KR102285906B1 - Composition for inducing large mouth bass sterility for management of disturbing fish species in aquatic ecosystem - Google Patents

Composition for inducing large mouth bass sterility for management of disturbing fish species in aquatic ecosystem Download PDF

Info

Publication number
KR102285906B1
KR102285906B1 KR1020210022047A KR20210022047A KR102285906B1 KR 102285906 B1 KR102285906 B1 KR 102285906B1 KR 1020210022047 A KR1020210022047 A KR 1020210022047A KR 20210022047 A KR20210022047 A KR 20210022047A KR 102285906 B1 KR102285906 B1 KR 102285906B1
Authority
KR
South Korea
Prior art keywords
sperm
sequence
protein
species
egg
Prior art date
Application number
KR1020210022047A
Other languages
Korean (ko)
Inventor
이윤정
박승철
Original Assignee
주식회사 엔에이피
주식회사 생태공간연구원
이윤정
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엔에이피, 주식회사 생태공간연구원, 이윤정 filed Critical 주식회사 엔에이피
Priority to KR1020210022047A priority Critical patent/KR102285906B1/en
Application granted granted Critical
Publication of KR102285906B1 publication Critical patent/KR102285906B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/40Fish
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Environmental Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present invention relates to a composition for inducing Micropterus salmoides infertility for management of disturbed fish species in aquatic ecosystems. Specifically, by producing sterile Micropterus salmoides in which a target region of a gene encoding a species-specific sperm-egg recognition protein of the Micropterus salmoides is cut, and applying the Micropterus salmoides to the aquatic ecosystems, it is possible to contribute to the protection of the ecosystems by promoting a decrease in the number of the Micropterus salmoides, which disturb the aquatic ecosystems of Korea.

Description

수생태계 교란어종 관리를 위한 큰입배스 불임 유도용 조성물{Composition for inducing large mouth bass sterility for management of disturbing fish species in aquatic ecosystem}Composition for inducing large mouth bass sterility for management of disturbing fish species in aquatic ecosystem

본 발명은 수생태계 교란어종 관리를 위한 큰입배스 불임 유도용 조성물에 관한 것이다.The present invention relates to a composition for inducing largemouth bass infertility for the management of disturbed fish species in aquatic ecosystems.

큰입배스(large mouth Bass, Micropterus salmoides)는 북미가 원산지로, 국내에는 1973년 6월 미국 루이지애나로부터 3~4 cm크기의 치어 5백 마리가 시험양식용으로 처음 도입되었다. 블루길과 같이 검정우럭과(Centrachidae)에 속하며, 영문명을 그대로 번역하여 우리나라에서는 큰입배스로 불리게 되었다. 육식성인 큰입배스는 치어때부터 하천의 새우, 토종 물고기의 치어 등을 먹어치우며, 우리나라의 토착어류를 비롯한 다양한 수중생물들의 포식으로 수생태계의 불균형을 초래하고 있다. 이러한 큰입배스는 생태교란종의 퇴치와 관리를 위한 다양한 시도에도 불구하고 낚시인들에 의한 인위적인 유입과 효율적인 퇴치 방안 연구의 미진함으로 인해 우리나라 고유 생물종의 서식에 미치는 악영향은 점차 심각해지고 있는 실정이다.Large Mouth Bass ( Micropterus) salmoides ) is native to North America, and 500 fry of 3~4 cm in size were first introduced to Korea in June 1973 from Louisiana, USA for test culture. Like the bluegill, it belongs to the family Centrachidae, and the English name was translated as it is, and in Korea, it was called the bigmouth bass. The carnivorous largemouth bass eats river prawns and fry of native fish from the time they are young, and it causes imbalance in the aquatic ecosystem by predation of various aquatic organisms including indigenous fish in Korea. Despite various attempts to eradicate and manage these largemouth bass, the adverse effect on the habitat of endemic species in Korea is becoming increasingly serious due to the artificial inflow by anglers and the lack of research on effective methods of extermination.

최근까지 큰입배스의 생태,생식적 특성에 대한 연구 내용을 기반으로 한 다양한 퇴치 방법, 즉 낚시법, 투망법, 정치망법, 자망법, 족대법, 펌핑법, 작살법, 전기충격법, 인공 산란장법, 천적법 등이 제시되고 있으나 실제적인 시행의 결과와 현실적인 효과의 검증은 미흡한 상황이라 할 수 있다.Until recently, various repelling methods based on research on the ecological and reproductive characteristics of largemouth bass, namely fishing method, throwing method, static net method, gillnetting method, pole method, pumping method, harpoon method, electric shock method, artificial spawning ground Although laws and natural enemy laws have been proposed, it can be said that the actual results of implementation and verification of realistic effects are insufficient.

확산방지 및 퇴치를 위한 기술적인 대처 방안 중 인공 산란장법은 큰입배스의 생식 습성을 이용하여 산란을 유도한 후 수정란을 제거하는 번식 차단방식으로서 다른 방식에 비해 수백 개에서 1만개에 이르는 상당수의 개체를 한 번에 포획, 제거할 수 있는 유일한 방법이다. 그러나 인공 산란장을 설치하더라도 적절한 산란장소가 있는 경우에는 알의 포획 효과가 낮다는 단점을 갖고 있다 (임봉구 등, 2012).Among the technical countermeasures for prevention and eradication, the artificial spawning field method uses the reproductive habits of largemouth bass to induce spawning and then removes fertilized eggs. is the only way to capture and remove them at once. However, even if an artificial spawning field is installed, it has a disadvantage that the effect of catching eggs is low if there is an appropriate spawning site (Bonggu Lim et al., 2012).

한편, 최근 유전자 편집기술의 발전과 더불어 유전자 가위로 DNA를 절단하여 암, 에이즈, 혈우병을 치료하기도 하고, 질환을 매개하는 해충의 방제에 이용하여 곤충 매개질환의 전파 차단에 이용하고 있다. 유전자 편집기술 (Gene Editing)이란 질병을 일으키는 DNA를 잘라 없애거나 또는 필요한 DNA를 추가하는 유전자의 수정을 통해 질병을 치료하는 기술로서, 특히 유전자의 특정 부분을 정교하게 잘라내는 기술을 유전자 가위라고 한다. 현재 유전자 편집기술 중 가장 각광받고 있는 CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats)은 바이러스의 침입에 저항하기 위한 세균의 면역시스템으로서 화농성연쇄상구균(Streptococcus pyogenes)의 CRISPR Ⅱ 시스템이 가장 많이 알려져 있고 제 3세대 유전자 가위로 개발되어 활용되고 있다 (Elaswad et al., 2018; Gantz et al., 2015; Hashimoto and Takemoto, 2015). 세균 내로 바이러스가 침입을 하면 침입한 바이러스 DNA는 잘게 잘리고, 잘린 DNA 조각은 세균의 유전체에 삽입되는데, 이것을 크리스퍼라고 한다. 크리스퍼 부분에서 작은 가이드 RNA (sgRNA)가 만들어진 후 세균에서 생상되는 Cas9 핵산분해효소와 결합한다. 만약 같은 바이러스가 다시 침입을 하면 가이드 RNA가 바이러스 DNA를 찾아 결합하고 Cas9 핵산분해효소가 바이러스 DNA를 절단하여 바이러스의 증식을 차단한다. 이러한 유전자 가위를 이용하여 인간에게 뎅기열, 소두증, 말라리아와 같은 치명적인 질병을 매개하는 모기의 불임 개체를 유도하고 활용하여 질병의 전파를 막기 위한 적극적인 시도를 하고 있다.On the other hand, with the recent development of gene editing technology, DNA is cut with gene scissors to treat cancer, AIDS, and hemophilia, and it is used to block the spread of insect-borne diseases by using it to control disease-mediating pests. Gene editing is a technology that cures diseases by cutting and removing disease-causing DNA or modifying genes that add necessary DNA. . Current gene editing CRISPR / Cas9 receiving the most popular of the techniques (Clustered Regularly Interspaced Short Palindromic Repeats) is an immune system of the bacteria to resist the viruses pyogenic streptococci CRISPR Ⅱ system is most commonly known of (Streptococcus pyogenes), and the It has been developed and used as a third-generation gene scissors (Elaswad et al ., 2018; Gantz et al ., 2015; Hashimoto and Takemoto, 2015). When a virus invades a bacterium, the invading viral DNA is chopped, and the cut DNA fragment is inserted into the genome of the bacterium, which is called CRISPR. A small guide RNA (sgRNA) is made from the CRISPR part and then combined with Cas9 nuclease produced in bacteria. If the same virus invades again, the guide RNA finds and binds to the viral DNA, and Cas9 nuclease cuts the viral DNA, blocking the virus's growth. Active attempts are being made to prevent the spread of diseases by inducing and utilizing infertile individuals of mosquitoes that transmit fatal diseases such as dengue fever, microcephaly, and malaria to humans using these gene scissors.

한국공개특허 제2020-0088446호에는 곤충에서 엔도뉴클레아제 암수구별 및 불임에 관한 발명으로, 적어도 하나의 핵산 서열을 제 1 곤충의 게놈 내로 통합시키는 단계로서, 상기 적어도 하나의 핵산 서열은 암컷-특이적 생존력에 필요한 암컷-필수 게놈 서열을 표적으로 하는 적어도 하나의 제 1 가이드 폴리뉴클레오티드를포함하는 단계; 엔도뉴클레아제를 제 2 곤충에 도입하는 단계로서, 상기 제 2 곤충은 제 1 곤충과 유전적으로 교차될 수 있는 단계; 및 상기 제 1 곤충 및 상기 제 2 곤충을 유전적으로 교차시키는 단계로서, 상기 교차시키는 단계는 상기 엔도뉴클레아제와 수컷 곤충 난이 성체로 성숙하는 상기 적어도 하나의 핵산 서열을 포함하는 자손을 생산하는 것;을 포함하는, 유전적으로 변형된 곤충의 자손에서 수컷 성별을 지시하는 방법 및 이 방법으로 생산된 유전적으로 변형된 불임 수컷 곤충이 개시되어 있다.Korean Patent Application Laid-Open No. 2020-0088446 discloses an invention related to endonuclease sex discrimination and infertility in insects, comprising the steps of integrating at least one nucleic acid sequence into the genome of a first insect, wherein the at least one nucleic acid sequence is a female- comprising at least one first guide polynucleotide targeting a female-essential genomic sequence necessary for specific viability; introducing an endonuclease into a second insect, wherein the second insect can be genetically crossed with the first insect; and genetically crossing the first insect and the second insect, wherein the crossing produces progeny comprising the endonuclease and the at least one nucleic acid sequence from which a male insect egg matures into an adult. Disclosed is a method for instructing male sex in the offspring of a genetically modified insect, and a genetically modified sterile male insect produced by the method, comprising:

한국공개특허 제2016-0013219호에는 유전자조작 가축동물, 및 이의 생산방법 및 사용방법으로, 생식세포 형성과정에 선택적으로 관여하는 표적 유전자를 방해하기 위한 유전자 조작을 포함하며, 상기 표적 유전자의 방해는 동물의 기능성 생식세포가 형성되는 것을 막는다. 상기 발명에는 도너 유전형질을 갖는 후대를 생산하는 동물 및 이의 생산방법 및 사용방법이 개시되어 있다. 그러나, 이러한 종래기술은 우리나라의 하천에서 수생태계의 교란을 일으키는 어종 관리를 위한 구성은 기재되어 있지 않다.Korean Patent Application Laid-Open No. 2016-0013219 discloses genetically engineered livestock animals, and methods for producing and using the same, including genetic manipulation to disrupt a target gene selectively involved in the process of germline formation, and the interference of the target gene is Prevents the formation of functional gametes in animals. The present invention discloses an animal producing a progeny having a donor genetic trait, and a method for producing and using the same. However, in this prior art, the configuration for managing fish species causing disturbance of the aquatic ecosystem in the rivers of Korea is not described.

한국공개특허 제2020-0088446호, 곤충에서 엔도뉴클레아제 암수구별 및 불임, 2020. 07. 22. 공개.Korean Patent Application Laid-Open No. 2020-0088446, Endonuclease Sex and Infertility in Insects, published on July 22, 2020. 한국공개특허 제2016-0013219호, 유전적 불임 동물, 2016. 02 .03. 공개.Korean Patent Application Laid-Open No. 2016-0013219, Genetic Infertile Animals, 2016. 02.03. open.

임봉구 (사)아시아환경정의연구원. 2012. 한강수계 생태계 위해 외래어종 분포특성과 퇴치를 위한 효율적 대응방안 연구. 한강유역환경청 한강수계관리위원회. 하남. pp 20~29 Elaswad A., K. Khalil, D. Cline, P. P. McCaw, W. Chen, M. Michel, R. Cone, and R. Dunham. 2018. Microinjection of CRISPRCas9 Protein into Channel Catfish, Ictalurus punctatus, Embryos for Gene Editing. Journal of visualized experiments 20;(131):56275. Gantz V. M., N. Jasinskiene, O. Tatarenkova, A. Fazekas, V. M. Macias, E. Bier, and A. A. James. 2015. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proceedings of the National Academy of Sciences of the United States of America 112(49):E6736-43. Hashimoto M., and T. Takemoto. 2015. Electroporation enables the efficient mRNA delivery into the mouse zygotes and facilitates CRISPRCas9-based genome editing. Scientific reports 5:11315.

Figure 112021019911615-pat00001
Vicens A., L. Lke, and E. R. S. Roldan. 2014. Proteins Involved in Motility and Sperm-Egg Interaction Evolve More Rapidly in Mouse Spermatozoa. PLos One 9(3):e91302. Li S., J. Bai, L. Cai, D. Ma, and F. Du. 2012. The complete mitochondrial genomes of largemouth bass of the northern subspecies (Micropterus salmoides salmoides) and Florida subspecies (Micropterus salmoides floridanus) and their applications in the identification of largemouth bass species. Mitochondrial DNA 23(2):92-9. Bong-Goo Lim, Asian Environmental Justice Research Institute. 2012. A study on the distribution characteristics of exotic fish species harmful to the Han River ecosystem and effective countermeasures to eradicate them. Han River Basin Environment Agency, Han River Water System Management Committee. Hanam. pp 20-29 Elaswad A., K. Khalil, D. Cline, PP McCaw, W. Chen, M. Michel, R. Cone, and R. Dunham. 2018. Microinjection of CRISPRCas9 Protein into Channel Catfish, Ictalurus punctatus, Embryos for Gene Editing. Journal of visualized experiments 20;(131):56275. Gantz VM, N. Jasinskiene, O. Tatarenkova, A. Fazekas, VM Macias, E. Bier, and AA James. 2015. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proceedings of the National Academy of Sciences of the United States of America 112(49):E6736-43. Hashimoto M., and T. Takemoto. 2015. Electroporation enables the efficient mRNA delivery into the mouse zygotes and facilitates CRISPRCas9-based genome editing. Scientific reports 5:11315.
Figure 112021019911615-pat00001
Vicens A., L. Lke, and ERS Roldan. 2014. Proteins Involved in Motility and Sperm-Egg Interaction Evolve More Rapidly in Mouse Spermatozoa. PLos One 9(3):e91302. Li S., J. Bai, L. Cai, D. Ma, and F. Du. 2012. The complete mitochondrial genomes of largemouth bass of the northern subspecies (Micopterus salmoides salmoides) and Florida subspecies (Micropterus salmoides floridanus) and their applications in the identification of largemouth bass species. Mitochondrial DNA 23(2):92-9.

본 발명의 목적은 수생태계 교란어종 관리를 위한 큰입배스 불임 유도용 조성물을 제공하는 데 있다.It is an object of the present invention to provide a composition for inducing largemouth bass infertility for the management of disturbed fish species in aquatic ecosystems.

상기 목적을 위하여 본 발명은 수생태계 교란어종 관리를 위한 큰입배스 불임 유도용 조성물을 제공한다. 본 발명은 Cas9 단백질 및 큰입배스(Micropterus salmoides)의 종 특이적 정자-난자 인식 단백질을 암호화하는 유전자의 표적 부위에 특이적으로 결합하는 표적화 서열을 포함하는 가이드 RNA를 포함하고, 상기 가이드 RNA는 종 특이적 정자-난자 인식 단백질을 암호화하는 유전자 내의 Cas9 단백질이 인식하는 PAM(proto-spacer-adjacent Motif) 서열의 5’ 말단 또는 3’ 말단에 인접하여 위치하는 연속하는 17bp 내지 23bp 길이의 표적 부위에 혼성화 가능한 핵산 서열을 포함하는 것인 큰입배스(Micropterus salmoides)의 불임 유도용 조성물을 제공한다.For the above purpose, the present invention provides a composition for inducing largemouth bass infertility for managing disturbed fish species in aquatic ecosystems. The present invention provides Cas9 protein and Micropterus salmoides ) comprising a guide RNA comprising a targeting sequence that specifically binds to a target site of a gene encoding a species-specific sperm-egg recognition protein, wherein the guide RNA encodes a species-specific sperm-egg recognition protein A large mouth comprising a nucleic acid sequence capable of hybridizing to a continuous 17 bp to 23 bp target site located adjacent to the 5' end or 3' end of the proto-spacer-adjacent motif (PAM) sequence recognized by the Cas9 protein in the gene Bath ( Micropterus salmoides ) Provides a composition for infertility induction.

상기 종 특이적 정자-난자 인식 단백질을 암호화하는 유전자는 Zona pellucida sperm-binding protein, Spermatogenesis-associated protein, Motile sperm domain-containing protein, Sperm-associated antigen, IZUMO1, Round spermatid basic protein, Sperm-tail PG-rich repeat-containing protein, Sperm acrosome membrane-associated protein, Acrosomal vesicle 및 Sperm flagellum단백질 중 선택되는 하나 이상을 코딩하는 유전자일 수 있다.The gene encoding the species-specific sperm-egg recognition protein is Zona pellucida sperm-binding protein, Spermatogenesis-associated protein, Motile sperm domain-containing protein, Sperm-associated antigen, IZUMO1, Round spermatid basic protein, Sperm-tail PG- It may be a gene encoding one or more selected from rich repeat-containing protein, sperm acrosome membrane-associated protein, acrosomal vesicle, and sperm flagellum protein.

상기 종 특이적 정자-난자 인식 단백질을 암호화하는 유전자는 서열번호 1 내지 3 중 선택된 하나의 핵산 서열을 포함하는 IZUMO1 유전자일 수 있다. IZUMO1은 수정에 필요한 정자 세포 표면 단백질로, 난자의 원형질막 결합 및 융합에 필수적이다.The gene encoding the species-specific sperm-egg recognition protein may be an IZUMO1 gene comprising one nucleic acid sequence selected from SEQ ID NOs: 1 to 3. IZUMO1 is a sperm cell surface protein required for fertilization and is essential for the binding and fusion of the oocyte to the plasma membrane.

상기 종 특이적 정자-난자 인식 단백질을 암호화하는 유전자는 서열번호 4의 핵산 서열을 포함하는 zona pellucida 유전자일 수 있다. Zona pellucida는 난자, 난모세포의 중요한 구성성분으로, 정자와 결합하여 첨체반응을 개시하는데에 중요하다.The gene encoding the species-specific sperm-egg recognition protein may be a zona pellucida gene comprising the nucleic acid sequence of SEQ ID NO: 4. Zona pellucida is an important component of oocytes and oocytes, and is important in binding to sperm and initiating the acrosome reaction.

상기 가이드 RNA는 서열번호 5 내지 25 중에서 선택된 하나의 이상의 핵산 서열을 포함하는 표적 부위에 혼성화 가능한 것을 특징으로 한다.The guide RNA is characterized in that it is hybridizable to a target site comprising one or more nucleic acid sequences selected from SEQ ID NOs: 5 to 25.

또한 본 발명의 상기 가이드 RNA는 서열번호 26 내지 46 중에서 선택된 하나의 핵산 서열을 포함하는 것을 특징으로 한다.In addition, the guide RNA of the present invention is characterized in that it comprises one nucleic acid sequence selected from SEQ ID NOs: 26 to 46.

상기 가이드 RNA는 단일 사슬 가이드 RNA(sgRNA)일 수 있다.The guide RNA may be a single-stranded guide RNA (sgRNA).

본 발명은 불임 유도된 큰입배스(Micropterus salmoides)의 생산 방법을 제공한다.The present invention provides infertility-induced large-mouth bass ( Micropterus) salmoides ).

상기 불임 유도된 큰입배스의 생산 방법은,The production method of the infertility-induced large-mouth bass,

큰입배스의 산란 시기에 수컷의 정자와 암컷의 난자를 채취하는 단계;Collecting sperm of males and eggs of females during spawning of largemouth bass;

상기 채취한 큰입배스의 정자와 난자를 수정시켜 수정란을 제작하는 단계;producing a fertilized egg by fertilizing the sperm and egg of the collected large-mouth bass;

상기 제작한 수정란에 microinjector로 제1항 내지 제5항 중 어느 한 항의 큰입배스(Micropterus salmoides)의 불임 유도용 조성물을 주입하여 수정란의 종 특이적인 정자 또는 난자 인식 단백질의 암호화된 염기서열 (Target sequence)을 편집하는 단계:Encrypted nucleotide sequence of the one in the manufacturing microinjector in embryos any one of claims 1 to 5 claim largemouth bass (Micropterus salmoides) the species-specific sperm or egg recognition of fertilized eggs by injecting a composition for sterility induced protein (Target sequence ) to edit the steps:

상기 편집된 종 특이적인 정자 또는 난자 인식 단백질을 보유한 수정란을 부화시키는 단계;를 포함하는 것을 특징으로 한다.and incubating a fertilized egg having the edited species-specific sperm or egg recognition protein.

본 발명은 상기 큰입배스(Micropterus salmoides)의 불임 유도용 조성물에 의하여 생산된 불임 큰입배스를 제공한다.The present invention is the large mouth bath ( Micropterus salmoides ) provides an infertility large mouth bath produced by a composition for inducing infertility.

또한 본 발명은 상기 불임 유도된 큰입배스(Micropterus salmoides)의 생산 방법에 의하여 생산된 불임 큰입배스를 제공한다.In addition, the present invention is the infertility-induced large-mouth bass ( Micropterus salmoides ) provides a sterile largemouth bass produced by the production method.

본 발명은 수생태계에서 교란어종인 큰입배스를 제거하는 방법을 제공한다.The present invention provides a method for removing largemouth bass, which is a disturbing fish species in an aquatic ecosystem.

상기 수생태계에서 교란어종인 큰입배스를 제거하는 방법은,The method of removing the largemouth bass, which is a disturbing fish species, in the aquatic ecosystem,

상기 큰입배스(Micropterus salmoides)의 불임 유도용 조성물에 의하여 생산된 불임 큰입배스 또는 상기 불임 유도된 큰입배스(Micropterus salmoides)의 생산 방법에 의하여 생산된 불임 큰입배스를 하천에 방류하는 것을 특징으로 한다.The largemouth bass ( Micropterus salmoides ) infertility large-mouth bath produced by the composition for infertility or the infertility-induced large-mouth bath ( Micropterus) salmoides ) is characterized in that the sterile largemouth bass produced by the production method is discharged into a river.

본 발명은 수생태계 교란어종 관리를 위한 큰입배스 불임 유도용 조성물에 관한 것으로, 구체적으로는 수생태계 교란어종 관리를 위한 큰입배스 불임 유도용 조성물을 통하여 불임 큰입배스를 생산하고 이를 수생태계에 적용함으로써 우리나라 수생태계를 교란시키는 큰입배스의 개체수 감소를 촉진하여 생태계 보호에 기여할 수 있다.The present invention relates to a composition for inducing largemouth bass infertility for the management of disturbed fish species in aquatic ecosystems, and more specifically, by using a composition for inducing largemouth bass infertility for management of disturbed fish species in aquatic ecosystems, producing sterile largemouth bass and applying it to an aquatic ecosystem. It can contribute to the protection of the ecosystem by promoting the decrease in the number of largemouth bass, which disturbs the aquatic ecosystem of Korea.

도 1은 본 발명에 사용한 큰입배스(Micropterus salmoides)의 NJ tree이다.
도 2는 본 발명에서 획득한 Unigene에 Gene Ontology (GO) database를 적용하여 Functional annotation한 결과, GO terms 분류를 나타낸 모식도이다.
도 3은 본 발명에서 획득한 Unigene의 GO terms 중 biological process (BP)의 분석 결과를 나타낸 모식도이다.
도 4는 본 발명에서 획득한 Unigene의 GO terms 중 cellular component (CC)의 분석 결과를 나타낸 모식도이다.
도 5는 본 발명에서 획득한 Unigene의 GO terms 중 molecular function (MF)의 분석 결과를 나타낸 모식도이다.
도 6은 C69849_g1_i1 서열 (1,357 bp, 서열번호 1)에 표시한 후보 Target Sequence이다.
도 7은 C82233_g1_i1 서열 (531 bp, 서열번호 2)에 표시한 후보 Target Sequence이다.
도 8은 C183992_g1_i1 서열 (324 bp, 서열번호 3)에 표시한 후보 Target Sequence이다.
도 9는 C63950_g1_i1 서열 (2,850 bp, 서열번호 4)에 표시한 후보 Target Sequence이다.
도 10은 최종 선정된 Target sequence(21종)에 대한 각 sgRNA 제작용 template를 확인한 사진이다.
도 11은 큰입배스의 정자-난자 인식 단백질과 관련된 contig IZUMO1(C69849_g1_i1)의 Target sequence에 대한 sgRNA의 screening 결과이다.
도 12는 큰입배스의 정자-난자 인식 단백질과 관련된 contig IZUMO1(C82233_g1_i1)의 Target sequence에 대한 sgRNA의 screening 결과이다.
도 13은 큰입배스의 정자-난자 인식 단백질과 관련된 contig IZUMO1(C183992_g1_i1)의 Target sequence에 대한 sgRNA의 screening 결과이다.
도 14는 큰입배스의 정자-난자 인식 단백질과 관련된 contig Zona pellucida sperm-binding protein(C63950_g1_i1)의 Target sequence에 대한 sgRNA의 screening 결과이다.
1 is a large mouth bath used in the present invention ( Micropterus salmoides ) NJ tree.
2 is a schematic diagram showing GO terms classification as a result of functional annotation by applying Gene Ontology (GO) database to Unigene obtained in the present invention.
Figure 3 is a schematic diagram showing the analysis result of the biological process (BP) of the GO terms of Unigene obtained in the present invention.
4 is a schematic diagram showing the analysis result of the cellular component (CC) among the GO terms of Unigene obtained in the present invention.
5 is a schematic diagram showing the analysis result of molecular function (MF) among GO terms of Unigene obtained in the present invention.
6 is a candidate target sequence shown in the C69849_g1_i1 sequence (1,357 bp, SEQ ID NO: 1).
7 is a candidate target sequence shown in the C82233_g1_i1 sequence (531 bp, SEQ ID NO: 2).
8 is a candidate target sequence shown in the C183992_g1_i1 sequence (324 bp, SEQ ID NO: 3).
9 is a candidate target sequence shown in the C63950_g1_i1 sequence (2,850 bp, SEQ ID NO: 4).
10 is a photograph confirming the template for each sgRNA production for the final selected target sequence (21 types).
11 is a screening result of sgRNA against the target sequence of contig IZUMO1 (C69849_g1_i1) related to the sperm-egg recognition protein of large-mouth bass.
12 is a screening result of sgRNA against the target sequence of contig IZUMO1 (C82233_g1_i1) related to the sperm-egg recognition protein of large-mouth bass.
13 is a screening result of sgRNA against the target sequence of contig IZUMO1 (C183992_g1_i1) related to the sperm-egg recognition protein of large-mouth bass.
14 is a screening result of sgRNA against the target sequence of contig Zona pellucida sperm-binding protein (C63950_g1_i1) related to the sperm-egg recognition protein of largemouth bass.

동물의 수정 과정에서는 반드시 생식세포 표면에서 동 종의 생식세포만을 인식할 수 있는 표면 단백질이 발현되어야 하고, 이어서 표면 단백질들의 결합에 의해 세포막의 융합, 정자 핵의 난자로의 유입과 같은 일련의 과정을 거쳐 수정이 완결되고 수정란이 형성된다 (Vincens et al., 2014). 본 발명은 이를 이용하여 큰입배스의 생식세포인 정자와 난자 표면에 있는 종 특이적인 정자-난자 인식부위의 발현을 억제함으로써 인식 후 나타나는 일련의 수정 과정을 차단하여 큰입배스의 일반적인 산란 행동에도 불구하고 수정란이 형성되지 않아 상당수의 개체를 한꺼번에 포획, 제거하는 것과 동일한 효과를 유도하고자 하였다. 또한 큰입배스의 종 특이적인 정자-난자 인식부위가 발현되지 않는 불임 개체에 의한 퇴치 방법이기 때문에 동일한 수생태계에 속해 있는 고유 생물종의 서식에는 영향을 미치지 않고 표적 생태교란종에만 적용되어 해당 개체군의 감소 효과를 기대할 수 있다는 특징을 갖고 있다.In the fertilization process of animals, surface proteins that can recognize only germ cells of the same species must be expressed on the surface of germ cells, and then a series of processes such as fusion of cell membranes and influx of sperm nuclei into eggs by binding of surface proteins Fertilization is completed through fertilization and a fertilized egg is formed (Vincens et al ., 2014). The present invention uses this to block the series of fertilization processes that appear after recognition by inhibiting the expression of species-specific sperm-egg recognition sites on the surface of sperm and egg cells, which are germ cells of largemouth bass, despite the general spawning behavior of largemouth bass. Since fertilized eggs were not formed, it was attempted to induce the same effect as capturing and removing a large number of individuals at once. In addition, as it is a method of eradicating infertile individuals that do not express the species-specific sperm-egg recognition site of largemouth bass, it does not affect the habitat of native species belonging to the same aquatic ecosystem and is applied only to the target ecological disturbance species. It has the characteristic that a reduction effect can be expected.

이하 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 그러나 본 발명은 여기서 설명되는 실시예에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 내용이 철저하고 완전해지고, 당업자에게 본 발명의 사상을 충분히 전달하기 위해 제공하는 것이다.Hereinafter, preferred embodiments of the present invention will be described in detail. However, the present invention is not limited to the embodiments described herein and may be embodied in other forms. Rather, it is provided so that this disclosure will be thorough and complete, and will fully convey the spirit of the invention to those skilled in the art.

<< 실시예Example 1. One. 큰입배스의bigmouth bass 계통도 작성> Create a Schematic>

분자생물학적 실험을 통한 생태계교란 어종 교미교란 기작 연구는 큰입배스를 대상으로 한 최초의 시도이고, 생식세포 유전자 편집에 앞서 표적 유전자 선별과정에 필수적인 whole genome sequencing (WGS) 자료가 전무하기 때문에 가장 먼저 생식 과정과 관련된 유전자 탐색을 실시하였다.Ecosystem disturbance through molecular biological experiments The study on the mating disturbance mechanism of fish species is the first attempt to target largemouth bass, and is the first to reproduce because there is no whole genome sequencing (WGS) data, which is essential for the target gene selection process prior to germline gene editing. Genetic searches related to the process were performed.

1.1 1.1 큰입배스의bigmouth bass DNA 추출 DNA extraction

큰입배스(Micropterus salmoides)는 2020년 6월, 대구 수성구 욱수동 망월지에서 채집하였다. 투망 (망목6×6mm), 유영성 어류용 비닐 어항과 투명플라스틱 어항 등을 사용하여 채집하였으며, 생존 상태로 실험실에 옮겨 수조에서 적응 및 안정화시킨 후 조직을 적출하였다.Largemouth Bass ( Micropterus) salmoides ) was collected from Mangwolji, Uksu-dong, Suseong-gu, Daegu, in June 2020. It was collected using a fishing net (net 6×6mm), a plastic fish tank for swimming fish, and a transparent plastic fish tank.

실험 그룹은 B1 (Female, 지느러미), B2 (Male, 지느러미)로 나눈 후, 멸균된 기구를 이용하여 큰입배스의 지느러미를 개체별로 신속하게 적출하였다. DNA 추출은 DNeasy blood and tissue kit (Qiagen, USA)를 이용하였다.The experimental group was divided into B1 (Female, fins) and B2 (Male, fins), and the fins of the largemouth bass were quickly removed for each individual using a sterilized instrument. DNA extraction was performed using a DNeasy blood and tissue kit (Qiagen, USA).

1.2 1.2 큰입배스의bigmouth bass NJ(Neighbor joining) tree 작성 Create NJ(Neighbor joining) tree

상기 실시예 1.1에서 채집한 큰입배스의 계통 분석을 위해 미토콘드리아 DNA의 COX1 gene 1,551bp 중 796bp를 중합효소연쇄반응 (PCR)으로 증폭하고, 증폭 산물로 획득한 염기서열을 이용하여 계통도를 작성하였다. 큰입배스의 COX1 gene의 증폭은 Li 등(2012)의 방법에 따라 동일한 프라이머쌍을 하기 표 1과 같이 제작하여 수행하였다.For the phylogenetic analysis of the largemouth bass collected in Example 1.1, 796bp of 1,551bp of the COX1 gene of mitochondrial DNA was amplified by polymerase chain reaction (PCR), and a phylogenetic diagram was prepared using the nucleotide sequence obtained as the amplification product. Amplification of the COX1 gene in large-mouth bass was performed by preparing identical primer pairs as shown in Table 1 below according to the method of Li et al. (2012).

Primer namePrimer name Primer Seq.Primer Seq. cox1-Fcox1-F 5‘-AGCATCCGTTGACCTAACCATC-35'-AGCATCCGTTGACCTAACCATC-3 cox1-Rcox1-R 5‘-CAGGTGCTGTGGAGGGTGTATC-35'-CAGGTGCTGTGGAGGGTGTATC-3

상기 PCR 반응은 Genomic DNA 1㎕ (50ng/㎕), primer 각각 2㎕ (10pmol/㎕), DNA Taq polymerase (solgent, korea) 0.25㎕, 10X buffer 5㎕, 10mM dNTP 1㎕, 증류수를 첨가하여 최종 50㎕ 용량으로 반응하였다. PCR 조건은 95℃에서 3분간 initial denaturation을 실시한 후, 94℃에서 30초, 55℃에서 30초, 72℃에서 90초를 1 cycle로 하여 34회 반복한 후, 72℃에서 10분간 final extension하고 8℃에서 보관하였다. PCR 산물은 1.5% agarose gel에서 전기영동하여 확인하였다. 획득한 PCR 산물은 Gel and PCR clean-up kit (LaboPass, Korea)를 사용하여 purify한 다음 분석회사 Cosmogenetech (Korea)에 염기서열 분석을 의뢰하였으며, Geneious Prime (version 11.0.4+11)을 이용해서 염기서열을 alignment하고, Mega 6.06 program을 이용해서 NJ tree를 작성하여 도 1에 나타내었다.The PCR reaction was finalized by adding 1 μl of Genomic DNA (50ng/μl), 2 μl of each primer (10 pmol/μl), 0.25 μl of DNA Taq polymerase (solvent, korea), 5 μl of 10X buffer, 1 μl of 10mM dNTP, and distilled water. The reaction was carried out in a volume of 50 μl. The PCR conditions were repeated 34 times by performing initial denaturation at 95°C for 3 minutes, 94°C for 30 seconds, 55°C for 30 seconds, and 72°C for 90 seconds as 1 cycle, followed by final extension at 72°C for 10 minutes. Stored at 8°C. The PCR product was confirmed by electrophoresis on 1.5% agarose gel. The obtained PCR product was purified using Gel and PCR clean-up kit (LaboPass, Korea), and then the analysis company Cosmogenetech (Korea) was requested for nucleotide sequence analysis, and Geneious Prime (version 11.0.4+11) was used to purify it. The nucleotide sequence was aligned, and an NJ tree was prepared using the Mega 6.06 program, which is shown in FIG. 1 .

검정우럭과 (Centrarchidae)에 속하는 어류의 미토콘드리아 DNA 정보를 GenBank로 검색한 후 COX1 염기서열을 획득하고, 실험 그룹의 COX1 gene (796bp)과 비교한 다음 계통도를 작성한 결과, 도 1에서 보는 바와 같이 본 발명에 사용한 큰입배스는 GenBank Accession number HQ395639 Micropterus salmoides salmoides와 근연관계가 가장 가까운 것으로 나타났다.After searching for mitochondrial DNA information of fish belonging to the family Centrarchidae with GenBank, the COX1 base sequence was obtained, and the COX1 gene (796bp) of the experimental group was compared with the COX1 gene (796bp). The largemouth bass used in the invention was GenBank Accession number HQ395639 Micropterus salmoides and salmoides were found to be the closest.

<< 실시예Example 2. 2. 큰입배스의bigmouth bass 종 특이적 정자-난자 인식 단백질을 암호화하는 유전자 탐색> Searching for genes encoding species-specific sperm-egg recognition proteins>

2.1 2.1 큰입배스의bigmouth bass 뇌와 brain and 생식소gonad (정소, 난소) 적출 및 (testis, ovaries) extraction and mRNAmRNA 추출 extraction

실험군은 B1-1(Female, 뇌), B1-2(Female, 난소), B2-1(Male, 뇌), B2-2(Male, 정소)로 나누어 mRNA를 추출하였다. 멸균된 기구를 이용하여 뇌와 생식소를 신속하게 적출하였다. 적출한 기관들을 1ml의 Trizol reagent에서 분쇄하고, 200㎕의 Chloroform을 첨가한 뒤 15초 동안 섞고 4℃에서 15분간 12,000rpm으로 원심분리한 후 상층액을 취하였다. 상층액에 500㎕의 isopropanol을 첨가하여 섞은 후 4℃에서 10분간 12,000rpm으로 원심분리한 후 상층액을 제거하고 침전물을 건조시킨 다음, 건조된 침전물에 100㎕의 nuclease-free water를 넣어 녹인 후 mRNA를 획득하였다.The experimental group was divided into B1-1 (Female, brain), B1-2 (Female, ovary), B2-1 (Male, brain), and B2-2 (Male, testis) mRNAs were extracted. The brain and gonads were rapidly removed using sterile instruments. The extracted organs were ground with 1 ml of Trizol reagent, 200 μl of Chloroform was added, mixed for 15 seconds, and centrifuged at 12,000 rpm at 4° C. for 15 minutes, and then the supernatant was collected. After adding and mixing 500 μl of isopropanol to the supernatant, centrifuged at 12,000 rpm for 10 minutes at 4° C., the supernatant was removed, the precipitate was dried, and 100 μl of nuclease-free water was added to the dried precipitate to dissolve. mRNA was obtained.

2.2 2.2 NGS를NGS 이용한 used 전사체transcript 분석 analysis

Transcriptome de novo Sequencing을 수행하기 전, 추출된 mRNA의 original sample QC를 수행하여 분석 과정에 사용할 sample을 선정하고 Library QC를 수행하여 분석에 적절한지 확인하였다. Illumina TruSeq Stranded mRNA LT sample Prep Kit를 이용하여 추출한 mRNA로 cDNA library를 구축한 후 NovaSeq 6000 system을 활용한 NGS 방법으로 염기서열을 획득하였다. 큰입배스의 실험군에서 Transcriptome de novo Sequencing을 수행한 결과 Raw data는 Total read bases, Total reads, GC함량으로 나타내었다. Original sample QC와 Library QC를 통과하여 선정된 샘플 B1-2(Female, 난소)와 B2-1(Male, 뇌)의 Total read bases, Total reads, GC함량은 표 2에 나타내었다.Before performing transcriptome de novo sequencing, original sample QC of the extracted mRNA was performed to select a sample to be used in the analysis process, and library QC was performed to confirm whether it was suitable for analysis. After constructing a cDNA library with mRNA extracted using Illumina TruSeq Stranded mRNA LT sample Prep Kit, the nucleotide sequence was obtained by NGS method using NovaSeq 6000 system. As a result of Transcriptome de novo sequencing in the experimental group of largemouth bass, raw data were expressed as total read bases, total reads, and GC content. Table 2 shows the total read bases, total reads, and GC content of samples B1-2 (Female, ovary) and B2-1 (Male, brain) selected through Original sample QC and Library QC.

IndexIndex sample Idsample ID Total read basesTotal read bases Total readsTotal reads GC (%)GC (%) 1One B1-2B1-2 13,111,466,50013,111,466,500 129,816,500129,816,500 51.2051.20 22 B2-1B2-1 11,372,780,99211,372,780,992 112,601,792112,601,792 48.4648.46

산출된 Raw data를 확인한 후 정확한 분석 결과를 도출하기 위해 Trimmomatic program을 이용하여 adapter 서열, 낮은 quality의 read, 오염된 DNA를 제거한 Trimming data를 산출하였다. 샘플 B1-2(Female, 난소)와 B2-1(Male, 뇌)에서 Trimming data는 표 3과 같다. Trimmomatic program을 이용하여 adapter 서열, 낮은 quality의 read, 오염된 DNA를 제거한 Trimming data는 Total read bases, Total reads, GC함량으로 나타내었다. After checking the calculated raw data, Trimmomatic program was used to calculate the trimming data from which the adapter sequence, low-quality read, and contaminated DNA were removed to derive accurate analysis results. Table 3 shows the trimming data for samples B1-2 (Female, ovary) and B2-1 (Male, brain). Trimming data with adapter sequence, low quality read, and contaminating DNA removed using Trimmomatic program were expressed as Total read bases, Total reads, and GC content.

IndexIndex sample Idsample ID Total read basesTotal read bases Total readsTotal reads GC (%)GC (%) 1One B1-2B1-2 12,854,708,43612,854,708,436 128,492,724128,492,724 51.1551.15 22 B2-1B2-1 11,206,616,99311,206,616,993 111,543,694111,543,694 48.4748.47

QC를 통과한 샘플 B1-2(Female, 난소)와 B2-1(Male, 뇌) 중 B2-1을 reference로 사용하여, 각 샘플로부터 약 100 milion sequencing reads를 de novo assembly하여 transcript datasets (Contig, Unigene, ORF)를 획득하였다. Trimmed reads를 병합하여 Trinity program으로 de novo assembly한 transcript fragment, 즉 contig 정보는 표 4와 같다.Using B2-1 among samples B1-2 (Female, ovary) and B2-1 (Male, brain) that passed QC as a reference, about 100 mil sequencing reads from each sample were de novo assembly and transcript datasets (Contig, Unigene, ORF) was obtained. Table 4 shows the transcript fragment, that is, the contig information, which was de novo assembly by the Trinity program by merging the trimmed reads.

AssemblyAssembly #of
genes
#of
genes
#of
transcripts
#of
transcripts
GC(%)GC (%) N50N50 Avg.
contig
length(bp)
Avg.
contig
length(bp)
Total
assembled bases(bp)
Total
assembled bases (bp)
mergemerge 189,512189,512 243,117243,117 45.3945.39 2,2782,278 969.19969.19 235,627,133235,627,133

NCBI BLAST의 BLASTN과 DIAMOND software의 BLASTX(E-value cut-off of 1.0E-5)을 이용하여 Kyoto Encyclopedia of Genes and Genomes(KEGG), NCBI Nucleotide(NT), Pfam, Gene ontology(GO), NCBI non-redundant Protein(NR), UniProt 그리고 EggNOG의 총 7종의 데이터베이스를 참고하여 annotation을 수행하였다. Kyoto Encyclopedia of Genes and Genomes (KEGG), NCBI Nucleotide (NT), Pfam, Gene ontology (GO), NCBI using BLASTN of NCBI BLAST and BLASTX (E-value cut-off of 1.0E-5) of DIAMOND software. Annotation was performed with reference to a total of 7 databases of non-redundant protein (NR), UniProt, and EggNOG.

Functional annotation을 위해 Gene Ontology (GO) database를 적용하여 Functional annotation한 결과로서, GO terms는 biological process (BP), cellular component (CC) 그리고 molecular function (MF)로 나누어 리스트화 하고, 이를 도 2~5에 나타내었다.As a result of functional annotation by applying Gene Ontology (GO) database for functional annotation, GO terms are divided into biological process (BP), cellular component (CC) and molecular function (MF) and list them, which are shown in Figs. shown in

2.3 2.3 큰입배스의bigmouth bass 생식 관련 유전자 탐색 Search for reproduction-related genes

각 샘플로부터 추출된 reads를 de novo assembly한 결과, 총 182,887개의 contig를 확인하였다. Illumina paired-end sequencing을 이용하여 획득한 데이터 중 Excel로 정리된 Contig 정보를 활용하여 정자-난자 인식단백질과 관련한 키워드 ‘Sperm’, ‘Zona Pellucida’, ‘ IZUMO’, ‘Acrosome’ 으로 검색하여 contig들을 1차 선별하고 이를 표 5에 나타내었다.As a result of de novo assembly of reads extracted from each sample, a total of 182,887 contigs were identified. Among the data obtained using Illumina paired-end sequencing, using the contig information organized in Excel, search for contigs with keywords 'Sperm', 'Zona Pellucida', 'IZUMO', and 'Acrosome' related to sperm-egg recognition proteins. The primary screening was performed and it is shown in Table 5.

ProteinProtein Function Function contig
개수
contig
Count
1One Zona pellucida sperm-binding proteinZona pellucida sperm-binding protein . 난자표면에 발현하는 수용체
. 정자표면단백질 인식
. Receptors expressed on egg surface
. Sperm surface protein recognition
2323
22 Spermatogenesis-associated proteinSpermatogenesis-associated protein . 정자 생성 관련 단백질
. 생식력 조절
. Spermatogenesis-Related Proteins
. fertility control
6363
33 Motile sperm domain-containing proteinMotile sperm domain-containing protein . 막 접촉 부위 형성
. 난자 성숙 촉진
. 난관 벽 수축, 수정위치로 난모세포 이동
. Formation of membrane contact sites
. promote egg maturation
. contraction of the fallopian tube wall, migration of oocytes to the fertilization site
55
44 Sperm-associated antigensperm-associated antigen . 정자 형성
. 수정과 관련된 GTP 신호 전달 경로 조절
. spermatogenesis
. Modulation of GTP signaling pathways involved in fertilization
77
55 IZUMO1IZUMO1 . 정자표면에 발현하는 단백질
. 난자표면에 있는 수용체와 결합
. Proteins expressed on the surface of sperm
. Binds to receptors on the egg surface
33
66 Round spermatid basic proteinRound spermatid basic protein . 정자 성숙. sperm maturation 66 77 Sperm-tail
PG-rich repeat-containing protein
sperm-tail
PG-rich repeat-containing protein
. 고환 하강 (사람). Testicular descent (person) 22
88 Sperm acrosome
membrane-associated protein
sperm acrosome
membrane-associated protein
. 첨체, 정상 정자 형태 형성
. 정자 표면 막단백질
. sperm-egg 원형질막 접촉 및 융합
. Acrosome, normal sperm morphogenesis
. sperm surface membrane protein
. sperm-egg plasma membrane contact and fusion
44
99 Acrosomal vesicleAcrosomal vesicles . 정자 머리에 발현
. 정자 원형질막과 첨체소포의 융합
→ 난자 표면에 결합하는 수용체 발현 유도
. expression in the sperm head
. Fusion of sperm plasma membrane and acrosomal vesicles
→ induce expression of receptors that bind to the surface of the egg
22
1010 Sperm flagellumSperm flagellum . 정자의 운동성. sperm motility 77

1차 선별정보를 대상으로 7종의 데이터베이스에서 모두 검색되는 Contig들, 동시에 Blast 참조 유전자 서열과의 유사도가 80% 이상 되는 contig들을 2차 선별하고, 이를 표 6에 나타내었다.Contigs retrieved from all seven types of databases for primary selection information and contigs having a similarity of 80% or more with the Blast reference gene sequence were secondarily selected, and the results are shown in Table 6.

ProteinProtein Contig No. Contig No. Annotation on GOAnnotation on GO IZUMO1IZUMO1 서열번호 1 C69849_g1_i1
(1,357 bp)

서열번호 2
C82233_g1_i1
(531 bp)

서열번호 3
C183992_g1_i1
(324 bp)
SEQ ID NO: 1 C69849_g1_i1
(1,357 bp)

SEQ ID NO: 2
C82233_g1_i1
(531 bp)

SEQ ID NO: 3
C183992_g1_i1
(324 bp)
BPBP . cellular process
. reproductive process
. cellular component organization
or biogenesis
. cellular process
. reproductive process
. cellular component organization
or biogenesis
CCCC . membrane
. organelle part
. cell part
. membrane
. organelle part
. cell part
MFMF . binding. binding Zona pellucida sperm-binding proteinZona pellucida sperm-binding protein 서열번호 4
C63950_g1_i1
(2,850 bp)
SEQ ID NO: 4
C63950_g1_i1
(2,850 bp)
BP BP . cellular process
. reproductive process
. biological process
. cellular process
. reproductive process
. biological process
CCCC . extracellular region part. extracellular region part MFMF . binding. binding * GO terms : biological process (BP), cellular component (CC), molecular function (MF)* GO terms: biological process (BP), cellular component (CC), molecular function (MF)

2.4 2.4 CRISPRCRISPR // Cas9Cas9 system을 적용할 Target sequence 탐색 Search target sequence to apply system

상기 실시예 2.3에서 수득한 각 Contig를 구성하는 염기서열에서 CRISPR/Cas9 시스템을 적용했을 때 편집 가능한 서열(Target sequence) 즉, Cas9 nuclease가 인식하는 부위인 PAM(5’-NGG-3’)을 가진 20bp의 염기서열을 후보 서열(Target sequence)로 선정하여 도 6~9에 나타내었다. 후보 서열(Target sequence)은 IZUMO1의 C69849_g1_i1은 7개, C82233_g1_i1은 3개, C183992_g1_i1은 2개, 그리고 Zona pellucida sperm-binding protein의 C63950_g1_i1은 15개로, 총 27개였다.When the CRISPR / Cas9 system is applied to the nucleotide sequence constituting each Contig obtained in Example 2.3, the editable sequence (Target sequence), that is, the PAM (5'-NGG-3'), which is a site recognized by Cas9 nuclease A nucleotide sequence of 20 bp with a nucleotide sequence was selected as a target sequence and shown in FIGS. 6 to 9 . The candidate sequences were 27 of C69849_g1_i1 of IZUMO1, 7 of C82233_g1_i1, 2 of C183992_g1_i1, and 15 of C63950_g1_i1 of Zona pellucida sperm-binding protein.

CRISPR/Cas9 system은 DNA에 적용하는 편집기술이고, 유전자 탐색에 이용하는 염기서열은 Transcriptome analysis의 결과이므로, 큰입배스 DNA에서 동일한 서열의 존재 여부, Target sequence 내 intron 삽입으로 인한 CRISPR/Cas9 system 적용 불가능 여부를 확인하기 위해 각 후보 서열(Target sequence)을 기준으로 Primer를 표 7과 같이 제작한 후, PCR을 수행하여 최종 Target sequence를 선정하고 표 8에 나타내었다.The CRISPR/Cas9 system is an editing technology applied to DNA, and the nucleotide sequence used for gene search is the result of transcriptome analysis. In order to confirm , a primer was prepared as shown in Table 7 based on each candidate sequence (Target sequence), and then PCR was performed to select the final target sequence and shown in Table 8.

Target seq.
Name
Target seq.
Name
Primer F.Primer F. Primer R.Primer R.
T1T1 GACAGACCTCTACATGCTTTGG GACAGACCTCTACATGCTTTGG ACCAACACCAGCAACATCTCACCAACACCAGCAACATCTC T2T2 GTTCCTAGCAGGAAGTTAAGGGGTTCCTAGCAGGAAGTTAAGGG TATCTGGCTGGTCTCTCTGTAGTATCTGGCTGGTCTCTCTGTAG T3T3 TACAGAGAGACCAGCCAGATAC TACAGAGAGACCAGCCAGATAC CAGAAGGAGAGGGACAGATGTACAGAAGGAGAGGGACAGATGTA T4T4 TCATCCGTGATGGATTGTGTCTCATCCGTGATGGATTTGTGTC GGAGTAGTGGTACTCTGGTCTTGGAGTGTGGTACTCTGGTCTT T5T5 CTTCCATGGCATCGTCTACTGCTTCCATGGCATCGTCTACTG TGACAGGTCGGTGAATTTGGTGACAGGTCGGTGAATTTGG T6T6 GGAACGTATCGCTGCTCTTT GGAACGTATCGCTGCTCTTT CCAGGACAACTGTAATGCCTACCCAGGACAACTGTAATGCCTAC T7T7 CCAGTCATCGCCGTGTTTA CCAGTCATCGCCGTGTTTA CTCCCTGTCTTTAGAGTGTGTGCTCCCTGTCTTTAGAGTGTGTG TGCCTCATGGAAACAACTACTCTGCCTCATGGAAACAACTACTC GTCTCCATCACACCGTGTTTGTCTCCATCACACCGTGTTT T8T8 CATGTTCACTACTCGCAGATGTCATGTTCACTACTCGCAGATGT TGTGTGTTTAAGTGGGTGTGTTGTGTGTTTAAGTGGGTGTGT T9T9 GCGTGACACACCCACTTAAAGCGTGACACACCCACTTAAA TTCGGGATTGATTGGATGGCTTCGGGATTGATTGGATGGC CATAACAAAGCGTGACACACCCATAACAAAGCGTGACACACC AATCCGGGAGATTTACCTCATCAATCCGGGAGATTTACCTCATC T10T10 CCCTGAATGGAGCGATGGCCCTGAATGGAGCGATGG GACTAAACATTCAAAGAAACCCTGAGACTAAACATTCAAAGAAACCCTGA T11T11 GGAAGTGGGAGCATGAAGAAGGAAGTGGGAGCATGAAGAA ACTGAGCTGGATATTGTAGACATCACTGAGCTGGATATTGTAGACATC T12T12 TGTCGGTGATGAGGAAATGAAG TGTCGGTGATGAGGAAATGAAG GCTTTGAGCACATCTCAAGAGTAGCTTTGAGCACATCTCAAGAGTA T13T13 CACGGCTCAGATGGTTTACTCACGGCTCAGATGGTTTACT CCAAACAGGTCAGCTTTGATAACCCAAACAGGTCAGCTTTGATAAC T14T14 CAGACTTGCTGGAGATCGTTAT CAGACTTGCTGGAGATCGTTAT AGGCCACAGGAGAGTATATGAAGGCCACAGGAGAGTATATGA T15T15 TCGTTGTTGGATTAGTGGACTGTCGTTGTTGGATTAGTGGACTG GCAGCTTGGGTAGACATGAAGCAGCTTGGGTAGACATGAA T16T16 GTTCTTCGCTCCTGCCTACGTTCTTCGCTCCTGCCTAC CACACAGCTGCTCACAAATACCACACAGCTGCTCACAAATAC T17T17 GTCAGAGTTGGGTATCACATGGGTCAGAGTTGGGTATCACATGG CATTTACTGGCACAGCATTCAGCATTTACTGGCACAGCATTCAG T18T18 TCAGGACACAGGATGACAAACTCAGGACACAGGATGACAAAC TTGGATTCAGCCACCTTACCTTGGATTCAGCCACCTTACC T19T19 TGGCCAAACCCACCATAATGGCCAAACCCACCATAA GCAGTCCCATCTCGTCTTTGCAGTCCCATCTCGTCTTT T20T20 CCAGTGGAGAGGTGGAATAACCCAGTGGAGAGGTGGAATAAC AGCAGTTGTGTTTGACAGTTTAGAGCAGTTGTGTTTGACAGTTTAG T21T21 TGGACCCTAACGGCACAGTGGACCCTAACGGCACAG CAGTTGATTTACATCAGATAAACAGGGACAGTTGATTTACATCAGATAAACAGGGA T22T22 TCTGAGGTCTAATTGGCAGTAAAGTCTGAGGTCTAATTGGCAGTAAAG CTAGGCAGGTTGAGTATGAAGTGCTAGGCAGGTTGAGTATGAAGTG T23T23 TGAACACACTTCATACTCAACCTTGAACACACTTCATACTCAACCT GAGCACACCTGACAGACAATGAGCACACCTGACAGACAAT T24T24 TGGAAGTCCTGAGATGTTCAAATGGAAGTCCTGAGATGTTCAAA CACGGGAGTTGGAAGTCTAAACACGGGAGTTTGGAAGTCTAAA T25T25 GGTGTCCTTTGTGTCTGTGTGGTGTCCTTTGTGTCTGTGT TCATCCTTGTGATGCCATTGTATCATCCTTTGTGATGCCATTGTA T26T26 GAACAGTCAGTGCTGGTGATGAACAGTCAGTGCTGGTGAT GTTGCGACAACATTGACATACAGTTGCGACAACATTGACATACA T27T27 AGCTGAAAGCTACCTCTGAAATAGCTGAAAGCTACCTCTGAAAT TGACTGTAATCTTGTCTACTTGCTTGACTGTAATCTTGTCTACTTGCT

ProteinProtein Contig No.Contig No. Target No.Target No. Target Sequence (5’→3’)Target Sequence (5’→3’) Seq. No.Seq. No. IZUMO1IZUMO1 C69849_g1_i1
(1,357 bp)
C69849_g1_i1
(1,357 bp)
22 AGTCCTCTCTGCTCCCACTGAGTCCTCTCTGCTCCCACTG 55
33 GAAAATCTTAGAGAAACACTGAAAATCTTAGAGAAACACT 66 55 CAGCTGCATGTGGATGAACA CAGCTGCATGTGGATGAACA 77 66 ACTCTGCCCTCCCTGCCTCAACTCTGCCCTCCCTGCCTCA 88 C82233_g1_i1
(531 bp)
C82233_g1_i1
(531 bp)
88 AGGATTGCCGATGTGAACTAAGGATTGCCGATGTGAACTA 99
99 CACGATCACTGATCTGACCCCACGATCACTGATCTGACCC 1010 1010 AATCCCGAATAATCCCCTGTAATCCCGAATAATCCCCTGT 1111 C183992_g1_i1
(324 bp)
C183992_g1_i1
(324 bp)
1111 GGCAGGGCAGATTTGAATGTGGCAGGGCAGATTTGAATGT 1212
1212 TCCAGCTCAGTTAGAATCACTCCAGCTCAGTTAGAATCAC 1313 Zona pellucida sperm-binding proteinZona pellucida sperm-binding protein C63950_g1_i1
(2,850 bp)
C63950_g1_i1
(2,850 bp)
1313 CACTCCAAATACACTGTGCACACTCCAAATACACTGTGCA 1414
1414 GATGTTGATGAGATACGCCTGATGTTGATGAGATACGCCT 1515 1515 CCTCCTCATATACTCTCCTGCCTCCTCATATACTCTCCTG 1616 1616 AGCTCTAACGTGTTTTACTTAGCTCTAACGTGTTTTACTT 1717 1818 TGATGCAGAGGCACCAAATATGATGCAGAGGCACCAAATA 1818 2020 TGCTGCATCTCTAGAAAGGTTGCTGCATCTCTAGAAAGGT 1919 2121 TTTGCTTTCTGAGGTCTAATTTTGCTTTCTGAGGTCTAAT 2020 2222 GTTCAAGTTTTCACTTAAATGTTCAAGTTTTCACTTAAAT 2121 2323 ACCATTATGCTTTAAAGTTAACCATTATGCTTTAAAGTTTA 2222 2424 TTTTGAGGCAGTGAAAAATGTTTTGAGGCAGTGAAAAATG 2323 2525 TGCGGACTCCTCCATGATTGTGCGGACTCCTCCATGATTG 2424 2626 TGAAAGCTACCTCTGAAATGTGAAAGCTACCTCTGAAATG 2525

PCR 반응은 Genomic DNA 1㎕ (50ng/㎕), primer 각각 2㎕ (10pmol/㎕), DNA Taq polymerase (solgent, korea) 0.25㎕, 10X buffer 5㎕, 10mM dNTP 1㎕, 증류수를 첨가하여 최종 50㎕ 용량으로 반응하였다. PCR 조건은 94℃에서 5분간 initial denaturation을 실시한 후, 94℃에서 30초, 62℃에서 30초, 72℃에서 90초를 1 cycle로 하여 30회 반복한 후, 72℃에서 10분간 final extension하고 8℃에서 보관하였다. PCR 산물은 1.5% agarose gel에서 전기영동하여 확인하였다.For PCR reaction, 1 μl of Genomic DNA (50ng/μl), 2 μl of each primer (10 pmol/μl), 0.25 μl of DNA Taq polymerase (solvent, Korea), 5 μl of 10X buffer, 1 μl of 10mM dNTP, and distilled water were added to the final 50 The reaction was performed in a μl dose. The PCR conditions were repeated 30 times by performing initial denaturation at 94°C for 5 minutes, 94°C for 30 seconds, 62°C for 30 seconds, and 72°C for 90 seconds as 1 cycle, followed by final extension at 72°C for 10 minutes. Stored at 8°C. The PCR product was confirmed by electrophoresis on 1.5% agarose gel.

<< 실시예Example 3. 3. 큰입배스의bigmouth bass 종 특이적 정자-난자 인식 단백질의 발현 억제> Inhibition of expression of species-specific sperm-egg recognition protein>

3.1 3.1 sgRNAsgRNA 디자인 및 제작 design and manufacture

상기 실시예 2.4에서 최종 선정된 Target sequence에 유전자 편집기술을 적용할 수 있도록 sgRNA을 디자인하여 표 9에 나타내고, 이를 Guide-it sgRNA In Vitro Transcription kit (Takarabio, USA)를 이용하여 제작하였다. sgRNA 제작을 위해 필요한 Primer는 표 10과 같다. 먼저 sgRNA 제작용 template를 만든 다음, sgRNA를 제작한 후 Guide-it IVT RNA Clean-Up kit (Takarabio, USA)를 이용하여 제작한 sgRNA를 purify 하여 확인하고 sgRNA 합성량을 확인하였다.The sgRNA was designed so that the gene editing technology could be applied to the target sequence finally selected in Example 2.4 and shown in Table 9, which was produced using the Guide-it sgRNA In Vitro Transcription kit (Takarabio, USA). Primers required for sgRNA production are shown in Table 10. First, a template for sgRNA production was created, sgRNA was produced, and then the produced sgRNA was purified using the Guide-it IVT RNA Clean-Up kit (Takarabio, USA) and confirmed, and the amount of sgRNA synthesis was confirmed.

ProteinProtein Contig No.Contig No. Target No.Target No. sgRNA sequence (5’→3’)sgRNA sequence (5’→3’) Seq. No.Seq. No. IZUMO1IZUMO1 C69849_g1_i1
(1,357 bp)
C69849_g1_i1
(1,357 bp)
22 AGUCCUCUCUGCUCCCACUGAGUCCUCUCUGCUCCCACUG 2626
33 GAAAAUCUUAGAGAAACACUGAAAAUCUUAGAGAAACACU 2727 55 CAGCUGCAUGUGGAUGAACA CAGCUGCAUGUGGAUGAACA 2828 66 ACUCUGCCCUCCCUGCCUCAACUCUGCCCUCCCUGCCUCA 2929 C82233_g1_i1
(531 bp)
C82233_g1_i1
(531 bp)
88 AGGAUUGCCGAUGUGAACUAAGGAUUGCCGAUGUGAACUA 3030
99 CACGAUCACUGAUCUGACCCCACGAUCACUGAUCUGACCC 3131 1010 AAUCCCGAAUAAUCCCCUGUAAUCCCGAAUAAUCCCCUGU 3232 C183992_g1_i1
(324 bp)
C183992_g1_i1
(324 bp)
1111 GGCAGGGCAGAUUUGAAUGUGGCAGGGCAGAUUUGAAUGU 3333
1212 UCCAGCUCAGUUAGAAUCACUCCAGCUCAGUUAGAAUCAC 3434 Zona pellucida sperm-binding proteinZona pellucida sperm-binding protein C63950_g1_i1
(2,850 bp)
C63950_g1_i1
(2,850 bp)
1313 CACUCCAAAUACACUGUGCACACUCCAAAUACACUGUGCA 3535
1414 GAUGUUGAUGAGAUACGCCUGAUGUUGAGUGAGAUACGCCU 3636 1515 CCUCCUCAUAUACUCUCCUGCCUCCUCAUAUACUCUCCUG 3737 1616 AGCUCUAACGUGUUUUACUUAGCUCUAACGUGUUUUACUU 3838 1818 UGAUGCAGAGGCACCAAAUAUGAUGCAGAGGCACCAAAUA 3939 2020 UGCUGCAUCUCUAGAAAGGUUGCUGCAUCUCUAGAAAGGU 4040 2121 UUUGCUUUCUGAGGUCUAAUUUUGCUUUCUGAGGUCUAAU 4141 2222 GUUCAAGUUUUCACUUAAAUGUUCAAGUUUUCACUUAAAU 4242 2323 ACCAUUAUGCUUUAAAGUUAACCAUUAUGCUUUAAAGUUA 4343 2424 UUUUGAGGCAGUGAAAAAUGUUUUGAGGGCAGUGAAAAAUG 4444 2525 UGCGGACUCCUCCAUGAUUGUGCGGACUCCUCCAUGAUUG 4545 2626 UGAAAGCUACCUCUGAAAUGUGAAAGCUACCUCUGAAAUG 4646

ProteinProtein Contig No.Contig No. Target No.Target No. Primer Sequence (5’→3’)Primer Sequence (5’→3’) size
(bp)
size
(bp)
IZUMO1IZUMO1 C69849
C69849
22 CCTCTAATACGACTCACTATAGGAGTCCTCTCTGCTCCCACTGGTTTAAGAGCTATGCCCTCTAATACGACTCACTATAGGAGTCCTCTCTGCTCCCACTGGTTTAAGAGCTATGC 5858
33 CCTCTAATACGACTCACTATAGGAAAATCTTAGAGAAACACTGTTTAAGAGCTATGCCCTCTAATACGACTCACTATAGGAAAATCTTAGAGAAACACTGTTTAAGAGCTATGC 5757 55 CCTCTAATACGACTCACTATAGGCAGCTGCATGTGGATGAACAGTTTAAGAGCTATGCCCTCTAATACGACTCACTATAGGCAGCTGCATGTGGATGAACAGTTTAAGAGCTATGC 5858 66 CCTCTAATACGACTCACTATAGGACTCTGCCCTCCCTGCCTCAGTTTAAGAGCTATGCCCTCTAATACGACTCACTATAGGACTCTGCCCTCCCTGCCTCAGTTTAAGAGCTATGC 5858 C82233
C82233
88 CCTCTAATACGACTCACTATAGGAGGATTGCCGATGTGAACTAGTTTAAGAGCTATGCCCTCTAATACGACTCACTATAGGAGGATTGCCGATGTGAACTAGTTTAAGAGCTATGC 5858
99 CCTCTAATACGACTCACTATAGGCACGATCACTGATCTGACCCGTTTAAGAGCTATGCCCTCTAATACGACTCACTATAGGCACGATCACTGATCTGACCCGTTTAAGAGCTATGC 5858 1010 CCTCTAATACGACTCACTATAGGAATCCCGAATAATCCCCTGTGTTTAAGAGCTATGCCCTCTAATACGACTCACTATAGGAATCCCGAATAATCCCCTGTGTTTAAGAGCTATGC 5858 C1839921
C1839921
1111 CCTCTAATACGACTCACTATAGGCAGGGCAGATTTGAATGTGTTTAAGAGCTATGCCCTCTAATACGACTCACTATAGGCAGGGCAGATTTGAATGTGTTTAAGAGCTATGC 5656
1212 CCTCTAATACGACTCACTATAGGTCCAGCTCAGTTAGAATCACGTTTAAGAGCTATGCCCTCTAATACGACTCACTATAGGTCCAGCTCAGTTAGAATCACGTTTAAGAGCTATGC 5858 Zona pellucida sperm-
binding protein
Zona pellucida sperm-
binding protein
C63950
C63950
1313 CCTCTAATACGACTCACTATAGGCACTCCAAATACACTGTGCAGTTTAAGAGCTATGCCCTCTAATACGACTCACTATAGGCACTCCAAATACACTGTGCAGTTTAAGAGCTATGC 5858
1414 CCTCTAATACGACTCACTATAGGATGTTGATGAGATACGCCTGTTTAAGAGCTATGCCCTCTAATACGACTCACTATAGGATTGTTGATGAGATACGCCTGTTTAAGAGCTATGC 5757 1515 CCTCTAATACGACTCACTATAGGCCTCCTCATATACTCTCCTGGTTTAAGAGCTATGCCCTCTAATACGACTCACTATAGGCCTCCTCATATACTCTCCTGGTTTAAGAGCTATGC 5858 1616 CCTCTAATACGACTCACTATAGGAGCTCTAACGTGTTTTACTTGTTTAAGAGCTATGCCCTCTAATACGACTCACTATAGGAGCTCTAACGTGTTTTACTTGTTTAAGAGCTATGC 5858 1818 CCTCTAATACGACTCACTATAGGTGATGCAGAGGCACCAAATAGTTTAAGAGCTATGCCCTCTAATACGACTCACTATAGGTGATGCAGAGGCACCAAATAGTTTAAGAGCTATGC 5858 2020 CCTCTAATACGACTCACTATAGGTGCTGCATCTCTAGAAAGGTGTTTAAGAGCTATGCCCTCTAATACGACTCACTATAGGTGCTGCATCTCTAGAAAGGTGTTTAAGAGCTATGC 5858 2121 CCTCTAATACGACTCACTATAGGTTTGCTTTCTGAGGTCTAATGTTTAAGAGCTATGCCCTCTAATACGACTCACTATAGGTTTGCTTTCTGAGGTCTAATGTTTAAGAGCTATGC 5858 2222 CCTCTAATACGACTCACTATAGGTTCAAGTTTTCACTTAAATGTTTAAGAGCTATGCCCTCTAATACGACTCACTATAGGTTCAAGTTTTCACTTAAATGTTTAAGAGCTATGC 5757 2323 CCTCTAATACGACTCACTATAGGACCATTATGCTTTAAAGTTAGTTTAAGAGCTATGCCCTCTAATACGACTCACTATAGGACCATTATGCTTTAAAGTTAGTTTAAGAGCTATGC 5858 2424 CCTCTAATACGACTCACTATAGGTTTTGAGGCAGTGAAAAATGGTTTAAGAGCTATGCCCTCTAATACGACTCACTATAGGTTTTGAGGCAGTGAAAAATGGTTTAAGAGCTATGC 5858 2525 CCTCTAATACGACTCACTATAGGTGCGGACTCCTCCATGATTGGTTTAAGAGCTATGCCCTCTAATACGACTCACTATAGGTGCGGACTCCTCCATGATTGGTTTAAGAGCTATGC 5858 2626 CCTCTAATACGACTCACTATAGGTGAAAGCTACCTCTGAAATGGTTTAAGAGCTATGCCCTCTAATACGACTCACTATAGGTGAAAGCTACCTCTGAAATGGTTTAAGAGCTATGC 5858

매뉴얼에 따라 sgRNA 제작용 template를 만든 다음, sgRNA를 제작한 후 Guide-it IVT RNA Clean-Up kit (Takarabio, USA)를 이용하여 제작한 sgRNA를 purify 한 다음 sgRNA 합성량을 확인하고 이를 표 11 및 도 10에 나타내었다. After making a template for sgRNA production according to the manual, purify the prepared sgRNA using the Guide-it IVT RNA Clean-Up kit (Takarabio, USA) after making the sgRNA. It is shown in Figure 10.

ProteinProtein Contig No.Contig No. Target No.Target No. 합성량 (ng/㎕)Synthesis amount (ng/μl) IZUMO1IZUMO1 C69849_g1_i1
(1,357 bp)
C69849_g1_i1
(1,357 bp)
22 833.15833.15
33 766.32766.32 55 825.95825.95 66 715.55715.55 C82233_g1_i1
(531 bp)
C82233_g1_i1
(531 bp)
88 1004.301004.30
99 841.43841.43 1010 902.29902.29 C183992_g1_i1
(324 bp)
C183992_g1_i1
(324 bp)
1111 914.12914.12
1212 601.95601.95 Zona pellucida sperm-binding proteinZona pellucida sperm-binding protein C63950_g1_i1
(2,850 bp)
C63950_g1_i1
(2,850 bp)
1313 912.21912.21
1414 866.14866.14 1515 789.30789.30 1616 1027.201027.20 1818 828.77828.77 2020 653.07653.07 2121 364.87364.87 2222 364.79364.79 2323 729.56729.56 2424 323.55323.55 2525 666.42666.42 2626 827.10827.10

3.2 3.2 sgRNAsgRNA screening screening

상기 실시예 3.1에서 제작한 sgRNA가 Target sequence를 인식할 수 있는지 확인하기 위해 in vitro 실험으로 큰입배스 Target sequence의 PCR 산물과 Guide-it sgRNA Screening kit (Takarabio, USA)를 이용하여 유전자 편집 즉 Target sequence 절단 여부를 agarose 전기영동 방법으로 확인하였다. 이때 sgRNA에 의한 Target sequence의 인식 여부를 확인하기 위해 각 Target sequence를 포함하도록 적합한 Primer를 조합하여 큰입배스의 전체 genome으로부터 PCR 산물(uncleaved fragment)을 얻었다. 전기영동은 2.0% agarose gel에 100bp marker (DNA ladder)와 PCR product의 5㎕를 이용하여 수행하였다.In order to confirm whether the sgRNA prepared in Example 3.1 can recognize the target sequence, the PCR product of the large-mouth bass target sequence and the Guide-it sgRNA Screening kit (Takarabio, USA) were used as an in vitro experiment to edit the gene, i.e., the target sequence. Cleavage was confirmed by agarose electrophoresis. At this time, in order to check whether the target sequence was recognized by the sgRNA, a PCR product (uncleaved fragment) was obtained from the entire genome of the large-mouth bass by combining appropriate primers to include each target sequence. Electrophoresis was performed on 2.0% agarose gel using 100bp marker (DNA ladder) and 5 μl of PCR product.

정자-난자 인식 단백질을 구성하는 각 contig의 Target sequence별 sgRNA screening 결과를 도 11~14에 나타내었다.The results of sgRNA screening for each target sequence of each contig constituting the sperm-egg recognition protein are shown in FIGS. 11 to 14 .

IZUMO1(C69849_g1_i1)의 경우, Target sequence 3과 5를 인식하는 sgRNA가 정상적으로 작동하여 sequence가 절단되었고, Target sequence 2와 6을 인식하는 sgRNA는 정상적으로 작동하지 않아 sequence의 절단이 나타나지 않았다.In the case of IZUMO1 (C69849_g1_i1), the sgRNA recognizing target sequences 3 and 5 worked normally and the sequence was cut, and the sgRNA recognizing target sequences 2 and 6 did not work normally, so no sequence cleavage was observed.

IZUMO1(C82233_g1_i1)의 경우, Target sequence 8, 9, 10을 인식하는 sgRNA가 정상적으로 작동하여 sequence의 절단이 나타났다. Target sequence 8과 10에서는 Uncleaved fragment 550bp가 절단된 것은 확인되었으나 cleaved fragments 2개 중 1개는 200bp 이하이기 때문에 전기영동 결과인 gel band의 육안 식별이 안 되는 것으로 추정되었다.In the case of IZUMO1 (C82233_g1_i1), sgRNA recognizing target sequences 8, 9, and 10 worked normally, resulting in sequence cleavage. In target sequences 8 and 10, it was confirmed that 550bp of the uncleaved fragment was cleaved, but one of the two cleaved fragments was less than 200bp, so it was estimated that the gel band, the result of electrophoresis, could not be visually identified.

IZUMO1(C183992_g1_i1)의 경우, Target sequence 11과 12를 인식하는 sgRNA가 정상적으로 작동하여 sequence의 절단이 나타났다. Target sequence 11과 12에서는 Uncleaved fragment 300bp가 절단된 것은 확인되었으나 cleaved fragments 2개 중 1개는 200bp 이하이기 때문에 전기영동 결과인 gel band의 육안 식별이 안 되는 것으로 추정되었다.In the case of IZUMO1 (C183992_g1_i1), sgRNA recognizing target sequences 11 and 12 worked normally, resulting in sequence cleavage. In target sequences 11 and 12, it was confirmed that the uncleaved fragment was cleaved by 300bp, but since one of the two cleaved fragments was less than 200bp, it was estimated that the gel band, the result of electrophoresis, could not be visually identified.

Zona pellucida sperm-binding protein(C63950_g1_i1)의 경우, 모든 Target sequence 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 25, 26을 인식하는 sgRNA가 정상적으로 작동하여 sequence가 절단된 것을 확인하였다. Target sequence 23, 24, 25에서는 Uncleaved fragment 2000bp가 절단된 것은 확인하였으나 cleaved fragments 2개 중 1개는 Target sequence 23의 경우 1975bp, Target sequence 24의 경우 1650bp, Target sequence 25의 경우 1550bp로 추정되어 Uncleaved fragment와 육안 구분이 안 되는 것으로 추정되었다.In the case of Zona pellucida sperm-binding protein (C63950_g1_i1), sgRNA recognizing all target sequences 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 25, 26 works normally, confirmed that. It was confirmed that 2000bp of the uncleaved fragment was cut from target sequences 23, 24, and 25, but one of the two cleaved fragments was estimated to be 1975bp in the case of Target sequence 23, 1650bp in the case of Target sequence 24, and 1550bp in the case of Target sequence 25. Uncleaved fragment It was assumed that the visual distinction could not be made with the naked eye.

3.3 3.3 Cas9Cas9 -- sgRNAsgRNA ribonucleoproteinribonucleoprotein ( ( RNPRNP ) complex 제작) complex production

Guide-it Recombinant Cas9 kit (Takarabio, USA)를 이용하여 Target sequence을 인식하고 절단하는 Cas9-sgRNA ribonucleoprotein (RNP) complex를 제작하였다.A Cas9-sgRNA ribonucleoprotein (RNP) complex that recognizes and cuts the target sequence was prepared using the Guide-it Recombinant Cas9 kit (Takarabio, USA).

3.4 3.4 Cas9Cas9 -- sgRNAsgRNA ribonucleoproteinribonucleoprotein ( ( RNPRNP ) complex 주입 및 ) complex injection and 불임개체infertile 생성 produce

큰입배스의 산란 시기에 수컷의 정자와 암컷의 난자를 채취한 후 수정시킨 수정란에 microinjector로 상기 실시예 3.3에서 제작한 Cas9-sgRNA ribonucleoprotein (RNP) complex를 주입하였다. 상기 Cas9-sgRNA ribonucleoprotein (RNP) complex가 주입된 수정란은 발생과정에서 수정란의 종 특이적인 정자 또는 난자 인식 단백질의 암호화된 염기서열 (Target sequence)을 편집하게 되고, 정자-난자 인식에 필요한 단백질 발현이 억제된 상태로 부화하여 불임 큰입배스 개체가 생성된다.The Cas9-sgRNA ribonucleoprotein (RNP) complex prepared in Example 3.3 was injected into the fertilized eggs after collecting male sperm and female eggs during the spawning period of the large-mouth bass. The fertilized egg injected with the Cas9-sgRNA ribonucleoprotein (RNP) complex edits the coded target sequence of the species-specific sperm or egg recognition protein of the fertilized egg during development, and the protein expression required for sperm-egg recognition is reduced. Infertile largemouth bass individuals are created by hatching in a suppressed state.

<110> NAP Co.,Ltd. Ecological Space Research Institute Co., Ltd. LEE, Yoon Jeong <120> Composition for inducing large mouth bass sterility for management of disturbing fish species in aquatic ecosystem <130> DPC-21-0027 <160> 46 <170> KoPatentIn 3.0 <210> 1 <211> 1357 <212> DNA <213> Micropterus salmoides <400> 1 ttgaagtgta cctatgataa aaatgacaga cctctacatg ctttggtgaa ctgtggggtg 60 aacagtgaca gtactgttgc agtttgtggc agaatctgac tggcaggctg gcacatgaac 120 aaaattgcaa aactgttcag aacatactac agagaacctg ctctgacaga ggagcaaaag 180 tgactcatcc tagttcctag caggaagtta agggtaccga ggggagatgt tgctggtgtt 240 ggtgtccctg ctttgctgtg tccctgctgc caaggcctgt ttgcagtgtg acctcagggt 300 caggctccta catgaggact tagtcctctc tgctcccact gtggacaacc agattgaatt 360 gaaaaagatt tgtgaccatg cctatgtgac ctacagagag accagccaga tacgaaaggg 420 agtcattgat cccaccactc tgtacagagc cacaactgag taccagagtg aatttgaccg 480 cttcttgaaa accaaggaca ctggatctgt aacattcgaa gccattcaga tcatggagaa 540 gggcaggaaa atcttagaga aacacttgga cacattcatc cgtgatggat tgtgtcccaa 600 caagtgtggg cttttgaaac agagagtaat ggattgcatc tcttgccact acaagatata 660 catctgtccc tctccttctg gccaacagga ttgcggtgag tatccagtgc aggctgagga 720 gggaggccag gcagtgttga actgtttcct tccatggcat cgtctactgt tgggaagacc 780 agagtaccac tactcctggg cccctggtgt gccagaaacg gaaaagctga ctgagagcaa 840 cttcaaagcc ttggtagtga cagacgactc atctgtggtc ttaaatcagc tgcatgtgga 900 tgaacaagga acgtatcgct gctctttgca ggacgaaaat ggaaccgtct tctaccgagt 960 cactttcctg ctcgctgtca cccctttgcc tgtccaaatt caccgacctg tcatcactct 1020 gccctccctg cctcatggaa acaactactc accttttcta cctactgagg agggcctgct 1080 gatgccagtc atcgccgtgt ttactgctct gagtctggca gcctgcgtag gcattacagt 1140 tgtcctgggg tgagagacaa tttattataa atcagaggag agctgtgaac aagccgagaa 1200 gaaagaggaa ggaggaaaac cacacacaaa acacggtgtg atggagacac tgcgcacagt 1260 aaacacacac tctaaagaca gggaggtttt actcatttca ggttggacat ttctctctgt 1320 ggctaaataa atttccaagc acaaagtgcc aagtcat 1357 <210> 2 <211> 531 <212> DNA <213> Micropterus salmoides <400> 2 tttcatgtaa gtgtgaaaac atgttcacta ctcgcagatg tggctctgcg aagcgtataa 60 tgtgtttaga tgtttttgaa atatattgat taacttaaaa caaaaacata aaaacttaag 120 gattgccgat gtgaactatg gtgatgaaaa cacagagatc tcactcataa aaagaaagtt 180 tgtggtgcaa cataacaaag cgtgacacac ccacttaaac acacacaaaa tcccccagaa 240 agcactcaac tttccatagc attaagcacc agcttgcctt aaacacgatc actgatctga 300 ccctggcagg gacacgttcc ccctgaatgg agcgatggca tggtcacgtg ggtgtttatg 360 agaggaatca gggatgaggt aaatctcccg gattacagtt tttttcagag attaacagcc 420 ccagccatcc aatcaatccc gaataatccc ctgttggagg aggagggaga caggaggggt 480 aaaaagatag cagcagatgt tttcatcagg gtttctttga atgtttagtc a 531 <210> 3 <211> 324 <212> DNA <213> Micropterus salmoides <400> 3 agggtgagaa gggaagtggg agcatgaaga aagtggagtc agaggtttga gtgggagaca 60 tttgcggcag ggcagatttg aatgtcggtg atgaggaaat gaagacaaag acgtcagatt 120 acaccttaac tatcccacac cgcacataaa gtataatttc ctgtgtgtaa ctgagtgtcc 180 tgtatccagg ggtggaaaga tgtctacaat atccagctca gttagaatca ctggtgtttg 240 acttaaatat tacaaatgca gaattgaaaa ctactcacat aaaaatgcaa aaaaagacta 300 ctcttgagat gtgctcaaag cccc 324 <210> 4 <211> 2850 <212> DNA <213> Micropterus salmoides <400> 4 ccacggctca gatggtttac tgcctagtgg gtcagatggg accttttgca gtctgaactg 60 ggttgctgtt ttgagtggca ttcatggaga ccttgtattt ttgggtttat gtcctagttg 120 gactcttgtt gccagggatc tgcctcaggc catcttttgc atttccacac aaacgtcaca 180 gacaacatga ttcctttcta agggctccct tcacggggca ctccaaatac actgtgcatg 240 ggcaccaaaa ggctccagct gaggaacgag agcaggtgaa cactgtcaga gtgacctgcc 300 acccagactt gctggagatc gttatcaaag ctgacctgtt tggagtcgga gctcctgttg 360 atgttgatga gatacgcctc ggagtgaagc ccgatgagtt ctgtagagct gcagcatctt 420 cagaagatga gtacaagatc gttgttggat tagtggactg cgggaccaaa cactggatgg 480 atgaatccgt tctggcctac acaaacctcc tcatatactc tcctgtggcc tccccaggtg 540 gggtgactcg aatggatgag gctgtaattc caattgagtg ttattacaaa aggaaataca 600 atttgtctag ttcttcgctc ctgcctacct ggatcccctt catgtctacc caagctgcag 660 tggaaacctt ggagtttaac ttgagaatta tgacaaatga ctggcagtat aaaagaagct 720 ctaacgtgtt ttacttcggg gatctcatcg gcctcgaagc ctctgtcaga gttgggtatc 780 acatggggct cagagtattt gtgagcagct gtgtggccac acttgaccca gacataaact 840 ctgttcccag atatgtcttc attgaaaacg ggtgcttggt tgactccatg gttccaggtt 900 caaagtctca ctacttagtc aggacacagg atgacaaact ccacttgatg attgatgcct 960 ttaaatttca taatgaggac agagcagagc tctacatcac atgtcaactg aatgctgtgc 1020 cagtaaatga tgcagaggca ccaaataagg cgtgcacttt tgtcaatgat agatggagat 1080 cggcagatgg taacgactac ttatgccagt attgtacaaa tcaaaatata ggtggccaaa 1140 cccaccataa gcccagcagc tctggcaagt ttggtaaggt ggctgaatcc aaaaccttct 1200 gggagagcgg actgaagcgc aatgaagtgt ggcatcagga ggcaagactg ggtccaatgc 1260 tggtcttgcc aggtaaacag aagactgagc atctacctgt agaagagctt cctcccgttc 1320 ccaataaaag cagcagacct gcactgtatg gcagccagtg gagaggtgga ataactttca 1380 gaaaagacga gatgggactg cttccaccta caccagacca ggtggctgag acgttttctt 1440 ctgaacagaa agatgtcaaa actgaaacgg atctaaaaga tgaagatgca gaaagtgaag 1500 ttgctgcatc tctagaaagg ttgggtcctg aggttgactt gaaagcgata gaggcagcac 1560 tggaccctaa cggcacagca gccctcagtg atgtcatccc cacggctcag tttacgatgg 1620 atgtgactaa actgtcaaac acaactgcta cagaatctga cctttcagct gcaaatgacc 1680 caaagagtga atgaacaatt aaaaatagtt tgctttctga ggtctaattg gcagtaaagt 1740 cctgatgttg cacaggtttt tttttttttt ttttccctgt ttatctgatg taaatcaact 1800 gaaactttaa aatgccactc taaaattaaa ctttggagaa agcaaaatgt ttgcatttat 1860 gagccactga cttttatttg aatgtctttg tttttaagtt caagttttca cttaaattgg 1920 caatctctag tatgcatcct gtcttttcca gtgtgaacac acttcatact caacctgcct 1980 agaattggta attatgtggg acacaacagt catcactact atggaaaact ataaatacaa 2040 gcgtttgcat gaaaaatggt tctatggctt aaagcatgtg cactgagtaa cagtaaaatg 2100 taaataaact tgtctgctgt ttccacctac tgggaatgta cattagtgaa accattatgc 2160 tttaaagtta tggaagtcct gagatgttca aaatgtttga ctctcatact aaatgtgcat 2220 tgtctgtcag gtgtgctcac aatctcctga atgatttttg aggcagtgaa aaatgaggaa 2280 ggccagattg caaagactaa gtgaatgcaa atagacggtg tcctttgtgt ctgtgttcag 2340 tagattaaaa gctagtttag cagatgggac tgtttagact tccaactccc gtgtgtattg 2400 cggactcctc catgattgtg gtgaaggctg gcggtacaac aacggatgtt actcctagag 2460 agctttactt gggagaagca gaacagtcag tgctggtgat gctgactgct agttacaatg 2520 gcatcacaag gatgacatgc tgtagttcgt gtttcctgcc tctctaaaag tctgccttct 2580 cactcaagct gatgacagat ttatatcaca tgccagctga aagctacctc tgaaatgtgg 2640 agcagcagtc ccatcaacaa ggtcttcaat tatgtacatt caagatggga aaatgtggat 2700 gggggagatg atgtatgtca atgttgtcgc aacacttaga aagatgagac aaatctgaga 2760 cgtctgatcc ctgaagatac catggcatgt gacaccgtaa ccctttgatt ttccccagca 2820 agtagacaag attacagtca taaacagtgc 2850 <210> 5 <211> 20 <212> DNA <213> Micropterus salmoides <400> 5 agtcctctct gctcccactg 20 <210> 6 <211> 20 <212> DNA <213> Micropterus salmoides <400> 6 gaaaatctta gagaaacact 20 <210> 7 <211> 20 <212> DNA <213> Micropterus salmoides <400> 7 cagctgcatg tggatgaaca 20 <210> 8 <211> 20 <212> DNA <213> Micropterus salmoides <400> 8 actctgccct ccctgcctca 20 <210> 9 <211> 20 <212> DNA <213> Micropterus salmoides <400> 9 aggattgccg atgtgaacta 20 <210> 10 <211> 20 <212> DNA <213> Micropterus salmoides <400> 10 cacgatcact gatctgaccc 20 <210> 11 <211> 20 <212> DNA <213> Micropterus salmoides <400> 11 aatcccgaat aatcccctgt 20 <210> 12 <211> 20 <212> DNA <213> Micropterus salmoides <400> 12 ggcagggcag atttgaatgt 20 <210> 13 <211> 20 <212> DNA <213> Micropterus salmoides <400> 13 tccagctcag ttagaatcac 20 <210> 14 <211> 20 <212> DNA <213> Micropterus salmoides <400> 14 cactccaaat acactgtgca 20 <210> 15 <211> 20 <212> DNA <213> Micropterus salmoides <400> 15 gatgttgatg agatacgcct 20 <210> 16 <211> 20 <212> DNA <213> Micropterus salmoides <400> 16 cctcctcata tactctcctg 20 <210> 17 <211> 20 <212> DNA <213> Micropterus salmoides <400> 17 agctctaacg tgttttactt 20 <210> 18 <211> 20 <212> DNA <213> Micropterus salmoides <400> 18 tgatgcagag gcaccaaata 20 <210> 19 <211> 20 <212> DNA <213> Micropterus salmoides <400> 19 tgctgcatct ctagaaaggt 20 <210> 20 <211> 20 <212> DNA <213> Micropterus salmoides <400> 20 tttgctttct gaggtctaat 20 <210> 21 <211> 20 <212> DNA <213> Micropterus salmoides <400> 21 gttcaagttt tcacttaaat 20 <210> 22 <211> 20 <212> DNA <213> Micropterus salmoides <400> 22 accattatgc tttaaagtta 20 <210> 23 <211> 20 <212> DNA <213> Micropterus salmoides <400> 23 ttttgaggca gtgaaaaatg 20 <210> 24 <211> 20 <212> DNA <213> Micropterus salmoides <400> 24 tgcggactcc tccatgattg 20 <210> 25 <211> 20 <212> DNA <213> Micropterus salmoides <400> 25 tgaaagctac ctctgaaatg 20 <210> 26 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> sgRNA for C69849_g1_i1 of IZUMO1 <400> 26 aguccucucu gcucccacug 20 <210> 27 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> sgRNA for C69849_g1_i1 of IZUMO1 <400> 27 gaaaaucuua gagaaacacu 20 <210> 28 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> sgRNA for C69849_g1_i1 of IZUMO1 <400> 28 cagcugcaug uggaugaaca 20 <210> 29 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> sgRNA for C69849_g1_i1 of IZUMO1 <400> 29 acucugcccu cccugccuca 20 <210> 30 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> sgRNA for C82233_g1_i1 of IZUMO1 <400> 30 aggauugccg augugaacua 20 <210> 31 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> sgRNA for C82233_g1_i1 of IZUMO1 <400> 31 cacgaucacu gaucugaccc 20 <210> 32 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> sgRNA for C82233_g1_i1 of IZUMO1 <400> 32 aaucccgaau aauccccugu 20 <210> 33 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> sgRNA for C183992_g1_i1 of IZUMO1 <400> 33 ggcagggcag auuugaaugu 20 <210> 34 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> sgRNA for C183992_g1_i1 of IZUMO1 <400> 34 uccagcucag uuagaaucac 20 <210> 35 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> sgRNA for C63950_g1_i1 of Zona pellucida sperm-binding protein <400> 35 cacuccaaau acacugugca 20 <210> 36 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> sgRNA for C63950_g1_i1 of Zona pellucida sperm-binding protein <400> 36 gauguugaug agauacgccu 20 <210> 37 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> sgRNA for C63950_g1_i1 of Zona pellucida sperm-binding protein <400> 37 ccuccucaua uacucuccug 20 <210> 38 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> sgRNA for C63950_g1_i1 of Zona pellucida sperm-binding protein <400> 38 agcucuaacg uguuuuacuu 20 <210> 39 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> sgRNA for C63950_g1_i1 of Zona pellucida sperm-binding protein <400> 39 ugaugcagag gcaccaaaua 20 <210> 40 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> sgRNA for C63950_g1_i1 of Zona pellucida sperm-binding protein <400> 40 ugcugcaucu cuagaaaggu 20 <210> 41 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> sgRNA for C63950_g1_i1 of Zona pellucida sperm-binding protein <400> 41 uuugcuuucu gaggucuaau 20 <210> 42 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> sgRNA for C63950_g1_i1 of Zona pellucida sperm-binding protein <400> 42 guucaaguuu ucacuuaaau 20 <210> 43 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> sgRNA for C63950_g1_i1 of Zona pellucida sperm-binding protein <400> 43 accauuaugc uuuaaaguua 20 <210> 44 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> sgRNA for C63950_g1_i1 of Zona pellucida sperm-binding protein <400> 44 uuuugaggca gugaaaaaug 20 <210> 45 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> sgRNA for C63950_g1_i1 of Zona pellucida sperm-binding protein <400> 45 ugcggacucc uccaugauug 20 <210> 46 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> sgRNA for C63950_g1_i1 of Zona pellucida sperm-binding protein <400> 46 ugaaagcuac cucugaaaug 20 <110> NAP Co., Ltd. Ecological Space Research Institute Co., Ltd. LEE, Yoon Jeong <120> Composition for inducing large mouth bass sterility for management of disturbing fish species in aquatic ecosystem <130> DPC-21-0027 <160> 46 <170> KoPatentIn 3.0 <210> 1 <211> 1357 <212> DNA <213> Micropterus salmoides <400> 1 ttgaagtgta cctatgataa aaatgacaga cctctacat ctttggtgaa ctgtggggtg 60 aacagtgaca gtactgttgc agtttgtggc agaatctgac tggcaggctg gcacatgaac 120 aaaattgcaa aactgttcag aacatactac agagaacctg ctctgacaga ggagcaaaag 180 tgactcatcc tagttcctag caggaagtta agggtaccga ggggagatgt tgctggtgtt 240 ggtgtccctg ctttgctgtg tccctgctgc caaggcctgt ttgcagtgtg acctcagggt 300 caggctccta catgaggact tagtcctctc tgctcccact gtggacaacc agattgaatt 360 gaaaaagatt tgtgaccatg cctatgtgac ctacagagag accagccaga tacgaaaggg 420 agtcattgat cccaccactc tgtacagagc cacaactgag taccagagtg aatttgaccg 480 cttcttgaaa accaaggaca ctggatctgt aacattcgaa gccattcaga tcatggagaa 540 gggcaggaaa atcttagaga aacacttgga cacatcatc cgtgatggat tgtgtcccaa 600 caagtgtggg cttttgaaac agagagtaat ggattgcatc tcttgccact acaagatata 660 catctgtccc tctccttctg gccaacagga ttgcggtgag tatccagtgc aggctgagga 720 gggaggccag gcagtgttga actgtttcct tccatggcat cgtctactgt tgggaagacc 780 agagtaccac tactcctggg cccctggtgt gccagaaacg gaaaagctga ctgagagcaa 840 cttcaaagcc ttggtagtga cagacgactc atctgtggtc ttaaatcagc tgcatgtgga 900 tgaacaagga acgtatcgct gctctttgca ggacgaaaat ggaaccgtct tctaccgagt 960 cactttcctg ctcgctgtca cccctttgcc tgtccaaatt caccgacctg tcatcactct 1020 gccctccctg cctcatggaa acaactactc accttttcta cctactgagg agggcctgct 1080 gatgccagtc atcgccgtgt ttactgctct gagtctggca gcctgcgtag gcattacagt 1140 tgtcctgggg tgagagacaa tttattataa atcagaggag agctgtgaac aagccgagaa 1200 gaaagaggaa ggaggaaaac cacacacaaa acacggtgtg atggagacac tgcgcacagt 1260 aaacacacac tctaaagaca gggaggtttt actcatttca ggttggacat ttctctctgt 1320 ggctaaataa atttccaagc acaaagtgcc aagtcat 1357 <210> 2 <211> 531 <212> DNA <213> Micropterus salmoides <400> 2 tttcatgtaa gtgtgaaaac atgttcacta ctcgcagatg tggctctgcg aagcgtataa 60 tgtgtttaga tgtttttgaa atatattgat taacttaaaa caaaaacata aaaacttaag 120 gattgccgat gtgaactatg gtgatgaaaa cacagagatc tcactcataa aaagaaagtt 180 tgtggtgcaa cataacaaag cgtgacacac ccacttaaac acacacaaaa tcccccagaa 240 agcactcaac tttccatagc attaagcacc agcttgcctt aaacacgatc actgatctga 300 ccctggcagg gacacgttcc ccctgaatgg agcgatggca tggtcacgtg ggtgtttatg 360 agaggaatca gggatgaggt aaatctcccg gattacagtt tttttcagag attaacagcc 420 ccagccatcc aatcaatccc gaataatccc ctgttggagg aggagggaga caggaggggt 480 aaaaagatag cagcagatgt tttcatcagg gtttctttga atgtttagtc a 531 <210> 3 <211> 324 <212> DNA <213> Micropterus salmoides <400> 3 agggtgagaa gggaagtggg agcatgaaga aagtggagtc agaggtttga gtgggagaca 60 tttgcggcag ggcagatttg aatgtcggtg atgaggaaat gaagacaaag acgtcagatt 120 acaccttaac tattccacac cgcacataaa gtataatttc ctgtgtgtaa ctgagtgtcc 180 tgtatccagg ggtggaaaga tgtctacaat atccagctca gttagaatca ctggtgtttg 240 acttaaatat tacaaatgca gaattgaaaa ctactcacat aaaaatgcaa aaaaagacta 300 ctcttgagat gtgctcaaag cccc 324 <210> 4 <211> 2850 <212> DNA <213> Micropterus salmoides <400> 4 ccacggctca gatggtttac tgcctagtgg gtcagatggg accttttgca gtctgaactg 60 ggttgctgtt ttgagtggca ttcatggaga ccttgtattt ttgggtttat gtcctagttg 120 gactcttgtt gccagggatc tgcctcaggc catcttttgc atttccacac aaacgtcaca 180 gacaacatga ttcctttcta agggctccct tcacggggca ctccaaatac actgtgcatg 240 ggcaccaaaa ggctccagct gaggaacgag agcaggtgaa cactgtcaga gtgacctgcc 300 acccagactt gctggagatc gttatcaaag ctgacctgtt tggagtcgga gctcctgttg 360 atgttgatga gatacgcctc ggagtgaagc ccgatgagtt ctgtagagct gcagcatctt 420 cagaagatga gtacaagatc gttgttggat tagtggactg cgggaccaaa cactggatgg 480 atgaatccgt tctggcctac acaaacctcc tcatatactc tcctgtggcc tccccaggtg 540 gggtgactcg aatggatgag gctgtaattc caattgagtg ttattacaaa aggaaataca 600 atttgtctag ttcttcgctc ctgcctacct ggatcccctt catgtctacc caagctgcag 660 tggaaacctt ggagtttaac ttgagaatta tgacaaatga ctggcagtat aaaagaagct 720 ctaacgtgtt ttacttcggg gatctcatcg gcctcgaagc ctctgtcaga gttgggtatc 780 acatggggct cagagtattt gtgagcagct gtgtggccac acttgaccca gacataaact 840 ctgttcccag atatgtcttc attgaaaacg ggtgcttggt tgactccatg gttccaggtt 900 caaagtctca ctacttagtc aggacacagg atgacaaact ccacttgatg attgatgcct 960 ttaaatttca taatgaggac agagcagagc tctacatcac atgtcaactg aatgctgtgc 1020 cagtaaatga tgcagaggca ccaaataagg cgtgcacttt tgtcaatgat agatggagat 1080 cggcagatgg taacgactac ttatgccagt attgtacaaa tcaaaatata ggtggccaaa 1140 cccaccataa gcccagcagc tctggcaagt ttggtaaggt ggctgaatcc aaaaccttct 1200 gggagagcgg actgaagcgc aatgaagtgt ggcatcagga ggcaagactg ggtccaatgc 1260 tggtcttgcc aggtaaacag aagactgagc atctacctgt agaagagctt cctcccgttc 1320 ccaataaaag cagcagacct gcactgtatg gcagccagtg gagaggtgga ataactttca 1380 gaaaagacga gatgggactg cttccaccta caccagacca ggtggctgag acgttttctt 1440 ctgaacagaa agatgtcaaa actgaaacgg atctaaaaga tgaagatgca gaaagtgaag 1500 ttgctgcatc tctagaaagg ttgggtcctg aggttgactt gaaagcgata gaggcagcac 1560 tggaccctaa cggcacagca gccctcagtg atgtcatccc cacggctcag tttacgatgg 1620 atgtgactaa actgtcaaac acaactgcta cagaatctga cctttcagct gcaaatgacc 1680 caaagagtga atgaacaatt aaaaatagtt tgctttctga ggtctaattg gcagtaaagt 1740 cctgatgttg cacaggtttt tttttttttt ttttccctgt ttatctgatg taaatcaact 1800 gaaactttaa aatgccactc taaaattaaa ctttggagaa agcaaaatgt ttgcatttat 1860 gagccactga cttttatttg aatgtctttt tttttaagtt caagttttca cttaaattgg 1920 caatctctag tatgcatcct gtcttttcca gtgtgaacac acttcatact caacctgcct 1980 agaattggta attatgtggg acacaacagt catcactact atggaaaact ataaatacaa 2040 gcgtttgcat gaaaaatggt tctatggctt aaagcatgtg cactgagtaa cagtaaaatg 2100 taaataaact tgtctgctgt ttccacctac tgggaatgta cattagtgaa accattatgc 2160 tttaaagtta tggaagtcct gagatgttca aaatgtttga ctctcatact aaatgtgcat 2220 tgtctgtcag gtgtgctcac aatctcctga atgatttttg aggcagtgaa aaatgaggaa 2280 ggccagattg caaagactaa gtgaatgcaa atagacggtg tcctttgtgt ctgtgttcag 2340 tagattaaaa gctagtttag cagatgggac tgtttagact tccaactccc gtgtgtattg 2400 cggactcctc catgattgtg gtgaaggctg gcggtacaac aacggatgtt actcctagag 2460 agctttactt gggagaagca gaacagtcag tgctggtgat gctgactgct agttacaatg 2520 gcatcacaag gatgacatgc tgtagttcgt gtttcctgcc tctctaaaag tctgccttct 2580 cactcaagct gatgacagat ttatatcaca tgccagctga aagctacctc tgaaatgtgg 2640 agcagcagtc ccatcaacaa ggtcttcaat tatgtacatt caagatggga aaatgtggat 2700 gggggagatg atgtatgtca atgttgtcgc aacacttaga aagatgagac aaatctgaga 2760 cgtctgatcc ctgaagatac catggcatgt gacaccgtaa ccctttgatt ttccccagca 2820 agtagacaag attacagtca taaacagtgc 2850 <210> 5 <211> 20 <212> DNA <213> Micropterus salmoides <400> 5 agtcctctct gctcccactg 20 <210> 6 <211> 20 <212> DNA <213> Micropterus salmoides <400> 6 gaaaatctta gagaaacact 20 <210> 7 <211> 20 <212> DNA <213> Micropterus salmoides <400> 7 cagctgcatg tggatgaaca 20 <210> 8 <211> 20 <212> DNA <213> Micropterus salmoides <400> 8 actctgccct ccctgcctca 20 <210> 9 <211> 20 <212> DNA <213> Micropterus salmoides <400> 9 aggattgccg atgtgaacta 20 <210> 10 <211> 20 <212> DNA <213> Micropterus salmoides <400> 10 cacgatcact gatctgaccc 20 <210> 11 <211> 20 <212> DNA <213> Micropterus salmoides <400> 11 aatcccgaat aatcccctgt 20 <210> 12 <211> 20 <212> DNA <213> Micropterus salmoides <400> 12 ggcagggcag atttgaatgt 20 <210> 13 <211> 20 <212> DNA <213> Micropterus salmoides <400> 13 tccagctcag ttagaatcac 20 <210> 14 <211> 20 <212> DNA <213> Micropterus salmoides <400> 14 cactccaaat acactgtgca 20 <210> 15 <211> 20 <212> DNA <213> Micropterus salmoides <400> 15 gatgttgatg agatacgcct 20 <210> 16 <211> 20 <212> DNA <213> Micropterus salmoides <400> 16 cctcctcata tactctcctg 20 <210> 17 <211> 20 <212> DNA <213> Micropterus salmoides <400> 17 agctctaacg tgttttactt 20 <210> 18 <211> 20 <212> DNA <213> Micropterus salmoides <400> 18 tgatgcagag gcaccaaata 20 <210> 19 <211> 20 <212> DNA <213> Micropterus salmoides <400> 19 tgctgcatct ctagaaaggt 20 <210> 20 <211> 20 <212> DNA <213> Micropterus salmoides <400> 20 tttgctttct gaggtctaat 20 <210> 21 <211> 20 <212> DNA <213> Micropterus salmoides <400> 21 gttcaagttt tcacttaaat 20 <210> 22 <211> 20 <212> DNA <213> Micropterus salmoides <400> 22 accattatgc tttaaagtta 20 <210> 23 <211> 20 <212> DNA <213> Micropterus salmoides <400> 23 ttttgaggca gtgaaaaatg 20 <210> 24 <211> 20 <212> DNA <213> Micropterus salmoides <400> 24 tgcggactcc tccatgattg 20 <210> 25 <211> 20 <212> DNA <213> Micropterus salmoides <400> 25 tgaaagctac ctctgaaatg 20 <210> 26 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> sgRNA for C69849_g1_i1 of IZUMO1 <400> 26 aguccucucu gcucccacug 20 <210> 27 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> sgRNA for C69849_g1_i1 of IZUMO1 <400> 27 gaaaaucuua gagaaacacu 20 <210> 28 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> sgRNA for C69849_g1_i1 of IZUMO1 <400> 28 caggugcaug uggaugaaca 20 <210> 29 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> sgRNA for C69849_g1_i1 of IZUMO1 <400> 29 acucugcccu cccugccuca 20 <210> 30 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> sgRNA for C82233_g1_i1 of IZUMO1 <400> 30 aggauugccg augugaacua 20 <210> 31 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> sgRNA for C82233_g1_i1 of IZUMO1 <400> 31 cacgaucacu gaucugaccc 20 <210> 32 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> sgRNA for C82233_g1_i1 of IZUMO1 <400> 32 aaucccgaau aauccccugu 20 <210> 33 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> sgRNA for C183992_g1_i1 of IZUMO1 <400> 33 ggcagggcag auuugaaugu 20 <210> 34 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> sgRNA for C183992_g1_i1 of IZUMO1 <400> 34 uccagcucag uuagaaucac 20 <210> 35 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> sgRNA for C63950_g1_i1 of Zona pellucida sperm-binding protein <400> 35 cacuccaaau acacugugca 20 <210> 36 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> sgRNA for C63950_g1_i1 of Zona pellucida sperm-binding protein <400> 36 gauguugaug agauacgccu 20 <210> 37 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> sgRNA for C63950_g1_i1 of Zona pellucida sperm-binding protein <400> 37 ccuccucaua uacucuccug 20 <210> 38 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> sgRNA for C63950_g1_i1 of Zona pellucida sperm-binding protein <400> 38 agcucuaacg uguuuuacuu 20 <210> 39 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> sgRNA for C63950_g1_i1 of Zona pellucida sperm-binding protein <400> 39 ugaugcagag gcaccaaaua 20 <210> 40 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> sgRNA for C63950_g1_i1 of Zona pellucida sperm-binding protein <400> 40 ugcugcaucu cuagaaaggu 20 <210> 41 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> sgRNA for C63950_g1_i1 of Zona pellucida sperm-binding protein <400> 41 uuugcuuucu gagguuaau 20 <210> 42 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> sgRNA for C63950_g1_i1 of Zona pellucida sperm-binding protein <400> 42 guucaaguuu ucacuuaaau 20 <210> 43 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> sgRNA for C63950_g1_i1 of Zona pellucida sperm-binding protein <400> 43 accauuaugc uuuaaaguua 20 <210> 44 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> sgRNA for C63950_g1_i1 of Zona pellucida sperm-binding protein <400> 44 uuuugaggca gugaaaaaug 20 <210> 45 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> sgRNA for C63950_g1_i1 of Zona pellucida sperm-binding protein <400> 45 ugcggacucc uccaugauug 20 <210> 46 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> sgRNA for C63950_g1_i1 of Zona pellucida sperm-binding protein <400> 46 ugaaagcuac cucugaaaug 20

Claims (7)

Cas9 단백질 및 큰입배스(Micropterus salmoides)의 종 특이적 정자-난자 인식 단백질을 암호화하는 유전자의 표적 부위에 특이적으로 결합하는 표적화 서열을 포함하는 가이드 RNA를 포함하고, 상기 가이드 RNA는 종 특이적 정자-난자 인식 단백질을 암호화하는 유전자 내의 Cas9 단백질이 인식하는 PAM(proto-spacer-adjacent Motif) 서열의 5’ 말단 또는 3’ 말단에 인접하여 위치하는 연속하는 17bp 내지 23bp 길이의 표적 부위에 혼성화 가능한 핵산 서열을 포함하는 것인 큰입배스(Micropterus salmoides)의 불임 유도용 조성물 에 있어서,
상기 종 특이적 정자-난자 인식 단백질을 암호화하는 유전자는 서열번호 1 내지 3 중 선택된 하나 이상의 핵산 서열을 포함하는 IZUMO1 유전자인 것을 특징으로 하는 큰입배스(Micropterus salmoides)의 불임 유도용 조성물.
and a guide RNA comprising a targeting sequence that specifically binds to a target site of a gene encoding a Cas9 protein and a species-specific sperm-egg recognition protein of Micropterus salmoides, wherein the guide RNA is a species-specific sperm. -Nucleic acid capable of hybridizing to a continuous target site of 17 bp to 23 bp in length located adjacent to the 5' end or 3' end of the proto-spacer-adjacent motif (PAM) sequence recognized by the Cas9 protein in the gene encoding the egg recognition protein In the composition for inducing infertility of the big mouth bass (Micropterus salmoides) comprising the sequence,
The gene encoding the species-specific sperm-egg recognition protein is an IZUMO1 gene comprising one or more nucleic acid sequences selected from SEQ ID NOs: 1 to 3;
삭제delete 삭제delete Cas9 단백질 및 큰입배스(Micropterus salmoides)의 종 특이적 정자-난자 인식 단백질을 암호화하는 유전자의 표적 부위에 특이적으로 결합하는 표적화 서열을 포함하는 가이드 RNA를 포함하고, 상기 가이드 RNA는 종 특이적 정자-난자 인식 단백질을 암호화하는 유전자 내의 Cas9 단백질이 인식하는 PAM(proto-spacer-adjacent Motif) 서열의 5’ 말단 또는 3’ 말단에 인접하여 위치하는 연속하는 17bp 내지 23bp 길이의 표적 부위에 혼성화 가능한 핵산 서열을 포함하는 것인 큰입배스(Micropterus salmoides)의 불임 유도용 조성물 에 있어서,
상기 종 특이적 정자-난자 인식 단백질을 암호화하는 유전자는 서열번호 4의 핵산 서열을 포함하는 zona pellucida sperm-binding protein 유전자인 것을 특징으로 하는 큰입배스(Micropterus salmoides)의 불임 유도용 조성물.
and a guide RNA comprising a targeting sequence that specifically binds to a target site of a gene encoding a Cas9 protein and a species-specific sperm-egg recognition protein of Micropterus salmoides, wherein the guide RNA is a species-specific sperm. -Nucleic acid capable of hybridizing to a continuous target site of 17 bp to 23 bp in length located adjacent to the 5' end or 3' end of the proto-spacer-adjacent motif (PAM) sequence recognized by the Cas9 protein in the gene encoding the egg recognition protein In the composition for inducing infertility of the big mouth bass (Micropterus salmoides) comprising the sequence,
The gene encoding the species-specific sperm-egg recognition protein is a zona pellucida sperm-binding protein gene comprising the nucleic acid sequence of SEQ ID NO: 4. A composition for inducing infertility of Micropterus salmoides.
삭제delete 제1항 또는 제4항에 있어서,
상기 가이드 RNA는 서열번호 27, 28 및 30 내지 46 중에서 선택된 하나의 핵산 서열을 포함하는 것을 특징으로 하는 큰입배스(Micropterus salmoides)의 불임 유도용 조성물.
5. The method of claim 1 or 4,
The guide RNA is a composition for inducing infertility of large-mouth bass (Micropterus salmoides), characterized in that it comprises one nucleic acid sequence selected from SEQ ID NOs: 27, 28 and 30 to 46.
큰입배스의 산란 시기에 수컷의 정자와 암컷의 난자를 채취하는 단계;
상기 채취한 큰입배스의 정자와 난자를 수정시켜 수정란을 제작하는 단계;
Cas9 단백질 및 서열번호 27, 28 및 30 내지 46 중에서 선택된 하나의 핵산 서열을 포함하는 가이드 RNA를 하나 이상 포함하는 큰입배스(Micropterus salmoides) 의 불임 유도용 조성물을 주입하여 수정란의 종 특이적인 정자 또는 난자 인식 단백질의 암호화된 염기서열 (Target sequence)을 편집하는 단계; 및
상기 편집된 종 특이적인 정자 또는 난자 인식 단백질을 보유한 수정란을 부화시키는 단계;를 포함하는 것을 특징으로 하는 불임 유도된 큰입배스(Micropterus salmoides)의 생산 방법.
Collecting sperm of males and eggs of females during spawning of largemouth bass;
producing a fertilized egg by fertilizing the sperm and egg of the collected large-mouth bass;
Species-specific sperm or egg of a fertilized egg by injecting a composition for inducing infertility of a largemouth bass (Micropterus salmoides) comprising at least one guide RNA comprising a Cas9 protein and one nucleic acid sequence selected from SEQ ID NOs: 27, 28 and 30 to 46 Editing the encoded nucleotide sequence of the recognition protein (Target sequence); and
Infertility-induced largemouth bass (Micropterus salmoides) production method comprising the; incubating a fertilized egg having the edited species-specific sperm or egg recognition protein.
KR1020210022047A 2021-02-18 2021-02-18 Composition for inducing large mouth bass sterility for management of disturbing fish species in aquatic ecosystem KR102285906B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210022047A KR102285906B1 (en) 2021-02-18 2021-02-18 Composition for inducing large mouth bass sterility for management of disturbing fish species in aquatic ecosystem

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210022047A KR102285906B1 (en) 2021-02-18 2021-02-18 Composition for inducing large mouth bass sterility for management of disturbing fish species in aquatic ecosystem

Publications (1)

Publication Number Publication Date
KR102285906B1 true KR102285906B1 (en) 2021-08-04

Family

ID=77314786

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210022047A KR102285906B1 (en) 2021-02-18 2021-02-18 Composition for inducing large mouth bass sterility for management of disturbing fish species in aquatic ecosystem

Country Status (1)

Country Link
KR (1) KR102285906B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150101476A (en) * 2012-10-23 2015-09-03 주식회사 툴젠 Composition for cleaving a target DNA comprising a guide RNA specific for the target DNA and Cas protein-encoding nucleic acid or Cas protein, and use thereof
KR20160013219A (en) 2013-05-31 2016-02-03 리컴비네틱스 인코포레이티드 Genetically sterile animals
KR20190120160A (en) * 2016-11-10 2019-10-23 트랜슬레이트 바이오 인코포레이티드 Improved ICE-Based Lipid Nanoparticle Formulations for MRNA Delivery
KR20200088446A (en) 2017-11-21 2020-07-22 더 리전츠 오브 더 유니버시티 오브 캘리포니아 Endonuclease sex and infertility in insects

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150101476A (en) * 2012-10-23 2015-09-03 주식회사 툴젠 Composition for cleaving a target DNA comprising a guide RNA specific for the target DNA and Cas protein-encoding nucleic acid or Cas protein, and use thereof
KR20160013219A (en) 2013-05-31 2016-02-03 리컴비네틱스 인코포레이티드 Genetically sterile animals
KR20190120160A (en) * 2016-11-10 2019-10-23 트랜슬레이트 바이오 인코포레이티드 Improved ICE-Based Lipid Nanoparticle Formulations for MRNA Delivery
KR20200088446A (en) 2017-11-21 2020-07-22 더 리전츠 오브 더 유니버시티 오브 캘리포니아 Endonuclease sex and infertility in insects

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Elaswad A., K. Khalil, D. Cline, P. P. McCaw, W. Chen, M. Michel, R. Cone, and R. Dunham. 2018. Microinjection of CRISPRCas9 Protein into Channel Catfish, Ictalurus punctatus, Embryos for Gene Editing. Journal of visualized experiments 20;(131):56275.
Gantz V. M., N. Jasinskiene, O. Tatarenkova, A. Fazekas, V. M. Macias, E. Bier, and A. A. James. 2015. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proceedings of the National Academy of Sciences of the United States of America 112(49):E6736-43.
Hashimoto M., and T. Takemoto. 2015. Electroporation enables the efficient mRNA delivery into the mouse zygotes and facilitates CRISPRCas9-based genome editing. Scientific reports 5:11315.
Li S., J. Bai, L. Cai, D. Ma, and F. Du. 2012. The complete mitochondrial genomes of largemouth bass of the northern subspecies (Micropterus salmoides salmoides) and Florida subspecies (Micropterus salmoides floridanus) and their applications in the identification of largemouth bass species. Mitochondrial DNA 23(2):92-9.
Vicens A., L. Lke, and E. R. S. Roldan. 2014. Proteins Involved in Motility and Sperm-Egg Interaction Evolve More Rapidly in Mouse Spermatozoa. PLos One 9(3):e91302.
임봉구 (사)아시아환경정의연구원. 2012. 한강수계 생태계 위해 외래어종 분포특성과 퇴치를 위한 효율적 대응방안 연구. 한강유역환경청 한강수계관리위원회. 하남. pp 20~29

Similar Documents

Publication Publication Date Title
Kao et al. The genome of the crustacean Parhyale hawaiensis, a model for animal development, regeneration, immunity and lignocellulose digestion
Bi et al. CRISPR/Cas9‐mediated targeted gene mutagenesis in Spodoptera litura
Khalil et al. Generation of myostatin gene-edited channel catfish (Ictalurus punctatus) via zygote injection of CRISPR/Cas9 system
Hughes et al. Genomics and genetics of human and primate y chromosomes
Bely et al. Lessons from leeches: a call for DNA barcoding in the lab
Praher et al. Characterization of the piRNA pathway during development of the sea anemone Nematostella vectensis
CN105132427A (en) Method for acquiring gene editing sheep by RNA-mediated specific double-gene knockout and special sgRNA for method
Kohno et al. mKast is dispensable for normal development and sexual maturation of the male European honeybee
Tadokoro et al. Early segregation of germ and somatic lineages during gonadal regeneration in the annelid Enchytraeus japonensis
Hu et al. Genome-wide RAD sequencing to identify a sex-specific marker in Chinese giant salamander Andrias davidianus
Awazu et al. An enhancer trap in the ascidian Ciona intestinalis identifies enhancers of its Musashi orthologous gene
KR102285906B1 (en) Composition for inducing large mouth bass sterility for management of disturbing fish species in aquatic ecosystem
Stundl et al. Efficient CRISPR mutagenesis in sturgeon demonstrates its utility in large, slow-maturing vertebrates
CN109652459B (en) Bee gene editing method based on CRISPR/Cas9
Hayashi et al. Mutagenesis in newts: protocol for iberian ribbed newts
Nakao et al. Germ cell specification and early embryonic patterning in Bombyx mori as revealed by nanos orthologues
Chakraborty et al. Hidden features of the malaria vector mosquito, Anopheles stephensi, revealed by a high-quality reference genome
CN114592075A (en) Method for heterogeneously transplanting ricefield eel germ cells and detecting chimeric gonads after transplantation
Cao CRISPR-Cas9 genome editing in Steinernema entomopathogenic nematodes
Putnam et al. Sea anemone genome reveals the gene repertoire and genomic organization of the eumetazoan ancestor
Oral Insights into isogenic clonal fish line development using high-throughput sequencing technologies
JP2015186454A (en) ABALONE vasa GENE MARKER AND METHOD OF PRODUCING STERILIZED ABALONE
Biedler et al. On the origin and evolution of the mosquito male-determining factor Nix
Jagiełło et al. Production of triploid, doubled haploid (DH) and meiogynogenetic brook trout ()–efficiency and development of body deformities
Trimmer et al. Spatial single-cell sequencing of meiosis I arrested oocytes indicates acquisition of maternal transcripts from the soma

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant