only carbon and energy source, are the only biocatalysts for methane conversion. Attempts to produce various high value-added useful products derived from methane using methanotrophic bacteria have been steadily attempted, but lack of overall understanding of the physiological characteristics of methanotrophic bacteria, low growth rate of the strain itself, and absence of genetic tools Due to various difficulties such as, it is still difficult to be widely used.

최근, 몇몇 연구를 통해 기술 조작된 메탄자화균(Methanotrophs)으로부터 화학 물질 및 연료가 성공적으로 생산되었으나, 역가 및 생산성은 여전히 산업에서 요구되는 수준보다 훨씬 낮아 개선이 필요한 실정이다. 메탄자화균의 성장속도 및 대사능력 모두는 생물 전환 공정의 효율에 크게 영향을 미치기 때문에, 높은 생산성을 달성하기 위해서는 이들 인자를 향상시키는 효과적인 방법이 필요하다.Recently, chemical substances and fuels have been successfully produced from engineered methanotrophs through several studies, but the potency and productivity are still far below the level required by the industry and need improvement. Since both the growth rate and metabolic capacity of methanogens greatly affect the efficiency of the bioconversion process, an effective method for improving these factors is required to achieve high productivity.

Type I 메탄자화균에서 C1 동화를 위한 주요 경로인 비 산화 RuMP 사이클(Non-oxidative ribulose monophosphate RuMP cycle)은 오탄당 인산경로의 C6 단위 및 비 산화 부분을 생성하기 위한 C1 및 C5 축합 단계로 구성된다. 유전체 대사 모델(genome scale model) 분석에 따르면, 비 산화 RuMP 사이클을 통한 탄소 플럭스는 메탄자화균 대사에서 가장 높은 플럭스 중 하나로, 이 경로에서 파생된 고부가가치 유용산물을 목적산물로 설정함으로써 메탄 유래 대사산물의 생산성을 향상시킬 수 있을 것으로 기대된다. 이를 증명하기 위해 메탄자화균의 비 산화 RuMP 사이클의 중간체인 sedoheptulose-7-phosphate (S7P)로부터 시노린(shinorine)을 합성하고자 하였다. 또한, 오탄당 인산경로를 활성화시키기 위하여 메탄자화균 내에 자일로스 대사 경로를 도입하여 메탄과 자일로스를 동시에 사용하여 성장률과 시노린 생산을 개선하고자 하였다.The non-oxidative ribulose monophosphate RuMP cycle, the major pathway for C1 assimilation in Type I methanogens, consists of C1 and C5 condensation steps to produce the C6 unit and the non-oxidative portion of the pentose phosphate pathway. According to genome scale model analysis, the carbon flux through the non-oxidizing RuMP cycle is one of the highest fluxes in the metabolism of methanogens. It is expected that the productivity of the product can be improved. To prove this, we tried to synthesize shinorine from sedoheptulose-7-phosphate (S7P), an intermediate in the non-oxidative RuMP cycle of methanomatous bacteria. In addition, in order to activate the pentose phosphate pathway, a xylose metabolic pathway was introduced into methanogens to improve the growth rate and production of shinoline by using methane and xylose at the same time.

대한민국 공개특허 제 10-2019-0049575호Republic of Korea Patent Publication No. 10-2019-0049575

본 발명의 목적은, 서열번호 1를 포함하는 2-디메틸 4-디옥시가두솔 합성효소(2-demethyl 4-deoxygadusol synthase, DDGS)를 코딩하는 유전자, 서열번호 2를 포함하는 O-메틸트렌스퍼라제(O-methyltransferase, OMT)를 코딩하는 유전자, 서열번호 3을 포함하는 ATP-그라스프 라이가제(ATP-grasp-ligase)를 코딩하는 유전자 및 서열번호 4를 포함하는 시아노박테리아(Nostoc punctiforme) 유래의 D-알라-D-알라 라이가제(D-ala-D-ala ligase)를 코딩하는 유전자를 포함하는 시노린을 생산하는 메탄자화균(Methanotroph)을 제공하는 것이다.An object of the present invention is a gene encoding 2-dimethyl 4-deoxygadusol synthase (DDGS) comprising SEQ ID NO: 1, an O-methyltransfer comprising SEQ ID NO: 2 Cyanobacteria ( Nostoc punctiforme ) to provide a methanotroph that produces shinorine containing a gene encoding D-ala-D-ala ligase derived from.

본 발명의 다른 목적은, 상기의 메탄자화균에, 자일로스 대사경로에 관여하는 서열번호 6을 포함하는 자일로스 아이소머라제(xylose isomerase, xylA)를 코딩하는 유전자, 서열번호 7을 포함하는 자일룰로스키나아제(xylulosekinase, xylB)를 코딩하는 유전자 및 서열번호 8을 포함하는 리불로스-포스페이트 3-에피머라제(ribulose-phosphate 3-epimerase, rpe)를 코딩하는 유전자를 도입 또는 강화함으로써 메탄과 자일로스를 동시에 대사할 수 있는 형질전환된 메탄자화균(Methanotroph)을 제공하는 것이다.Another object of the present invention is to generate a gene encoding xylose isomerase (xylA) comprising SEQ ID NO: 6 involved in the xylose metabolic pathway, and a xylose sequence comprising SEQ ID NO: 7 in the methane magnetizing bacteria. Methane and xyl It is to provide a transformed methanotroph capable of simultaneously metabolizing rosacea.

본 발명의 또 다른 목적은, 상기의 메탄자화균 (Methanotroph) 또는 이의 배양액; 및Another object of the present invention, the above methanogenic bacteria (Methanotroph) or its culture medium; and

메탄 및 자일로스; 또는 메탄올 및 자일로스;로 이루어진 탄소원을 포함하는 시노린(shinorine) 생산용 조성물을 제공하는 것이다.methane and xylose; Or methanol and xylose; to provide a composition for production of shinorine (shinorine) comprising a carbon source consisting of.

본 발명의 또 다른 목적은, 상기 메탄자화균을, 메탄 및 자일로스; 또는 메탄올 및 자일로스;가 탄소원으로 포함된 배지에 접종하여 배양하는 단계; Another object of the present invention, the methanogenic bacteria, methane and xylose; Or methanol and xylose; step of inoculating and culturing in a medium containing as a carbon source;

상기 배양된 배양액에서, 상등액을 회수하는 단계; 및recovering the supernatant from the culture medium; and

회수된 상등액에서 시노린을 수득하는 단계 포함하는, 시노린(shinorine) 생산 방법을 제공하는 것이다.It is to provide a method for producing shinorine, including obtaining shinorine from the recovered supernatant.

본 발명은, 서열번호 1를 포함하는 2-디메틸 4-디옥시가두솔 합성효소(2-demethyl 4-deoxygadusol synthase, DDGS)를 코딩하는 유전자, 서열번호 2를 포함하는 O-메틸트렌스퍼라제(O-methyltransferase, OMT)를 코딩하는 유전자, 서열번호 3을 포함하는 ATP-그라스프 라이가제(ATP-grasp-ligase)를 코딩하는 유전자 및 서열번호 4를 포함하는 시아노박테리아(Nostoc punctiforme) 유래의 D-알라-D-알라 라이가제(D-ala-D-ala ligase)를 코딩하는 유전자를 포함하는 시노린을 생산하는 메탄자화균(Methanotroph)을 제공한다.The present invention, a gene encoding 2-dimethyl 4-deoxygadusol synthase (DDGS) comprising SEQ ID NO: 1, O-methyltransferase (SEQ ID NO: 2) Gene encoding O-methyltransferase, OMT), ATP-grasp-ligase comprising SEQ ID NO: 3, and cyanobacteria comprising SEQ ID NO: 4 ( Nostoc punctiforme ) Derived Provided is a Methanotroph that produces shinorine containing a gene encoding D-ala-D-ala ligase of

또한, 본 발명은 상기 메탄자화균에, 자일로스 대사경로에 관여하는 서열번호 6을 포함하는 자일로스 아이소머라제(xylose isomerase, xylA)를 코딩하는 유전자, 서열번호 7을 포함하는 자일룰로스키나아제(xylulosekinase, xylB)를 코딩하는 유전자 및 서열번호 8을 포함하는 리불로스-포스페이트 3-에피머라제(ribulose-phosphate 3-epimerase, rpe)를 코딩하는 유전자를 도입 또는 강화함으로써 메탄과 자일로즈를 동시에 대사할 수 있는 형질전환된 메탄자화균(Methanotroph)을 제공한다.In addition, the present invention is a gene encoding xylose isomerase (xylA) including SEQ ID NO: 6 involved in the xylose metabolic pathway, and a xylulose kinase including SEQ ID NO: 7 in the methane magnetizing bacteria (xylulosekinase, xylB) and a gene encoding ribulose-phosphate 3-epimerase (rpe) containing SEQ ID NO: 8 are introduced or enhanced to simultaneously produce methane and xylose A transformed methanotroph capable of metabolizing is provided.

또한, 본 발명은, 상기의 메탄자화균 (Methanotroph) 또는 이의 배양액; 및In addition, the present invention, the above methanogenic bacteria (Methanotroph) or its culture medium; and

메탄 및 자일로스; 또는 메탄올 및 자일로스;로 이루어진 탄소원을 포함하는 시노린(shinorine) 생산용 조성물을 제공한다.methane and xylose; or methanol and xylose; provides a composition for producing shinorine comprising a carbon source consisting of

또한, 본 발명은, 상기 메탄자화균을, 메탄 및 자일로스; 또는 메탄올 및 자일로스;가 탄소원으로 포함된 배지에 접종하여 배양하는 단계; In addition, the present invention, methane and xylose; Or methanol and xylose; step of inoculating and culturing in a medium containing as a carbon source;

상기 배양된 배양액에서, 상등액을 회수하는 단계; 및recovering the supernatant from the culture medium; and

회수된 상등액에서 시노린을 수득하는 단계 포함하는, 시노린(shinorine) 생산 방법을 제공한다.It provides a method for producing shinorine, including obtaining shinorine from the recovered supernatant.

본 발명은 메탄과 자일로스를 공동 탄소원으로 사용하는 형질전환 메탄자화균 및 이를 이용한 시노린의 생산 방법에 관한 것으로, 보다 구체적으로 메탄자화균 내 자일로스 대사 경로를 구축하여 탄소원으로 메탄 및 자일로스를 동시에 활용하는 형질전환 메탄자화균으로 기존 메탄자화균 대비 세포 성장률 및 시노린 생산성이 향상된 방법으로 메탄 유래 고부가가치 유용산물로써 활용 가능하다.The present invention relates to a transgenic methanogen that uses methane and xylose as a common carbon source and a method for producing shinoline using the same, and more specifically, to a xylose metabolic pathway in the methanogen and methane and xylose as carbon sources can be used as a high value-added useful product derived from methane as a method of improving cell growth rate and shinoline productivity compared to existing methanogens.

도 1은 본 발명의 형질전환된 메탄자화균 SH-XYL-1이 메탄 및 자일로스를 기질로하여 시노린을 합성하는 경로를 나타낸 도이다.
도 2는 본 발명의 형질전환된 메탄자화균에서, C1 산화 및 리불로스 모노포스페이트 경로와 관련된 유전자의 전사 및 단백질 발현량을 확인한 도이다.
도 3은 본 발명의 형질전환된 메탄자화균 SH-1 균주가 탄소원으로 1 중량%의 메탄올이 포함된 배지에서 48 시간 배양하였을 때의 흡광도(OD 600nm)를 나타낸 도이다.
도 4는 본 발명의 형질전환된 균주 SH-1을 메탄 및 메탄올을 탄소원으로 공급한 배지에서 48시간 배양하였을 때의 시노린 생성량을 비교한 도이다.
도 5는 본 발명에서 자일로스 대사경로 구축을 위해 사용된 벡터 및 형질전환 균주 제작과정을 나타낸 도이다.
도 6은 메탄; 자일로스; 및 메탄과 자일로스;를 탄소원으로 하는 NMS 배지에서 SH-XYL-1 균주의 성장을 각각 비교한 도이다.
도 7은 120시간 후 자일로스; 및 메탄과 자일로스;를 탄소원으로 하는 NMS 배지에서 SH-XYL-1 균주의 자일로스의 소비량을 비교한 도이다.
도 8은 메탄; 자일로스; 및 메탄과 자일로스;를 탄소원으로 하는 NMS 배지에서의 SH-XTL-1 균주의 시노린 생성량을 비교한 도이다.
도 9은 메탄; 및 메탄과 자일로스;를 탄소원으로 하는 NMS 배지에서의 SH-XTL-1 균주를 원심분리하여, 상층액에서 수득된 시노린의 양을 비교한 도이다.
도 10은 메탄 (메탄올) 및 자일로스에서 성장한 M. alcaliphilum 20Z pXYl에서 차별적으로 발현된 유전자를 나타낸 도이다.
도 11은 5 μM 텅스텐을 첨가하여 메탄 및 자일 로스에서 성장한 SH-XYL-1 균주의 생장 및 발효 프로파일을 나타낸 도이다.
도 12은 5μM 텅스텐을 첨가하여 메탄 및 자일로스에서 배양한 SH-XYL-1의 시노린 생산을 시간에 따라 확인한 도이다.
도 13는 오페론 클러스터를 사용하여 설계된 NpR 합성 오페론의 개략도이다.
도 14는 단일 탄소원으로 메탄 또는 메탄올을 사용하여 배양된 SH-2 균주의 시노린 생산을 나타낸 도이다.
도 15은 5 μM 텅스텐을 첨가된 자일로스 및 메탄에서 성장한 SH-XYL-2 균주의 생장 및 발효 프로파일을 나타낸 도이다.
도 16은 5μM 텅스텐을 첨가하여 자일로스 및 메탄에서 성장한 SH-XYL-2의 시노린 생산량을 시간에 따라 확인한 도이다.
1 is a diagram showing a pathway in which the transformed methanotroph SH-XYL-1 of the present invention synthesizes shinoline using methane and xylose as substrates.
Figure 2 is a diagram confirming the transcription and protein expression levels of genes related to C1 oxidation and ribulose monophosphate pathway in the transformed methanogens of the present invention.
Figure 3 is a diagram showing the absorbance (OD 600nm) when the transformed methanotroph SH-1 strain of the present invention was cultured for 48 hours in a medium containing 1% by weight of methanol as a carbon source.
Figure 4 is a diagram comparing the amount of shinorine produced when the transformed strain SH-1 of the present invention was cultured for 48 hours in a medium supplied with methane and methanol as carbon sources.
5 is a diagram showing the production process of the vector and transformant strain used for constructing the xylose metabolic pathway in the present invention.
6 is methane; xylose; And methane and xylose; is a diagram comparing the growth of the SH-XYL-1 strain, respectively, in NMS medium with carbon sources.
7 is xylose after 120 hours; And methane and xylose; is a comparison of xylose consumption of SH-XYL-1 strain in NMS medium with carbon sources.
8 is methane; xylose; And methane and xylose; is a diagram comparing the amount of shinoline production of the SH-XTL-1 strain in NMS medium as a carbon source.
9 is methane; and methane and xylose; is a diagram comparing the amount of shinoline obtained in the supernatant by centrifuging the SH-XTL-1 strain in NMS medium with carbon sources.
10 is a diagram showing genes differentially expressed in M. alcaliphilum 20Z pXYl grown in methane (methanol) and xylose.
11 is a diagram showing the growth and fermentation profiles of strain SH-XYL-1 grown in methane and xylose with the addition of 5 μM tungsten.
12 is a diagram confirming the production of shinorine over time in SH-XYL-1 cultured in methane and xylose with the addition of 5 μM tungsten.
Figure 13 is a schematic diagram of the NpR synthetic operon designed using operon clusters.
14 is a diagram showing shinoline production of strain SH-2 cultured using methane or methanol as a single carbon source.
15 is a diagram showing growth and fermentation profiles of strain SH-XYL-2 grown in xylose and methane added with 5 μM tungsten.
16 is a diagram confirming the production of shinoline over time in SH-XYL-2 grown in xylose and methane with the addition of 5 μM tungsten.

본 발명은, 서열번호 1를 포함하는 2-디메틸 4-디옥시가두솔 합성효소(2-demethyl 4-deoxygadusol synthase, DDGS)를 코딩하는 유전자, 서열번호 2를 포함하는 O-메틸트렌스퍼라제(O-methyltransferase, OMT)를 코딩하는 유전자, 서열번호 3을 포함하는 ATP-그라스프 라이가제(ATP-grasp-ligase)를 코딩하는 유전자 및 서열번호 4를 포함하는 시아노박테리아(Nostoc punctiforme) 유래의 D-알라-D-알라 라이가제(D-ala-D-ala ligase)를 코딩하는 유전자를 포함하는 시노린을 생산하는 메탄자화균(Methanotroph)을 제공한다.The present invention, a gene encoding 2-dimethyl 4-deoxygadusol synthase (DDGS) comprising SEQ ID NO: 1, O-methyltransferase (SEQ ID NO: 2) Gene encoding O-methyltransferase, OMT), ATP-grasp-ligase comprising SEQ ID NO: 3, and cyanobacteria comprising SEQ ID NO: 4 ( Nostoc punctiforme ) Derived Provided is a Methanotroph that produces shinorine containing a gene encoding D-ala-D-ala ligase of

시노린(shinorine)은 자외선 흡수능이 뛰어나고 자외선에 의해 유도되는 피부노화를 예방하고 항염, 항산화, 피부결 개선등의 효과를 가지고 있어, 안티에이징 화장제품으로 활용 가능한 물질이다. 또한, 최근 연구에 따르면, 시노린은 피부 신호전달 과정을 조절하여, 세포이동의 촉진과 상처재생에 효과가 있다. 미세조류로부터 발견되어 추출되었지만, 추출량 및 생산량이 상업적으로 이용하기엔 적어, 상당히 고가의 물질로 취급되어져 시노린을 생산하기 위한 다양한 방법들이 개발되고 있다.Shinorine is a substance that can be used as an anti-aging cosmetic product because it has excellent UV absorbing power, prevents skin aging induced by UV rays, and has effects such as anti-inflammatory, antioxidant, and skin texture improvement. In addition, according to a recent study, shinoline regulates the skin signal transduction process, and is effective in promoting cell migration and wound regeneration. Although it has been discovered and extracted from microalgae, the amount of extraction and production is low for commercial use, so it is treated as a fairly expensive material, and various methods for producing shinoline are being developed.

본 발명에서 용어 "메탄자화균(metahnotroph)"은 메탄을 주요 탄소원 또는 에너지원으로 사용하는 세균을 의미한다. 상기 메탄자화균은 본 발명에서 형질전환의 대상이 되는 숙주 균주를 의미할 수 있으며, 본 발명의 목적상 메탄을 탄소원으로 사용하여, 비 산화 RuMP 사이클을 가지고 있는 한 특별히 이에 제한되지 않는다. 또한, 메탄, 메탄올, 메틸아민 등 C1 화합물을 에너지원으로 사용하는 메틸자화균(methylotroph) 중에서 메탄을 함께 사용할 수 있는 균주 또한 본 발명의 메탄화균에 포함될 수 있음은 당업자에게 자명하다.In the present invention, the term "metahnotroph" means a bacterium that uses methane as a main carbon source or energy source. The methanogenic bacteria may mean a host strain to be transformed in the present invention, and for the purpose of the present invention, it is not particularly limited thereto as long as it has a non-oxidizing RuMP cycle using methane as a carbon source. In addition, among methylotrophs that use C1 compounds such as methane, methanol, and methylamine as energy sources, it is obvious to those skilled in the art that strains capable of using methane together may also be included in the methanating bacteria of the present invention.

상기 메탄자화균은 메탄 등 C1 화합물을 에너지원으로 사용할 수 있는 것인한 특별히 이에 제한되지 않으나, 메틸로모나스 속(Methylomonas), 메틸로박터속(Methylobacter), 메틸로코커스 속(Methylococcus), 메틸로스페라 속(Methylosphaera), 메틸로칼덤 속(Methylocaldum), 메틸로글로버스 속(Methyloglobus), 메틸로사르시나 속(Methylosarcina), 메틸로프로펀더스 속(Methyloprofundus), 메틸로썰머스 속(Methylothermus), 메틸로할로비우스 속(Methylohalobius), 메틸로게아 속(Methylogaea), 메틸로마리넘 속(Methylomarinum), 메틸로벌럼 속(Methylovulum), 메틸로마리노범 속(Methylomarinovum), 메틸로러브럼 속(Methylorubrum), 메틸로파라코커스 속(Methyloparacoccus), 메틸로시스티스 속(Methylocystis), 메틸로셀라 속(Methylocella), 메틸로캡사 속(Methylocapsa), 메틸로퍼룰라 속(Methylofurula), 메틸아시디필럼 속(Methylacidiphilum), 메틸아시디마이크로비움 속(Methylacidimicrobium), 메틸로마이크로비움 속(Methylomicrobium) 및 메틸로시너스 속(Methylosinus) 균주일 수 있으며, 구체적으로 메틸로마이크로비움 알칼리필리엄 (Methylomicrobium alcaliphilum) 20Z일 수 있다.The methanogenic bacteria are not particularly limited as long as they can use C1 compounds such as methane as an energy source, but Methylomonas, Methylobacter, Methylococcus, Methylose Methylosphaera, Methylocaldum, Methyloglobus, Methylosarcina, Methyloprofundus, Methylothermus ), Methylohalobius, Methylogaea, Methylomarinum, Methylovulum, Methylomarinovum, Methylolorubum Methylorubrum, Methyloparacoccus, Methylocystis, Methylocella, Methylocapsa, Methylofurula, Methylacid Methylacidiphilum, Methylacidimicrobium, Methylomicrobium and Methylosinus may be strains, specifically Methylomicrobium alcaliphilum It may be 20Z.

본 발명에서 용어 "형질전환 메탄자화균"은 상기 메탄자화균의 유전자를 도입하거나 또는 제거하여 형질을 전환시킨 균주를 의미한다.In the present invention, the term "transformed methanogenic bacteria" means a strain transformed by introducing or removing the gene of the methanogenic bacteria.

용어 "벡터"는 세포 내로 전달하는 DNA 단편(들), 핵산 분자를 의미하며, DNA를 복제하고, 숙주세포에서 독립적으로 재생산될 수 있다. "발현 벡터"는 목적한 코딩 서열과, 특정 숙주 생물에서 작동가능하게 연결된 코딩 서열을 발현하는데 필수적인 적정 핵산 서열을 포함하는 재조합 DNA 분자를 의미한다. 발현 벡터는 일반적으로 플라스미드 또는 바이러스 DNA로부터 유래하거나, 둘 다의 요소를 포함할 수 있다. 따라서, 발현 벡터는 재조합 DNA 또는 RNA 구축물, 예컨대, 플라스미드, 파지, 재조합 바이러스 또는 적절한 숙주 세포 내 도입시, 클로닝된 DNA의 발현을 초래하는 다른 벡터를 의미한다. 적절한 발현 벡터는 당업자에게 잘 알려져 있으며, 진핵세포 및/또는 원핵세포 내에서 복제 가능한 것들 및 에피솜으로 남는 것들 또는 숙주 세포 게놈 내에 통합되는 것들을 포함한다.The term “vector” refers to a DNA fragment(s) or nucleic acid molecule that is delivered into a cell, capable of replicating DNA and independently reproducing in a host cell. "Expression vector" means a recombinant DNA molecule comprising a coding sequence of interest and appropriate nucleic acid sequences necessary to express an operably linked coding sequence in a particular host organism. Expression vectors are generally derived from plasmid or viral DNA, or may contain elements of both. Thus, expression vector refers to a recombinant DNA or RNA construct such as a plasmid, phage, recombinant virus or other vector that, when introduced into a suitable host cell, results in the expression of the cloned DNA. Suitable expression vectors are well known to those skilled in the art, and include those capable of replicating in eukaryotic and/or prokaryotic cells and those that remain episomal or integrate into the host cell genome.

본 발명에서 사용되는 용어 “플라스미드”는 미생물의 세포 내에 염색체와는 별개로 존재하면서, 독자적으로 증식할 수 있는 DNA로, 생존에 필수적인 유전자는 아니나, 미생물의 환경 적응과 관련된 인자 및 벡터를 포함하는 고리형의 유전자를 의미한다.The term "plasmid" used in the present invention is a DNA that can independently proliferate while existing separately from chromosomes in the cells of microorganisms. It is not an essential gene for survival, but includes factors and vectors related to environmental adaptation of microorganisms. refers to a cyclical gene.

본 발명에서 사용되는 용어 “형질전환”은 미생물이 외부로부터 주어진 DNA를 받아들여 미생물의 유전적 성질이 변하는 것을 의미한다.As used herein, the term "transformation" means that a microorganism changes its genetic properties by accepting DNA given from the outside.

본 발명에서 사용되는 용어 “대사경로”는 효소 매개 생화학 반응으로 단백질, 핵산 아미노산 등과 같은 유기분자를 생합성하는 동화작용과 유기분자를 분해하는 이화작용을 유도하는 일련의 과정을 의미한다.As used herein, the term "metabolic pathway" refers to a series of processes that induce anabolic reactions that biosynthesize organic molecules such as proteins, nucleic acids, amino acids, etc., and catabolism that decomposes organic molecules through enzyme-mediated biochemical reactions.

본 발명에서 사용되는 용어 “공동영양대사”는 단일 탄소원에 추가적인 보조탄소원을 첨가하여, 미생물의 세포생장 및 대사산물의 생성을 촉진시킬 수 있는 배양 방법을 의미한다.The term "cotrophic metabolism" used in the present invention refers to a culture method capable of promoting cell growth and metabolite production of microorganisms by adding an additional auxiliary carbon source to a single carbon source.

본 발명에서 용어 "2-디메틸 4-디옥시가두솔 합성효소(2-demethyl 4-deoxygadusol synthase)"는 D-sedoheptulose 7-phosphate을 demethyl-4-deoxygadusol으로 전환하는 효소이다.In the present invention, the term "2-dimethyl 4-deoxygadusol synthase (2-demethyl 4-deoxygadusol synthase)" is an enzyme that converts D-sedoheptulose 7-phosphate into demethyl-4-deoxygadusol.

상기 2-디메틸 4-디옥시가두솔 합성효소(2-demethyl 4-deoxygadusol synthase)를 코딩하는 유전자(DDGS)는 Nostoc punctiforme 유래일 수 있으며, 구체적으로 서열번호 1의 염기서열로 구성된 것일 수 있다. The 2-dimethyl 4-deoxygadusol synthase (DDGS) encoding gene (DDGS) may be derived from Nostoc punctiforme , and specifically may be composed of the nucleotide sequence of SEQ ID NO: 1.

본 발명의 용어 "O-메틸트렌스퍼라제(O-methyltransferase)"는 2-demethyl 4-deoxygadusol를 4-deoxygadusol으로 전환하는 효소이다.The term "O-methyltransferase" of the present invention is an enzyme that converts 2-demethyl 4-deoxygadusol into 4-deoxygadusol.

상기 O-메틸트렌스퍼라제(O-methyltransferase)를 코딩하는 유전자(OMT)는 Nostoc punctiforme 유래일 수 있으며, 서열번호 2의 염기서열로 구성된 것일 수 있다.The O-methyltransferase (O-methyltransferase) encoding gene (OMT) may be derived from Nostoc punctiforme and may be composed of the nucleotide sequence of SEQ ID NO: 2.

본 발명의 용어 "ATP-그라스프 라이가제(ATP-grasp-ligase)"는 4-deoxygadusol을 mycosporine-glycine로 전환하는 효소이다.The term "ATP-grasp-ligase" of the present invention is an enzyme that converts 4-deoxygadusol into mycosporine-glycine.

상기 ATP-그라스프 라이가제(ATP-grasp-ligase)를 코딩하는 유전자는 서열번호 3의 염기서열로 구성된 것일 수 있다. The gene encoding the ATP-grasp-ligase may be composed of the nucleotide sequence of SEQ ID NO: 3.

본 발명의 용어 "D-알라-D-알라 라이가제(D-ala-D-ala ligase)"는 mycosporine-glycine에 세린을 부착시켜 시노린으로 전환하는 효소이다. The term "D-ala-D-ala ligase" of the present invention is an enzyme that attaches serine to mycosporine-glycine and converts it to shinoline.

상기 D-알라-D-알라 라이가제(D-ala-D-ala ligase)를 코딩하는 유전자는 Nostoc punctiforme 유래일 수 있으며, 서열번호 4의 염기서열로 구성된 것일 수 있다.The gene encoding the D-ala-D-ala ligase may be derived from Nostoc punctiforme and may be composed of the nucleotide sequence of SEQ ID NO: 4.

본 발명의 용어 "트랜스케톨라아제(transketolase)"는 D-xylulose-5-P를 sedoheptulose-7-P로 전환하는 효소이다. The term "transketolase" of the present invention is an enzyme that converts D-xylulose-5-P into sedoheptulose-7-P.

본 발명의 일실시예에 따르면, 상기 메탄자화균은, 서열번호 5를 포함하는 트렌스케톨라제(transketolase)를 암호화 하는 tkt1 유전자를 코딩하는 유전자를 더 포함하도록 추가 형질전환된 메탄자화균(Methanotroph)일 수 있다.According to one embodiment of the present invention, the methanotroph is further transformed to further include a gene encoding the tkt1 gene encoding transketolase comprising SEQ ID NO: 5 can be

상기 트랜스케톨라아제(transketolase)를 코딩하는 유전자(tkt1)는 M. alcaliphilum 20Z 유래일 수 있으며, 서열번호 5의 염기서열로 구성된 것일 수 있다.The gene encoding the transketolase ( tkt1 ) is M. alcaliphilum 20Z It may be derived from, and may be composed of the nucleotide sequence of SEQ ID NO: 5.

본 발명의 일실시예에 따르면, 상기 메탄자화균은, 자일로스 대사경로에 관여하는 서열번호 6을 포함하는 자일로스 아이소머라제(xylose isomerase, xylA)를 코딩하는 유전자, 서열번호 7을 포함하는 자일룰로스키나아제(xylulosekinase, xylB)를 코딩하는 유전자 및 서열번호 8을 포함하는 리불로스-포스페이트 3-에피머라제(ribulose-phosphate 3-epimerase, rpe)를 코딩하는 유전자로 추가 형질전환된 메탄자화균(Methanotroph)을 더 포함할 수 있다.According to one embodiment of the present invention, the methanogens contain a gene encoding xylose isomerase (xylA) including SEQ ID NO: 6 involved in the xylose metabolic pathway, and SEQ ID NO: 7 Methane magnetization further transformed with a gene encoding xylulosekinase (xylB) and a gene encoding ribulose-phosphate 3-epimerase (rpe) comprising SEQ ID NO: 8 Methanotrophs may be further included.

본 발명의 용어 "자일로스 아이소머라제(xylose isomerase)"는 D-xylose를 D-xylulose로 전환하는 효소이다.The term "xylose isomerase" of the present invention is an enzyme that converts D-xylose into D-xylulose.

상기 자일로스 아이소머라제(xylose isomerase)를 코딩하는 유전자(xylA)는 E. coli K12 유래일 수 있으며, 서열번호 6의 염기서열로 구성된 것일 수 있다.The gene (xylA) encoding the xylose isomerase may be derived from E. coli K12 and may be composed of the nucleotide sequence of SEQ ID NO: 6.

본 발명의 용어 "자일룰로스키나아제(xylulosekinase)"는 D-xylulose를 D-xylulose 5-phosphate로 전환하는 효소이다.The term "xylulosekinase" of the present invention is an enzyme that converts D-xylulose into D-xylulose 5-phosphate.

상기 자일룰로스키나아제(xylulosekinase)를 코딩하는 유전자(xylB)는 E. coli K12 유래일 수 있으며, 서열번호 7의 염기서열로 구성된 것일 수 있다.The gene (xylB) encoding the xylulosekinase may be derived from E. coli K12 and may be composed of the nucleotide sequence of SEQ ID NO: 7.

본 발명의 용어 "리불로스-포스페이트 3-에피머라제(ribulose-phosphate 3-epimerase)"는 D-xylulose 5-phosphate를 D-ribulose 5-phosphate로 전환하는 효소이다.The term "ribulose-phosphate 3-epimerase" of the present invention is an enzyme that converts D-xylulose 5-phosphate into D-ribulose 5-phosphate.

상기 리불로스-포스페이트 3-에피머라제(ribulose-phosphate 3-epimerase)를 코딩하는 유전자(rep)는 Methylotuvimicrobium alcaliphilum 20Z 유래일 수 있으며, 서열번호 8의 염기서열로 구성된 것일 수 있다.The gene (rep) encoding the ribulose-phosphate 3-epimerase may be derived from Methylotuvimicrobium alcaliphilum 20Z and may be composed of the nucleotide sequence of SEQ ID NO: 8.

본 발명에서 사용되는 용어 “오페론(operon)”은 미생물 유전체 상에서, 구조유전자, 작동유전자, 촉진유전자, 조절유전자 등에 의하여 통일적으로 조절되는 서로 이웃한 유전자 군을 의미한다.The term "operon" used in the present invention refers to a group of adjacent genes that are uniformly regulated by structural genes, operator genes, promoter genes, regulatory genes, and the like, on the microbial genome.

본 발명의 메탄자화균은 시노린를 생산하는 유전자 및 오페론을 특이적으로 발현하는 발현 벡터로 형질전환된 메탄자화균으로서, 상기 발현 벡터는 서열번호 1 내지 서열번호 9를 포함하는 염기서열로 이루어진 핵산, 그와 기능적으로 동등한 절편을 포함한다.The methanogenic bacterium of the present invention is a methanotrophic bacterium transformed with an expression vector specifically expressing a gene and operon producing shinoline, wherein the expression vector is a nucleic acid consisting of a nucleotide sequence including SEQ ID NO: 1 to SEQ ID NO: 9 , which contains fragments functionally equivalent to it.

본 발명의 발현 벡터와 "기능적으로 동등한 절편"은 본 발명의 발현 벡터와 실질적으로 동등한 효과를 나타내는, 서열번호 1로 내지 서열번호 9로 표시되는 염기서열로 이루어진 핵산의 조각 또는 일부분을 의미한다. 이러한 핵산 절편은 서열번호 1 내지 서열번호 9에 기재된 염기서열과 비교하여 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% 또는 그 이상의 서열 상동성을 가지며, 이러한 핵산 절편은 당업계에 널리 알려진 분자생물학적 방법에 의하여 용이하게 제작될 수 있다. 또한, 본 발명의 서열번호 1 내지 서열번호 9로 표시되는 발현 벡터와 일부 유전자 영역은 공개된 시노린 생합성 경로 유전자의 일부를 포함하는 서열로, 서열번호 1 내지 서열번호 9로 표시되는 염기 서열 중 일부가 치환, 삽입 또는 삭제 되더라도 시노린 생합성 경로의 일부 유전자 영역에 위치한 서열과 상동성이 유지되어 실질적으로 동등한 효과를 나타낸다면 본 발명의 범주에 포함될 수 있다. A "functionally equivalent fragment" to the expression vector of the present invention means a fragment or part of a nucleic acid consisting of the nucleotide sequences represented by SEQ ID NO: 1 to SEQ ID NO: 9, which exhibits substantially equivalent effects to the expression vector of the present invention. These nucleic acid fragments are 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94% compared to the nucleotide sequences set forth in SEQ ID NOs: 1 to 9. , 95%, 96%, 97%, 98%, 99% or more sequence homology, and such nucleic acid fragments can be easily prepared by molecular biological methods widely known in the art. In addition, the expression vectors represented by SEQ ID NOs: 1 to SEQ ID NOs: 9 and some gene regions of the present invention are sequences containing some of the disclosed shinorine biosynthetic pathway genes, among the nucleotide sequences represented by SEQ ID NOs: 1 to SEQ ID NO: 9. Even if a part is substituted, inserted, or deleted, it may be included in the scope of the present invention as long as it maintains homology with sequences located in some gene regions of the shinorine biosynthetic pathway and exhibits substantially equivalent effects.

본 발명의 일실시예에 따르면, 상기 메탄자화균은 메틸로마이크로비움 속 미생물인 것을 특징으로 하며, 더욱 상세하게는, 메틸로마이크로비움 알칼리필리움 20Z(Methylomicrbium alcaliphilum 20Z)인 것을 특징으로 하는 메탄자화균(Methanotroph)일 수 있다.According to one embodiment of the present invention, the methanogenic bacteria are characterized in that they are microorganisms of the genus Methylomicrobium, and more specifically, methane, characterized in that Methylomicrobium alcaliphilum 20Z ( Methylomicrbium alcaliphilum 20Z) It may be a methanotroph.

또한, 본 발명은, 상기의 메탄자화균 (Methanotroph) 또는 이의 배양액; 및In addition, the present invention, the above methanogenic bacteria (Methanotroph) or its culture medium; and

메탄 및 자일로스; 또는 메탄올 및 자일로스;로 이루어진 탄소원을 포함하는 시노린(shinorine) 생산용 조성물을 제공한다.methane and xylose; or methanol and xylose; provides a composition for producing shinorine comprising a carbon source consisting of

본 발명에서 사용되는 용어 “배양액”은 미생물이 증식하기에 적합한 요소가 포함된 배지에, 목적 미생물을 종균하여, 일정시간 배양한 후 수득되는 것으로서, 미생물 및 배지를 포함하는 개념이다.The term "culture medium" used in the present invention is obtained after incubating a target microorganism in a medium containing elements suitable for the growth of microorganisms and culturing for a certain period of time, and is a concept including microorganisms and a medium.

본 발명에서 사용되는 용어 “조성물”은 목적 물질을 생산하기 위한 다양한 물질을 혼합한 것으로서, 미생물 배양배지, 탄소원, 미량 원소 및 미생물 종균이 포함된 것을 의미한다. The term “composition” used in the present invention refers to a mixture of various materials for producing a target material, and includes a microbial culture medium, a carbon source, trace elements, and microbial spawn.

본 발명의 일실시예에 따르면, 상기 조성물은 미량원소로 텅스텐, 칼슘 또는 구리를 더 포함하는 것을 특징으로하는 시노린(shinorine) 생산용 조성물일 수 있다.According to one embodiment of the present invention, the composition may be a composition for producing shinorine (shinorine) characterized in that it further comprises tungsten, calcium or copper as trace elements.

본 발명의 일실시예에 따르면, 상기 조성물은 25 내지 50 부피%의 메탄 또는 0.5 내지 2 중량%의 메탄올 및 0.5 내지 2 중량%의 자일로스를 탄소원으로 포함하는 것을 특징으로 하는 시노린(shinorine) 생산용 조성물일 수있다.According to one embodiment of the present invention, the composition comprises 25 to 50% by volume of methane or 0.5 to 2% by weight of methanol and 0.5 to 2% by weight of xylose as a carbon source, Shinorine It may be a production composition.

본 발명의 일실시예에 따르면, 상기 조성물은 미량 원소로 텅스텐을 추가 포함하는 것일 수 있다.According to one embodiment of the present invention, the composition may further include tungsten as a trace element.

또한, 본 발명은, 상기의 메탄자화균을, 메탄 및 자일로스; 또는 메탄올 및 자일로스;가 탄소원으로 포함된 배지에 접종하여 배양하는 단계; In addition, the present invention, methane and xylose; Or methanol and xylose; step of inoculating and culturing in a medium containing as a carbon source;

상기 배양된 배양액에서, 상등액을 회수하는 단계; 및recovering the supernatant from the culture medium; and

회수된 상등액에서 시노린을 수득하는 단계 포함하는, 시노린(shinorine) 생산 방법을 제공한다.It provides a method for producing shinorine, including obtaining shinorine from the recovered supernatant.

이하, 본 발명을 실시예에 의하여 더욱 상세하게 설명한다. 이들 실시예는 단지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail by examples. These examples are merely for explaining the present invention in more detail, and it will be apparent to those skilled in the art that the scope of the present invention is not limited to these examples.

<실험 방법><Experiment method>

(1) 균주 및 플라스미드의 준비 및 배양 조건(1) Preparation of strains and plasmids and culture conditions

본 발명에서 사용한 대장균(대조군) 및 M. alcaliphilum 20Z(실험군) 균주는 하기 표 1에 나타내었으며, 50ml의 영양미네랄염 배지(Nutrient mineral salt medium, NMS medium)가 첨가된 500 ml의 베플 플라스크에 스크류 캡으로 입구가 밀봉된 상태로, 30℃에서 48시간 동안 배양하였다. 탄소원으로는 가스치환기를 이용하여 배양배지의 30 내지 70 부피%로 메탄을 첨가하였으며, 바람직하게는 50 부피%로 첨가된다. 형질전환 균주 SH-XYL-1의 공동 탄소원 제공을 위하여 추가적으로 NMS배지에 1 % (w/v)의 자일로스를 보조기질로 첨가되었다. 형질전환된 균주의 공동영양배양을 위해서 추가적으로 배양배지의 1 중량%의 자일로스가 보조기질로 첨가되었다. 균주의 접종은 초기 흡광도(OD 600nm)이 0.1이 되도록 접종하였다. 모든 배양물은 후속 RNA-시퀀싱 실험을 위한 RNA 추출 및 시퀀싱을 위해 배양되었으며, 배양된 균주는 50 μg/ml의 카나마이신이 포함된 평판 배지에 접종하여, 재조합 플라스미드를 가지는 메탄자화균 및 대장균을 선택하였다.Escherichia coli (control group) and M. alcaliphilum 20Z (experimental group) strains used in the present invention are shown in Table 1 below, and are screwed into a 500 ml baffle flask to which 50 ml of nutrient mineral salt medium (NMS medium) was added. The inlet was sealed with a cap and incubated at 30° C. for 48 hours. As a carbon source, methane was added at 30 to 70% by volume of the culture medium using a gas exchanger, preferably at 50% by volume. To provide a common carbon source for the transformed strain SH-XYL-1, 1% (w/v) xylose was additionally added to the NMS medium as a co-substrate. For the co-trophic culture of the transformed strain, 1% by weight of xylose in the culture medium was additionally added as a supplementary substrate. Inoculation of the strain was inoculated so that the initial absorbance (OD 600nm) was 0.1. All cultures were cultured for RNA extraction and sequencing for subsequent RNA-sequencing experiments, and the cultured strains were inoculated onto a plate medium containing 50 μg/ml kanamycin to select methanotrophs and E. coli with recombinant plasmids did

StrainStrain Characteristic(s)Characteristic(s) Escherichia coli DH5α Escherichia coli DH5α Escherichia coli K12 MG1655 Escherichia coli K12 MG1655 Methylotuvimicrobium alcaliphilum 20Z Methylotuvimicrobium alcaliphilum 20Z Used as host strainUsed as host strain SH-1SH-1 M. alcaliphilum 20Z harboring shr-1 M. alcaliphilum 20Z harboring shr-1 pXYLpXYL M. alcaliphilum 20Z harboring pCM351-XYL M. alcaliphilum 20Z harboring pCM351-XYL SH-XYL-1SH-XYL-1 M. alcaliphilum 20Z pXYL harboring shr-1 M. alcaliphilum 20Z pXYL harboring shr-1 SH-2SH-2 M. alcaliphilum 20Z harboring shr-2 M. alcaliphilum 20Z harboring shr-2 SH-XYL-2SH-XYL-2 M. alcaliphilum 20Z pXYL harboring shr-2 M. alcaliphilum 20Z pXYL harboring shr-2 VectorVector pAWP89pAWP89 oriV oriT trfA ahp dTomato Ptac oriV oriT trfA ahp dTomato P tac pBudK.ppBudK.p pAWP89-based backbone carrying Ptac promoter and 2,3-BDO gene cluster originated from Klebsiella pneumoniae KCTC 2242pAWP89-based backbone carrying Ptac promoter and 2,3-BDO gene cluster originated from Klebsiella pneumoniae KCTC 2242 pXylpXyl pAWP89-based backbone carrying Ptac promoter and xylAB gene cluster originated from Escherichia coli K12 MG1655 and rpe from M. alcaliphilum 20Z pAWP89-based backbone carrying Ptac promoter and xylAB gene cluster originated from Escherichia coli K12 MG1655 and rpe from M. alcaliphilum 20Z pCM351pCM351 ApR, GenR, TcR; broad-host range cre-lox allelic exchange vectorAp R , Gen R , Tc R ; broad-host range cre-lox allelic exchange vector pCM351-glgApCM351-glgA pCM351 containing flanks for knockout glgA1 pCM351 containing flanks for knockout glgA1 pCM351-XYLpCM351-XYL pCM351-glgA containing construct for integration of Ptac-xylAB-rpepCM351-glgA containing construct for integration of Ptac- xylAB -rpe coex413-NpR4coex413-NpR4 CEN / ARS plasmid, HIS3, PTEF1-NpR5597-TGPM1,PTDH3-NpR5600-TCYC1, PTEF1-NpR5598-TGPM1, PTDH3-NpR5599-TCYC1 CEN/ARS plasmid, HIS3 , P TEF1 -NpR5597-T GPM1 , P TDH3 -NpR5600-T CYC1 , P TEF1 -NpR5598-T GPM1 , P TDH3 -NpR5599-T CYC1 pET-28a(+)pET-28a(+) Expression vector with N-terminal His-tagExpression vector with N-terminal His-tag pET-28a-NpR5600pET-28a-NpR5600 pET-28a containing NpR5600pET-28a containing NpR5600 pET-28a-NpR5600-NpR5599pET-28a-NpR5600-NpR5599 pET-28a containing NpR5600 and NpR5599pET-28a containing NpR5600 and NpR5599 pET-28a-NpR5600-NpR5599-NpR5598pET-28a-NpR5600-NpR5599-NpR5598 pET-28a containing NpR5600- NpR5599-NpR5598pET-28a containing NpR5600- NpR5599-NpR5598 pET-28a-NpR5600-NpR5599-NpR5598-NpR5597pET-28a-NpR5600-NpR5599-NpR5598-NpR5597 pET-28a containing NpR5600-NpR5599-NpR5598-NpR5597pET-28a containing NpR5600-NpR5599-NpR5598-NpR5597 pET-28a-NpR5600-NpR5599-NpR5598-NpR5597-TKTpET-28a-NpR5600-NpR5599-NpR5598-NpR5597-TKT pET-28a containing NpR5600-NpR5599-NpR5598-NpR5597-TKTpET-28a containing NpR5600-NpR5599-NpR5598-NpR5597-TKT shr-1shr-1 pAWP89-based backbone carrying Ptac promoter and NpR5600-NpR5599-NpR5598-NpR5597-TKTpAWP89-based backbone carrying Ptac promoter and NpR5600 -NpR5599-NpR5598-NpR5597-TKT pET-28a-NpR5600-RBS-NpR5599pET-28a-NpR5600-RBS-NpR5599 pET-28a containing NpR5600 and NpR5599 with synthetic RBSpET-28a containing NpR5600 and NpR5599 with synthetic RBS pET-28a-NpR5600-RBS-NpR5599-RBS-NpR5598pET-28a-NpR5600-RBS-NpR5599-RBS-NpR5598 pET-28a containing NpR5600 and NpR5599-NpR5598 with synthetic RBSpET-28a containing NpR5600 and NpR5599-NpR5598 with synthetic RBS pET-28a-NpR5600-RBS-NpR5599-RBS-NpR5598-RBS-NpR5597pET-28a-NpR5600-RBS-NpR5599-RBS-NpR5598-RBS-NpR5597 pET-28a containing NpR5600 and NpR5599-NpR5598-NpR5597 with synthetic RBSpET-28a containing NpR5600 and NpR5599-NpR5598-NpR5597 with synthetic RBS pET-28a-NpR5600-RBS-NpR5599-RBS-NpR5598-RBS-NpR5597-RBS-TKTpET-28a-NpR5600-RBS-NpR5599-RBS-NpR5598-RBS-NpR5597-RBS-TKT pET-28a containing NpR5600 and NpR5599-NpR5598-NpR5597-TKT with synthetic RBSpET-28a containing NpR5600 and NpR5599-NpR5598-NpR5597-TKT with synthetic RBS shr-2shr-2 pAWP89-based backbone carrying Ptac promoter and NpR5600-NpR5599-NpR5598-NpR5597-TKT with synthetic RBSpAWP89-based backbone carrying Ptac promoter and NpR5600 -NpR5599-NpR5598-NpR5597-TKT with synthetic RBS

본 발명의 모든 플라스미드는 Gison 어셈블리를 사용하여 제작하였다. 발현 벡터 및 녹아웃 벡터의 구축에 사용된 프라이머는 하기 표 2에 나타내었다.All plasmids of the present invention were constructed using Gison assembly. Primers used to construct expression vectors and knockout vectors are shown in Table 2 below.

PrimerPrimer SequenceSequence DescriptionDescription pAWP89-ForpAWP89-For TAGTTGTCGGGAAGATGCGTTAGTTGTCGGGAAGATGCGT For amplifying pAWP89 backbone which contained Ptac promoter and SD sequenceFor amplifying pAWP89 backbone which contained P tac promoter and SD sequence pAWP89-RevpAWP89-Rev AGCTGTTTCCTGTGTGAATAAGCTGTTTCCTGTGTGAATA xylAB-For-89xylAB-For-89 ttcacacaggaaacagctATGCAAGCCTATTTTGACCAGCttcacacaggaaacagctATGCAAGCCTATTTTGACCAGC For amplifying xylAB gene cluster from E. coli K12 MG1655 and rpe from Methylotuvimicrobium alcaliphilum 20Z then PCR products were ligated into pAWP89 backbone to construct pXyl.For amplifying xylAB gene cluster from E. coli K12 MG1655 and rpe from Methylotuvimicrobium alcaliphilum 20Z then PCR products were ligated into pAWP89 backbone to construct pXyl. xylAB-Rev-InvertxylAB-Rev-Invert TTACGCCATTAATGGCAGAAGTTTACGCCATTAATGGCAGAAGT RPE-ForRPE-For CTGCCATTAATGGCGTAAAAGGAGATATACATGGCCCAAAACTGGATAGCTCTGCCATTAATGGCGTAAAAGGAGATATACATGGCCCAAAACTGGATAGCT RPE-RevRPE-Rev gcatcttcccgacaactaTTACTCGGCTTTTGCAATTTCCGgcatcttcccgacaactaTTACTCGGCTTTTGCAATTTCCG glgA1-ForglgA1-For acctgacgtctagatctgCTACCCGGCACTTCACCAATacctgacgtctagatctgCTACCCGGCACTTCACCAAT For amplifying flanks to knockout glgA1 to construct pCM351-glgAFor amplifying flanks to knockout glgA1 to construct pCM351-glgA glgA1-RevglgA1-Rev gtaccaattgtacagctgGATCCGCCAAAGCCTTAGGTgtaccaattgtacagctgGATCCGCCAAAAGCCTTAGGT glgA2-ForglgA2-For cgtgttaaccggtgagctCTGTCGTCGATGCTCTACCCcgtgttaaccggtgagctCTGTCGTCGATGCTCTACCC glgA2-RevglgA2-Rev tggatcctctagtgagctTAGCGTTAGGAGAGGGACCCtggatcctctagtgagctTAGCGTTAGGAGAGGGACCC pTac- Integration-ForpTac-Integration-For CTCTGAAATGAGCTGTTGACACTCTGAAATGAGCTGTTGACA For amplifying xylAB gene cluster from E. coli K12 MG1655 and rpe from M. alcaliphilum 20Z from pXyl plasmid then PCR products were ligated into lineared pCM351-glgA to construct pCM351-XYLFor amplifying xylAB gene cluster from E. coli K12 MG1655 and rpe from M. alcaliphilum 20Z from pXyl plasmid then PCR products were ligated into lineared pCM351-glgA to construct pCM351-XYL RPE-Invert-RevRPE-Invert-Rev TTACTCGGCTTTTGCAATTTCCGTTACTCGGCTTTTGCAATTTCCG GenR-ForGenR-For ATTGCAAAAGCCGAGTAAATATGGCGGCCGCATAACTTATTGCAAAAGCCGAGTAAATATGGCGGCCGCATAACTT pCM351-Inver-RevpCM351-Inver-Rev GTCAACAGCTCATTTCAGAGGCATCCATGGTACCAATTGTGTCAACAGCTCATTTCAGAGGCATCCATGGTACCAATTGT NpR_5600_BamHI-ForNpR_5600_BamHI-For gacagcaaatgggtcgcgATGAGTAATGTTCAAGCATCGTgacagcaaatgggtcgcgATGAGTAATGTTCAAGCATCGT For amplifying NpR5600 from coex413-NpR4 and then ligated to pET28, resulting in pET-28a-NpR5600For amplifying NpR5600 from coex413-NpR4 and then ligated to pET28, resulting in pET-28a-NpR5600 NpR_5600_BamHI-RevNpR_5600_BamHI-Rev cgacggagctcgaattcgTCACACTCCCAATAGTTTGGAcgacggagctcgaattcgTCACACTCCCAATAGTTTGGA NpR_5599_SacI-ForNpR_5599_SacI-For gtgtgacgaattcgagctTTCACACAGGAAACAGCTATGACCAGTATTTTAGGACGAGAgtgtgacgaattcgagctTTCACACAGGAAACAGCTATGACCAGTATTTTAGGACGAGA For amplifying NpR5599 from coex413-NpR4 and then ligated to pET-28a-NpR5600, resulting in pET-28a-NpR5600-NpR5599For amplifying NpR5599 from coex413-NpR4 and then ligated to pET-28a-NpR5600, resulting in pET-28a-NpR5600-NpR5599 NpR_5599_SacI-RevNpR_5599_SacI-Rev aagcttgtcgacggagctTTATACCAAGCGTCTAATCAGGGTaagcttgtcgacggagctTTATACCAAGCGTCTAATCAGGGT NPR_5598_SalI_ForNPR_5598_SalI_For gcttggtataaagctccgTTCACACAGGAAACAGCTATGGCACAATCAATCTCTTTgcttggtataaagctccgTTCACACAGGAAACAGCTATGGCACAATCAATCTCTTT For amplifying NpR5598 from coex413-NpR4 and then ligated to pET-28a-NpR5600- NpR5599, resulting in pET-28a-NpR5600-NpR5599- NpR5598For amplifying NpR5598 from coex413-NpR4 and then ligated to pET-28a-NpR5600- NpR5599, resulting in pET-28a-NpR5600-NpR5599- NpR5598 NPR_5598_SalI_RevNPR_5598_SalI_Rev agtgcggccgcaagcttgTTAGTCGCCCCCTAATTCCACagtgcggccgcaagcttgTTAGTCGCCCCCTAATTCCAC NPR_5597_HindIII_ForNPR_5597_HindIII_For attagggggcgactaacaTTCACACAGGAAACAGCTATGCCAGTACTTAATATCCTTCAattagggggcgactaacaTTCACACAGGAAACAGCTATGCCAGTACTTAATATCCTTCA For amplifying NpR5597 from coex413-NpR4 and then ligated to pET-28a-NpR5600-NpR5599-NpR5598, resulting in pET-28a-NpR5600-NpR5599-NpR5598- NpR5597For amplifying NpR5597 from coex413-NpR4 and then ligated to pET-28a-NpR5600-NpR5599-NpR5598, resulting in pET-28a-NpR5600-NpR5599-NpR5598- NpR5597 NPR_5597_HindIII_RevNPR_5597_HindIII_Rev tgctcgagtgcggccgcaTCAATTTTGTAACACCTTTTTtgctcgagtgcggccgcaTCAATTTTGTAACACCTTTTT TKT_20Z_NotI_ForTKT_20Z_NotI_For ggtgttacaaaattgatgcTTCACACAGGAAACAGCTATGCCTTCGCGCCGAGggtgttacaaaattgatgcTTCACACAGGAAACAGCTATGCCTTCGCGCCGAG For amplifying TKT from M. alcaliphilum 20Z and then ligated to pET-28a-NpR5600-NpR5599-NpR5598-NpR5597, resulting in pET-28a-NpR5600-NpR5599-NpR5598-NpR5597-TKTFor amplifying TKT from M. alcaliphilum 20Z and then ligated to pET-28a-NpR5600-NpR5599-NpR5598-NpR5597, resulting in pET-28a-NpR5600-NpR5599-NpR5598-NpR5597-TKT TKT_20Z_NotI_RevTKT_20Z_NotI_Rev gtggtggtgctcgagtgcTTAAAGCAGAGCTTCGACGTGgtggtggtgctcgagtgcTTAAGCAGAGCTTCGACGTG NPR5600-89-ForNPR5600-89-For ttcacacaggaaacagctATGAGTAATGTTCAAGCATCGTttcacacaggaaacagctATGAGTAATGTTCAAGCATCGT For amplifying NpR operon and TKT from pET-28a-NpR5600-NpR5599-NpR5598-NpR5597-TKT then ligated to linear pAWP89, resulting in shr-1 vectorFor amplifying NpR operon and TKT from pET-28a-NpR5600-NpR5599-NpR5598-NpR5597-TKT then ligated to linear pAWP89, resulting in shr-1 vector TKT-20Z-89-RevTKT-20Z-89-Rev gcatcttcccgacaactaTTAAAGCAGAGCTTCGACGTGgcatcttcccgacaactaTTAAAGCAGAGCTTCGACGTG NPR_5599_SacI-65K-ForNPR_5599_SacI-65K-For gtgtgacgaattcgagctCCTAGCTGTAAGAAGGAGGTTTTTG
ATGACCAGTATTTTAGGACGAGA
gtgtgacgaattcgagctCCTAGCTGTAAGAAGGAGGTTTTTG
ATGACCAGTATTTTAGGACGAGA
For amplifying NpR5599 from coex413-NpR4 and then ligated to pET-28a-NpR5600, resulting in pET-28a-NpR5600-RBS-NpR5599For amplifying NpR5599 from coex413-NpR4 and then ligated to pET-28a-NpR5600, resulting in pET-28a-NpR5600-RBS-NpR5599
NpR_5599_SacI-RevNpR_5599_SacI-Rev aagcttgtcgacggagctTTATACCAAGCGTCTAATCAGGGTaagcttgtcgacggagctTTATACCAAGCGTCTAATCAGGGT NPR_5598_SalI_46K_ForNPR_5598_SalI_46K_For gcttggtataaagctccgCGACACTATTTCTAAGGCACTTTTT
ATGGCACAATCAATCTCTTT
gcttggtataaagctccgCGACACTATTTTCTAAGGCACTTTTT
ATGGCACAATCAATCTCTTT
For amplifying NpR5598 from coex413-NpR4 and then ligated to pET-28a-NpR5600-RBS-NpR5599, resulting in pET-28a-NpR5600-RBS-NpR5599-RBS-NpR5598For amplifying NpR5598 from coex413-NpR4 and then ligated to pET-28a-NpR5600-RBS-NpR5599, resulting in pET-28a-NpR5600-RBS-NpR5599-RBS-NpR5598
NPR_5598_SalI_RevNPR_5598_SalI_Rev agtgcggccgcaagcttgTTAGTCGCCCCCTAATTCCACagtgcggccgcaagcttgTTAGTCGCCCCCTAATTCCAC NPR_5597_HindIII_7K_ForNPR_5597_HindIII_7K_For attagggggcgactaacaAGCATCAGAACAAGGAGCTTCTTTT
ATGCCAGTACTTAATATCCTTCA
attagggggcgactaacaAGCATCAGAACAAGGAGCTTCTTTT
ATGCCAGTACTTAATATCCTTCA
For amplifying NpR5597 from coex413-NpR4 and then ligated to pET-28a-NpR5600-RBS-NpR5599-RBS-NpR5598, resulting in pET-28a-NpR5600-RBS-NpR5599-RBS-NpR5598-RBS-NpR5597For amplifying NpR5597 from coex413-NpR4 and then ligated to pET-28a-NpR5600-RBS-NpR5599-RBS-NpR5598, resulting in pET-28a-NpR5600-RBS-NpR5599-RBS-NpR5598-RBS-NpR5597
NPR_5597_HindIII_RevNPR_5597_HindIII_Rev tgctcgagtgcggccgcaTCAATTTTGTAACACCTTTTTtgctcgagtgcggccgcaTCAATTTTGTAACACCTTTTT TKT_20Z_NotI_67K_ForTKT_20Z_NotI_67K_For ggtgttacaaaattgatgcTCCTACGGGAAATAAGGAGGTCTTT
ATGCCTTCGCGCCGAG
ggtgttacaaaattgatgcTCCTACGGGAAATAAGGAGGTCTTT
ATGCCTTCGCGCCGAG
For amplifying TKT from M. alcaliphilum 20Z and then ligated to pET-28a-NpR5600-RBS-NpR5599-RBS-NpR5598-RBS-NpR5597, resulting in pET-28a-NpR5600-RBS-NpR5599-RBS-NpR5598-RBS NpR5597-RBS-TKTFor amplifying TKT from M. alcaliphilum 20Z and then ligated to pET-28a-NpR5600-RBS-NpR5599-RBS-NpR5598-RBS-NpR5597, resulting in pET-28a-NpR5600-RBS-NpR5599-RBS-NpR5598-RBS NpR5597-RBS -TKT
TKT_20Z_NotI_RevTKT_20Z_NotI_Rev gtggtggtgctcgagtgcTTAAAGCAGAGCTTCGACGTGgtggtggtgctcgagtgcTTAAGCAGAGCTTCGACGTG Invert-pTac-89-RevInvert-pTac-89-Rev TCCACACATTATACGAGCCGTCCACACATTATACGAGCCG For amplifying pAWP89 backbone which contained Ptac promoterFor amplifying pAWP89 backbone which contained Ptac promoter pAWP89-RevpAWP89-Rev AGCTGTTTCCTGTGTGAATAAGCTGTTTCCTGTGTGAATA NPR5600-89-52K-ForNPR5600-89-52K-For gctcgtataatgtgtggaGTGGATAGAGTCAGGAGGTTATAGG
ATGAGTAATGTTCAAGCATCGT
gctcgtataatgtgtggaGTGGATAGAGTCAGGAGGTTATAGG
ATGAGTAATGTTCAAGCATCGT
For amplifying NpR operon and TKT with synthetic RBS from pET-28a-NpR5600-RBS-NpR5599-RBS-NpR5598-RBS-NpR5597-RBS-TKT then ligated to linear pAWP89, resulting in shr-2 vectorFor amplifying NpR operon and TKT with synthetic RBS from pET-28a-NpR5600-RBS-NpR5599-RBS-NpR5598-RBS-NpR5597-RBS-TKT then ligated to linear pAWP89, resulting in shr-2 vector
TKT-20Z-89-RevTKT-20Z-89-Rev gcatcttcccgacaactaTTAAAGCAGAGCTTCGACGTGgcatcttcccgacaactaTTAAAGCAGAGCTTCGACGTG TesB-89-RevTesB-89-Rev gcttgtcgacggagctcgTTAATTGTGATTACGCATCACCCCgcttgtcgacggagctcgTTAATTGTGATTACGCATCACCCC

M. alcalilphilum 20Z, 대장균 K12 MG1655 및 R. eutropha H16의 전장 DNA는 Wizard Genomic DNA Purification Kit (Promega, 미국)으로 분리되었다. Gibson 어셈블리에 사용된 마스터 믹스는 NEB(Hitchin, 영국)에서 구입하여 사용하였다. PCR반응을 위한 중합효소는 Lamp Pfu polymerase(BioFACT, 대전)를 구입하여 사용하였다.Full length DNA of M. alcalilphilum 20Z, Escherichia coli K12 MG1655 and R. eutropha H16 were isolated with the Wizard Genomic DNA Purification Kit (Promega, USA). The master mix used for Gibson assembly was purchased from NEB (Hitchin, UK) and used. A polymerase for the PCR reaction was purchased and used Lamp Pfu polymerase (BioFACT, Daejeon).

유전자 서열 분석 후 오페론 계산기v2.1을 사용하여 오페론을 디자인 하였으며, 5‘ 비 번역 영역 및 각각의 단백질-코딩 서열의 시작은 RBS 계산기 비례 척도에 의해 100,000의 실험에서도 높은 번역 속도 및 용량을 가지도록 유전자단을 공동 최적화 하였다. NpR 오페론 및 TKT에 대한 최적화된 리보솜 결합 부위 및 단백질-코딩 서열은 Ptac 프로모터에 의해 구동되도록 하나의 박테리아 오페론으로 조립하였다.After gene sequence analysis, the operon was designed using Operon Calculator v2.1, and the 5' untranslated region and the beginning of each protein-coding sequence were determined to have high translation rate and capacity even in 100,000 experiments by the RBS Calculator proportional scale. Gene clusters were co-optimized. Optimized ribosome binding sites and protein-coding sequences for the NpR operon and TKT were assembled into one bacterial operon driven by the Ptac promoter.

(2). (2). M. alcaliphlumM. alcaliphlum 20Z의 전기천공법 기반 유전자 조작 방법 20Z's electroporation-based genetic manipulation method

M. alcaliphlum 20Z은 전기천공법 기반 유전자 조작 방법으로 조작하였다. 간단히는, 50 ml의 배양액을 1% 메탄올이 있는 조건에서 0.4 내지 0.6의 흡광도(600 nm)를 가질 때 까지 배양하였다. 배양된 세포는 5000 × g, 4 ℃에서 10 분간 원심분리 한 후, 50 ml 냉수로 재현탁시켜 세포를 수득하였다. 상기 수득된 세포를 냉수로 2회 추가 세척 하였다. 수득된 세포 펠릿은 100μL 멸균 증류수로 재현탁 시켰다. 50μL의 세포 현탁액을 500ng 의 DNA와 부드럽게 혼합하고, 혼합물을 1 mm 빙냉 갭 cuvette (Bio-Rad)으로 옮겼다. Gene Pulser Xcell ™ 전기 천공 시스템 (Bio-Rad)을 사용하여 1.3kV, 25μF 및 200Ω에서 전기 천공을 수행 하였다. 전기 천공 후 즉시, 1ml의 NMS를 세포에 첨가 한 다음, 세포 회수를 위해 0.1 % 메탄올을 함유하는 180ml 혈청 bottle에서 10ml NMS 배지로 옮겼다. 30℃에서 밤새 진탕배양 한 후, 세포를 5000 × g에서 10 분 동안 실온에서 원심 분리하고, 고체 선택배지에 평판 도말하였다. M. alcaliphlum 20Z was engineered using an electroporation-based genetic engineering method. Briefly, 50 ml of the culture was incubated in the presence of 1% methanol until it had an absorbance of 0.4 to 0.6 (600 nm). The cultured cells were centrifuged at 5000 × g at 4° C. for 10 minutes, and then resuspended in 50 ml of cold water to obtain cells. The cells obtained above were further washed twice with cold water. The obtained cell pellet was resuspended in 100 μL sterile distilled water. 50 μL of the cell suspension was gently mixed with 500 ng of DNA, and the mixture was transferred to a 1 mm ice-cold gap cuvette (Bio-Rad). Electroporation was performed at 1.3 kV, 25 μF and 200 Ω using a Gene Pulser Xcell™ Electroporation System (Bio-Rad). Immediately after electroporation, 1 ml of NMS was added to the cells and then transferred to 10 ml NMS medium in a 180 ml serum bottle containing 0.1% methanol for cell recovery. After overnight shaking at 30° C., the cells were centrifuged at 5000 × g for 10 min at room temperature and plated on a solid selective medium.

(3). 총 RNA 분리 및 시퀀싱(3). Total RNA isolation and sequencing

염기서열 라이브러리 제조를 위해, 지수기의 5 ml 미생물 배양액을 이용하였다. 세균 RNA protect(Qiagen, 독일)로 총 RNA를 안정화시킨 다음, RNeasy Mini kit(Qiagen)을 사용하여 추출하였다. 총 RNA 서열 분석은 Illumina Hiseq-2000 플랫폼(Macrogen, 한국)으로 수행하였다.For preparation of the sequencing library, 5 ml of exponential phase microbial culture was used. Total RNA was stabilized with bacterial RNA protect (Qiagen, Germany) and extracted using RNeasy Mini kit (Qiagen). Total RNA sequencing was performed with the Illumina Hiseq-2000 platform (Macrogen, Korea).

(4). 차별적 발현 유전자의 계산(4). Calculation of differentially expressed genes

원시 서열 데이터 품질은 공지된 기술에 기반하여, FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc)로 검사하였다. 시퀀싱 판독은 M. alcaliphilum 20Z의 염기서열에서 맵핑하였으며, Bowtie toolbox는 다른 기본옵션과 함께 3’끝에서부터 3 bp의 염기를 추가하여 최대 삽입 크기가 1000bp이고 최대 불일치가 2개일 때 사용되었다. 서열 정렬맵은 SAMTools (http://samtools.sourceforge.net)로 정렬되어 맵(BAM) 파일로 변환되었다. 정령된 맵 파일은 Cufflinks 및 Cuffdiff31에 입력하여, 각각 FPKM(엑손 당 백만 조조각 당 킬로베이스) 및 차등발현되는 DNA단편을 계산하였으며, log2-배수의 변화가 1.0이상의 차등 발현 및 오차 발견률이 0.01 이하의 유전자를 차등 발현되는 것으로 간주하였다.Raw sequence data quality was checked with FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc), based on known techniques. Sequencing reads were mapped from the base sequence of M. alcaliphilum 20Z, and Bowtie toolbox was used with other default options, adding 3 bp of bases from the 3' end for a maximum insert size of 1000 bp and a maximum mismatch of 2. Sequence alignment maps were aligned with SAMTools (http://samtools.sourceforge.net) and converted into map (BAM) files. The ordered map file was input to Cufflinks and Cuffdiff31, and FPKM (kilobase per million fragments per exon) and differentially expressed DNA fragments were calculated, respectively, and differential expression with a log2-fold change of 1.0 or more and an error detection rate of 0.01 The following genes were considered to be differentially expressed.

(5). FBA 분석 및 Markov Chin Monte Carlo(MCMC) 샘플링을 통한 in silico 대사 플럭스의 계산(5). Calculation of in silico metabolic fluxes by FBA analysis and Markov Chin Monte Carlo (MCMC) sampling

In silico 대사 플럭스를 계산하기 위하여, M. alcaliphilum 지놈-규모 모델 iJO136618, iMM90419, iIA40712 및 COBRApy32를 사용하여 FBA 분석 및 MCMC 샘플링을 수행하였다. 상기의 각각의 모델에서 반응에 대한 플럭스 분포는 MCMC sample를 사용하여 확인하였다. 탄소원 (메탄 및 메탄올)에 대한 흡수 속도는 각각 11.7mmol/gDCW/h 및 22mmol/gDCW/h로 모델이 제한되었다. 포도당의 모델링은 10 mmol/g DCW/h의 흡수 속도로 제한하였으며, 바이오 매스 목적 함수(BOF)는 FBA에 의하여 계산될 때 최적 성장 속도의 95%로 하한 설정하여 계산하였다. 따라서, MCMC sampling 방법에 의한 플럭스 분포는 차선적 플럭스로 표현하였다. 실행 가능한 플럭스가 100,000인 opt Gp Sampler 샘플링 알고리즘을 수행하여, BOF에 대한 평균 플럭스 값을 정규화 한 후, 각각의 반응에 대한 플럭스 값을 추가 분석에 사용하였다.To calculate the in silico metabolic fluxes, FBA analysis and MCMC sampling were performed using the M. alcaliphilum genome-scale models iJO136618, iMM90419, iIA40712 and COBRApy32. The flux distribution for the reaction in each of the above models was confirmed using MCMC samples. The uptake rates for the carbon sources (methane and methanol) were model-limited to 11.7 mmol/gDCW/h and 22 mmol/gDCW/h, respectively. The modeling of glucose was limited to an uptake rate of 10 mmol/g DCW/h, and the biomass objective function (BOF) was calculated by setting the lower limit to 95% of the optimal growth rate when calculated by FBA. Therefore, the flux distribution by the MCMC sampling method was expressed as suboptimal flux. After normalizing the average flux values for BOF by performing the opt Gp Sampler sampling algorithm with a viable flux of 100,000, the flux values for each reaction were used for further analysis.

(6)분석 방법(6) Analysis method

자일로스, 포름산 및 아세트산, 2,3-BDO, 아세톤 및 3HB의 농도는, 세포 배양액을 원심분리 한 후 상층액을 0.2μm의 시린지 필터로 여과하여 측정 하였다. 자일로스, 포름산 및 아세트산, 2,3-BDO, 아세톤 및 3HB는 Aminex HPX-87H 유기산 컬럼(Bio-Rad, 미국)을 이용하여 고성능 액체 크로마토그래피(high-perfomance liquid chromatograph, HPLC)와 굴절율 검출기로 분석하였다. 이동상으로는 0.005 M의 황산을 이용하였으며, 60℃에서 분당 0.6ml의 유속으로 분석하였다. 3HB는 초기 이동상의 유속을 0.55 ml/분으로 설정하고, 12분 동안 0.8 ml/분으로 유속을 증가시켰으며, 이후 8분동안 유지시켰으며, 컬럼 온도는 35℃로 유지시켜 측정하였다. 시노린은 세포 배양액을 원심분리한 후 여과된 상층액을 이용하여 분석하였으며, HPLC 시노린 표준곡선(CJcheilJedang, BIO Research Institute)과 비교하여 정량화 하였다. 또한, 시노린을 분석하기 위해서, 원심분리 후 얻어진 세포 펠렛에 1ml의 물을 첨가한 후, 1.5 ml의 클로로포름을 첨가하고 3분간 볼텍싱하여 세포를 파괴시켰다. 세포파쇄후 층 분리가 일어나면, 물에 용해된 층을 취득하여 세포내 시노린 농도를 정량화 하였다. 시노린 분석은 Agilent Eclopse XDB-C18 컬럼(5 μm, 4.6 x 250 mm)을 사용하여, HPLC 분석하였으며, 이동상으로는 물과 아세토니트릴이 95 : 5 중량비로 혼합된 용액을 40℃의 컬럼 온도에서, 분당 0.5 ml의 유속으로 분석하였으며, 334nm의 UV detector을 사용하여 검출하였다.The concentrations of xylose, formic acid and acetic acid, 2,3-BDO, acetone and 3HB were measured by centrifuging the cell culture medium and filtering the supernatant through a 0.2 μm syringe filter. Xylose, formic acid and acetic acid, 2,3-BDO, acetone and 3HB were analyzed by high-performance liquid chromatography (HPLC) and refractive index detector using an Aminex HPX-87H organic acid column (Bio-Rad, USA). analyzed. As a mobile phase, 0.005 M sulfuric acid was used, and analysis was performed at a flow rate of 0.6 ml per minute at 60 °C. 3HB was measured by setting the flow rate of the initial mobile phase to 0.55 ml/min, increasing the flow rate to 0.8 ml/min for 12 minutes, maintaining the flow rate for 8 minutes, and maintaining the column temperature at 35°C. Shinorine was analyzed using the filtered supernatant after centrifuging the cell culture medium, and quantified by comparison with the HPLC shinoline standard curve (CJcheilJedang, BIO Research Institute). In addition, in order to analyze shinoline, after adding 1 ml of water to the cell pellet obtained after centrifugation, 1.5 ml of chloroform was added and vortexed for 3 minutes to destroy the cells. When layer separation occurred after cell disruption, the layer dissolved in water was obtained to quantify intracellular shinoline concentration. The shinoline analysis was performed by HPLC using an Agilent Eclopse XDB-C18 column (5 μm, 4.6 x 250 mm), and as a mobile phase, a solution of water and acetonitrile mixed in a weight ratio of 95: 5 at a column temperature of 40 ° C. It was analyzed at a flow rate of 0.5 ml per minute and detected using a 334 nm UV detector.

(7) Cluster of orthologous group(COG) 기능 강화(7) Enhancement of cluster of orthologous group (COG) function

본 발명에서, 차별 발현을 보이는 유전자들은 cluster of orthologous group(COG)의 분류에 따라 분류 하였다. 유전자 COG 범주의 기능 강화는 하이퍼지노메트릭(hypergenometric)테스트로 분석 하여 결정하였으며, P 값이 0.05 이하일 때 유의한 것으로 간주하였다.In the present invention, genes showing differential expression were classified according to cluster of orthologous group (COG). The functional enhancement of the gene COG category was determined by analysis with a hypergenometric test, and it was considered significant when the P value was 0.05 or less.

실험예 1. 메탄자화균 유형 1에서의 RuMP 경로 도입의 생산 효율 확인Experimental Example 1. Confirmation of production efficiency of introduction of RuMP pathway in methane magnetizing bacteria type 1

M. alcaliphilum 20Z와 같은 type I 메탄자화균은 메탄 또는 메탄올을 포함하는 C1 탄소원만에서 성장할 수 있다. M. alcaliphilum 20Z iIA40712의 게놈-규모 모델을 사용한 대사 플럭스 분석를 사용하여 메탄 및 메탄올 성장 배지에서 M. alcaliphilum 20Z의 핵심 대사 경로가주로 RuMP 경로를 통해 과당-6-인산염 (F6P)으로 흐르는 것으로 예측되었다(도 1). 탄소원 흡수율이 메탄에 대해 ~ 11.7mmol/gDCW/h, 메탄올에 대해 ~ 22mmol/gDCW/h로 설정될 때, 메탄 및 메탄올에 각각 대해 94.2 % 및 65 % 탄소 플럭스가 RuMP 사이클로 공급되었다. 이 주요 탄소 흐름 제어 노드에는 산화 및 비 산화 RuMP를 포함한 대사 경로와 Embden-Meyerhof-Parnas, Entner-Doudoroff 및 포스 포 케톨 라제 경로를 포함한 여러 개의 상호 연결된 지점이 있으며, F6P의 많은 부분 (~ 75 %)이 리보로스 -5- 포스페이트 (Ru5P)의 재생을 위해 비산 화성 RuMP로 들어가고, 이후 포름알데히드 고정에 사용된다(도 1). M. alcaliphilum 20Z에서 비 산화 RuMP 경로의 높은 전사 수준, 단백질 및 대사산물 풀은 이러한 결과를 뒷받침해 준다(도 2).Type I methanotrophs such as M. alcaliphilum 20Z can grow only on C1 carbon sources including methane or methanol. Metabolic flux analysis using a genome-scale model of M. alcaliphilum 20Z iIA40712 predicted that the key metabolic pathway of M. alcaliphilum 20Z in methane and methanol growth media mainly flows to fructose-6-phosphate (F6P) via the RuMP pathway (Fig. 1). When the carbon source uptake rates were set to ~11.7 mmol/gDCW/h for methane and ~22 mmol/gDCW/h for methanol, 94.2% and 65% carbon fluxes were fed to the RuMP cycle for methane and methanol, respectively. This major carbon flow control node has several interconnected branches, including metabolic pathways, including oxidative and non-oxidative RuMPs, and the Embden-Meyerhof-Parnas, Entner-Doudoroff, and phosphoketolase pathways, which account for a large portion of F6P (~75%). ) into non-oxidative RuMP for regeneration of ribose-5-phosphate (Ru5P), which is then used for formaldehyde fixation (Fig. 1). The high transcript levels, protein and metabolite pools of the non-oxidative RuMP pathway in M. alcaliphilum 20Z support these results (Fig. 2).

대장균 및 사카로마이세스 세레비지애 (Saccharomyces cerevisiae)와 같은 산업 균주에서, 오탄당 인산경로의 산화지점의 활성이 높아 포도당 6-포스페이트를 이산화탄소, Ru5P 및 NADPH로 전환한다. 이러한 미생물에서 탄소 플럭스가 어떻게 조절되는지 알아보고자, 포도당을 탄소원으로 사용하여 성장 조건하에서 E. coli, iJO1366 모델 및 S. cerevisiae, iMM90419 게놈 규모 대사 플럭스 상태를 플럭스 밸런스 분석을 통해 예측하였다. Ru5P는 산화성 PPP로부터 유래된 것으로 보였으며 글루코네이트가 6-포스포글루코네이트 디하이드로게나제를 통해 Ru5P에서 전환 될 때 CO2 형태의 하나의 탄소 손실과 함께 작은 부분만이 비산 화성 PPP를 향한 것으로 나타났다. 포도당 흡수율이 ~ 10 mmol/gDCW/h로 설정되었을 때, 15 % 및 2.63 %의 탄소 플럭스 만이 대장균 및 S. cerevisiae에서 각각 비산화성 PPP에 유입되었다(도 1 및 도 2). M. alcaliphilum 20Z에서 비 산화 RuMP주기의 높은 플럭스를 가지며, 비 산화 RuMP주기의 중간체로부터 유래된 생성물은 M. alcaliphilum 20Z 및 type I 메탄자화균에서의 가장 유망한 대사 공학 후보군이다.In industrial strains such as Escherichia coli and Saccharomyces cerevisiae, the oxidation site of the pentose phosphate pathway is highly active, converting glucose 6-phosphate to carbon dioxide, Ru5P and NADPH. To investigate how the carbon flux is regulated in these microorganisms, the metabolic flux states of E. coli , iJO1366 model and S. cerevisiae , iMM90419 genome-scale were predicted by flux balance analysis under growth conditions using glucose as a carbon source. Ru5P appeared to be derived from oxidative PPP and only a small fraction was directed towards non-oxidative PPP with one carbon loss in the form of CO when gluconate was converted from Ru5P via 6-phosphogluconate dehydrogenase. . When the glucose uptake rate was set to ~10 mmol/gDCW/h, only 15% and 2.63% of the carbon flux entered the nonoxidative PPP in E. coli and S. cerevisiae, respectively (Figs. 1 and 2). In M. alcaliphilum 20Z, the products derived from intermediates of the non-oxidative RuMP cycle, which have high flux, are the most promising candidates for metabolic engineering in M. alcaliphilum 20Z and type I methanotrophs.

실험예 2. Experimental example 2. M. alcaliphilumM. alcaliphilum 20Z에서의 시노린 합성 경로 구축 Construction of the shinorine synthesis pathway at 20Z

본 발명에서 M. alcalilphilum 20Z의 비 산화 RuMP 경로의 중간체로부터 시노린을 생산하고자 하였다. 비산화 RuMP 경로의 중간체인 세도헵툴로스 7-포스페이트(sedoheptulos 7-phosphate, S7P)는 시노린의 생합성의 주요한 전구체이다. 시노린의 생합성을 위해, S7P는 먼저 2-디메틸 4-디옥시가두솔 신타제(2-demetyl 4-deoxygadusol synthase, DDGS, NPR_5600, 서열번호 1)에 의하여, 2-디메틸 4-디옥시가두솔로 전환된 후 O-메틸트렌스퍼라제(O-mhetyltransferase, OMT, NPR_5599, 서열번호 2)에 의하여 4-디옥시가두솔(4-deoxygadusol, 4-DG)로 전환 되어야 한다. 이어서 세포내에 유리중인 글리신은 ATP-그라스프 리가아제(ATP-grasp ligase, NPR_5598, 서열번호 3)에 의해 4-DG에 접합되어, 마이코스포린-글리신(mycosporine-glycine, MG)를 형성하고, 마지막으로 세린은 MG에 부착되어, 비-리보솜 펩티드 합성효소(non-ribosomal peptide synthetase, NRPS) 또는 시아노박테리아(Nostoc punctiforme) 유래의 D-ala-D-ala 리가아제(D-ala-D-ala ligase, NPR_5597, 서열번호 4)에 의해 시노린을 생산하게 된다(도 2). 따라서 본 발명에서는 M. alcaliphilum 20Z에서 시노린을 생산하기 위하여, 시노린 합성 경로와 관련된 유전자 복합체(DDGS, OMT, ATP-grasp ligase 및 D-ala-Dala 리가아제)로 형질전환시켰다. 또한 S7P의 풀(pool)이 증가되면 시노린의 생산이 증가하기 때문에, 본 발명에서는 비산화성 RuMP 경로에서 중요한 경로인 트렌스케톨라제(transketolase)를 암호화 하는 tkt1 유전자(서열번호 5)가 과발현되도록 형질전환 시켰다(도 2). 따라서, 상기의 4가지 시노린 합성 유전자를, tkt1 유전자와 함께, pAWP89벡터에 삽입 하여, shr-1 플라스미드를 얻었다. 상기 pAWP89 벡터는 lacZ에 의해 강한 발현을 보이는 구성 프로모터 Ptac를 가지며, Shine-Dalgarno 서열에 의해 이종의 유전자를 메탄자화균에 클로닝 하는 벡터 이다. 상기 shr-1 플라스미드를 이용하여, M. alcaliphilum 20Z를 형질전환 시켜 SH-1 균주를 얻었으며, 성장률 및 시노린 생산을 평가 하였다.In the present invention, we tried to produce shinoline from an intermediate in the non-oxidative RuMP pathway of M. alcalilphilum 20Z. Sedoheptulos 7-phosphate (S7P), an intermediate in the nonoxidative RuMP pathway, is a major precursor for the biosynthesis of shinorine. For the biosynthesis of shinorine, S7P is first converted into 2-dimethyl 4-deoxygadusol synthase (DDGS, NPR_5600, SEQ ID NO: 1) by 2-dimethyl 4-deoxygadusol synthase. After conversion, it should be converted to 4-deoxygadusol (4-DG) by O-methyltransferase (OMT, NPR_5599, SEQ ID NO: 2). Subsequently, glycine free in the cell is conjugated to 4-DG by ATP-grasp ligase (NPR_5598, SEQ ID NO: 3) to form mycosporine-glycine (MG), and finally As a result, serine is attached to MG, and non-ribosomal peptide synthetase (NRPS) or cyanobacteria ( Nostoc punctiforme )-derived D-ala-D-ala ligase (D-ala-D-ala ligase, NPR_5597, SEQ ID NO: 4) produces shinoline (FIG. 2). Therefore, in the present invention, in order to produce shinorine in M. alcaliphilum 20Z, gene complexes related to the shinorine synthesis pathway (DDGS, OMT, ATP-grasp ligase and D-ala-Dala ligase) were transformed. In addition, since the production of shinoline increases when the S7P pool is increased, in the present invention, the tkt1 gene (SEQ ID NO: 5) encoding transketolase, which is an important pathway in the non-oxidative RuMP pathway, is overexpressed. converted (Fig. 2). Therefore, the above four shinorine synthesis genes, together with the tkt1 gene, were inserted into the pAWP89 vector to obtain a shr-1 plasmid. The pAWP89 vector has a constitutive promoter Ptac showing strong expression by lacZ, and is a vector for cloning heterogeneous genes into methanotrophs by Shine-Dalgarno sequence. Using the shr-1 plasmid, M. alcaliphilum 20Z was transformed to obtain SH-1 strain, and growth rate and shinoline production were evaluated.

형질전환 된 SH-1균주는 야생형 메탄자화균(Wild-type)과 유사한 성장률을 보였으며, 이는 시노린 생합성 유전자의 과발현이 세포 생장에 영향을 미치지 않는다는 것을 나타낸다(도 3). 또한 SH-1 균주는 메탄올 및 메탄에서 각각 0.6 mg/L(1.13mg/g DCW) 및 0.52 mg/L(1.41 mg/g DCW)로 소량의 시노린을 생성하였으며, 세포배양액을 원심분리 한 후의 상층액에서도 시노린이 소량 검출되었다(도 4). 세포추출물 및 배양액의 상층액에서 다른 부산물이 검출되지 않아, 모든 생합성 중간체가 시노린으로 완전히 전환된 것을 확인할 수 있었다. 본 발명에서 생산된 시노린은 메탄자화균에서 처음으로 이종의 시노린 합성효소를 도입하여 생산된 첫 사례이며, 이전에 공지된 문헌들에서 대장균(0.15mg/L) 및 효모(0.085 mg/g DCW)에서 합성된 시노린보다 상대적으로 높은 수율을 보였다.The transformed SH-1 strain showed a growth rate similar to that of the wild-type strain, indicating that overexpression of the shinorine biosynthetic gene did not affect cell growth (FIG. 3). In addition, the SH-1 strain produced a small amount of shinorine at 0.6 mg/L (1.13 mg/g DCW) and 0.52 mg/L (1.41 mg/g DCW) in methanol and methane, respectively, and after centrifuging the cell culture medium A small amount of shinoline was also detected in the supernatant (FIG. 4). No other by-products were detected in the cell extract and the supernatant of the culture solution, confirming that all biosynthetic intermediates were completely converted to shinoline. The shinoline produced in the present invention is the first case produced by introducing a heterogeneous shinorine synthetase for the first time in methane magnetizing bacteria, and in previously known literature, E. coli (0.15mg/L) and yeast (0.085 mg/g) DCW) showed a relatively higher yield than synorine synthesized.

실험예 3. Experimental example 3. M. alcaliphilumM. alcaliphilum 20Z에서 자일로스 경로 추가 및 공동영양배양 Addition of xylose pathway and co-trophic culture in 20Z

본 발명에서 사용한, M. alcaliphilum 20Z 균주는 메탄 및 메탄을 제외한 기질을 자연적으로 대사할 수 없다. 따라서, 다른 공동기질을 이용한 공동영양배양을 수행하여, 시노린의 생산량을 향상시키고자, 공동기질을 모색하던 중, 5탄당 대사 경로에서 직접적으로 중간체를 공급할 수 있으며, 경제적이고, 다량으로 활용이 가능한 자일로스 대사 경로를 도입하였다. 도 5에 나타낸 바와 같이, 본 발명에서는 RuMP 경로의 S7P 풀(pool)을 증가시키기 위해 자일로스 동화 경로 구축을 위한 발현 벡터를 구축하였다. 대장균의 자일로스대사의 경우, 자일로스는 먼저 xylA(서열번호 6)에 의해 인코딩된 자일로스 아이소머라제(xylose isomerase)에 의하여 D-자일룰로스(D-xylulose)로 전환된다. 이어서, xylB(서열번호 7)에 의해 암호화된 자일로키나아제(xylokinase)에 의하여 D-자일룰로스가 자일룰로스-5-포스페이트(xylulose-5-phosphate, Xu5P)로 인산화 된다. Xu5P는 리불로스-포스페이트 3-에피머라제(ribulose-phosphate 3-epimerase, rep, 서열번호 8)에 의하여 리룰로스 5-포스페이트(ribulose 5-phosphate)로 전환되고, 비산화성 PPP경로에 혼입된다. 비산화성 RuMP 경로에서 내인성 유전자와 함께 xylAB 유전자 클러스터로 구성된 이종 경로를 도입함으로써, M. alcaliphilum 20Z는 자일로스를 단독 탄소원이로 이용할 수 있게 된다. 따라서, 자일로스를 공동 기질로 이용하기 위하여, Ptac 프로모터에 의해 구동되는 자일로스 아이소머라제 (xylA, 서열번호 6), 자일로키나아제(xylB, 서열번호 7) 및 리룰로스-포스페이트 3-에피머라제(rep, 서열번호 8)를 pCM351-glgA 벡터에 결착하여 pCM351-XYL 벡터를 생성하였다. 상기의 백터를 M. alcaliphilum 20Z에 도입하여 pXYL 균주를 생성시켰다. 상기의 벡터가 형질도입된 균주는 유일한 탄소원으로 자일로스만을 이용하여 지속적으로 성장할 수 있었다. 시노린 생산플라스미드인 shr-1을 SH-1 균주로부터 분리하고, 전기 천공을 통해 pXYL 균주로 다시 도입하여, SH-XYL-1 균주를 생성하였다. SH-XYL-1 균주는 NMS배지에, 메탄, 자일로스 및 메탄과 자일로스가 혼합된 성장 배지에서 배양하였다. 그 결과, SH-XYL-1 균주는 메탄 및 자일로스가 혼합된 공동영양배양에서 가장 높은 생장률을 보였다(도 6). 메탄과 자일로스을 공동 탄소원으로 사용한 배양에서, 자일로스는 120시간 후 4.28 g/L를 소비하여, 자일로스를 단일 탄소원으로 이용하였을 때(1.03 g/L) 보다 높은 자일로스 사용 효율을 보였다(도 7). The M. alcaliphilum 20Z strain used in the present invention cannot naturally metabolize methane and substrates other than methane. Therefore, while searching for a common substrate to improve the production of shinoline by performing cotrophic culture using other common substrates, it is possible to directly supply intermediates in the pentose metabolic pathway, which is economical and can be used in large quantities. A possible xylose metabolic pathway was introduced. As shown in FIG. 5, in the present invention, an expression vector for constructing a xylose assimilation pathway was constructed in order to increase the S7P pool of the RuMP pathway. In the case of xylose metabolism in Escherichia coli, xylose is first converted to D-xylulose by xylose isomerase encoded by xylA (SEQ ID NO: 6). Subsequently, D-xylulose is phosphorylated into xylulose-5-phosphate (Xu5P) by xylokinase encoded by xylB (SEQ ID NO: 7). Xu5P is converted to riulose 5-phosphate by ribulose-phosphate 3-epimerase (rep, SEQ ID NO: 8) and incorporated into the nonoxidative PPP pathway. By introducing a heterologous pathway consisting of the xylAB gene cluster together with endogenous genes in the non-oxidative RuMP pathway, M. alcaliphilum 20Z can utilize xylose as the sole carbon source. Therefore, in order to use xylose as a common substrate, xylose isomerase (xylA, SEQ ID NO: 6) driven by the Ptac promoter, xylokinase (xylB, SEQ ID NO: 7) and riulose-phosphate 3-epimera (rep, SEQ ID NO: 8) was ligated to the pCM351-glgA vector to generate the pCM351-XYL vector. The above vector was introduced into M. alcaliphilum 20Z to generate a pXYL strain. The strain transduced with the above vector was able to continuously grow using only xylose as the only carbon source. The shinoline-producing plasmid, shr-1, was isolated from the SH-1 strain and reintroduced into the pXYL strain through electroporation to generate the SH-XYL-1 strain. The SH-XYL-1 strain was cultured in NMS medium, in a growth medium containing methane, xylose, and a mixture of methane and xylose. As a result, the SH-XYL-1 strain showed the highest growth rate in the co-trophic culture in which methane and xylose were mixed (FIG. 6). In the culture using methane and xylose as a common carbon source, xylose consumed 4.28 g/L after 120 hours, showing a higher xylose usage efficiency than when xylose was used as a single carbon source (1.03 g/L) (Fig. 7).

시노린 생산용 메탄자환균 SH-XYL-1은 자일로스 및 메탄을 탄소원으로 사용했을 때 시노린 생산량 2mg/L (1.81mg/g DCW)을 보인 반면, 메탄에서는 0.87mg/L (1.24 mg/g DCW)만 생산했다(도 8). pXYL 균주와 달리, SH-XYL-1은 자일로스를 함유한 배지에서 배양할 때 심각한 성장결함을 나타냈다(도 6).그러나, 메탄을 함유 한 배지에서 성장한 세포에서 시노린 함량은 1.57 mg/g DCW로 여전히 자일로스보다 더 높았다(도 8). 메탄과 자일로스의 존재하에 생산 수준이 증가함에 따라, 시노린 생산은 무세포 상층액에서 더 높았으며, 이는 시노린의 세포외 방출을 위한 수송체 시스템의 변형을 시사한다(도 9). 이러한 결과는 자일로스 및 메탄을 공동탄소원으로 이용함으로써 M. alcaliphilum 20Z에서 혼합 영양 성장을 가능하게 하면 효과적으로 성장 및 시노린 생산을 증가시킬 수 있음을 나타낸다.The methanogen SH-XYL-1 for producing shinorine produced 2 mg/L (1.81 mg/g DCW) of shinorine when xylose and methane were used as carbon sources, whereas it was 0.87 mg/L (1.24 mg/g DCW) in methane. g DCW) was produced (FIG. 8). Unlike the pXYL strain, SH-XYL-1 showed severe growth defects when cultured in a medium containing xylose (Fig. 6). However, the shinoline content in cells grown in a medium containing methane was 1.57 mg/g. DCW was still higher than xylose (FIG. 8). As production levels increased in the presence of methane and xylose, shinoline production was higher in cell-free supernatants, suggesting modification of the transporter system for extracellular release of shinorine (FIG. 9). These results indicate that enabling mixed nutrient growth in M. alcaliphilum 20Z by using xylose and methane as co-carbon sources can effectively increase growth and shinorine production.

상기와 같은 결과를 유전자의 차별발현에 따른 RNA-전사체 분석을 통해 비교해 보았다. 메탄을 단일 탄소원으로 첨가한 배양과, 메탄 및 자일로스을 함께 제공한 배양에서 비교해 본 결과, 4139개의 유전자중 345개의 유전자(8.33%)가 유의하게 차별적인 발현을 보였으며, 이 중 212개의 유전자가 하향조절되었고, 133개의 유전자가 상향조절 된 것을 확인하였다. 중심 탄소 대사 유전자의 발현은 대부분 크게 변하지 않았다. 구조적 관점에서 시노린은 막 수송체를 통해 운송되는 것으로 보인다. COG분석에서 무기 이온의 수송 및 대사에서 가장 많은 차별발현이 나타난 것으로 확인 할 수 있다(도 10). 또한 상기의 COG 분석의 결과는 막 수송 시스템을 변경함으로서 시노린이 세포 외부로 방출된다는 것을 확인 할 수 있었다. 특히, 성장 모드를 전환할 때 질산염 및 설페이트 수송 시스템의 조절적 분리가 관찰되었다. 질산염 ABC 수송 체 암호화 유전자의 발현 수준은 메틸 영양성 모드와 비교하여 혼합 영양 성장에서 ~ 10배 감소되는 반면, 황산염 수송체 암호화 유전자의 발현 수준은 ~ 10배 증가되었다. 이러한 결과는 막 수송 시스템을 변경함으로써 시노린이 방출된다는 가설을 지지한다. The above results were compared through RNA-transcriptome analysis according to differential expression of genes. As a result of comparing the culture in which methane was added as a single carbon source and the culture in which methane and xylose were provided together, 345 genes (8.33%) of 4139 genes showed significantly differential expression, of which 212 genes It was down-regulated, and it was confirmed that 133 genes were up-regulated. Expression of central carbon metabolism genes was largely unchanged. From a structural point of view, shinorine appears to be transported via membrane transporters. In the COG analysis, it can be confirmed that the highest differential expression appeared in the transport and metabolism of inorganic ions (FIG. 10). In addition, the results of the COG analysis confirmed that shinoline was released outside the cell by changing the membrane transport system. In particular, a regulatory separation of nitrate and sulfate transport systems was observed when switching growth modes. Expression levels of nitrate ABC transporter-encoding genes were reduced ~10-fold in mixed nutrient growth compared to methyltrophic mode, whereas expression levels of sulfate transporter-encoding genes were increased ~10-fold. These results support the hypothesis that shinorine is released by altering the membrane transport system.

실시예 4. 미량 미네랄의 추가로 자극된 시노린 생산Example 4. Stimulated shinoline production by the addition of trace minerals

본 발명의 M,alcaliphilum 20Z의 성장은 구리, 칼슘(또는 란타늄) 및 텅스텐과 같은 미량 미네랄의 가용성에 따라 달라진다. 메탄자화균의 미립자 메탄 모노옥시게나제(particulate methane monooxygenase, pMMO)의 활성화에 구리와 같은 미량 미네랄은 필수적이며, 칼슘 또는 란타늄은 피롤로 퀴놀린 퀴논-의존성 메탄올 탈수소 효소(pyrroloquinoline quinone-dependent methanol dehydrogenase)를 통한 메탄올 산화 공정에 필요하며, 미량 미네랄의 존재로 메탄의 산화과정이 촉진된다. 따라서 본 발명에서는, 시노린 생산의 최적의 조건을 위해, 미량 미네랄을 첨가하여, 최적의 시노린 생산 조건을 확립하였다.The growth of M,alcaliphilum 20Z of the present invention depends on the availability of trace minerals such as copper, calcium (or lanthanum) and tungsten. Trace minerals such as copper are essential for the activation of particulate methane monooxygenase (pMMO) in methanotrophs, and calcium or lanthanum are essential for the activation of pyrroloquinoline quinone-dependent methanol dehydrogenase (pyrroloquinoline quinone-dependent methanol dehydrogenase). It is necessary for the methanol oxidation process through, and the presence of trace minerals promotes the oxidation process of methane. Therefore, in the present invention, for optimal conditions for producing shinorine, trace minerals were added to establish optimal conditions for producing shinorine.

본 발명에서는 SH-XYL-1 균주를 메탄 및 자일로스 조건하에서 배양했을 때, 포름산 및 아세테이트와 같은 부산물이 상당량(2.3 g/L) 포함된 것을 확인하였다(도 11). NAD와 연결된 포름산 탈수소 효소(formate dehydrogenase, FDH)는 메탄자화균에서, 포름산의 산화를 위한 주효 효소로 알려져 있으며, 메탄 및 자일로스 조건하에서는 포름산이 축적된 것으로 보아 FDH의 활성도가 낮은 것을 확인 할 수 있었다. 또한, 포름산의 산화과정은 NADH 생산과 관련되어 있으며, 포름산의 산화가 낮아질 경우, 세포생장률이 감소하게 된다. 따라서 본 발명에서는 세포성장 및 시노린 생산을 향상시키기 위해 SH-XYL-1의 메탄 및 자일로스 조건하에서 텅스텐을 미량 첨가하였으며, 그 결과 세포 성장은 배양 후 144시간에, 텅스텐이 첨가되지 않았을 때 보다 3배(OD600 nm = 21) 이상 높았으며(도 11), 자일로스의 소비율도 증가하였다. 시노린의 생산량 또한, 192시간 후 6.25 mg/L로 3배 가량 높아진 것을 확인하였다(도 12).In the present invention, when the SH-XYL-1 strain was cultured under methane and xylose conditions, it was confirmed that a significant amount (2.3 g/L) of by-products such as formic acid and acetate were included (FIG. 11). NAD-linked formate dehydrogenase (FDH) is known as the main enzyme for the oxidation of formic acid in methanogens, and the low activity of FDH can be confirmed from the accumulation of formic acid under methane and xylose conditions. there was. In addition, the oxidation process of formic acid is related to the production of NADH, and when the oxidation of formic acid is lowered, the cell growth rate decreases. Therefore, in the present invention, a small amount of tungsten was added to SH-XYL-1 under methane and xylose conditions to improve cell growth and shinoline production. It was more than 3 times higher (OD600 nm = 21) (FIG. 11), and the xylose consumption rate also increased. It was confirmed that the production of shinoline also increased by about 3 times to 6.25 mg/L after 192 hours (FIG. 12).

실시예 5. 시노린 생산 향상을 위한 오페론(operon) 설계 및 구성Example 5. Design and construction of operon to improve shinoline production

단백질 발현 수준은 전사, 번역 및 mRNA 안정성에 의해 제어되며, 이는 프로모터 및 리보솜 결합 부위의 강도 또는 코딩 서열과 같은 유전자 요소에 의해서 조절된다. 시노린을 효율적으로 생산하기 위해 유전자 발현 수준을 제어하는 특징은 시노린 생합성 경로를 통해 더욱 많은 탄소 순환 경로를 설계하기 위해서 필요하다. 본 발명에서 사용한 강력한 프로모터인 Ptac는 M. alcaliphilum 20Z에서 이종의 유전자를 발현하기에 적합한 프로모터라는 것을 확인하였다. 따라서 본 발명에서는 시노린 합성 경로의 발현을 최적화하기 위하여, 오페론 계산기를 이용하여 오페론을 설계하였다. 번역속도를 높이기 위해 5‘ 말단부터 비번역 영역의 서열을 선택하는 과정에서, 불필요한 유전자 요소를 최소화 시켰다. 결과적으로, 시노린 생산을 위한 합성 오페론은 5개의 상이한 유전자 NPR5600(서열번호 1), NPR5599(서열번호 2), NPR5598(서열번호 3) 및 NPR5597(서열번호 4) 및 TKT(서열번호 5)를 함께 그룹화 함으로서, 설계되었다(서열번호 9 및 도 13). 상기 합성된 오페론은 pAWP89 벡터에 삽입하여 shr-2 벡터를 생성하였고, 야생형 M. alcaliphilum 20Z 및 자일로스 대사균주에 도입하여, SH-2 및 SH-XYL-2균주를 얻었다. Protein expression levels are controlled by transcription, translation and mRNA stability, which are regulated by genetic elements such as promoters and strength of ribosome binding sites or coding sequences. The feature of controlling the gene expression level to efficiently produce shinorine is needed to design more carbon cycle pathways through the shinorine biosynthetic pathway. It was confirmed that Ptac, a strong promoter used in the present invention, is a suitable promoter for expressing heterogeneous genes in M. alcaliphilum 20Z. Therefore, in the present invention, an operon was designed using an operon calculator to optimize the expression of the shinorine synthesis pathway. In the process of selecting the sequence of the untranslated region from the 5' end to increase the translation rate, unnecessary genetic elements were minimized. As a result, the synthetic operon for shinorine production consists of five different genes NPR5600 (SEQ ID NO: 1), NPR5599 (SEQ ID NO: 2), NPR5598 (SEQ ID NO: 3) and NPR5597 (SEQ ID NO: 4) and TKT (SEQ ID NO: 5). By grouping together, it was designed (SEQ ID NO: 9 and FIG. 13). The synthesized operon was inserted into the pAWP89 vector to generate the shr-2 vector, and introduced into wild-type M. alcaliphilum 20Z and a xylose metabolizing strain to obtain SH-2 and SH-XYL-2 strains.

SH-2 균주는 1.2 mg/L의 시노린을 생성하였으며, 이는 SH-1균주보다 약 2.4배 개선된 것을 확인 하였다(도 14). 텅스텐 추가된 메탄 및 자일로스 조건하에서 배양한 SH-XYL-2균주는 SH-XYL-1균주와 비교하여 성장 및 아세테이트 형성량에는 큰 변화는 없었지만(도 15), 시노린의 생산량은 17.13mg/L로 2.7배 증가한 것을 확인하였다(도 16). 따라서 본 발명에서 설계한 오페론으로 형질전환된 균주는 시노린 생산이 향상된 균주인 것을 확인 할 수 있었다.It was confirmed that the SH-2 strain produced 1.2 mg/L of shinoline, which was about 2.4 times better than the SH-1 strain (FIG. 14). Compared to strain SH-XYL-1, strain SH-XYL-2 cultured under conditions of methane and xylose with tungsten added did not show significant changes in growth and acetate formation (FIG. 15), but the production of shinoline was 17.13 mg / It was confirmed that it increased by 2.7 times as L (FIG. 16). Therefore, it was confirmed that the strain transformed with the operon designed in the present invention is a strain with improved shinoline production.

<110> University-Industry Cooperation Group of Kyung Hee University <120> Development of novel methanotroph that co-assimilate methane and xylose, and producing shinorine using itself <130> PN1910-471 <160> 9 <170> KoPatentIn 3.0 <210> 1 <211> 1233 <212> DNA <213> Unknown <220> <223> NPR_5600 (2-demethyl 4-deoxygadusol synthase) <400> 1 atgagtaatg ttcaagcatc gtttgaagca acggaagctg aattccgcgt ggaaggttac 60 gaaaaaattg agtttagtct tgtctatgta aatggtgcat ttgatatcag taacagagaa 120 attgcagaca gctatgagaa gtttggccgt tgtctgactg tgattgatgc taatgtcaac 180 agattatatg gcaagcaaat caagtcatat tttagacact atggtattga tctgaccgta 240 gttcccattg tgattactga gcctactaaa acccttgcaa cctttgagaa aattgttgat 300 gctttttctg actttggttt aatccgcaag gaaccagtat tagtagtggg tggtggttta 360 accactgatg tagctgggtt tgcgtgtgct gcttaccgtc gtaagagtaa ctatattcgg 420 gttccgacaa cgctgattgg tctgattgat gcaggtgtag cgattaaggt tgcagtcaac 480 catcgcaagt taaaaaatcg cttgggtgca tatcatgctc ctttgaaagt catcctcgat 540 ttctccttct tgcaaacatt accaacggct caagttcgta atgggatggc agagttggtc 600 aaaattgctg ttgtggcgaa ctctgaagtc tttgaattgt tgtatgaata tggcgaagag 660 ttgctttcca ctcactttgg atatgtgaat ggtacaaagg aactgaaagc gatcgcacat 720 aaactcaatt acgaggcaat aaaaactatg ctggagttgg aaactccaaa cttgcatgag 780 ttagacctcg atcgcgtcat tgcctacggt cacacttgga gtccgacctt agaattagct 840 ccgatgatac cgttgtttca cggtcatgcc gtcaatatag acatggcttt gtctgcaact 900 attgcggcaa gacgtggcta cattacatca ggagaacgcg atcgcatttt gagcttgatg 960 agtcgtatag gtttatcaat cgatcatcct ctactagatg gcgatttgct ctggtatgct 1020 acccaatcta ttagcttgac gcgagacggg aaacaacgcg cagctatgcc taaacccatt 1080 ggtgagtgct tctttgtcaa cgatttcacc cgtgaagaac tagatgcagc tttagctgaa 1140 cacaaacgtc tgtgtgctac ataccctcgt ggtggagatg gcattgacgc ttacatagaa 1200 actcaagaag aatccaaact attgggagtg tga 1233 <210> 2 <211> 834 <212> DNA <213> Unknown <220> <223> NPR_5599 (O-methyltransferase) <400> 2 atgaccagta ttttaggacg agataccgca agaccaataa cgccacatag cattctggta 60 gcacagctac aaaaaaccct cagaatggca gaggaaagta atattccttc agagatactg 120 acttctctgc gccaagggtt gcaattagca gcaggtttag atccctatct ggatgattgc 180 actacccctg aatcgaccgc attgacagca ctagcgcaga agacaagcat tgaagactgg 240 agtaaacgct tcagtgatgg tgaaacagtg cgtcaattag agcaagaaat gctctcagga 300 catcttgaag gacaaacact aaagatgttt gtgcatatca ctaaggctaa aagcatccta 360 gaagtgggaa tgttcacagg atattcagct ttggcaatgg cagaggcgtt accagatgat 420 gggcgactga ttgcttgtga agtagactcc tatgtggccg agtttgctca aacttgcttt 480 caagagtctc cccacggccg caagattgtt gtagaagtgg cacctgcact agagacgctg 540 cacaagctgg tggctaaaaa agaatccttt gatctgatct tcattgatgc ggataaaaag 600 gagtatatag aatacttcca aattatcttg gatagccatt tactagctcc cgacggatta 660 atctgtgtag ataatacttt gttgcaagga caagtttacc tgccatcaga acagcgtaca 720 gccaatggtg aagcgatcgc tcaattcaac cgcattgtcg ccgcagatcc tcgtgtagag 780 caagttctgt tacccatacg agatggtata accctgatta gacgcttggt ataa 834 <210> 3 <211> 1386 <212> DNA <213> Unknown <220> <223> NPR_5598 (ATP-grasp ligase) <400> 3 atggcacaat caatctcttt atctcttcct caatccacaa cgccatcaaa gggtgtgagg 60 ctaaaaatag cagctctact gaagactatc gggactctaa tactactgct gatagccttg 120 ccgcttaatg ctttgatagt attgatatct ctgatgtgta ggccgtttac aaaaaaacct 180 gccgtagcca ctcatcccca gaatatcttg gtcagtggcg gcaaaatgac caaagcattg 240 caacttgccc gctccttcca tgcagccgga cacagagtta ttctgattga aggtcataaa 300 tactggttat cagggcatag attctcaaat tctgtgagtc gtttttatac agttcctgca 360 ccacaagacg acccagaagg ctatacccaa gcgctattgg aaattgtcaa acgagagaag 420 attgacgttt atgtacccgt atgcagccct gtagctagtt attacgactc tttggcaaag 480 tctgcactat cagaatattg tgaggttttt cactttgatg ctgatataac caagatgctg 540 gatgataaat ttgcctttac cgatcgggcg cgatcgcttg gtttatcagc cccgaaatct 600 tttaaaatta ccgatcctga acaagttatc aacttcgatt ttagtaaaga gacgcgcaaa 660 tatattctta agagtatttc ttacgactca gttcgccgct taaatttaac caaacttcct 720 tgtgataccc cagaagagac agcagcgttt gtcaagagtt tacccatcag cccagaaaaa 780 ccttggatta tgcaagaatt tattcctggg aaagaattat gcacccatag cacagtccga 840 gacggcgaat taaggttgca ttgctgttca aattcttcag cgtttcagat taactatgaa 900 aatgtcgaaa atccccaaat tcaagaatgg gtacaacatt tcgtcaaaag tttacggctg 960 actggacaaa tatctcttga ctttatccaa gctgaagatg gtacagctta tgccattgaa 1020 tgtaatcctc gcacccattc ggcgatcaca atgttctaca atcacccagg tgttgcagaa 1080 gcctatcttg gtaaaactcc tctagctgca cctttggaac ctcttgcaga tagcaagccc 1140 acttactgga tatatcacga aatctggcga ttgactggga ttcgctctgg acaacaatta 1200 caaacttggt ttgggagatt agtcagaggt acagatgcca tttatcgcct ggacgatccg 1260 ataccatttt taactttgca ccattggcag attactttac ttttgctaca aaatttgcaa 1320 cgactcaaag gttgggtaaa gatcgatttt aatatcggta aactcgtgga attagggggc 1380 gactaa 1386 <210> 4 <211> 1047 <212> DNA <213> Unknown <220> <223> NPR_5597 (D-ala-D-ala ligase) <400> 4 atgccagtac ttaatatcct tcatttagtt gggtctgcac acgataagtt ttactgtgat 60 ttatcacgtc tttatgccca agactgttta gctgcaacag cagatccatc gctttataac 120 tttcaaattg catatatcac acccgatcgg cagtggcgat ttcctgactc tctcagtcga 180 gaagatattg ctcttaccaa accgattcct gtgtttgatg ccatacaatt tctaacaggc 240 caaaacattg acatgatgtt accacaaatg ttttgtattc ctggaatgac tcagtaccgt 300 gccctattcg atctgctcaa gatcccttat ataggaaata ccccagatat tatggcgatc 360 gcggcccaca aagccagagc caaagcaatt gtcgaagcag caggggtaaa agtgcctcgt 420 ggagaattgc ttcgccaagg agatattcca acaattacac ctccagcagt cgtcaaacct 480 gtaagttctg acaactcttt aggagtagtc ttagttaaag atgtgactga atatgatgct 540 gccttaaaga aagcatttga atatgcttcg gaggtcatcg tagaagcatt catcgaactt 600 ggtcgagaag tcagatgcgg catcattgta aaagacggtg agctaatagg tttacccctt 660 gaagagtatc tggtagaccc acacgataaa cctatccgta actatgctga taaactccaa 720 caaactgacg atggcgactt gcatttgact gctaaagata atatcaaggc ttggatttta 780 gaccctaacg acccaatcac ccaaaaggtt cagcaagtgg ctaaaaggtg tcatcaggct 840 ttgggttgtc gccactacag tttatttgac ttccgaatcg atccaaaggg acaaccttgg 900 ttcttagaag ctggattata ttgttctttt gcccccaaaa gtgtgatttc ttctatggcg 960 aaagcagccg gaatccctct aaatgattta ttaataaccg ctattaatga aacattgggt 1020 agtaataaaa aggtgttaca aaattga 1047 <210> 5 <211> 2013 <212> DNA <213> Unknown <220> <223> transketolase, tkt1 <400> 5 atgccttcgc gccgagactt agcgaacgcc atacgcgctt tgagcatgga tgccgtccaa 60 aaagccaact ccggacaccc gggcgcaccg atggggatgg cggatatcgc cgaggtgtta 120 tggaacgact tcctgcagca taacccgact aacccgaact gggccaaccg agaccgcttc 180 gtactgtcta acggccacgg ctcgatgctg ctgtactcgt tactgcatct gacaggttac 240 cagctgccga tcgacgaact gaaacaattc cgtcaactgc attcaaaaac cccgggtcat 300 ccggaatacg gctatgcgcc gggcgtcgaa acgacgaccg gaccattagg tcaaggcatc 360 accaatgccg tgggctttgc gatagccgaa cgcgcactag cgggtcaatt taaccgtccc 420 ggacacgaaa tcgtcgacca ttacacctac gccttcctgg gcgacggctg tttaatggaa 480 ggcatctcgc atgaagcctg ctcattggcc ggctcgatga aactgggcaa actgattgcc 540 gtctacgacg acaacaacat ctcgatcgac ggcgaagtcc gcggtcacgg cgacacgccg 600 ggctggttcc tggacgacac gccgaaacgc ttcgaagcct acggctggca cgtcatcccg 660 aaagtagacg gccataaccc tgaagccgtc aaaaaagcct tggaagaagc gcgtagcgtc 720 actgatcggc cgaccttgat ctgctgccaa accatcattg gctggggctc gccgaataaa 780 gaaggcaaag aagaatgtca tggagcggca ttaggcgaag ccgaaatcac ggcaacccgc 840 gaacgcatcg gttggccgca tgcacctttc gaaatcccgg cggatattta cgcgggttgg 900 gatgcgaaag acaaaggcgc gcgtcaagaa gcggagtgga acgacaaatt cgcgaaatac 960 caagcagcgc atccggaact ggcggccgaa ttcgaacgcc gcatgagcgg acagctgccg 1020 agcgactggt cggaaaaagc gaacgccttc attgctgcgg tcgacgcgaa aggcgaaacc 1080 atcgctagcc gcaaagcctc acaaaacacc ctgaacggat tcggaccgtt actgcccgaa 1140 ctgatgggcg gctcggcgga cttggcaggc tccaacttga ccctgtggtc gggttgcaaa 1200 gacgtcaacg ccccgggaca tgacggcaac tacgtctact acggcgtccg tgaattcggc 1260 atgtcggcga tcatgaacgg catcaccctg catggcggct tcaagccgta cggcgcgacc 1320 ttcctgatgt tctccgaata tgcgcggaat gccttgcgga tggcgtcgtt gatgaaaatc 1380 ccgaccatct tcgtatacac gcacgactcg atcggcttag gcgaagacgg cccgacccat 1440 caaccgatcg aacaaaccgc gaccttgcgg atgattccaa acatgcaagt gtggcgtcca 1500 tgtgatgctg tggaatcggc ggtgtcgtgg aaagcggcga ttgaacgaaa cgatggaccg 1560 agttgtctga tcttctcacg gcaaaaccta gcgcacattg cgcggacgcc ggcgcagatc 1620 gaagcgatca acaaaggcgg ctacattctg aaagacagcg aaggtcagcc ggacgtgatc 1680 ctgattgcga cgggctcgga agtcgaattg gcggtgaaag cggcagacga gttgagcggc 1740 aaaggcaaaa aagtgcgggt cgtctcgatg ccatcgacca acgtattcga tgcgcaggac 1800 gaagcctacc gtgagtcggt gctgccgtca tcggtgacaa aacgcgtcgt aattgaagcg 1860 ggcgtgaccg acagctggtg gaaatacgcg ggtacacaag gttgcgtcat cggaatggat 1920 cgtttcggcg aatcggcacc ggccggcgcg ctgttcaaag agttcggctt caccgttgac 1980 aatgtcgtca aacacgtcga agctctgctt taa 2013 <210> 6 <211> 1323 <212> DNA <213> Unknown <220> <223> xylose isomerase, xylA <400> 6 atgcaagcct attttgacca gctcgatcgc gttcgttatg aaggctcaaa atcctcaaac 60 ccgttagcat tccgtcacta caatcccgac gaactggtgt tgggtaagcg tatggaagag 120 cacttgcgtt ttgccgcctg ctactggcac accttctgct ggaacggggc ggatatgttt 180 ggtgtggggg cgtttaatcg tccgtggcag cagcctggtg aggcactggc gttggcgaag 240 cgtaaagcag atgtcgcatt tgagtttttc cacaagttac atgtgccatt ttattgcttc 300 cacgatgtgg atgtttcccc tgagggcgcg tcgttaaaag agtacatcaa taattttgcg 360 caaatggttg atgtcctggc aggcaagcaa gaagagagcg gcgtgaagct gctgtgggga 420 acggccaact gctttacaaa ccctcgctac ggcgcgggtg cggcgacgaa cccagatcct 480 gaagtcttca gctgggcggc aacgcaagtt gttacagcga tggaagcaac ccataaattg 540 ggcggtgaaa actatgtcct gtggggcggt cgtgaaggtt acgaaacgct gttaaatacc 600 gacttgcgtc aggagcgtga acaactgggc cgctttatgc agatggtggt tgagcataaa 660 cataaaatcg gtttccaggg cacgttgctt atcgaaccga aaccgcaaga accgaccaaa 720 catcaatatg attacgatgc cgcgacggtc tatggcttcc tgaaacagtt tggtctggaa 780 aaagagatta aactgaacat tgaagctaac cacgcgacgc tggcaggtca ctctttccat 840 catgaaatag ccaccgccat tgcgcttggc ctgttcggtt ctgtcgacgc caaccgtggc 900 gatgcgcaac tgggctggga caccgaccag ttcccgaaca gtgtggaaga gaatgcgctg 960 gtgatgtatg aaattctcaa agcaggcggt ttcaccaccg gtggtctgaa cttcgatgcc 1020 aaagtacgtc gtcaaagtac tgataaatat gatctgtttt acggtcatat cggcgcgatg 1080 gatacgatgg cactggcgct gaaaattgca gcgcgcatga ttgaagatgg cgagctggat 1140 aaacgcatcg cgcagcgtta ttccggctgg aatagcgaat tgggccagca aatcctgaaa 1200 ggccaaatgt cactggcaga tttagccaaa tatgctcagg aacatcattt gtctccggtg 1260 catcagagtg gtcgccagga acaactggaa aatctggtaa accattatct gttcgacaaa 1320 taa 1323 <210> 7 <211> 1455 <212> DNA <213> Unknown <220> <223> xylulosekinase, xylB <400> 7 atgtatatcg ggatagatct tggcacctcg ggcgtaaaag ttattttgct caacgagcag 60 ggtgaggtgg ttgctgcgca aacggaaaag ctgaccgttt cgcgcccgca tccactctgg 120 tcggaacaag acccggaaca gtggtggcag gcaactgatc gcgcaatgaa agctctgggc 180 gatcagcatt ctctgcagga cgttaaagca ttgggtattg ccggccagat gcacggagca 240 accttgctgg atgctcagca acgggtgtta cgccctgcca ttttgtggaa cgacgggcgc 300 tgtgcgcaag agtgcacttt gctggaagcg cgagttccgc aatcgcgggt gattaccggc 360 aacctgatga tgcccggatt tactgcgcct aaattgctat gggttcagcg gcatgagccg 420 gagatattcc gtcaaatcga caaagtatta ttaccgaaag attacttgcg tctgcgtatg 480 acgggggagt ttgccagcga tatgtctgac gcagctggca ccatgtggct ggatgtcgca 540 aagcgtgact ggagtgacgt catgctgcag gcttgcgact tatctcgtga ccagatgccc 600 gcattatacg aaggcagcga aattactggt gctttgttac ctgaagttgc gaaagcgtgg 660 ggtatggcga cggtgccagt tgtcgcaggc ggtggcgaca atgcagctgg tgcagttggt 720 gtgggaatgg ttgatgctaa tcaggcaatg ttatcgctgg ggacgtcggg ggtctatttt 780 gctgtcagcg aagggttctt aagcaagcca gaaagcgccg tacatagctt ttgccatgcg 840 ctaccgcaac gttggcattt aatgtctgtg atgctgagtg cagcgtcgtg tctggattgg 900 gccgcgaaat taaccggcct gagcaatgtc ccagctttaa tcgctgcagc tcaacaggct 960 gatgaaagtg ccgagccagt ttggtttctg ccttatcttt ccggcgagcg tacgccacac 1020 aataatcccc aggcgaaggg ggttttcttt ggtttgactc atcaacatgg ccccaatgaa 1080 ctggcgcgag cagtgctgga aggcgtgggt tatgcgctgg cagatggcat ggatgtcgtg 1140 catgcctgcg gtattaaacc gcaaagtgtt acgttgattg ggggcggggc gcgtagtgag 1200 tactggcgtc agatgctggc ggatatcagc ggtcagcagc tcgattaccg tacggggggg 1260 gatgtggggc cagcactggg cgcagcaagg ctggcgcaga tcgcggcgaa tccagagaaa 1320 tcgctcattg aattgttgcc gcaactaccg ttagaacagt cgcatctacc agatgcgcag 1380 cgttatgccg cttatcagcc acgacgagaa acgttccgtc gcctctatca gcaacttctg 1440 ccattaatgg cgtaa 1455 <210> 8 <211> 672 <212> DNA <213> Unknown <220> <223> ribulose-phosphate 3-epimerase, rpe <400> 8 atggcccaaa actggatagc tccttccatt ctctctgccg atttcgctcg cttaggcgaa 60 gaagtcgata acgttttagc ggccggtgcc gatgttgtcc attttgacgt catggacaat 120 catttcgtac ccaatttaac gatcggccca ttggtttgcg aagcattaag aaatcatggc 180 gttaccgctc caatcgacgt acatttgatg atcgatccgg tcgatcgaat catcccggac 240 ttcgccaaag ccggcgccag ctatattacc ttccatcctg aagcttcggt tcatctggat 300 agaaccttgc aattgatcaa agaccaaggt tgtaaagccg gcttggtatt caacccgtcg 360 acttcgctgc attatctgga tcatgtgatg gataaactcg acatgatttt attgatgtcg 420 gtcaacccgg gcttcggcgg acaatcgttt ctgccgtcgg cattaaccaa actgcgcgat 480 gcaagaaaac gaatcgatga aagcggtttc gatattcgtt tggaaatcga cggcggcgtc 540 aaagtcgaca atattcgtga aatcaaagcg gcgggcgccg ataccttcgt tgccggttcg 600 gcgattttcg gcaaaccgga ctacaaagca gtcatcgacc aaatgcgcgc ggaaattgca 660 aaagccgagt aa 672 <210> 9 <211> 6778 <212> DNA <213> Unknown <220> <223> Synthetic operon (NPR5600-5599-5598-5597-TKT1) <400> 9 ctctgaaatg agctgttgac aattaatcat cggctcgtat aatgtgtggg tggatagagt 60 caggaggtta taggatgagt aatgtacaag catcgtttga agcaacggaa gctgaattcc 120 gcgtggaagg ttacgaaaaa attgagttca gtcttgtcta tgtaaatggt gcatttgata 180 tcagtaacag agaaattgca gacagctatg agaagtttgg ccgttgtctg actgtgattg 240 atgctaatgt caaccgcctg tatggcaaac aaataaaatc ttatttccgc cactatggta 300 ttgatctgac cgtagttccc attgtgatta ctgagcctac taaaaccctt gcaacctttg 360 agaagattgt tgatgcattt tctgactttg gtctgatccg caaggaacca gtattagtag 420 tgggtggtgg tttaaccact gatgtagctg ggtttgcgtg tgctgcttac cgtcgtaaga 480 gtaactatat tcgggttccg acaacgctga ttggtctgat tgatgctggt gtagcgatta 540 aggttgcagt caaccatcgc aagttaaaaa atcgcttggg tgcatatcat gctcctttga 600 aagtcatcct cgatttctcc ttcttgcaaa cattaccaac ggctcaagtt cgtaatggga 660 tggcagagtt ggtcaagata gctgttgtgg cgaactctga agtctttgaa ctgttgtatg 720 aatatggcga agagttgctt tccactcact ttggatatgt gaatggtaca aaggaactga 780 aagcgatcgc acataaactc aattacgagg caataaaaac tatgctggag ttggaaactc 840 caaacttgca tgagttagac ctcgatcgcg tcattgccta cggtcacact tggagtccga 900 ccttagaatt agctccgatg ataccgttgt ttcacggtca tgccgtcaat atagacatgg 960 ctttgtctgc aactattgcg gcaagacgtg gctacattac atcaggagaa cgcgatcgca 1020 ttttgagctt gatgagtcgt ataggtttat caatcgatca tcctctacta gatggcgatt 1080 tgctctggta tgctacccaa tctattagct tgacgcgaga cgggaaacaa cgcgcagcta 1140 tgcctaaacc cattggtgag tgcttctttg tcaacgattt cacccgtgaa gaattggatg 1200 cagctttagc tgaacacaaa cgtctgtgtg ctacataccc tcgtggtgga gatggcattg 1260 acgcttacat agaaactcaa gaagaatcca aactattggg agtgtgacct agctgtaaga 1320 aggaggtttt tgatgaccag tattttagga cgagataccg caagaccaat aacgccacat 1380 agcattctgg tagcacagct acaaaaaacc ctcagaatgg cagaggaaag taatattcct 1440 tcagagatac tgacttctct gcgccaaggg ctacaattag cagcaggttt agatccctat 1500 ctggatgact gcactacccc tgaatcgacc gcattgacag cactagcgca gaagacatct 1560 attgaagact ggagtaaacg cttcagtgat ggtgaaacag tgcgtcaatt agagcaagaa 1620 atgctctcag gacatcttga aggacagaca ctaaagatgt ttgtgcatat cactaaggct 1680 aaaagcatcc tagaagtggg aatgttcaca ggatattcag ctttggcaat ggcagaggcg 1740 ttaccagatg atgggcgact gattgcctgt gaagtagact cctatgtggc cgagtttgcc 1800 caaacttgct ttcaagagtc tccccacggc cgcaagattg ttgtagaagt ggcacctgca 1860 ctagagacgc tgcacaagct ggtagctaaa aaagaatcct ttgatctgat cttcattgat 1920 gcggataaaa aggagtatat agaatatttc caaattattt tggattcaca tttgctagcc 1980 ccggacggct taatctgtgt ggataatact ttgttgcaag gacaagttta cctgccatca 2040 gaacagcgta cagccaatgg tgaagcgatc gctcaattca accgcattgt cgccgcagat 2100 cctcgtgtag agcaagttct gttacccata cgagatggta taaccctgat tagacgcctc 2160 gtatgacgac actatttcta aggcactttt tatggcacaa tcaatctctt tatctcttcc 2220 tcaatccaca acgccatcaa agggtgtgag gctaaaaata gcagctctac tgaagactat 2280 cgggactcta atactactgc tgatagcctt gccgcttaac gctttaattg tattgatttc 2340 tctgatgtgt aggccgttta caaaaaaacc tgccgtagcc actcatcccc agaatatctt 2400 ggtcagtggc ggcaaaatga ccaaagcact gcaacttgcc cgctccttcc atgcagccgg 2460 acacagagtt attctgattg aaggtcataa atactggtta tcagggcata gattctcaaa 2520 ttctgtgagt cgtttttata cagttcctgc accacaagac gacccagaag gctataccca 2580 agcgctattg gaaattgtca aacgagagaa gattgacgtt tatgtacccg tatgcagccc 2640 tgtagctagt tattacgact ctttggcaaa gtctgcacta tcagaatatt gtgaggtttt 2700 tcactttgat gctgatataa ccaagatgct ggatgataaa tttgccttta ccgatcgggc 2760 tcgatcgttg ggcttatcag ccccgaaatc ctttaaaatt accgatcctg aacaagttat 2820 caatttcgat ttctcgaaag agacgcgcaa atatatactt aagagtatca gttacgactc 2880 agttcgccgc ttaaatttaa ccaaacttcc ttgtgacacc ccagaggaga cagcggcgtt 2940 tgtcaagagt ttacccatca gcccagaaaa accttggata atgcaggaat ttattcctgg 3000 gaaagaatta tgcacccata gcacagtccg agacggcgaa ttaaggttgc attgctgctc 3060 aaattcttca gcgtttcaga taaattacga aaacgttgaa aacccccaaa ttcaagaatg 3120 ggtacaacat ttcgtcaaga gtttacggct gactggacaa atatctcttg actttatcca 3180 agctgaagat ggtacagctt atgccattga atgtaatcct cgcacccatt cggcgatcac 3240 aatgttctac aatcacccag gtgttgcaga agcctatctt ggtaaaactc ctctagctgc 3300 acctttggaa cctcttgcgg atagcaagcc cacttactgg atatatcacg aaatctggcg 3360 attgactggg attcgctctg gacaacaatt acaaacttgg tttgggagat tagtcagagg 3420 tacagatgcc atttatcgcc tggacgatcc gataccattt ttaactctgc accattggca 3480 gattacgctg cttctgctac aaaatttaca acgactcaaa ggttgggtaa aaatcgattt 3540 caatataggt aagctcgtgg aattaggggg agactaaagc atcagaacaa ggagcttctt 3600 ttatgccagt acttaatatc cttcatttag ttgggtctgc acacgataaa ttttattgcg 3660 atttatcacg tctttatgcc caagactgtt tagctgcaac agcagatcca tcactttaca 3720 acttccagat cgcatacata acgcccgatc ggcagtggag atttcctgac tctctcagtc 3780 gagaagatat tgcccttacc aaaccgattc ctgtgtttga tgccatacaa tttctaacag 3840 gccaaaacat tgacatgatg ttaccacaaa tgttttgtat tcctggaatg actcagtacc 3900 gtgccctatt cgatctgctc aagatccctt atataggaaa taccccagat attatggcga 3960 tcgcggccca taaagccaga gccaaagcaa ttgtggaagc agcaggggta aaagtgcctc 4020 gtggagaatt gcttcgccaa ggagatattc caacaattac acctccagca gtcgtcaaac 4080 ctgtaagttc tgacaactct ttaggagtag tcttagttaa agatgtgact gaatatgatg 4140 ctgccttaaa aaaagcattc gaatatgctt cggaggtcat cgtagaagca ttcatcgaac 4200 ttggtcgaga agtcagatgc ggcatcattg taaaagacgg tgagctaata ggtttacccc 4260 ttgaagagta tctggtagac ccacacgata aacctatccg taactatgct gataaactcc 4320 aacagactga cgatggcgac ctgcatttga cggctaaaga taacatcaag gcttggattt 4380 tagaccctaa cgacccaatc acccaaaagg ttcagcaagt agctaagagg tgtcatcagg 4440 ctttgggttg tcgccactac agtttatttg acttccgaat cgatccaaag ggacaacctt 4500 ggttcttaga agctggatta tattgttctt tcgcccccaa aagtgtgatt tctagcatgg 4560 cgaaagcggc cggaatccct ctaaatgatc ttttgattac ggctattaat gagacattgg 4620 gtagtaataa gaaggtgctt caaaattgat cctacgggaa ataaggaggt ctttatgcct 4680 tcgcgccgag acttagcgaa cgccatacgc gctttgagca tggatgccgt ccaaaaagcg 4740 aactccggac atccaggggc acctatggga atggcggata tcgccgaggt gttatggaac 4800 gacttcctgc agcataaccc gactaacccg aactgggcca accgagaccg cttcgtgctg 4860 tctaatggcc acggctcgat gctgctgtac tcgttactgc atctgacagg ttaccagctg 4920 ccgatcgacg aactgaaaca attccgtcaa ctgcattcaa aaaccccggg tcatccggaa 4980 tacggctatg cgccgggcgt ggaaacgacg accggaccat taggtcaagg catcaccaat 5040 gccgtgggct ttgcgatagc cgaacgcgca ctagcgggtc aatttaaccg tcccggacac 5100 gaaatcgtcg accattacac ctacgccttc ctgggggacg ggtgtttaat ggaaggcatc 5160 tcgcatgaag cctgctcatt ggccggctcg atgaaactgg gcaaactgat tgccgtctac 5220 gacgacaaca acatctcgat cgacggagaa gtccggggcc acggagacac gccgggctgg 5280 ttcctggacg acacgccgaa acgcttcgaa gcctacggct ggcacgtcat cccgaaagta 5340 gacggccata accctgaagc cgtgaaaaaa gccttggaag aagcgcgtag cgtcactgat 5400 cggccgacct tgatctgctg ccaaaccatc attggctggg gctcgccgaa taaagaaggc 5460 aaagaagaat gtcatggagc ggcattaggc gaagccgaaa tcacggcaac ccgcgaacgc 5520 atcggttggc cgcatgcacc tttcgaaatc ccggcggata tttacgcggg ttgggatgcg 5580 aaagacaaag gcgcgcgtca agaagcggag tggaacgaca aattcgcgaa ataccaagca 5640 gcgcatccgg aactggcggc cgaattcgaa cgccgcatga gcggacagct gccgagcgac 5700 tggtcggaaa aagcgaacgc cttcattgct gcggtcgacg cgaaaggcga aaccatcgct 5760 agccgcaaag cctcacaaaa caccctgaac ggattcggac cgttactgcc cgaacttatg 5820 ggaggttcgg ccgatttggc tggctccaac ttgaccctgt ggtcgggttg caaagacgtc 5880 aacgccccgg gacatgatgg caactacgtc tactacggcg tccgtgaatt cggcatgtcg 5940 gcgatcatga acggcatcac cctgcatggc ggcttcaagc cgtacggcgc gaccttcctg 6000 atgttctccg aatatgcgcg gaatgccttg cggatggcgt cgttgatgaa aatcccgacc 6060 atcttcgtat acacgcacga ctcgatcggc ttaggcgaag acggcccgac ccatcaaccg 6120 atcgaacaaa ccgcgacctt gcggatgatt ccaaacatgc aagtgtggcg tccatgtgat 6180 gctgtggaat cggcggtgtc gtggaaagcg gcgattgaac gaaacgatgg accgagttgt 6240 ctgatcttct cacggcaaaa cctagctcac attgcgagga cgccggcgca aatagaagcg 6300 atcaacaaag gcggctacat tctgaaagac agcgaaggtc agccggacgt gatcctgatt 6360 gcgacgggct cggaagtcga attggcggtg aaagcggcag acgagttgag cggcaaaggc 6420 aaaaaagtgc gggtcgtctc gatgccatcg accaacgtat tcgatgcgca ggacgaagcc 6480 taccgtgagt cggtgctgcc gtcatcggtg acaaaacgcg tcgtaattga agcgggcgtg 6540 accgacagct ggtggaaata cgcgggtaca caaggttgcg tcatcggaat ggatcgtttc 6600 ggtgaatcgg caccggctgg ggccctgttc aaagagttcg gcttcaccgt tgacaatgtc 6660 gtcaaacacg tggaagctct gctttaaggg aactgccagg catcaaataa aacgaaaggc 6720 tcagtcgaaa gactgggcct ttcgttttat ctgttgtttg tcggtgaacg ctctcctg 6778 <110> University-Industry Cooperation Group of Kyung Hee University <120> Development of novel methanotroph that co-assimilate methane and xylose, and producing shinorine using itself <130> PN1910-471 <160> 9 <170> KoPatentIn 3.0 <210> 1 <211> 1233 <212> DNA <213> Unknown <220> <223> NPR_5600 (2-demethyl 4-deoxygadusol synthase) <400> 1 atgagtaatg ttcaagcatc gtttgaagca acggaagctg aattccgcgt ggaaggttac 60 gaaaaaattg agtttagtct tgtctatgta aatggtgcat ttgatatcag taacagagaa 120 attgcagaca gctatgagaa gtttggccgt tgtctgactg tgattgatgc taatgtcaac 180 agattatatg gcaagcaaat caagtcatat tttagacact atggtattga tctgaccgta 240 gttcccattg tgattactga gcctactaaa acccttgcaa cctttgagaa aattgttgat 300 gctttttctg actttggttt aatccgcaag gaaccagtat tagtagtggg tggtggttta 360 accactgatg tagctgggtt tgcgtgtgct gcttaccgtc gtaagagtaa ctatattcgg 420 gttccgacaa cgctgattgg tctgattgat gcaggtgtag cgattaaggt tgcagtcaac 480 catcgcaagt taaaaaatcg cttgggtgca tatcatgctc ctttgaaagt catcctcgat 540 ttctccttct tgcaaacatt accaacggct caagttcgta atgggatggc agagttggtc 600 aaaattgctg ttgtggcgaa ctctgaagtc tttgaattgt tgtatgaata tggcgaagag 660 ttgctttcca ctcactttgg atatgtgaat ggtacaaagg aactgaaagc gatcgcacat 720 aaactcaatt acgaggcaat aaaaactatg ctggagttgg aaactccaaa cttgcatgag 780 ttagacctcg atcgcgtcat tgcctacggt cacacttgga gtccgacctt agaattagct 840 ccgatgatac cgttgtttca cggtcatgcc gtcaatatag acatggcttt gtctgcaact 900 attgcggcaa gacgtggcta cattacatca ggagaacgcg atcgcatttt gagcttgatg 960 agtcgtatag gtttatcaat cgatcatcct ctactagatg gcgatttgct ctggtatgct 1020 acccaatcta ttagcttgac gcgagacggg aaacaacgcg cagctatgcc taaacccatt 1080 ggtgagtgct tctttgtcaa cgatttcacc cgtgaagaac tagatgcagc tttagctgaa 1140 cacaaacgtc tgtgtgctac ataccctcgt ggtggagatg gcattgacgc ttacatagaa 1200 actcaagaag aatccaaact attgggagtg tga 1233 <210> 2 <211> 834 <212> DNA <213> Unknown <220> <223 > NPR_5599 (O-methyltransferase) <400> 2 atgaccagta ttttaggacg agataccgca agaccaataa cgccacatag cattctggta 60 gcacagctac aaaaaaccct cagaatggca gaggaaagta atattccttc agagatactg 120 acttctctgc gccaagggtt gcaattagca gcaggtttag atccctatct ggatgattgc 180 actacccctg aatcgaccgc attgacagca ctagcgcaga agacaagcat tgaagactgg 240 agtaaacgct tcagtgatgg tgaaacagtg cgtcaattag agcaagaaat gctctcagga 300 catcttgaag gacaaacact aaagatgttt gtgcatatca ctaaggctaa aagcatccta 360 gaagtgggaa tgttcacagg atattcagct ttggcaatgg cagaggcgtt accagatgat 420 gggcgactga ttgcttgtga agtagactcc tatgtggccg agtttgctca aacttgcttt 480 caagagtctc cccacggccg caagattgtt gtagaagtgg cacctgcact agagacgctg 540 cacaagctgg tggctaaaaa agaatccttt gatctgatct tcattgatgc ggataaaaag 600 gagtatatag aatacttcca aattatcttg gatagccatt tactagctcc cgacggatta 660 atctgtgtag ataatacttt gttgcaagga caagtttacc tgccatcaga acagcgtaca 720 gccaatggtg aagcgatcgc tcaattcaac cgcattgtcg ccgcagatcc tcgtgtagag 780 caagttctgt tacccatacg agatggtata accctgatta gacgcttggt ataa 834 <210> 3 <211> 1386 <212> DNA <213 > Unknown <220> <223> NPR_5598 (ATP-grasp ligase) <400> 3 atggcacaat caatctcttt atctcttcct caatccacaa cgccatcaaa gggt gtgagg 60 ctaaaaatag cagctctact gaagactatc gggactctaa tactactgct gatagccttg 120 ccgcttaatg ctttgatagt attgatatct ctgatgtgta ggccgtttac aaaaaaacct 180 gccgtagcca ctcatcccca gaatatcttg gtcagtggcg gcaaaatgac caaagcattg 240 caacttgccc gctccttcca tgcagccgga cacagagtta ttctgattga aggtcataaa 300 tactggttat cagggcatag attctcaaat tctgtgagtc gtttttatac agttcctgca 360 ccacaagacg acccagaagg ctatacccaa gcgctattgg aaattgtcaa acgagagaag 420 attgacgttt atgtacccgt atgcagccct gtagctagtt attacgactc tttggcaaag 480 tctgcactat cagaatattg tgaggttttt cactttgatg ctgatataac caagatgctg 540 gatgataaat ttgcctttac cgatcgggcg cgatcgcttg gtttatcagc cccgaaatct 600 tttaaaatta ccgatcctga acaagttatc aacttcgatt ttagtaaaga gacgcgcaaa 660 tatattctta agagtatttc ttacgactca gttcgccgct taaatttaac caaacttcct 720 tgtgataccc cagaagagac agcagcgttt gtcaagagtt tacccatcag cccagaaaaa 780 ccttggatta tgcaagaatt tattcctggg aaagaattat gcacccatag cacagtccga 840 gacggcgaat taaggttgca ttgctgttca aattcttcag cgtttcagat taactatgaa 900 aatgtcgaaa atccccaaat tcaagaatgg gtacaacatt tcgtcaaaag tttacggctg 960 actggacaaa tatctcttga ctttatccaa gctgaagatg gtacagctta tgccattgaa 1020 tgtaatcctc gcacccattc ggcgatcaca atgttctaca atcacccagg tgttgcagaa 1080 gcctatcttg gtaaaactcc tctagctgca cctttggaac ctcttgcaga tagcaagccc 1140 acttactgga tatatcacga aatctggcga ttgactggga ttcgctctgg acaacaatta 1200 caaacttggt ttgggagatt agtcagaggt acagatgcca tttatcgcct ggacgatccg 1260 ataccatttt taactttgca ccattggcag attactttac ttttgctaca aaatttgcaa 1320 cgactcaaag gttgggtaaa gatcgatttt aatatcggta aactcgtgga attagggggc 1380 gactaa 1386 <210> 4 <211> 1047 <212> DNA <213> Unknown <220> <223> NPR_5597 (D-ala-D-ala ligase) <400> 4 atgccagtac ttatatatcct tcatttagagtt 60 ttatcacgtc tttatgccca agactgttta gctgcaacag cagatccatc gctttataac 120 tttcaaattg catatatcac acccgatcgg cagtggcgat ttcctgactc tctcagtcga 180 gaagatattg ctcttaccaa accgattcct gtgtttgatg ccatacaatt tctaacaggc 240 caaaacattg acatgatgtt accacaaatg ttttgtattc ctggaatgac tcag taccgt 300 gccctattcg atctgctcaa gatcccttat ataggaaata ccccagatat tatggcgatc 360 gcggcccaca aagccagagc caaagcaatt gtcgaagcag caggggtaaa agtgcctcgt 420 ggagaattgc ttcgccaagg agatattcca acaattacac ctccagcagt cgtcaaacct 480 gtaagttctg acaactcttt aggagtagtc ttagttaaag atgtgactga atatgatgct 540 gccttaaaga aagcatttga atatgcttcg gaggtcatcg tagaagcatt catcgaactt 600 ggtcgagaag tcagatgcgg catcattgta aaagacggtg agctaatagg tttacccctt 660 gaagagtatc tggtagaccc acacgataaa cctatccgta actatgctga taaactccaa 720 caaactgacg atggcgactt gcatttgact gctaaagata atatcaaggc ttggatttta 780 gaccctaacg acccaatcac ccaaaaggtt cagcaagtgg ctaaaaggtg tcatcaggct 840 ttgggttgtc gccactacag tttatttgac ttccgaatcg atccaaaggg acaaccttgg 900 ttcttagaag ctggattata ttgttctttt gcccccaaaa gtgtgatttc ttctatggcg 960 aaagcagccg gaatccctct aaatgattta ttaataaccg ctattaatga aacattgggt 1020 agtaataaaa aggtgttaca aaattga 1047 <210> 5 <211> 2013 <212 > DNA <213> Unknown <220> <223> transketolase, tkt1 <400> 5 atgccttcgc gccgagactt agcgaacg cc atacgcgctt tgagcatgga tgccgtccaa 60 aaagccaact ccggacaccc gggcgcaccg atggggatgg cggatatcgc cgaggtgtta 120 tggaacgact tcctgcagca taacccgact aacccgaact gggccaaccg agaccgcttc 180 gtactgtcta acggccacgg ctcgatgctg ctgtactcgt tactgcatct gacaggttac 240 cagctgccga tcgacgaact gaaacaattc cgtcaactgc attcaaaaac cccgggtcat 300 ccggaatacg gctatgcgcc gggcgtcgaa acgacgaccg gaccattagg tcaaggcatc 360 accaatgccg tgggctttgc gatagccgaa cgcgcactag cgggtcaatt taaccgtccc 420 ggacacgaaa tcgtcgacca ttacacctac gccttcctgg gcgacggctg tttaatggaa 480 ggcatctcgc atgaagcctg ctcattggcc ggctcgatga aactgggcaa actgattgcc 540 gtctacgacg acaacaacat ctcgatcgac ggcgaagtcc gcggtcacgg cgacacgccg 600 ggctggttcc tggacgacac gccgaaacgc ttcgaagcct acggctggca cgtcatcccg 660 aaagtagacg gccataaccc tgaagccgtc aaaaaagcct tggaagaagc gcgtagcgtc 720 actgatcggc cgaccttgat ctgctgccaa accatcattg gctggggctc gccgaataaa 780 gaaggcaaag aagaatgtca tggagcggca ttaggcgaag ccgaaatcac ggcaacccgc 840 gaacgcatcg gttggccgca tgcacctttc gaaatcccgg cggatat tta cgcgggttgg 900 gatgcgaaag acaaaggcgc gcgtcaagaa gcggagtgga acgacaaatt cgcgaaatac 960 caagcagcgc atccggaact ggcggccgaa ttcgaacgcc gcatgagcgg acagctgccg 1020 agcgactggt cggaaaaagc gaacgccttc attgctgcgg tcgacgcgaa aggcgaaacc 1080 atcgctagcc gcaaagcctc acaaaacacc ctgaacggat tcggaccgtt actgcccgaa 1140 ctgatgggcg gctcggcgga cttggcaggc tccaacttga ccctgtggtc gggttgcaaa 1200 gacgtcaacg ccccgggaca tgacggcaac tacgtctact acggcgtccg tgaattcggc 1260 atgtcggcga tcatgaacgg catcaccctg catggcggct tcaagccgta cggcgcgacc 1320 ttcctgatgt tctccgaata tgcgcggaat gccttgcgga tggcgtcgtt gatgaaaatc 1380 ccgaccatct tcgtatacac gcacgactcg atcggcttag gcgaagacgg cccgacccat 1440 caaccgatcg aacaaaccgc gaccttgcgg atgattccaa acatgcaagt gtggcgtcca 1500 tgtgatgctg tggaatcggc ggtgtcgtgg aaagcggcga ttgaacgaaa cgatggaccg 1560 agttgtctga tcttctcacg gcaaaaccta gcgcacattg cgcggacgcc ggcgcagatc 1620 gaagcgatca acaaaggcgg ctacattctg aaagacagcg aaggtcagcc ggacgtgatc 1680 ctgattgcga cgggctcgga agtcgaattg gcggtgaaag cggcagacga gttg agcggc 1740 aaaggcaaaa aagtgcgggt cgtctcgatg ccatcgacca acgtattcga tgcgcaggac 1800 gaagcctacc gtgagtcggt gctgccgtca tcggtgacaa aacgcgtcgt aattgaagcg 1860 ggcgtgaccg acagctggtg gaaatacgcg ggtacacaag gttgcgtcat cggaatggat 1920 cgtttcggcg aatcggcacc ggccggcgcg ctgttcaaag agttcggctt caccgttgac 1980 aatgtcgtca aacacgtcga agctctgctt taa 2013 <210> 6 <211> 1323 <212> DNA <213> Unknown <220> <223> xylose isomerase, xylA <400> 6 atgcaagcct attttgacca gctcgatcgc gttcgttatg aaggctcaaa atcctcaaac 60 ccgttagcat tccgtcacta caatcccgac gaactggtgt tgggtaagcg tatggaagag 120 cacttgcgtt ttgccgcctg ctactggcac accttctgct ggaacggggc ggatatgttt 180 ggtgtggggg cgtttaatcg tccgtggcag cagcctggtg aggcactggc gttggcgaag 240 cgtaaagcag atgtcgcatt tgagtttttc cacaagttac atgtgccatt ttattgcttc 300 cacgatgtgg atgtttcccc tgagggcgcg tcgttaaaag agtacatcaa taattttgcg 360 caaatggttg atgtcctggc aggcaagcaa gaagagagcg gcgtgaagct gctgtgggga 420 acggccaact gctttacaaa ccctcgctac ggcgcgggtg cggcgacgaa cggcgatcc gct4cggccagatcc cggc aacgcaagtt gttacagcga tggaagcaac ccataaattg 540 ggcggtgaaa actatgtcct gtggggcggt cgtgaaggtt acgaaacgct gttaaatacc 600 gacttgcgtc aggagcgtga acaactgggc cgctttatgc agatggtggt tgagcataaa 660 cataaaatcg gtttccaggg cacgttgctt atcgaaccga aaccgcaaga accgaccaaa 720 catcaatatg attacgatgc cgcgacggtc tatggcttcc tgaaacagtt tggtctggaa 780 aaagagatta aactgaacat tgaagctaac cacgcgacgc tggcaggtca ctctttccat 840 catgaaatag ccaccgccat tgcgcttggc ctgttcggtt ctgtcgacgc caaccgtggc 900 gatgcgcaac tgggctggga caccgaccag ttcccgaaca gtgtggaaga gaatgcgctg 960 gtgatgtatg aaattctcaa agcaggcggt ttcaccaccg gtggtctgaa cttcgatgcc 1020 aaagtacgtc gtcaaagtac tgataaatat gatctgtttt acggtcatat cggcgcgatg 1080 gatacgatgg cactggcgct gaaaattgca gcgcgcatga ttgaagatgg cgagctggat 1140 aaacgcatcg cgcagcgtta ttccggctgg aatagcgaat tgggccagca aatcctgaaa 1200 ggccaaatgt cactggcaga tttagccaaa tatgctcagg aacatcattt gtctccggtg 1260 catcagagtg gtcgccagga acaactggaa aatctggtaa accattatct gttcgacaaa 1320 taa 1323 < 210> 7 <211> 1455 <21 2> DNA <213> Unknown <220> <223> xylulosekinase, xylB <400> 7 atgtatatcg ggatagatct tggcacctcg ggcgtaaaag ttattttgct caacgagcag 60 ggtgaggtgg ttgctgcgca aacggaaaag ctgaccgttt cgcgcccgca tccactctgg 120 tcggaacaag acccggaaca gtggtggcag gcaactgatc gcgcaatgaa agctctgggc 180 gatcagcatt ctctgcagga cgttaaagca ttgggtattg ccggccagat gcacggagca 240 accttgctgg atgctcagca acgggtgtta cgccctgcca ttttgtggaa cgacgggcgc 300 tgtgcgcaag agtgcacttt gctggaagcg cgagttccgc aatcgcgggt gattaccggc 360 aacctgatga tgcccggatt tactgcgcct aaattgctat gggttcagcg gcatgagccg 420 gagatattcc gtcaaatcga caaagtatta ttaccgaaag attacttgcg tctgcgtatg 480 acgggggagt ttgccagcga tatgtctgac gcagctggca ccatgtggct ggatgtcgca 540 aagcgtgact ggagtgacgt catgctgcag gcttgcgact tatctcgtga ccagatgccc 600 gcattatacg aaggcagcga aattactggt gctttgttac ctgaagttgc gaaagcgtgg 660 ggtatggcga cggtgccagt tgtcgcaggc ggtggcgaca atgcagctgg tgcagttggt 720 gtgggaatgg ttgatgctaa tcaggcaatg ttatcgctgg ggacgtcggg ggtctatttt 780 gctgtcagcg aagggttctt aagcaag cca gaaagcgccg tacatagctt ttgccatgcg 840 ctaccgcaac gttggcattt aatgtctgtg atgctgagtg cagcgtcgtg tctggattgg 900 gccgcgaaat taaccggcct gagcaatgtc ccagctttaa tcgctgcagc tcaacaggct 960 gatgaaagtg ccgagccagt ttggtttctg ccttatcttt ccggcgagcg tacgccacac 1020 aataatcccc aggcgaaggg ggttttcttt ggtttgactc atcaacatgg ccccaatgaa 1080 ctggcgcgag cagtgctgga aggcgtgggt tatgcgctgg cagatggcat ggatgtcgtg 1140 catgcctgcg gtattaaacc gcaaagtgtt acgttgattg ggggcggggc gcgtagtgag 1200 tactggcgtc agatgctggc ggatatcagc ggtcagcagc tcgattaccg tacggggggg 1260 gatgtggggc cagcactggg cgcagcaagg ctggcgcaga tcgcggcgaa tccagagaaa 1320 tcgctcattg aattgttgcc gcaactaccg ttagaacagt cgcatctacc agatgcgcag 1380 cgttatgccg cttatcagcc acgacgagaa acgttccgtc gcctctatca gcaacttctg 1440 ccattaatgg cgtaa 1455 <210> 8 <211> 672 <212> DNA <213> Unknown <220> <223> ribulose-phosphate 3-epimerase, rpe <400> 8 atggcccaaa actggatagc tccttccatt ctctctgccg atttcgctcg cttaggcgaa 60 gaagtcgata acgttttagc ggccggtgcc gatgttgtcc attttgacgt catggac aat 120 catttcgtac ccaatttaac gatcggccca ttggtttgcg aagcattaag aaatcatggc 180 gttaccgctc caatcgacgt acatttgatg atcgatccgg tcgatcgaat catcccggac 240 ttcgccaaag ccggcgccag ctatattacc ttccatcctg aagcttcggt tcatctggat 300 agaaccttgc aattgatcaa agaccaaggt tgtaaagccg gcttggtatt caacccgtcg 360 acttcgctgc attatctgga tcatgtgatg gataaactcg acatgatttt attgatgtcg 420 gtcaacccgg gcttcggcgg acaatcgttt ctgccgtcgg cattaaccaa actgcgcgat 480 gcaagaaaac gaatcgatga aagcggtttc gatattcgtt tggaaatcga cggcggcgtc 540 aaagtcgaca atattcgtga aatcaaagcg gcgggcgccg ataccttcgt tgccggttcg 600 gcgattttcg gcaaaccgga ctacaaagca gtcatcgacc aaatgcgcgc ggaaattgca 660 aaagccgagt aa 672 <210> 9 <211> 6778 <212> DNA <213> Unknown <220> <223> Synthetic operon (NPR5600-5599-5598-5597 -TKT1) <400> 9 ctctgaaatg agctgttgac aattaatcat cggctcgtat aatgtgtggg tggatagagt 60 caggaggtta taggatgagt aatgtacaag catcgtttga agcaacggaa gctgaattcc 120 gcgtggaagg ttacgaaaaa attgagttca gtcttgtcta tgtaaatggt gcatttgata 180 tcagtaacag agaaattgca gac agctatg agaagtttgg ccgttgtctg actgtgattg 240 atgctaatgt caaccgcctg tatggcaaac aaataaaatc ttatttccgc cactatggta 300 ttgatctgac cgtagttccc attgtgatta ctgagcctac taaaaccctt gcaacctttg 360 agaagattgt tgatgcattt tctgactttg gtctgatccg caaggaacca gtattagtag 420 tgggtggtgg tttaaccact gatgtagctg ggtttgcgtg tgctgcttac cgtcgtaaga 480 gtaactatat tcgggttccg acaacgctga ttggtctgat tgatgctggt gtagcgatta 540 aggttgcagt caaccatcgc aagttaaaaa atcgcttggg tgcatatcat gctcctttga 600 aagtcatcct cgatttctcc ttcttgcaaa cattaccaac ggctcaagtt cgtaatggga 660 tggcagagtt ggtcaagata gctgttgtgg cgaactctga agtctttgaa ctgttgtatg 720 aatatggcga agagttgctt tccactcact ttggatatgt gaatggtaca aaggaactga 780 aagcgatcgc acataaactc aattacgagg caataaaaac tatgctggag ttggaaactc 840 caaacttgca tgagttagac ctcgatcgcg tcattgccta cggtcacact tggagtccga 900 ccttagaatt agctccgatg ataccgttgt ttcacggtca tgccgtcaat atagacatgg 960 ctttgtctgc aactattgcg gcaagacgtg gctacattac atcaggagaa cgcgatcgca 1020 ttttgagctt gatgagtcgt ataggtttat caatcgatcatcctctacta gatggcgatt 1080 tgctctggta tgctacccaa tctattagct tgacgcgaga cgggaaacaa cgcgcagcta 1140 tgcctaaacc cattggtgag tgcttctttg tcaacgattt cacccgtgaa gaattggatg 1200 cagctttagc tgaacacaaa cgtctgtgtg ctacataccc tcgtggtgga gatggcattg 1260 acgcttacat agaaactcaa gaagaatcca aactattggg agtgtgacct agctgtaaga 1320 aggaggtttt tgatgaccag tattttagga cgagataccg caagaccaat aacgccacat 1380 agcattctgg tagcacagct acaaaaaacc ctcagaatgg cagaggaaag taatattcct 1440 tcagagatac tgacttctct gcgccaaggg ctacaattag cagcaggttt agatccctat 1500 ctggatgact gcactacccc tgaatcgacc gcattgacag cactagcgca gaagacatct 1560 attgaagact ggagtaaacg cttcagtgat ggtgaaacag tgcgtcaatt agagcaagaa 1620 atgctctcag gacatcttga aggacagaca ctaaagatgt ttgtgcatat cactaaggct 1680 aaaagcatcc tagaagtggg aatgttcaca ggatattcag ctttggcaat ggcagaggcg 1740 ttaccagatg atgggcgact gattgcctgt gaagtagact cctatgtggc cgagtttgcc 1800 caaacttgct ttcaagagtc tccccacggc cgcaagattg ttgtagaagt ggcacctgca 1860 ctagagacgc tgcacaagct ggtagctaaa aaagaatcct ttgatc tgat cttcattgat 1920 gcggataaaa aggagtatat agaatatttc caaattattt tggattcaca tttgctagcc 1980 ccggacggct taatctgtgt ggataatact ttgttgcaag gacaagttta cctgccatca 2040 gaacagcgta cagccaatgg tgaagcgatc gctcaattca accgcattgt cgccgcagat 2100 cctcgtgtag agcaagttct gttacccata cgagatggta taaccctgat tagacgcctc 2160 gtatgacgac actatttcta aggcactttt tatggcacaa tcaatctctt tatctcttcc 2220 tcaatccaca acgccatcaa agggtgtgag gctaaaaata gcagctctac tgaagactat 2280 cgggactcta atactactgc tgatagcctt gccgcttaac gctttaattg tattgatttc 2340 tctgatgtgt aggccgttta caaaaaaacc tgccgtagcc actcatcccc agaatatctt 2400 ggtcagtggc ggcaaaatga ccaaagcact gcaacttgcc cgctccttcc atgcagccgg 2460 acacagagtt attctgattg aaggtcataa atactggtta tcagggcata gattctcaaa 2520 ttctgtgagt cgtttttata cagttcctgc accacaagac gacccagaag gctataccca 2580 agcgctattg gaaattgtca aacgagagaa gattgacgtt tatgtacccg tatgcagccc 2640 tgtagctagt tattacgact ctttggcaaa gtctgcacta tcagaatatt gtgaggtttt 2700 tcactttgat gctgatataa ccaagatgct ggatgataaa tttgccttta c cgatcgggc 2760 tcgatcgttg ggcttatcag ccccgaaatc ctttaaaatt accgatcctg aacaagttat 2820 caatttcgat ttctcgaaag agacgcgcaa atatatactt aagagtatca gttacgactc 2880 agttcgccgc ttaaatttaa ccaaacttcc ttgtgacacc ccagaggaga cagcggcgtt 2940 tgtcaagagt ttacccatca gcccagaaaa accttggata atgcaggaat ttattcctgg 3000 gaaagaatta tgcacccata gcacagtccg agacggcgaa ttaaggttgc attgctgctc 3060 aaattcttca gcgtttcaga taaattacga aaacgttgaa aacccccaaa ttcaagaatg 3120 ggtacaacat ttcgtcaaga gtttacggct gactggacaa atatctcttg actttatcca 3180 agctgaagat ggtacagctt atgccattga atgtaatcct cgcacccatt cggcgatcac 3240 aatgttctac aatcacccag gtgttgcaga agcctatctt ggtaaaactc ctctagctgc 3300 acctttggaa cctcttgcgg atagcaagcc cacttactgg atatatcacg aaatctggcg 3360 attgactggg attcgctctg gacaacaatt acaaacttgg tttgggagat tagtcagagg 3420 tacagatgcc atttatcgcc tggacgatcc gataccattt ttaactctgc accattggca 3480 gattacgctg cttctgctac aaaatttaca acgactcaaa ggttgggtaa aaatcgattt 3540 caatataggt aagctcgtgg aattaggggg agactaaagc atcagaacaa ggagcttctt 3600 ttatgccagt acttaatatc cttcatttag ttgggtctgc acacgataaa ttttattgcg 3660 atttatcacg tctttatgcc caagactgtt tagctgcaac agcagatcca tcactttaca 3720 acttccagat cgcatacata acgcccgatc ggcagtggag atttcctgac tctctcagtc 3780 gagaagatat tgcccttacc aaaccgattc ctgtgtttga tgccatacaa tttctaacag 3840 gccaaa acat tgacatgatg ttaccacaaa tgttttgtat tcctggaatg actcagtacc 3900 gtgccctatt cgatctgctc aagatccctt atataggaaa taccccagat attatggcga 3960 tcgcggccca taaagccaga gccaaagcaa ttgtggaagc agcaggggta aaagtgcctc 4020 gtggagaatt gcttcgccaa ggagatattc caacaattac acctccagca gtcgtcaaac 4080 ctgtaagttc tgacaactct ttaggagtag tcttagttaa agatgtgact gaatatgatg 4140 ctgccttaaa aaaagcattc gaatatgctt cggaggtcat cgtagaagca ttcatcgaac 4200 ttggtcgaga agtcagatgc ggcatcattg taaaagacgg tgagctaata ggtttacccc 4260 ttgaagagta tctggtagac ccacacgata aacctatccg taactatgct gataaactcc 4320 aacagactga cgatggcgac ctgcatttga cggctaaaga taacatcaag gcttggattt 4380 tagaccctaa cgacccaatc acccaaaagg ttcagcaagt agctaagagg tgtcatcagg 4440 ctttgggttg tcgccactac agtttatttg acttccgaat cgatccaaag ggacaacctt 4500 ggttcttaga agctggatta tattgttctt tcgcccccaa aagtgtgatt tctagcatgg 4560 cgaaagcggc cggaatccct ctaaatgatc ttttgattac ggctattaat gagacattgg 4620 gtagtaataa gaaggtgctt caaaattgat cctacgggaa ataaggaggt ctttatgcct 4680 tcgcgccgag a cttagcgaa cgccatacgc gctttgagca tggatgccgt ccaaaaagcg 4740 aactccggac atccaggggc acctatggga atggcggata tcgccgaggt gttatggaac 4800 gacttcctgc agcataaccc gactaacccg aactgggcca accgagaccg cttcgtgctg 4860 tctaatggcc acggctcgat gctgctgtac tcgttactgc atctgacagg ttaccagctg 4920 ccgatcgacg aactgaaaca attccgtcaa ctgcattcaa aaaccccggg tcatccggaa 4980 tacggctatg cgccgggcgt ggaaacgacg accggaccat taggtcaagg catcaccaat 5040 gccgtgggct ttgcgatagc cgaacgcgca ctagcgggtc aatttaaccg tcccggacac 5100 gaaatcgtcg accattacac ctacgccttc ctgggggacg ggtgtttaat ggaaggcatc 5160 tcgcatgaag cctgctcatt ggccggctcg atgaaactgg gcaaactgat tgccgtctac 5220 gacgacaaca acatctcgat cgacggagaa gtccggggcc acggagacac gccgggctgg 5280 ttcctggacg acacgccgaa acgcttcgaa gcctacggct ggcacgtcat cccgaaagta 5340 gacggccata accctgaagc cgtgaaaaaa gccttggaag aagcgcgtag cgtcactgat 5400 cggccgacct tgatctgctg ccaaaccatc attggctggg gctcgccgaa taaagaaggc 5460 aaagaagaat gtcatggagc ggcattaggc gaagccgaaa tcacggcaac ccgcgaacgc 5520 atcggttggc cgcatgc acc tttcgaaatc ccggcggata tttacgcggg ttgggatgcg 5580 aaagacaaag gcgcgcgtca agaagcggag tggaacgaca aattcgcgaa ataccaagca 5640 gcgcatccgg aactggcggc cgaattcgaa cgccgcatga gcggacagct gccgagcgac 5700 tggtcggaaa aagcgaacgc cttcattgct gcggtcgacg cgaaaggcga aaccatcgct 5760 agccgcaaag cctcacaaaa caccctgaac ggattcggac cgttactgcc cgaacttatg 5820 ggaggttcgg ccgatttggc tggctccaac ttgaccctgt ggtcgggttg caaagacgtc 5880 aacgccccgg gacatgatgg caactacgtc tactacggcg tccgtgaatt cggcatgtcg 5940 gcgatcatga acggcatcac cctgcatggc ggcttcaagc cgtacggcgc gaccttcctg 6000 atgttctccg aatatgcgcg gaatgccttg cggatggcgt cgttgatgaa aatcccgacc 6060 atcttcgtat acacgcacga ctcgatcggc ttaggcgaag acggcccgac ccatcaaccg 6120 atcgaacaaa ccgcgacctt gcggatgatt ccaaacatgc aagtgtggcg tccatgtgat 6180 gctgtggaat cggcggtgtc gtggaaagcg gcgattgaac gaaacgatgg accgagttgt 6240 ctgatcttct cacggcaaaa cctagctcac attgcgagga cgccggcgca aatagaagcg 6300 atcaacaaag gcggctacat tctgaaagac agcgaaggtc agccggacgt gatcctgatt 6360 gcgacgggct cggaagtcga at tggcggtg aaagcggcag acgagttgag cggcaaaggc 6420 aaaaaagtgc gggtcgtctc gatgccatcg accaacgtat tcgatgcgca ggacgaagcc 6480 taccgtgagt cggtgctgcc gtcatcggtg acaaaacgcg tcgtaattga agcgggcgtg 6540 accgacagct ggtggaaata cgcgggtaca caaggttgcg tcatcggaat ggatcgtttc 6600 ggtgaatcgg caccggctgg ggccctgttc aaagagttcg gcttcaccgt tgacaatgtc 6660 gtcaaacacg tggaagctct gctttaaggg aactgccagg catcaaataa aacgaaaggc 6720tcagtcgaaa gactgggcct ttcgttttat ctgttgtttg tcggtgaacg ctctcctg 6778

Claims (10)

서열번호 1로 이루어진 2-디메틸 4-디옥시가두솔 합성효소(2-demethyl 4-deoxygadusol synthase, DDGS)를 코딩하는 유전자, 서열번호 2로 이루어진 O-메틸트렌스퍼라제(O-methyltransferase, OMT)를 코딩하는 유전자, 서열번호 3으로 이루어진 ATP-그라스프 라이가제(ATP-grasp-ligase)를 코딩하는 유전자, 서열번호 4로 이루어진 시아노박테리아(Nostoc punctiforme) 유래의 D-알라-D-알라 라이가제(D-ala-D-ala ligase)를 코딩하는 유전자, 서열번호 5로 이루어진 트렌스케톨라제(transketolase)를 암호화 하는 tkt1 유전자, 자일로스 대사경로에 관여하는 서열번호 6으로 이루어진 자일로스 아이소머라제(xylose isomerase, xylA)를 코딩하는 유전자, 서열번호 7로 이루어진 자일룰로스키나아제(xylulosekinase, xylB)를 코딩하는 유전자 및 서열번호 8로 이루어진 리불로스-포스페이트 3-에피머라제(ribulose-phosphate 3-epimerase, rpe)가 도입 또는 과발현되어 시노린을 생산하는 메틸로마이크로비움 알칼리필리움 20Z(Methylomicrobium alcaliphilum 20Z).Gene encoding 2-dimethyl 4-deoxygadusol synthase (DDGS) consisting of SEQ ID NO: 1, O-methyltransferase (OMT) consisting of SEQ ID NO: 2 Gene encoding ATP-grasp-ligase consisting of SEQ ID NO: 3, gene encoding ATP-grasp-ligase, cyanobacteria consisting of SEQ ID NO: 4 ( Nostoc punctiforme ) derived from D-Ala-D-Ala A gene encoding ligase (D-ala-D-ala ligase), a tkt1 gene encoding transketolase composed of SEQ ID NO: 5, and a xylose isoform composed of SEQ ID NO: 6 involved in the xylose metabolic pathway A gene encoding xylose isomerase (xylA), a gene encoding xylulosekinase (xylB) consisting of SEQ ID NO: 7, and a ribulose-phosphate 3-epimerase consisting of SEQ ID NO: 8 Methylomicrobium alcaliphilum 20Z, in which 3-epimerase, rpe) is introduced or overexpressed to produce shinoline. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 제 1항의 메틸로마이크로비움 알칼리필리움 20Z(Methylomicrobium alcaliphilum 20Z) 또는 이의 배양액; 및
메탄 및 자일로스; 또는 메탄올 및 자일로스;로 이루어진 탄소원을 포함하는 시노린(shinorine) 생산용 조성물.
Methylomicrobium alcaliphilum 20Z of claim 1 or its culture medium; and
methane and xylose; Or methanol and xylose; Composition for production of shinorine (shinorine) comprising a carbon source consisting of.
제 7항에 있어서, 상기 조성물은 미량 원소로 텅스텐을 추가 포함하는 것을 특징으로하는 시노린(shinorine) 생산용 조성물.The composition for producing shinorine according to claim 7, wherein the composition further comprises tungsten as a trace element. 제 1항의 메틸로마이크로비움 알칼리필리움 20Z(Methylomicrobium alcaliphilum 20Z)을, 메탄 및 자일로스; 또는 메탄올 및 자일로스;가 탄소원으로 포함된 배지에 접종하여 배양하는 단계;
상기 배양된 배양액에서, 상등액을 회수하는 단계; 및
회수된 상등액에서 시노린을 수득하는 단계 포함하는, 시노린(shinorine) 생산 방법.
Methylomicrobium alcaliphilum 20Z of claim 1, methane and xylose; Or methanol and xylose; step of inoculating and culturing in a medium containing as a carbon source;
recovering the supernatant from the culture medium; and
A method for producing shinorine, comprising obtaining shinorine from the recovered supernatant.
제 9항에 있어서, 상기 배양은 미량 원소로 텅스텐을 추가 포함하는 것을 특징으로하는 시노린(shinorine) 생산 방법.[Claim 10] The method according to claim 9, wherein the culture additionally contains tungsten as a trace element.
KR1020200121443A 2020-09-21 2020-09-21 Development of novel methanotroph that co-assimilate methane and xylose, and producing shinorine using itself KR102472270B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200121443A KR102472270B1 (en) 2020-09-21 2020-09-21 Development of novel methanotroph that co-assimilate methane and xylose, and producing shinorine using itself

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200121443A KR102472270B1 (en) 2020-09-21 2020-09-21 Development of novel methanotroph that co-assimilate methane and xylose, and producing shinorine using itself

Publications (2)

Publication Number Publication Date
KR20220039887A KR20220039887A (en) 2022-03-30
KR102472270B1 true KR102472270B1 (en) 2022-11-30

Family

ID=80948004

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200121443A KR102472270B1 (en) 2020-09-21 2020-09-21 Development of novel methanotroph that co-assimilate methane and xylose, and producing shinorine using itself

Country Status (1)

Country Link
KR (1) KR102472270B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102637622B1 (en) * 2023-06-28 2024-02-20 전남대학교산학협력단 Composition and method for producing shinorine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017123930A1 (en) * 2016-01-15 2017-07-20 Papoutsakis Eleftherios T Synthetic methylotrophs

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102165641B1 (en) 2017-10-30 2020-10-15 서강대학교산학협력단 Composition for the production of propanol containing methanotroph and propanol production method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017123930A1 (en) * 2016-01-15 2017-07-20 Papoutsakis Eleftherios T Synthetic methylotrophs

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ACS Synth. Biol. 2019, vol. 8, pp. 346-357.*
Journal of Biotechnology. 2019.12.31., vol. 309, pp. 81-84.*
Metabolic Engineering. 2019.04.12., vol.54, pp. 170-179.*

Also Published As

Publication number Publication date
KR20220039887A (en) 2022-03-30

Similar Documents

Publication Publication Date Title
US11142761B2 (en) Compositions and methods for rapid and dynamic flux control using synthetic metabolic valves
CN117925431A (en) Improved glycerol-free ethanol production
AU2008310573A1 (en) Microorganism engineered to produce isopropanol
CA2684762C (en) Vector with codon-optimised genes for an arabinose metabolic pathway for arabinose conversion in yeast for ethanol production
Nguyen et al. Methanotrophic microbial cell factory platform for simultaneous conversion of methane and xylose to value-added chemicals
CN107858340B (en) High-catalytic-activity D-fructose-6-phosphate aldolase A mutant, recombinant expression vector, genetically engineered bacterium and application thereof
US20240117386A1 (en) Engineered autotrophic bacteria for co2 conversion to organic materials
JP2023156360A (en) Xylitol-producing metschnikowia species
Chen et al. The SCIFF‐derived ranthipeptides participate in quorum sensing in solventogenic clostridia
CN106995794B (en) Succinic acid-producing actinobacillus engineering strain for improving succinic acid yield and construction method and application thereof
KR102472270B1 (en) Development of novel methanotroph that co-assimilate methane and xylose, and producing shinorine using itself
CN110592035B (en) Carbonyl reductase mutant, recombinant expression vector and application of carbonyl reductase mutant in production of chiral alcohol
CN114591938B (en) Carboxylase mutant and preparation method and application thereof
CN114525215B (en) Recombinant strain for producing terpenoid, construction method thereof, method for producing terpenoid through fermentation and application of recombinant strain
CN115873836A (en) Nerolidol synthetase and application thereof
WO2013061571A1 (en) Method for producing isobutanol and recombinant microorganism capable of producing isobutanol
CN114806913A (en) High-yield succinic acid yeast engineering strain with mitochondrion positioning reduction TCA (trichloroacetic acid) approach as well as construction method and application thereof
CN108913732B (en) Method for heterologous production of monacolin J and application
CN115896211A (en) Genetic engineering bacterium for producing citicoline by fermentation and application
KR101551533B1 (en) Recombinant microorganism having enhanced butanediol producing ability and method for producing butanediol using the same
CN107916274B (en) Method for increasing production of S-adenosylmethionine by modulating carbon metabolic pathway genes
CN108424859B (en) Construction and application of gene engineering bacteria for producing citicoline
Gao et al. Increased Ethanol Production by Disrupting the Competitive Phosphoenolpyruvate Synthesis Pathway and Enhancing the Expression of Ethanol-producing Genes in Synechocystis Sp. PCC6803
JP6812097B2 (en) Yeast that produces ethanol from xylose
CN110734909B (en) Non-coding RNA in clostridium acetobutylicum and application thereof

Legal Events

Date Code Title Description
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant